< prev index next >

src/hotspot/cpu/x86/macroAssembler_x86.cpp

Print this page

   10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
   11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
   12  * version 2 for more details (a copy is included in the LICENSE file that
   13  * accompanied this code).
   14  *
   15  * You should have received a copy of the GNU General Public License version
   16  * 2 along with this work; if not, write to the Free Software Foundation,
   17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
   18  *
   19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
   20  * or visit www.oracle.com if you need additional information or have any
   21  * questions.
   22  *
   23  */
   24 
   25 #include "asm/assembler.hpp"
   26 #include "asm/assembler.inline.hpp"
   27 #include "code/compiledIC.hpp"
   28 #include "compiler/compiler_globals.hpp"
   29 #include "compiler/disassembler.hpp"

   30 #include "crc32c.h"
   31 #include "gc/shared/barrierSet.hpp"
   32 #include "gc/shared/barrierSetAssembler.hpp"
   33 #include "gc/shared/collectedHeap.inline.hpp"
   34 #include "gc/shared/tlab_globals.hpp"
   35 #include "interpreter/bytecodeHistogram.hpp"
   36 #include "interpreter/interpreter.hpp"
   37 #include "interpreter/interpreterRuntime.hpp"
   38 #include "jvm.h"
   39 #include "memory/resourceArea.hpp"
   40 #include "memory/universe.hpp"
   41 #include "oops/accessDecorators.hpp"
   42 #include "oops/compressedKlass.inline.hpp"
   43 #include "oops/compressedOops.inline.hpp"
   44 #include "oops/klass.inline.hpp"

   45 #include "prims/methodHandles.hpp"
   46 #include "runtime/continuation.hpp"
   47 #include "runtime/interfaceSupport.inline.hpp"
   48 #include "runtime/javaThread.hpp"
   49 #include "runtime/jniHandles.hpp"
   50 #include "runtime/objectMonitor.hpp"
   51 #include "runtime/os.hpp"
   52 #include "runtime/safepoint.hpp"
   53 #include "runtime/safepointMechanism.hpp"
   54 #include "runtime/sharedRuntime.hpp"

   55 #include "runtime/stubRoutines.hpp"
   56 #include "utilities/checkedCast.hpp"
   57 #include "utilities/macros.hpp"




   58 
   59 #ifdef PRODUCT
   60 #define BLOCK_COMMENT(str) /* nothing */
   61 #define STOP(error) stop(error)
   62 #else
   63 #define BLOCK_COMMENT(str) block_comment(str)
   64 #define STOP(error) block_comment(error); stop(error)
   65 #endif
   66 
   67 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
   68 
   69 #ifdef ASSERT
   70 bool AbstractAssembler::pd_check_instruction_mark() { return true; }
   71 #endif
   72 
   73 static const Assembler::Condition reverse[] = {
   74     Assembler::noOverflow     /* overflow      = 0x0 */ ,
   75     Assembler::overflow       /* noOverflow    = 0x1 */ ,
   76     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
   77     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,

 1267 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
 1268   assert_different_registers(arg_0, c_rarg1, c_rarg2);
 1269   assert_different_registers(arg_1, c_rarg2);
 1270   pass_arg2(this, arg_2);
 1271   pass_arg1(this, arg_1);
 1272   pass_arg0(this, arg_0);
 1273   call_VM_leaf(entry_point, 3);
 1274 }
 1275 
 1276 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
 1277   assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3);
 1278   assert_different_registers(arg_1, c_rarg2, c_rarg3);
 1279   assert_different_registers(arg_2, c_rarg3);
 1280   pass_arg3(this, arg_3);
 1281   pass_arg2(this, arg_2);
 1282   pass_arg1(this, arg_1);
 1283   pass_arg0(this, arg_0);
 1284   call_VM_leaf(entry_point, 3);
 1285 }
 1286 




 1287 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
 1288   pass_arg0(this, arg_0);
 1289   MacroAssembler::call_VM_leaf_base(entry_point, 1);
 1290 }
 1291 
 1292 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
 1293   assert_different_registers(arg_0, c_rarg1);
 1294   pass_arg1(this, arg_1);
 1295   pass_arg0(this, arg_0);
 1296   MacroAssembler::call_VM_leaf_base(entry_point, 2);
 1297 }
 1298 
 1299 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
 1300   assert_different_registers(arg_0, c_rarg1, c_rarg2);
 1301   assert_different_registers(arg_1, c_rarg2);
 1302   pass_arg2(this, arg_2);
 1303   pass_arg1(this, arg_1);
 1304   pass_arg0(this, arg_0);
 1305   MacroAssembler::call_VM_leaf_base(entry_point, 3);
 1306 }

 2323     lea(rscratch, src);
 2324     Assembler::mulss(dst, Address(rscratch, 0));
 2325   }
 2326 }
 2327 
 2328 void MacroAssembler::null_check(Register reg, int offset) {
 2329   if (needs_explicit_null_check(offset)) {
 2330     // provoke OS null exception if reg is null by
 2331     // accessing M[reg] w/o changing any (non-CC) registers
 2332     // NOTE: cmpl is plenty here to provoke a segv
 2333     cmpptr(rax, Address(reg, 0));
 2334     // Note: should probably use testl(rax, Address(reg, 0));
 2335     //       may be shorter code (however, this version of
 2336     //       testl needs to be implemented first)
 2337   } else {
 2338     // nothing to do, (later) access of M[reg + offset]
 2339     // will provoke OS null exception if reg is null
 2340   }
 2341 }
 2342 















































































































 2343 void MacroAssembler::os_breakpoint() {
 2344   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
 2345   // (e.g., MSVC can't call ps() otherwise)
 2346   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
 2347 }
 2348 
 2349 void MacroAssembler::unimplemented(const char* what) {
 2350   const char* buf = nullptr;
 2351   {
 2352     ResourceMark rm;
 2353     stringStream ss;
 2354     ss.print("unimplemented: %s", what);
 2355     buf = code_string(ss.as_string());
 2356   }
 2357   stop(buf);
 2358 }
 2359 
 2360 #define XSTATE_BV 0x200
 2361 
 2362 void MacroAssembler::pop_CPU_state() {

 3411 }
 3412 
 3413 // C++ bool manipulation
 3414 void MacroAssembler::testbool(Register dst) {
 3415   if(sizeof(bool) == 1)
 3416     testb(dst, 0xff);
 3417   else if(sizeof(bool) == 2) {
 3418     // testw implementation needed for two byte bools
 3419     ShouldNotReachHere();
 3420   } else if(sizeof(bool) == 4)
 3421     testl(dst, dst);
 3422   else
 3423     // unsupported
 3424     ShouldNotReachHere();
 3425 }
 3426 
 3427 void MacroAssembler::testptr(Register dst, Register src) {
 3428   testq(dst, src);
 3429 }
 3430 






















































































































 3431 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
 3432 void MacroAssembler::tlab_allocate(Register obj,
 3433                                    Register var_size_in_bytes,
 3434                                    int con_size_in_bytes,
 3435                                    Register t1,
 3436                                    Register t2,
 3437                                    Label& slow_case) {
 3438   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 3439   bs->tlab_allocate(this, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case);
 3440 }
 3441 
 3442 RegSet MacroAssembler::call_clobbered_gp_registers() {
 3443   RegSet regs;
 3444   regs += RegSet::of(rax, rcx, rdx);
 3445 #ifndef _WINDOWS
 3446   regs += RegSet::of(rsi, rdi);
 3447 #endif
 3448   regs += RegSet::range(r8, r11);
 3449   if (UseAPX) {
 3450     regs += RegSet::range(r16, as_Register(Register::number_of_registers - 1));

 3614   xorptr(temp, temp);    // use _zero reg to clear memory (shorter code)
 3615   if (UseIncDec) {
 3616     shrptr(index, 3);  // divide by 8/16 and set carry flag if bit 2 was set
 3617   } else {
 3618     shrptr(index, 2);  // use 2 instructions to avoid partial flag stall
 3619     shrptr(index, 1);
 3620   }
 3621 
 3622   // initialize remaining object fields: index is a multiple of 2 now
 3623   {
 3624     Label loop;
 3625     bind(loop);
 3626     movptr(Address(address, index, Address::times_8, offset_in_bytes - 1*BytesPerWord), temp);
 3627     decrement(index);
 3628     jcc(Assembler::notZero, loop);
 3629   }
 3630 
 3631   bind(done);
 3632 }
 3633 



























 3634 // Look up the method for a megamorphic invokeinterface call.
 3635 // The target method is determined by <intf_klass, itable_index>.
 3636 // The receiver klass is in recv_klass.
 3637 // On success, the result will be in method_result, and execution falls through.
 3638 // On failure, execution transfers to the given label.
 3639 void MacroAssembler::lookup_interface_method(Register recv_klass,
 3640                                              Register intf_klass,
 3641                                              RegisterOrConstant itable_index,
 3642                                              Register method_result,
 3643                                              Register scan_temp,
 3644                                              Label& L_no_such_interface,
 3645                                              bool return_method) {
 3646   assert_different_registers(recv_klass, intf_klass, scan_temp);
 3647   assert_different_registers(method_result, intf_klass, scan_temp);
 3648   assert(recv_klass != method_result || !return_method,
 3649          "recv_klass can be destroyed when method isn't needed");
 3650 
 3651   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
 3652          "caller must use same register for non-constant itable index as for method");
 3653 

 4664   } else {
 4665     Label L;
 4666     jccb(negate_condition(cc), L);
 4667     movl(dst, src);
 4668     bind(L);
 4669   }
 4670 }
 4671 
 4672 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
 4673   if (VM_Version::supports_cmov()) {
 4674     cmovl(cc, dst, src);
 4675   } else {
 4676     Label L;
 4677     jccb(negate_condition(cc), L);
 4678     movl(dst, src);
 4679     bind(L);
 4680   }
 4681 }
 4682 
 4683 void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) {
 4684   if (!VerifyOops) return;




 4685 
 4686   BLOCK_COMMENT("verify_oop {");
 4687   push(rscratch1);
 4688   push(rax);                          // save rax
 4689   push(reg);                          // pass register argument
 4690 
 4691   // Pass register number to verify_oop_subroutine
 4692   const char* b = nullptr;
 4693   {
 4694     ResourceMark rm;
 4695     stringStream ss;
 4696     ss.print("verify_oop: %s: %s (%s:%d)", reg->name(), s, file, line);
 4697     b = code_string(ss.as_string());
 4698   }
 4699   AddressLiteral buffer((address) b, external_word_Relocation::spec_for_immediate());
 4700   pushptr(buffer.addr(), rscratch1);
 4701 
 4702   // call indirectly to solve generation ordering problem
 4703   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
 4704   call(rax);

 4723   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
 4724   int stackElementSize = Interpreter::stackElementSize;
 4725   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
 4726 #ifdef ASSERT
 4727   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
 4728   assert(offset1 - offset == stackElementSize, "correct arithmetic");
 4729 #endif
 4730   Register             scale_reg    = noreg;
 4731   Address::ScaleFactor scale_factor = Address::no_scale;
 4732   if (arg_slot.is_constant()) {
 4733     offset += arg_slot.as_constant() * stackElementSize;
 4734   } else {
 4735     scale_reg    = arg_slot.as_register();
 4736     scale_factor = Address::times(stackElementSize);
 4737   }
 4738   offset += wordSize;           // return PC is on stack
 4739   return Address(rsp, scale_reg, scale_factor, offset);
 4740 }
 4741 
 4742 void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) {
 4743   if (!VerifyOops) return;




 4744 
 4745   push(rscratch1);
 4746   push(rax); // save rax,
 4747   // addr may contain rsp so we will have to adjust it based on the push
 4748   // we just did (and on 64 bit we do two pushes)
 4749   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
 4750   // stores rax into addr which is backwards of what was intended.
 4751   if (addr.uses(rsp)) {
 4752     lea(rax, addr);
 4753     pushptr(Address(rax, 2 * BytesPerWord));
 4754   } else {
 4755     pushptr(addr);
 4756   }
 4757 
 4758   // Pass register number to verify_oop_subroutine
 4759   const char* b = nullptr;
 4760   {
 4761     ResourceMark rm;
 4762     stringStream ss;
 4763     ss.print("verify_oop_addr: %s (%s:%d)", s, file, line);

 5117 
 5118 void MacroAssembler::load_mirror(Register mirror, Register method, Register tmp) {
 5119   // get mirror
 5120   const int mirror_offset = in_bytes(Klass::java_mirror_offset());
 5121   load_method_holder(mirror, method);
 5122   movptr(mirror, Address(mirror, mirror_offset));
 5123   resolve_oop_handle(mirror, tmp);
 5124 }
 5125 
 5126 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) {
 5127   load_method_holder(rresult, rmethod);
 5128   movptr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset()));
 5129 }
 5130 
 5131 void MacroAssembler::load_method_holder(Register holder, Register method) {
 5132   movptr(holder, Address(method, Method::const_offset()));                      // ConstMethod*
 5133   movptr(holder, Address(holder, ConstMethod::constants_offset()));             // ConstantPool*
 5134   movptr(holder, Address(holder, ConstantPool::pool_holder_offset()));          // InstanceKlass*
 5135 }
 5136 










 5137 void MacroAssembler::load_narrow_klass_compact(Register dst, Register src) {
 5138   assert(UseCompactObjectHeaders, "expect compact object headers");
 5139   movq(dst, Address(src, oopDesc::mark_offset_in_bytes()));
 5140   shrq(dst, markWord::klass_shift);
 5141 }
 5142 
 5143 void MacroAssembler::load_klass(Register dst, Register src, Register tmp) {
 5144   assert_different_registers(src, tmp);
 5145   assert_different_registers(dst, tmp);
 5146 
 5147   if (UseCompactObjectHeaders) {
 5148     load_narrow_klass_compact(dst, src);
 5149     decode_klass_not_null(dst, tmp);
 5150   } else if (UseCompressedClassPointers) {
 5151     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
 5152     decode_klass_not_null(dst, tmp);
 5153   } else {
 5154     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
 5155   }
 5156 }
 5157 





 5158 void MacroAssembler::store_klass(Register dst, Register src, Register tmp) {
 5159   assert(!UseCompactObjectHeaders, "not with compact headers");
 5160   assert_different_registers(src, tmp);
 5161   assert_different_registers(dst, tmp);
 5162   if (UseCompressedClassPointers) {
 5163     encode_klass_not_null(src, tmp);
 5164     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
 5165   } else {
 5166     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
 5167   }
 5168 }
 5169 
 5170 void MacroAssembler::cmp_klass(Register klass, Register obj, Register tmp) {
 5171   if (UseCompactObjectHeaders) {
 5172     assert(tmp != noreg, "need tmp");
 5173     assert_different_registers(klass, obj, tmp);
 5174     load_narrow_klass_compact(tmp, obj);
 5175     cmpl(klass, tmp);
 5176   } else if (UseCompressedClassPointers) {
 5177     cmpl(klass, Address(obj, oopDesc::klass_offset_in_bytes()));

 5203   bool as_raw = (decorators & AS_RAW) != 0;
 5204   if (as_raw) {
 5205     bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1);
 5206   } else {
 5207     bs->load_at(this, decorators, type, dst, src, tmp1);
 5208   }
 5209 }
 5210 
 5211 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val,
 5212                                      Register tmp1, Register tmp2, Register tmp3) {
 5213   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 5214   decorators = AccessInternal::decorator_fixup(decorators, type);
 5215   bool as_raw = (decorators & AS_RAW) != 0;
 5216   if (as_raw) {
 5217     bs->BarrierSetAssembler::store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3);
 5218   } else {
 5219     bs->store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3);
 5220   }
 5221 }
 5222 








































 5223 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1, DecoratorSet decorators) {
 5224   access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1);
 5225 }
 5226 
 5227 // Doesn't do verification, generates fixed size code
 5228 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1, DecoratorSet decorators) {
 5229   access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1);
 5230 }
 5231 
 5232 void MacroAssembler::store_heap_oop(Address dst, Register val, Register tmp1,
 5233                                     Register tmp2, Register tmp3, DecoratorSet decorators) {
 5234   access_store_at(T_OBJECT, IN_HEAP | decorators, dst, val, tmp1, tmp2, tmp3);
 5235 }
 5236 
 5237 // Used for storing nulls.
 5238 void MacroAssembler::store_heap_oop_null(Address dst) {
 5239   access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg, noreg);
 5240 }
 5241 
 5242 void MacroAssembler::store_klass_gap(Register dst, Register src) {

 5546   Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
 5547 }
 5548 
 5549 void MacroAssembler::reinit_heapbase() {
 5550   if (UseCompressedOops) {
 5551     if (Universe::heap() != nullptr) {
 5552       if (CompressedOops::base() == nullptr) {
 5553         MacroAssembler::xorptr(r12_heapbase, r12_heapbase);
 5554       } else {
 5555         mov64(r12_heapbase, (int64_t)CompressedOops::base());
 5556       }
 5557     } else {
 5558       movptr(r12_heapbase, ExternalAddress(CompressedOops::base_addr()));
 5559     }
 5560   }
 5561 }
 5562 
 5563 #if COMPILER2_OR_JVMCI
 5564 
 5565 // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM/ZMM registers
 5566 void MacroAssembler::xmm_clear_mem(Register base, Register cnt, Register rtmp, XMMRegister xtmp, KRegister mask) {
 5567   // cnt - number of qwords (8-byte words).
 5568   // base - start address, qword aligned.
 5569   Label L_zero_64_bytes, L_loop, L_sloop, L_tail, L_end;
 5570   bool use64byteVector = (MaxVectorSize == 64) && (VM_Version::avx3_threshold() == 0);
 5571   if (use64byteVector) {
 5572     vpxor(xtmp, xtmp, xtmp, AVX_512bit);
 5573   } else if (MaxVectorSize >= 32) {
 5574     vpxor(xtmp, xtmp, xtmp, AVX_256bit);


 5575   } else {
 5576     pxor(xtmp, xtmp);

 5577   }
 5578   jmp(L_zero_64_bytes);
 5579 
 5580   BIND(L_loop);
 5581   if (MaxVectorSize >= 32) {
 5582     fill64(base, 0, xtmp, use64byteVector);
 5583   } else {
 5584     movdqu(Address(base,  0), xtmp);
 5585     movdqu(Address(base, 16), xtmp);
 5586     movdqu(Address(base, 32), xtmp);
 5587     movdqu(Address(base, 48), xtmp);
 5588   }
 5589   addptr(base, 64);
 5590 
 5591   BIND(L_zero_64_bytes);
 5592   subptr(cnt, 8);
 5593   jccb(Assembler::greaterEqual, L_loop);
 5594 
 5595   // Copy trailing 64 bytes
 5596   if (use64byteVector) {
 5597     addptr(cnt, 8);
 5598     jccb(Assembler::equal, L_end);
 5599     fill64_masked(3, base, 0, xtmp, mask, cnt, rtmp, true);
 5600     jmp(L_end);
 5601   } else {
 5602     addptr(cnt, 4);
 5603     jccb(Assembler::less, L_tail);
 5604     if (MaxVectorSize >= 32) {
 5605       vmovdqu(Address(base, 0), xtmp);
 5606     } else {
 5607       movdqu(Address(base,  0), xtmp);
 5608       movdqu(Address(base, 16), xtmp);
 5609     }
 5610   }
 5611   addptr(base, 32);
 5612   subptr(cnt, 4);
 5613 
 5614   BIND(L_tail);
 5615   addptr(cnt, 4);
 5616   jccb(Assembler::lessEqual, L_end);
 5617   if (UseAVX > 2 && MaxVectorSize >= 32 && VM_Version::supports_avx512vl()) {
 5618     fill32_masked(3, base, 0, xtmp, mask, cnt, rtmp);
 5619   } else {
 5620     decrement(cnt);
 5621 
 5622     BIND(L_sloop);
 5623     movq(Address(base, 0), xtmp);
 5624     addptr(base, 8);
 5625     decrement(cnt);
 5626     jccb(Assembler::greaterEqual, L_sloop);
 5627   }
 5628   BIND(L_end);
 5629 }
 5630 






















































































































































































































































































































































































































 5631 // Clearing constant sized memory using YMM/ZMM registers.
 5632 void MacroAssembler::clear_mem(Register base, int cnt, Register rtmp, XMMRegister xtmp, KRegister mask) {
 5633   assert(UseAVX > 2 && VM_Version::supports_avx512vl(), "");
 5634   bool use64byteVector = (MaxVectorSize > 32) && (VM_Version::avx3_threshold() == 0);
 5635 
 5636   int vector64_count = (cnt & (~0x7)) >> 3;
 5637   cnt = cnt & 0x7;
 5638   const int fill64_per_loop = 4;
 5639   const int max_unrolled_fill64 = 8;
 5640 
 5641   // 64 byte initialization loop.
 5642   vpxor(xtmp, xtmp, xtmp, use64byteVector ? AVX_512bit : AVX_256bit);
 5643   int start64 = 0;
 5644   if (vector64_count > max_unrolled_fill64) {
 5645     Label LOOP;
 5646     Register index = rtmp;
 5647 
 5648     start64 = vector64_count - (vector64_count % fill64_per_loop);
 5649 
 5650     movl(index, 0);

 5700         break;
 5701       case 7:
 5702         if (use64byteVector) {
 5703           movl(rtmp, 0x7F);
 5704           kmovwl(mask, rtmp);
 5705           evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit);
 5706         } else {
 5707           evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit);
 5708           movl(rtmp, 0x7);
 5709           kmovwl(mask, rtmp);
 5710           evmovdqu(T_LONG, mask, Address(base, disp + 32), xtmp, true, Assembler::AVX_256bit);
 5711         }
 5712         break;
 5713       default:
 5714         fatal("Unexpected length : %d\n",cnt);
 5715         break;
 5716     }
 5717   }
 5718 }
 5719 
 5720 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp, XMMRegister xtmp,
 5721                                bool is_large, KRegister mask) {
 5722   // cnt      - number of qwords (8-byte words).
 5723   // base     - start address, qword aligned.
 5724   // is_large - if optimizers know cnt is larger than InitArrayShortSize
 5725   assert(base==rdi, "base register must be edi for rep stos");
 5726   assert(tmp==rax,   "tmp register must be eax for rep stos");
 5727   assert(cnt==rcx,   "cnt register must be ecx for rep stos");
 5728   assert(InitArrayShortSize % BytesPerLong == 0,
 5729     "InitArrayShortSize should be the multiple of BytesPerLong");
 5730 
 5731   Label DONE;
 5732   if (!is_large || !UseXMMForObjInit) {
 5733     xorptr(tmp, tmp);
 5734   }
 5735 
 5736   if (!is_large) {
 5737     Label LOOP, LONG;
 5738     cmpptr(cnt, InitArrayShortSize/BytesPerLong);
 5739     jccb(Assembler::greater, LONG);
 5740 
 5741     decrement(cnt);
 5742     jccb(Assembler::negative, DONE); // Zero length
 5743 
 5744     // Use individual pointer-sized stores for small counts:
 5745     BIND(LOOP);
 5746     movptr(Address(base, cnt, Address::times_ptr), tmp);
 5747     decrement(cnt);
 5748     jccb(Assembler::greaterEqual, LOOP);
 5749     jmpb(DONE);
 5750 
 5751     BIND(LONG);
 5752   }
 5753 
 5754   // Use longer rep-prefixed ops for non-small counts:
 5755   if (UseFastStosb) {
 5756     shlptr(cnt, 3); // convert to number of bytes
 5757     rep_stosb();
 5758   } else if (UseXMMForObjInit) {
 5759     xmm_clear_mem(base, cnt, tmp, xtmp, mask);
 5760   } else {
 5761     rep_stos();
 5762   }
 5763 
 5764   BIND(DONE);
 5765 }
 5766 
 5767 #endif //COMPILER2_OR_JVMCI
 5768 
 5769 
 5770 void MacroAssembler::generate_fill(BasicType t, bool aligned,
 5771                                    Register to, Register value, Register count,
 5772                                    Register rtmp, XMMRegister xtmp) {
 5773   ShortBranchVerifier sbv(this);
 5774   assert_different_registers(to, value, count, rtmp);
 5775   Label L_exit;
 5776   Label L_fill_2_bytes, L_fill_4_bytes;
 5777 
 5778 #if defined(COMPILER2)
 5779   if(MaxVectorSize >=32 &&

 9596 
 9597   // Load top.
 9598   movl(top, Address(thread, JavaThread::lock_stack_top_offset()));
 9599 
 9600   // Check if the lock-stack is full.
 9601   cmpl(top, LockStack::end_offset());
 9602   jcc(Assembler::greaterEqual, slow);
 9603 
 9604   // Check for recursion.
 9605   cmpptr(obj, Address(thread, top, Address::times_1, -oopSize));
 9606   jcc(Assembler::equal, push);
 9607 
 9608   // Check header for monitor (0b10).
 9609   testptr(reg_rax, markWord::monitor_value);
 9610   jcc(Assembler::notZero, slow);
 9611 
 9612   // Try to lock. Transition lock bits 0b01 => 0b00
 9613   movptr(tmp, reg_rax);
 9614   andptr(tmp, ~(int32_t)markWord::unlocked_value);
 9615   orptr(reg_rax, markWord::unlocked_value);




 9616   lock(); cmpxchgptr(tmp, Address(obj, oopDesc::mark_offset_in_bytes()));
 9617   jcc(Assembler::notEqual, slow);
 9618 
 9619   // Restore top, CAS clobbers register.
 9620   movl(top, Address(thread, JavaThread::lock_stack_top_offset()));
 9621 
 9622   bind(push);
 9623   // After successful lock, push object on lock-stack.
 9624   movptr(Address(thread, top), obj);
 9625   incrementl(top, oopSize);
 9626   movl(Address(thread, JavaThread::lock_stack_top_offset()), top);
 9627 }
 9628 
 9629 // Implements lightweight-unlocking.
 9630 //
 9631 // obj: the object to be unlocked
 9632 // reg_rax: rax
 9633 // thread: the thread
 9634 // tmp: a temporary register
 9635 void MacroAssembler::lightweight_unlock(Register obj, Register reg_rax, Register tmp, Label& slow) {

   10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
   11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
   12  * version 2 for more details (a copy is included in the LICENSE file that
   13  * accompanied this code).
   14  *
   15  * You should have received a copy of the GNU General Public License version
   16  * 2 along with this work; if not, write to the Free Software Foundation,
   17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
   18  *
   19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
   20  * or visit www.oracle.com if you need additional information or have any
   21  * questions.
   22  *
   23  */
   24 
   25 #include "asm/assembler.hpp"
   26 #include "asm/assembler.inline.hpp"
   27 #include "code/compiledIC.hpp"
   28 #include "compiler/compiler_globals.hpp"
   29 #include "compiler/disassembler.hpp"
   30 #include "ci/ciInlineKlass.hpp"
   31 #include "crc32c.h"
   32 #include "gc/shared/barrierSet.hpp"
   33 #include "gc/shared/barrierSetAssembler.hpp"
   34 #include "gc/shared/collectedHeap.inline.hpp"
   35 #include "gc/shared/tlab_globals.hpp"
   36 #include "interpreter/bytecodeHistogram.hpp"
   37 #include "interpreter/interpreter.hpp"
   38 #include "interpreter/interpreterRuntime.hpp"
   39 #include "jvm.h"
   40 #include "memory/resourceArea.hpp"
   41 #include "memory/universe.hpp"
   42 #include "oops/accessDecorators.hpp"
   43 #include "oops/compressedKlass.inline.hpp"
   44 #include "oops/compressedOops.inline.hpp"
   45 #include "oops/klass.inline.hpp"
   46 #include "oops/resolvedFieldEntry.hpp"
   47 #include "prims/methodHandles.hpp"
   48 #include "runtime/continuation.hpp"
   49 #include "runtime/interfaceSupport.inline.hpp"
   50 #include "runtime/javaThread.hpp"
   51 #include "runtime/jniHandles.hpp"
   52 #include "runtime/objectMonitor.hpp"
   53 #include "runtime/os.hpp"
   54 #include "runtime/safepoint.hpp"
   55 #include "runtime/safepointMechanism.hpp"
   56 #include "runtime/sharedRuntime.hpp"
   57 #include "runtime/signature_cc.hpp"
   58 #include "runtime/stubRoutines.hpp"
   59 #include "utilities/checkedCast.hpp"
   60 #include "utilities/macros.hpp"
   61 #include "vmreg_x86.inline.hpp"
   62 #ifdef COMPILER2
   63 #include "opto/output.hpp"
   64 #endif
   65 
   66 #ifdef PRODUCT
   67 #define BLOCK_COMMENT(str) /* nothing */
   68 #define STOP(error) stop(error)
   69 #else
   70 #define BLOCK_COMMENT(str) block_comment(str)
   71 #define STOP(error) block_comment(error); stop(error)
   72 #endif
   73 
   74 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
   75 
   76 #ifdef ASSERT
   77 bool AbstractAssembler::pd_check_instruction_mark() { return true; }
   78 #endif
   79 
   80 static const Assembler::Condition reverse[] = {
   81     Assembler::noOverflow     /* overflow      = 0x0 */ ,
   82     Assembler::overflow       /* noOverflow    = 0x1 */ ,
   83     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
   84     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,

 1274 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
 1275   assert_different_registers(arg_0, c_rarg1, c_rarg2);
 1276   assert_different_registers(arg_1, c_rarg2);
 1277   pass_arg2(this, arg_2);
 1278   pass_arg1(this, arg_1);
 1279   pass_arg0(this, arg_0);
 1280   call_VM_leaf(entry_point, 3);
 1281 }
 1282 
 1283 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
 1284   assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3);
 1285   assert_different_registers(arg_1, c_rarg2, c_rarg3);
 1286   assert_different_registers(arg_2, c_rarg3);
 1287   pass_arg3(this, arg_3);
 1288   pass_arg2(this, arg_2);
 1289   pass_arg1(this, arg_1);
 1290   pass_arg0(this, arg_0);
 1291   call_VM_leaf(entry_point, 3);
 1292 }
 1293 
 1294 void MacroAssembler::super_call_VM_leaf(address entry_point) {
 1295   MacroAssembler::call_VM_leaf_base(entry_point, 1);
 1296 }
 1297 
 1298 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
 1299   pass_arg0(this, arg_0);
 1300   MacroAssembler::call_VM_leaf_base(entry_point, 1);
 1301 }
 1302 
 1303 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
 1304   assert_different_registers(arg_0, c_rarg1);
 1305   pass_arg1(this, arg_1);
 1306   pass_arg0(this, arg_0);
 1307   MacroAssembler::call_VM_leaf_base(entry_point, 2);
 1308 }
 1309 
 1310 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
 1311   assert_different_registers(arg_0, c_rarg1, c_rarg2);
 1312   assert_different_registers(arg_1, c_rarg2);
 1313   pass_arg2(this, arg_2);
 1314   pass_arg1(this, arg_1);
 1315   pass_arg0(this, arg_0);
 1316   MacroAssembler::call_VM_leaf_base(entry_point, 3);
 1317 }

 2334     lea(rscratch, src);
 2335     Assembler::mulss(dst, Address(rscratch, 0));
 2336   }
 2337 }
 2338 
 2339 void MacroAssembler::null_check(Register reg, int offset) {
 2340   if (needs_explicit_null_check(offset)) {
 2341     // provoke OS null exception if reg is null by
 2342     // accessing M[reg] w/o changing any (non-CC) registers
 2343     // NOTE: cmpl is plenty here to provoke a segv
 2344     cmpptr(rax, Address(reg, 0));
 2345     // Note: should probably use testl(rax, Address(reg, 0));
 2346     //       may be shorter code (however, this version of
 2347     //       testl needs to be implemented first)
 2348   } else {
 2349     // nothing to do, (later) access of M[reg + offset]
 2350     // will provoke OS null exception if reg is null
 2351   }
 2352 }
 2353 
 2354 void MacroAssembler::test_markword_is_inline_type(Register markword, Label& is_inline_type) {
 2355   andptr(markword, markWord::inline_type_mask_in_place);
 2356   cmpptr(markword, markWord::inline_type_pattern);
 2357   jcc(Assembler::equal, is_inline_type);
 2358 }
 2359 
 2360 void MacroAssembler::test_klass_is_inline_type(Register klass, Register temp_reg, Label& is_inline_type) {
 2361   load_unsigned_short(temp_reg, Address(klass, Klass::access_flags_offset()));
 2362   testl(temp_reg, JVM_ACC_IDENTITY);
 2363   jcc(Assembler::zero, is_inline_type);
 2364 }
 2365 
 2366 void MacroAssembler::test_oop_is_not_inline_type(Register object, Register tmp, Label& not_inline_type) {
 2367   testptr(object, object);
 2368   jcc(Assembler::zero, not_inline_type);
 2369   const int is_inline_type_mask = markWord::inline_type_pattern;
 2370   movptr(tmp, Address(object, oopDesc::mark_offset_in_bytes()));
 2371   andptr(tmp, is_inline_type_mask);
 2372   cmpptr(tmp, is_inline_type_mask);
 2373   jcc(Assembler::notEqual, not_inline_type);
 2374 }
 2375 
 2376 void MacroAssembler::test_field_is_null_free_inline_type(Register flags, Register temp_reg, Label& is_null_free_inline_type) {
 2377   movl(temp_reg, flags);
 2378   testl(temp_reg, 1 << ResolvedFieldEntry::is_null_free_inline_type_shift);
 2379   jcc(Assembler::notEqual, is_null_free_inline_type);
 2380 }
 2381 
 2382 void MacroAssembler::test_field_is_not_null_free_inline_type(Register flags, Register temp_reg, Label& not_null_free_inline_type) {
 2383   movl(temp_reg, flags);
 2384   testl(temp_reg, 1 << ResolvedFieldEntry::is_null_free_inline_type_shift);
 2385   jcc(Assembler::equal, not_null_free_inline_type);
 2386 }
 2387 
 2388 void MacroAssembler::test_field_is_flat(Register flags, Register temp_reg, Label& is_flat) {
 2389   movl(temp_reg, flags);
 2390   testl(temp_reg, 1 << ResolvedFieldEntry::is_flat_shift);
 2391   jcc(Assembler::notEqual, is_flat);
 2392 }
 2393 
 2394 void MacroAssembler::test_field_has_null_marker(Register flags, Register temp_reg, Label& has_null_marker) {
 2395   movl(temp_reg, flags);
 2396   testl(temp_reg, 1 << ResolvedFieldEntry::has_null_marker_shift);
 2397   jcc(Assembler::notEqual, has_null_marker);
 2398 }
 2399 
 2400 void MacroAssembler::test_oop_prototype_bit(Register oop, Register temp_reg, int32_t test_bit, bool jmp_set, Label& jmp_label) {
 2401   Label test_mark_word;
 2402   // load mark word
 2403   movptr(temp_reg, Address(oop, oopDesc::mark_offset_in_bytes()));
 2404   // check displaced
 2405   testl(temp_reg, markWord::unlocked_value);
 2406   jccb(Assembler::notZero, test_mark_word);
 2407   // slow path use klass prototype
 2408   push(rscratch1);
 2409   load_prototype_header(temp_reg, oop, rscratch1);
 2410   pop(rscratch1);
 2411 
 2412   bind(test_mark_word);
 2413   testl(temp_reg, test_bit);
 2414   jcc((jmp_set) ? Assembler::notZero : Assembler::zero, jmp_label);
 2415 }
 2416 
 2417 void MacroAssembler::test_flat_array_oop(Register oop, Register temp_reg,
 2418                                          Label& is_flat_array) {
 2419 #ifdef _LP64
 2420   test_oop_prototype_bit(oop, temp_reg, markWord::flat_array_bit_in_place, true, is_flat_array);
 2421 #else
 2422   load_klass(temp_reg, oop, noreg);
 2423   movl(temp_reg, Address(temp_reg, Klass::layout_helper_offset()));
 2424   test_flat_array_layout(temp_reg, is_flat_array);
 2425 #endif
 2426 }
 2427 
 2428 void MacroAssembler::test_non_flat_array_oop(Register oop, Register temp_reg,
 2429                                              Label& is_non_flat_array) {
 2430 #ifdef _LP64
 2431   test_oop_prototype_bit(oop, temp_reg, markWord::flat_array_bit_in_place, false, is_non_flat_array);
 2432 #else
 2433   load_klass(temp_reg, oop, noreg);
 2434   movl(temp_reg, Address(temp_reg, Klass::layout_helper_offset()));
 2435   test_non_flat_array_layout(temp_reg, is_non_flat_array);
 2436 #endif
 2437 }
 2438 
 2439 void MacroAssembler::test_null_free_array_oop(Register oop, Register temp_reg, Label&is_null_free_array) {
 2440 #ifdef _LP64
 2441   test_oop_prototype_bit(oop, temp_reg, markWord::null_free_array_bit_in_place, true, is_null_free_array);
 2442 #else
 2443   Unimplemented();
 2444 #endif
 2445 }
 2446 
 2447 void MacroAssembler::test_non_null_free_array_oop(Register oop, Register temp_reg, Label&is_non_null_free_array) {
 2448 #ifdef _LP64
 2449   test_oop_prototype_bit(oop, temp_reg, markWord::null_free_array_bit_in_place, false, is_non_null_free_array);
 2450 #else
 2451   Unimplemented();
 2452 #endif
 2453 }
 2454 
 2455 void MacroAssembler::test_flat_array_layout(Register lh, Label& is_flat_array) {
 2456   testl(lh, Klass::_lh_array_tag_flat_value_bit_inplace);
 2457   jcc(Assembler::notZero, is_flat_array);
 2458 }
 2459 
 2460 void MacroAssembler::test_non_flat_array_layout(Register lh, Label& is_non_flat_array) {
 2461   testl(lh, Klass::_lh_array_tag_flat_value_bit_inplace);
 2462   jcc(Assembler::zero, is_non_flat_array);
 2463 }
 2464 
 2465 void MacroAssembler::os_breakpoint() {
 2466   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
 2467   // (e.g., MSVC can't call ps() otherwise)
 2468   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
 2469 }
 2470 
 2471 void MacroAssembler::unimplemented(const char* what) {
 2472   const char* buf = nullptr;
 2473   {
 2474     ResourceMark rm;
 2475     stringStream ss;
 2476     ss.print("unimplemented: %s", what);
 2477     buf = code_string(ss.as_string());
 2478   }
 2479   stop(buf);
 2480 }
 2481 
 2482 #define XSTATE_BV 0x200
 2483 
 2484 void MacroAssembler::pop_CPU_state() {

 3533 }
 3534 
 3535 // C++ bool manipulation
 3536 void MacroAssembler::testbool(Register dst) {
 3537   if(sizeof(bool) == 1)
 3538     testb(dst, 0xff);
 3539   else if(sizeof(bool) == 2) {
 3540     // testw implementation needed for two byte bools
 3541     ShouldNotReachHere();
 3542   } else if(sizeof(bool) == 4)
 3543     testl(dst, dst);
 3544   else
 3545     // unsupported
 3546     ShouldNotReachHere();
 3547 }
 3548 
 3549 void MacroAssembler::testptr(Register dst, Register src) {
 3550   testq(dst, src);
 3551 }
 3552 
 3553 // Object / value buffer allocation...
 3554 //
 3555 // Kills klass and rsi on LP64
 3556 void MacroAssembler::allocate_instance(Register klass, Register new_obj,
 3557                                        Register t1, Register t2,
 3558                                        bool clear_fields, Label& alloc_failed)
 3559 {
 3560   Label done, initialize_header, initialize_object, slow_case, slow_case_no_pop;
 3561   Register layout_size = t1;
 3562   assert(new_obj == rax, "needs to be rax");
 3563   assert_different_registers(klass, new_obj, t1, t2);
 3564 
 3565   // get instance_size in InstanceKlass (scaled to a count of bytes)
 3566   movl(layout_size, Address(klass, Klass::layout_helper_offset()));
 3567   // test to see if it is malformed in some way
 3568   testl(layout_size, Klass::_lh_instance_slow_path_bit);
 3569   jcc(Assembler::notZero, slow_case_no_pop);
 3570 
 3571   // Allocate the instance:
 3572   //  If TLAB is enabled:
 3573   //    Try to allocate in the TLAB.
 3574   //    If fails, go to the slow path.
 3575   //  Else If inline contiguous allocations are enabled:
 3576   //    Try to allocate in eden.
 3577   //    If fails due to heap end, go to slow path.
 3578   //
 3579   //  If TLAB is enabled OR inline contiguous is enabled:
 3580   //    Initialize the allocation.
 3581   //    Exit.
 3582   //
 3583   //  Go to slow path.
 3584 
 3585   push(klass);
 3586   if (UseTLAB) {
 3587     tlab_allocate(new_obj, layout_size, 0, klass, t2, slow_case);
 3588     if (ZeroTLAB || (!clear_fields)) {
 3589       // the fields have been already cleared
 3590       jmp(initialize_header);
 3591     } else {
 3592       // initialize both the header and fields
 3593       jmp(initialize_object);
 3594     }
 3595   } else {
 3596     jmp(slow_case);
 3597   }
 3598 
 3599   // If UseTLAB is true, the object is created above and there is an initialize need.
 3600   // Otherwise, skip and go to the slow path.
 3601   if (UseTLAB) {
 3602     if (clear_fields) {
 3603       // The object is initialized before the header.  If the object size is
 3604       // zero, go directly to the header initialization.
 3605       bind(initialize_object);
 3606       if (UseCompactObjectHeaders) {
 3607         assert(is_aligned(oopDesc::base_offset_in_bytes(), BytesPerLong), "oop base offset must be 8-byte-aligned");
 3608         decrement(layout_size, oopDesc::base_offset_in_bytes());
 3609       } else {
 3610         decrement(layout_size, sizeof(oopDesc));
 3611       }
 3612       jcc(Assembler::zero, initialize_header);
 3613 
 3614       // Initialize topmost object field, divide size by 8, check if odd and
 3615       // test if zero.
 3616       Register zero = klass;
 3617       xorl(zero, zero);    // use zero reg to clear memory (shorter code)
 3618       shrl(layout_size, LogBytesPerLong); // divide by 2*oopSize and set carry flag if odd
 3619 
 3620   #ifdef ASSERT
 3621       // make sure instance_size was multiple of 8
 3622       Label L;
 3623       // Ignore partial flag stall after shrl() since it is debug VM
 3624       jcc(Assembler::carryClear, L);
 3625       stop("object size is not multiple of 2 - adjust this code");
 3626       bind(L);
 3627       // must be > 0, no extra check needed here
 3628   #endif
 3629 
 3630       // initialize remaining object fields: instance_size was a multiple of 8
 3631       {
 3632         Label loop;
 3633         bind(loop);
 3634         int header_size_bytes = oopDesc::header_size() * HeapWordSize;
 3635         assert(is_aligned(header_size_bytes, BytesPerLong), "oop header size must be 8-byte-aligned");
 3636         movptr(Address(new_obj, layout_size, Address::times_8, header_size_bytes - 1*oopSize), zero);
 3637         decrement(layout_size);
 3638         jcc(Assembler::notZero, loop);
 3639       }
 3640     } // clear_fields
 3641 
 3642     // initialize object header only.
 3643     bind(initialize_header);
 3644     if (UseCompactObjectHeaders || EnableValhalla) {
 3645       pop(klass);
 3646       Register mark_word = t2;
 3647       movptr(mark_word, Address(klass, Klass::prototype_header_offset()));
 3648       movptr(Address(new_obj, oopDesc::mark_offset_in_bytes ()), mark_word);
 3649     } else {
 3650      movptr(Address(new_obj, oopDesc::mark_offset_in_bytes()),
 3651             (intptr_t)markWord::prototype().value()); // header
 3652      pop(klass);   // get saved klass back in the register.
 3653     }
 3654     if (!UseCompactObjectHeaders) {
 3655       xorl(rsi, rsi);                 // use zero reg to clear memory (shorter code)
 3656       store_klass_gap(new_obj, rsi);  // zero klass gap for compressed oops
 3657       movptr(t2, klass);         // preserve klass
 3658       store_klass(new_obj, t2, rscratch1);  // src klass reg is potentially compressed
 3659     }
 3660     jmp(done);
 3661   }
 3662 
 3663   bind(slow_case);
 3664   pop(klass);
 3665   bind(slow_case_no_pop);
 3666   jmp(alloc_failed);
 3667 
 3668   bind(done);
 3669 }
 3670 
 3671 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
 3672 void MacroAssembler::tlab_allocate(Register obj,
 3673                                    Register var_size_in_bytes,
 3674                                    int con_size_in_bytes,
 3675                                    Register t1,
 3676                                    Register t2,
 3677                                    Label& slow_case) {
 3678   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 3679   bs->tlab_allocate(this, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case);
 3680 }
 3681 
 3682 RegSet MacroAssembler::call_clobbered_gp_registers() {
 3683   RegSet regs;
 3684   regs += RegSet::of(rax, rcx, rdx);
 3685 #ifndef _WINDOWS
 3686   regs += RegSet::of(rsi, rdi);
 3687 #endif
 3688   regs += RegSet::range(r8, r11);
 3689   if (UseAPX) {
 3690     regs += RegSet::range(r16, as_Register(Register::number_of_registers - 1));

 3854   xorptr(temp, temp);    // use _zero reg to clear memory (shorter code)
 3855   if (UseIncDec) {
 3856     shrptr(index, 3);  // divide by 8/16 and set carry flag if bit 2 was set
 3857   } else {
 3858     shrptr(index, 2);  // use 2 instructions to avoid partial flag stall
 3859     shrptr(index, 1);
 3860   }
 3861 
 3862   // initialize remaining object fields: index is a multiple of 2 now
 3863   {
 3864     Label loop;
 3865     bind(loop);
 3866     movptr(Address(address, index, Address::times_8, offset_in_bytes - 1*BytesPerWord), temp);
 3867     decrement(index);
 3868     jcc(Assembler::notZero, loop);
 3869   }
 3870 
 3871   bind(done);
 3872 }
 3873 
 3874 void MacroAssembler::get_inline_type_field_klass(Register holder_klass, Register index, Register inline_klass) {
 3875   inline_layout_info(holder_klass, index, inline_klass);
 3876   movptr(inline_klass, Address(inline_klass, InlineLayoutInfo::klass_offset()));
 3877 }
 3878 
 3879 void MacroAssembler::inline_layout_info(Register holder_klass, Register index, Register layout_info) {
 3880   movptr(layout_info, Address(holder_klass, InstanceKlass::inline_layout_info_array_offset()));
 3881 #ifdef ASSERT
 3882   {
 3883     Label done;
 3884     cmpptr(layout_info, 0);
 3885     jcc(Assembler::notEqual, done);
 3886     stop("inline_layout_info_array is null");
 3887     bind(done);
 3888   }
 3889 #endif
 3890 
 3891   InlineLayoutInfo array[2];
 3892   int size = (char*)&array[1] - (char*)&array[0]; // computing size of array elements
 3893   if (is_power_of_2(size)) {
 3894     shll(index, log2i_exact(size)); // Scale index by power of 2
 3895   } else {
 3896     imull(index, index, size); // Scale the index to be the entry index * array_element_size
 3897   }
 3898   lea(layout_info, Address(layout_info, index, Address::times_1, Array<InlineLayoutInfo>::base_offset_in_bytes()));
 3899 }
 3900 
 3901 // Look up the method for a megamorphic invokeinterface call.
 3902 // The target method is determined by <intf_klass, itable_index>.
 3903 // The receiver klass is in recv_klass.
 3904 // On success, the result will be in method_result, and execution falls through.
 3905 // On failure, execution transfers to the given label.
 3906 void MacroAssembler::lookup_interface_method(Register recv_klass,
 3907                                              Register intf_klass,
 3908                                              RegisterOrConstant itable_index,
 3909                                              Register method_result,
 3910                                              Register scan_temp,
 3911                                              Label& L_no_such_interface,
 3912                                              bool return_method) {
 3913   assert_different_registers(recv_klass, intf_klass, scan_temp);
 3914   assert_different_registers(method_result, intf_klass, scan_temp);
 3915   assert(recv_klass != method_result || !return_method,
 3916          "recv_klass can be destroyed when method isn't needed");
 3917 
 3918   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
 3919          "caller must use same register for non-constant itable index as for method");
 3920 

 4931   } else {
 4932     Label L;
 4933     jccb(negate_condition(cc), L);
 4934     movl(dst, src);
 4935     bind(L);
 4936   }
 4937 }
 4938 
 4939 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
 4940   if (VM_Version::supports_cmov()) {
 4941     cmovl(cc, dst, src);
 4942   } else {
 4943     Label L;
 4944     jccb(negate_condition(cc), L);
 4945     movl(dst, src);
 4946     bind(L);
 4947   }
 4948 }
 4949 
 4950 void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) {
 4951   if (!VerifyOops || VerifyAdapterSharing) {
 4952     // Below address of the code string confuses VerifyAdapterSharing
 4953     // because it may differ between otherwise equivalent adapters.
 4954     return;
 4955   }
 4956 
 4957   BLOCK_COMMENT("verify_oop {");
 4958   push(rscratch1);
 4959   push(rax);                          // save rax
 4960   push(reg);                          // pass register argument
 4961 
 4962   // Pass register number to verify_oop_subroutine
 4963   const char* b = nullptr;
 4964   {
 4965     ResourceMark rm;
 4966     stringStream ss;
 4967     ss.print("verify_oop: %s: %s (%s:%d)", reg->name(), s, file, line);
 4968     b = code_string(ss.as_string());
 4969   }
 4970   AddressLiteral buffer((address) b, external_word_Relocation::spec_for_immediate());
 4971   pushptr(buffer.addr(), rscratch1);
 4972 
 4973   // call indirectly to solve generation ordering problem
 4974   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
 4975   call(rax);

 4994   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
 4995   int stackElementSize = Interpreter::stackElementSize;
 4996   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
 4997 #ifdef ASSERT
 4998   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
 4999   assert(offset1 - offset == stackElementSize, "correct arithmetic");
 5000 #endif
 5001   Register             scale_reg    = noreg;
 5002   Address::ScaleFactor scale_factor = Address::no_scale;
 5003   if (arg_slot.is_constant()) {
 5004     offset += arg_slot.as_constant() * stackElementSize;
 5005   } else {
 5006     scale_reg    = arg_slot.as_register();
 5007     scale_factor = Address::times(stackElementSize);
 5008   }
 5009   offset += wordSize;           // return PC is on stack
 5010   return Address(rsp, scale_reg, scale_factor, offset);
 5011 }
 5012 
 5013 void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) {
 5014   if (!VerifyOops || VerifyAdapterSharing) {
 5015     // Below address of the code string confuses VerifyAdapterSharing
 5016     // because it may differ between otherwise equivalent adapters.
 5017     return;
 5018   }
 5019 
 5020   push(rscratch1);
 5021   push(rax); // save rax,
 5022   // addr may contain rsp so we will have to adjust it based on the push
 5023   // we just did (and on 64 bit we do two pushes)
 5024   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
 5025   // stores rax into addr which is backwards of what was intended.
 5026   if (addr.uses(rsp)) {
 5027     lea(rax, addr);
 5028     pushptr(Address(rax, 2 * BytesPerWord));
 5029   } else {
 5030     pushptr(addr);
 5031   }
 5032 
 5033   // Pass register number to verify_oop_subroutine
 5034   const char* b = nullptr;
 5035   {
 5036     ResourceMark rm;
 5037     stringStream ss;
 5038     ss.print("verify_oop_addr: %s (%s:%d)", s, file, line);

 5392 
 5393 void MacroAssembler::load_mirror(Register mirror, Register method, Register tmp) {
 5394   // get mirror
 5395   const int mirror_offset = in_bytes(Klass::java_mirror_offset());
 5396   load_method_holder(mirror, method);
 5397   movptr(mirror, Address(mirror, mirror_offset));
 5398   resolve_oop_handle(mirror, tmp);
 5399 }
 5400 
 5401 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) {
 5402   load_method_holder(rresult, rmethod);
 5403   movptr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset()));
 5404 }
 5405 
 5406 void MacroAssembler::load_method_holder(Register holder, Register method) {
 5407   movptr(holder, Address(method, Method::const_offset()));                      // ConstMethod*
 5408   movptr(holder, Address(holder, ConstMethod::constants_offset()));             // ConstantPool*
 5409   movptr(holder, Address(holder, ConstantPool::pool_holder_offset()));          // InstanceKlass*
 5410 }
 5411 
 5412 void MacroAssembler::load_metadata(Register dst, Register src) {
 5413   if (UseCompactObjectHeaders) {
 5414     load_narrow_klass_compact(dst, src);
 5415   } else if (UseCompressedClassPointers) {
 5416     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
 5417   } else {
 5418     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
 5419   }
 5420 }
 5421 
 5422 void MacroAssembler::load_narrow_klass_compact(Register dst, Register src) {
 5423   assert(UseCompactObjectHeaders, "expect compact object headers");
 5424   movq(dst, Address(src, oopDesc::mark_offset_in_bytes()));
 5425   shrq(dst, markWord::klass_shift);
 5426 }
 5427 
 5428 void MacroAssembler::load_klass(Register dst, Register src, Register tmp) {
 5429   assert_different_registers(src, tmp);
 5430   assert_different_registers(dst, tmp);
 5431 
 5432   if (UseCompactObjectHeaders) {
 5433     load_narrow_klass_compact(dst, src);
 5434     decode_klass_not_null(dst, tmp);
 5435   } else if (UseCompressedClassPointers) {
 5436     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
 5437     decode_klass_not_null(dst, tmp);
 5438   } else {
 5439     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
 5440   }
 5441 }
 5442 
 5443 void MacroAssembler::load_prototype_header(Register dst, Register src, Register tmp) {
 5444   load_klass(dst, src, tmp);
 5445   movptr(dst, Address(dst, Klass::prototype_header_offset()));
 5446 }
 5447 
 5448 void MacroAssembler::store_klass(Register dst, Register src, Register tmp) {
 5449   assert(!UseCompactObjectHeaders, "not with compact headers");
 5450   assert_different_registers(src, tmp);
 5451   assert_different_registers(dst, tmp);
 5452   if (UseCompressedClassPointers) {
 5453     encode_klass_not_null(src, tmp);
 5454     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
 5455   } else {
 5456     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
 5457   }
 5458 }
 5459 
 5460 void MacroAssembler::cmp_klass(Register klass, Register obj, Register tmp) {
 5461   if (UseCompactObjectHeaders) {
 5462     assert(tmp != noreg, "need tmp");
 5463     assert_different_registers(klass, obj, tmp);
 5464     load_narrow_klass_compact(tmp, obj);
 5465     cmpl(klass, tmp);
 5466   } else if (UseCompressedClassPointers) {
 5467     cmpl(klass, Address(obj, oopDesc::klass_offset_in_bytes()));

 5493   bool as_raw = (decorators & AS_RAW) != 0;
 5494   if (as_raw) {
 5495     bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1);
 5496   } else {
 5497     bs->load_at(this, decorators, type, dst, src, tmp1);
 5498   }
 5499 }
 5500 
 5501 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val,
 5502                                      Register tmp1, Register tmp2, Register tmp3) {
 5503   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 5504   decorators = AccessInternal::decorator_fixup(decorators, type);
 5505   bool as_raw = (decorators & AS_RAW) != 0;
 5506   if (as_raw) {
 5507     bs->BarrierSetAssembler::store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3);
 5508   } else {
 5509     bs->store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3);
 5510   }
 5511 }
 5512 
 5513 void MacroAssembler::flat_field_copy(DecoratorSet decorators, Register src, Register dst,
 5514                                      Register inline_layout_info) {
 5515   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 5516   bs->flat_field_copy(this, decorators, src, dst, inline_layout_info);
 5517 }
 5518 
 5519 void MacroAssembler::payload_offset(Register inline_klass, Register offset) {
 5520   movptr(offset, Address(inline_klass, InstanceKlass::adr_inlineklass_fixed_block_offset()));
 5521   movl(offset, Address(offset, InlineKlass::payload_offset_offset()));
 5522 }
 5523 
 5524 void MacroAssembler::payload_addr(Register oop, Register data, Register inline_klass) {
 5525   // ((address) (void*) o) + vk->payload_offset();
 5526   Register offset = (data == oop) ? rscratch1 : data;
 5527   payload_offset(inline_klass, offset);
 5528   if (data == oop) {
 5529     addptr(data, offset);
 5530   } else {
 5531     lea(data, Address(oop, offset));
 5532   }
 5533 }
 5534 
 5535 void MacroAssembler::data_for_value_array_index(Register array, Register array_klass,
 5536                                                 Register index, Register data) {
 5537   assert(index != rcx, "index needs to shift by rcx");
 5538   assert_different_registers(array, array_klass, index);
 5539   assert_different_registers(rcx, array, index);
 5540 
 5541   // array->base() + (index << Klass::layout_helper_log2_element_size(lh));
 5542   movl(rcx, Address(array_klass, Klass::layout_helper_offset()));
 5543 
 5544   // Klass::layout_helper_log2_element_size(lh)
 5545   // (lh >> _lh_log2_element_size_shift) & _lh_log2_element_size_mask;
 5546   shrl(rcx, Klass::_lh_log2_element_size_shift);
 5547   andl(rcx, Klass::_lh_log2_element_size_mask);
 5548   shlptr(index); // index << rcx
 5549 
 5550   lea(data, Address(array, index, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_FLAT_ELEMENT)));
 5551 }
 5552 
 5553 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1, DecoratorSet decorators) {
 5554   access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1);
 5555 }
 5556 
 5557 // Doesn't do verification, generates fixed size code
 5558 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1, DecoratorSet decorators) {
 5559   access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1);
 5560 }
 5561 
 5562 void MacroAssembler::store_heap_oop(Address dst, Register val, Register tmp1,
 5563                                     Register tmp2, Register tmp3, DecoratorSet decorators) {
 5564   access_store_at(T_OBJECT, IN_HEAP | decorators, dst, val, tmp1, tmp2, tmp3);
 5565 }
 5566 
 5567 // Used for storing nulls.
 5568 void MacroAssembler::store_heap_oop_null(Address dst) {
 5569   access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg, noreg);
 5570 }
 5571 
 5572 void MacroAssembler::store_klass_gap(Register dst, Register src) {

 5876   Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
 5877 }
 5878 
 5879 void MacroAssembler::reinit_heapbase() {
 5880   if (UseCompressedOops) {
 5881     if (Universe::heap() != nullptr) {
 5882       if (CompressedOops::base() == nullptr) {
 5883         MacroAssembler::xorptr(r12_heapbase, r12_heapbase);
 5884       } else {
 5885         mov64(r12_heapbase, (int64_t)CompressedOops::base());
 5886       }
 5887     } else {
 5888       movptr(r12_heapbase, ExternalAddress(CompressedOops::base_addr()));
 5889     }
 5890   }
 5891 }
 5892 
 5893 #if COMPILER2_OR_JVMCI
 5894 
 5895 // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM/ZMM registers
 5896 void MacroAssembler::xmm_clear_mem(Register base, Register cnt, Register val, XMMRegister xtmp, KRegister mask) {
 5897   // cnt - number of qwords (8-byte words).
 5898   // base - start address, qword aligned.
 5899   Label L_zero_64_bytes, L_loop, L_sloop, L_tail, L_end;
 5900   bool use64byteVector = (MaxVectorSize == 64) && (VM_Version::avx3_threshold() == 0);
 5901   if (use64byteVector) {
 5902     evpbroadcastq(xtmp, val, AVX_512bit);
 5903   } else if (MaxVectorSize >= 32) {
 5904     movdq(xtmp, val);
 5905     punpcklqdq(xtmp, xtmp);
 5906     vinserti128_high(xtmp, xtmp);
 5907   } else {
 5908     movdq(xtmp, val);
 5909     punpcklqdq(xtmp, xtmp);
 5910   }
 5911   jmp(L_zero_64_bytes);
 5912 
 5913   BIND(L_loop);
 5914   if (MaxVectorSize >= 32) {
 5915     fill64(base, 0, xtmp, use64byteVector);
 5916   } else {
 5917     movdqu(Address(base,  0), xtmp);
 5918     movdqu(Address(base, 16), xtmp);
 5919     movdqu(Address(base, 32), xtmp);
 5920     movdqu(Address(base, 48), xtmp);
 5921   }
 5922   addptr(base, 64);
 5923 
 5924   BIND(L_zero_64_bytes);
 5925   subptr(cnt, 8);
 5926   jccb(Assembler::greaterEqual, L_loop);
 5927 
 5928   // Copy trailing 64 bytes
 5929   if (use64byteVector) {
 5930     addptr(cnt, 8);
 5931     jccb(Assembler::equal, L_end);
 5932     fill64_masked(3, base, 0, xtmp, mask, cnt, val, true);
 5933     jmp(L_end);
 5934   } else {
 5935     addptr(cnt, 4);
 5936     jccb(Assembler::less, L_tail);
 5937     if (MaxVectorSize >= 32) {
 5938       vmovdqu(Address(base, 0), xtmp);
 5939     } else {
 5940       movdqu(Address(base,  0), xtmp);
 5941       movdqu(Address(base, 16), xtmp);
 5942     }
 5943   }
 5944   addptr(base, 32);
 5945   subptr(cnt, 4);
 5946 
 5947   BIND(L_tail);
 5948   addptr(cnt, 4);
 5949   jccb(Assembler::lessEqual, L_end);
 5950   if (UseAVX > 2 && MaxVectorSize >= 32 && VM_Version::supports_avx512vl()) {
 5951     fill32_masked(3, base, 0, xtmp, mask, cnt, val);
 5952   } else {
 5953     decrement(cnt);
 5954 
 5955     BIND(L_sloop);
 5956     movq(Address(base, 0), xtmp);
 5957     addptr(base, 8);
 5958     decrement(cnt);
 5959     jccb(Assembler::greaterEqual, L_sloop);
 5960   }
 5961   BIND(L_end);
 5962 }
 5963 
 5964 int MacroAssembler::store_inline_type_fields_to_buf(ciInlineKlass* vk, bool from_interpreter) {
 5965   assert(InlineTypeReturnedAsFields, "Inline types should never be returned as fields");
 5966   // An inline type might be returned. If fields are in registers we
 5967   // need to allocate an inline type instance and initialize it with
 5968   // the value of the fields.
 5969   Label skip;
 5970   // We only need a new buffered inline type if a new one is not returned
 5971   testptr(rax, 1);
 5972   jcc(Assembler::zero, skip);
 5973   int call_offset = -1;
 5974 
 5975 #ifdef _LP64
 5976   // The following code is similar to allocate_instance but has some slight differences,
 5977   // e.g. object size is always not zero, sometimes it's constant; storing klass ptr after
 5978   // allocating is not necessary if vk != nullptr, etc. allocate_instance is not aware of these.
 5979   Label slow_case;
 5980   // 1. Try to allocate a new buffered inline instance either from TLAB or eden space
 5981   mov(rscratch1, rax); // save rax for slow_case since *_allocate may corrupt it when allocation failed
 5982   if (vk != nullptr) {
 5983     // Called from C1, where the return type is statically known.
 5984     movptr(rbx, (intptr_t)vk->get_InlineKlass());
 5985     jint lh = vk->layout_helper();
 5986     assert(lh != Klass::_lh_neutral_value, "inline class in return type must have been resolved");
 5987     if (UseTLAB && !Klass::layout_helper_needs_slow_path(lh)) {
 5988       tlab_allocate(rax, noreg, lh, r13, r14, slow_case);
 5989     } else {
 5990       jmp(slow_case);
 5991     }
 5992   } else {
 5993     // Call from interpreter. RAX contains ((the InlineKlass* of the return type) | 0x01)
 5994     mov(rbx, rax);
 5995     andptr(rbx, -2);
 5996     if (UseTLAB) {
 5997       movl(r14, Address(rbx, Klass::layout_helper_offset()));
 5998       testl(r14, Klass::_lh_instance_slow_path_bit);
 5999       jcc(Assembler::notZero, slow_case);
 6000       tlab_allocate(rax, r14, 0, r13, r14, slow_case);
 6001     } else {
 6002       jmp(slow_case);
 6003     }
 6004   }
 6005   if (UseTLAB) {
 6006     // 2. Initialize buffered inline instance header
 6007     Register buffer_obj = rax;
 6008     if (UseCompactObjectHeaders) {
 6009       Register mark_word = r13;
 6010       movptr(mark_word, Address(rbx, Klass::prototype_header_offset()));
 6011       movptr(Address(buffer_obj, oopDesc::mark_offset_in_bytes ()), mark_word);
 6012     } else {
 6013       movptr(Address(buffer_obj, oopDesc::mark_offset_in_bytes()), (intptr_t)markWord::inline_type_prototype().value());
 6014       xorl(r13, r13);
 6015       store_klass_gap(buffer_obj, r13);
 6016       if (vk == nullptr) {
 6017         // store_klass corrupts rbx(klass), so save it in r13 for later use (interpreter case only).
 6018         mov(r13, rbx);
 6019       }
 6020       store_klass(buffer_obj, rbx, rscratch1);
 6021     }
 6022     // 3. Initialize its fields with an inline class specific handler
 6023     if (vk != nullptr) {
 6024       call(RuntimeAddress(vk->pack_handler())); // no need for call info as this will not safepoint.
 6025     } else {
 6026       movptr(rbx, Address(r13, InstanceKlass::adr_inlineklass_fixed_block_offset()));
 6027       movptr(rbx, Address(rbx, InlineKlass::pack_handler_offset()));
 6028       call(rbx);
 6029     }
 6030     jmp(skip);
 6031   }
 6032   bind(slow_case);
 6033   // We failed to allocate a new inline type, fall back to a runtime
 6034   // call. Some oop field may be live in some registers but we can't
 6035   // tell. That runtime call will take care of preserving them
 6036   // across a GC if there's one.
 6037   mov(rax, rscratch1);
 6038 #endif
 6039 
 6040   if (from_interpreter) {
 6041     super_call_VM_leaf(StubRoutines::store_inline_type_fields_to_buf());
 6042   } else {
 6043     call(RuntimeAddress(StubRoutines::store_inline_type_fields_to_buf()));
 6044     call_offset = offset();
 6045   }
 6046 
 6047   bind(skip);
 6048   return call_offset;
 6049 }
 6050 
 6051 // Move a value between registers/stack slots and update the reg_state
 6052 bool MacroAssembler::move_helper(VMReg from, VMReg to, BasicType bt, RegState reg_state[]) {
 6053   assert(from->is_valid() && to->is_valid(), "source and destination must be valid");
 6054   if (reg_state[to->value()] == reg_written) {
 6055     return true; // Already written
 6056   }
 6057   if (from != to && bt != T_VOID) {
 6058     if (reg_state[to->value()] == reg_readonly) {
 6059       return false; // Not yet writable
 6060     }
 6061     if (from->is_reg()) {
 6062       if (to->is_reg()) {
 6063         if (from->is_XMMRegister()) {
 6064           if (bt == T_DOUBLE) {
 6065             movdbl(to->as_XMMRegister(), from->as_XMMRegister());
 6066           } else {
 6067             assert(bt == T_FLOAT, "must be float");
 6068             movflt(to->as_XMMRegister(), from->as_XMMRegister());
 6069           }
 6070         } else {
 6071           movq(to->as_Register(), from->as_Register());
 6072         }
 6073       } else {
 6074         int st_off = to->reg2stack() * VMRegImpl::stack_slot_size + wordSize;
 6075         Address to_addr = Address(rsp, st_off);
 6076         if (from->is_XMMRegister()) {
 6077           if (bt == T_DOUBLE) {
 6078             movdbl(to_addr, from->as_XMMRegister());
 6079           } else {
 6080             assert(bt == T_FLOAT, "must be float");
 6081             movflt(to_addr, from->as_XMMRegister());
 6082           }
 6083         } else {
 6084           movq(to_addr, from->as_Register());
 6085         }
 6086       }
 6087     } else {
 6088       Address from_addr = Address(rsp, from->reg2stack() * VMRegImpl::stack_slot_size + wordSize);
 6089       if (to->is_reg()) {
 6090         if (to->is_XMMRegister()) {
 6091           if (bt == T_DOUBLE) {
 6092             movdbl(to->as_XMMRegister(), from_addr);
 6093           } else {
 6094             assert(bt == T_FLOAT, "must be float");
 6095             movflt(to->as_XMMRegister(), from_addr);
 6096           }
 6097         } else {
 6098           movq(to->as_Register(), from_addr);
 6099         }
 6100       } else {
 6101         int st_off = to->reg2stack() * VMRegImpl::stack_slot_size + wordSize;
 6102         movq(r13, from_addr);
 6103         movq(Address(rsp, st_off), r13);
 6104       }
 6105     }
 6106   }
 6107   // Update register states
 6108   reg_state[from->value()] = reg_writable;
 6109   reg_state[to->value()] = reg_written;
 6110   return true;
 6111 }
 6112 
 6113 // Calculate the extra stack space required for packing or unpacking inline
 6114 // args and adjust the stack pointer
 6115 int MacroAssembler::extend_stack_for_inline_args(int args_on_stack) {
 6116   // Two additional slots to account for return address
 6117   int sp_inc = (args_on_stack + 2) * VMRegImpl::stack_slot_size;
 6118   sp_inc = align_up(sp_inc, StackAlignmentInBytes);
 6119   // Save the return address, adjust the stack (make sure it is properly
 6120   // 16-byte aligned) and copy the return address to the new top of the stack.
 6121   // The stack will be repaired on return (see MacroAssembler::remove_frame).
 6122   assert(sp_inc > 0, "sanity");
 6123   pop(r13);
 6124   subptr(rsp, sp_inc);
 6125   push(r13);
 6126   return sp_inc;
 6127 }
 6128 
 6129 // Read all fields from an inline type buffer and store the field values in registers/stack slots.
 6130 bool MacroAssembler::unpack_inline_helper(const GrowableArray<SigEntry>* sig, int& sig_index,
 6131                                           VMReg from, int& from_index, VMRegPair* to, int to_count, int& to_index,
 6132                                           RegState reg_state[]) {
 6133   assert(sig->at(sig_index)._bt == T_VOID, "should be at end delimiter");
 6134   assert(from->is_valid(), "source must be valid");
 6135   bool progress = false;
 6136 #ifdef ASSERT
 6137   const int start_offset = offset();
 6138 #endif
 6139 
 6140   Label L_null, L_notNull;
 6141   // Don't use r14 as tmp because it's used for spilling (see MacroAssembler::spill_reg_for)
 6142   Register tmp1 = r10;
 6143   Register tmp2 = r13;
 6144   Register fromReg = noreg;
 6145   ScalarizedInlineArgsStream stream(sig, sig_index, to, to_count, to_index, -1);
 6146   bool done = true;
 6147   bool mark_done = true;
 6148   VMReg toReg;
 6149   BasicType bt;
 6150   // Check if argument requires a null check
 6151   bool null_check = false;
 6152   VMReg nullCheckReg;
 6153   while (stream.next(nullCheckReg, bt)) {
 6154     if (sig->at(stream.sig_index())._offset == -1) {
 6155       null_check = true;
 6156       break;
 6157     }
 6158   }
 6159   stream.reset(sig_index, to_index);
 6160   while (stream.next(toReg, bt)) {
 6161     assert(toReg->is_valid(), "destination must be valid");
 6162     int idx = (int)toReg->value();
 6163     if (reg_state[idx] == reg_readonly) {
 6164       if (idx != from->value()) {
 6165         mark_done = false;
 6166       }
 6167       done = false;
 6168       continue;
 6169     } else if (reg_state[idx] == reg_written) {
 6170       continue;
 6171     }
 6172     assert(reg_state[idx] == reg_writable, "must be writable");
 6173     reg_state[idx] = reg_written;
 6174     progress = true;
 6175 
 6176     if (fromReg == noreg) {
 6177       if (from->is_reg()) {
 6178         fromReg = from->as_Register();
 6179       } else {
 6180         int st_off = from->reg2stack() * VMRegImpl::stack_slot_size + wordSize;
 6181         movq(tmp1, Address(rsp, st_off));
 6182         fromReg = tmp1;
 6183       }
 6184       if (null_check) {
 6185         // Nullable inline type argument, emit null check
 6186         testptr(fromReg, fromReg);
 6187         jcc(Assembler::zero, L_null);
 6188       }
 6189     }
 6190     int off = sig->at(stream.sig_index())._offset;
 6191     if (off == -1) {
 6192       assert(null_check, "Missing null check at");
 6193       if (toReg->is_stack()) {
 6194         int st_off = toReg->reg2stack() * VMRegImpl::stack_slot_size + wordSize;
 6195         movq(Address(rsp, st_off), 1);
 6196       } else {
 6197         movq(toReg->as_Register(), 1);
 6198       }
 6199       continue;
 6200     }
 6201     assert(off > 0, "offset in object should be positive");
 6202     Address fromAddr = Address(fromReg, off);
 6203     if (!toReg->is_XMMRegister()) {
 6204       Register dst = toReg->is_stack() ? tmp2 : toReg->as_Register();
 6205       if (is_reference_type(bt)) {
 6206         load_heap_oop(dst, fromAddr);
 6207       } else {
 6208         bool is_signed = (bt != T_CHAR) && (bt != T_BOOLEAN);
 6209         load_sized_value(dst, fromAddr, type2aelembytes(bt), is_signed);
 6210       }
 6211       if (toReg->is_stack()) {
 6212         int st_off = toReg->reg2stack() * VMRegImpl::stack_slot_size + wordSize;
 6213         movq(Address(rsp, st_off), dst);
 6214       }
 6215     } else if (bt == T_DOUBLE) {
 6216       movdbl(toReg->as_XMMRegister(), fromAddr);
 6217     } else {
 6218       assert(bt == T_FLOAT, "must be float");
 6219       movflt(toReg->as_XMMRegister(), fromAddr);
 6220     }
 6221   }
 6222   if (progress && null_check) {
 6223     if (done) {
 6224       jmp(L_notNull);
 6225       bind(L_null);
 6226       // Set IsInit field to zero to signal that the argument is null.
 6227       // Also set all oop fields to zero to make the GC happy.
 6228       stream.reset(sig_index, to_index);
 6229       while (stream.next(toReg, bt)) {
 6230         if (sig->at(stream.sig_index())._offset == -1 ||
 6231             bt == T_OBJECT || bt == T_ARRAY) {
 6232           if (toReg->is_stack()) {
 6233             int st_off = toReg->reg2stack() * VMRegImpl::stack_slot_size + wordSize;
 6234             movq(Address(rsp, st_off), 0);
 6235           } else {
 6236             xorq(toReg->as_Register(), toReg->as_Register());
 6237           }
 6238         }
 6239       }
 6240       bind(L_notNull);
 6241     } else {
 6242       bind(L_null);
 6243     }
 6244   }
 6245 
 6246   sig_index = stream.sig_index();
 6247   to_index = stream.regs_index();
 6248 
 6249   if (mark_done && reg_state[from->value()] != reg_written) {
 6250     // This is okay because no one else will write to that slot
 6251     reg_state[from->value()] = reg_writable;
 6252   }
 6253   from_index--;
 6254   assert(progress || (start_offset == offset()), "should not emit code");
 6255   return done;
 6256 }
 6257 
 6258 bool MacroAssembler::pack_inline_helper(const GrowableArray<SigEntry>* sig, int& sig_index, int vtarg_index,
 6259                                         VMRegPair* from, int from_count, int& from_index, VMReg to,
 6260                                         RegState reg_state[], Register val_array) {
 6261   assert(sig->at(sig_index)._bt == T_METADATA, "should be at delimiter");
 6262   assert(to->is_valid(), "destination must be valid");
 6263 
 6264   if (reg_state[to->value()] == reg_written) {
 6265     skip_unpacked_fields(sig, sig_index, from, from_count, from_index);
 6266     return true; // Already written
 6267   }
 6268 
 6269   // TODO 8284443 Isn't it an issue if below code uses r14 as tmp when it contains a spilled value?
 6270   // Be careful with r14 because it's used for spilling (see MacroAssembler::spill_reg_for).
 6271   Register val_obj_tmp = r11;
 6272   Register from_reg_tmp = r14;
 6273   Register tmp1 = r10;
 6274   Register tmp2 = r13;
 6275   Register tmp3 = rbx;
 6276   Register val_obj = to->is_stack() ? val_obj_tmp : to->as_Register();
 6277 
 6278   assert_different_registers(val_obj_tmp, from_reg_tmp, tmp1, tmp2, tmp3, val_array);
 6279 
 6280   if (reg_state[to->value()] == reg_readonly) {
 6281     if (!is_reg_in_unpacked_fields(sig, sig_index, to, from, from_count, from_index)) {
 6282       skip_unpacked_fields(sig, sig_index, from, from_count, from_index);
 6283       return false; // Not yet writable
 6284     }
 6285     val_obj = val_obj_tmp;
 6286   }
 6287 
 6288   int index = arrayOopDesc::base_offset_in_bytes(T_OBJECT) + vtarg_index * type2aelembytes(T_OBJECT);
 6289   load_heap_oop(val_obj, Address(val_array, index));
 6290 
 6291   ScalarizedInlineArgsStream stream(sig, sig_index, from, from_count, from_index);
 6292   VMReg fromReg;
 6293   BasicType bt;
 6294   Label L_null;
 6295   while (stream.next(fromReg, bt)) {
 6296     assert(fromReg->is_valid(), "source must be valid");
 6297     reg_state[fromReg->value()] = reg_writable;
 6298 
 6299     int off = sig->at(stream.sig_index())._offset;
 6300     if (off == -1) {
 6301       // Nullable inline type argument, emit null check
 6302       Label L_notNull;
 6303       if (fromReg->is_stack()) {
 6304         int ld_off = fromReg->reg2stack() * VMRegImpl::stack_slot_size + wordSize;
 6305         testb(Address(rsp, ld_off), 1);
 6306       } else {
 6307         testb(fromReg->as_Register(), 1);
 6308       }
 6309       jcc(Assembler::notZero, L_notNull);
 6310       movptr(val_obj, 0);
 6311       jmp(L_null);
 6312       bind(L_notNull);
 6313       continue;
 6314     }
 6315 
 6316     assert(off > 0, "offset in object should be positive");
 6317     size_t size_in_bytes = is_java_primitive(bt) ? type2aelembytes(bt) : wordSize;
 6318 
 6319     Address dst(val_obj, off);
 6320     if (!fromReg->is_XMMRegister()) {
 6321       Register src;
 6322       if (fromReg->is_stack()) {
 6323         src = from_reg_tmp;
 6324         int ld_off = fromReg->reg2stack() * VMRegImpl::stack_slot_size + wordSize;
 6325         load_sized_value(src, Address(rsp, ld_off), size_in_bytes, /* is_signed */ false);
 6326       } else {
 6327         src = fromReg->as_Register();
 6328       }
 6329       assert_different_registers(dst.base(), src, tmp1, tmp2, tmp3, val_array);
 6330       if (is_reference_type(bt)) {
 6331         store_heap_oop(dst, src, tmp1, tmp2, tmp3, IN_HEAP | ACCESS_WRITE | IS_DEST_UNINITIALIZED);
 6332       } else {
 6333         store_sized_value(dst, src, size_in_bytes);
 6334       }
 6335     } else if (bt == T_DOUBLE) {
 6336       movdbl(dst, fromReg->as_XMMRegister());
 6337     } else {
 6338       assert(bt == T_FLOAT, "must be float");
 6339       movflt(dst, fromReg->as_XMMRegister());
 6340     }
 6341   }
 6342   bind(L_null);
 6343   sig_index = stream.sig_index();
 6344   from_index = stream.regs_index();
 6345 
 6346   assert(reg_state[to->value()] == reg_writable, "must have already been read");
 6347   bool success = move_helper(val_obj->as_VMReg(), to, T_OBJECT, reg_state);
 6348   assert(success, "to register must be writeable");
 6349   return true;
 6350 }
 6351 
 6352 VMReg MacroAssembler::spill_reg_for(VMReg reg) {
 6353   return reg->is_XMMRegister() ? xmm8->as_VMReg() : r14->as_VMReg();
 6354 }
 6355 
 6356 void MacroAssembler::remove_frame(int initial_framesize, bool needs_stack_repair) {
 6357   assert((initial_framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 6358   if (needs_stack_repair) {
 6359     movq(rbp, Address(rsp, initial_framesize));
 6360     // The stack increment resides just below the saved rbp
 6361     addq(rsp, Address(rsp, initial_framesize - wordSize));
 6362   } else {
 6363     if (initial_framesize > 0) {
 6364       addq(rsp, initial_framesize);
 6365     }
 6366     pop(rbp);
 6367   }
 6368 }
 6369 
 6370 // Clearing constant sized memory using YMM/ZMM registers.
 6371 void MacroAssembler::clear_mem(Register base, int cnt, Register rtmp, XMMRegister xtmp, KRegister mask) {
 6372   assert(UseAVX > 2 && VM_Version::supports_avx512vl(), "");
 6373   bool use64byteVector = (MaxVectorSize > 32) && (VM_Version::avx3_threshold() == 0);
 6374 
 6375   int vector64_count = (cnt & (~0x7)) >> 3;
 6376   cnt = cnt & 0x7;
 6377   const int fill64_per_loop = 4;
 6378   const int max_unrolled_fill64 = 8;
 6379 
 6380   // 64 byte initialization loop.
 6381   vpxor(xtmp, xtmp, xtmp, use64byteVector ? AVX_512bit : AVX_256bit);
 6382   int start64 = 0;
 6383   if (vector64_count > max_unrolled_fill64) {
 6384     Label LOOP;
 6385     Register index = rtmp;
 6386 
 6387     start64 = vector64_count - (vector64_count % fill64_per_loop);
 6388 
 6389     movl(index, 0);

 6439         break;
 6440       case 7:
 6441         if (use64byteVector) {
 6442           movl(rtmp, 0x7F);
 6443           kmovwl(mask, rtmp);
 6444           evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit);
 6445         } else {
 6446           evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit);
 6447           movl(rtmp, 0x7);
 6448           kmovwl(mask, rtmp);
 6449           evmovdqu(T_LONG, mask, Address(base, disp + 32), xtmp, true, Assembler::AVX_256bit);
 6450         }
 6451         break;
 6452       default:
 6453         fatal("Unexpected length : %d\n",cnt);
 6454         break;
 6455     }
 6456   }
 6457 }
 6458 
 6459 void MacroAssembler::clear_mem(Register base, Register cnt, Register val, XMMRegister xtmp,
 6460                                bool is_large, bool word_copy_only, KRegister mask) {
 6461   // cnt      - number of qwords (8-byte words).
 6462   // base     - start address, qword aligned.
 6463   // is_large - if optimizers know cnt is larger than InitArrayShortSize
 6464   assert(base==rdi, "base register must be edi for rep stos");
 6465   assert(val==rax,   "val register must be eax for rep stos");
 6466   assert(cnt==rcx,   "cnt register must be ecx for rep stos");
 6467   assert(InitArrayShortSize % BytesPerLong == 0,
 6468     "InitArrayShortSize should be the multiple of BytesPerLong");
 6469 
 6470   Label DONE;



 6471 
 6472   if (!is_large) {
 6473     Label LOOP, LONG;
 6474     cmpptr(cnt, InitArrayShortSize/BytesPerLong);
 6475     jccb(Assembler::greater, LONG);
 6476 
 6477     decrement(cnt);
 6478     jccb(Assembler::negative, DONE); // Zero length
 6479 
 6480     // Use individual pointer-sized stores for small counts:
 6481     BIND(LOOP);
 6482     movptr(Address(base, cnt, Address::times_ptr), val);
 6483     decrement(cnt);
 6484     jccb(Assembler::greaterEqual, LOOP);
 6485     jmpb(DONE);
 6486 
 6487     BIND(LONG);
 6488   }
 6489 
 6490   // Use longer rep-prefixed ops for non-small counts:
 6491   if (UseFastStosb && !word_copy_only) {
 6492     shlptr(cnt, 3); // convert to number of bytes
 6493     rep_stosb();
 6494   } else if (UseXMMForObjInit) {
 6495     xmm_clear_mem(base, cnt, val, xtmp, mask);
 6496   } else {
 6497     rep_stos();
 6498   }
 6499 
 6500   BIND(DONE);
 6501 }
 6502 
 6503 #endif //COMPILER2_OR_JVMCI
 6504 
 6505 
 6506 void MacroAssembler::generate_fill(BasicType t, bool aligned,
 6507                                    Register to, Register value, Register count,
 6508                                    Register rtmp, XMMRegister xtmp) {
 6509   ShortBranchVerifier sbv(this);
 6510   assert_different_registers(to, value, count, rtmp);
 6511   Label L_exit;
 6512   Label L_fill_2_bytes, L_fill_4_bytes;
 6513 
 6514 #if defined(COMPILER2)
 6515   if(MaxVectorSize >=32 &&

10332 
10333   // Load top.
10334   movl(top, Address(thread, JavaThread::lock_stack_top_offset()));
10335 
10336   // Check if the lock-stack is full.
10337   cmpl(top, LockStack::end_offset());
10338   jcc(Assembler::greaterEqual, slow);
10339 
10340   // Check for recursion.
10341   cmpptr(obj, Address(thread, top, Address::times_1, -oopSize));
10342   jcc(Assembler::equal, push);
10343 
10344   // Check header for monitor (0b10).
10345   testptr(reg_rax, markWord::monitor_value);
10346   jcc(Assembler::notZero, slow);
10347 
10348   // Try to lock. Transition lock bits 0b01 => 0b00
10349   movptr(tmp, reg_rax);
10350   andptr(tmp, ~(int32_t)markWord::unlocked_value);
10351   orptr(reg_rax, markWord::unlocked_value);
10352   if (EnableValhalla) {
10353     // Mask inline_type bit such that we go to the slow path if object is an inline type
10354     andptr(reg_rax, ~((int) markWord::inline_type_bit_in_place));
10355   }
10356   lock(); cmpxchgptr(tmp, Address(obj, oopDesc::mark_offset_in_bytes()));
10357   jcc(Assembler::notEqual, slow);
10358 
10359   // Restore top, CAS clobbers register.
10360   movl(top, Address(thread, JavaThread::lock_stack_top_offset()));
10361 
10362   bind(push);
10363   // After successful lock, push object on lock-stack.
10364   movptr(Address(thread, top), obj);
10365   incrementl(top, oopSize);
10366   movl(Address(thread, JavaThread::lock_stack_top_offset()), top);
10367 }
10368 
10369 // Implements lightweight-unlocking.
10370 //
10371 // obj: the object to be unlocked
10372 // reg_rax: rax
10373 // thread: the thread
10374 // tmp: a temporary register
10375 void MacroAssembler::lightweight_unlock(Register obj, Register reg_rax, Register tmp, Label& slow) {
< prev index next >