< prev index next >

src/hotspot/cpu/aarch64/macroAssembler_aarch64.cpp

Print this page

  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include <sys/types.h>
  27 
  28 #include "precompiled.hpp"
  29 #include "asm/assembler.hpp"
  30 #include "asm/assembler.inline.hpp"
  31 #include "ci/ciEnv.hpp"

  32 #include "code/compiledIC.hpp"
  33 #include "compiler/compileTask.hpp"
  34 #include "compiler/disassembler.hpp"
  35 #include "compiler/oopMap.hpp"
  36 #include "gc/shared/barrierSet.hpp"
  37 #include "gc/shared/barrierSetAssembler.hpp"
  38 #include "gc/shared/cardTableBarrierSet.hpp"
  39 #include "gc/shared/cardTable.hpp"
  40 #include "gc/shared/collectedHeap.hpp"
  41 #include "gc/shared/tlab_globals.hpp"
  42 #include "interpreter/bytecodeHistogram.hpp"
  43 #include "interpreter/interpreter.hpp"
  44 #include "jvm.h"
  45 #include "memory/resourceArea.hpp"
  46 #include "memory/universe.hpp"
  47 #include "nativeInst_aarch64.hpp"
  48 #include "oops/accessDecorators.hpp"
  49 #include "oops/compressedKlass.inline.hpp"
  50 #include "oops/compressedOops.inline.hpp"
  51 #include "oops/klass.inline.hpp"

  52 #include "runtime/continuation.hpp"
  53 #include "runtime/icache.hpp"
  54 #include "runtime/interfaceSupport.inline.hpp"
  55 #include "runtime/javaThread.hpp"
  56 #include "runtime/jniHandles.inline.hpp"
  57 #include "runtime/sharedRuntime.hpp"

  58 #include "runtime/stubRoutines.hpp"
  59 #include "utilities/powerOfTwo.hpp"

  60 #ifdef COMPILER1
  61 #include "c1/c1_LIRAssembler.hpp"
  62 #endif
  63 #ifdef COMPILER2
  64 #include "oops/oop.hpp"
  65 #include "opto/compile.hpp"
  66 #include "opto/node.hpp"
  67 #include "opto/output.hpp"
  68 #endif
  69 
  70 #ifdef PRODUCT
  71 #define BLOCK_COMMENT(str) /* nothing */
  72 #else
  73 #define BLOCK_COMMENT(str) block_comment(str)
  74 #endif
  75 #define STOP(str) stop(str);
  76 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  77 
  78 #ifdef ASSERT
  79 extern "C" void disnm(intptr_t p);

1153 }
1154 
1155 void MacroAssembler::post_call_nop() {
1156   if (!Continuations::enabled()) {
1157     return;
1158   }
1159   InstructionMark im(this);
1160   relocate(post_call_nop_Relocation::spec());
1161   InlineSkippedInstructionsCounter skipCounter(this);
1162   nop();
1163   movk(zr, 0);
1164   movk(zr, 0);
1165 }
1166 
1167 // these are no-ops overridden by InterpreterMacroAssembler
1168 
1169 void MacroAssembler::check_and_handle_earlyret(Register java_thread) { }
1170 
1171 void MacroAssembler::check_and_handle_popframe(Register java_thread) { }
1172 



































1173 // Look up the method for a megamorphic invokeinterface call.
1174 // The target method is determined by <intf_klass, itable_index>.
1175 // The receiver klass is in recv_klass.
1176 // On success, the result will be in method_result, and execution falls through.
1177 // On failure, execution transfers to the given label.
1178 void MacroAssembler::lookup_interface_method(Register recv_klass,
1179                                              Register intf_klass,
1180                                              RegisterOrConstant itable_index,
1181                                              Register method_result,
1182                                              Register scan_temp,
1183                                              Label& L_no_such_interface,
1184                          bool return_method) {
1185   assert_different_registers(recv_klass, intf_klass, scan_temp);
1186   assert_different_registers(method_result, intf_klass, scan_temp);
1187   assert(recv_klass != method_result || !return_method,
1188      "recv_klass can be destroyed when method isn't needed");
1189   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
1190          "caller must use same register for non-constant itable index as for method");
1191 
1192   // Compute start of first itableOffsetEntry (which is at the end of the vtable)

1606   ldrb(scratch, Address(klass, InstanceKlass::init_state_offset()));
1607   subs(zr, scratch, InstanceKlass::fully_initialized);
1608   br(Assembler::EQ, *L_fast_path);
1609 
1610   // Fast path check: current thread is initializer thread
1611   ldr(scratch, Address(klass, InstanceKlass::init_thread_offset()));
1612   cmp(rthread, scratch);
1613 
1614   if (L_slow_path == &L_fallthrough) {
1615     br(Assembler::EQ, *L_fast_path);
1616     bind(*L_slow_path);
1617   } else if (L_fast_path == &L_fallthrough) {
1618     br(Assembler::NE, *L_slow_path);
1619     bind(*L_fast_path);
1620   } else {
1621     Unimplemented();
1622   }
1623 }
1624 
1625 void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) {
1626   if (!VerifyOops) return;




1627 
1628   // Pass register number to verify_oop_subroutine
1629   const char* b = nullptr;
1630   {
1631     ResourceMark rm;
1632     stringStream ss;
1633     ss.print("verify_oop: %s: %s (%s:%d)", reg->name(), s, file, line);
1634     b = code_string(ss.as_string());
1635   }
1636   BLOCK_COMMENT("verify_oop {");
1637 
1638   strip_return_address(); // This might happen within a stack frame.
1639   protect_return_address();
1640   stp(r0, rscratch1, Address(pre(sp, -2 * wordSize)));
1641   stp(rscratch2, lr, Address(pre(sp, -2 * wordSize)));
1642 
1643   mov(r0, reg);
1644   movptr(rscratch1, (uintptr_t)(address)b);
1645 
1646   // call indirectly to solve generation ordering problem
1647   lea(rscratch2, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
1648   ldr(rscratch2, Address(rscratch2));
1649   blr(rscratch2);
1650 
1651   ldp(rscratch2, lr, Address(post(sp, 2 * wordSize)));
1652   ldp(r0, rscratch1, Address(post(sp, 2 * wordSize)));
1653   authenticate_return_address();
1654 
1655   BLOCK_COMMENT("} verify_oop");
1656 }
1657 
1658 void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) {
1659   if (!VerifyOops) return;




1660 
1661   const char* b = nullptr;
1662   {
1663     ResourceMark rm;
1664     stringStream ss;
1665     ss.print("verify_oop_addr: %s (%s:%d)", s, file, line);
1666     b = code_string(ss.as_string());
1667   }
1668   BLOCK_COMMENT("verify_oop_addr {");
1669 
1670   strip_return_address(); // This might happen within a stack frame.
1671   protect_return_address();
1672   stp(r0, rscratch1, Address(pre(sp, -2 * wordSize)));
1673   stp(rscratch2, lr, Address(pre(sp, -2 * wordSize)));
1674 
1675   // addr may contain sp so we will have to adjust it based on the
1676   // pushes that we just did.
1677   if (addr.uses(sp)) {
1678     lea(r0, addr);
1679     ldr(r0, Address(r0, 4 * wordSize));

1737   call_VM_leaf_base(entry_point, 1);
1738 }
1739 
1740 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
1741   assert_different_registers(arg_1, c_rarg0);
1742   pass_arg0(this, arg_0);
1743   pass_arg1(this, arg_1);
1744   call_VM_leaf_base(entry_point, 2);
1745 }
1746 
1747 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0,
1748                                   Register arg_1, Register arg_2) {
1749   assert_different_registers(arg_1, c_rarg0);
1750   assert_different_registers(arg_2, c_rarg0, c_rarg1);
1751   pass_arg0(this, arg_0);
1752   pass_arg1(this, arg_1);
1753   pass_arg2(this, arg_2);
1754   call_VM_leaf_base(entry_point, 3);
1755 }
1756 




1757 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
1758   pass_arg0(this, arg_0);
1759   MacroAssembler::call_VM_leaf_base(entry_point, 1);
1760 }
1761 
1762 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
1763 
1764   assert_different_registers(arg_0, c_rarg1);
1765   pass_arg1(this, arg_1);
1766   pass_arg0(this, arg_0);
1767   MacroAssembler::call_VM_leaf_base(entry_point, 2);
1768 }
1769 
1770 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
1771   assert_different_registers(arg_0, c_rarg1, c_rarg2);
1772   assert_different_registers(arg_1, c_rarg2);
1773   pass_arg2(this, arg_2);
1774   pass_arg1(this, arg_1);
1775   pass_arg0(this, arg_0);
1776   MacroAssembler::call_VM_leaf_base(entry_point, 3);

1782   assert_different_registers(arg_2, c_rarg3);
1783   pass_arg3(this, arg_3);
1784   pass_arg2(this, arg_2);
1785   pass_arg1(this, arg_1);
1786   pass_arg0(this, arg_0);
1787   MacroAssembler::call_VM_leaf_base(entry_point, 4);
1788 }
1789 
1790 void MacroAssembler::null_check(Register reg, int offset) {
1791   if (needs_explicit_null_check(offset)) {
1792     // provoke OS null exception if reg is null by
1793     // accessing M[reg] w/o changing any registers
1794     // NOTE: this is plenty to provoke a segv
1795     ldr(zr, Address(reg));
1796   } else {
1797     // nothing to do, (later) access of M[reg + offset]
1798     // will provoke OS null exception if reg is null
1799   }
1800 }
1801 









































































































1802 // MacroAssembler protected routines needed to implement
1803 // public methods
1804 
1805 void MacroAssembler::mov(Register r, Address dest) {
1806   code_section()->relocate(pc(), dest.rspec());
1807   uint64_t imm64 = (uint64_t)dest.target();
1808   movptr(r, imm64);
1809 }
1810 
1811 // Move a constant pointer into r.  In AArch64 mode the virtual
1812 // address space is 48 bits in size, so we only need three
1813 // instructions to create a patchable instruction sequence that can
1814 // reach anywhere.
1815 void MacroAssembler::movptr(Register r, uintptr_t imm64) {
1816 #ifndef PRODUCT
1817   {
1818     char buffer[64];
1819     snprintf(buffer, sizeof(buffer), "0x%" PRIX64, (uint64_t)imm64);
1820     block_comment(buffer);
1821   }

4460   adrp(rscratch1, src2, offset);
4461   ldr(rscratch1, Address(rscratch1, offset));
4462   cmp(src1, rscratch1);
4463 }
4464 
4465 void MacroAssembler::cmpoop(Register obj1, Register obj2) {
4466   cmp(obj1, obj2);
4467 }
4468 
4469 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) {
4470   load_method_holder(rresult, rmethod);
4471   ldr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset()));
4472 }
4473 
4474 void MacroAssembler::load_method_holder(Register holder, Register method) {
4475   ldr(holder, Address(method, Method::const_offset()));                      // ConstMethod*
4476   ldr(holder, Address(holder, ConstMethod::constants_offset()));             // ConstantPool*
4477   ldr(holder, Address(holder, ConstantPool::pool_holder_offset()));          // InstanceKlass*
4478 }
4479 








4480 void MacroAssembler::load_klass(Register dst, Register src) {
4481   if (UseCompressedClassPointers) {
4482     ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes()));
4483     decode_klass_not_null(dst);
4484   } else {
4485     ldr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
4486   }
4487 }
4488 
4489 void MacroAssembler::restore_cpu_control_state_after_jni(Register tmp1, Register tmp2) {
4490   if (RestoreMXCSROnJNICalls) {
4491     Label OK;
4492     get_fpcr(tmp1);
4493     mov(tmp2, tmp1);
4494     // Set FPCR to the state we need. We do want Round to Nearest. We
4495     // don't want non-IEEE rounding modes or floating-point traps.
4496     bfi(tmp1, zr, 22, 4); // Clear DN, FZ, and Rmode
4497     bfi(tmp1, zr, 8, 5);  // Clear exception-control bits (8-12)
4498     bfi(tmp1, zr, 0, 2);  // Clear AH:FIZ
4499     eor(tmp2, tmp1, tmp2);

4535 
4536 void MacroAssembler::cmp_klass(Register oop, Register trial_klass, Register tmp) {
4537   if (UseCompressedClassPointers) {
4538     ldrw(tmp, Address(oop, oopDesc::klass_offset_in_bytes()));
4539     if (CompressedKlassPointers::base() == nullptr) {
4540       cmp(trial_klass, tmp, LSL, CompressedKlassPointers::shift());
4541       return;
4542     } else if (((uint64_t)CompressedKlassPointers::base() & 0xffffffff) == 0
4543                && CompressedKlassPointers::shift() == 0) {
4544       // Only the bottom 32 bits matter
4545       cmpw(trial_klass, tmp);
4546       return;
4547     }
4548     decode_klass_not_null(tmp);
4549   } else {
4550     ldr(tmp, Address(oop, oopDesc::klass_offset_in_bytes()));
4551   }
4552   cmp(trial_klass, tmp);
4553 }
4554 





4555 void MacroAssembler::store_klass(Register dst, Register src) {
4556   // FIXME: Should this be a store release?  concurrent gcs assumes
4557   // klass length is valid if klass field is not null.
4558   if (UseCompressedClassPointers) {
4559     encode_klass_not_null(src);
4560     strw(src, Address(dst, oopDesc::klass_offset_in_bytes()));
4561   } else {
4562     str(src, Address(dst, oopDesc::klass_offset_in_bytes()));
4563   }
4564 }
4565 
4566 void MacroAssembler::store_klass_gap(Register dst, Register src) {
4567   if (UseCompressedClassPointers) {
4568     // Store to klass gap in destination
4569     strw(src, Address(dst, oopDesc::klass_gap_offset_in_bytes()));
4570   }
4571 }
4572 
4573 // Algorithm must match CompressedOops::encode.
4574 void MacroAssembler::encode_heap_oop(Register d, Register s) {

4859   if (as_raw) {
4860     bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, tmp2);
4861   } else {
4862     bs->load_at(this, decorators, type, dst, src, tmp1, tmp2);
4863   }
4864 }
4865 
4866 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators,
4867                                      Address dst, Register val,
4868                                      Register tmp1, Register tmp2, Register tmp3) {
4869   BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
4870   decorators = AccessInternal::decorator_fixup(decorators, type);
4871   bool as_raw = (decorators & AS_RAW) != 0;
4872   if (as_raw) {
4873     bs->BarrierSetAssembler::store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3);
4874   } else {
4875     bs->store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3);
4876   }
4877 }
4878 








































4879 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1,
4880                                    Register tmp2, DecoratorSet decorators) {
4881   access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, tmp2);
4882 }
4883 
4884 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1,
4885                                             Register tmp2, DecoratorSet decorators) {
4886   access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, tmp2);
4887 }
4888 
4889 void MacroAssembler::store_heap_oop(Address dst, Register val, Register tmp1,
4890                                     Register tmp2, Register tmp3, DecoratorSet decorators) {
4891   access_store_at(T_OBJECT, IN_HEAP | decorators, dst, val, tmp1, tmp2, tmp3);
4892 }
4893 
4894 // Used for storing nulls.
4895 void MacroAssembler::store_heap_oop_null(Address dst) {
4896   access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg, noreg);
4897 }
4898 

4935     oop_index = oop_recorder()->allocate_metadata_index(obj);
4936   } else {
4937     oop_index = oop_recorder()->find_index(obj);
4938   }
4939   RelocationHolder rspec = metadata_Relocation::spec(oop_index);
4940   mov(dst, Address((address)obj, rspec));
4941 }
4942 
4943 Address MacroAssembler::constant_oop_address(jobject obj) {
4944 #ifdef ASSERT
4945   {
4946     ThreadInVMfromUnknown tiv;
4947     assert(oop_recorder() != nullptr, "this assembler needs an OopRecorder");
4948     assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "not an oop");
4949   }
4950 #endif
4951   int oop_index = oop_recorder()->find_index(obj);
4952   return Address((address)obj, oop_Relocation::spec(oop_index));
4953 }
4954 
































































































4955 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
4956 void MacroAssembler::tlab_allocate(Register obj,
4957                                    Register var_size_in_bytes,
4958                                    int con_size_in_bytes,
4959                                    Register t1,
4960                                    Register t2,
4961                                    Label& slow_case) {
4962   BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
4963   bs->tlab_allocate(this, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case);
4964 }
4965 
4966 void MacroAssembler::verify_tlab() {
4967 #ifdef ASSERT
4968   if (UseTLAB && VerifyOops) {
4969     Label next, ok;
4970 
4971     stp(rscratch2, rscratch1, Address(pre(sp, -16)));
4972 
4973     ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_top_offset())));
4974     ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset())));
4975     cmp(rscratch2, rscratch1);
4976     br(Assembler::HS, next);
4977     STOP("assert(top >= start)");
4978     should_not_reach_here();
4979 
4980     bind(next);
4981     ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_end_offset())));
4982     ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_top_offset())));
4983     cmp(rscratch2, rscratch1);
4984     br(Assembler::HS, ok);
4985     STOP("assert(top <= end)");
4986     should_not_reach_here();
4987 
4988     bind(ok);
4989     ldp(rscratch2, rscratch1, Address(post(sp, 16)));
4990   }
4991 #endif
4992 }
4993 














4994 // Writes to stack successive pages until offset reached to check for
4995 // stack overflow + shadow pages.  This clobbers tmp.
4996 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
4997   assert_different_registers(tmp, size, rscratch1);
4998   mov(tmp, sp);
4999   // Bang stack for total size given plus shadow page size.
5000   // Bang one page at a time because large size can bang beyond yellow and
5001   // red zones.
5002   Label loop;
5003   mov(rscratch1, (int)os::vm_page_size());
5004   bind(loop);
5005   lea(tmp, Address(tmp, -(int)os::vm_page_size()));
5006   subsw(size, size, rscratch1);
5007   str(size, Address(tmp));
5008   br(Assembler::GT, loop);
5009 
5010   // Bang down shadow pages too.
5011   // At this point, (tmp-0) is the last address touched, so don't
5012   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
5013   // was post-decremented.)  Skip this address by starting at i=1, and

5099 }
5100 
5101 void MacroAssembler::remove_frame(int framesize) {
5102   assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR");
5103   assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment");
5104   if (framesize < ((1 << 9) + 2 * wordSize)) {
5105     ldp(rfp, lr, Address(sp, framesize - 2 * wordSize));
5106     add(sp, sp, framesize);
5107   } else {
5108     if (framesize < ((1 << 12) + 2 * wordSize))
5109       add(sp, sp, framesize - 2 * wordSize);
5110     else {
5111       mov(rscratch1, framesize - 2 * wordSize);
5112       add(sp, sp, rscratch1);
5113     }
5114     ldp(rfp, lr, Address(post(sp, 2 * wordSize)));
5115   }
5116   authenticate_return_address();
5117 }
5118 



















































5119 
5120 // This method counts leading positive bytes (highest bit not set) in provided byte array
5121 address MacroAssembler::count_positives(Register ary1, Register len, Register result) {
5122     // Simple and most common case of aligned small array which is not at the
5123     // end of memory page is placed here. All other cases are in stub.
5124     Label LOOP, END, STUB, STUB_LONG, SET_RESULT, DONE;
5125     const uint64_t UPPER_BIT_MASK=0x8080808080808080;
5126     assert_different_registers(ary1, len, result);
5127 
5128     mov(result, len);
5129     cmpw(len, 0);
5130     br(LE, DONE);
5131     cmpw(len, 4 * wordSize);
5132     br(GE, STUB_LONG); // size > 32 then go to stub
5133 
5134     int shift = 64 - exact_log2(os::vm_page_size());
5135     lsl(rscratch1, ary1, shift);
5136     mov(rscratch2, (size_t)(4 * wordSize) << shift);
5137     adds(rscratch2, rscratch1, rscratch2);  // At end of page?
5138     br(CS, STUB); // at the end of page then go to stub

6008 // On other systems, the helper is a usual C function.
6009 //
6010 void MacroAssembler::get_thread(Register dst) {
6011   RegSet saved_regs =
6012     LINUX_ONLY(RegSet::range(r0, r1)  + lr - dst)
6013     NOT_LINUX (RegSet::range(r0, r17) + lr - dst);
6014 
6015   protect_return_address();
6016   push(saved_regs, sp);
6017 
6018   mov(lr, CAST_FROM_FN_PTR(address, JavaThread::aarch64_get_thread_helper));
6019   blr(lr);
6020   if (dst != c_rarg0) {
6021     mov(dst, c_rarg0);
6022   }
6023 
6024   pop(saved_regs, sp);
6025   authenticate_return_address();
6026 }
6027 

























































































































































































































































































































































































































































6028 void MacroAssembler::cache_wb(Address line) {
6029   assert(line.getMode() == Address::base_plus_offset, "mode should be base_plus_offset");
6030   assert(line.index() == noreg, "index should be noreg");
6031   assert(line.offset() == 0, "offset should be 0");
6032   // would like to assert this
6033   // assert(line._ext.shift == 0, "shift should be zero");
6034   if (VM_Version::supports_dcpop()) {
6035     // writeback using clear virtual address to point of persistence
6036     dc(Assembler::CVAP, line.base());
6037   } else {
6038     // no need to generate anything as Unsafe.writebackMemory should
6039     // never invoke this stub
6040   }
6041 }
6042 
6043 void MacroAssembler::cache_wbsync(bool is_pre) {
6044   // we only need a barrier post sync
6045   if (!is_pre) {
6046     membar(Assembler::AnyAny);
6047   }

6381 }
6382 
6383 // Implements lightweight-locking.
6384 // Branches to slow upon failure to lock the object, with ZF cleared.
6385 // Falls through upon success with ZF set.
6386 //
6387 //  - obj: the object to be locked
6388 //  - hdr: the header, already loaded from obj, will be destroyed
6389 //  - t1, t2: temporary registers, will be destroyed
6390 void MacroAssembler::lightweight_lock(Register obj, Register hdr, Register t1, Register t2, Label& slow) {
6391   assert(LockingMode == LM_LIGHTWEIGHT, "only used with new lightweight locking");
6392   assert_different_registers(obj, hdr, t1, t2, rscratch1);
6393 
6394   // Check if we would have space on lock-stack for the object.
6395   ldrw(t1, Address(rthread, JavaThread::lock_stack_top_offset()));
6396   cmpw(t1, (unsigned)LockStack::end_offset() - 1);
6397   br(Assembler::GT, slow);
6398 
6399   // Load (object->mark() | 1) into hdr
6400   orr(hdr, hdr, markWord::unlocked_value);





6401   // Clear lock-bits, into t2
6402   eor(t2, hdr, markWord::unlocked_value);
6403   // Try to swing header from unlocked to locked
6404   // Clobbers rscratch1 when UseLSE is false
6405   cmpxchg(/*addr*/ obj, /*expected*/ hdr, /*new*/ t2, Assembler::xword,
6406           /*acquire*/ true, /*release*/ true, /*weak*/ false, t1);
6407   br(Assembler::NE, slow);
6408 
6409   // After successful lock, push object on lock-stack
6410   ldrw(t1, Address(rthread, JavaThread::lock_stack_top_offset()));
6411   str(obj, Address(rthread, t1));
6412   addw(t1, t1, oopSize);
6413   strw(t1, Address(rthread, JavaThread::lock_stack_top_offset()));
6414 }
6415 
6416 // Implements lightweight-unlocking.
6417 // Branches to slow upon failure, with ZF cleared.
6418 // Falls through upon success, with ZF set.
6419 //
6420 // - obj: the object to be unlocked

  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include <sys/types.h>
  27 
  28 #include "precompiled.hpp"
  29 #include "asm/assembler.hpp"
  30 #include "asm/assembler.inline.hpp"
  31 #include "ci/ciEnv.hpp"
  32 #include "ci/ciInlineKlass.hpp"
  33 #include "code/compiledIC.hpp"
  34 #include "compiler/compileTask.hpp"
  35 #include "compiler/disassembler.hpp"
  36 #include "compiler/oopMap.hpp"
  37 #include "gc/shared/barrierSet.hpp"
  38 #include "gc/shared/barrierSetAssembler.hpp"
  39 #include "gc/shared/cardTableBarrierSet.hpp"
  40 #include "gc/shared/cardTable.hpp"
  41 #include "gc/shared/collectedHeap.hpp"
  42 #include "gc/shared/tlab_globals.hpp"
  43 #include "interpreter/bytecodeHistogram.hpp"
  44 #include "interpreter/interpreter.hpp"
  45 #include "jvm.h"
  46 #include "memory/resourceArea.hpp"
  47 #include "memory/universe.hpp"
  48 #include "nativeInst_aarch64.hpp"
  49 #include "oops/accessDecorators.hpp"
  50 #include "oops/compressedKlass.inline.hpp"
  51 #include "oops/compressedOops.inline.hpp"
  52 #include "oops/klass.inline.hpp"
  53 #include "oops/resolvedFieldEntry.hpp"
  54 #include "runtime/continuation.hpp"
  55 #include "runtime/icache.hpp"
  56 #include "runtime/interfaceSupport.inline.hpp"
  57 #include "runtime/javaThread.hpp"
  58 #include "runtime/jniHandles.inline.hpp"
  59 #include "runtime/sharedRuntime.hpp"
  60 #include "runtime/signature_cc.hpp"
  61 #include "runtime/stubRoutines.hpp"
  62 #include "utilities/powerOfTwo.hpp"
  63 #include "vmreg_aarch64.inline.hpp"
  64 #ifdef COMPILER1
  65 #include "c1/c1_LIRAssembler.hpp"
  66 #endif
  67 #ifdef COMPILER2
  68 #include "oops/oop.hpp"
  69 #include "opto/compile.hpp"
  70 #include "opto/node.hpp"
  71 #include "opto/output.hpp"
  72 #endif
  73 
  74 #ifdef PRODUCT
  75 #define BLOCK_COMMENT(str) /* nothing */
  76 #else
  77 #define BLOCK_COMMENT(str) block_comment(str)
  78 #endif
  79 #define STOP(str) stop(str);
  80 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  81 
  82 #ifdef ASSERT
  83 extern "C" void disnm(intptr_t p);

1157 }
1158 
1159 void MacroAssembler::post_call_nop() {
1160   if (!Continuations::enabled()) {
1161     return;
1162   }
1163   InstructionMark im(this);
1164   relocate(post_call_nop_Relocation::spec());
1165   InlineSkippedInstructionsCounter skipCounter(this);
1166   nop();
1167   movk(zr, 0);
1168   movk(zr, 0);
1169 }
1170 
1171 // these are no-ops overridden by InterpreterMacroAssembler
1172 
1173 void MacroAssembler::check_and_handle_earlyret(Register java_thread) { }
1174 
1175 void MacroAssembler::check_and_handle_popframe(Register java_thread) { }
1176 
1177 void MacroAssembler::get_default_value_oop(Register inline_klass, Register temp_reg, Register obj) {
1178 #ifdef ASSERT
1179   {
1180     Label done_check;
1181     test_klass_is_inline_type(inline_klass, temp_reg, done_check);
1182     stop("get_default_value_oop from non inline type klass");
1183     bind(done_check);
1184   }
1185 #endif
1186   Register offset = temp_reg;
1187   // Getting the offset of the pre-allocated default value
1188   ldr(offset, Address(inline_klass, in_bytes(InstanceKlass::adr_inlineklass_fixed_block_offset())));
1189   ldr(offset, Address(offset, in_bytes(InlineKlass::default_value_offset_offset())));
1190 
1191   // Getting the mirror
1192   ldr(obj, Address(inline_klass, in_bytes(Klass::java_mirror_offset())));
1193   resolve_oop_handle(obj, inline_klass, temp_reg);
1194 
1195   // Getting the pre-allocated default value from the mirror
1196   Address field(obj, offset);
1197   load_heap_oop(obj, field, inline_klass, rscratch2);
1198 }
1199 
1200 void MacroAssembler::get_empty_inline_type_oop(Register inline_klass, Register temp_reg, Register obj) {
1201 #ifdef ASSERT
1202   {
1203     Label done_check;
1204     test_klass_is_empty_inline_type(inline_klass, temp_reg, done_check);
1205     stop("get_empty_value from non-empty inline klass");
1206     bind(done_check);
1207   }
1208 #endif
1209   get_default_value_oop(inline_klass, temp_reg, obj);
1210 }
1211 
1212 // Look up the method for a megamorphic invokeinterface call.
1213 // The target method is determined by <intf_klass, itable_index>.
1214 // The receiver klass is in recv_klass.
1215 // On success, the result will be in method_result, and execution falls through.
1216 // On failure, execution transfers to the given label.
1217 void MacroAssembler::lookup_interface_method(Register recv_klass,
1218                                              Register intf_klass,
1219                                              RegisterOrConstant itable_index,
1220                                              Register method_result,
1221                                              Register scan_temp,
1222                                              Label& L_no_such_interface,
1223                          bool return_method) {
1224   assert_different_registers(recv_klass, intf_klass, scan_temp);
1225   assert_different_registers(method_result, intf_klass, scan_temp);
1226   assert(recv_klass != method_result || !return_method,
1227      "recv_klass can be destroyed when method isn't needed");
1228   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
1229          "caller must use same register for non-constant itable index as for method");
1230 
1231   // Compute start of first itableOffsetEntry (which is at the end of the vtable)

1645   ldrb(scratch, Address(klass, InstanceKlass::init_state_offset()));
1646   subs(zr, scratch, InstanceKlass::fully_initialized);
1647   br(Assembler::EQ, *L_fast_path);
1648 
1649   // Fast path check: current thread is initializer thread
1650   ldr(scratch, Address(klass, InstanceKlass::init_thread_offset()));
1651   cmp(rthread, scratch);
1652 
1653   if (L_slow_path == &L_fallthrough) {
1654     br(Assembler::EQ, *L_fast_path);
1655     bind(*L_slow_path);
1656   } else if (L_fast_path == &L_fallthrough) {
1657     br(Assembler::NE, *L_slow_path);
1658     bind(*L_fast_path);
1659   } else {
1660     Unimplemented();
1661   }
1662 }
1663 
1664 void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) {
1665   if (!VerifyOops || VerifyAdapterSharing) {
1666     // Below address of the code string confuses VerifyAdapterSharing
1667     // because it may differ between otherwise equivalent adapters.
1668     return;
1669   }
1670 
1671   // Pass register number to verify_oop_subroutine
1672   const char* b = nullptr;
1673   {
1674     ResourceMark rm;
1675     stringStream ss;
1676     ss.print("verify_oop: %s: %s (%s:%d)", reg->name(), s, file, line);
1677     b = code_string(ss.as_string());
1678   }
1679   BLOCK_COMMENT("verify_oop {");
1680 
1681   strip_return_address(); // This might happen within a stack frame.
1682   protect_return_address();
1683   stp(r0, rscratch1, Address(pre(sp, -2 * wordSize)));
1684   stp(rscratch2, lr, Address(pre(sp, -2 * wordSize)));
1685 
1686   mov(r0, reg);
1687   movptr(rscratch1, (uintptr_t)(address)b);
1688 
1689   // call indirectly to solve generation ordering problem
1690   lea(rscratch2, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
1691   ldr(rscratch2, Address(rscratch2));
1692   blr(rscratch2);
1693 
1694   ldp(rscratch2, lr, Address(post(sp, 2 * wordSize)));
1695   ldp(r0, rscratch1, Address(post(sp, 2 * wordSize)));
1696   authenticate_return_address();
1697 
1698   BLOCK_COMMENT("} verify_oop");
1699 }
1700 
1701 void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) {
1702   if (!VerifyOops || VerifyAdapterSharing) {
1703     // Below address of the code string confuses VerifyAdapterSharing
1704     // because it may differ between otherwise equivalent adapters.
1705     return;
1706   }
1707 
1708   const char* b = nullptr;
1709   {
1710     ResourceMark rm;
1711     stringStream ss;
1712     ss.print("verify_oop_addr: %s (%s:%d)", s, file, line);
1713     b = code_string(ss.as_string());
1714   }
1715   BLOCK_COMMENT("verify_oop_addr {");
1716 
1717   strip_return_address(); // This might happen within a stack frame.
1718   protect_return_address();
1719   stp(r0, rscratch1, Address(pre(sp, -2 * wordSize)));
1720   stp(rscratch2, lr, Address(pre(sp, -2 * wordSize)));
1721 
1722   // addr may contain sp so we will have to adjust it based on the
1723   // pushes that we just did.
1724   if (addr.uses(sp)) {
1725     lea(r0, addr);
1726     ldr(r0, Address(r0, 4 * wordSize));

1784   call_VM_leaf_base(entry_point, 1);
1785 }
1786 
1787 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
1788   assert_different_registers(arg_1, c_rarg0);
1789   pass_arg0(this, arg_0);
1790   pass_arg1(this, arg_1);
1791   call_VM_leaf_base(entry_point, 2);
1792 }
1793 
1794 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0,
1795                                   Register arg_1, Register arg_2) {
1796   assert_different_registers(arg_1, c_rarg0);
1797   assert_different_registers(arg_2, c_rarg0, c_rarg1);
1798   pass_arg0(this, arg_0);
1799   pass_arg1(this, arg_1);
1800   pass_arg2(this, arg_2);
1801   call_VM_leaf_base(entry_point, 3);
1802 }
1803 
1804 void MacroAssembler::super_call_VM_leaf(address entry_point) {
1805   MacroAssembler::call_VM_leaf_base(entry_point, 1);
1806 }
1807 
1808 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
1809   pass_arg0(this, arg_0);
1810   MacroAssembler::call_VM_leaf_base(entry_point, 1);
1811 }
1812 
1813 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
1814 
1815   assert_different_registers(arg_0, c_rarg1);
1816   pass_arg1(this, arg_1);
1817   pass_arg0(this, arg_0);
1818   MacroAssembler::call_VM_leaf_base(entry_point, 2);
1819 }
1820 
1821 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
1822   assert_different_registers(arg_0, c_rarg1, c_rarg2);
1823   assert_different_registers(arg_1, c_rarg2);
1824   pass_arg2(this, arg_2);
1825   pass_arg1(this, arg_1);
1826   pass_arg0(this, arg_0);
1827   MacroAssembler::call_VM_leaf_base(entry_point, 3);

1833   assert_different_registers(arg_2, c_rarg3);
1834   pass_arg3(this, arg_3);
1835   pass_arg2(this, arg_2);
1836   pass_arg1(this, arg_1);
1837   pass_arg0(this, arg_0);
1838   MacroAssembler::call_VM_leaf_base(entry_point, 4);
1839 }
1840 
1841 void MacroAssembler::null_check(Register reg, int offset) {
1842   if (needs_explicit_null_check(offset)) {
1843     // provoke OS null exception if reg is null by
1844     // accessing M[reg] w/o changing any registers
1845     // NOTE: this is plenty to provoke a segv
1846     ldr(zr, Address(reg));
1847   } else {
1848     // nothing to do, (later) access of M[reg + offset]
1849     // will provoke OS null exception if reg is null
1850   }
1851 }
1852 
1853 void MacroAssembler::test_markword_is_inline_type(Register markword, Label& is_inline_type) {
1854   assert_different_registers(markword, rscratch2);
1855   andr(markword, markword, markWord::inline_type_mask_in_place);
1856   mov(rscratch2, markWord::inline_type_pattern);
1857   cmp(markword, rscratch2);
1858   br(Assembler::EQ, is_inline_type);
1859 }
1860 
1861 void MacroAssembler::test_klass_is_inline_type(Register klass, Register temp_reg, Label& is_inline_type) {
1862   ldrw(temp_reg, Address(klass, Klass::access_flags_offset()));
1863   andr(temp_reg, temp_reg, JVM_ACC_IDENTITY);
1864   cbz(temp_reg, is_inline_type);
1865 }
1866 
1867 void MacroAssembler::test_oop_is_not_inline_type(Register object, Register tmp, Label& not_inline_type) {
1868   assert_different_registers(tmp, rscratch1);
1869   cbz(object, not_inline_type);
1870   const int is_inline_type_mask = markWord::inline_type_pattern;
1871   ldr(tmp, Address(object, oopDesc::mark_offset_in_bytes()));
1872   mov(rscratch1, is_inline_type_mask);
1873   andr(tmp, tmp, rscratch1);
1874   cmp(tmp, rscratch1);
1875   br(Assembler::NE, not_inline_type);
1876 }
1877 
1878 void MacroAssembler::test_klass_is_empty_inline_type(Register klass, Register temp_reg, Label& is_empty_inline_type) {
1879 #ifdef ASSERT
1880   {
1881     Label done_check;
1882     test_klass_is_inline_type(klass, temp_reg, done_check);
1883     stop("test_klass_is_empty_inline_type with non inline type klass");
1884     bind(done_check);
1885   }
1886 #endif
1887   ldrw(temp_reg, Address(klass, InstanceKlass::misc_flags_offset()));
1888   andr(temp_reg, temp_reg, InstanceKlassFlags::is_empty_inline_type_value());
1889   cbnz(temp_reg, is_empty_inline_type);
1890 }
1891 
1892 void MacroAssembler::test_field_is_null_free_inline_type(Register flags, Register temp_reg, Label& is_null_free_inline_type) {
1893   assert(temp_reg == noreg, "not needed"); // keep signature uniform with x86
1894   tbnz(flags, ResolvedFieldEntry::is_null_free_inline_type_shift, is_null_free_inline_type);
1895 }
1896 
1897 void MacroAssembler::test_field_is_not_null_free_inline_type(Register flags, Register temp_reg, Label& not_null_free_inline_type) {
1898   assert(temp_reg == noreg, "not needed"); // keep signature uniform with x86
1899   tbz(flags, ResolvedFieldEntry::is_null_free_inline_type_shift, not_null_free_inline_type);
1900 }
1901 
1902 void MacroAssembler::test_field_is_flat(Register flags, Register temp_reg, Label& is_flat) {
1903   assert(temp_reg == noreg, "not needed"); // keep signature uniform with x86
1904   tbnz(flags, ResolvedFieldEntry::is_flat_shift, is_flat);
1905 }
1906 
1907 void MacroAssembler::test_field_has_null_marker(Register flags, Register temp_reg, Label& has_null_marker) {
1908   assert(temp_reg == noreg, "not needed"); // keep signature uniform with x86
1909   tbnz(flags, ResolvedFieldEntry::has_null_marker_shift, has_null_marker);
1910 }
1911 
1912 void MacroAssembler::test_oop_prototype_bit(Register oop, Register temp_reg, int32_t test_bit, bool jmp_set, Label& jmp_label) {
1913   Label test_mark_word;
1914   // load mark word
1915   ldr(temp_reg, Address(oop, oopDesc::mark_offset_in_bytes()));
1916   // check displaced
1917   tst(temp_reg, markWord::unlocked_value);
1918   br(Assembler::NE, test_mark_word);
1919   // slow path use klass prototype
1920   load_prototype_header(temp_reg, oop);
1921 
1922   bind(test_mark_word);
1923   andr(temp_reg, temp_reg, test_bit);
1924   if (jmp_set) {
1925     cbnz(temp_reg, jmp_label);
1926   } else {
1927     cbz(temp_reg, jmp_label);
1928   }
1929 }
1930 
1931 void MacroAssembler::test_flat_array_oop(Register oop, Register temp_reg, Label& is_flat_array) {
1932   test_oop_prototype_bit(oop, temp_reg, markWord::flat_array_bit_in_place, true, is_flat_array);
1933 }
1934 
1935 void MacroAssembler::test_non_flat_array_oop(Register oop, Register temp_reg,
1936                                                   Label&is_non_flat_array) {
1937   test_oop_prototype_bit(oop, temp_reg, markWord::flat_array_bit_in_place, false, is_non_flat_array);
1938 }
1939 
1940 void MacroAssembler::test_null_free_array_oop(Register oop, Register temp_reg, Label& is_null_free_array) {
1941   test_oop_prototype_bit(oop, temp_reg, markWord::null_free_array_bit_in_place, true, is_null_free_array);
1942 }
1943 
1944 void MacroAssembler::test_non_null_free_array_oop(Register oop, Register temp_reg, Label&is_non_null_free_array) {
1945   test_oop_prototype_bit(oop, temp_reg, markWord::null_free_array_bit_in_place, false, is_non_null_free_array);
1946 }
1947 
1948 void MacroAssembler::test_flat_array_layout(Register lh, Label& is_flat_array) {
1949   tst(lh, Klass::_lh_array_tag_flat_value_bit_inplace);
1950   br(Assembler::NE, is_flat_array);
1951 }
1952 
1953 void MacroAssembler::test_non_flat_array_layout(Register lh, Label& is_non_flat_array) {
1954   tst(lh, Klass::_lh_array_tag_flat_value_bit_inplace);
1955   br(Assembler::EQ, is_non_flat_array);
1956 }
1957 
1958 // MacroAssembler protected routines needed to implement
1959 // public methods
1960 
1961 void MacroAssembler::mov(Register r, Address dest) {
1962   code_section()->relocate(pc(), dest.rspec());
1963   uint64_t imm64 = (uint64_t)dest.target();
1964   movptr(r, imm64);
1965 }
1966 
1967 // Move a constant pointer into r.  In AArch64 mode the virtual
1968 // address space is 48 bits in size, so we only need three
1969 // instructions to create a patchable instruction sequence that can
1970 // reach anywhere.
1971 void MacroAssembler::movptr(Register r, uintptr_t imm64) {
1972 #ifndef PRODUCT
1973   {
1974     char buffer[64];
1975     snprintf(buffer, sizeof(buffer), "0x%" PRIX64, (uint64_t)imm64);
1976     block_comment(buffer);
1977   }

4616   adrp(rscratch1, src2, offset);
4617   ldr(rscratch1, Address(rscratch1, offset));
4618   cmp(src1, rscratch1);
4619 }
4620 
4621 void MacroAssembler::cmpoop(Register obj1, Register obj2) {
4622   cmp(obj1, obj2);
4623 }
4624 
4625 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) {
4626   load_method_holder(rresult, rmethod);
4627   ldr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset()));
4628 }
4629 
4630 void MacroAssembler::load_method_holder(Register holder, Register method) {
4631   ldr(holder, Address(method, Method::const_offset()));                      // ConstMethod*
4632   ldr(holder, Address(holder, ConstMethod::constants_offset()));             // ConstantPool*
4633   ldr(holder, Address(holder, ConstantPool::pool_holder_offset()));          // InstanceKlass*
4634 }
4635 
4636 void MacroAssembler::load_metadata(Register dst, Register src) {
4637   if (UseCompressedClassPointers) {
4638     ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes()));
4639   } else {
4640     ldr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
4641   }
4642 }
4643 
4644 void MacroAssembler::load_klass(Register dst, Register src) {
4645   if (UseCompressedClassPointers) {
4646     ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes()));
4647     decode_klass_not_null(dst);
4648   } else {
4649     ldr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
4650   }
4651 }
4652 
4653 void MacroAssembler::restore_cpu_control_state_after_jni(Register tmp1, Register tmp2) {
4654   if (RestoreMXCSROnJNICalls) {
4655     Label OK;
4656     get_fpcr(tmp1);
4657     mov(tmp2, tmp1);
4658     // Set FPCR to the state we need. We do want Round to Nearest. We
4659     // don't want non-IEEE rounding modes or floating-point traps.
4660     bfi(tmp1, zr, 22, 4); // Clear DN, FZ, and Rmode
4661     bfi(tmp1, zr, 8, 5);  // Clear exception-control bits (8-12)
4662     bfi(tmp1, zr, 0, 2);  // Clear AH:FIZ
4663     eor(tmp2, tmp1, tmp2);

4699 
4700 void MacroAssembler::cmp_klass(Register oop, Register trial_klass, Register tmp) {
4701   if (UseCompressedClassPointers) {
4702     ldrw(tmp, Address(oop, oopDesc::klass_offset_in_bytes()));
4703     if (CompressedKlassPointers::base() == nullptr) {
4704       cmp(trial_klass, tmp, LSL, CompressedKlassPointers::shift());
4705       return;
4706     } else if (((uint64_t)CompressedKlassPointers::base() & 0xffffffff) == 0
4707                && CompressedKlassPointers::shift() == 0) {
4708       // Only the bottom 32 bits matter
4709       cmpw(trial_klass, tmp);
4710       return;
4711     }
4712     decode_klass_not_null(tmp);
4713   } else {
4714     ldr(tmp, Address(oop, oopDesc::klass_offset_in_bytes()));
4715   }
4716   cmp(trial_klass, tmp);
4717 }
4718 
4719 void MacroAssembler::load_prototype_header(Register dst, Register src) {
4720   load_klass(dst, src);
4721   ldr(dst, Address(dst, Klass::prototype_header_offset()));
4722 }
4723 
4724 void MacroAssembler::store_klass(Register dst, Register src) {
4725   // FIXME: Should this be a store release?  concurrent gcs assumes
4726   // klass length is valid if klass field is not null.
4727   if (UseCompressedClassPointers) {
4728     encode_klass_not_null(src);
4729     strw(src, Address(dst, oopDesc::klass_offset_in_bytes()));
4730   } else {
4731     str(src, Address(dst, oopDesc::klass_offset_in_bytes()));
4732   }
4733 }
4734 
4735 void MacroAssembler::store_klass_gap(Register dst, Register src) {
4736   if (UseCompressedClassPointers) {
4737     // Store to klass gap in destination
4738     strw(src, Address(dst, oopDesc::klass_gap_offset_in_bytes()));
4739   }
4740 }
4741 
4742 // Algorithm must match CompressedOops::encode.
4743 void MacroAssembler::encode_heap_oop(Register d, Register s) {

5028   if (as_raw) {
5029     bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, tmp2);
5030   } else {
5031     bs->load_at(this, decorators, type, dst, src, tmp1, tmp2);
5032   }
5033 }
5034 
5035 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators,
5036                                      Address dst, Register val,
5037                                      Register tmp1, Register tmp2, Register tmp3) {
5038   BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
5039   decorators = AccessInternal::decorator_fixup(decorators, type);
5040   bool as_raw = (decorators & AS_RAW) != 0;
5041   if (as_raw) {
5042     bs->BarrierSetAssembler::store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3);
5043   } else {
5044     bs->store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3);
5045   }
5046 }
5047 
5048 void MacroAssembler::access_value_copy(DecoratorSet decorators, Register src, Register dst,
5049                                        Register inline_klass) {
5050   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
5051   bs->value_copy(this, decorators, src, dst, inline_klass);
5052 }
5053 
5054 void MacroAssembler::first_field_offset(Register inline_klass, Register offset) {
5055   ldr(offset, Address(inline_klass, InstanceKlass::adr_inlineklass_fixed_block_offset()));
5056   ldrw(offset, Address(offset, InlineKlass::first_field_offset_offset()));
5057 }
5058 
5059 void MacroAssembler::data_for_oop(Register oop, Register data, Register inline_klass) {
5060   // ((address) (void*) o) + vk->first_field_offset();
5061   Register offset = (data == oop) ? rscratch1 : data;
5062   first_field_offset(inline_klass, offset);
5063   if (data == oop) {
5064     add(data, data, offset);
5065   } else {
5066     lea(data, Address(oop, offset));
5067   }
5068 }
5069 
5070 void MacroAssembler::data_for_value_array_index(Register array, Register array_klass,
5071                                                 Register index, Register data) {
5072   assert_different_registers(array, array_klass, index);
5073   assert_different_registers(rscratch1, array, index);
5074 
5075   // array->base() + (index << Klass::layout_helper_log2_element_size(lh));
5076   ldrw(rscratch1, Address(array_klass, Klass::layout_helper_offset()));
5077 
5078   // Klass::layout_helper_log2_element_size(lh)
5079   // (lh >> _lh_log2_element_size_shift) & _lh_log2_element_size_mask;
5080   lsr(rscratch1, rscratch1, Klass::_lh_log2_element_size_shift);
5081   andr(rscratch1, rscratch1, Klass::_lh_log2_element_size_mask);
5082   lslv(index, index, rscratch1);
5083 
5084   add(data, array, index);
5085   add(data, data, arrayOopDesc::base_offset_in_bytes(T_PRIMITIVE_OBJECT));
5086 }
5087 
5088 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1,
5089                                    Register tmp2, DecoratorSet decorators) {
5090   access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, tmp2);
5091 }
5092 
5093 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1,
5094                                             Register tmp2, DecoratorSet decorators) {
5095   access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, tmp2);
5096 }
5097 
5098 void MacroAssembler::store_heap_oop(Address dst, Register val, Register tmp1,
5099                                     Register tmp2, Register tmp3, DecoratorSet decorators) {
5100   access_store_at(T_OBJECT, IN_HEAP | decorators, dst, val, tmp1, tmp2, tmp3);
5101 }
5102 
5103 // Used for storing nulls.
5104 void MacroAssembler::store_heap_oop_null(Address dst) {
5105   access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg, noreg);
5106 }
5107 

5144     oop_index = oop_recorder()->allocate_metadata_index(obj);
5145   } else {
5146     oop_index = oop_recorder()->find_index(obj);
5147   }
5148   RelocationHolder rspec = metadata_Relocation::spec(oop_index);
5149   mov(dst, Address((address)obj, rspec));
5150 }
5151 
5152 Address MacroAssembler::constant_oop_address(jobject obj) {
5153 #ifdef ASSERT
5154   {
5155     ThreadInVMfromUnknown tiv;
5156     assert(oop_recorder() != nullptr, "this assembler needs an OopRecorder");
5157     assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "not an oop");
5158   }
5159 #endif
5160   int oop_index = oop_recorder()->find_index(obj);
5161   return Address((address)obj, oop_Relocation::spec(oop_index));
5162 }
5163 
5164 // Object / value buffer allocation...
5165 void MacroAssembler::allocate_instance(Register klass, Register new_obj,
5166                                        Register t1, Register t2,
5167                                        bool clear_fields, Label& alloc_failed)
5168 {
5169   Label done, initialize_header, initialize_object, slow_case, slow_case_no_pop;
5170   Register layout_size = t1;
5171   assert(new_obj == r0, "needs to be r0");
5172   assert_different_registers(klass, new_obj, t1, t2);
5173 
5174   // get instance_size in InstanceKlass (scaled to a count of bytes)
5175   ldrw(layout_size, Address(klass, Klass::layout_helper_offset()));
5176   // test to see if it has a finalizer or is malformed in some way
5177   tst(layout_size, Klass::_lh_instance_slow_path_bit);
5178   br(Assembler::NE, slow_case_no_pop);
5179 
5180   // Allocate the instance:
5181   //  If TLAB is enabled:
5182   //    Try to allocate in the TLAB.
5183   //    If fails, go to the slow path.
5184   //    Initialize the allocation.
5185   //    Exit.
5186   //
5187   //  Go to slow path.
5188 
5189   if (UseTLAB) {
5190     push(klass);
5191     tlab_allocate(new_obj, layout_size, 0, klass, t2, slow_case);
5192     if (ZeroTLAB || (!clear_fields)) {
5193       // the fields have been already cleared
5194       b(initialize_header);
5195     } else {
5196       // initialize both the header and fields
5197       b(initialize_object);
5198     }
5199 
5200     if (clear_fields) {
5201       // The object is initialized before the header.  If the object size is
5202       // zero, go directly to the header initialization.
5203       bind(initialize_object);
5204       subs(layout_size, layout_size, sizeof(oopDesc));
5205       br(Assembler::EQ, initialize_header);
5206 
5207       // Initialize topmost object field, divide size by 8, check if odd and
5208       // test if zero.
5209 
5210   #ifdef ASSERT
5211       // make sure instance_size was multiple of 8
5212       Label L;
5213       tst(layout_size, 7);
5214       br(Assembler::EQ, L);
5215       stop("object size is not multiple of 8 - adjust this code");
5216       bind(L);
5217       // must be > 0, no extra check needed here
5218   #endif
5219 
5220       lsr(layout_size, layout_size, LogBytesPerLong);
5221 
5222       // initialize remaining object fields: instance_size was a multiple of 8
5223       {
5224         Label loop;
5225         Register base = t2;
5226 
5227         bind(loop);
5228         add(rscratch1, new_obj, layout_size, Assembler::LSL, LogBytesPerLong);
5229         str(zr, Address(rscratch1, sizeof(oopDesc) - 1*oopSize));
5230         subs(layout_size, layout_size, 1);
5231         br(Assembler::NE, loop);
5232       }
5233     } // clear_fields
5234 
5235     // initialize object header only.
5236     bind(initialize_header);
5237     pop(klass);
5238     Register mark_word = t2;
5239     ldr(mark_word, Address(klass, Klass::prototype_header_offset()));
5240     str(mark_word, Address(new_obj, oopDesc::mark_offset_in_bytes ()));
5241     store_klass_gap(new_obj, zr);  // zero klass gap for compressed oops
5242     mov(t2, klass);         // preserve klass
5243     store_klass(new_obj, t2);  // src klass reg is potentially compressed
5244 
5245     // TODO: Valhalla removed SharedRuntime::dtrace_object_alloc from here ?
5246 
5247     b(done);
5248   }
5249 
5250   if (UseTLAB) {
5251     bind(slow_case);
5252     pop(klass);
5253   }
5254   bind(slow_case_no_pop);
5255   b(alloc_failed);
5256 
5257   bind(done);
5258 }
5259 
5260 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
5261 void MacroAssembler::tlab_allocate(Register obj,
5262                                    Register var_size_in_bytes,
5263                                    int con_size_in_bytes,
5264                                    Register t1,
5265                                    Register t2,
5266                                    Label& slow_case) {
5267   BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
5268   bs->tlab_allocate(this, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case);
5269 }
5270 
5271 void MacroAssembler::verify_tlab() {
5272 #ifdef ASSERT
5273   if (UseTLAB && VerifyOops) {
5274     Label next, ok;
5275 
5276     stp(rscratch2, rscratch1, Address(pre(sp, -16)));
5277 
5278     ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_top_offset())));
5279     ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset())));
5280     cmp(rscratch2, rscratch1);
5281     br(Assembler::HS, next);
5282     STOP("assert(top >= start)");
5283     should_not_reach_here();
5284 
5285     bind(next);
5286     ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_end_offset())));
5287     ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_top_offset())));
5288     cmp(rscratch2, rscratch1);
5289     br(Assembler::HS, ok);
5290     STOP("assert(top <= end)");
5291     should_not_reach_here();
5292 
5293     bind(ok);
5294     ldp(rscratch2, rscratch1, Address(post(sp, 16)));
5295   }
5296 #endif
5297 }
5298 
5299 void MacroAssembler::get_inline_type_field_klass(Register klass, Register index, Register inline_klass) {
5300   ldr(inline_klass, Address(klass, InstanceKlass::inline_type_field_klasses_offset()));
5301 #ifdef ASSERT
5302   {
5303     Label done;
5304     cbnz(inline_klass, done);
5305     stop("get_inline_type_field_klass contains no inline klass");
5306     bind(done);
5307   }
5308 #endif
5309   lea(inline_klass, Address(inline_klass, Array<InlineKlass*>::base_offset_in_bytes()));
5310   ldr(inline_klass, Address(inline_klass, index, Address::lsl(3)));
5311 }
5312 
5313 // Writes to stack successive pages until offset reached to check for
5314 // stack overflow + shadow pages.  This clobbers tmp.
5315 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
5316   assert_different_registers(tmp, size, rscratch1);
5317   mov(tmp, sp);
5318   // Bang stack for total size given plus shadow page size.
5319   // Bang one page at a time because large size can bang beyond yellow and
5320   // red zones.
5321   Label loop;
5322   mov(rscratch1, (int)os::vm_page_size());
5323   bind(loop);
5324   lea(tmp, Address(tmp, -(int)os::vm_page_size()));
5325   subsw(size, size, rscratch1);
5326   str(size, Address(tmp));
5327   br(Assembler::GT, loop);
5328 
5329   // Bang down shadow pages too.
5330   // At this point, (tmp-0) is the last address touched, so don't
5331   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
5332   // was post-decremented.)  Skip this address by starting at i=1, and

5418 }
5419 
5420 void MacroAssembler::remove_frame(int framesize) {
5421   assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR");
5422   assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment");
5423   if (framesize < ((1 << 9) + 2 * wordSize)) {
5424     ldp(rfp, lr, Address(sp, framesize - 2 * wordSize));
5425     add(sp, sp, framesize);
5426   } else {
5427     if (framesize < ((1 << 12) + 2 * wordSize))
5428       add(sp, sp, framesize - 2 * wordSize);
5429     else {
5430       mov(rscratch1, framesize - 2 * wordSize);
5431       add(sp, sp, rscratch1);
5432     }
5433     ldp(rfp, lr, Address(post(sp, 2 * wordSize)));
5434   }
5435   authenticate_return_address();
5436 }
5437 
5438 void MacroAssembler::remove_frame(int initial_framesize, bool needs_stack_repair) {
5439   if (needs_stack_repair) {
5440     // Remove the extension of the caller's frame used for inline type unpacking
5441     //
5442     // Right now the stack looks like this:
5443     //
5444     // | Arguments from caller     |
5445     // |---------------------------|  <-- caller's SP
5446     // | Saved LR #1               |
5447     // | Saved FP #1               |
5448     // |---------------------------|
5449     // | Extension space for       |
5450     // |   inline arg (un)packing  |
5451     // |---------------------------|  <-- start of this method's frame
5452     // | Saved LR #2               |
5453     // | Saved FP #2               |
5454     // |---------------------------|  <-- FP
5455     // | sp_inc                    |
5456     // | method locals             |
5457     // |---------------------------|  <-- SP
5458     //
5459     // There are two copies of FP and LR on the stack. They will be identical
5460     // unless the caller has been deoptimized, in which case LR #1 will be patched
5461     // to point at the deopt blob, and LR #2 will still point into the old method.
5462     //
5463     // The sp_inc stack slot holds the total size of the frame including the
5464     // extension space minus two words for the saved FP and LR.
5465 
5466     int sp_inc_offset = initial_framesize - 3 * wordSize;  // Immediately below saved LR and FP
5467 
5468     ldr(rscratch1, Address(sp, sp_inc_offset));
5469     add(sp, sp, rscratch1);
5470     ldp(rfp, lr, Address(post(sp, 2 * wordSize)));
5471   } else {
5472     remove_frame(initial_framesize);
5473   }
5474 }
5475 
5476 void MacroAssembler::save_stack_increment(int sp_inc, int frame_size) {
5477   int real_frame_size = frame_size + sp_inc;
5478   assert(sp_inc == 0 || sp_inc > 2*wordSize, "invalid sp_inc value");
5479   assert(real_frame_size >= 2*wordSize, "frame size must include FP/LR space");
5480   assert((real_frame_size & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
5481 
5482   int sp_inc_offset = frame_size - 3 * wordSize;  // Immediately below saved LR and FP
5483 
5484   // Subtract two words for the saved FP and LR as these will be popped
5485   // separately. See remove_frame above.
5486   mov(rscratch1, real_frame_size - 2*wordSize);
5487   str(rscratch1, Address(sp, sp_inc_offset));
5488 }
5489 
5490 // This method counts leading positive bytes (highest bit not set) in provided byte array
5491 address MacroAssembler::count_positives(Register ary1, Register len, Register result) {
5492     // Simple and most common case of aligned small array which is not at the
5493     // end of memory page is placed here. All other cases are in stub.
5494     Label LOOP, END, STUB, STUB_LONG, SET_RESULT, DONE;
5495     const uint64_t UPPER_BIT_MASK=0x8080808080808080;
5496     assert_different_registers(ary1, len, result);
5497 
5498     mov(result, len);
5499     cmpw(len, 0);
5500     br(LE, DONE);
5501     cmpw(len, 4 * wordSize);
5502     br(GE, STUB_LONG); // size > 32 then go to stub
5503 
5504     int shift = 64 - exact_log2(os::vm_page_size());
5505     lsl(rscratch1, ary1, shift);
5506     mov(rscratch2, (size_t)(4 * wordSize) << shift);
5507     adds(rscratch2, rscratch1, rscratch2);  // At end of page?
5508     br(CS, STUB); // at the end of page then go to stub

6378 // On other systems, the helper is a usual C function.
6379 //
6380 void MacroAssembler::get_thread(Register dst) {
6381   RegSet saved_regs =
6382     LINUX_ONLY(RegSet::range(r0, r1)  + lr - dst)
6383     NOT_LINUX (RegSet::range(r0, r17) + lr - dst);
6384 
6385   protect_return_address();
6386   push(saved_regs, sp);
6387 
6388   mov(lr, CAST_FROM_FN_PTR(address, JavaThread::aarch64_get_thread_helper));
6389   blr(lr);
6390   if (dst != c_rarg0) {
6391     mov(dst, c_rarg0);
6392   }
6393 
6394   pop(saved_regs, sp);
6395   authenticate_return_address();
6396 }
6397 
6398 #ifdef COMPILER2
6399 // C2 compiled method's prolog code
6400 // Moved here from aarch64.ad to support Valhalla code belows
6401 void MacroAssembler::verified_entry(Compile* C, int sp_inc) {
6402   if (C->clinit_barrier_on_entry()) {
6403     assert(!C->method()->holder()->is_not_initialized(), "initialization should have been started");
6404 
6405     Label L_skip_barrier;
6406 
6407     mov_metadata(rscratch2, C->method()->holder()->constant_encoding());
6408     clinit_barrier(rscratch2, rscratch1, &L_skip_barrier);
6409     far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub()));
6410     bind(L_skip_barrier);
6411   }
6412 
6413   if (C->max_vector_size() > 0) {
6414     reinitialize_ptrue();
6415   }
6416 
6417   int bangsize = C->output()->bang_size_in_bytes();
6418   if (C->output()->need_stack_bang(bangsize))
6419     generate_stack_overflow_check(bangsize);
6420 
6421   // n.b. frame size includes space for return pc and rfp
6422   const long framesize = C->output()->frame_size_in_bytes();
6423   build_frame(framesize);
6424 
6425   if (C->needs_stack_repair()) {
6426     save_stack_increment(sp_inc, framesize);
6427   }
6428 
6429   if (VerifyStackAtCalls) {
6430     Unimplemented();
6431   }
6432 }
6433 #endif // COMPILER2
6434 
6435 int MacroAssembler::store_inline_type_fields_to_buf(ciInlineKlass* vk, bool from_interpreter) {
6436   assert(InlineTypeReturnedAsFields, "Inline types should never be returned as fields");
6437   // An inline type might be returned. If fields are in registers we
6438   // need to allocate an inline type instance and initialize it with
6439   // the value of the fields.
6440   Label skip;
6441   // We only need a new buffered inline type if a new one is not returned
6442   tbz(r0, 0, skip);
6443   int call_offset = -1;
6444 
6445   // Be careful not to clobber r1-7 which hold returned fields
6446   // Also do not use callee-saved registers as these may be live in the interpreter
6447   Register tmp1 = r13, tmp2 = r14, klass = r15, r0_preserved = r12;
6448 
6449   // The following code is similar to allocate_instance but has some slight differences,
6450   // e.g. object size is always not zero, sometimes it's constant; storing klass ptr after
6451   // allocating is not necessary if vk != nullptr, etc. allocate_instance is not aware of these.
6452   Label slow_case;
6453   // 1. Try to allocate a new buffered inline instance either from TLAB or eden space
6454   mov(r0_preserved, r0); // save r0 for slow_case since *_allocate may corrupt it when allocation failed
6455 
6456   if (vk != nullptr) {
6457     // Called from C1, where the return type is statically known.
6458     movptr(klass, (intptr_t)vk->get_InlineKlass());
6459     jint obj_size = vk->layout_helper();
6460     assert(obj_size != Klass::_lh_neutral_value, "inline class in return type must have been resolved");
6461     if (UseTLAB) {
6462       tlab_allocate(r0, noreg, obj_size, tmp1, tmp2, slow_case);
6463     } else {
6464       b(slow_case);
6465     }
6466   } else {
6467     // Call from interpreter. R0 contains ((the InlineKlass* of the return type) | 0x01)
6468     andr(klass, r0, -2);
6469     ldrw(tmp2, Address(klass, Klass::layout_helper_offset()));
6470     if (UseTLAB) {
6471       tlab_allocate(r0, tmp2, 0, tmp1, tmp2, slow_case);
6472     } else {
6473       b(slow_case);
6474     }
6475   }
6476   if (UseTLAB) {
6477     // 2. Initialize buffered inline instance header
6478     Register buffer_obj = r0;
6479     mov(rscratch1, (intptr_t)markWord::inline_type_prototype().value());
6480     str(rscratch1, Address(buffer_obj, oopDesc::mark_offset_in_bytes()));
6481     store_klass_gap(buffer_obj, zr);
6482     if (vk == nullptr) {
6483       // store_klass corrupts klass, so save it for later use (interpreter case only).
6484       mov(tmp1, klass);
6485     }
6486     store_klass(buffer_obj, klass);
6487     // 3. Initialize its fields with an inline class specific handler
6488     if (vk != nullptr) {
6489       far_call(RuntimeAddress(vk->pack_handler())); // no need for call info as this will not safepoint.
6490     } else {
6491       // tmp1 holds klass preserved above
6492       ldr(tmp1, Address(tmp1, InstanceKlass::adr_inlineklass_fixed_block_offset()));
6493       ldr(tmp1, Address(tmp1, InlineKlass::pack_handler_offset()));
6494       blr(tmp1);
6495     }
6496 
6497     membar(Assembler::StoreStore);
6498     b(skip);
6499   } else {
6500     // Must have already branched to slow_case above.
6501     DEBUG_ONLY(should_not_reach_here());
6502   }
6503   bind(slow_case);
6504   // We failed to allocate a new inline type, fall back to a runtime
6505   // call. Some oop field may be live in some registers but we can't
6506   // tell. That runtime call will take care of preserving them
6507   // across a GC if there's one.
6508   mov(r0, r0_preserved);
6509 
6510   if (from_interpreter) {
6511     super_call_VM_leaf(StubRoutines::store_inline_type_fields_to_buf());
6512   } else {
6513     far_call(RuntimeAddress(StubRoutines::store_inline_type_fields_to_buf()));
6514     call_offset = offset();
6515   }
6516   membar(Assembler::StoreStore);
6517 
6518   bind(skip);
6519   return call_offset;
6520 }
6521 
6522 // Move a value between registers/stack slots and update the reg_state
6523 bool MacroAssembler::move_helper(VMReg from, VMReg to, BasicType bt, RegState reg_state[]) {
6524   assert(from->is_valid() && to->is_valid(), "source and destination must be valid");
6525   if (reg_state[to->value()] == reg_written) {
6526     return true; // Already written
6527   }
6528 
6529   if (from != to && bt != T_VOID) {
6530     if (reg_state[to->value()] == reg_readonly) {
6531       return false; // Not yet writable
6532     }
6533     if (from->is_reg()) {
6534       if (to->is_reg()) {
6535         if (from->is_Register() && to->is_Register()) {
6536           mov(to->as_Register(), from->as_Register());
6537         } else if (from->is_FloatRegister() && to->is_FloatRegister()) {
6538           fmovd(to->as_FloatRegister(), from->as_FloatRegister());
6539         } else {
6540           ShouldNotReachHere();
6541         }
6542       } else {
6543         int st_off = to->reg2stack() * VMRegImpl::stack_slot_size;
6544         Address to_addr = Address(sp, st_off);
6545         if (from->is_FloatRegister()) {
6546           if (bt == T_DOUBLE) {
6547              strd(from->as_FloatRegister(), to_addr);
6548           } else {
6549              assert(bt == T_FLOAT, "must be float");
6550              strs(from->as_FloatRegister(), to_addr);
6551           }
6552         } else {
6553           str(from->as_Register(), to_addr);
6554         }
6555       }
6556     } else {
6557       Address from_addr = Address(sp, from->reg2stack() * VMRegImpl::stack_slot_size);
6558       if (to->is_reg()) {
6559         if (to->is_FloatRegister()) {
6560           if (bt == T_DOUBLE) {
6561             ldrd(to->as_FloatRegister(), from_addr);
6562           } else {
6563             assert(bt == T_FLOAT, "must be float");
6564             ldrs(to->as_FloatRegister(), from_addr);
6565           }
6566         } else {
6567           ldr(to->as_Register(), from_addr);
6568         }
6569       } else {
6570         int st_off = to->reg2stack() * VMRegImpl::stack_slot_size;
6571         ldr(rscratch1, from_addr);
6572         str(rscratch1, Address(sp, st_off));
6573       }
6574     }
6575   }
6576 
6577   // Update register states
6578   reg_state[from->value()] = reg_writable;
6579   reg_state[to->value()] = reg_written;
6580   return true;
6581 }
6582 
6583 // Calculate the extra stack space required for packing or unpacking inline
6584 // args and adjust the stack pointer
6585 int MacroAssembler::extend_stack_for_inline_args(int args_on_stack) {
6586   int sp_inc = args_on_stack * VMRegImpl::stack_slot_size;
6587   sp_inc = align_up(sp_inc, StackAlignmentInBytes);
6588   assert(sp_inc > 0, "sanity");
6589 
6590   // Save a copy of the FP and LR here for deoptimization patching and frame walking
6591   stp(rfp, lr, Address(pre(sp, -2 * wordSize)));
6592 
6593   // Adjust the stack pointer. This will be repaired on return by MacroAssembler::remove_frame
6594   if (sp_inc < (1 << 9)) {
6595     sub(sp, sp, sp_inc);   // Fits in an immediate
6596   } else {
6597     mov(rscratch1, sp_inc);
6598     sub(sp, sp, rscratch1);
6599   }
6600 
6601   return sp_inc + 2 * wordSize;  // Account for the FP/LR space
6602 }
6603 
6604 // Read all fields from an inline type oop and store the values in registers/stack slots
6605 bool MacroAssembler::unpack_inline_helper(const GrowableArray<SigEntry>* sig, int& sig_index,
6606                                           VMReg from, int& from_index, VMRegPair* to, int to_count, int& to_index,
6607                                           RegState reg_state[]) {
6608   assert(sig->at(sig_index)._bt == T_VOID, "should be at end delimiter");
6609   assert(from->is_valid(), "source must be valid");
6610   bool progress = false;
6611 #ifdef ASSERT
6612   const int start_offset = offset();
6613 #endif
6614 
6615   Label L_null, L_notNull;
6616   // Don't use r14 as tmp because it's used for spilling (see MacroAssembler::spill_reg_for)
6617   Register tmp1 = r10;
6618   Register tmp2 = r11;
6619   Register fromReg = noreg;
6620   ScalarizedInlineArgsStream stream(sig, sig_index, to, to_count, to_index, -1);
6621   bool done = true;
6622   bool mark_done = true;
6623   VMReg toReg;
6624   BasicType bt;
6625   // Check if argument requires a null check
6626   bool null_check = false;
6627   VMReg nullCheckReg;
6628   while (stream.next(nullCheckReg, bt)) {
6629     if (sig->at(stream.sig_index())._offset == -1) {
6630       null_check = true;
6631       break;
6632     }
6633   }
6634   stream.reset(sig_index, to_index);
6635   while (stream.next(toReg, bt)) {
6636     assert(toReg->is_valid(), "destination must be valid");
6637     int idx = (int)toReg->value();
6638     if (reg_state[idx] == reg_readonly) {
6639       if (idx != from->value()) {
6640         mark_done = false;
6641       }
6642       done = false;
6643       continue;
6644     } else if (reg_state[idx] == reg_written) {
6645       continue;
6646     }
6647     assert(reg_state[idx] == reg_writable, "must be writable");
6648     reg_state[idx] = reg_written;
6649     progress = true;
6650 
6651     if (fromReg == noreg) {
6652       if (from->is_reg()) {
6653         fromReg = from->as_Register();
6654       } else {
6655         int st_off = from->reg2stack() * VMRegImpl::stack_slot_size;
6656         ldr(tmp1, Address(sp, st_off));
6657         fromReg = tmp1;
6658       }
6659       if (null_check) {
6660         // Nullable inline type argument, emit null check
6661         cbz(fromReg, L_null);
6662       }
6663     }
6664     int off = sig->at(stream.sig_index())._offset;
6665     if (off == -1) {
6666       assert(null_check, "Missing null check at");
6667       if (toReg->is_stack()) {
6668         int st_off = toReg->reg2stack() * VMRegImpl::stack_slot_size;
6669         mov(tmp2, 1);
6670         str(tmp2, Address(sp, st_off));
6671       } else {
6672         mov(toReg->as_Register(), 1);
6673       }
6674       continue;
6675     }
6676     assert(off > 0, "offset in object should be positive");
6677     Address fromAddr = Address(fromReg, off);
6678     if (!toReg->is_FloatRegister()) {
6679       Register dst = toReg->is_stack() ? tmp2 : toReg->as_Register();
6680       if (is_reference_type(bt)) {
6681         load_heap_oop(dst, fromAddr, rscratch1, rscratch2);
6682       } else {
6683         bool is_signed = (bt != T_CHAR) && (bt != T_BOOLEAN);
6684         load_sized_value(dst, fromAddr, type2aelembytes(bt), is_signed);
6685       }
6686       if (toReg->is_stack()) {
6687         int st_off = toReg->reg2stack() * VMRegImpl::stack_slot_size;
6688         str(dst, Address(sp, st_off));
6689       }
6690     } else if (bt == T_DOUBLE) {
6691       ldrd(toReg->as_FloatRegister(), fromAddr);
6692     } else {
6693       assert(bt == T_FLOAT, "must be float");
6694       ldrs(toReg->as_FloatRegister(), fromAddr);
6695     }
6696   }
6697   if (progress && null_check) {
6698     if (done) {
6699       b(L_notNull);
6700       bind(L_null);
6701       // Set IsInit field to zero to signal that the argument is null.
6702       // Also set all oop fields to zero to make the GC happy.
6703       stream.reset(sig_index, to_index);
6704       while (stream.next(toReg, bt)) {
6705         if (sig->at(stream.sig_index())._offset == -1 ||
6706             bt == T_OBJECT || bt == T_ARRAY) {
6707           if (toReg->is_stack()) {
6708             int st_off = toReg->reg2stack() * VMRegImpl::stack_slot_size;
6709             str(zr, Address(sp, st_off));
6710           } else {
6711             mov(toReg->as_Register(), zr);
6712           }
6713         }
6714       }
6715       bind(L_notNull);
6716     } else {
6717       bind(L_null);
6718     }
6719   }
6720 
6721   sig_index = stream.sig_index();
6722   to_index = stream.regs_index();
6723 
6724   if (mark_done && reg_state[from->value()] != reg_written) {
6725     // This is okay because no one else will write to that slot
6726     reg_state[from->value()] = reg_writable;
6727   }
6728   from_index--;
6729   assert(progress || (start_offset == offset()), "should not emit code");
6730   return done;
6731 }
6732 
6733 // Pack fields back into an inline type oop
6734 bool MacroAssembler::pack_inline_helper(const GrowableArray<SigEntry>* sig, int& sig_index, int vtarg_index,
6735                                         VMRegPair* from, int from_count, int& from_index, VMReg to,
6736                                         RegState reg_state[], Register val_array) {
6737   assert(sig->at(sig_index)._bt == T_METADATA, "should be at delimiter");
6738   assert(to->is_valid(), "destination must be valid");
6739 
6740   if (reg_state[to->value()] == reg_written) {
6741     skip_unpacked_fields(sig, sig_index, from, from_count, from_index);
6742     return true; // Already written
6743   }
6744 
6745   // The GC barrier expanded by store_heap_oop below may call into the
6746   // runtime so use callee-saved registers for any values that need to be
6747   // preserved. The GC barrier assembler should take care of saving the
6748   // Java argument registers.
6749   // TODO 8284443 Isn't it an issue if below code uses r14 as tmp when it contains a spilled value?
6750   // Be careful with r14 because it's used for spilling (see MacroAssembler::spill_reg_for).
6751   Register val_obj_tmp = r21;
6752   Register from_reg_tmp = r22;
6753   Register tmp1 = r14;
6754   Register tmp2 = r13;
6755   Register tmp3 = r12;
6756   Register val_obj = to->is_stack() ? val_obj_tmp : to->as_Register();
6757 
6758   assert_different_registers(val_obj_tmp, from_reg_tmp, tmp1, tmp2, tmp3, val_array);
6759 
6760   if (reg_state[to->value()] == reg_readonly) {
6761     if (!is_reg_in_unpacked_fields(sig, sig_index, to, from, from_count, from_index)) {
6762       skip_unpacked_fields(sig, sig_index, from, from_count, from_index);
6763       return false; // Not yet writable
6764     }
6765     val_obj = val_obj_tmp;
6766   }
6767 
6768   int index = arrayOopDesc::base_offset_in_bytes(T_OBJECT) + vtarg_index * type2aelembytes(T_OBJECT);
6769   load_heap_oop(val_obj, Address(val_array, index), tmp1, tmp2);
6770 
6771   ScalarizedInlineArgsStream stream(sig, sig_index, from, from_count, from_index);
6772   VMReg fromReg;
6773   BasicType bt;
6774   Label L_null;
6775   while (stream.next(fromReg, bt)) {
6776     assert(fromReg->is_valid(), "source must be valid");
6777     reg_state[fromReg->value()] = reg_writable;
6778 
6779     int off = sig->at(stream.sig_index())._offset;
6780     if (off == -1) {
6781       // Nullable inline type argument, emit null check
6782       Label L_notNull;
6783       if (fromReg->is_stack()) {
6784         int ld_off = fromReg->reg2stack() * VMRegImpl::stack_slot_size;
6785         ldrb(tmp2, Address(sp, ld_off));
6786         cbnz(tmp2, L_notNull);
6787       } else {
6788         cbnz(fromReg->as_Register(), L_notNull);
6789       }
6790       mov(val_obj, 0);
6791       b(L_null);
6792       bind(L_notNull);
6793       continue;
6794     }
6795 
6796     assert(off > 0, "offset in object should be positive");
6797     size_t size_in_bytes = is_java_primitive(bt) ? type2aelembytes(bt) : wordSize;
6798 
6799     // Pack the scalarized field into the value object.
6800     Address dst(val_obj, off);
6801 
6802     if (!fromReg->is_FloatRegister()) {
6803       Register src;
6804       if (fromReg->is_stack()) {
6805         src = from_reg_tmp;
6806         int ld_off = fromReg->reg2stack() * VMRegImpl::stack_slot_size;
6807         load_sized_value(src, Address(sp, ld_off), size_in_bytes, /* is_signed */ false);
6808       } else {
6809         src = fromReg->as_Register();
6810       }
6811       assert_different_registers(dst.base(), src, tmp1, tmp2, tmp3, val_array);
6812       if (is_reference_type(bt)) {
6813         store_heap_oop(dst, src, tmp1, tmp2, tmp3, IN_HEAP | ACCESS_WRITE | IS_DEST_UNINITIALIZED);
6814       } else {
6815         store_sized_value(dst, src, size_in_bytes);
6816       }
6817     } else if (bt == T_DOUBLE) {
6818       strd(fromReg->as_FloatRegister(), dst);
6819     } else {
6820       assert(bt == T_FLOAT, "must be float");
6821       strs(fromReg->as_FloatRegister(), dst);
6822     }
6823   }
6824   bind(L_null);
6825   sig_index = stream.sig_index();
6826   from_index = stream.regs_index();
6827 
6828   assert(reg_state[to->value()] == reg_writable, "must have already been read");
6829   bool success = move_helper(val_obj->as_VMReg(), to, T_OBJECT, reg_state);
6830   assert(success, "to register must be writeable");
6831 
6832   return true;
6833 }
6834 
6835 VMReg MacroAssembler::spill_reg_for(VMReg reg) {
6836   return (reg->is_FloatRegister()) ? v8->as_VMReg() : r14->as_VMReg();
6837 }
6838 
6839 void MacroAssembler::cache_wb(Address line) {
6840   assert(line.getMode() == Address::base_plus_offset, "mode should be base_plus_offset");
6841   assert(line.index() == noreg, "index should be noreg");
6842   assert(line.offset() == 0, "offset should be 0");
6843   // would like to assert this
6844   // assert(line._ext.shift == 0, "shift should be zero");
6845   if (VM_Version::supports_dcpop()) {
6846     // writeback using clear virtual address to point of persistence
6847     dc(Assembler::CVAP, line.base());
6848   } else {
6849     // no need to generate anything as Unsafe.writebackMemory should
6850     // never invoke this stub
6851   }
6852 }
6853 
6854 void MacroAssembler::cache_wbsync(bool is_pre) {
6855   // we only need a barrier post sync
6856   if (!is_pre) {
6857     membar(Assembler::AnyAny);
6858   }

7192 }
7193 
7194 // Implements lightweight-locking.
7195 // Branches to slow upon failure to lock the object, with ZF cleared.
7196 // Falls through upon success with ZF set.
7197 //
7198 //  - obj: the object to be locked
7199 //  - hdr: the header, already loaded from obj, will be destroyed
7200 //  - t1, t2: temporary registers, will be destroyed
7201 void MacroAssembler::lightweight_lock(Register obj, Register hdr, Register t1, Register t2, Label& slow) {
7202   assert(LockingMode == LM_LIGHTWEIGHT, "only used with new lightweight locking");
7203   assert_different_registers(obj, hdr, t1, t2, rscratch1);
7204 
7205   // Check if we would have space on lock-stack for the object.
7206   ldrw(t1, Address(rthread, JavaThread::lock_stack_top_offset()));
7207   cmpw(t1, (unsigned)LockStack::end_offset() - 1);
7208   br(Assembler::GT, slow);
7209 
7210   // Load (object->mark() | 1) into hdr
7211   orr(hdr, hdr, markWord::unlocked_value);
7212   if (EnableValhalla) {
7213     // Mask inline_type bit such that we go to the slow path if object is an inline type
7214     andr(hdr, hdr, ~((int) markWord::inline_type_bit_in_place));
7215   }
7216 
7217   // Clear lock-bits, into t2
7218   eor(t2, hdr, markWord::unlocked_value);
7219   // Try to swing header from unlocked to locked
7220   // Clobbers rscratch1 when UseLSE is false
7221   cmpxchg(/*addr*/ obj, /*expected*/ hdr, /*new*/ t2, Assembler::xword,
7222           /*acquire*/ true, /*release*/ true, /*weak*/ false, t1);
7223   br(Assembler::NE, slow);
7224 
7225   // After successful lock, push object on lock-stack
7226   ldrw(t1, Address(rthread, JavaThread::lock_stack_top_offset()));
7227   str(obj, Address(rthread, t1));
7228   addw(t1, t1, oopSize);
7229   strw(t1, Address(rthread, JavaThread::lock_stack_top_offset()));
7230 }
7231 
7232 // Implements lightweight-unlocking.
7233 // Branches to slow upon failure, with ZF cleared.
7234 // Falls through upon success, with ZF set.
7235 //
7236 // - obj: the object to be unlocked
< prev index next >