< prev index next >

src/hotspot/cpu/aarch64/macroAssembler_aarch64.cpp

Print this page

  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include <sys/types.h>
  27 
  28 #include "precompiled.hpp"
  29 #include "asm/assembler.hpp"
  30 #include "asm/assembler.inline.hpp"
  31 #include "ci/ciEnv.hpp"

  32 #include "compiler/compileTask.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "compiler/oopMap.hpp"
  35 #include "gc/shared/barrierSet.hpp"
  36 #include "gc/shared/barrierSetAssembler.hpp"
  37 #include "gc/shared/cardTableBarrierSet.hpp"
  38 #include "gc/shared/cardTable.hpp"
  39 #include "gc/shared/collectedHeap.hpp"
  40 #include "gc/shared/tlab_globals.hpp"
  41 #include "interpreter/bytecodeHistogram.hpp"
  42 #include "interpreter/interpreter.hpp"
  43 #include "jvm.h"
  44 #include "memory/resourceArea.hpp"
  45 #include "memory/universe.hpp"
  46 #include "nativeInst_aarch64.hpp"
  47 #include "oops/accessDecorators.hpp"
  48 #include "oops/compressedKlass.inline.hpp"
  49 #include "oops/compressedOops.inline.hpp"
  50 #include "oops/klass.inline.hpp"

  51 #include "runtime/continuation.hpp"
  52 #include "runtime/icache.hpp"
  53 #include "runtime/interfaceSupport.inline.hpp"
  54 #include "runtime/javaThread.hpp"
  55 #include "runtime/jniHandles.inline.hpp"
  56 #include "runtime/sharedRuntime.hpp"

  57 #include "runtime/stubRoutines.hpp"
  58 #include "utilities/powerOfTwo.hpp"

  59 #ifdef COMPILER1
  60 #include "c1/c1_LIRAssembler.hpp"
  61 #endif
  62 #ifdef COMPILER2
  63 #include "oops/oop.hpp"
  64 #include "opto/compile.hpp"
  65 #include "opto/node.hpp"
  66 #include "opto/output.hpp"
  67 #endif
  68 
  69 #ifdef PRODUCT
  70 #define BLOCK_COMMENT(str) /* nothing */
  71 #else
  72 #define BLOCK_COMMENT(str) block_comment(str)
  73 #endif
  74 #define STOP(str) stop(str);
  75 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  76 
  77 #ifdef ASSERT
  78 extern "C" void disnm(intptr_t p);

1104 }
1105 
1106 void MacroAssembler::post_call_nop() {
1107   if (!Continuations::enabled()) {
1108     return;
1109   }
1110   InstructionMark im(this);
1111   relocate(post_call_nop_Relocation::spec());
1112   InlineSkippedInstructionsCounter skipCounter(this);
1113   nop();
1114   movk(zr, 0);
1115   movk(zr, 0);
1116 }
1117 
1118 // these are no-ops overridden by InterpreterMacroAssembler
1119 
1120 void MacroAssembler::check_and_handle_earlyret(Register java_thread) { }
1121 
1122 void MacroAssembler::check_and_handle_popframe(Register java_thread) { }
1123 



































1124 // Look up the method for a megamorphic invokeinterface call.
1125 // The target method is determined by <intf_klass, itable_index>.
1126 // The receiver klass is in recv_klass.
1127 // On success, the result will be in method_result, and execution falls through.
1128 // On failure, execution transfers to the given label.
1129 void MacroAssembler::lookup_interface_method(Register recv_klass,
1130                                              Register intf_klass,
1131                                              RegisterOrConstant itable_index,
1132                                              Register method_result,
1133                                              Register scan_temp,
1134                                              Label& L_no_such_interface,
1135                          bool return_method) {
1136   assert_different_registers(recv_klass, intf_klass, scan_temp);
1137   assert_different_registers(method_result, intf_klass, scan_temp);
1138   assert(recv_klass != method_result || !return_method,
1139      "recv_klass can be destroyed when method isn't needed");
1140   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
1141          "caller must use same register for non-constant itable index as for method");
1142 
1143   // Compute start of first itableOffsetEntry (which is at the end of the vtable)

1557   ldrb(scratch, Address(klass, InstanceKlass::init_state_offset()));
1558   subs(zr, scratch, InstanceKlass::fully_initialized);
1559   br(Assembler::EQ, *L_fast_path);
1560 
1561   // Fast path check: current thread is initializer thread
1562   ldr(scratch, Address(klass, InstanceKlass::init_thread_offset()));
1563   cmp(rthread, scratch);
1564 
1565   if (L_slow_path == &L_fallthrough) {
1566     br(Assembler::EQ, *L_fast_path);
1567     bind(*L_slow_path);
1568   } else if (L_fast_path == &L_fallthrough) {
1569     br(Assembler::NE, *L_slow_path);
1570     bind(*L_fast_path);
1571   } else {
1572     Unimplemented();
1573   }
1574 }
1575 
1576 void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) {
1577   if (!VerifyOops) return;




1578 
1579   // Pass register number to verify_oop_subroutine
1580   const char* b = nullptr;
1581   {
1582     ResourceMark rm;
1583     stringStream ss;
1584     ss.print("verify_oop: %s: %s (%s:%d)", reg->name(), s, file, line);
1585     b = code_string(ss.as_string());
1586   }
1587   BLOCK_COMMENT("verify_oop {");
1588 
1589   strip_return_address(); // This might happen within a stack frame.
1590   protect_return_address();
1591   stp(r0, rscratch1, Address(pre(sp, -2 * wordSize)));
1592   stp(rscratch2, lr, Address(pre(sp, -2 * wordSize)));
1593 
1594   mov(r0, reg);
1595   movptr(rscratch1, (uintptr_t)(address)b);
1596 
1597   // call indirectly to solve generation ordering problem
1598   lea(rscratch2, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
1599   ldr(rscratch2, Address(rscratch2));
1600   blr(rscratch2);
1601 
1602   ldp(rscratch2, lr, Address(post(sp, 2 * wordSize)));
1603   ldp(r0, rscratch1, Address(post(sp, 2 * wordSize)));
1604   authenticate_return_address();
1605 
1606   BLOCK_COMMENT("} verify_oop");
1607 }
1608 
1609 void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) {
1610   if (!VerifyOops) return;




1611 
1612   const char* b = nullptr;
1613   {
1614     ResourceMark rm;
1615     stringStream ss;
1616     ss.print("verify_oop_addr: %s (%s:%d)", s, file, line);
1617     b = code_string(ss.as_string());
1618   }
1619   BLOCK_COMMENT("verify_oop_addr {");
1620 
1621   strip_return_address(); // This might happen within a stack frame.
1622   protect_return_address();
1623   stp(r0, rscratch1, Address(pre(sp, -2 * wordSize)));
1624   stp(rscratch2, lr, Address(pre(sp, -2 * wordSize)));
1625 
1626   // addr may contain sp so we will have to adjust it based on the
1627   // pushes that we just did.
1628   if (addr.uses(sp)) {
1629     lea(r0, addr);
1630     ldr(r0, Address(r0, 4 * wordSize));

1688   call_VM_leaf_base(entry_point, 1);
1689 }
1690 
1691 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
1692   assert_different_registers(arg_1, c_rarg0);
1693   pass_arg0(this, arg_0);
1694   pass_arg1(this, arg_1);
1695   call_VM_leaf_base(entry_point, 2);
1696 }
1697 
1698 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0,
1699                                   Register arg_1, Register arg_2) {
1700   assert_different_registers(arg_1, c_rarg0);
1701   assert_different_registers(arg_2, c_rarg0, c_rarg1);
1702   pass_arg0(this, arg_0);
1703   pass_arg1(this, arg_1);
1704   pass_arg2(this, arg_2);
1705   call_VM_leaf_base(entry_point, 3);
1706 }
1707 




1708 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
1709   pass_arg0(this, arg_0);
1710   MacroAssembler::call_VM_leaf_base(entry_point, 1);
1711 }
1712 
1713 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
1714 
1715   assert_different_registers(arg_0, c_rarg1);
1716   pass_arg1(this, arg_1);
1717   pass_arg0(this, arg_0);
1718   MacroAssembler::call_VM_leaf_base(entry_point, 2);
1719 }
1720 
1721 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
1722   assert_different_registers(arg_0, c_rarg1, c_rarg2);
1723   assert_different_registers(arg_1, c_rarg2);
1724   pass_arg2(this, arg_2);
1725   pass_arg1(this, arg_1);
1726   pass_arg0(this, arg_0);
1727   MacroAssembler::call_VM_leaf_base(entry_point, 3);

1733   assert_different_registers(arg_2, c_rarg3);
1734   pass_arg3(this, arg_3);
1735   pass_arg2(this, arg_2);
1736   pass_arg1(this, arg_1);
1737   pass_arg0(this, arg_0);
1738   MacroAssembler::call_VM_leaf_base(entry_point, 4);
1739 }
1740 
1741 void MacroAssembler::null_check(Register reg, int offset) {
1742   if (needs_explicit_null_check(offset)) {
1743     // provoke OS null exception if reg is null by
1744     // accessing M[reg] w/o changing any registers
1745     // NOTE: this is plenty to provoke a segv
1746     ldr(zr, Address(reg));
1747   } else {
1748     // nothing to do, (later) access of M[reg + offset]
1749     // will provoke OS null exception if reg is null
1750   }
1751 }
1752 














































































































1753 // MacroAssembler protected routines needed to implement
1754 // public methods
1755 
1756 void MacroAssembler::mov(Register r, Address dest) {
1757   code_section()->relocate(pc(), dest.rspec());
1758   uint64_t imm64 = (uint64_t)dest.target();
1759   movptr(r, imm64);
1760 }
1761 
1762 // Move a constant pointer into r.  In AArch64 mode the virtual
1763 // address space is 48 bits in size, so we only need three
1764 // instructions to create a patchable instruction sequence that can
1765 // reach anywhere.
1766 void MacroAssembler::movptr(Register r, uintptr_t imm64) {
1767 #ifndef PRODUCT
1768   {
1769     char buffer[64];
1770     snprintf(buffer, sizeof(buffer), "0x%" PRIX64, (uint64_t)imm64);
1771     block_comment(buffer);
1772   }

4402   adrp(rscratch1, src2, offset);
4403   ldr(rscratch1, Address(rscratch1, offset));
4404   cmp(src1, rscratch1);
4405 }
4406 
4407 void MacroAssembler::cmpoop(Register obj1, Register obj2) {
4408   cmp(obj1, obj2);
4409 }
4410 
4411 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) {
4412   load_method_holder(rresult, rmethod);
4413   ldr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset()));
4414 }
4415 
4416 void MacroAssembler::load_method_holder(Register holder, Register method) {
4417   ldr(holder, Address(method, Method::const_offset()));                      // ConstMethod*
4418   ldr(holder, Address(holder, ConstMethod::constants_offset()));             // ConstantPool*
4419   ldr(holder, Address(holder, ConstantPool::pool_holder_offset()));          // InstanceKlass*
4420 }
4421 








4422 void MacroAssembler::load_klass(Register dst, Register src) {
4423   if (UseCompressedClassPointers) {
4424     ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes()));
4425     decode_klass_not_null(dst);
4426   } else {
4427     ldr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
4428   }
4429 }
4430 
4431 void MacroAssembler::restore_cpu_control_state_after_jni(Register tmp1, Register tmp2) {
4432   if (RestoreMXCSROnJNICalls) {
4433     Label OK;
4434     get_fpcr(tmp1);
4435     mov(tmp2, tmp1);
4436     // Set FPCR to the state we need. We do want Round to Nearest. We
4437     // don't want non-IEEE rounding modes or floating-point traps.
4438     bfi(tmp1, zr, 22, 4); // Clear DN, FZ, and Rmode
4439     bfi(tmp1, zr, 8, 5);  // Clear exception-control bits (8-12)
4440     bfi(tmp1, zr, 0, 2);  // Clear AH:FIZ
4441     eor(tmp2, tmp1, tmp2);

4477 
4478 void MacroAssembler::cmp_klass(Register oop, Register trial_klass, Register tmp) {
4479   if (UseCompressedClassPointers) {
4480     ldrw(tmp, Address(oop, oopDesc::klass_offset_in_bytes()));
4481     if (CompressedKlassPointers::base() == nullptr) {
4482       cmp(trial_klass, tmp, LSL, CompressedKlassPointers::shift());
4483       return;
4484     } else if (((uint64_t)CompressedKlassPointers::base() & 0xffffffff) == 0
4485                && CompressedKlassPointers::shift() == 0) {
4486       // Only the bottom 32 bits matter
4487       cmpw(trial_klass, tmp);
4488       return;
4489     }
4490     decode_klass_not_null(tmp);
4491   } else {
4492     ldr(tmp, Address(oop, oopDesc::klass_offset_in_bytes()));
4493   }
4494   cmp(trial_klass, tmp);
4495 }
4496 





4497 void MacroAssembler::store_klass(Register dst, Register src) {
4498   // FIXME: Should this be a store release?  concurrent gcs assumes
4499   // klass length is valid if klass field is not null.
4500   if (UseCompressedClassPointers) {
4501     encode_klass_not_null(src);
4502     strw(src, Address(dst, oopDesc::klass_offset_in_bytes()));
4503   } else {
4504     str(src, Address(dst, oopDesc::klass_offset_in_bytes()));
4505   }
4506 }
4507 
4508 void MacroAssembler::store_klass_gap(Register dst, Register src) {
4509   if (UseCompressedClassPointers) {
4510     // Store to klass gap in destination
4511     strw(src, Address(dst, oopDesc::klass_gap_offset_in_bytes()));
4512   }
4513 }
4514 
4515 // Algorithm must match CompressedOops::encode.
4516 void MacroAssembler::encode_heap_oop(Register d, Register s) {

4801   if (as_raw) {
4802     bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, tmp2);
4803   } else {
4804     bs->load_at(this, decorators, type, dst, src, tmp1, tmp2);
4805   }
4806 }
4807 
4808 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators,
4809                                      Address dst, Register val,
4810                                      Register tmp1, Register tmp2, Register tmp3) {
4811   BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
4812   decorators = AccessInternal::decorator_fixup(decorators, type);
4813   bool as_raw = (decorators & AS_RAW) != 0;
4814   if (as_raw) {
4815     bs->BarrierSetAssembler::store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3);
4816   } else {
4817     bs->store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3);
4818   }
4819 }
4820 








































4821 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1,
4822                                    Register tmp2, DecoratorSet decorators) {
4823   access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, tmp2);
4824 }
4825 
4826 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1,
4827                                             Register tmp2, DecoratorSet decorators) {
4828   access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, tmp2);
4829 }
4830 
4831 void MacroAssembler::store_heap_oop(Address dst, Register val, Register tmp1,
4832                                     Register tmp2, Register tmp3, DecoratorSet decorators) {
4833   access_store_at(T_OBJECT, IN_HEAP | decorators, dst, val, tmp1, tmp2, tmp3);
4834 }
4835 
4836 // Used for storing nulls.
4837 void MacroAssembler::store_heap_oop_null(Address dst) {
4838   access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg, noreg);
4839 }
4840 

4877     oop_index = oop_recorder()->allocate_metadata_index(obj);
4878   } else {
4879     oop_index = oop_recorder()->find_index(obj);
4880   }
4881   RelocationHolder rspec = metadata_Relocation::spec(oop_index);
4882   mov(dst, Address((address)obj, rspec));
4883 }
4884 
4885 Address MacroAssembler::constant_oop_address(jobject obj) {
4886 #ifdef ASSERT
4887   {
4888     ThreadInVMfromUnknown tiv;
4889     assert(oop_recorder() != nullptr, "this assembler needs an OopRecorder");
4890     assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "not an oop");
4891   }
4892 #endif
4893   int oop_index = oop_recorder()->find_index(obj);
4894   return Address((address)obj, oop_Relocation::spec(oop_index));
4895 }
4896 
































































































4897 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
4898 void MacroAssembler::tlab_allocate(Register obj,
4899                                    Register var_size_in_bytes,
4900                                    int con_size_in_bytes,
4901                                    Register t1,
4902                                    Register t2,
4903                                    Label& slow_case) {
4904   BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
4905   bs->tlab_allocate(this, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case);
4906 }
4907 
4908 void MacroAssembler::verify_tlab() {
4909 #ifdef ASSERT
4910   if (UseTLAB && VerifyOops) {
4911     Label next, ok;
4912 
4913     stp(rscratch2, rscratch1, Address(pre(sp, -16)));
4914 
4915     ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_top_offset())));
4916     ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset())));
4917     cmp(rscratch2, rscratch1);
4918     br(Assembler::HS, next);
4919     STOP("assert(top >= start)");
4920     should_not_reach_here();
4921 
4922     bind(next);
4923     ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_end_offset())));
4924     ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_top_offset())));
4925     cmp(rscratch2, rscratch1);
4926     br(Assembler::HS, ok);
4927     STOP("assert(top <= end)");
4928     should_not_reach_here();
4929 
4930     bind(ok);
4931     ldp(rscratch2, rscratch1, Address(post(sp, 16)));
4932   }
4933 #endif
4934 }
4935 














4936 // Writes to stack successive pages until offset reached to check for
4937 // stack overflow + shadow pages.  This clobbers tmp.
4938 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
4939   assert_different_registers(tmp, size, rscratch1);
4940   mov(tmp, sp);
4941   // Bang stack for total size given plus shadow page size.
4942   // Bang one page at a time because large size can bang beyond yellow and
4943   // red zones.
4944   Label loop;
4945   mov(rscratch1, (int)os::vm_page_size());
4946   bind(loop);
4947   lea(tmp, Address(tmp, -(int)os::vm_page_size()));
4948   subsw(size, size, rscratch1);
4949   str(size, Address(tmp));
4950   br(Assembler::GT, loop);
4951 
4952   // Bang down shadow pages too.
4953   // At this point, (tmp-0) is the last address touched, so don't
4954   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
4955   // was post-decremented.)  Skip this address by starting at i=1, and

5041 }
5042 
5043 void MacroAssembler::remove_frame(int framesize) {
5044   assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR");
5045   assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment");
5046   if (framesize < ((1 << 9) + 2 * wordSize)) {
5047     ldp(rfp, lr, Address(sp, framesize - 2 * wordSize));
5048     add(sp, sp, framesize);
5049   } else {
5050     if (framesize < ((1 << 12) + 2 * wordSize))
5051       add(sp, sp, framesize - 2 * wordSize);
5052     else {
5053       mov(rscratch1, framesize - 2 * wordSize);
5054       add(sp, sp, rscratch1);
5055     }
5056     ldp(rfp, lr, Address(post(sp, 2 * wordSize)));
5057   }
5058   authenticate_return_address();
5059 }
5060 



















































5061 
5062 // This method counts leading positive bytes (highest bit not set) in provided byte array
5063 address MacroAssembler::count_positives(Register ary1, Register len, Register result) {
5064     // Simple and most common case of aligned small array which is not at the
5065     // end of memory page is placed here. All other cases are in stub.
5066     Label LOOP, END, STUB, STUB_LONG, SET_RESULT, DONE;
5067     const uint64_t UPPER_BIT_MASK=0x8080808080808080;
5068     assert_different_registers(ary1, len, result);
5069 
5070     mov(result, len);
5071     cmpw(len, 0);
5072     br(LE, DONE);
5073     cmpw(len, 4 * wordSize);
5074     br(GE, STUB_LONG); // size > 32 then go to stub
5075 
5076     int shift = 64 - exact_log2(os::vm_page_size());
5077     lsl(rscratch1, ary1, shift);
5078     mov(rscratch2, (size_t)(4 * wordSize) << shift);
5079     adds(rscratch2, rscratch1, rscratch2);  // At end of page?
5080     br(CS, STUB); // at the end of page then go to stub

5955 // On other systems, the helper is a usual C function.
5956 //
5957 void MacroAssembler::get_thread(Register dst) {
5958   RegSet saved_regs =
5959     LINUX_ONLY(RegSet::range(r0, r1)  + lr - dst)
5960     NOT_LINUX (RegSet::range(r0, r17) + lr - dst);
5961 
5962   protect_return_address();
5963   push(saved_regs, sp);
5964 
5965   mov(lr, CAST_FROM_FN_PTR(address, JavaThread::aarch64_get_thread_helper));
5966   blr(lr);
5967   if (dst != c_rarg0) {
5968     mov(dst, c_rarg0);
5969   }
5970 
5971   pop(saved_regs, sp);
5972   authenticate_return_address();
5973 }
5974 

























































































































































































































































































































































































































































5975 void MacroAssembler::cache_wb(Address line) {
5976   assert(line.getMode() == Address::base_plus_offset, "mode should be base_plus_offset");
5977   assert(line.index() == noreg, "index should be noreg");
5978   assert(line.offset() == 0, "offset should be 0");
5979   // would like to assert this
5980   // assert(line._ext.shift == 0, "shift should be zero");
5981   if (VM_Version::supports_dcpop()) {
5982     // writeback using clear virtual address to point of persistence
5983     dc(Assembler::CVAP, line.base());
5984   } else {
5985     // no need to generate anything as Unsafe.writebackMemory should
5986     // never invoke this stub
5987   }
5988 }
5989 
5990 void MacroAssembler::cache_wbsync(bool is_pre) {
5991   // we only need a barrier post sync
5992   if (!is_pre) {
5993     membar(Assembler::AnyAny);
5994   }

6328 }
6329 
6330 // Implements lightweight-locking.
6331 // Branches to slow upon failure to lock the object, with ZF cleared.
6332 // Falls through upon success with ZF set.
6333 //
6334 //  - obj: the object to be locked
6335 //  - hdr: the header, already loaded from obj, will be destroyed
6336 //  - t1, t2: temporary registers, will be destroyed
6337 void MacroAssembler::lightweight_lock(Register obj, Register hdr, Register t1, Register t2, Label& slow) {
6338   assert(LockingMode == LM_LIGHTWEIGHT, "only used with new lightweight locking");
6339   assert_different_registers(obj, hdr, t1, t2, rscratch1);
6340 
6341   // Check if we would have space on lock-stack for the object.
6342   ldrw(t1, Address(rthread, JavaThread::lock_stack_top_offset()));
6343   cmpw(t1, (unsigned)LockStack::end_offset() - 1);
6344   br(Assembler::GT, slow);
6345 
6346   // Load (object->mark() | 1) into hdr
6347   orr(hdr, hdr, markWord::unlocked_value);





6348   // Clear lock-bits, into t2
6349   eor(t2, hdr, markWord::unlocked_value);
6350   // Try to swing header from unlocked to locked
6351   // Clobbers rscratch1 when UseLSE is false
6352   cmpxchg(/*addr*/ obj, /*expected*/ hdr, /*new*/ t2, Assembler::xword,
6353           /*acquire*/ true, /*release*/ true, /*weak*/ false, t1);
6354   br(Assembler::NE, slow);
6355 
6356   // After successful lock, push object on lock-stack
6357   ldrw(t1, Address(rthread, JavaThread::lock_stack_top_offset()));
6358   str(obj, Address(rthread, t1));
6359   addw(t1, t1, oopSize);
6360   strw(t1, Address(rthread, JavaThread::lock_stack_top_offset()));
6361 }
6362 
6363 // Implements lightweight-unlocking.
6364 // Branches to slow upon failure, with ZF cleared.
6365 // Falls through upon success, with ZF set.
6366 //
6367 // - obj: the object to be unlocked

  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include <sys/types.h>
  27 
  28 #include "precompiled.hpp"
  29 #include "asm/assembler.hpp"
  30 #include "asm/assembler.inline.hpp"
  31 #include "ci/ciEnv.hpp"
  32 #include "ci/ciInlineKlass.hpp"
  33 #include "compiler/compileTask.hpp"
  34 #include "compiler/disassembler.hpp"
  35 #include "compiler/oopMap.hpp"
  36 #include "gc/shared/barrierSet.hpp"
  37 #include "gc/shared/barrierSetAssembler.hpp"
  38 #include "gc/shared/cardTableBarrierSet.hpp"
  39 #include "gc/shared/cardTable.hpp"
  40 #include "gc/shared/collectedHeap.hpp"
  41 #include "gc/shared/tlab_globals.hpp"
  42 #include "interpreter/bytecodeHistogram.hpp"
  43 #include "interpreter/interpreter.hpp"
  44 #include "jvm.h"
  45 #include "memory/resourceArea.hpp"
  46 #include "memory/universe.hpp"
  47 #include "nativeInst_aarch64.hpp"
  48 #include "oops/accessDecorators.hpp"
  49 #include "oops/compressedKlass.inline.hpp"
  50 #include "oops/compressedOops.inline.hpp"
  51 #include "oops/klass.inline.hpp"
  52 #include "oops/resolvedFieldEntry.hpp"
  53 #include "runtime/continuation.hpp"
  54 #include "runtime/icache.hpp"
  55 #include "runtime/interfaceSupport.inline.hpp"
  56 #include "runtime/javaThread.hpp"
  57 #include "runtime/jniHandles.inline.hpp"
  58 #include "runtime/sharedRuntime.hpp"
  59 #include "runtime/signature_cc.hpp"
  60 #include "runtime/stubRoutines.hpp"
  61 #include "utilities/powerOfTwo.hpp"
  62 #include "vmreg_aarch64.inline.hpp"
  63 #ifdef COMPILER1
  64 #include "c1/c1_LIRAssembler.hpp"
  65 #endif
  66 #ifdef COMPILER2
  67 #include "oops/oop.hpp"
  68 #include "opto/compile.hpp"
  69 #include "opto/node.hpp"
  70 #include "opto/output.hpp"
  71 #endif
  72 
  73 #ifdef PRODUCT
  74 #define BLOCK_COMMENT(str) /* nothing */
  75 #else
  76 #define BLOCK_COMMENT(str) block_comment(str)
  77 #endif
  78 #define STOP(str) stop(str);
  79 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  80 
  81 #ifdef ASSERT
  82 extern "C" void disnm(intptr_t p);

1108 }
1109 
1110 void MacroAssembler::post_call_nop() {
1111   if (!Continuations::enabled()) {
1112     return;
1113   }
1114   InstructionMark im(this);
1115   relocate(post_call_nop_Relocation::spec());
1116   InlineSkippedInstructionsCounter skipCounter(this);
1117   nop();
1118   movk(zr, 0);
1119   movk(zr, 0);
1120 }
1121 
1122 // these are no-ops overridden by InterpreterMacroAssembler
1123 
1124 void MacroAssembler::check_and_handle_earlyret(Register java_thread) { }
1125 
1126 void MacroAssembler::check_and_handle_popframe(Register java_thread) { }
1127 
1128 void MacroAssembler::get_default_value_oop(Register inline_klass, Register temp_reg, Register obj) {
1129 #ifdef ASSERT
1130   {
1131     Label done_check;
1132     test_klass_is_inline_type(inline_klass, temp_reg, done_check);
1133     stop("get_default_value_oop from non inline type klass");
1134     bind(done_check);
1135   }
1136 #endif
1137   Register offset = temp_reg;
1138   // Getting the offset of the pre-allocated default value
1139   ldr(offset, Address(inline_klass, in_bytes(InstanceKlass::adr_inlineklass_fixed_block_offset())));
1140   ldr(offset, Address(offset, in_bytes(InlineKlass::default_value_offset_offset())));
1141 
1142   // Getting the mirror
1143   ldr(obj, Address(inline_klass, in_bytes(Klass::java_mirror_offset())));
1144   resolve_oop_handle(obj, inline_klass, temp_reg);
1145 
1146   // Getting the pre-allocated default value from the mirror
1147   Address field(obj, offset);
1148   load_heap_oop(obj, field, inline_klass, rscratch2);
1149 }
1150 
1151 void MacroAssembler::get_empty_inline_type_oop(Register inline_klass, Register temp_reg, Register obj) {
1152 #ifdef ASSERT
1153   {
1154     Label done_check;
1155     test_klass_is_empty_inline_type(inline_klass, temp_reg, done_check);
1156     stop("get_empty_value from non-empty inline klass");
1157     bind(done_check);
1158   }
1159 #endif
1160   get_default_value_oop(inline_klass, temp_reg, obj);
1161 }
1162 
1163 // Look up the method for a megamorphic invokeinterface call.
1164 // The target method is determined by <intf_klass, itable_index>.
1165 // The receiver klass is in recv_klass.
1166 // On success, the result will be in method_result, and execution falls through.
1167 // On failure, execution transfers to the given label.
1168 void MacroAssembler::lookup_interface_method(Register recv_klass,
1169                                              Register intf_klass,
1170                                              RegisterOrConstant itable_index,
1171                                              Register method_result,
1172                                              Register scan_temp,
1173                                              Label& L_no_such_interface,
1174                          bool return_method) {
1175   assert_different_registers(recv_klass, intf_klass, scan_temp);
1176   assert_different_registers(method_result, intf_klass, scan_temp);
1177   assert(recv_klass != method_result || !return_method,
1178      "recv_klass can be destroyed when method isn't needed");
1179   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
1180          "caller must use same register for non-constant itable index as for method");
1181 
1182   // Compute start of first itableOffsetEntry (which is at the end of the vtable)

1596   ldrb(scratch, Address(klass, InstanceKlass::init_state_offset()));
1597   subs(zr, scratch, InstanceKlass::fully_initialized);
1598   br(Assembler::EQ, *L_fast_path);
1599 
1600   // Fast path check: current thread is initializer thread
1601   ldr(scratch, Address(klass, InstanceKlass::init_thread_offset()));
1602   cmp(rthread, scratch);
1603 
1604   if (L_slow_path == &L_fallthrough) {
1605     br(Assembler::EQ, *L_fast_path);
1606     bind(*L_slow_path);
1607   } else if (L_fast_path == &L_fallthrough) {
1608     br(Assembler::NE, *L_slow_path);
1609     bind(*L_fast_path);
1610   } else {
1611     Unimplemented();
1612   }
1613 }
1614 
1615 void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) {
1616   if (!VerifyOops || VerifyAdapterSharing) {
1617     // Below address of the code string confuses VerifyAdapterSharing
1618     // because it may differ between otherwise equivalent adapters.
1619     return;
1620   }
1621 
1622   // Pass register number to verify_oop_subroutine
1623   const char* b = nullptr;
1624   {
1625     ResourceMark rm;
1626     stringStream ss;
1627     ss.print("verify_oop: %s: %s (%s:%d)", reg->name(), s, file, line);
1628     b = code_string(ss.as_string());
1629   }
1630   BLOCK_COMMENT("verify_oop {");
1631 
1632   strip_return_address(); // This might happen within a stack frame.
1633   protect_return_address();
1634   stp(r0, rscratch1, Address(pre(sp, -2 * wordSize)));
1635   stp(rscratch2, lr, Address(pre(sp, -2 * wordSize)));
1636 
1637   mov(r0, reg);
1638   movptr(rscratch1, (uintptr_t)(address)b);
1639 
1640   // call indirectly to solve generation ordering problem
1641   lea(rscratch2, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
1642   ldr(rscratch2, Address(rscratch2));
1643   blr(rscratch2);
1644 
1645   ldp(rscratch2, lr, Address(post(sp, 2 * wordSize)));
1646   ldp(r0, rscratch1, Address(post(sp, 2 * wordSize)));
1647   authenticate_return_address();
1648 
1649   BLOCK_COMMENT("} verify_oop");
1650 }
1651 
1652 void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) {
1653   if (!VerifyOops || VerifyAdapterSharing) {
1654     // Below address of the code string confuses VerifyAdapterSharing
1655     // because it may differ between otherwise equivalent adapters.
1656     return;
1657   }
1658 
1659   const char* b = nullptr;
1660   {
1661     ResourceMark rm;
1662     stringStream ss;
1663     ss.print("verify_oop_addr: %s (%s:%d)", s, file, line);
1664     b = code_string(ss.as_string());
1665   }
1666   BLOCK_COMMENT("verify_oop_addr {");
1667 
1668   strip_return_address(); // This might happen within a stack frame.
1669   protect_return_address();
1670   stp(r0, rscratch1, Address(pre(sp, -2 * wordSize)));
1671   stp(rscratch2, lr, Address(pre(sp, -2 * wordSize)));
1672 
1673   // addr may contain sp so we will have to adjust it based on the
1674   // pushes that we just did.
1675   if (addr.uses(sp)) {
1676     lea(r0, addr);
1677     ldr(r0, Address(r0, 4 * wordSize));

1735   call_VM_leaf_base(entry_point, 1);
1736 }
1737 
1738 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
1739   assert_different_registers(arg_1, c_rarg0);
1740   pass_arg0(this, arg_0);
1741   pass_arg1(this, arg_1);
1742   call_VM_leaf_base(entry_point, 2);
1743 }
1744 
1745 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0,
1746                                   Register arg_1, Register arg_2) {
1747   assert_different_registers(arg_1, c_rarg0);
1748   assert_different_registers(arg_2, c_rarg0, c_rarg1);
1749   pass_arg0(this, arg_0);
1750   pass_arg1(this, arg_1);
1751   pass_arg2(this, arg_2);
1752   call_VM_leaf_base(entry_point, 3);
1753 }
1754 
1755 void MacroAssembler::super_call_VM_leaf(address entry_point) {
1756   MacroAssembler::call_VM_leaf_base(entry_point, 1);
1757 }
1758 
1759 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
1760   pass_arg0(this, arg_0);
1761   MacroAssembler::call_VM_leaf_base(entry_point, 1);
1762 }
1763 
1764 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
1765 
1766   assert_different_registers(arg_0, c_rarg1);
1767   pass_arg1(this, arg_1);
1768   pass_arg0(this, arg_0);
1769   MacroAssembler::call_VM_leaf_base(entry_point, 2);
1770 }
1771 
1772 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
1773   assert_different_registers(arg_0, c_rarg1, c_rarg2);
1774   assert_different_registers(arg_1, c_rarg2);
1775   pass_arg2(this, arg_2);
1776   pass_arg1(this, arg_1);
1777   pass_arg0(this, arg_0);
1778   MacroAssembler::call_VM_leaf_base(entry_point, 3);

1784   assert_different_registers(arg_2, c_rarg3);
1785   pass_arg3(this, arg_3);
1786   pass_arg2(this, arg_2);
1787   pass_arg1(this, arg_1);
1788   pass_arg0(this, arg_0);
1789   MacroAssembler::call_VM_leaf_base(entry_point, 4);
1790 }
1791 
1792 void MacroAssembler::null_check(Register reg, int offset) {
1793   if (needs_explicit_null_check(offset)) {
1794     // provoke OS null exception if reg is null by
1795     // accessing M[reg] w/o changing any registers
1796     // NOTE: this is plenty to provoke a segv
1797     ldr(zr, Address(reg));
1798   } else {
1799     // nothing to do, (later) access of M[reg + offset]
1800     // will provoke OS null exception if reg is null
1801   }
1802 }
1803 
1804 void MacroAssembler::test_markword_is_inline_type(Register markword, Label& is_inline_type) {
1805   assert_different_registers(markword, rscratch2);
1806   andr(markword, markword, markWord::inline_type_mask_in_place);
1807   mov(rscratch2, markWord::inline_type_pattern);
1808   cmp(markword, rscratch2);
1809   br(Assembler::EQ, is_inline_type);
1810 }
1811 
1812 void MacroAssembler::test_klass_is_inline_type(Register klass, Register temp_reg, Label& is_inline_type) {
1813   ldrw(temp_reg, Address(klass, Klass::access_flags_offset()));
1814   andr(temp_reg, temp_reg, JVM_ACC_IDENTITY);
1815   cbz(temp_reg, is_inline_type);
1816 }
1817 
1818 void MacroAssembler::test_oop_is_not_inline_type(Register object, Register tmp, Label& not_inline_type) {
1819   assert_different_registers(tmp, rscratch1);
1820   cbz(object, not_inline_type);
1821   const int is_inline_type_mask = markWord::inline_type_pattern;
1822   ldr(tmp, Address(object, oopDesc::mark_offset_in_bytes()));
1823   mov(rscratch1, is_inline_type_mask);
1824   andr(tmp, tmp, rscratch1);
1825   cmp(tmp, rscratch1);
1826   br(Assembler::NE, not_inline_type);
1827 }
1828 
1829 void MacroAssembler::test_klass_is_empty_inline_type(Register klass, Register temp_reg, Label& is_empty_inline_type) {
1830 #ifdef ASSERT
1831   {
1832     Label done_check;
1833     test_klass_is_inline_type(klass, temp_reg, done_check);
1834     stop("test_klass_is_empty_inline_type with non inline type klass");
1835     bind(done_check);
1836   }
1837 #endif
1838   ldrw(temp_reg, Address(klass, InstanceKlass::misc_flags_offset()));
1839   andr(temp_reg, temp_reg, InstanceKlassFlags::is_empty_inline_type_value());
1840   cbnz(temp_reg, is_empty_inline_type);
1841 }
1842 
1843 void MacroAssembler::test_field_is_null_free_inline_type(Register flags, Register temp_reg, Label& is_null_free_inline_type) {
1844   assert(temp_reg == noreg, "not needed"); // keep signature uniform with x86
1845   tbnz(flags, ResolvedFieldEntry::is_null_free_inline_type_shift, is_null_free_inline_type);
1846 }
1847 
1848 void MacroAssembler::test_field_is_not_null_free_inline_type(Register flags, Register temp_reg, Label& not_null_free_inline_type) {
1849   assert(temp_reg == noreg, "not needed"); // keep signature uniform with x86
1850   tbz(flags, ResolvedFieldEntry::is_null_free_inline_type_shift, not_null_free_inline_type);
1851 }
1852 
1853 void MacroAssembler::test_field_is_flat(Register flags, Register temp_reg, Label& is_flat) {
1854   assert(temp_reg == noreg, "not needed"); // keep signature uniform with x86
1855   tbnz(flags, ResolvedFieldEntry::is_flat_shift, is_flat);
1856 }
1857 
1858 void MacroAssembler::test_oop_prototype_bit(Register oop, Register temp_reg, int32_t test_bit, bool jmp_set, Label& jmp_label) {
1859   Label test_mark_word;
1860   // load mark word
1861   ldr(temp_reg, Address(oop, oopDesc::mark_offset_in_bytes()));
1862   // check displaced
1863   tst(temp_reg, markWord::unlocked_value);
1864   br(Assembler::NE, test_mark_word);
1865   // slow path use klass prototype
1866   load_prototype_header(temp_reg, oop);
1867 
1868   bind(test_mark_word);
1869   andr(temp_reg, temp_reg, test_bit);
1870   if (jmp_set) {
1871     cbnz(temp_reg, jmp_label);
1872   } else {
1873     cbz(temp_reg, jmp_label);
1874   }
1875 }
1876 
1877 void MacroAssembler::test_flat_array_oop(Register oop, Register temp_reg, Label& is_flat_array) {
1878   test_oop_prototype_bit(oop, temp_reg, markWord::flat_array_bit_in_place, true, is_flat_array);
1879 }
1880 
1881 void MacroAssembler::test_non_flat_array_oop(Register oop, Register temp_reg,
1882                                                   Label&is_non_flat_array) {
1883   test_oop_prototype_bit(oop, temp_reg, markWord::flat_array_bit_in_place, false, is_non_flat_array);
1884 }
1885 
1886 void MacroAssembler::test_null_free_array_oop(Register oop, Register temp_reg, Label& is_null_free_array) {
1887   test_oop_prototype_bit(oop, temp_reg, markWord::null_free_array_bit_in_place, true, is_null_free_array);
1888 }
1889 
1890 void MacroAssembler::test_non_null_free_array_oop(Register oop, Register temp_reg, Label&is_non_null_free_array) {
1891   test_oop_prototype_bit(oop, temp_reg, markWord::null_free_array_bit_in_place, false, is_non_null_free_array);
1892 }
1893 
1894 void MacroAssembler::test_flat_array_layout(Register lh, Label& is_flat_array) {
1895   tst(lh, Klass::_lh_array_tag_flat_value_bit_inplace);
1896   br(Assembler::NE, is_flat_array);
1897 }
1898 
1899 void MacroAssembler::test_non_flat_array_layout(Register lh, Label& is_non_flat_array) {
1900   tst(lh, Klass::_lh_array_tag_flat_value_bit_inplace);
1901   br(Assembler::EQ, is_non_flat_array);
1902 }
1903 
1904 void MacroAssembler::test_null_free_array_layout(Register lh, Label& is_null_free_array) {
1905   tst(lh, Klass::_lh_null_free_array_bit_inplace);
1906   br(Assembler::NE, is_null_free_array);
1907 }
1908 
1909 void MacroAssembler::test_non_null_free_array_layout(Register lh, Label& is_non_null_free_array) {
1910   tst(lh, Klass::_lh_null_free_array_bit_inplace);
1911   br(Assembler::EQ, is_non_null_free_array);
1912 }
1913 
1914 // MacroAssembler protected routines needed to implement
1915 // public methods
1916 
1917 void MacroAssembler::mov(Register r, Address dest) {
1918   code_section()->relocate(pc(), dest.rspec());
1919   uint64_t imm64 = (uint64_t)dest.target();
1920   movptr(r, imm64);
1921 }
1922 
1923 // Move a constant pointer into r.  In AArch64 mode the virtual
1924 // address space is 48 bits in size, so we only need three
1925 // instructions to create a patchable instruction sequence that can
1926 // reach anywhere.
1927 void MacroAssembler::movptr(Register r, uintptr_t imm64) {
1928 #ifndef PRODUCT
1929   {
1930     char buffer[64];
1931     snprintf(buffer, sizeof(buffer), "0x%" PRIX64, (uint64_t)imm64);
1932     block_comment(buffer);
1933   }

4563   adrp(rscratch1, src2, offset);
4564   ldr(rscratch1, Address(rscratch1, offset));
4565   cmp(src1, rscratch1);
4566 }
4567 
4568 void MacroAssembler::cmpoop(Register obj1, Register obj2) {
4569   cmp(obj1, obj2);
4570 }
4571 
4572 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) {
4573   load_method_holder(rresult, rmethod);
4574   ldr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset()));
4575 }
4576 
4577 void MacroAssembler::load_method_holder(Register holder, Register method) {
4578   ldr(holder, Address(method, Method::const_offset()));                      // ConstMethod*
4579   ldr(holder, Address(holder, ConstMethod::constants_offset()));             // ConstantPool*
4580   ldr(holder, Address(holder, ConstantPool::pool_holder_offset()));          // InstanceKlass*
4581 }
4582 
4583 void MacroAssembler::load_metadata(Register dst, Register src) {
4584   if (UseCompressedClassPointers) {
4585     ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes()));
4586   } else {
4587     ldr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
4588   }
4589 }
4590 
4591 void MacroAssembler::load_klass(Register dst, Register src) {
4592   if (UseCompressedClassPointers) {
4593     ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes()));
4594     decode_klass_not_null(dst);
4595   } else {
4596     ldr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
4597   }
4598 }
4599 
4600 void MacroAssembler::restore_cpu_control_state_after_jni(Register tmp1, Register tmp2) {
4601   if (RestoreMXCSROnJNICalls) {
4602     Label OK;
4603     get_fpcr(tmp1);
4604     mov(tmp2, tmp1);
4605     // Set FPCR to the state we need. We do want Round to Nearest. We
4606     // don't want non-IEEE rounding modes or floating-point traps.
4607     bfi(tmp1, zr, 22, 4); // Clear DN, FZ, and Rmode
4608     bfi(tmp1, zr, 8, 5);  // Clear exception-control bits (8-12)
4609     bfi(tmp1, zr, 0, 2);  // Clear AH:FIZ
4610     eor(tmp2, tmp1, tmp2);

4646 
4647 void MacroAssembler::cmp_klass(Register oop, Register trial_klass, Register tmp) {
4648   if (UseCompressedClassPointers) {
4649     ldrw(tmp, Address(oop, oopDesc::klass_offset_in_bytes()));
4650     if (CompressedKlassPointers::base() == nullptr) {
4651       cmp(trial_klass, tmp, LSL, CompressedKlassPointers::shift());
4652       return;
4653     } else if (((uint64_t)CompressedKlassPointers::base() & 0xffffffff) == 0
4654                && CompressedKlassPointers::shift() == 0) {
4655       // Only the bottom 32 bits matter
4656       cmpw(trial_klass, tmp);
4657       return;
4658     }
4659     decode_klass_not_null(tmp);
4660   } else {
4661     ldr(tmp, Address(oop, oopDesc::klass_offset_in_bytes()));
4662   }
4663   cmp(trial_klass, tmp);
4664 }
4665 
4666 void MacroAssembler::load_prototype_header(Register dst, Register src) {
4667   load_klass(dst, src);
4668   ldr(dst, Address(dst, Klass::prototype_header_offset()));
4669 }
4670 
4671 void MacroAssembler::store_klass(Register dst, Register src) {
4672   // FIXME: Should this be a store release?  concurrent gcs assumes
4673   // klass length is valid if klass field is not null.
4674   if (UseCompressedClassPointers) {
4675     encode_klass_not_null(src);
4676     strw(src, Address(dst, oopDesc::klass_offset_in_bytes()));
4677   } else {
4678     str(src, Address(dst, oopDesc::klass_offset_in_bytes()));
4679   }
4680 }
4681 
4682 void MacroAssembler::store_klass_gap(Register dst, Register src) {
4683   if (UseCompressedClassPointers) {
4684     // Store to klass gap in destination
4685     strw(src, Address(dst, oopDesc::klass_gap_offset_in_bytes()));
4686   }
4687 }
4688 
4689 // Algorithm must match CompressedOops::encode.
4690 void MacroAssembler::encode_heap_oop(Register d, Register s) {

4975   if (as_raw) {
4976     bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, tmp2);
4977   } else {
4978     bs->load_at(this, decorators, type, dst, src, tmp1, tmp2);
4979   }
4980 }
4981 
4982 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators,
4983                                      Address dst, Register val,
4984                                      Register tmp1, Register tmp2, Register tmp3) {
4985   BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
4986   decorators = AccessInternal::decorator_fixup(decorators, type);
4987   bool as_raw = (decorators & AS_RAW) != 0;
4988   if (as_raw) {
4989     bs->BarrierSetAssembler::store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3);
4990   } else {
4991     bs->store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3);
4992   }
4993 }
4994 
4995 void MacroAssembler::access_value_copy(DecoratorSet decorators, Register src, Register dst,
4996                                        Register inline_klass) {
4997   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
4998   bs->value_copy(this, decorators, src, dst, inline_klass);
4999 }
5000 
5001 void MacroAssembler::first_field_offset(Register inline_klass, Register offset) {
5002   ldr(offset, Address(inline_klass, InstanceKlass::adr_inlineklass_fixed_block_offset()));
5003   ldrw(offset, Address(offset, InlineKlass::first_field_offset_offset()));
5004 }
5005 
5006 void MacroAssembler::data_for_oop(Register oop, Register data, Register inline_klass) {
5007   // ((address) (void*) o) + vk->first_field_offset();
5008   Register offset = (data == oop) ? rscratch1 : data;
5009   first_field_offset(inline_klass, offset);
5010   if (data == oop) {
5011     add(data, data, offset);
5012   } else {
5013     lea(data, Address(oop, offset));
5014   }
5015 }
5016 
5017 void MacroAssembler::data_for_value_array_index(Register array, Register array_klass,
5018                                                 Register index, Register data) {
5019   assert_different_registers(array, array_klass, index);
5020   assert_different_registers(rscratch1, array, index);
5021 
5022   // array->base() + (index << Klass::layout_helper_log2_element_size(lh));
5023   ldrw(rscratch1, Address(array_klass, Klass::layout_helper_offset()));
5024 
5025   // Klass::layout_helper_log2_element_size(lh)
5026   // (lh >> _lh_log2_element_size_shift) & _lh_log2_element_size_mask;
5027   lsr(rscratch1, rscratch1, Klass::_lh_log2_element_size_shift);
5028   andr(rscratch1, rscratch1, Klass::_lh_log2_element_size_mask);
5029   lslv(index, index, rscratch1);
5030 
5031   add(data, array, index);
5032   add(data, data, arrayOopDesc::base_offset_in_bytes(T_PRIMITIVE_OBJECT));
5033 }
5034 
5035 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1,
5036                                    Register tmp2, DecoratorSet decorators) {
5037   access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, tmp2);
5038 }
5039 
5040 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1,
5041                                             Register tmp2, DecoratorSet decorators) {
5042   access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, tmp2);
5043 }
5044 
5045 void MacroAssembler::store_heap_oop(Address dst, Register val, Register tmp1,
5046                                     Register tmp2, Register tmp3, DecoratorSet decorators) {
5047   access_store_at(T_OBJECT, IN_HEAP | decorators, dst, val, tmp1, tmp2, tmp3);
5048 }
5049 
5050 // Used for storing nulls.
5051 void MacroAssembler::store_heap_oop_null(Address dst) {
5052   access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg, noreg);
5053 }
5054 

5091     oop_index = oop_recorder()->allocate_metadata_index(obj);
5092   } else {
5093     oop_index = oop_recorder()->find_index(obj);
5094   }
5095   RelocationHolder rspec = metadata_Relocation::spec(oop_index);
5096   mov(dst, Address((address)obj, rspec));
5097 }
5098 
5099 Address MacroAssembler::constant_oop_address(jobject obj) {
5100 #ifdef ASSERT
5101   {
5102     ThreadInVMfromUnknown tiv;
5103     assert(oop_recorder() != nullptr, "this assembler needs an OopRecorder");
5104     assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "not an oop");
5105   }
5106 #endif
5107   int oop_index = oop_recorder()->find_index(obj);
5108   return Address((address)obj, oop_Relocation::spec(oop_index));
5109 }
5110 
5111 // Object / value buffer allocation...
5112 void MacroAssembler::allocate_instance(Register klass, Register new_obj,
5113                                        Register t1, Register t2,
5114                                        bool clear_fields, Label& alloc_failed)
5115 {
5116   Label done, initialize_header, initialize_object, slow_case, slow_case_no_pop;
5117   Register layout_size = t1;
5118   assert(new_obj == r0, "needs to be r0");
5119   assert_different_registers(klass, new_obj, t1, t2);
5120 
5121   // get instance_size in InstanceKlass (scaled to a count of bytes)
5122   ldrw(layout_size, Address(klass, Klass::layout_helper_offset()));
5123   // test to see if it has a finalizer or is malformed in some way
5124   tst(layout_size, Klass::_lh_instance_slow_path_bit);
5125   br(Assembler::NE, slow_case_no_pop);
5126 
5127   // Allocate the instance:
5128   //  If TLAB is enabled:
5129   //    Try to allocate in the TLAB.
5130   //    If fails, go to the slow path.
5131   //    Initialize the allocation.
5132   //    Exit.
5133   //
5134   //  Go to slow path.
5135 
5136   if (UseTLAB) {
5137     push(klass);
5138     tlab_allocate(new_obj, layout_size, 0, klass, t2, slow_case);
5139     if (ZeroTLAB || (!clear_fields)) {
5140       // the fields have been already cleared
5141       b(initialize_header);
5142     } else {
5143       // initialize both the header and fields
5144       b(initialize_object);
5145     }
5146 
5147     if (clear_fields) {
5148       // The object is initialized before the header.  If the object size is
5149       // zero, go directly to the header initialization.
5150       bind(initialize_object);
5151       subs(layout_size, layout_size, sizeof(oopDesc));
5152       br(Assembler::EQ, initialize_header);
5153 
5154       // Initialize topmost object field, divide size by 8, check if odd and
5155       // test if zero.
5156 
5157   #ifdef ASSERT
5158       // make sure instance_size was multiple of 8
5159       Label L;
5160       tst(layout_size, 7);
5161       br(Assembler::EQ, L);
5162       stop("object size is not multiple of 8 - adjust this code");
5163       bind(L);
5164       // must be > 0, no extra check needed here
5165   #endif
5166 
5167       lsr(layout_size, layout_size, LogBytesPerLong);
5168 
5169       // initialize remaining object fields: instance_size was a multiple of 8
5170       {
5171         Label loop;
5172         Register base = t2;
5173 
5174         bind(loop);
5175         add(rscratch1, new_obj, layout_size, Assembler::LSL, LogBytesPerLong);
5176         str(zr, Address(rscratch1, sizeof(oopDesc) - 1*oopSize));
5177         subs(layout_size, layout_size, 1);
5178         br(Assembler::NE, loop);
5179       }
5180     } // clear_fields
5181 
5182     // initialize object header only.
5183     bind(initialize_header);
5184     pop(klass);
5185     Register mark_word = t2;
5186     ldr(mark_word, Address(klass, Klass::prototype_header_offset()));
5187     str(mark_word, Address(new_obj, oopDesc::mark_offset_in_bytes ()));
5188     store_klass_gap(new_obj, zr);  // zero klass gap for compressed oops
5189     mov(t2, klass);         // preserve klass
5190     store_klass(new_obj, t2);  // src klass reg is potentially compressed
5191 
5192     // TODO: Valhalla removed SharedRuntime::dtrace_object_alloc from here ?
5193 
5194     b(done);
5195   }
5196 
5197   if (UseTLAB) {
5198     bind(slow_case);
5199     pop(klass);
5200   }
5201   bind(slow_case_no_pop);
5202   b(alloc_failed);
5203 
5204   bind(done);
5205 }
5206 
5207 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
5208 void MacroAssembler::tlab_allocate(Register obj,
5209                                    Register var_size_in_bytes,
5210                                    int con_size_in_bytes,
5211                                    Register t1,
5212                                    Register t2,
5213                                    Label& slow_case) {
5214   BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
5215   bs->tlab_allocate(this, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case);
5216 }
5217 
5218 void MacroAssembler::verify_tlab() {
5219 #ifdef ASSERT
5220   if (UseTLAB && VerifyOops) {
5221     Label next, ok;
5222 
5223     stp(rscratch2, rscratch1, Address(pre(sp, -16)));
5224 
5225     ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_top_offset())));
5226     ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset())));
5227     cmp(rscratch2, rscratch1);
5228     br(Assembler::HS, next);
5229     STOP("assert(top >= start)");
5230     should_not_reach_here();
5231 
5232     bind(next);
5233     ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_end_offset())));
5234     ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_top_offset())));
5235     cmp(rscratch2, rscratch1);
5236     br(Assembler::HS, ok);
5237     STOP("assert(top <= end)");
5238     should_not_reach_here();
5239 
5240     bind(ok);
5241     ldp(rscratch2, rscratch1, Address(post(sp, 16)));
5242   }
5243 #endif
5244 }
5245 
5246 void MacroAssembler::get_inline_type_field_klass(Register klass, Register index, Register inline_klass) {
5247   ldr(inline_klass, Address(klass, InstanceKlass::inline_type_field_klasses_offset()));
5248 #ifdef ASSERT
5249   {
5250     Label done;
5251     cbnz(inline_klass, done);
5252     stop("get_inline_type_field_klass contains no inline klass");
5253     bind(done);
5254   }
5255 #endif
5256   lea(inline_klass, Address(inline_klass, Array<InlineKlass*>::base_offset_in_bytes()));
5257   ldr(inline_klass, Address(inline_klass, index, Address::lsl(3)));
5258 }
5259 
5260 // Writes to stack successive pages until offset reached to check for
5261 // stack overflow + shadow pages.  This clobbers tmp.
5262 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
5263   assert_different_registers(tmp, size, rscratch1);
5264   mov(tmp, sp);
5265   // Bang stack for total size given plus shadow page size.
5266   // Bang one page at a time because large size can bang beyond yellow and
5267   // red zones.
5268   Label loop;
5269   mov(rscratch1, (int)os::vm_page_size());
5270   bind(loop);
5271   lea(tmp, Address(tmp, -(int)os::vm_page_size()));
5272   subsw(size, size, rscratch1);
5273   str(size, Address(tmp));
5274   br(Assembler::GT, loop);
5275 
5276   // Bang down shadow pages too.
5277   // At this point, (tmp-0) is the last address touched, so don't
5278   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
5279   // was post-decremented.)  Skip this address by starting at i=1, and

5365 }
5366 
5367 void MacroAssembler::remove_frame(int framesize) {
5368   assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR");
5369   assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment");
5370   if (framesize < ((1 << 9) + 2 * wordSize)) {
5371     ldp(rfp, lr, Address(sp, framesize - 2 * wordSize));
5372     add(sp, sp, framesize);
5373   } else {
5374     if (framesize < ((1 << 12) + 2 * wordSize))
5375       add(sp, sp, framesize - 2 * wordSize);
5376     else {
5377       mov(rscratch1, framesize - 2 * wordSize);
5378       add(sp, sp, rscratch1);
5379     }
5380     ldp(rfp, lr, Address(post(sp, 2 * wordSize)));
5381   }
5382   authenticate_return_address();
5383 }
5384 
5385 void MacroAssembler::remove_frame(int initial_framesize, bool needs_stack_repair) {
5386   if (needs_stack_repair) {
5387     // Remove the extension of the caller's frame used for inline type unpacking
5388     //
5389     // Right now the stack looks like this:
5390     //
5391     // | Arguments from caller     |
5392     // |---------------------------|  <-- caller's SP
5393     // | Saved LR #1               |
5394     // | Saved FP #1               |
5395     // |---------------------------|
5396     // | Extension space for       |
5397     // |   inline arg (un)packing  |
5398     // |---------------------------|  <-- start of this method's frame
5399     // | Saved LR #2               |
5400     // | Saved FP #2               |
5401     // |---------------------------|  <-- FP
5402     // | sp_inc                    |
5403     // | method locals             |
5404     // |---------------------------|  <-- SP
5405     //
5406     // There are two copies of FP and LR on the stack. They will be identical
5407     // unless the caller has been deoptimized, in which case LR #1 will be patched
5408     // to point at the deopt blob, and LR #2 will still point into the old method.
5409     //
5410     // The sp_inc stack slot holds the total size of the frame including the
5411     // extension space minus two words for the saved FP and LR.
5412 
5413     int sp_inc_offset = initial_framesize - 3 * wordSize;  // Immediately below saved LR and FP
5414 
5415     ldr(rscratch1, Address(sp, sp_inc_offset));
5416     add(sp, sp, rscratch1);
5417     ldp(rfp, lr, Address(post(sp, 2 * wordSize)));
5418   } else {
5419     remove_frame(initial_framesize);
5420   }
5421 }
5422 
5423 void MacroAssembler::save_stack_increment(int sp_inc, int frame_size) {
5424   int real_frame_size = frame_size + sp_inc;
5425   assert(sp_inc == 0 || sp_inc > 2*wordSize, "invalid sp_inc value");
5426   assert(real_frame_size >= 2*wordSize, "frame size must include FP/LR space");
5427   assert((real_frame_size & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
5428 
5429   int sp_inc_offset = frame_size - 3 * wordSize;  // Immediately below saved LR and FP
5430 
5431   // Subtract two words for the saved FP and LR as these will be popped
5432   // separately. See remove_frame above.
5433   mov(rscratch1, real_frame_size - 2*wordSize);
5434   str(rscratch1, Address(sp, sp_inc_offset));
5435 }
5436 
5437 // This method counts leading positive bytes (highest bit not set) in provided byte array
5438 address MacroAssembler::count_positives(Register ary1, Register len, Register result) {
5439     // Simple and most common case of aligned small array which is not at the
5440     // end of memory page is placed here. All other cases are in stub.
5441     Label LOOP, END, STUB, STUB_LONG, SET_RESULT, DONE;
5442     const uint64_t UPPER_BIT_MASK=0x8080808080808080;
5443     assert_different_registers(ary1, len, result);
5444 
5445     mov(result, len);
5446     cmpw(len, 0);
5447     br(LE, DONE);
5448     cmpw(len, 4 * wordSize);
5449     br(GE, STUB_LONG); // size > 32 then go to stub
5450 
5451     int shift = 64 - exact_log2(os::vm_page_size());
5452     lsl(rscratch1, ary1, shift);
5453     mov(rscratch2, (size_t)(4 * wordSize) << shift);
5454     adds(rscratch2, rscratch1, rscratch2);  // At end of page?
5455     br(CS, STUB); // at the end of page then go to stub

6330 // On other systems, the helper is a usual C function.
6331 //
6332 void MacroAssembler::get_thread(Register dst) {
6333   RegSet saved_regs =
6334     LINUX_ONLY(RegSet::range(r0, r1)  + lr - dst)
6335     NOT_LINUX (RegSet::range(r0, r17) + lr - dst);
6336 
6337   protect_return_address();
6338   push(saved_regs, sp);
6339 
6340   mov(lr, CAST_FROM_FN_PTR(address, JavaThread::aarch64_get_thread_helper));
6341   blr(lr);
6342   if (dst != c_rarg0) {
6343     mov(dst, c_rarg0);
6344   }
6345 
6346   pop(saved_regs, sp);
6347   authenticate_return_address();
6348 }
6349 
6350 #ifdef COMPILER2
6351 // C2 compiled method's prolog code
6352 // Moved here from aarch64.ad to support Valhalla code belows
6353 void MacroAssembler::verified_entry(Compile* C, int sp_inc) {
6354   if (C->clinit_barrier_on_entry()) {
6355     assert(!C->method()->holder()->is_not_initialized(), "initialization should have been started");
6356 
6357     Label L_skip_barrier;
6358 
6359     mov_metadata(rscratch2, C->method()->holder()->constant_encoding());
6360     clinit_barrier(rscratch2, rscratch1, &L_skip_barrier);
6361     far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub()));
6362     bind(L_skip_barrier);
6363   }
6364 
6365   if (C->max_vector_size() > 0) {
6366     reinitialize_ptrue();
6367   }
6368 
6369   int bangsize = C->output()->bang_size_in_bytes();
6370   if (C->output()->need_stack_bang(bangsize))
6371     generate_stack_overflow_check(bangsize);
6372 
6373   // n.b. frame size includes space for return pc and rfp
6374   const long framesize = C->output()->frame_size_in_bytes();
6375   build_frame(framesize);
6376 
6377   if (C->needs_stack_repair()) {
6378     save_stack_increment(sp_inc, framesize);
6379   }
6380 
6381   if (VerifyStackAtCalls) {
6382     Unimplemented();
6383   }
6384 }
6385 #endif // COMPILER2
6386 
6387 int MacroAssembler::store_inline_type_fields_to_buf(ciInlineKlass* vk, bool from_interpreter) {
6388   assert(InlineTypeReturnedAsFields, "Inline types should never be returned as fields");
6389   // An inline type might be returned. If fields are in registers we
6390   // need to allocate an inline type instance and initialize it with
6391   // the value of the fields.
6392   Label skip;
6393   // We only need a new buffered inline type if a new one is not returned
6394   tbz(r0, 0, skip);
6395   int call_offset = -1;
6396 
6397   // Be careful not to clobber r1-7 which hold returned fields
6398   // Also do not use callee-saved registers as these may be live in the interpreter
6399   Register tmp1 = r13, tmp2 = r14, klass = r15, r0_preserved = r12;
6400 
6401   // The following code is similar to allocate_instance but has some slight differences,
6402   // e.g. object size is always not zero, sometimes it's constant; storing klass ptr after
6403   // allocating is not necessary if vk != nullptr, etc. allocate_instance is not aware of these.
6404   Label slow_case;
6405   // 1. Try to allocate a new buffered inline instance either from TLAB or eden space
6406   mov(r0_preserved, r0); // save r0 for slow_case since *_allocate may corrupt it when allocation failed
6407 
6408   if (vk != nullptr) {
6409     // Called from C1, where the return type is statically known.
6410     movptr(klass, (intptr_t)vk->get_InlineKlass());
6411     jint obj_size = vk->layout_helper();
6412     assert(obj_size != Klass::_lh_neutral_value, "inline class in return type must have been resolved");
6413     if (UseTLAB) {
6414       tlab_allocate(r0, noreg, obj_size, tmp1, tmp2, slow_case);
6415     } else {
6416       b(slow_case);
6417     }
6418   } else {
6419     // Call from interpreter. R0 contains ((the InlineKlass* of the return type) | 0x01)
6420     andr(klass, r0, -2);
6421     ldrw(tmp2, Address(klass, Klass::layout_helper_offset()));
6422     if (UseTLAB) {
6423       tlab_allocate(r0, tmp2, 0, tmp1, tmp2, slow_case);
6424     } else {
6425       b(slow_case);
6426     }
6427   }
6428   if (UseTLAB) {
6429     // 2. Initialize buffered inline instance header
6430     Register buffer_obj = r0;
6431     mov(rscratch1, (intptr_t)markWord::inline_type_prototype().value());
6432     str(rscratch1, Address(buffer_obj, oopDesc::mark_offset_in_bytes()));
6433     store_klass_gap(buffer_obj, zr);
6434     if (vk == nullptr) {
6435       // store_klass corrupts klass, so save it for later use (interpreter case only).
6436       mov(tmp1, klass);
6437     }
6438     store_klass(buffer_obj, klass);
6439     // 3. Initialize its fields with an inline class specific handler
6440     if (vk != nullptr) {
6441       far_call(RuntimeAddress(vk->pack_handler())); // no need for call info as this will not safepoint.
6442     } else {
6443       // tmp1 holds klass preserved above
6444       ldr(tmp1, Address(tmp1, InstanceKlass::adr_inlineklass_fixed_block_offset()));
6445       ldr(tmp1, Address(tmp1, InlineKlass::pack_handler_offset()));
6446       blr(tmp1);
6447     }
6448 
6449     membar(Assembler::StoreStore);
6450     b(skip);
6451   } else {
6452     // Must have already branched to slow_case above.
6453     DEBUG_ONLY(should_not_reach_here());
6454   }
6455   bind(slow_case);
6456   // We failed to allocate a new inline type, fall back to a runtime
6457   // call. Some oop field may be live in some registers but we can't
6458   // tell. That runtime call will take care of preserving them
6459   // across a GC if there's one.
6460   mov(r0, r0_preserved);
6461 
6462   if (from_interpreter) {
6463     super_call_VM_leaf(StubRoutines::store_inline_type_fields_to_buf());
6464   } else {
6465     far_call(RuntimeAddress(StubRoutines::store_inline_type_fields_to_buf()));
6466     call_offset = offset();
6467   }
6468   membar(Assembler::StoreStore);
6469 
6470   bind(skip);
6471   return call_offset;
6472 }
6473 
6474 // Move a value between registers/stack slots and update the reg_state
6475 bool MacroAssembler::move_helper(VMReg from, VMReg to, BasicType bt, RegState reg_state[]) {
6476   assert(from->is_valid() && to->is_valid(), "source and destination must be valid");
6477   if (reg_state[to->value()] == reg_written) {
6478     return true; // Already written
6479   }
6480 
6481   if (from != to && bt != T_VOID) {
6482     if (reg_state[to->value()] == reg_readonly) {
6483       return false; // Not yet writable
6484     }
6485     if (from->is_reg()) {
6486       if (to->is_reg()) {
6487         if (from->is_Register() && to->is_Register()) {
6488           mov(to->as_Register(), from->as_Register());
6489         } else if (from->is_FloatRegister() && to->is_FloatRegister()) {
6490           fmovd(to->as_FloatRegister(), from->as_FloatRegister());
6491         } else {
6492           ShouldNotReachHere();
6493         }
6494       } else {
6495         int st_off = to->reg2stack() * VMRegImpl::stack_slot_size;
6496         Address to_addr = Address(sp, st_off);
6497         if (from->is_FloatRegister()) {
6498           if (bt == T_DOUBLE) {
6499              strd(from->as_FloatRegister(), to_addr);
6500           } else {
6501              assert(bt == T_FLOAT, "must be float");
6502              strs(from->as_FloatRegister(), to_addr);
6503           }
6504         } else {
6505           str(from->as_Register(), to_addr);
6506         }
6507       }
6508     } else {
6509       Address from_addr = Address(sp, from->reg2stack() * VMRegImpl::stack_slot_size);
6510       if (to->is_reg()) {
6511         if (to->is_FloatRegister()) {
6512           if (bt == T_DOUBLE) {
6513             ldrd(to->as_FloatRegister(), from_addr);
6514           } else {
6515             assert(bt == T_FLOAT, "must be float");
6516             ldrs(to->as_FloatRegister(), from_addr);
6517           }
6518         } else {
6519           ldr(to->as_Register(), from_addr);
6520         }
6521       } else {
6522         int st_off = to->reg2stack() * VMRegImpl::stack_slot_size;
6523         ldr(rscratch1, from_addr);
6524         str(rscratch1, Address(sp, st_off));
6525       }
6526     }
6527   }
6528 
6529   // Update register states
6530   reg_state[from->value()] = reg_writable;
6531   reg_state[to->value()] = reg_written;
6532   return true;
6533 }
6534 
6535 // Calculate the extra stack space required for packing or unpacking inline
6536 // args and adjust the stack pointer
6537 int MacroAssembler::extend_stack_for_inline_args(int args_on_stack) {
6538   int sp_inc = args_on_stack * VMRegImpl::stack_slot_size;
6539   sp_inc = align_up(sp_inc, StackAlignmentInBytes);
6540   assert(sp_inc > 0, "sanity");
6541 
6542   // Save a copy of the FP and LR here for deoptimization patching and frame walking
6543   stp(rfp, lr, Address(pre(sp, -2 * wordSize)));
6544 
6545   // Adjust the stack pointer. This will be repaired on return by MacroAssembler::remove_frame
6546   if (sp_inc < (1 << 9)) {
6547     sub(sp, sp, sp_inc);   // Fits in an immediate
6548   } else {
6549     mov(rscratch1, sp_inc);
6550     sub(sp, sp, rscratch1);
6551   }
6552 
6553   return sp_inc + 2 * wordSize;  // Account for the FP/LR space
6554 }
6555 
6556 // Read all fields from an inline type oop and store the values in registers/stack slots
6557 bool MacroAssembler::unpack_inline_helper(const GrowableArray<SigEntry>* sig, int& sig_index,
6558                                           VMReg from, int& from_index, VMRegPair* to, int to_count, int& to_index,
6559                                           RegState reg_state[]) {
6560   assert(sig->at(sig_index)._bt == T_VOID, "should be at end delimiter");
6561   assert(from->is_valid(), "source must be valid");
6562   bool progress = false;
6563 #ifdef ASSERT
6564   const int start_offset = offset();
6565 #endif
6566 
6567   Label L_null, L_notNull;
6568   // Don't use r14 as tmp because it's used for spilling (see MacroAssembler::spill_reg_for)
6569   Register tmp1 = r10;
6570   Register tmp2 = r11;
6571   Register fromReg = noreg;
6572   ScalarizedInlineArgsStream stream(sig, sig_index, to, to_count, to_index, -1);
6573   bool done = true;
6574   bool mark_done = true;
6575   VMReg toReg;
6576   BasicType bt;
6577   // Check if argument requires a null check
6578   bool null_check = false;
6579   VMReg nullCheckReg;
6580   while (stream.next(nullCheckReg, bt)) {
6581     if (sig->at(stream.sig_index())._offset == -1) {
6582       null_check = true;
6583       break;
6584     }
6585   }
6586   stream.reset(sig_index, to_index);
6587   while (stream.next(toReg, bt)) {
6588     assert(toReg->is_valid(), "destination must be valid");
6589     int idx = (int)toReg->value();
6590     if (reg_state[idx] == reg_readonly) {
6591       if (idx != from->value()) {
6592         mark_done = false;
6593       }
6594       done = false;
6595       continue;
6596     } else if (reg_state[idx] == reg_written) {
6597       continue;
6598     }
6599     assert(reg_state[idx] == reg_writable, "must be writable");
6600     reg_state[idx] = reg_written;
6601     progress = true;
6602 
6603     if (fromReg == noreg) {
6604       if (from->is_reg()) {
6605         fromReg = from->as_Register();
6606       } else {
6607         int st_off = from->reg2stack() * VMRegImpl::stack_slot_size;
6608         ldr(tmp1, Address(sp, st_off));
6609         fromReg = tmp1;
6610       }
6611       if (null_check) {
6612         // Nullable inline type argument, emit null check
6613         cbz(fromReg, L_null);
6614       }
6615     }
6616     int off = sig->at(stream.sig_index())._offset;
6617     if (off == -1) {
6618       assert(null_check, "Missing null check at");
6619       if (toReg->is_stack()) {
6620         int st_off = toReg->reg2stack() * VMRegImpl::stack_slot_size;
6621         mov(tmp2, 1);
6622         str(tmp2, Address(sp, st_off));
6623       } else {
6624         mov(toReg->as_Register(), 1);
6625       }
6626       continue;
6627     }
6628     assert(off > 0, "offset in object should be positive");
6629     Address fromAddr = Address(fromReg, off);
6630     if (!toReg->is_FloatRegister()) {
6631       Register dst = toReg->is_stack() ? tmp2 : toReg->as_Register();
6632       if (is_reference_type(bt)) {
6633         load_heap_oop(dst, fromAddr, rscratch1, rscratch2);
6634       } else {
6635         bool is_signed = (bt != T_CHAR) && (bt != T_BOOLEAN);
6636         load_sized_value(dst, fromAddr, type2aelembytes(bt), is_signed);
6637       }
6638       if (toReg->is_stack()) {
6639         int st_off = toReg->reg2stack() * VMRegImpl::stack_slot_size;
6640         str(dst, Address(sp, st_off));
6641       }
6642     } else if (bt == T_DOUBLE) {
6643       ldrd(toReg->as_FloatRegister(), fromAddr);
6644     } else {
6645       assert(bt == T_FLOAT, "must be float");
6646       ldrs(toReg->as_FloatRegister(), fromAddr);
6647     }
6648   }
6649   if (progress && null_check) {
6650     if (done) {
6651       b(L_notNull);
6652       bind(L_null);
6653       // Set IsInit field to zero to signal that the argument is null.
6654       // Also set all oop fields to zero to make the GC happy.
6655       stream.reset(sig_index, to_index);
6656       while (stream.next(toReg, bt)) {
6657         if (sig->at(stream.sig_index())._offset == -1 ||
6658             bt == T_OBJECT || bt == T_ARRAY) {
6659           if (toReg->is_stack()) {
6660             int st_off = toReg->reg2stack() * VMRegImpl::stack_slot_size;
6661             str(zr, Address(sp, st_off));
6662           } else {
6663             mov(toReg->as_Register(), zr);
6664           }
6665         }
6666       }
6667       bind(L_notNull);
6668     } else {
6669       bind(L_null);
6670     }
6671   }
6672 
6673   sig_index = stream.sig_index();
6674   to_index = stream.regs_index();
6675 
6676   if (mark_done && reg_state[from->value()] != reg_written) {
6677     // This is okay because no one else will write to that slot
6678     reg_state[from->value()] = reg_writable;
6679   }
6680   from_index--;
6681   assert(progress || (start_offset == offset()), "should not emit code");
6682   return done;
6683 }
6684 
6685 // Pack fields back into an inline type oop
6686 bool MacroAssembler::pack_inline_helper(const GrowableArray<SigEntry>* sig, int& sig_index, int vtarg_index,
6687                                         VMRegPair* from, int from_count, int& from_index, VMReg to,
6688                                         RegState reg_state[], Register val_array) {
6689   assert(sig->at(sig_index)._bt == T_METADATA, "should be at delimiter");
6690   assert(to->is_valid(), "destination must be valid");
6691 
6692   if (reg_state[to->value()] == reg_written) {
6693     skip_unpacked_fields(sig, sig_index, from, from_count, from_index);
6694     return true; // Already written
6695   }
6696 
6697   // The GC barrier expanded by store_heap_oop below may call into the
6698   // runtime so use callee-saved registers for any values that need to be
6699   // preserved. The GC barrier assembler should take care of saving the
6700   // Java argument registers.
6701   // TODO 8284443 Isn't it an issue if below code uses r14 as tmp when it contains a spilled value?
6702   // Be careful with r14 because it's used for spilling (see MacroAssembler::spill_reg_for).
6703   Register val_obj_tmp = r21;
6704   Register from_reg_tmp = r22;
6705   Register tmp1 = r14;
6706   Register tmp2 = r13;
6707   Register tmp3 = r12;
6708   Register val_obj = to->is_stack() ? val_obj_tmp : to->as_Register();
6709 
6710   assert_different_registers(val_obj_tmp, from_reg_tmp, tmp1, tmp2, tmp3, val_array);
6711 
6712   if (reg_state[to->value()] == reg_readonly) {
6713     if (!is_reg_in_unpacked_fields(sig, sig_index, to, from, from_count, from_index)) {
6714       skip_unpacked_fields(sig, sig_index, from, from_count, from_index);
6715       return false; // Not yet writable
6716     }
6717     val_obj = val_obj_tmp;
6718   }
6719 
6720   int index = arrayOopDesc::base_offset_in_bytes(T_OBJECT) + vtarg_index * type2aelembytes(T_OBJECT);
6721   load_heap_oop(val_obj, Address(val_array, index), tmp1, tmp2);
6722 
6723   ScalarizedInlineArgsStream stream(sig, sig_index, from, from_count, from_index);
6724   VMReg fromReg;
6725   BasicType bt;
6726   Label L_null;
6727   while (stream.next(fromReg, bt)) {
6728     assert(fromReg->is_valid(), "source must be valid");
6729     reg_state[fromReg->value()] = reg_writable;
6730 
6731     int off = sig->at(stream.sig_index())._offset;
6732     if (off == -1) {
6733       // Nullable inline type argument, emit null check
6734       Label L_notNull;
6735       if (fromReg->is_stack()) {
6736         int ld_off = fromReg->reg2stack() * VMRegImpl::stack_slot_size;
6737         ldrb(tmp2, Address(sp, ld_off));
6738         cbnz(tmp2, L_notNull);
6739       } else {
6740         cbnz(fromReg->as_Register(), L_notNull);
6741       }
6742       mov(val_obj, 0);
6743       b(L_null);
6744       bind(L_notNull);
6745       continue;
6746     }
6747 
6748     assert(off > 0, "offset in object should be positive");
6749     size_t size_in_bytes = is_java_primitive(bt) ? type2aelembytes(bt) : wordSize;
6750 
6751     // Pack the scalarized field into the value object.
6752     Address dst(val_obj, off);
6753 
6754     if (!fromReg->is_FloatRegister()) {
6755       Register src;
6756       if (fromReg->is_stack()) {
6757         src = from_reg_tmp;
6758         int ld_off = fromReg->reg2stack() * VMRegImpl::stack_slot_size;
6759         load_sized_value(src, Address(sp, ld_off), size_in_bytes, /* is_signed */ false);
6760       } else {
6761         src = fromReg->as_Register();
6762       }
6763       assert_different_registers(dst.base(), src, tmp1, tmp2, tmp3, val_array);
6764       if (is_reference_type(bt)) {
6765         store_heap_oop(dst, src, tmp1, tmp2, tmp3, IN_HEAP | ACCESS_WRITE | IS_DEST_UNINITIALIZED);
6766       } else {
6767         store_sized_value(dst, src, size_in_bytes);
6768       }
6769     } else if (bt == T_DOUBLE) {
6770       strd(fromReg->as_FloatRegister(), dst);
6771     } else {
6772       assert(bt == T_FLOAT, "must be float");
6773       strs(fromReg->as_FloatRegister(), dst);
6774     }
6775   }
6776   bind(L_null);
6777   sig_index = stream.sig_index();
6778   from_index = stream.regs_index();
6779 
6780   assert(reg_state[to->value()] == reg_writable, "must have already been read");
6781   bool success = move_helper(val_obj->as_VMReg(), to, T_OBJECT, reg_state);
6782   assert(success, "to register must be writeable");
6783 
6784   return true;
6785 }
6786 
6787 VMReg MacroAssembler::spill_reg_for(VMReg reg) {
6788   return (reg->is_FloatRegister()) ? v8->as_VMReg() : r14->as_VMReg();
6789 }
6790 
6791 void MacroAssembler::cache_wb(Address line) {
6792   assert(line.getMode() == Address::base_plus_offset, "mode should be base_plus_offset");
6793   assert(line.index() == noreg, "index should be noreg");
6794   assert(line.offset() == 0, "offset should be 0");
6795   // would like to assert this
6796   // assert(line._ext.shift == 0, "shift should be zero");
6797   if (VM_Version::supports_dcpop()) {
6798     // writeback using clear virtual address to point of persistence
6799     dc(Assembler::CVAP, line.base());
6800   } else {
6801     // no need to generate anything as Unsafe.writebackMemory should
6802     // never invoke this stub
6803   }
6804 }
6805 
6806 void MacroAssembler::cache_wbsync(bool is_pre) {
6807   // we only need a barrier post sync
6808   if (!is_pre) {
6809     membar(Assembler::AnyAny);
6810   }

7144 }
7145 
7146 // Implements lightweight-locking.
7147 // Branches to slow upon failure to lock the object, with ZF cleared.
7148 // Falls through upon success with ZF set.
7149 //
7150 //  - obj: the object to be locked
7151 //  - hdr: the header, already loaded from obj, will be destroyed
7152 //  - t1, t2: temporary registers, will be destroyed
7153 void MacroAssembler::lightweight_lock(Register obj, Register hdr, Register t1, Register t2, Label& slow) {
7154   assert(LockingMode == LM_LIGHTWEIGHT, "only used with new lightweight locking");
7155   assert_different_registers(obj, hdr, t1, t2, rscratch1);
7156 
7157   // Check if we would have space on lock-stack for the object.
7158   ldrw(t1, Address(rthread, JavaThread::lock_stack_top_offset()));
7159   cmpw(t1, (unsigned)LockStack::end_offset() - 1);
7160   br(Assembler::GT, slow);
7161 
7162   // Load (object->mark() | 1) into hdr
7163   orr(hdr, hdr, markWord::unlocked_value);
7164   if (EnableValhalla) {
7165     // Mask inline_type bit such that we go to the slow path if object is an inline type
7166     andr(hdr, hdr, ~((int) markWord::inline_type_bit_in_place));
7167   }
7168 
7169   // Clear lock-bits, into t2
7170   eor(t2, hdr, markWord::unlocked_value);
7171   // Try to swing header from unlocked to locked
7172   // Clobbers rscratch1 when UseLSE is false
7173   cmpxchg(/*addr*/ obj, /*expected*/ hdr, /*new*/ t2, Assembler::xword,
7174           /*acquire*/ true, /*release*/ true, /*weak*/ false, t1);
7175   br(Assembler::NE, slow);
7176 
7177   // After successful lock, push object on lock-stack
7178   ldrw(t1, Address(rthread, JavaThread::lock_stack_top_offset()));
7179   str(obj, Address(rthread, t1));
7180   addw(t1, t1, oopSize);
7181   strw(t1, Address(rthread, JavaThread::lock_stack_top_offset()));
7182 }
7183 
7184 // Implements lightweight-unlocking.
7185 // Branches to slow upon failure, with ZF cleared.
7186 // Falls through upon success, with ZF set.
7187 //
7188 // - obj: the object to be unlocked
< prev index next >