< prev index next >

src/hotspot/cpu/aarch64/macroAssembler_aarch64.cpp

Print this page

  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/assembler.hpp"
  28 #include "asm/assembler.inline.hpp"
  29 #include "ci/ciEnv.hpp"

  30 #include "code/compiledIC.hpp"
  31 #include "compiler/compileTask.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "compiler/oopMap.hpp"
  34 #include "gc/shared/barrierSet.hpp"
  35 #include "gc/shared/barrierSetAssembler.hpp"
  36 #include "gc/shared/cardTableBarrierSet.hpp"
  37 #include "gc/shared/cardTable.hpp"
  38 #include "gc/shared/collectedHeap.hpp"
  39 #include "gc/shared/tlab_globals.hpp"
  40 #include "interpreter/bytecodeHistogram.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "jvm.h"
  43 #include "memory/resourceArea.hpp"
  44 #include "memory/universe.hpp"
  45 #include "nativeInst_aarch64.hpp"
  46 #include "oops/accessDecorators.hpp"
  47 #include "oops/compressedKlass.inline.hpp"
  48 #include "oops/compressedOops.inline.hpp"
  49 #include "oops/klass.inline.hpp"

  50 #include "runtime/continuation.hpp"
  51 #include "runtime/icache.hpp"
  52 #include "runtime/interfaceSupport.inline.hpp"
  53 #include "runtime/javaThread.hpp"
  54 #include "runtime/jniHandles.inline.hpp"
  55 #include "runtime/sharedRuntime.hpp"

  56 #include "runtime/stubRoutines.hpp"
  57 #include "utilities/globalDefinitions.hpp"
  58 #include "utilities/powerOfTwo.hpp"

  59 #ifdef COMPILER1
  60 #include "c1/c1_LIRAssembler.hpp"
  61 #endif
  62 #ifdef COMPILER2
  63 #include "oops/oop.hpp"
  64 #include "opto/compile.hpp"
  65 #include "opto/node.hpp"
  66 #include "opto/output.hpp"
  67 #endif
  68 
  69 #include <sys/types.h>
  70 
  71 #ifdef PRODUCT
  72 #define BLOCK_COMMENT(str) /* nothing */
  73 #else
  74 #define BLOCK_COMMENT(str) block_comment(str)
  75 #endif
  76 #define STOP(str) stop(str);
  77 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  78 

1154 }
1155 
1156 void MacroAssembler::post_call_nop() {
1157   if (!Continuations::enabled()) {
1158     return;
1159   }
1160   InstructionMark im(this);
1161   relocate(post_call_nop_Relocation::spec());
1162   InlineSkippedInstructionsCounter skipCounter(this);
1163   nop();
1164   movk(zr, 0);
1165   movk(zr, 0);
1166 }
1167 
1168 // these are no-ops overridden by InterpreterMacroAssembler
1169 
1170 void MacroAssembler::check_and_handle_earlyret(Register java_thread) { }
1171 
1172 void MacroAssembler::check_and_handle_popframe(Register java_thread) { }
1173 




































1174 // Look up the method for a megamorphic invokeinterface call.
1175 // The target method is determined by <intf_klass, itable_index>.
1176 // The receiver klass is in recv_klass.
1177 // On success, the result will be in method_result, and execution falls through.
1178 // On failure, execution transfers to the given label.
1179 void MacroAssembler::lookup_interface_method(Register recv_klass,
1180                                              Register intf_klass,
1181                                              RegisterOrConstant itable_index,
1182                                              Register method_result,
1183                                              Register scan_temp,
1184                                              Label& L_no_such_interface,
1185                          bool return_method) {
1186   assert_different_registers(recv_klass, intf_klass, scan_temp);
1187   assert_different_registers(method_result, intf_klass, scan_temp);
1188   assert(recv_klass != method_result || !return_method,
1189      "recv_klass can be destroyed when method isn't needed");
1190   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
1191          "caller must use same register for non-constant itable index as for method");
1192 
1193   // Compute start of first itableOffsetEntry (which is at the end of the vtable)

2029   ldarb(scratch, scratch);
2030   subs(zr, scratch, InstanceKlass::fully_initialized);
2031   br(Assembler::EQ, *L_fast_path);
2032 
2033   // Fast path check: current thread is initializer thread
2034   ldr(scratch, Address(klass, InstanceKlass::init_thread_offset()));
2035   cmp(rthread, scratch);
2036 
2037   if (L_slow_path == &L_fallthrough) {
2038     br(Assembler::EQ, *L_fast_path);
2039     bind(*L_slow_path);
2040   } else if (L_fast_path == &L_fallthrough) {
2041     br(Assembler::NE, *L_slow_path);
2042     bind(*L_fast_path);
2043   } else {
2044     Unimplemented();
2045   }
2046 }
2047 
2048 void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) {
2049   if (!VerifyOops) return;




2050 
2051   // Pass register number to verify_oop_subroutine
2052   const char* b = nullptr;
2053   {
2054     ResourceMark rm;
2055     stringStream ss;
2056     ss.print("verify_oop: %s: %s (%s:%d)", reg->name(), s, file, line);
2057     b = code_string(ss.as_string());
2058   }
2059   BLOCK_COMMENT("verify_oop {");
2060 
2061   strip_return_address(); // This might happen within a stack frame.
2062   protect_return_address();
2063   stp(r0, rscratch1, Address(pre(sp, -2 * wordSize)));
2064   stp(rscratch2, lr, Address(pre(sp, -2 * wordSize)));
2065 
2066   mov(r0, reg);
2067   movptr(rscratch1, (uintptr_t)(address)b);
2068 
2069   // call indirectly to solve generation ordering problem
2070   lea(rscratch2, RuntimeAddress(StubRoutines::verify_oop_subroutine_entry_address()));
2071   ldr(rscratch2, Address(rscratch2));
2072   blr(rscratch2);
2073 
2074   ldp(rscratch2, lr, Address(post(sp, 2 * wordSize)));
2075   ldp(r0, rscratch1, Address(post(sp, 2 * wordSize)));
2076   authenticate_return_address();
2077 
2078   BLOCK_COMMENT("} verify_oop");
2079 }
2080 
2081 void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) {
2082   if (!VerifyOops) return;




2083 
2084   const char* b = nullptr;
2085   {
2086     ResourceMark rm;
2087     stringStream ss;
2088     ss.print("verify_oop_addr: %s (%s:%d)", s, file, line);
2089     b = code_string(ss.as_string());
2090   }
2091   BLOCK_COMMENT("verify_oop_addr {");
2092 
2093   strip_return_address(); // This might happen within a stack frame.
2094   protect_return_address();
2095   stp(r0, rscratch1, Address(pre(sp, -2 * wordSize)));
2096   stp(rscratch2, lr, Address(pre(sp, -2 * wordSize)));
2097 
2098   // addr may contain sp so we will have to adjust it based on the
2099   // pushes that we just did.
2100   if (addr.uses(sp)) {
2101     lea(r0, addr);
2102     ldr(r0, Address(r0, 4 * wordSize));

2160   call_VM_leaf_base(entry_point, 1);
2161 }
2162 
2163 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2164   assert_different_registers(arg_1, c_rarg0);
2165   pass_arg0(this, arg_0);
2166   pass_arg1(this, arg_1);
2167   call_VM_leaf_base(entry_point, 2);
2168 }
2169 
2170 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0,
2171                                   Register arg_1, Register arg_2) {
2172   assert_different_registers(arg_1, c_rarg0);
2173   assert_different_registers(arg_2, c_rarg0, c_rarg1);
2174   pass_arg0(this, arg_0);
2175   pass_arg1(this, arg_1);
2176   pass_arg2(this, arg_2);
2177   call_VM_leaf_base(entry_point, 3);
2178 }
2179 




2180 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
2181   pass_arg0(this, arg_0);
2182   MacroAssembler::call_VM_leaf_base(entry_point, 1);
2183 }
2184 
2185 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2186 
2187   assert_different_registers(arg_0, c_rarg1);
2188   pass_arg1(this, arg_1);
2189   pass_arg0(this, arg_0);
2190   MacroAssembler::call_VM_leaf_base(entry_point, 2);
2191 }
2192 
2193 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2194   assert_different_registers(arg_0, c_rarg1, c_rarg2);
2195   assert_different_registers(arg_1, c_rarg2);
2196   pass_arg2(this, arg_2);
2197   pass_arg1(this, arg_1);
2198   pass_arg0(this, arg_0);
2199   MacroAssembler::call_VM_leaf_base(entry_point, 3);

2205   assert_different_registers(arg_2, c_rarg3);
2206   pass_arg3(this, arg_3);
2207   pass_arg2(this, arg_2);
2208   pass_arg1(this, arg_1);
2209   pass_arg0(this, arg_0);
2210   MacroAssembler::call_VM_leaf_base(entry_point, 4);
2211 }
2212 
2213 void MacroAssembler::null_check(Register reg, int offset) {
2214   if (needs_explicit_null_check(offset)) {
2215     // provoke OS null exception if reg is null by
2216     // accessing M[reg] w/o changing any registers
2217     // NOTE: this is plenty to provoke a segv
2218     ldr(zr, Address(reg));
2219   } else {
2220     // nothing to do, (later) access of M[reg + offset]
2221     // will provoke OS null exception if reg is null
2222   }
2223 }
2224 









































































































2225 // MacroAssembler protected routines needed to implement
2226 // public methods
2227 
2228 void MacroAssembler::mov(Register r, Address dest) {
2229   code_section()->relocate(pc(), dest.rspec());
2230   uint64_t imm64 = (uint64_t)dest.target();
2231   movptr(r, imm64);
2232 }
2233 
2234 // Move a constant pointer into r.  In AArch64 mode the virtual
2235 // address space is 48 bits in size, so we only need three
2236 // instructions to create a patchable instruction sequence that can
2237 // reach anywhere.
2238 void MacroAssembler::movptr(Register r, uintptr_t imm64) {
2239 #ifndef PRODUCT
2240   {
2241     char buffer[64];
2242     snprintf(buffer, sizeof(buffer), "0x%" PRIX64, (uint64_t)imm64);
2243     block_comment(buffer);
2244   }

4992   adrp(rscratch1, src2, offset);
4993   ldr(rscratch1, Address(rscratch1, offset));
4994   cmp(src1, rscratch1);
4995 }
4996 
4997 void MacroAssembler::cmpoop(Register obj1, Register obj2) {
4998   cmp(obj1, obj2);
4999 }
5000 
5001 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) {
5002   load_method_holder(rresult, rmethod);
5003   ldr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset()));
5004 }
5005 
5006 void MacroAssembler::load_method_holder(Register holder, Register method) {
5007   ldr(holder, Address(method, Method::const_offset()));                      // ConstMethod*
5008   ldr(holder, Address(holder, ConstMethod::constants_offset()));             // ConstantPool*
5009   ldr(holder, Address(holder, ConstantPool::pool_holder_offset()));          // InstanceKlass*
5010 }
5011 








5012 void MacroAssembler::load_klass(Register dst, Register src) {
5013   if (UseCompressedClassPointers) {
5014     ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes()));
5015     decode_klass_not_null(dst);
5016   } else {
5017     ldr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
5018   }
5019 }
5020 
5021 void MacroAssembler::restore_cpu_control_state_after_jni(Register tmp1, Register tmp2) {
5022   if (RestoreMXCSROnJNICalls) {
5023     Label OK;
5024     get_fpcr(tmp1);
5025     mov(tmp2, tmp1);
5026     // Set FPCR to the state we need. We do want Round to Nearest. We
5027     // don't want non-IEEE rounding modes or floating-point traps.
5028     bfi(tmp1, zr, 22, 4); // Clear DN, FZ, and Rmode
5029     bfi(tmp1, zr, 8, 5);  // Clear exception-control bits (8-12)
5030     bfi(tmp1, zr, 0, 2);  // Clear AH:FIZ
5031     eor(tmp2, tmp1, tmp2);

5067 
5068 void MacroAssembler::cmp_klass(Register oop, Register trial_klass, Register tmp) {
5069   if (UseCompressedClassPointers) {
5070     ldrw(tmp, Address(oop, oopDesc::klass_offset_in_bytes()));
5071     if (CompressedKlassPointers::base() == nullptr) {
5072       cmp(trial_klass, tmp, LSL, CompressedKlassPointers::shift());
5073       return;
5074     } else if (((uint64_t)CompressedKlassPointers::base() & 0xffffffff) == 0
5075                && CompressedKlassPointers::shift() == 0) {
5076       // Only the bottom 32 bits matter
5077       cmpw(trial_klass, tmp);
5078       return;
5079     }
5080     decode_klass_not_null(tmp);
5081   } else {
5082     ldr(tmp, Address(oop, oopDesc::klass_offset_in_bytes()));
5083   }
5084   cmp(trial_klass, tmp);
5085 }
5086 





5087 void MacroAssembler::store_klass(Register dst, Register src) {
5088   // FIXME: Should this be a store release?  concurrent gcs assumes
5089   // klass length is valid if klass field is not null.
5090   if (UseCompressedClassPointers) {
5091     encode_klass_not_null(src);
5092     strw(src, Address(dst, oopDesc::klass_offset_in_bytes()));
5093   } else {
5094     str(src, Address(dst, oopDesc::klass_offset_in_bytes()));
5095   }
5096 }
5097 
5098 void MacroAssembler::store_klass_gap(Register dst, Register src) {
5099   if (UseCompressedClassPointers) {
5100     // Store to klass gap in destination
5101     strw(src, Address(dst, oopDesc::klass_gap_offset_in_bytes()));
5102   }
5103 }
5104 
5105 // Algorithm must match CompressedOops::encode.
5106 void MacroAssembler::encode_heap_oop(Register d, Register s) {

5393   if (as_raw) {
5394     bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, tmp2);
5395   } else {
5396     bs->load_at(this, decorators, type, dst, src, tmp1, tmp2);
5397   }
5398 }
5399 
5400 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators,
5401                                      Address dst, Register val,
5402                                      Register tmp1, Register tmp2, Register tmp3) {
5403   BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
5404   decorators = AccessInternal::decorator_fixup(decorators, type);
5405   bool as_raw = (decorators & AS_RAW) != 0;
5406   if (as_raw) {
5407     bs->BarrierSetAssembler::store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3);
5408   } else {
5409     bs->store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3);
5410   }
5411 }
5412 














































5413 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1,
5414                                    Register tmp2, DecoratorSet decorators) {
5415   access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, tmp2);
5416 }
5417 
5418 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1,
5419                                             Register tmp2, DecoratorSet decorators) {
5420   access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, tmp2);
5421 }
5422 
5423 void MacroAssembler::store_heap_oop(Address dst, Register val, Register tmp1,
5424                                     Register tmp2, Register tmp3, DecoratorSet decorators) {
5425   access_store_at(T_OBJECT, IN_HEAP | decorators, dst, val, tmp1, tmp2, tmp3);
5426 }
5427 
5428 // Used for storing nulls.
5429 void MacroAssembler::store_heap_oop_null(Address dst) {
5430   access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg, noreg);
5431 }
5432 

5469     oop_index = oop_recorder()->allocate_metadata_index(obj);
5470   } else {
5471     oop_index = oop_recorder()->find_index(obj);
5472   }
5473   RelocationHolder rspec = metadata_Relocation::spec(oop_index);
5474   mov(dst, Address((address)obj, rspec));
5475 }
5476 
5477 Address MacroAssembler::constant_oop_address(jobject obj) {
5478 #ifdef ASSERT
5479   {
5480     ThreadInVMfromUnknown tiv;
5481     assert(oop_recorder() != nullptr, "this assembler needs an OopRecorder");
5482     assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "not an oop");
5483   }
5484 #endif
5485   int oop_index = oop_recorder()->find_index(obj);
5486   return Address((address)obj, oop_Relocation::spec(oop_index));
5487 }
5488 
































































































5489 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
5490 void MacroAssembler::tlab_allocate(Register obj,
5491                                    Register var_size_in_bytes,
5492                                    int con_size_in_bytes,
5493                                    Register t1,
5494                                    Register t2,
5495                                    Label& slow_case) {
5496   BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
5497   bs->tlab_allocate(this, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case);
5498 }
5499 
5500 void MacroAssembler::verify_tlab() {
5501 #ifdef ASSERT
5502   if (UseTLAB && VerifyOops) {
5503     Label next, ok;
5504 
5505     stp(rscratch2, rscratch1, Address(pre(sp, -16)));
5506 
5507     ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_top_offset())));
5508     ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset())));
5509     cmp(rscratch2, rscratch1);
5510     br(Assembler::HS, next);
5511     STOP("assert(top >= start)");
5512     should_not_reach_here();
5513 
5514     bind(next);
5515     ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_end_offset())));
5516     ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_top_offset())));
5517     cmp(rscratch2, rscratch1);
5518     br(Assembler::HS, ok);
5519     STOP("assert(top <= end)");
5520     should_not_reach_here();
5521 
5522     bind(ok);
5523     ldp(rscratch2, rscratch1, Address(post(sp, 16)));
5524   }
5525 #endif
5526 }
5527 




















5528 // Writes to stack successive pages until offset reached to check for
5529 // stack overflow + shadow pages.  This clobbers tmp.
5530 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
5531   assert_different_registers(tmp, size, rscratch1);
5532   mov(tmp, sp);
5533   // Bang stack for total size given plus shadow page size.
5534   // Bang one page at a time because large size can bang beyond yellow and
5535   // red zones.
5536   Label loop;
5537   mov(rscratch1, (int)os::vm_page_size());
5538   bind(loop);
5539   lea(tmp, Address(tmp, -(int)os::vm_page_size()));
5540   subsw(size, size, rscratch1);
5541   str(size, Address(tmp));
5542   br(Assembler::GT, loop);
5543 
5544   // Bang down shadow pages too.
5545   // At this point, (tmp-0) is the last address touched, so don't
5546   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
5547   // was post-decremented.)  Skip this address by starting at i=1, and

5633 }
5634 
5635 void MacroAssembler::remove_frame(int framesize) {
5636   assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR");
5637   assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment");
5638   if (framesize < ((1 << 9) + 2 * wordSize)) {
5639     ldp(rfp, lr, Address(sp, framesize - 2 * wordSize));
5640     add(sp, sp, framesize);
5641   } else {
5642     if (framesize < ((1 << 12) + 2 * wordSize))
5643       add(sp, sp, framesize - 2 * wordSize);
5644     else {
5645       mov(rscratch1, framesize - 2 * wordSize);
5646       add(sp, sp, rscratch1);
5647     }
5648     ldp(rfp, lr, Address(post(sp, 2 * wordSize)));
5649   }
5650   authenticate_return_address();
5651 }
5652 



















































5653 
5654 // This method counts leading positive bytes (highest bit not set) in provided byte array
5655 address MacroAssembler::count_positives(Register ary1, Register len, Register result) {
5656     // Simple and most common case of aligned small array which is not at the
5657     // end of memory page is placed here. All other cases are in stub.
5658     Label LOOP, END, STUB, STUB_LONG, SET_RESULT, DONE;
5659     const uint64_t UPPER_BIT_MASK=0x8080808080808080;
5660     assert_different_registers(ary1, len, result);
5661 
5662     mov(result, len);
5663     cmpw(len, 0);
5664     br(LE, DONE);
5665     cmpw(len, 4 * wordSize);
5666     br(GE, STUB_LONG); // size > 32 then go to stub
5667 
5668     int shift = 64 - exact_log2(os::vm_page_size());
5669     lsl(rscratch1, ary1, shift);
5670     mov(rscratch2, (size_t)(4 * wordSize) << shift);
5671     adds(rscratch2, rscratch1, rscratch2);  // At end of page?
5672     br(CS, STUB); // at the end of page then go to stub

6546 // On other systems, the helper is a usual C function.
6547 //
6548 void MacroAssembler::get_thread(Register dst) {
6549   RegSet saved_regs =
6550     LINUX_ONLY(RegSet::range(r0, r1)  + lr - dst)
6551     NOT_LINUX (RegSet::range(r0, r17) + lr - dst);
6552 
6553   protect_return_address();
6554   push(saved_regs, sp);
6555 
6556   mov(lr, CAST_FROM_FN_PTR(address, JavaThread::aarch64_get_thread_helper));
6557   blr(lr);
6558   if (dst != c_rarg0) {
6559     mov(dst, c_rarg0);
6560   }
6561 
6562   pop(saved_regs, sp);
6563   authenticate_return_address();
6564 }
6565 



























































































































































































































































































































































































































































6566 void MacroAssembler::cache_wb(Address line) {
6567   assert(line.getMode() == Address::base_plus_offset, "mode should be base_plus_offset");
6568   assert(line.index() == noreg, "index should be noreg");
6569   assert(line.offset() == 0, "offset should be 0");
6570   // would like to assert this
6571   // assert(line._ext.shift == 0, "shift should be zero");
6572   if (VM_Version::supports_dcpop()) {
6573     // writeback using clear virtual address to point of persistence
6574     dc(Assembler::CVAP, line.base());
6575   } else {
6576     // no need to generate anything as Unsafe.writebackMemory should
6577     // never invoke this stub
6578   }
6579 }
6580 
6581 void MacroAssembler::cache_wbsync(bool is_pre) {
6582   // we only need a barrier post sync
6583   if (!is_pre) {
6584     membar(Assembler::AnyAny);
6585   }

6944   }
6945 
6946   // Check if the lock-stack is full.
6947   ldrw(top, Address(rthread, JavaThread::lock_stack_top_offset()));
6948   cmpw(top, (unsigned)LockStack::end_offset());
6949   br(Assembler::GE, slow);
6950 
6951   // Check for recursion.
6952   subw(t, top, oopSize);
6953   ldr(t, Address(rthread, t));
6954   cmp(obj, t);
6955   br(Assembler::EQ, push);
6956 
6957   // Check header for monitor (0b10).
6958   tst(mark, markWord::monitor_value);
6959   br(Assembler::NE, slow);
6960 
6961   // Try to lock. Transition lock bits 0b01 => 0b00
6962   assert(oopDesc::mark_offset_in_bytes() == 0, "required to avoid lea");
6963   orr(mark, mark, markWord::unlocked_value);




6964   eor(t, mark, markWord::unlocked_value);
6965   cmpxchg(/*addr*/ obj, /*expected*/ mark, /*new*/ t, Assembler::xword,
6966           /*acquire*/ true, /*release*/ false, /*weak*/ false, noreg);
6967   br(Assembler::NE, slow);
6968 
6969   bind(push);
6970   // After successful lock, push object on lock-stack.
6971   str(obj, Address(rthread, top));
6972   addw(top, top, oopSize);
6973   strw(top, Address(rthread, JavaThread::lock_stack_top_offset()));
6974 }
6975 
6976 // Implements lightweight-unlocking.
6977 //
6978 // - obj: the object to be unlocked
6979 // - t1, t2, t3: temporary registers
6980 // - slow: branched to if unlocking fails, absolute offset may larger than 32KB (imm14 encoding).
6981 void MacroAssembler::lightweight_unlock(Register obj, Register t1, Register t2, Register t3, Label& slow) {
6982   assert(LockingMode == LM_LIGHTWEIGHT, "only used with new lightweight locking");
6983   // cmpxchg clobbers rscratch1.

  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/assembler.hpp"
  28 #include "asm/assembler.inline.hpp"
  29 #include "ci/ciEnv.hpp"
  30 #include "ci/ciInlineKlass.hpp"
  31 #include "code/compiledIC.hpp"
  32 #include "compiler/compileTask.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "compiler/oopMap.hpp"
  35 #include "gc/shared/barrierSet.hpp"
  36 #include "gc/shared/barrierSetAssembler.hpp"
  37 #include "gc/shared/cardTableBarrierSet.hpp"
  38 #include "gc/shared/cardTable.hpp"
  39 #include "gc/shared/collectedHeap.hpp"
  40 #include "gc/shared/tlab_globals.hpp"
  41 #include "interpreter/bytecodeHistogram.hpp"
  42 #include "interpreter/interpreter.hpp"
  43 #include "jvm.h"
  44 #include "memory/resourceArea.hpp"
  45 #include "memory/universe.hpp"
  46 #include "nativeInst_aarch64.hpp"
  47 #include "oops/accessDecorators.hpp"
  48 #include "oops/compressedKlass.inline.hpp"
  49 #include "oops/compressedOops.inline.hpp"
  50 #include "oops/klass.inline.hpp"
  51 #include "oops/resolvedFieldEntry.hpp"
  52 #include "runtime/continuation.hpp"
  53 #include "runtime/icache.hpp"
  54 #include "runtime/interfaceSupport.inline.hpp"
  55 #include "runtime/javaThread.hpp"
  56 #include "runtime/jniHandles.inline.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/signature_cc.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "utilities/globalDefinitions.hpp"
  61 #include "utilities/powerOfTwo.hpp"
  62 #include "vmreg_aarch64.inline.hpp"
  63 #ifdef COMPILER1
  64 #include "c1/c1_LIRAssembler.hpp"
  65 #endif
  66 #ifdef COMPILER2
  67 #include "oops/oop.hpp"
  68 #include "opto/compile.hpp"
  69 #include "opto/node.hpp"
  70 #include "opto/output.hpp"
  71 #endif
  72 
  73 #include <sys/types.h>
  74 
  75 #ifdef PRODUCT
  76 #define BLOCK_COMMENT(str) /* nothing */
  77 #else
  78 #define BLOCK_COMMENT(str) block_comment(str)
  79 #endif
  80 #define STOP(str) stop(str);
  81 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  82 

1158 }
1159 
1160 void MacroAssembler::post_call_nop() {
1161   if (!Continuations::enabled()) {
1162     return;
1163   }
1164   InstructionMark im(this);
1165   relocate(post_call_nop_Relocation::spec());
1166   InlineSkippedInstructionsCounter skipCounter(this);
1167   nop();
1168   movk(zr, 0);
1169   movk(zr, 0);
1170 }
1171 
1172 // these are no-ops overridden by InterpreterMacroAssembler
1173 
1174 void MacroAssembler::check_and_handle_earlyret(Register java_thread) { }
1175 
1176 void MacroAssembler::check_and_handle_popframe(Register java_thread) { }
1177 
1178 void MacroAssembler::get_default_value_oop(Register inline_klass, Register temp_reg, Register obj) {
1179   assert_different_registers(inline_klass, temp_reg, obj, rscratch2);
1180 #ifdef ASSERT
1181   {
1182     Label done_check;
1183     test_klass_is_inline_type(inline_klass, temp_reg, done_check);
1184     stop("get_default_value_oop from non inline type klass");
1185     bind(done_check);
1186   }
1187 #endif
1188   Register offset = temp_reg;
1189   // Getting the offset of the pre-allocated default value
1190   ldr(offset, Address(inline_klass, in_bytes(InstanceKlass::adr_inlineklass_fixed_block_offset())));
1191   load_sized_value(offset, Address(offset, in_bytes(InlineKlass::default_value_offset_offset())), sizeof(int), true /*is_signed*/);
1192 
1193   // Getting the mirror
1194   ldr(obj, Address(inline_klass, in_bytes(Klass::java_mirror_offset())));
1195   resolve_oop_handle(obj, inline_klass, rscratch2);
1196 
1197   // Getting the pre-allocated default value from the mirror
1198   Address field(obj, offset);
1199   load_heap_oop(obj, field, inline_klass, rscratch2);
1200 }
1201 
1202 void MacroAssembler::get_empty_inline_type_oop(Register inline_klass, Register temp_reg, Register obj) {
1203 #ifdef ASSERT
1204   {
1205     Label done_check;
1206     test_klass_is_empty_inline_type(inline_klass, temp_reg, done_check);
1207     stop("get_empty_value from non-empty inline klass");
1208     bind(done_check);
1209   }
1210 #endif
1211   get_default_value_oop(inline_klass, temp_reg, obj);
1212 }
1213 
1214 // Look up the method for a megamorphic invokeinterface call.
1215 // The target method is determined by <intf_klass, itable_index>.
1216 // The receiver klass is in recv_klass.
1217 // On success, the result will be in method_result, and execution falls through.
1218 // On failure, execution transfers to the given label.
1219 void MacroAssembler::lookup_interface_method(Register recv_klass,
1220                                              Register intf_klass,
1221                                              RegisterOrConstant itable_index,
1222                                              Register method_result,
1223                                              Register scan_temp,
1224                                              Label& L_no_such_interface,
1225                          bool return_method) {
1226   assert_different_registers(recv_klass, intf_klass, scan_temp);
1227   assert_different_registers(method_result, intf_klass, scan_temp);
1228   assert(recv_klass != method_result || !return_method,
1229      "recv_klass can be destroyed when method isn't needed");
1230   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
1231          "caller must use same register for non-constant itable index as for method");
1232 
1233   // Compute start of first itableOffsetEntry (which is at the end of the vtable)

2069   ldarb(scratch, scratch);
2070   subs(zr, scratch, InstanceKlass::fully_initialized);
2071   br(Assembler::EQ, *L_fast_path);
2072 
2073   // Fast path check: current thread is initializer thread
2074   ldr(scratch, Address(klass, InstanceKlass::init_thread_offset()));
2075   cmp(rthread, scratch);
2076 
2077   if (L_slow_path == &L_fallthrough) {
2078     br(Assembler::EQ, *L_fast_path);
2079     bind(*L_slow_path);
2080   } else if (L_fast_path == &L_fallthrough) {
2081     br(Assembler::NE, *L_slow_path);
2082     bind(*L_fast_path);
2083   } else {
2084     Unimplemented();
2085   }
2086 }
2087 
2088 void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) {
2089   if (!VerifyOops || VerifyAdapterSharing) {
2090     // Below address of the code string confuses VerifyAdapterSharing
2091     // because it may differ between otherwise equivalent adapters.
2092     return;
2093   }
2094 
2095   // Pass register number to verify_oop_subroutine
2096   const char* b = nullptr;
2097   {
2098     ResourceMark rm;
2099     stringStream ss;
2100     ss.print("verify_oop: %s: %s (%s:%d)", reg->name(), s, file, line);
2101     b = code_string(ss.as_string());
2102   }
2103   BLOCK_COMMENT("verify_oop {");
2104 
2105   strip_return_address(); // This might happen within a stack frame.
2106   protect_return_address();
2107   stp(r0, rscratch1, Address(pre(sp, -2 * wordSize)));
2108   stp(rscratch2, lr, Address(pre(sp, -2 * wordSize)));
2109 
2110   mov(r0, reg);
2111   movptr(rscratch1, (uintptr_t)(address)b);
2112 
2113   // call indirectly to solve generation ordering problem
2114   lea(rscratch2, RuntimeAddress(StubRoutines::verify_oop_subroutine_entry_address()));
2115   ldr(rscratch2, Address(rscratch2));
2116   blr(rscratch2);
2117 
2118   ldp(rscratch2, lr, Address(post(sp, 2 * wordSize)));
2119   ldp(r0, rscratch1, Address(post(sp, 2 * wordSize)));
2120   authenticate_return_address();
2121 
2122   BLOCK_COMMENT("} verify_oop");
2123 }
2124 
2125 void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) {
2126   if (!VerifyOops || VerifyAdapterSharing) {
2127     // Below address of the code string confuses VerifyAdapterSharing
2128     // because it may differ between otherwise equivalent adapters.
2129     return;
2130   }
2131 
2132   const char* b = nullptr;
2133   {
2134     ResourceMark rm;
2135     stringStream ss;
2136     ss.print("verify_oop_addr: %s (%s:%d)", s, file, line);
2137     b = code_string(ss.as_string());
2138   }
2139   BLOCK_COMMENT("verify_oop_addr {");
2140 
2141   strip_return_address(); // This might happen within a stack frame.
2142   protect_return_address();
2143   stp(r0, rscratch1, Address(pre(sp, -2 * wordSize)));
2144   stp(rscratch2, lr, Address(pre(sp, -2 * wordSize)));
2145 
2146   // addr may contain sp so we will have to adjust it based on the
2147   // pushes that we just did.
2148   if (addr.uses(sp)) {
2149     lea(r0, addr);
2150     ldr(r0, Address(r0, 4 * wordSize));

2208   call_VM_leaf_base(entry_point, 1);
2209 }
2210 
2211 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2212   assert_different_registers(arg_1, c_rarg0);
2213   pass_arg0(this, arg_0);
2214   pass_arg1(this, arg_1);
2215   call_VM_leaf_base(entry_point, 2);
2216 }
2217 
2218 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0,
2219                                   Register arg_1, Register arg_2) {
2220   assert_different_registers(arg_1, c_rarg0);
2221   assert_different_registers(arg_2, c_rarg0, c_rarg1);
2222   pass_arg0(this, arg_0);
2223   pass_arg1(this, arg_1);
2224   pass_arg2(this, arg_2);
2225   call_VM_leaf_base(entry_point, 3);
2226 }
2227 
2228 void MacroAssembler::super_call_VM_leaf(address entry_point) {
2229   MacroAssembler::call_VM_leaf_base(entry_point, 1);
2230 }
2231 
2232 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
2233   pass_arg0(this, arg_0);
2234   MacroAssembler::call_VM_leaf_base(entry_point, 1);
2235 }
2236 
2237 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2238 
2239   assert_different_registers(arg_0, c_rarg1);
2240   pass_arg1(this, arg_1);
2241   pass_arg0(this, arg_0);
2242   MacroAssembler::call_VM_leaf_base(entry_point, 2);
2243 }
2244 
2245 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2246   assert_different_registers(arg_0, c_rarg1, c_rarg2);
2247   assert_different_registers(arg_1, c_rarg2);
2248   pass_arg2(this, arg_2);
2249   pass_arg1(this, arg_1);
2250   pass_arg0(this, arg_0);
2251   MacroAssembler::call_VM_leaf_base(entry_point, 3);

2257   assert_different_registers(arg_2, c_rarg3);
2258   pass_arg3(this, arg_3);
2259   pass_arg2(this, arg_2);
2260   pass_arg1(this, arg_1);
2261   pass_arg0(this, arg_0);
2262   MacroAssembler::call_VM_leaf_base(entry_point, 4);
2263 }
2264 
2265 void MacroAssembler::null_check(Register reg, int offset) {
2266   if (needs_explicit_null_check(offset)) {
2267     // provoke OS null exception if reg is null by
2268     // accessing M[reg] w/o changing any registers
2269     // NOTE: this is plenty to provoke a segv
2270     ldr(zr, Address(reg));
2271   } else {
2272     // nothing to do, (later) access of M[reg + offset]
2273     // will provoke OS null exception if reg is null
2274   }
2275 }
2276 
2277 void MacroAssembler::test_markword_is_inline_type(Register markword, Label& is_inline_type) {
2278   assert_different_registers(markword, rscratch2);
2279   andr(markword, markword, markWord::inline_type_mask_in_place);
2280   mov(rscratch2, markWord::inline_type_pattern);
2281   cmp(markword, rscratch2);
2282   br(Assembler::EQ, is_inline_type);
2283 }
2284 
2285 void MacroAssembler::test_klass_is_inline_type(Register klass, Register temp_reg, Label& is_inline_type) {
2286   ldrw(temp_reg, Address(klass, Klass::access_flags_offset()));
2287   andr(temp_reg, temp_reg, JVM_ACC_IDENTITY);
2288   cbz(temp_reg, is_inline_type);
2289 }
2290 
2291 void MacroAssembler::test_oop_is_not_inline_type(Register object, Register tmp, Label& not_inline_type) {
2292   assert_different_registers(tmp, rscratch1);
2293   cbz(object, not_inline_type);
2294   const int is_inline_type_mask = markWord::inline_type_pattern;
2295   ldr(tmp, Address(object, oopDesc::mark_offset_in_bytes()));
2296   mov(rscratch1, is_inline_type_mask);
2297   andr(tmp, tmp, rscratch1);
2298   cmp(tmp, rscratch1);
2299   br(Assembler::NE, not_inline_type);
2300 }
2301 
2302 void MacroAssembler::test_klass_is_empty_inline_type(Register klass, Register temp_reg, Label& is_empty_inline_type) {
2303 #ifdef ASSERT
2304   {
2305     Label done_check;
2306     test_klass_is_inline_type(klass, temp_reg, done_check);
2307     stop("test_klass_is_empty_inline_type with non inline type klass");
2308     bind(done_check);
2309   }
2310 #endif
2311   ldrw(temp_reg, Address(klass, InstanceKlass::misc_flags_offset()));
2312   andr(temp_reg, temp_reg, InstanceKlassFlags::is_empty_inline_type_value());
2313   cbnz(temp_reg, is_empty_inline_type);
2314 }
2315 
2316 void MacroAssembler::test_field_is_null_free_inline_type(Register flags, Register temp_reg, Label& is_null_free_inline_type) {
2317   assert(temp_reg == noreg, "not needed"); // keep signature uniform with x86
2318   tbnz(flags, ResolvedFieldEntry::is_null_free_inline_type_shift, is_null_free_inline_type);
2319 }
2320 
2321 void MacroAssembler::test_field_is_not_null_free_inline_type(Register flags, Register temp_reg, Label& not_null_free_inline_type) {
2322   assert(temp_reg == noreg, "not needed"); // keep signature uniform with x86
2323   tbz(flags, ResolvedFieldEntry::is_null_free_inline_type_shift, not_null_free_inline_type);
2324 }
2325 
2326 void MacroAssembler::test_field_is_flat(Register flags, Register temp_reg, Label& is_flat) {
2327   assert(temp_reg == noreg, "not needed"); // keep signature uniform with x86
2328   tbnz(flags, ResolvedFieldEntry::is_flat_shift, is_flat);
2329 }
2330 
2331 void MacroAssembler::test_field_has_null_marker(Register flags, Register temp_reg, Label& has_null_marker) {
2332   assert(temp_reg == noreg, "not needed"); // keep signature uniform with x86
2333   tbnz(flags, ResolvedFieldEntry::has_null_marker_shift, has_null_marker);
2334 }
2335 
2336 void MacroAssembler::test_oop_prototype_bit(Register oop, Register temp_reg, int32_t test_bit, bool jmp_set, Label& jmp_label) {
2337   Label test_mark_word;
2338   // load mark word
2339   ldr(temp_reg, Address(oop, oopDesc::mark_offset_in_bytes()));
2340   // check displaced
2341   tst(temp_reg, markWord::unlocked_value);
2342   br(Assembler::NE, test_mark_word);
2343   // slow path use klass prototype
2344   load_prototype_header(temp_reg, oop);
2345 
2346   bind(test_mark_word);
2347   andr(temp_reg, temp_reg, test_bit);
2348   if (jmp_set) {
2349     cbnz(temp_reg, jmp_label);
2350   } else {
2351     cbz(temp_reg, jmp_label);
2352   }
2353 }
2354 
2355 void MacroAssembler::test_flat_array_oop(Register oop, Register temp_reg, Label& is_flat_array) {
2356   test_oop_prototype_bit(oop, temp_reg, markWord::flat_array_bit_in_place, true, is_flat_array);
2357 }
2358 
2359 void MacroAssembler::test_non_flat_array_oop(Register oop, Register temp_reg,
2360                                                   Label&is_non_flat_array) {
2361   test_oop_prototype_bit(oop, temp_reg, markWord::flat_array_bit_in_place, false, is_non_flat_array);
2362 }
2363 
2364 void MacroAssembler::test_null_free_array_oop(Register oop, Register temp_reg, Label& is_null_free_array) {
2365   test_oop_prototype_bit(oop, temp_reg, markWord::null_free_array_bit_in_place, true, is_null_free_array);
2366 }
2367 
2368 void MacroAssembler::test_non_null_free_array_oop(Register oop, Register temp_reg, Label&is_non_null_free_array) {
2369   test_oop_prototype_bit(oop, temp_reg, markWord::null_free_array_bit_in_place, false, is_non_null_free_array);
2370 }
2371 
2372 void MacroAssembler::test_flat_array_layout(Register lh, Label& is_flat_array) {
2373   tst(lh, Klass::_lh_array_tag_flat_value_bit_inplace);
2374   br(Assembler::NE, is_flat_array);
2375 }
2376 
2377 void MacroAssembler::test_non_flat_array_layout(Register lh, Label& is_non_flat_array) {
2378   tst(lh, Klass::_lh_array_tag_flat_value_bit_inplace);
2379   br(Assembler::EQ, is_non_flat_array);
2380 }
2381 
2382 // MacroAssembler protected routines needed to implement
2383 // public methods
2384 
2385 void MacroAssembler::mov(Register r, Address dest) {
2386   code_section()->relocate(pc(), dest.rspec());
2387   uint64_t imm64 = (uint64_t)dest.target();
2388   movptr(r, imm64);
2389 }
2390 
2391 // Move a constant pointer into r.  In AArch64 mode the virtual
2392 // address space is 48 bits in size, so we only need three
2393 // instructions to create a patchable instruction sequence that can
2394 // reach anywhere.
2395 void MacroAssembler::movptr(Register r, uintptr_t imm64) {
2396 #ifndef PRODUCT
2397   {
2398     char buffer[64];
2399     snprintf(buffer, sizeof(buffer), "0x%" PRIX64, (uint64_t)imm64);
2400     block_comment(buffer);
2401   }

5149   adrp(rscratch1, src2, offset);
5150   ldr(rscratch1, Address(rscratch1, offset));
5151   cmp(src1, rscratch1);
5152 }
5153 
5154 void MacroAssembler::cmpoop(Register obj1, Register obj2) {
5155   cmp(obj1, obj2);
5156 }
5157 
5158 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) {
5159   load_method_holder(rresult, rmethod);
5160   ldr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset()));
5161 }
5162 
5163 void MacroAssembler::load_method_holder(Register holder, Register method) {
5164   ldr(holder, Address(method, Method::const_offset()));                      // ConstMethod*
5165   ldr(holder, Address(holder, ConstMethod::constants_offset()));             // ConstantPool*
5166   ldr(holder, Address(holder, ConstantPool::pool_holder_offset()));          // InstanceKlass*
5167 }
5168 
5169 void MacroAssembler::load_metadata(Register dst, Register src) {
5170   if (UseCompressedClassPointers) {
5171     ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes()));
5172   } else {
5173     ldr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
5174   }
5175 }
5176 
5177 void MacroAssembler::load_klass(Register dst, Register src) {
5178   if (UseCompressedClassPointers) {
5179     ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes()));
5180     decode_klass_not_null(dst);
5181   } else {
5182     ldr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
5183   }
5184 }
5185 
5186 void MacroAssembler::restore_cpu_control_state_after_jni(Register tmp1, Register tmp2) {
5187   if (RestoreMXCSROnJNICalls) {
5188     Label OK;
5189     get_fpcr(tmp1);
5190     mov(tmp2, tmp1);
5191     // Set FPCR to the state we need. We do want Round to Nearest. We
5192     // don't want non-IEEE rounding modes or floating-point traps.
5193     bfi(tmp1, zr, 22, 4); // Clear DN, FZ, and Rmode
5194     bfi(tmp1, zr, 8, 5);  // Clear exception-control bits (8-12)
5195     bfi(tmp1, zr, 0, 2);  // Clear AH:FIZ
5196     eor(tmp2, tmp1, tmp2);

5232 
5233 void MacroAssembler::cmp_klass(Register oop, Register trial_klass, Register tmp) {
5234   if (UseCompressedClassPointers) {
5235     ldrw(tmp, Address(oop, oopDesc::klass_offset_in_bytes()));
5236     if (CompressedKlassPointers::base() == nullptr) {
5237       cmp(trial_klass, tmp, LSL, CompressedKlassPointers::shift());
5238       return;
5239     } else if (((uint64_t)CompressedKlassPointers::base() & 0xffffffff) == 0
5240                && CompressedKlassPointers::shift() == 0) {
5241       // Only the bottom 32 bits matter
5242       cmpw(trial_klass, tmp);
5243       return;
5244     }
5245     decode_klass_not_null(tmp);
5246   } else {
5247     ldr(tmp, Address(oop, oopDesc::klass_offset_in_bytes()));
5248   }
5249   cmp(trial_klass, tmp);
5250 }
5251 
5252 void MacroAssembler::load_prototype_header(Register dst, Register src) {
5253   load_klass(dst, src);
5254   ldr(dst, Address(dst, Klass::prototype_header_offset()));
5255 }
5256 
5257 void MacroAssembler::store_klass(Register dst, Register src) {
5258   // FIXME: Should this be a store release?  concurrent gcs assumes
5259   // klass length is valid if klass field is not null.
5260   if (UseCompressedClassPointers) {
5261     encode_klass_not_null(src);
5262     strw(src, Address(dst, oopDesc::klass_offset_in_bytes()));
5263   } else {
5264     str(src, Address(dst, oopDesc::klass_offset_in_bytes()));
5265   }
5266 }
5267 
5268 void MacroAssembler::store_klass_gap(Register dst, Register src) {
5269   if (UseCompressedClassPointers) {
5270     // Store to klass gap in destination
5271     strw(src, Address(dst, oopDesc::klass_gap_offset_in_bytes()));
5272   }
5273 }
5274 
5275 // Algorithm must match CompressedOops::encode.
5276 void MacroAssembler::encode_heap_oop(Register d, Register s) {

5563   if (as_raw) {
5564     bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, tmp2);
5565   } else {
5566     bs->load_at(this, decorators, type, dst, src, tmp1, tmp2);
5567   }
5568 }
5569 
5570 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators,
5571                                      Address dst, Register val,
5572                                      Register tmp1, Register tmp2, Register tmp3) {
5573   BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
5574   decorators = AccessInternal::decorator_fixup(decorators, type);
5575   bool as_raw = (decorators & AS_RAW) != 0;
5576   if (as_raw) {
5577     bs->BarrierSetAssembler::store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3);
5578   } else {
5579     bs->store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3);
5580   }
5581 }
5582 
5583 void MacroAssembler::access_value_copy(DecoratorSet decorators, Register src, Register dst,
5584                                        Register inline_klass) {
5585   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
5586   bs->value_copy(this, decorators, src, dst, inline_klass);
5587 }
5588 
5589 void MacroAssembler::flat_field_copy(DecoratorSet decorators, Register src, Register dst,
5590                                      Register inline_layout_info) {
5591   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
5592   bs->flat_field_copy(this, decorators, src, dst, inline_layout_info);
5593 }
5594 
5595 void MacroAssembler::first_field_offset(Register inline_klass, Register offset) {
5596   ldr(offset, Address(inline_klass, InstanceKlass::adr_inlineklass_fixed_block_offset()));
5597   ldrw(offset, Address(offset, InlineKlass::first_field_offset_offset()));
5598 }
5599 
5600 void MacroAssembler::data_for_oop(Register oop, Register data, Register inline_klass) {
5601   // ((address) (void*) o) + vk->first_field_offset();
5602   Register offset = (data == oop) ? rscratch1 : data;
5603   first_field_offset(inline_klass, offset);
5604   if (data == oop) {
5605     add(data, data, offset);
5606   } else {
5607     lea(data, Address(oop, offset));
5608   }
5609 }
5610 
5611 void MacroAssembler::data_for_value_array_index(Register array, Register array_klass,
5612                                                 Register index, Register data) {
5613   assert_different_registers(array, array_klass, index);
5614   assert_different_registers(rscratch1, array, index);
5615 
5616   // array->base() + (index << Klass::layout_helper_log2_element_size(lh));
5617   ldrw(rscratch1, Address(array_klass, Klass::layout_helper_offset()));
5618 
5619   // Klass::layout_helper_log2_element_size(lh)
5620   // (lh >> _lh_log2_element_size_shift) & _lh_log2_element_size_mask;
5621   lsr(rscratch1, rscratch1, Klass::_lh_log2_element_size_shift);
5622   andr(rscratch1, rscratch1, Klass::_lh_log2_element_size_mask);
5623   lslv(index, index, rscratch1);
5624 
5625   add(data, array, index);
5626   add(data, data, arrayOopDesc::base_offset_in_bytes(T_PRIMITIVE_OBJECT));
5627 }
5628 
5629 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1,
5630                                    Register tmp2, DecoratorSet decorators) {
5631   access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, tmp2);
5632 }
5633 
5634 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1,
5635                                             Register tmp2, DecoratorSet decorators) {
5636   access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, tmp2);
5637 }
5638 
5639 void MacroAssembler::store_heap_oop(Address dst, Register val, Register tmp1,
5640                                     Register tmp2, Register tmp3, DecoratorSet decorators) {
5641   access_store_at(T_OBJECT, IN_HEAP | decorators, dst, val, tmp1, tmp2, tmp3);
5642 }
5643 
5644 // Used for storing nulls.
5645 void MacroAssembler::store_heap_oop_null(Address dst) {
5646   access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg, noreg);
5647 }
5648 

5685     oop_index = oop_recorder()->allocate_metadata_index(obj);
5686   } else {
5687     oop_index = oop_recorder()->find_index(obj);
5688   }
5689   RelocationHolder rspec = metadata_Relocation::spec(oop_index);
5690   mov(dst, Address((address)obj, rspec));
5691 }
5692 
5693 Address MacroAssembler::constant_oop_address(jobject obj) {
5694 #ifdef ASSERT
5695   {
5696     ThreadInVMfromUnknown tiv;
5697     assert(oop_recorder() != nullptr, "this assembler needs an OopRecorder");
5698     assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "not an oop");
5699   }
5700 #endif
5701   int oop_index = oop_recorder()->find_index(obj);
5702   return Address((address)obj, oop_Relocation::spec(oop_index));
5703 }
5704 
5705 // Object / value buffer allocation...
5706 void MacroAssembler::allocate_instance(Register klass, Register new_obj,
5707                                        Register t1, Register t2,
5708                                        bool clear_fields, Label& alloc_failed)
5709 {
5710   Label done, initialize_header, initialize_object, slow_case, slow_case_no_pop;
5711   Register layout_size = t1;
5712   assert(new_obj == r0, "needs to be r0");
5713   assert_different_registers(klass, new_obj, t1, t2);
5714 
5715   // get instance_size in InstanceKlass (scaled to a count of bytes)
5716   ldrw(layout_size, Address(klass, Klass::layout_helper_offset()));
5717   // test to see if it is malformed in some way
5718   tst(layout_size, Klass::_lh_instance_slow_path_bit);
5719   br(Assembler::NE, slow_case_no_pop);
5720 
5721   // Allocate the instance:
5722   //  If TLAB is enabled:
5723   //    Try to allocate in the TLAB.
5724   //    If fails, go to the slow path.
5725   //    Initialize the allocation.
5726   //    Exit.
5727   //
5728   //  Go to slow path.
5729 
5730   if (UseTLAB) {
5731     push(klass);
5732     tlab_allocate(new_obj, layout_size, 0, klass, t2, slow_case);
5733     if (ZeroTLAB || (!clear_fields)) {
5734       // the fields have been already cleared
5735       b(initialize_header);
5736     } else {
5737       // initialize both the header and fields
5738       b(initialize_object);
5739     }
5740 
5741     if (clear_fields) {
5742       // The object is initialized before the header.  If the object size is
5743       // zero, go directly to the header initialization.
5744       bind(initialize_object);
5745       subs(layout_size, layout_size, sizeof(oopDesc));
5746       br(Assembler::EQ, initialize_header);
5747 
5748       // Initialize topmost object field, divide size by 8, check if odd and
5749       // test if zero.
5750 
5751   #ifdef ASSERT
5752       // make sure instance_size was multiple of 8
5753       Label L;
5754       tst(layout_size, 7);
5755       br(Assembler::EQ, L);
5756       stop("object size is not multiple of 8 - adjust this code");
5757       bind(L);
5758       // must be > 0, no extra check needed here
5759   #endif
5760 
5761       lsr(layout_size, layout_size, LogBytesPerLong);
5762 
5763       // initialize remaining object fields: instance_size was a multiple of 8
5764       {
5765         Label loop;
5766         Register base = t2;
5767 
5768         bind(loop);
5769         add(rscratch1, new_obj, layout_size, Assembler::LSL, LogBytesPerLong);
5770         str(zr, Address(rscratch1, sizeof(oopDesc) - 1*oopSize));
5771         subs(layout_size, layout_size, 1);
5772         br(Assembler::NE, loop);
5773       }
5774     } // clear_fields
5775 
5776     // initialize object header only.
5777     bind(initialize_header);
5778     pop(klass);
5779     Register mark_word = t2;
5780     ldr(mark_word, Address(klass, Klass::prototype_header_offset()));
5781     str(mark_word, Address(new_obj, oopDesc::mark_offset_in_bytes ()));
5782     store_klass_gap(new_obj, zr);  // zero klass gap for compressed oops
5783     mov(t2, klass);         // preserve klass
5784     store_klass(new_obj, t2);  // src klass reg is potentially compressed
5785 
5786     // TODO: Valhalla removed SharedRuntime::dtrace_object_alloc from here ?
5787 
5788     b(done);
5789   }
5790 
5791   if (UseTLAB) {
5792     bind(slow_case);
5793     pop(klass);
5794   }
5795   bind(slow_case_no_pop);
5796   b(alloc_failed);
5797 
5798   bind(done);
5799 }
5800 
5801 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
5802 void MacroAssembler::tlab_allocate(Register obj,
5803                                    Register var_size_in_bytes,
5804                                    int con_size_in_bytes,
5805                                    Register t1,
5806                                    Register t2,
5807                                    Label& slow_case) {
5808   BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
5809   bs->tlab_allocate(this, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case);
5810 }
5811 
5812 void MacroAssembler::verify_tlab() {
5813 #ifdef ASSERT
5814   if (UseTLAB && VerifyOops) {
5815     Label next, ok;
5816 
5817     stp(rscratch2, rscratch1, Address(pre(sp, -16)));
5818 
5819     ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_top_offset())));
5820     ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset())));
5821     cmp(rscratch2, rscratch1);
5822     br(Assembler::HS, next);
5823     STOP("assert(top >= start)");
5824     should_not_reach_here();
5825 
5826     bind(next);
5827     ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_end_offset())));
5828     ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_top_offset())));
5829     cmp(rscratch2, rscratch1);
5830     br(Assembler::HS, ok);
5831     STOP("assert(top <= end)");
5832     should_not_reach_here();
5833 
5834     bind(ok);
5835     ldp(rscratch2, rscratch1, Address(post(sp, 16)));
5836   }
5837 #endif
5838 }
5839 
5840 void MacroAssembler::get_inline_type_field_klass(Register holder_klass, Register index, Register inline_klass) {
5841   inline_layout_info(holder_klass, index, inline_klass);
5842   ldr(inline_klass, Address(inline_klass, InlineLayoutInfo::klass_offset()));
5843 }
5844 
5845 void MacroAssembler::inline_layout_info(Register holder_klass, Register index, Register layout_info) {
5846   assert_different_registers(holder_klass, index, layout_info);
5847   InlineLayoutInfo array[2];
5848   int size = (char*)&array[1] - (char*)&array[0]; // computing size of array elements
5849   if (is_power_of_2(size)) {
5850     lsl(index, index, log2i_exact(size)); // Scale index by power of 2
5851   } else {
5852     mov(layout_info, size);
5853     mul(index, index, layout_info); // Scale the index to be the entry index * array_element_size
5854   }
5855   ldr(layout_info, Address(holder_klass, InstanceKlass::inline_layout_info_array_offset()));
5856   add(layout_info, layout_info, Array<InlineLayoutInfo>::base_offset_in_bytes());
5857   lea(layout_info, Address(layout_info, index));
5858 }
5859 
5860 // Writes to stack successive pages until offset reached to check for
5861 // stack overflow + shadow pages.  This clobbers tmp.
5862 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
5863   assert_different_registers(tmp, size, rscratch1);
5864   mov(tmp, sp);
5865   // Bang stack for total size given plus shadow page size.
5866   // Bang one page at a time because large size can bang beyond yellow and
5867   // red zones.
5868   Label loop;
5869   mov(rscratch1, (int)os::vm_page_size());
5870   bind(loop);
5871   lea(tmp, Address(tmp, -(int)os::vm_page_size()));
5872   subsw(size, size, rscratch1);
5873   str(size, Address(tmp));
5874   br(Assembler::GT, loop);
5875 
5876   // Bang down shadow pages too.
5877   // At this point, (tmp-0) is the last address touched, so don't
5878   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
5879   // was post-decremented.)  Skip this address by starting at i=1, and

5965 }
5966 
5967 void MacroAssembler::remove_frame(int framesize) {
5968   assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR");
5969   assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment");
5970   if (framesize < ((1 << 9) + 2 * wordSize)) {
5971     ldp(rfp, lr, Address(sp, framesize - 2 * wordSize));
5972     add(sp, sp, framesize);
5973   } else {
5974     if (framesize < ((1 << 12) + 2 * wordSize))
5975       add(sp, sp, framesize - 2 * wordSize);
5976     else {
5977       mov(rscratch1, framesize - 2 * wordSize);
5978       add(sp, sp, rscratch1);
5979     }
5980     ldp(rfp, lr, Address(post(sp, 2 * wordSize)));
5981   }
5982   authenticate_return_address();
5983 }
5984 
5985 void MacroAssembler::remove_frame(int initial_framesize, bool needs_stack_repair) {
5986   if (needs_stack_repair) {
5987     // Remove the extension of the caller's frame used for inline type unpacking
5988     //
5989     // Right now the stack looks like this:
5990     //
5991     // | Arguments from caller     |
5992     // |---------------------------|  <-- caller's SP
5993     // | Saved LR #1               |
5994     // | Saved FP #1               |
5995     // |---------------------------|
5996     // | Extension space for       |
5997     // |   inline arg (un)packing  |
5998     // |---------------------------|  <-- start of this method's frame
5999     // | Saved LR #2               |
6000     // | Saved FP #2               |
6001     // |---------------------------|  <-- FP
6002     // | sp_inc                    |
6003     // | method locals             |
6004     // |---------------------------|  <-- SP
6005     //
6006     // There are two copies of FP and LR on the stack. They will be identical
6007     // unless the caller has been deoptimized, in which case LR #1 will be patched
6008     // to point at the deopt blob, and LR #2 will still point into the old method.
6009     //
6010     // The sp_inc stack slot holds the total size of the frame including the
6011     // extension space minus two words for the saved FP and LR.
6012 
6013     int sp_inc_offset = initial_framesize - 3 * wordSize;  // Immediately below saved LR and FP
6014 
6015     ldr(rscratch1, Address(sp, sp_inc_offset));
6016     add(sp, sp, rscratch1);
6017     ldp(rfp, lr, Address(post(sp, 2 * wordSize)));
6018   } else {
6019     remove_frame(initial_framesize);
6020   }
6021 }
6022 
6023 void MacroAssembler::save_stack_increment(int sp_inc, int frame_size) {
6024   int real_frame_size = frame_size + sp_inc;
6025   assert(sp_inc == 0 || sp_inc > 2*wordSize, "invalid sp_inc value");
6026   assert(real_frame_size >= 2*wordSize, "frame size must include FP/LR space");
6027   assert((real_frame_size & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
6028 
6029   int sp_inc_offset = frame_size - 3 * wordSize;  // Immediately below saved LR and FP
6030 
6031   // Subtract two words for the saved FP and LR as these will be popped
6032   // separately. See remove_frame above.
6033   mov(rscratch1, real_frame_size - 2*wordSize);
6034   str(rscratch1, Address(sp, sp_inc_offset));
6035 }
6036 
6037 // This method counts leading positive bytes (highest bit not set) in provided byte array
6038 address MacroAssembler::count_positives(Register ary1, Register len, Register result) {
6039     // Simple and most common case of aligned small array which is not at the
6040     // end of memory page is placed here. All other cases are in stub.
6041     Label LOOP, END, STUB, STUB_LONG, SET_RESULT, DONE;
6042     const uint64_t UPPER_BIT_MASK=0x8080808080808080;
6043     assert_different_registers(ary1, len, result);
6044 
6045     mov(result, len);
6046     cmpw(len, 0);
6047     br(LE, DONE);
6048     cmpw(len, 4 * wordSize);
6049     br(GE, STUB_LONG); // size > 32 then go to stub
6050 
6051     int shift = 64 - exact_log2(os::vm_page_size());
6052     lsl(rscratch1, ary1, shift);
6053     mov(rscratch2, (size_t)(4 * wordSize) << shift);
6054     adds(rscratch2, rscratch1, rscratch2);  // At end of page?
6055     br(CS, STUB); // at the end of page then go to stub

6929 // On other systems, the helper is a usual C function.
6930 //
6931 void MacroAssembler::get_thread(Register dst) {
6932   RegSet saved_regs =
6933     LINUX_ONLY(RegSet::range(r0, r1)  + lr - dst)
6934     NOT_LINUX (RegSet::range(r0, r17) + lr - dst);
6935 
6936   protect_return_address();
6937   push(saved_regs, sp);
6938 
6939   mov(lr, CAST_FROM_FN_PTR(address, JavaThread::aarch64_get_thread_helper));
6940   blr(lr);
6941   if (dst != c_rarg0) {
6942     mov(dst, c_rarg0);
6943   }
6944 
6945   pop(saved_regs, sp);
6946   authenticate_return_address();
6947 }
6948 
6949 #ifdef COMPILER2
6950 // C2 compiled method's prolog code
6951 // Moved here from aarch64.ad to support Valhalla code belows
6952 void MacroAssembler::verified_entry(Compile* C, int sp_inc) {
6953   if (C->clinit_barrier_on_entry()) {
6954     assert(!C->method()->holder()->is_not_initialized(), "initialization should have been started");
6955 
6956     Label L_skip_barrier;
6957 
6958     mov_metadata(rscratch2, C->method()->holder()->constant_encoding());
6959     clinit_barrier(rscratch2, rscratch1, &L_skip_barrier);
6960     far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub()));
6961     bind(L_skip_barrier);
6962   }
6963 
6964   if (C->max_vector_size() > 0) {
6965     reinitialize_ptrue();
6966   }
6967 
6968   int bangsize = C->output()->bang_size_in_bytes();
6969   if (C->output()->need_stack_bang(bangsize))
6970     generate_stack_overflow_check(bangsize);
6971 
6972   // n.b. frame size includes space for return pc and rfp
6973   const long framesize = C->output()->frame_size_in_bytes();
6974   build_frame(framesize);
6975 
6976   if (C->needs_stack_repair()) {
6977     save_stack_increment(sp_inc, framesize);
6978   }
6979 
6980   if (VerifyStackAtCalls) {
6981     Unimplemented();
6982   }
6983 }
6984 #endif // COMPILER2
6985 
6986 int MacroAssembler::store_inline_type_fields_to_buf(ciInlineKlass* vk, bool from_interpreter) {
6987   assert(InlineTypeReturnedAsFields, "Inline types should never be returned as fields");
6988   // An inline type might be returned. If fields are in registers we
6989   // need to allocate an inline type instance and initialize it with
6990   // the value of the fields.
6991   Label skip;
6992   // We only need a new buffered inline type if a new one is not returned
6993   tbz(r0, 0, skip);
6994   int call_offset = -1;
6995 
6996   // Be careful not to clobber r1-7 which hold returned fields
6997   // Also do not use callee-saved registers as these may be live in the interpreter
6998   Register tmp1 = r13, tmp2 = r14, klass = r15, r0_preserved = r12;
6999 
7000   // The following code is similar to allocate_instance but has some slight differences,
7001   // e.g. object size is always not zero, sometimes it's constant; storing klass ptr after
7002   // allocating is not necessary if vk != nullptr, etc. allocate_instance is not aware of these.
7003   Label slow_case;
7004   // 1. Try to allocate a new buffered inline instance either from TLAB or eden space
7005   mov(r0_preserved, r0); // save r0 for slow_case since *_allocate may corrupt it when allocation failed
7006 
7007   if (vk != nullptr) {
7008     // Called from C1, where the return type is statically known.
7009     movptr(klass, (intptr_t)vk->get_InlineKlass());
7010     jint lh = vk->layout_helper();
7011     assert(lh != Klass::_lh_neutral_value, "inline class in return type must have been resolved");
7012     if (UseTLAB && !Klass::layout_helper_needs_slow_path(lh)) {
7013       tlab_allocate(r0, noreg, lh, tmp1, tmp2, slow_case);
7014     } else {
7015       b(slow_case);
7016     }
7017   } else {
7018     // Call from interpreter. R0 contains ((the InlineKlass* of the return type) | 0x01)
7019     andr(klass, r0, -2);
7020     if (UseTLAB) {
7021       ldrw(tmp2, Address(klass, Klass::layout_helper_offset()));
7022       tst(tmp2, Klass::_lh_instance_slow_path_bit);
7023       br(Assembler::NE, slow_case);
7024       tlab_allocate(r0, tmp2, 0, tmp1, tmp2, slow_case);
7025     } else {
7026       b(slow_case);
7027     }
7028   }
7029   if (UseTLAB) {
7030     // 2. Initialize buffered inline instance header
7031     Register buffer_obj = r0;
7032     mov(rscratch1, (intptr_t)markWord::inline_type_prototype().value());
7033     str(rscratch1, Address(buffer_obj, oopDesc::mark_offset_in_bytes()));
7034     store_klass_gap(buffer_obj, zr);
7035     if (vk == nullptr) {
7036       // store_klass corrupts klass, so save it for later use (interpreter case only).
7037       mov(tmp1, klass);
7038     }
7039     store_klass(buffer_obj, klass);
7040     // 3. Initialize its fields with an inline class specific handler
7041     if (vk != nullptr) {
7042       far_call(RuntimeAddress(vk->pack_handler())); // no need for call info as this will not safepoint.
7043     } else {
7044       // tmp1 holds klass preserved above
7045       ldr(tmp1, Address(tmp1, InstanceKlass::adr_inlineklass_fixed_block_offset()));
7046       ldr(tmp1, Address(tmp1, InlineKlass::pack_handler_offset()));
7047       blr(tmp1);
7048     }
7049 
7050     membar(Assembler::StoreStore);
7051     b(skip);
7052   } else {
7053     // Must have already branched to slow_case above.
7054     DEBUG_ONLY(should_not_reach_here());
7055   }
7056   bind(slow_case);
7057   // We failed to allocate a new inline type, fall back to a runtime
7058   // call. Some oop field may be live in some registers but we can't
7059   // tell. That runtime call will take care of preserving them
7060   // across a GC if there's one.
7061   mov(r0, r0_preserved);
7062 
7063   if (from_interpreter) {
7064     super_call_VM_leaf(StubRoutines::store_inline_type_fields_to_buf());
7065   } else {
7066     far_call(RuntimeAddress(StubRoutines::store_inline_type_fields_to_buf()));
7067     call_offset = offset();
7068   }
7069   membar(Assembler::StoreStore);
7070 
7071   bind(skip);
7072   return call_offset;
7073 }
7074 
7075 // Move a value between registers/stack slots and update the reg_state
7076 bool MacroAssembler::move_helper(VMReg from, VMReg to, BasicType bt, RegState reg_state[]) {
7077   assert(from->is_valid() && to->is_valid(), "source and destination must be valid");
7078   if (reg_state[to->value()] == reg_written) {
7079     return true; // Already written
7080   }
7081 
7082   if (from != to && bt != T_VOID) {
7083     if (reg_state[to->value()] == reg_readonly) {
7084       return false; // Not yet writable
7085     }
7086     if (from->is_reg()) {
7087       if (to->is_reg()) {
7088         if (from->is_Register() && to->is_Register()) {
7089           mov(to->as_Register(), from->as_Register());
7090         } else if (from->is_FloatRegister() && to->is_FloatRegister()) {
7091           fmovd(to->as_FloatRegister(), from->as_FloatRegister());
7092         } else {
7093           ShouldNotReachHere();
7094         }
7095       } else {
7096         int st_off = to->reg2stack() * VMRegImpl::stack_slot_size;
7097         Address to_addr = Address(sp, st_off);
7098         if (from->is_FloatRegister()) {
7099           if (bt == T_DOUBLE) {
7100              strd(from->as_FloatRegister(), to_addr);
7101           } else {
7102              assert(bt == T_FLOAT, "must be float");
7103              strs(from->as_FloatRegister(), to_addr);
7104           }
7105         } else {
7106           str(from->as_Register(), to_addr);
7107         }
7108       }
7109     } else {
7110       Address from_addr = Address(sp, from->reg2stack() * VMRegImpl::stack_slot_size);
7111       if (to->is_reg()) {
7112         if (to->is_FloatRegister()) {
7113           if (bt == T_DOUBLE) {
7114             ldrd(to->as_FloatRegister(), from_addr);
7115           } else {
7116             assert(bt == T_FLOAT, "must be float");
7117             ldrs(to->as_FloatRegister(), from_addr);
7118           }
7119         } else {
7120           ldr(to->as_Register(), from_addr);
7121         }
7122       } else {
7123         int st_off = to->reg2stack() * VMRegImpl::stack_slot_size;
7124         ldr(rscratch1, from_addr);
7125         str(rscratch1, Address(sp, st_off));
7126       }
7127     }
7128   }
7129 
7130   // Update register states
7131   reg_state[from->value()] = reg_writable;
7132   reg_state[to->value()] = reg_written;
7133   return true;
7134 }
7135 
7136 // Calculate the extra stack space required for packing or unpacking inline
7137 // args and adjust the stack pointer
7138 int MacroAssembler::extend_stack_for_inline_args(int args_on_stack) {
7139   int sp_inc = args_on_stack * VMRegImpl::stack_slot_size;
7140   sp_inc = align_up(sp_inc, StackAlignmentInBytes);
7141   assert(sp_inc > 0, "sanity");
7142 
7143   // Save a copy of the FP and LR here for deoptimization patching and frame walking
7144   stp(rfp, lr, Address(pre(sp, -2 * wordSize)));
7145 
7146   // Adjust the stack pointer. This will be repaired on return by MacroAssembler::remove_frame
7147   if (sp_inc < (1 << 9)) {
7148     sub(sp, sp, sp_inc);   // Fits in an immediate
7149   } else {
7150     mov(rscratch1, sp_inc);
7151     sub(sp, sp, rscratch1);
7152   }
7153 
7154   return sp_inc + 2 * wordSize;  // Account for the FP/LR space
7155 }
7156 
7157 // Read all fields from an inline type oop and store the values in registers/stack slots
7158 bool MacroAssembler::unpack_inline_helper(const GrowableArray<SigEntry>* sig, int& sig_index,
7159                                           VMReg from, int& from_index, VMRegPair* to, int to_count, int& to_index,
7160                                           RegState reg_state[]) {
7161   assert(sig->at(sig_index)._bt == T_VOID, "should be at end delimiter");
7162   assert(from->is_valid(), "source must be valid");
7163   bool progress = false;
7164 #ifdef ASSERT
7165   const int start_offset = offset();
7166 #endif
7167 
7168   Label L_null, L_notNull;
7169   // Don't use r14 as tmp because it's used for spilling (see MacroAssembler::spill_reg_for)
7170   Register tmp1 = r10;
7171   Register tmp2 = r11;
7172   Register fromReg = noreg;
7173   ScalarizedInlineArgsStream stream(sig, sig_index, to, to_count, to_index, -1);
7174   bool done = true;
7175   bool mark_done = true;
7176   VMReg toReg;
7177   BasicType bt;
7178   // Check if argument requires a null check
7179   bool null_check = false;
7180   VMReg nullCheckReg;
7181   while (stream.next(nullCheckReg, bt)) {
7182     if (sig->at(stream.sig_index())._offset == -1) {
7183       null_check = true;
7184       break;
7185     }
7186   }
7187   stream.reset(sig_index, to_index);
7188   while (stream.next(toReg, bt)) {
7189     assert(toReg->is_valid(), "destination must be valid");
7190     int idx = (int)toReg->value();
7191     if (reg_state[idx] == reg_readonly) {
7192       if (idx != from->value()) {
7193         mark_done = false;
7194       }
7195       done = false;
7196       continue;
7197     } else if (reg_state[idx] == reg_written) {
7198       continue;
7199     }
7200     assert(reg_state[idx] == reg_writable, "must be writable");
7201     reg_state[idx] = reg_written;
7202     progress = true;
7203 
7204     if (fromReg == noreg) {
7205       if (from->is_reg()) {
7206         fromReg = from->as_Register();
7207       } else {
7208         int st_off = from->reg2stack() * VMRegImpl::stack_slot_size;
7209         ldr(tmp1, Address(sp, st_off));
7210         fromReg = tmp1;
7211       }
7212       if (null_check) {
7213         // Nullable inline type argument, emit null check
7214         cbz(fromReg, L_null);
7215       }
7216     }
7217     int off = sig->at(stream.sig_index())._offset;
7218     if (off == -1) {
7219       assert(null_check, "Missing null check at");
7220       if (toReg->is_stack()) {
7221         int st_off = toReg->reg2stack() * VMRegImpl::stack_slot_size;
7222         mov(tmp2, 1);
7223         str(tmp2, Address(sp, st_off));
7224       } else {
7225         mov(toReg->as_Register(), 1);
7226       }
7227       continue;
7228     }
7229     assert(off > 0, "offset in object should be positive");
7230     Address fromAddr = Address(fromReg, off);
7231     if (!toReg->is_FloatRegister()) {
7232       Register dst = toReg->is_stack() ? tmp2 : toReg->as_Register();
7233       if (is_reference_type(bt)) {
7234         load_heap_oop(dst, fromAddr, rscratch1, rscratch2);
7235       } else {
7236         bool is_signed = (bt != T_CHAR) && (bt != T_BOOLEAN);
7237         load_sized_value(dst, fromAddr, type2aelembytes(bt), is_signed);
7238       }
7239       if (toReg->is_stack()) {
7240         int st_off = toReg->reg2stack() * VMRegImpl::stack_slot_size;
7241         str(dst, Address(sp, st_off));
7242       }
7243     } else if (bt == T_DOUBLE) {
7244       ldrd(toReg->as_FloatRegister(), fromAddr);
7245     } else {
7246       assert(bt == T_FLOAT, "must be float");
7247       ldrs(toReg->as_FloatRegister(), fromAddr);
7248     }
7249   }
7250   if (progress && null_check) {
7251     if (done) {
7252       b(L_notNull);
7253       bind(L_null);
7254       // Set IsInit field to zero to signal that the argument is null.
7255       // Also set all oop fields to zero to make the GC happy.
7256       stream.reset(sig_index, to_index);
7257       while (stream.next(toReg, bt)) {
7258         if (sig->at(stream.sig_index())._offset == -1 ||
7259             bt == T_OBJECT || bt == T_ARRAY) {
7260           if (toReg->is_stack()) {
7261             int st_off = toReg->reg2stack() * VMRegImpl::stack_slot_size;
7262             str(zr, Address(sp, st_off));
7263           } else {
7264             mov(toReg->as_Register(), zr);
7265           }
7266         }
7267       }
7268       bind(L_notNull);
7269     } else {
7270       bind(L_null);
7271     }
7272   }
7273 
7274   sig_index = stream.sig_index();
7275   to_index = stream.regs_index();
7276 
7277   if (mark_done && reg_state[from->value()] != reg_written) {
7278     // This is okay because no one else will write to that slot
7279     reg_state[from->value()] = reg_writable;
7280   }
7281   from_index--;
7282   assert(progress || (start_offset == offset()), "should not emit code");
7283   return done;
7284 }
7285 
7286 // Pack fields back into an inline type oop
7287 bool MacroAssembler::pack_inline_helper(const GrowableArray<SigEntry>* sig, int& sig_index, int vtarg_index,
7288                                         VMRegPair* from, int from_count, int& from_index, VMReg to,
7289                                         RegState reg_state[], Register val_array) {
7290   assert(sig->at(sig_index)._bt == T_METADATA, "should be at delimiter");
7291   assert(to->is_valid(), "destination must be valid");
7292 
7293   if (reg_state[to->value()] == reg_written) {
7294     skip_unpacked_fields(sig, sig_index, from, from_count, from_index);
7295     return true; // Already written
7296   }
7297 
7298   // The GC barrier expanded by store_heap_oop below may call into the
7299   // runtime so use callee-saved registers for any values that need to be
7300   // preserved. The GC barrier assembler should take care of saving the
7301   // Java argument registers.
7302   // TODO 8284443 Isn't it an issue if below code uses r14 as tmp when it contains a spilled value?
7303   // Be careful with r14 because it's used for spilling (see MacroAssembler::spill_reg_for).
7304   Register val_obj_tmp = r21;
7305   Register from_reg_tmp = r22;
7306   Register tmp1 = r14;
7307   Register tmp2 = r13;
7308   Register tmp3 = r12;
7309   Register val_obj = to->is_stack() ? val_obj_tmp : to->as_Register();
7310 
7311   assert_different_registers(val_obj_tmp, from_reg_tmp, tmp1, tmp2, tmp3, val_array);
7312 
7313   if (reg_state[to->value()] == reg_readonly) {
7314     if (!is_reg_in_unpacked_fields(sig, sig_index, to, from, from_count, from_index)) {
7315       skip_unpacked_fields(sig, sig_index, from, from_count, from_index);
7316       return false; // Not yet writable
7317     }
7318     val_obj = val_obj_tmp;
7319   }
7320 
7321   int index = arrayOopDesc::base_offset_in_bytes(T_OBJECT) + vtarg_index * type2aelembytes(T_OBJECT);
7322   load_heap_oop(val_obj, Address(val_array, index), tmp1, tmp2);
7323 
7324   ScalarizedInlineArgsStream stream(sig, sig_index, from, from_count, from_index);
7325   VMReg fromReg;
7326   BasicType bt;
7327   Label L_null;
7328   while (stream.next(fromReg, bt)) {
7329     assert(fromReg->is_valid(), "source must be valid");
7330     reg_state[fromReg->value()] = reg_writable;
7331 
7332     int off = sig->at(stream.sig_index())._offset;
7333     if (off == -1) {
7334       // Nullable inline type argument, emit null check
7335       Label L_notNull;
7336       if (fromReg->is_stack()) {
7337         int ld_off = fromReg->reg2stack() * VMRegImpl::stack_slot_size;
7338         ldrb(tmp2, Address(sp, ld_off));
7339         cbnz(tmp2, L_notNull);
7340       } else {
7341         cbnz(fromReg->as_Register(), L_notNull);
7342       }
7343       mov(val_obj, 0);
7344       b(L_null);
7345       bind(L_notNull);
7346       continue;
7347     }
7348 
7349     assert(off > 0, "offset in object should be positive");
7350     size_t size_in_bytes = is_java_primitive(bt) ? type2aelembytes(bt) : wordSize;
7351 
7352     // Pack the scalarized field into the value object.
7353     Address dst(val_obj, off);
7354 
7355     if (!fromReg->is_FloatRegister()) {
7356       Register src;
7357       if (fromReg->is_stack()) {
7358         src = from_reg_tmp;
7359         int ld_off = fromReg->reg2stack() * VMRegImpl::stack_slot_size;
7360         load_sized_value(src, Address(sp, ld_off), size_in_bytes, /* is_signed */ false);
7361       } else {
7362         src = fromReg->as_Register();
7363       }
7364       assert_different_registers(dst.base(), src, tmp1, tmp2, tmp3, val_array);
7365       if (is_reference_type(bt)) {
7366         store_heap_oop(dst, src, tmp1, tmp2, tmp3, IN_HEAP | ACCESS_WRITE | IS_DEST_UNINITIALIZED);
7367       } else {
7368         store_sized_value(dst, src, size_in_bytes);
7369       }
7370     } else if (bt == T_DOUBLE) {
7371       strd(fromReg->as_FloatRegister(), dst);
7372     } else {
7373       assert(bt == T_FLOAT, "must be float");
7374       strs(fromReg->as_FloatRegister(), dst);
7375     }
7376   }
7377   bind(L_null);
7378   sig_index = stream.sig_index();
7379   from_index = stream.regs_index();
7380 
7381   assert(reg_state[to->value()] == reg_writable, "must have already been read");
7382   bool success = move_helper(val_obj->as_VMReg(), to, T_OBJECT, reg_state);
7383   assert(success, "to register must be writeable");
7384 
7385   return true;
7386 }
7387 
7388 VMReg MacroAssembler::spill_reg_for(VMReg reg) {
7389   return (reg->is_FloatRegister()) ? v8->as_VMReg() : r14->as_VMReg();
7390 }
7391 
7392 void MacroAssembler::cache_wb(Address line) {
7393   assert(line.getMode() == Address::base_plus_offset, "mode should be base_plus_offset");
7394   assert(line.index() == noreg, "index should be noreg");
7395   assert(line.offset() == 0, "offset should be 0");
7396   // would like to assert this
7397   // assert(line._ext.shift == 0, "shift should be zero");
7398   if (VM_Version::supports_dcpop()) {
7399     // writeback using clear virtual address to point of persistence
7400     dc(Assembler::CVAP, line.base());
7401   } else {
7402     // no need to generate anything as Unsafe.writebackMemory should
7403     // never invoke this stub
7404   }
7405 }
7406 
7407 void MacroAssembler::cache_wbsync(bool is_pre) {
7408   // we only need a barrier post sync
7409   if (!is_pre) {
7410     membar(Assembler::AnyAny);
7411   }

7770   }
7771 
7772   // Check if the lock-stack is full.
7773   ldrw(top, Address(rthread, JavaThread::lock_stack_top_offset()));
7774   cmpw(top, (unsigned)LockStack::end_offset());
7775   br(Assembler::GE, slow);
7776 
7777   // Check for recursion.
7778   subw(t, top, oopSize);
7779   ldr(t, Address(rthread, t));
7780   cmp(obj, t);
7781   br(Assembler::EQ, push);
7782 
7783   // Check header for monitor (0b10).
7784   tst(mark, markWord::monitor_value);
7785   br(Assembler::NE, slow);
7786 
7787   // Try to lock. Transition lock bits 0b01 => 0b00
7788   assert(oopDesc::mark_offset_in_bytes() == 0, "required to avoid lea");
7789   orr(mark, mark, markWord::unlocked_value);
7790   if (EnableValhalla) {
7791     // Mask inline_type bit such that we go to the slow path if object is an inline type
7792     andr(mark, mark, ~((int) markWord::inline_type_bit_in_place));
7793   }
7794   eor(t, mark, markWord::unlocked_value);
7795   cmpxchg(/*addr*/ obj, /*expected*/ mark, /*new*/ t, Assembler::xword,
7796           /*acquire*/ true, /*release*/ false, /*weak*/ false, noreg);
7797   br(Assembler::NE, slow);
7798 
7799   bind(push);
7800   // After successful lock, push object on lock-stack.
7801   str(obj, Address(rthread, top));
7802   addw(top, top, oopSize);
7803   strw(top, Address(rthread, JavaThread::lock_stack_top_offset()));
7804 }
7805 
7806 // Implements lightweight-unlocking.
7807 //
7808 // - obj: the object to be unlocked
7809 // - t1, t2, t3: temporary registers
7810 // - slow: branched to if unlocking fails, absolute offset may larger than 32KB (imm14 encoding).
7811 void MacroAssembler::lightweight_unlock(Register obj, Register t1, Register t2, Register t3, Label& slow) {
7812   assert(LockingMode == LM_LIGHTWEIGHT, "only used with new lightweight locking");
7813   // cmpxchg clobbers rscratch1.
< prev index next >