< prev index next >

src/hotspot/share/c1/c1_LIRGenerator.cpp

Print this page

  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "c1/c1_Compilation.hpp"
  26 #include "c1/c1_Defs.hpp"
  27 #include "c1/c1_FrameMap.hpp"
  28 #include "c1/c1_Instruction.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_LIRGenerator.hpp"
  31 #include "c1/c1_ValueStack.hpp"
  32 #include "ci/ciArrayKlass.hpp"


  33 #include "ci/ciInstance.hpp"
  34 #include "ci/ciObjArray.hpp"

  35 #include "ci/ciUtilities.hpp"
  36 #include "compiler/compilerDefinitions.inline.hpp"
  37 #include "compiler/compilerOracle.hpp"
  38 #include "gc/shared/barrierSet.hpp"
  39 #include "gc/shared/c1/barrierSetC1.hpp"
  40 #include "oops/klass.inline.hpp"
  41 #include "oops/methodCounters.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/stubRoutines.hpp"
  44 #include "runtime/vm_version.hpp"
  45 #include "utilities/bitMap.inline.hpp"
  46 #include "utilities/macros.hpp"
  47 #include "utilities/powerOfTwo.hpp"
  48 
  49 #ifdef ASSERT
  50 #define __ gen()->lir(__FILE__, __LINE__)->
  51 #else
  52 #define __ gen()->lir()->
  53 #endif
  54 

 198 }
 199 
 200 
 201 //--------------------------------------------------------------
 202 // LIRItem
 203 
 204 void LIRItem::set_result(LIR_Opr opr) {
 205   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 206   value()->set_operand(opr);
 207 
 208 #ifdef ASSERT
 209   if (opr->is_virtual()) {
 210     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), nullptr);
 211   }
 212 #endif
 213 
 214   _result = opr;
 215 }
 216 
 217 void LIRItem::load_item() {


 218   if (result()->is_illegal()) {
 219     // update the items result
 220     _result = value()->operand();
 221   }
 222   if (!result()->is_register()) {
 223     LIR_Opr reg = _gen->new_register(value()->type());
 224     __ move(result(), reg);
 225     if (result()->is_constant()) {
 226       _result = reg;
 227     } else {
 228       set_result(reg);
 229     }
 230   }
 231 }
 232 
 233 
 234 void LIRItem::load_for_store(BasicType type) {
 235   if (_gen->can_store_as_constant(value(), type)) {
 236     _result = value()->operand();
 237     if (!_result->is_constant()) {

 605     assert(right_op != result_op, "malformed");
 606     __ move(left_op, result_op);
 607     left_op = result_op;
 608   }
 609 
 610   switch(code) {
 611     case Bytecodes::_iand:
 612     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 613 
 614     case Bytecodes::_ior:
 615     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 616 
 617     case Bytecodes::_ixor:
 618     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 619 
 620     default: ShouldNotReachHere();
 621   }
 622 }
 623 
 624 
 625 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {

 626   // for slow path, use debug info for state after successful locking
 627   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
 628   __ load_stack_address_monitor(monitor_no, lock);
 629   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 630   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
 631 }
 632 
 633 
 634 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 635   // setup registers
 636   LIR_Opr hdr = lock;
 637   lock = new_hdr;
 638   CodeStub* slow_path = new MonitorExitStub(lock, LockingMode != LM_MONITOR, monitor_no);
 639   __ load_stack_address_monitor(monitor_no, lock);
 640   __ unlock_object(hdr, object, lock, scratch, slow_path);
 641 }
 642 
 643 #ifndef PRODUCT
 644 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 645   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 646     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 647   } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) {
 648     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 649   }
 650 }
 651 #endif
 652 
 653 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 654   klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 655   // If klass is not loaded we do not know if the klass has finalizers:
 656   if (UseFastNewInstance && klass->is_loaded()





 657       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 658 
 659     StubId stub_id = klass->is_initialized() ? StubId::c1_fast_new_instance_id : StubId::c1_fast_new_instance_init_check_id;
 660 
 661     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 662 
 663     assert(klass->is_loaded(), "must be loaded");
 664     // allocate space for instance
 665     assert(klass->size_helper() > 0, "illegal instance size");
 666     const int instance_size = align_object_size(klass->size_helper());
 667     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 668                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 669   } else {
 670     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, StubId::c1_new_instance_id);
 671     __ branch(lir_cond_always, slow_path);
 672     __ branch_destination(slow_path->continuation());
 673   }
 674 }
 675 
 676 
 677 static bool is_constant_zero(Instruction* inst) {
 678   IntConstant* c = inst->type()->as_IntConstant();
 679   if (c) {
 680     return (c->value() == 0);
 681   }
 682   return false;
 683 }
 684 
 685 
 686 static bool positive_constant(Instruction* inst) {
 687   IntConstant* c = inst->type()->as_IntConstant();
 688   if (c) {
 689     return (c->value() >= 0);
 690   }
 691   return false;

 751       if (src_type != nullptr) {
 752         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 753           is_exact = true;
 754           expected_type = dst_type;
 755         }
 756       }
 757     }
 758     // at least pass along a good guess
 759     if (expected_type == nullptr) expected_type = dst_exact_type;
 760     if (expected_type == nullptr) expected_type = src_declared_type;
 761     if (expected_type == nullptr) expected_type = dst_declared_type;
 762 
 763     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 764     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 765   }
 766 
 767   // if a probable array type has been identified, figure out if any
 768   // of the required checks for a fast case can be elided.
 769   int flags = LIR_OpArrayCopy::all_flags;
 770 










 771   if (!src_objarray)
 772     flags &= ~LIR_OpArrayCopy::src_objarray;
 773   if (!dst_objarray)
 774     flags &= ~LIR_OpArrayCopy::dst_objarray;
 775 
 776   if (!x->arg_needs_null_check(0))
 777     flags &= ~LIR_OpArrayCopy::src_null_check;
 778   if (!x->arg_needs_null_check(2))
 779     flags &= ~LIR_OpArrayCopy::dst_null_check;
 780 
 781 
 782   if (expected_type != nullptr) {
 783     Value length_limit = nullptr;
 784 
 785     IfOp* ifop = length->as_IfOp();
 786     if (ifop != nullptr) {
 787       // look for expressions like min(v, a.length) which ends up as
 788       //   x > y ? y : x  or  x >= y ? y : x
 789       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 790           ifop->x() == ifop->fval() &&

 858       BasicType t = expected_type->element_type()->basic_type();
 859       int element_size = type2aelembytes(t);
 860       if (((arrayOopDesc::base_offset_in_bytes(t) + (uint)s_offs * element_size) % HeapWordSize == 0) &&
 861           ((arrayOopDesc::base_offset_in_bytes(t) + (uint)d_offs * element_size) % HeapWordSize == 0)) {
 862         flags &= ~LIR_OpArrayCopy::unaligned;
 863       }
 864     }
 865   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 866     // src and dest positions are the same, or dst is zero so assume
 867     // nonoverlapping copy.
 868     flags &= ~LIR_OpArrayCopy::overlapping;
 869   }
 870 
 871   if (src == dst) {
 872     // moving within a single array so no type checks are needed
 873     if (flags & LIR_OpArrayCopy::type_check) {
 874       flags &= ~LIR_OpArrayCopy::type_check;
 875     }
 876   }
 877   *flagsp = flags;






 878   *expected_typep = (ciArrayKlass*)expected_type;
 879 }
 880 
 881 
 882 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 883   assert(type2size[t] == type2size[value->type()],
 884          "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
 885   if (!value->is_register()) {
 886     // force into a register
 887     LIR_Opr r = new_register(value->type());
 888     __ move(value, r);
 889     value = r;
 890   }
 891 
 892   // create a spill location
 893   LIR_Opr tmp = new_register(t);
 894   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 895 
 896   // move from register to spill
 897   __ move(value, tmp);

1443   }
1444   return _vreg_flags.at(vreg_num, f);
1445 }
1446 
1447 
1448 // Block local constant handling.  This code is useful for keeping
1449 // unpinned constants and constants which aren't exposed in the IR in
1450 // registers.  Unpinned Constant instructions have their operands
1451 // cleared when the block is finished so that other blocks can't end
1452 // up referring to their registers.
1453 
1454 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1455   assert(!x->is_pinned(), "only for unpinned constants");
1456   _unpinned_constants.append(x);
1457   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1458 }
1459 
1460 
1461 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1462   BasicType t = c->type();
1463   for (int i = 0; i < _constants.length(); i++) {
1464     LIR_Const* other = _constants.at(i);
1465     if (t == other->type()) {
1466       switch (t) {
1467       case T_INT:
1468       case T_FLOAT:
1469         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1470         break;
1471       case T_LONG:
1472       case T_DOUBLE:
1473         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1474         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1475         break;
1476       case T_OBJECT:
1477         if (c->as_jobject() != other->as_jobject()) continue;
1478         break;
1479       default:
1480         break;
1481       }
1482       return _reg_for_constants.at(i);
1483     }
1484   }
1485 
1486   LIR_Opr result = new_register(t);
1487   __ move((LIR_Opr)c, result);
1488   _constants.append(c);
1489   _reg_for_constants.append(result);


1490   return result;
1491 }
1492 






1493 //------------------------field access--------------------------------------
1494 
1495 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
1496   assert(x->number_of_arguments() == 4, "wrong type");
1497   LIRItem obj   (x->argument_at(0), this);  // object
1498   LIRItem offset(x->argument_at(1), this);  // offset of field
1499   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
1500   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
1501   assert(obj.type()->tag() == objectTag, "invalid type");
1502   assert(cmp.type()->tag() == type->tag(), "invalid type");
1503   assert(val.type()->tag() == type->tag(), "invalid type");
1504 
1505   LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type),
1506                                             obj, offset, cmp, val);
1507   set_result(x, result);
1508 }
1509 








1510 // Comment copied form templateTable_i486.cpp
1511 // ----------------------------------------------------------------------------
1512 // Volatile variables demand their effects be made known to all CPU's in
1513 // order.  Store buffers on most chips allow reads & writes to reorder; the
1514 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1515 // memory barrier (i.e., it's not sufficient that the interpreter does not
1516 // reorder volatile references, the hardware also must not reorder them).
1517 //
1518 // According to the new Java Memory Model (JMM):
1519 // (1) All volatiles are serialized wrt to each other.
1520 // ALSO reads & writes act as acquire & release, so:
1521 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1522 // the read float up to before the read.  It's OK for non-volatile memory refs
1523 // that happen before the volatile read to float down below it.
1524 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1525 // that happen BEFORE the write float down to after the write.  It's OK for
1526 // non-volatile memory refs that happen after the volatile write to float up
1527 // before it.
1528 //
1529 // We only put in barriers around volatile refs (they are expensive), not
1530 // _between_ memory refs (that would require us to track the flavor of the
1531 // previous memory refs).  Requirements (2) and (3) require some barriers
1532 // before volatile stores and after volatile loads.  These nearly cover
1533 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1534 // case is placed after volatile-stores although it could just as well go
1535 // before volatile-loads.
1536 
1537 
1538 void LIRGenerator::do_StoreField(StoreField* x) {

1539   bool needs_patching = x->needs_patching();
1540   bool is_volatile = x->field()->is_volatile();
1541   BasicType field_type = x->field_type();
1542 
1543   CodeEmitInfo* info = nullptr;
1544   if (needs_patching) {
1545     assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access");
1546     info = state_for(x, x->state_before());
1547   } else if (x->needs_null_check()) {
1548     NullCheck* nc = x->explicit_null_check();
1549     if (nc == nullptr) {
1550       info = state_for(x);
1551     } else {
1552       info = state_for(nc);
1553     }
1554   }
1555 
1556   LIRItem object(x->obj(), this);
1557   LIRItem value(x->value(),  this);
1558 
1559   object.load_item();
1560 
1561   if (is_volatile || needs_patching) {
1562     // load item if field is volatile (fewer special cases for volatiles)
1563     // load item if field not initialized
1564     // load item if field not constant
1565     // because of code patching we cannot inline constants
1566     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1567       value.load_byte_item();
1568     } else  {
1569       value.load_item();
1570     }
1571   } else {
1572     value.load_for_store(field_type);












1573   }
1574 
1575   set_no_result(x);
1576 
1577 #ifndef PRODUCT
1578   if (PrintNotLoaded && needs_patching) {
1579     tty->print_cr("   ###class not loaded at store_%s bci %d",
1580                   x->is_static() ?  "static" : "field", x->printable_bci());
1581   }
1582 #endif
1583 
1584   if (x->needs_null_check() &&
1585       (needs_patching ||
1586        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1587     // Emit an explicit null check because the offset is too large.
1588     // If the class is not loaded and the object is null, we need to deoptimize to throw a
1589     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1590     __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1591   }
1592 
1593   DecoratorSet decorators = IN_HEAP;
1594   if (is_volatile) {
1595     decorators |= MO_SEQ_CST;
1596   }
1597   if (needs_patching) {
1598     decorators |= C1_NEEDS_PATCHING;
1599   }
1600 











































1601   access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()),
1602                   value.result(), info != nullptr ? new CodeEmitInfo(info) : nullptr, info);
1603 }
1604 



























































































































































1605 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
1606   assert(x->is_pinned(),"");


1607   bool needs_range_check = x->compute_needs_range_check();
1608   bool use_length = x->length() != nullptr;
1609   bool obj_store = is_reference_type(x->elt_type());
1610   bool needs_store_check = obj_store && (x->value()->as_Constant() == nullptr ||
1611                                          !get_jobject_constant(x->value())->is_null_object() ||
1612                                          x->should_profile());
1613 
1614   LIRItem array(x->array(), this);
1615   LIRItem index(x->index(), this);
1616   LIRItem value(x->value(), this);
1617   LIRItem length(this);
1618 
1619   array.load_item();
1620   index.load_nonconstant();
1621 
1622   if (use_length && needs_range_check) {
1623     length.set_instruction(x->length());
1624     length.load_item();
1625 
1626   }
1627   if (needs_store_check || x->check_boolean()) {


1628     value.load_item();
1629   } else {
1630     value.load_for_store(x->elt_type());
1631   }
1632 
1633   set_no_result(x);
1634 
1635   // the CodeEmitInfo must be duplicated for each different
1636   // LIR-instruction because spilling can occur anywhere between two
1637   // instructions and so the debug information must be different
1638   CodeEmitInfo* range_check_info = state_for(x);
1639   CodeEmitInfo* null_check_info = nullptr;
1640   if (x->needs_null_check()) {
1641     null_check_info = new CodeEmitInfo(range_check_info);
1642   }
1643 
1644   if (needs_range_check) {
1645     if (use_length) {
1646       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1647       __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1648     } else {
1649       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1650       // range_check also does the null check
1651       null_check_info = nullptr;
1652     }
1653   }
1654 




















1655   if (GenerateArrayStoreCheck && needs_store_check) {
1656     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
1657     array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci());
1658   }
1659 
1660   DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1661   if (x->check_boolean()) {
1662     decorators |= C1_MASK_BOOLEAN;
1663   }























1664 
1665   access_store_at(decorators, x->elt_type(), array, index.result(), value.result(),
1666                   nullptr, null_check_info);




1667 }
1668 
1669 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type,
1670                                   LIRItem& base, LIR_Opr offset, LIR_Opr result,
1671                                   CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) {
1672   decorators |= ACCESS_READ;
1673   LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info);
1674   if (access.is_raw()) {
1675     _barrier_set->BarrierSetC1::load_at(access, result);
1676   } else {
1677     _barrier_set->load_at(access, result);
1678   }
1679 }
1680 
1681 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type,
1682                                LIR_Opr addr, LIR_Opr result) {
1683   decorators |= ACCESS_READ;
1684   LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type);
1685   access.set_resolved_addr(addr);
1686   if (access.is_raw()) {
1687     _barrier_set->BarrierSetC1::load(access, result);
1688   } else {
1689     _barrier_set->load(access, result);
1690   }
1691 }
1692 
1693 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type,
1694                                    LIRItem& base, LIR_Opr offset, LIR_Opr value,
1695                                    CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) {

1696   decorators |= ACCESS_WRITE;
1697   LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info);
1698   if (access.is_raw()) {
1699     _barrier_set->BarrierSetC1::store_at(access, value);
1700   } else {
1701     _barrier_set->store_at(access, value);
1702   }
1703 }
1704 
1705 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type,
1706                                                LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) {
1707   decorators |= ACCESS_READ;
1708   decorators |= ACCESS_WRITE;
1709   // Atomic operations are SEQ_CST by default
1710   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1711   LIRAccess access(this, decorators, base, offset, type);
1712   if (access.is_raw()) {
1713     return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value);
1714   } else {
1715     return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value);
1716   }
1717 }

1728   } else {
1729     return _barrier_set->atomic_xchg_at(access, value);
1730   }
1731 }
1732 
1733 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type,
1734                                            LIRItem& base, LIRItem& offset, LIRItem& value) {
1735   decorators |= ACCESS_READ;
1736   decorators |= ACCESS_WRITE;
1737   // Atomic operations are SEQ_CST by default
1738   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1739   LIRAccess access(this, decorators, base, offset, type);
1740   if (access.is_raw()) {
1741     return _barrier_set->BarrierSetC1::atomic_add_at(access, value);
1742   } else {
1743     return _barrier_set->atomic_add_at(access, value);
1744   }
1745 }
1746 
1747 void LIRGenerator::do_LoadField(LoadField* x) {

1748   bool needs_patching = x->needs_patching();
1749   bool is_volatile = x->field()->is_volatile();
1750   BasicType field_type = x->field_type();
1751 
1752   CodeEmitInfo* info = nullptr;
1753   if (needs_patching) {
1754     assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access");
1755     info = state_for(x, x->state_before());
1756   } else if (x->needs_null_check()) {
1757     NullCheck* nc = x->explicit_null_check();
1758     if (nc == nullptr) {
1759       info = state_for(x);
1760     } else {
1761       info = state_for(nc);
1762     }
1763   }
1764 
1765   LIRItem object(x->obj(), this);
1766 
1767   object.load_item();
1768 
1769 #ifndef PRODUCT

1780        stress_deopt)) {
1781     LIR_Opr obj = object.result();
1782     if (stress_deopt) {
1783       obj = new_register(T_OBJECT);
1784       __ move(LIR_OprFact::oopConst(nullptr), obj);
1785     }
1786     // Emit an explicit null check because the offset is too large.
1787     // If the class is not loaded and the object is null, we need to deoptimize to throw a
1788     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1789     __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1790   }
1791 
1792   DecoratorSet decorators = IN_HEAP;
1793   if (is_volatile) {
1794     decorators |= MO_SEQ_CST;
1795   }
1796   if (needs_patching) {
1797     decorators |= C1_NEEDS_PATCHING;
1798   }
1799 





































1800   LIR_Opr result = rlock_result(x, field_type);
1801   access_load_at(decorators, field_type,
1802                  object, LIR_OprFact::intConst(x->offset()), result,
1803                  info ? new CodeEmitInfo(info) : nullptr, info);
1804 }
1805 
1806 // int/long jdk.internal.util.Preconditions.checkIndex
1807 void LIRGenerator::do_PreconditionsCheckIndex(Intrinsic* x, BasicType type) {
1808   assert(x->number_of_arguments() == 3, "wrong type");
1809   LIRItem index(x->argument_at(0), this);
1810   LIRItem length(x->argument_at(1), this);
1811   LIRItem oobef(x->argument_at(2), this);
1812 
1813   index.load_item();
1814   length.load_item();
1815   oobef.load_item();
1816 
1817   LIR_Opr result = rlock_result(x);
1818   // x->state() is created from copy_state_for_exception, it does not contains arguments
1819   // we should prepare them before entering into interpreter mode due to deoptimization.

1928       __ move(LIR_OprFact::oopConst(nullptr), obj);
1929       __ null_check(obj, new CodeEmitInfo(null_check_info));
1930     }
1931   }
1932 
1933   if (needs_range_check) {
1934     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
1935       __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result()));
1936     } else if (use_length) {
1937       // TODO: use a (modified) version of array_range_check that does not require a
1938       //       constant length to be loaded to a register
1939       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1940       __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1941     } else {
1942       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1943       // The range check performs the null check, so clear it out for the load
1944       null_check_info = nullptr;
1945     }
1946   }
1947 
1948   DecoratorSet decorators = IN_HEAP | IS_ARRAY;




















































1949 
1950   LIR_Opr result = rlock_result(x, x->elt_type());
1951   access_load_at(decorators, x->elt_type(),
1952                  array, index.result(), result,
1953                  nullptr, null_check_info);







1954 }
1955 
1956 
1957 void LIRGenerator::do_NullCheck(NullCheck* x) {
1958   if (x->can_trap()) {
1959     LIRItem value(x->obj(), this);
1960     value.load_item();
1961     CodeEmitInfo* info = state_for(x);
1962     __ null_check(value.result(), info);
1963   }
1964 }
1965 
1966 
1967 void LIRGenerator::do_TypeCast(TypeCast* x) {
1968   LIRItem value(x->obj(), this);
1969   value.load_item();
1970   // the result is the same as from the node we are casting
1971   set_result(x, value.result());
1972 }
1973 

2408   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2409   // known not to be null or null bit already set and already set to
2410   // unknown: nothing we can do to improve profiling
2411   if (!do_null && !do_update) {
2412     return result;
2413   }
2414 
2415   ciKlass* exact_klass = nullptr;
2416   Compilation* comp = Compilation::current();
2417   if (do_update) {
2418     // try to find exact type, using CHA if possible, so that loading
2419     // the klass from the object can be avoided
2420     ciType* type = obj->exact_type();
2421     if (type == nullptr) {
2422       type = obj->declared_type();
2423       type = comp->cha_exact_type(type);
2424     }
2425     assert(type == nullptr || type->is_klass(), "type should be class");
2426     exact_klass = (type != nullptr && type->is_loaded()) ? (ciKlass*)type : nullptr;
2427 










2428     do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2429   }
2430 
2431   if (!do_null && !do_update) {
2432     return result;
2433   }
2434 
2435   ciKlass* exact_signature_k = nullptr;
2436   if (do_update) {
2437     // Is the type from the signature exact (the only one possible)?
2438     exact_signature_k = signature_at_call_k->exact_klass();
2439     if (exact_signature_k == nullptr) {
2440       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2441     } else {
2442       result = exact_signature_k;
2443       // Known statically. No need to emit any code: prevent
2444       // LIR_Assembler::emit_profile_type() from emitting useless code
2445       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2446     }
2447     // exact_klass and exact_signature_k can be both non null but
2448     // different if exact_klass is loaded after the ciObject for
2449     // exact_signature_k is created.
2450     if (exact_klass == nullptr && exact_signature_k != nullptr && exact_klass != exact_signature_k) {
2451       // sometimes the type of the signature is better than the best type
2452       // the compiler has
2453       exact_klass = exact_signature_k;
2454     }
2455     if (callee_signature_k != nullptr &&
2456         callee_signature_k != signature_at_call_k) {
2457       ciKlass* improved_klass = callee_signature_k->exact_klass();
2458       if (improved_klass == nullptr) {
2459         improved_klass = comp->cha_exact_type(callee_signature_k);
2460       }
2461       if (exact_klass == nullptr && improved_klass != nullptr && exact_klass != improved_klass) {
2462         exact_klass = exact_signature_k;
2463       }
2464     }











2465     do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2466   }
2467 
2468   if (!do_null && !do_update) {
2469     return result;
2470   }
2471 
2472   if (mdp == LIR_OprFact::illegalOpr) {
2473     mdp = new_register(T_METADATA);
2474     __ metadata2reg(md->constant_encoding(), mdp);
2475     if (md_base_offset != 0) {
2476       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2477       mdp = new_pointer_register();
2478       __ leal(LIR_OprFact::address(base_type_address), mdp);
2479     }
2480   }
2481   LIRItem value(obj, this);
2482   value.load_item();
2483   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2484                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != nullptr);

2501         assert(!src->is_illegal(), "check");
2502         BasicType t = src->type();
2503         if (is_reference_type(t)) {
2504           intptr_t profiled_k = parameters->type(j);
2505           Local* local = x->state()->local_at(java_index)->as_Local();
2506           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2507                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2508                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), nullptr);
2509           // If the profile is known statically set it once for all and do not emit any code
2510           if (exact != nullptr) {
2511             md->set_parameter_type(j, exact);
2512           }
2513           j++;
2514         }
2515         java_index += type2size[t];
2516       }
2517     }
2518   }
2519 }
2520 








































2521 void LIRGenerator::do_Base(Base* x) {
2522   __ std_entry(LIR_OprFact::illegalOpr);
2523   // Emit moves from physical registers / stack slots to virtual registers
2524   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2525   IRScope* irScope = compilation()->hir()->top_scope();
2526   int java_index = 0;
2527   for (int i = 0; i < args->length(); i++) {
2528     LIR_Opr src = args->at(i);
2529     assert(!src->is_illegal(), "check");
2530     BasicType t = src->type();
2531 
2532     // Types which are smaller than int are passed as int, so
2533     // correct the type which passed.
2534     switch (t) {
2535     case T_BYTE:
2536     case T_BOOLEAN:
2537     case T_SHORT:
2538     case T_CHAR:
2539       t = T_INT;
2540       break;

2583     }
2584     assert(obj->is_valid(), "must be valid");
2585 
2586     if (method()->is_synchronized()) {
2587       LIR_Opr lock = syncLockOpr();
2588       __ load_stack_address_monitor(0, lock);
2589 
2590       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, x->check_flag(Instruction::DeoptimizeOnException));
2591       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2592 
2593       // receiver is guaranteed non-null so don't need CodeEmitInfo
2594       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, nullptr);
2595     }
2596   }
2597   // increment invocation counters if needed
2598   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2599     profile_parameters(x);
2600     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, false);
2601     increment_invocation_counter(info);
2602   }








2603 
2604   // all blocks with a successor must end with an unconditional jump
2605   // to the successor even if they are consecutive
2606   __ jump(x->default_sux());
2607 }
2608 
2609 
2610 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2611   // construct our frame and model the production of incoming pointer
2612   // to the OSR buffer.
2613   __ osr_entry(LIR_Assembler::osrBufferPointer());
2614   LIR_Opr result = rlock_result(x);
2615   __ move(LIR_Assembler::osrBufferPointer(), result);
2616 }
2617 













2618 
2619 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2620   assert(args->length() == arg_list->length(),
2621          "args=%d, arg_list=%d", args->length(), arg_list->length());
2622   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2623     LIRItem* param = args->at(i);
2624     LIR_Opr loc = arg_list->at(i);
2625     if (loc->is_register()) {
2626       param->load_item_force(loc);
2627     } else {
2628       LIR_Address* addr = loc->as_address_ptr();
2629       param->load_for_store(addr->type());
2630       if (addr->type() == T_OBJECT) {
2631         __ move_wide(param->result(), addr);
2632       } else
2633         __ move(param->result(), addr);
2634     }
2635   }
2636 
2637   if (x->has_receiver()) {
2638     LIRItem* receiver = args->at(0);
2639     LIR_Opr loc = arg_list->at(0);
2640     if (loc->is_register()) {
2641       receiver->load_item_force(loc);
2642     } else {
2643       assert(loc->is_address(), "just checking");
2644       receiver->load_for_store(T_OBJECT);
2645       __ move_wide(receiver->result(), loc->as_address_ptr());
2646     }
2647   }
2648 }
2649 
2650 
2651 // Visits all arguments, returns appropriate items without loading them
2652 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2653   LIRItemList* argument_items = new LIRItemList();
2654   if (x->has_receiver()) {

2780   __ move(tmp, reg);
2781 }
2782 
2783 
2784 
2785 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
2786 void LIRGenerator::do_IfOp(IfOp* x) {
2787 #ifdef ASSERT
2788   {
2789     ValueTag xtag = x->x()->type()->tag();
2790     ValueTag ttag = x->tval()->type()->tag();
2791     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
2792     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
2793     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
2794   }
2795 #endif
2796 
2797   LIRItem left(x->x(), this);
2798   LIRItem right(x->y(), this);
2799   left.load_item();
2800   if (can_inline_as_constant(right.value())) {
2801     right.dont_load_item();
2802   } else {

2803     right.load_item();
2804   }
2805 
2806   LIRItem t_val(x->tval(), this);
2807   LIRItem f_val(x->fval(), this);
2808   t_val.dont_load_item();
2809   f_val.dont_load_item();
2810   LIR_Opr reg = rlock_result(x);
2811 
2812   __ cmp(lir_cond(x->cond()), left.result(), right.result());
2813   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));


























































2814 }
2815 
2816 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
2817   assert(x->number_of_arguments() == 0, "wrong type");
2818   // Enforce computation of _reserved_argument_area_size which is required on some platforms.
2819   BasicTypeList signature;
2820   CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2821   LIR_Opr reg = result_register_for(x->type());
2822   __ call_runtime_leaf(routine, getThreadTemp(),
2823                        reg, new LIR_OprList());
2824   LIR_Opr result = rlock_result(x);
2825   __ move(reg, result);
2826 }
2827 
2828 
2829 
2830 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
2831   switch (x->id()) {
2832   case vmIntrinsics::_intBitsToFloat      :
2833   case vmIntrinsics::_doubleToRawLongBits :

3068   if (x->recv() != nullptr || x->nb_profiled_args() > 0) {
3069     profile_parameters_at_call(x);
3070   }
3071 
3072   if (x->recv() != nullptr) {
3073     LIRItem value(x->recv(), this);
3074     value.load_item();
3075     recv = new_register(T_OBJECT);
3076     __ move(value.result(), recv);
3077   }
3078   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3079 }
3080 
3081 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3082   int bci = x->bci_of_invoke();
3083   ciMethodData* md = x->method()->method_data_or_null();
3084   assert(md != nullptr, "Sanity");
3085   ciProfileData* data = md->bci_to_data(bci);
3086   if (data != nullptr) {
3087     assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3088     ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3089     LIR_Opr mdp = LIR_OprFact::illegalOpr;
3090 
3091     bool ignored_will_link;
3092     ciSignature* signature_at_call = nullptr;
3093     x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3094 
3095     // The offset within the MDO of the entry to update may be too large
3096     // to be used in load/store instructions on some platforms. So have
3097     // profile_type() compute the address of the profile in a register.
3098     ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3099         ret->type(), x->ret(), mdp,
3100         !x->needs_null_check(),
3101         signature_at_call->return_type()->as_klass(),
3102         x->callee()->signature()->return_type()->as_klass());
3103     if (exact != nullptr) {
3104       md->set_return_type(bci, exact);
3105     }
3106   }
3107 }
3108 















































3109 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3110   // We can safely ignore accessors here, since c2 will inline them anyway,
3111   // accessors are also always mature.
3112   if (!x->inlinee()->is_accessor()) {
3113     CodeEmitInfo* info = state_for(x, x->state(), true);
3114     // Notify the runtime very infrequently only to take care of counter overflows
3115     int freq_log = Tier23InlineeNotifyFreqLog;
3116     double scale;
3117     if (_method->has_option_value(CompileCommandEnum::CompileThresholdScaling, scale)) {
3118       freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3119     }
3120     increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true);
3121   }
3122 }
3123 
3124 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) {
3125   if (compilation()->is_profiling()) {
3126 #if defined(X86) && !defined(_LP64)
3127     // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
3128     LIR_Opr left_copy = new_register(left->type());

  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "c1/c1_Compilation.hpp"
  26 #include "c1/c1_Defs.hpp"
  27 #include "c1/c1_FrameMap.hpp"
  28 #include "c1/c1_Instruction.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_LIRGenerator.hpp"
  31 #include "c1/c1_ValueStack.hpp"
  32 #include "ci/ciArrayKlass.hpp"
  33 #include "ci/ciFlatArrayKlass.hpp"
  34 #include "ci/ciInlineKlass.hpp"
  35 #include "ci/ciInstance.hpp"
  36 #include "ci/ciObjArray.hpp"
  37 #include "ci/ciObjArrayKlass.hpp"
  38 #include "ci/ciUtilities.hpp"
  39 #include "compiler/compilerDefinitions.inline.hpp"
  40 #include "compiler/compilerOracle.hpp"
  41 #include "gc/shared/barrierSet.hpp"
  42 #include "gc/shared/c1/barrierSetC1.hpp"
  43 #include "oops/klass.inline.hpp"
  44 #include "oops/methodCounters.hpp"
  45 #include "runtime/sharedRuntime.hpp"
  46 #include "runtime/stubRoutines.hpp"
  47 #include "runtime/vm_version.hpp"
  48 #include "utilities/bitMap.inline.hpp"
  49 #include "utilities/macros.hpp"
  50 #include "utilities/powerOfTwo.hpp"
  51 
  52 #ifdef ASSERT
  53 #define __ gen()->lir(__FILE__, __LINE__)->
  54 #else
  55 #define __ gen()->lir()->
  56 #endif
  57 

 201 }
 202 
 203 
 204 //--------------------------------------------------------------
 205 // LIRItem
 206 
 207 void LIRItem::set_result(LIR_Opr opr) {
 208   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 209   value()->set_operand(opr);
 210 
 211 #ifdef ASSERT
 212   if (opr->is_virtual()) {
 213     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), nullptr);
 214   }
 215 #endif
 216 
 217   _result = opr;
 218 }
 219 
 220 void LIRItem::load_item() {
 221   assert(!_gen->in_conditional_code(), "LIRItem cannot be loaded in conditional code");
 222 
 223   if (result()->is_illegal()) {
 224     // update the items result
 225     _result = value()->operand();
 226   }
 227   if (!result()->is_register()) {
 228     LIR_Opr reg = _gen->new_register(value()->type());
 229     __ move(result(), reg);
 230     if (result()->is_constant()) {
 231       _result = reg;
 232     } else {
 233       set_result(reg);
 234     }
 235   }
 236 }
 237 
 238 
 239 void LIRItem::load_for_store(BasicType type) {
 240   if (_gen->can_store_as_constant(value(), type)) {
 241     _result = value()->operand();
 242     if (!_result->is_constant()) {

 610     assert(right_op != result_op, "malformed");
 611     __ move(left_op, result_op);
 612     left_op = result_op;
 613   }
 614 
 615   switch(code) {
 616     case Bytecodes::_iand:
 617     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 618 
 619     case Bytecodes::_ior:
 620     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 621 
 622     case Bytecodes::_ixor:
 623     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 624 
 625     default: ShouldNotReachHere();
 626   }
 627 }
 628 
 629 
 630 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no,
 631                                  CodeEmitInfo* info_for_exception, CodeEmitInfo* info, CodeStub* throw_ie_stub) {
 632   // for slow path, use debug info for state after successful locking
 633   CodeStub* slow_path = new MonitorEnterStub(object, lock, info, throw_ie_stub, scratch);
 634   __ load_stack_address_monitor(monitor_no, lock);
 635   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 636   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception, throw_ie_stub);
 637 }
 638 
 639 
 640 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 641   // setup registers
 642   LIR_Opr hdr = lock;
 643   lock = new_hdr;
 644   CodeStub* slow_path = new MonitorExitStub(lock, LockingMode != LM_MONITOR, monitor_no);
 645   __ load_stack_address_monitor(monitor_no, lock);
 646   __ unlock_object(hdr, object, lock, scratch, slow_path);
 647 }
 648 
 649 #ifndef PRODUCT
 650 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 651   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 652     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 653   } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) {
 654     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 655   }
 656 }
 657 #endif
 658 
 659 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, bool allow_inline, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 660   if (allow_inline) {
 661     assert(!is_unresolved && klass->is_loaded(), "inline type klass should be resolved");
 662     __ metadata2reg(klass->constant_encoding(), klass_reg);
 663   } else {
 664     klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 665   }
 666   // If klass is not loaded we do not know if the klass has finalizers or is an unexpected inline klass
 667   if (UseFastNewInstance && klass->is_loaded() && (allow_inline || !klass->is_inlinetype())
 668       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 669 
 670     StubId stub_id = klass->is_initialized() ? StubId::c1_fast_new_instance_id : StubId::c1_fast_new_instance_init_check_id;
 671 
 672     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 673 
 674     assert(klass->is_loaded(), "must be loaded");
 675     // allocate space for instance
 676     assert(klass->size_helper() > 0, "illegal instance size");
 677     const int instance_size = align_object_size(klass->size_helper());
 678     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 679                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 680   } else {
 681     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, StubId::c1_new_instance_id);
 682     __ jump(slow_path);
 683     __ branch_destination(slow_path->continuation());
 684   }
 685 }
 686 
 687 
 688 static bool is_constant_zero(Instruction* inst) {
 689   IntConstant* c = inst->type()->as_IntConstant();
 690   if (c) {
 691     return (c->value() == 0);
 692   }
 693   return false;
 694 }
 695 
 696 
 697 static bool positive_constant(Instruction* inst) {
 698   IntConstant* c = inst->type()->as_IntConstant();
 699   if (c) {
 700     return (c->value() >= 0);
 701   }
 702   return false;

 762       if (src_type != nullptr) {
 763         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 764           is_exact = true;
 765           expected_type = dst_type;
 766         }
 767       }
 768     }
 769     // at least pass along a good guess
 770     if (expected_type == nullptr) expected_type = dst_exact_type;
 771     if (expected_type == nullptr) expected_type = src_declared_type;
 772     if (expected_type == nullptr) expected_type = dst_declared_type;
 773 
 774     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 775     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 776   }
 777 
 778   // if a probable array type has been identified, figure out if any
 779   // of the required checks for a fast case can be elided.
 780   int flags = LIR_OpArrayCopy::all_flags;
 781 
 782   if (!src->is_loaded_flat_array() && !dst->is_loaded_flat_array()) {
 783     flags &= ~LIR_OpArrayCopy::always_slow_path;
 784   }
 785   if (!src->maybe_flat_array()) {
 786     flags &= ~LIR_OpArrayCopy::src_inlinetype_check;
 787   }
 788   if (!dst->maybe_flat_array() && !dst->maybe_null_free_array()) {
 789     flags &= ~LIR_OpArrayCopy::dst_inlinetype_check;
 790   }
 791 
 792   if (!src_objarray)
 793     flags &= ~LIR_OpArrayCopy::src_objarray;
 794   if (!dst_objarray)
 795     flags &= ~LIR_OpArrayCopy::dst_objarray;
 796 
 797   if (!x->arg_needs_null_check(0))
 798     flags &= ~LIR_OpArrayCopy::src_null_check;
 799   if (!x->arg_needs_null_check(2))
 800     flags &= ~LIR_OpArrayCopy::dst_null_check;
 801 
 802 
 803   if (expected_type != nullptr) {
 804     Value length_limit = nullptr;
 805 
 806     IfOp* ifop = length->as_IfOp();
 807     if (ifop != nullptr) {
 808       // look for expressions like min(v, a.length) which ends up as
 809       //   x > y ? y : x  or  x >= y ? y : x
 810       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 811           ifop->x() == ifop->fval() &&

 879       BasicType t = expected_type->element_type()->basic_type();
 880       int element_size = type2aelembytes(t);
 881       if (((arrayOopDesc::base_offset_in_bytes(t) + (uint)s_offs * element_size) % HeapWordSize == 0) &&
 882           ((arrayOopDesc::base_offset_in_bytes(t) + (uint)d_offs * element_size) % HeapWordSize == 0)) {
 883         flags &= ~LIR_OpArrayCopy::unaligned;
 884       }
 885     }
 886   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 887     // src and dest positions are the same, or dst is zero so assume
 888     // nonoverlapping copy.
 889     flags &= ~LIR_OpArrayCopy::overlapping;
 890   }
 891 
 892   if (src == dst) {
 893     // moving within a single array so no type checks are needed
 894     if (flags & LIR_OpArrayCopy::type_check) {
 895       flags &= ~LIR_OpArrayCopy::type_check;
 896     }
 897   }
 898   *flagsp = flags;
 899 
 900   // TODO 8366668
 901   if (expected_type != nullptr && expected_type->is_obj_array_klass()) {
 902     expected_type = ciArrayKlass::make(expected_type->as_array_klass()->element_klass(), false, true, true);
 903   }
 904 
 905   *expected_typep = (ciArrayKlass*)expected_type;
 906 }
 907 
 908 
 909 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 910   assert(type2size[t] == type2size[value->type()],
 911          "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
 912   if (!value->is_register()) {
 913     // force into a register
 914     LIR_Opr r = new_register(value->type());
 915     __ move(value, r);
 916     value = r;
 917   }
 918 
 919   // create a spill location
 920   LIR_Opr tmp = new_register(t);
 921   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 922 
 923   // move from register to spill
 924   __ move(value, tmp);

1470   }
1471   return _vreg_flags.at(vreg_num, f);
1472 }
1473 
1474 
1475 // Block local constant handling.  This code is useful for keeping
1476 // unpinned constants and constants which aren't exposed in the IR in
1477 // registers.  Unpinned Constant instructions have their operands
1478 // cleared when the block is finished so that other blocks can't end
1479 // up referring to their registers.
1480 
1481 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1482   assert(!x->is_pinned(), "only for unpinned constants");
1483   _unpinned_constants.append(x);
1484   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1485 }
1486 
1487 
1488 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1489   BasicType t = c->type();
1490   for (int i = 0; i < _constants.length() && !in_conditional_code(); i++) {
1491     LIR_Const* other = _constants.at(i);
1492     if (t == other->type()) {
1493       switch (t) {
1494       case T_INT:
1495       case T_FLOAT:
1496         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1497         break;
1498       case T_LONG:
1499       case T_DOUBLE:
1500         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1501         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1502         break;
1503       case T_OBJECT:
1504         if (c->as_jobject() != other->as_jobject()) continue;
1505         break;
1506       default:
1507         break;
1508       }
1509       return _reg_for_constants.at(i);
1510     }
1511   }
1512 
1513   LIR_Opr result = new_register(t);
1514   __ move((LIR_Opr)c, result);
1515   if (!in_conditional_code()) {
1516     _constants.append(c);
1517     _reg_for_constants.append(result);
1518   }
1519   return result;
1520 }
1521 
1522 void LIRGenerator::set_in_conditional_code(bool v) {
1523   assert(v != _in_conditional_code, "must change state");
1524   _in_conditional_code = v;
1525 }
1526 
1527 
1528 //------------------------field access--------------------------------------
1529 
1530 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
1531   assert(x->number_of_arguments() == 4, "wrong type");
1532   LIRItem obj   (x->argument_at(0), this);  // object
1533   LIRItem offset(x->argument_at(1), this);  // offset of field
1534   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
1535   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
1536   assert(obj.type()->tag() == objectTag, "invalid type");
1537   assert(cmp.type()->tag() == type->tag(), "invalid type");
1538   assert(val.type()->tag() == type->tag(), "invalid type");
1539 
1540   LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type),
1541                                             obj, offset, cmp, val);
1542   set_result(x, result);
1543 }
1544 
1545 // Returns a int/long value with the null marker bit set
1546 static LIR_Opr null_marker_mask(BasicType bt, ciField* field) {
1547   assert(field->null_marker_offset() != -1, "field does not have null marker");
1548   int nm_offset = field->null_marker_offset() - field->offset_in_bytes();
1549   jlong null_marker = 1ULL << (nm_offset << LogBitsPerByte);
1550   return (bt == T_LONG) ? LIR_OprFact::longConst(null_marker) : LIR_OprFact::intConst(null_marker);
1551 }
1552 
1553 // Comment copied form templateTable_i486.cpp
1554 // ----------------------------------------------------------------------------
1555 // Volatile variables demand their effects be made known to all CPU's in
1556 // order.  Store buffers on most chips allow reads & writes to reorder; the
1557 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1558 // memory barrier (i.e., it's not sufficient that the interpreter does not
1559 // reorder volatile references, the hardware also must not reorder them).
1560 //
1561 // According to the new Java Memory Model (JMM):
1562 // (1) All volatiles are serialized wrt to each other.
1563 // ALSO reads & writes act as acquire & release, so:
1564 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1565 // the read float up to before the read.  It's OK for non-volatile memory refs
1566 // that happen before the volatile read to float down below it.
1567 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1568 // that happen BEFORE the write float down to after the write.  It's OK for
1569 // non-volatile memory refs that happen after the volatile write to float up
1570 // before it.
1571 //
1572 // We only put in barriers around volatile refs (they are expensive), not
1573 // _between_ memory refs (that would require us to track the flavor of the
1574 // previous memory refs).  Requirements (2) and (3) require some barriers
1575 // before volatile stores and after volatile loads.  These nearly cover
1576 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1577 // case is placed after volatile-stores although it could just as well go
1578 // before volatile-loads.
1579 
1580 
1581 void LIRGenerator::do_StoreField(StoreField* x) {
1582   ciField* field = x->field();
1583   bool needs_patching = x->needs_patching();
1584   bool is_volatile = field->is_volatile();
1585   BasicType field_type = x->field_type();
1586 
1587   CodeEmitInfo* info = nullptr;
1588   if (needs_patching) {
1589     assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access");
1590     info = state_for(x, x->state_before());
1591   } else if (x->needs_null_check()) {
1592     NullCheck* nc = x->explicit_null_check();
1593     if (nc == nullptr) {
1594       info = state_for(x);
1595     } else {
1596       info = state_for(nc);
1597     }
1598   }
1599 
1600   LIRItem object(x->obj(), this);
1601   LIRItem value(x->value(),  this);
1602 
1603   object.load_item();
1604 
1605   if (field->is_flat()) {
1606     value.load_item();








1607   } else {
1608     if (is_volatile || needs_patching) {
1609       // load item if field is volatile (fewer special cases for volatiles)
1610       // load item if field not initialized
1611       // load item if field not constant
1612       // because of code patching we cannot inline constants
1613       if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1614         value.load_byte_item();
1615       } else  {
1616         value.load_item();
1617       }
1618     } else {
1619       value.load_for_store(field_type);
1620     }
1621   }
1622 
1623   set_no_result(x);
1624 
1625 #ifndef PRODUCT
1626   if (PrintNotLoaded && needs_patching) {
1627     tty->print_cr("   ###class not loaded at store_%s bci %d",
1628                   x->is_static() ?  "static" : "field", x->printable_bci());
1629   }
1630 #endif
1631 
1632   if (x->needs_null_check() &&
1633       (needs_patching ||
1634        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1635     // Emit an explicit null check because the offset is too large.
1636     // If the class is not loaded and the object is null, we need to deoptimize to throw a
1637     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1638     __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1639   }
1640 
1641   DecoratorSet decorators = IN_HEAP;
1642   if (is_volatile) {
1643     decorators |= MO_SEQ_CST;
1644   }
1645   if (needs_patching) {
1646     decorators |= C1_NEEDS_PATCHING;
1647   }
1648 
1649   if (field->is_flat()) {
1650     ciInlineKlass* vk = field->type()->as_inline_klass();
1651 
1652 #ifdef ASSERT
1653     bool is_naturally_atomic = vk->nof_declared_nonstatic_fields() <= 1;
1654     bool needs_atomic_access = !field->is_null_free() || (field->is_volatile() && !is_naturally_atomic);
1655     assert(needs_atomic_access, "No atomic access required");
1656     // ZGC does not support compressed oops, so only one oop can be in the payload which is written by a "normal" oop store.
1657     assert(!vk->contains_oops() || !UseZGC, "ZGC does not support embedded oops in flat fields");
1658 #endif
1659 
1660     // Zero the payload
1661     BasicType bt = vk->atomic_size_to_basic_type(field->is_null_free());
1662     LIR_Opr payload = new_register((bt == T_LONG) ? bt : T_INT);
1663     LIR_Opr zero = (bt == T_LONG) ? LIR_OprFact::longConst(0) : LIR_OprFact::intConst(0);
1664     __ move(zero, payload);
1665 
1666     bool is_constant_null = value.is_constant() && value.value()->is_null_obj();
1667     if (!is_constant_null) {
1668       LabelObj* L_isNull = new LabelObj();
1669       bool needs_null_check = !value.is_constant() || value.value()->is_null_obj();
1670       if (needs_null_check) {
1671         __ cmp(lir_cond_equal, value.result(), LIR_OprFact::oopConst(nullptr));
1672         __ branch(lir_cond_equal, L_isNull->label());
1673       }
1674       // Load payload (if not empty) and set null marker (if not null-free)
1675       if (!vk->is_empty()) {
1676         access_load_at(decorators, bt, value, LIR_OprFact::intConst(vk->payload_offset()), payload);
1677       }
1678       if (!field->is_null_free()) {
1679         __ logical_or(payload, null_marker_mask(bt, field), payload);
1680       }
1681       if (needs_null_check) {
1682         __ branch_destination(L_isNull->label());
1683       }
1684     }
1685     access_store_at(decorators, bt, object, LIR_OprFact::intConst(x->offset()), payload,
1686                     // Make sure to emit an implicit null check and pass the information
1687                     // that this is a flat store that might require gc barriers for oop fields.
1688                     info != nullptr ? new CodeEmitInfo(info) : nullptr, info, vk);
1689     return;
1690   }
1691 
1692   access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()),
1693                   value.result(), info != nullptr ? new CodeEmitInfo(info) : nullptr, info);
1694 }
1695 
1696 // FIXME -- I can't find any other way to pass an address to access_load_at().
1697 class TempResolvedAddress: public Instruction {
1698  public:
1699   TempResolvedAddress(ValueType* type, LIR_Opr addr) : Instruction(type) {
1700     set_operand(addr);
1701   }
1702   virtual void input_values_do(ValueVisitor*) {}
1703   virtual void visit(InstructionVisitor* v)   {}
1704   virtual const char* name() const  { return "TempResolvedAddress"; }
1705 };
1706 
1707 LIR_Opr LIRGenerator::get_and_load_element_address(LIRItem& array, LIRItem& index) {
1708   ciType* array_type = array.value()->declared_type();
1709   ciFlatArrayKlass* flat_array_klass = array_type->as_flat_array_klass();
1710   assert(flat_array_klass->is_loaded(), "must be");
1711 
1712   int array_header_size = flat_array_klass->array_header_in_bytes();
1713   int shift = flat_array_klass->log2_element_size();
1714 
1715 #ifndef _LP64
1716   LIR_Opr index_op = new_register(T_INT);
1717   // FIXME -- on 32-bit, the shift below can overflow, so we need to check that
1718   // the top (shift+1) bits of index_op must be zero, or
1719   // else throw ArrayIndexOutOfBoundsException
1720   if (index.result()->is_constant()) {
1721     jint const_index = index.result()->as_jint();
1722     __ move(LIR_OprFact::intConst(const_index << shift), index_op);
1723   } else {
1724     __ shift_left(index_op, shift, index.result());
1725   }
1726 #else
1727   LIR_Opr index_op = new_register(T_LONG);
1728   if (index.result()->is_constant()) {
1729     jint const_index = index.result()->as_jint();
1730     __ move(LIR_OprFact::longConst(const_index << shift), index_op);
1731   } else {
1732     __ convert(Bytecodes::_i2l, index.result(), index_op);
1733     // Need to shift manually, as LIR_Address can scale only up to 3.
1734     __ shift_left(index_op, shift, index_op);
1735   }
1736 #endif
1737 
1738   LIR_Opr elm_op = new_pointer_register();
1739   LIR_Address* elm_address = generate_address(array.result(), index_op, 0, array_header_size, T_ADDRESS);
1740   __ leal(LIR_OprFact::address(elm_address), elm_op);
1741   return elm_op;
1742 }
1743 
1744 void LIRGenerator::access_sub_element(LIRItem& array, LIRItem& index, LIR_Opr& result, ciField* field, int sub_offset) {
1745   assert(field != nullptr, "Need a subelement type specified");
1746 
1747   // Find the starting address of the source (inside the array)
1748   LIR_Opr elm_op = get_and_load_element_address(array, index);
1749 
1750   BasicType subelt_type = field->type()->basic_type();
1751   TempResolvedAddress* elm_resolved_addr = new TempResolvedAddress(as_ValueType(subelt_type), elm_op);
1752   LIRItem elm_item(elm_resolved_addr, this);
1753 
1754   DecoratorSet decorators = IN_HEAP;
1755   access_load_at(decorators, subelt_type,
1756                      elm_item, LIR_OprFact::intConst(sub_offset), result,
1757                      nullptr, nullptr);
1758 }
1759 
1760 void LIRGenerator::access_flat_array(bool is_load, LIRItem& array, LIRItem& index, LIRItem& obj_item,
1761                                           ciField* field, int sub_offset) {
1762   assert(sub_offset == 0 || field != nullptr, "Sanity check");
1763 
1764   // Find the starting address of the source (inside the array)
1765   LIR_Opr elm_op = get_and_load_element_address(array, index);
1766 
1767   ciInlineKlass* elem_klass = nullptr;
1768   if (field != nullptr) {
1769     elem_klass = field->type()->as_inline_klass();
1770   } else {
1771     elem_klass = array.value()->declared_type()->as_flat_array_klass()->element_klass()->as_inline_klass();
1772   }
1773   for (int i = 0; i < elem_klass->nof_nonstatic_fields(); i++) {
1774     ciField* inner_field = elem_klass->nonstatic_field_at(i);
1775     assert(!inner_field->is_flat(), "flat fields must have been expanded");
1776     int obj_offset = inner_field->offset_in_bytes();
1777     int elm_offset = obj_offset - elem_klass->payload_offset() + sub_offset; // object header is not stored in array.
1778     BasicType field_type = inner_field->type()->basic_type();
1779 
1780     // Types which are smaller than int are still passed in an int register.
1781     BasicType reg_type = field_type;
1782     switch (reg_type) {
1783     case T_BYTE:
1784     case T_BOOLEAN:
1785     case T_SHORT:
1786     case T_CHAR:
1787       reg_type = T_INT;
1788       break;
1789     default:
1790       break;
1791     }
1792 
1793     LIR_Opr temp = new_register(reg_type);
1794     TempResolvedAddress* elm_resolved_addr = new TempResolvedAddress(as_ValueType(field_type), elm_op);
1795     LIRItem elm_item(elm_resolved_addr, this);
1796 
1797     DecoratorSet decorators = IN_HEAP;
1798     if (is_load) {
1799       access_load_at(decorators, field_type,
1800                      elm_item, LIR_OprFact::intConst(elm_offset), temp,
1801                      nullptr, nullptr);
1802       access_store_at(decorators, field_type,
1803                       obj_item, LIR_OprFact::intConst(obj_offset), temp,
1804                       nullptr, nullptr);
1805     } else {
1806       access_load_at(decorators, field_type,
1807                      obj_item, LIR_OprFact::intConst(obj_offset), temp,
1808                      nullptr, nullptr);
1809       access_store_at(decorators, field_type,
1810                       elm_item, LIR_OprFact::intConst(elm_offset), temp,
1811                       nullptr, nullptr);
1812     }
1813   }
1814 }
1815 
1816 void LIRGenerator::check_flat_array(LIR_Opr array, LIR_Opr value, CodeStub* slow_path) {
1817   LIR_Opr tmp = new_register(T_METADATA);
1818   __ check_flat_array(array, value, tmp, slow_path);
1819 }
1820 
1821 void LIRGenerator::check_null_free_array(LIRItem& array, LIRItem& value, CodeEmitInfo* info) {
1822   LabelObj* L_end = new LabelObj();
1823   LIR_Opr tmp = new_register(T_METADATA);
1824   __ check_null_free_array(array.result(), tmp);
1825   __ branch(lir_cond_equal, L_end->label());
1826   __ null_check(value.result(), info);
1827   __ branch_destination(L_end->label());
1828 }
1829 
1830 bool LIRGenerator::needs_flat_array_store_check(StoreIndexed* x) {
1831   if (x->elt_type() == T_OBJECT && x->array()->maybe_flat_array()) {
1832     ciType* type = x->value()->declared_type();
1833     if (type != nullptr && type->is_klass()) {
1834       ciKlass* klass = type->as_klass();
1835       if (!klass->can_be_inline_klass() || (klass->is_inlinetype() && !klass->as_inline_klass()->maybe_flat_in_array())) {
1836         // This is known to be a non-flat object. If the array is a flat array,
1837         // it will be caught by the code generated by array_store_check().
1838         return false;
1839       }
1840     }
1841     // We're not 100% sure, so let's do the flat_array_store_check.
1842     return true;
1843   }
1844   return false;
1845 }
1846 
1847 bool LIRGenerator::needs_null_free_array_store_check(StoreIndexed* x) {
1848   return x->elt_type() == T_OBJECT && x->array()->maybe_null_free_array();
1849 }
1850 
1851 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
1852   assert(x->is_pinned(),"");
1853   assert(x->elt_type() != T_ARRAY, "never used");
1854   bool is_loaded_flat_array = x->array()->is_loaded_flat_array();
1855   bool needs_range_check = x->compute_needs_range_check();
1856   bool use_length = x->length() != nullptr;
1857   bool obj_store = is_reference_type(x->elt_type());
1858   bool needs_store_check = obj_store && !(is_loaded_flat_array && x->is_exact_flat_array_store()) &&
1859                                         (x->value()->as_Constant() == nullptr ||
1860                                          !get_jobject_constant(x->value())->is_null_object());
1861 
1862   LIRItem array(x->array(), this);
1863   LIRItem index(x->index(), this);
1864   LIRItem value(x->value(), this);
1865   LIRItem length(this);
1866 
1867   array.load_item();
1868   index.load_nonconstant();
1869 
1870   if (use_length && needs_range_check) {
1871     length.set_instruction(x->length());
1872     length.load_item();

1873   }
1874 
1875   if (needs_store_check || x->check_boolean()
1876       || is_loaded_flat_array || needs_flat_array_store_check(x) || needs_null_free_array_store_check(x)) {
1877     value.load_item();
1878   } else {
1879     value.load_for_store(x->elt_type());
1880   }
1881 
1882   set_no_result(x);
1883 
1884   // the CodeEmitInfo must be duplicated for each different
1885   // LIR-instruction because spilling can occur anywhere between two
1886   // instructions and so the debug information must be different
1887   CodeEmitInfo* range_check_info = state_for(x);
1888   CodeEmitInfo* null_check_info = nullptr;
1889   if (x->needs_null_check()) {
1890     null_check_info = new CodeEmitInfo(range_check_info);
1891   }
1892 
1893   if (needs_range_check) {
1894     if (use_length) {
1895       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1896       __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1897     } else {
1898       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1899       // range_check also does the null check
1900       null_check_info = nullptr;
1901     }
1902   }
1903 
1904   if (x->should_profile()) {
1905     if (is_loaded_flat_array) {
1906       // No need to profile a store to a flat array of known type. This can happen if
1907       // the type only became known after optimizations (for example, after the PhiSimplifier).
1908       x->set_should_profile(false);
1909     } else {
1910       int bci = x->profiled_bci();
1911       ciMethodData* md = x->profiled_method()->method_data();
1912       assert(md != nullptr, "Sanity");
1913       ciProfileData* data = md->bci_to_data(bci);
1914       assert(data != nullptr && data->is_ArrayStoreData(), "incorrect profiling entry");
1915       ciArrayStoreData* store_data = (ciArrayStoreData*)data;
1916       profile_array_type(x, md, store_data);
1917       assert(store_data->is_ArrayStoreData(), "incorrect profiling entry");
1918       if (x->array()->maybe_null_free_array()) {
1919         profile_null_free_array(array, md, store_data);
1920       }
1921     }
1922   }
1923 
1924   if (GenerateArrayStoreCheck && needs_store_check) {
1925     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
1926     array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci());
1927   }
1928 
1929   if (is_loaded_flat_array) {
1930     // TODO 8350865 This is currently dead code
1931     if (!x->value()->is_null_free()) {
1932       __ null_check(value.result(), new CodeEmitInfo(range_check_info));
1933     }
1934     // If array element is an empty inline type, no need to copy anything
1935     if (!x->array()->declared_type()->as_flat_array_klass()->element_klass()->as_inline_klass()->is_empty()) {
1936       access_flat_array(false, array, index, value);
1937     }
1938   } else {
1939     StoreFlattenedArrayStub* slow_path = nullptr;
1940 
1941     if (needs_flat_array_store_check(x)) {
1942       // Check if we indeed have a flat array
1943       index.load_item();
1944       slow_path = new StoreFlattenedArrayStub(array.result(), index.result(), value.result(), state_for(x, x->state_before()));
1945       check_flat_array(array.result(), value.result(), slow_path);
1946       set_in_conditional_code(true);
1947     } else if (needs_null_free_array_store_check(x)) {
1948       CodeEmitInfo* info = new CodeEmitInfo(range_check_info);
1949       check_null_free_array(array, value, info);
1950     }
1951 
1952     DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1953     if (x->check_boolean()) {
1954       decorators |= C1_MASK_BOOLEAN;
1955     }
1956 
1957     access_store_at(decorators, x->elt_type(), array, index.result(), value.result(), nullptr, null_check_info);
1958     if (slow_path != nullptr) {
1959       __ branch_destination(slow_path->continuation());
1960       set_in_conditional_code(false);
1961     }
1962   }
1963 }
1964 
1965 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type,
1966                                   LIRItem& base, LIR_Opr offset, LIR_Opr result,
1967                                   CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) {
1968   decorators |= ACCESS_READ;
1969   LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info);
1970   if (access.is_raw()) {
1971     _barrier_set->BarrierSetC1::load_at(access, result);
1972   } else {
1973     _barrier_set->load_at(access, result);
1974   }
1975 }
1976 
1977 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type,
1978                                LIR_Opr addr, LIR_Opr result) {
1979   decorators |= ACCESS_READ;
1980   LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type);
1981   access.set_resolved_addr(addr);
1982   if (access.is_raw()) {
1983     _barrier_set->BarrierSetC1::load(access, result);
1984   } else {
1985     _barrier_set->load(access, result);
1986   }
1987 }
1988 
1989 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type,
1990                                    LIRItem& base, LIR_Opr offset, LIR_Opr value,
1991                                    CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info,
1992                                    ciInlineKlass* vk) {
1993   decorators |= ACCESS_WRITE;
1994   LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info, vk);
1995   if (access.is_raw()) {
1996     _barrier_set->BarrierSetC1::store_at(access, value);
1997   } else {
1998     _barrier_set->store_at(access, value);
1999   }
2000 }
2001 
2002 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type,
2003                                                LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) {
2004   decorators |= ACCESS_READ;
2005   decorators |= ACCESS_WRITE;
2006   // Atomic operations are SEQ_CST by default
2007   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
2008   LIRAccess access(this, decorators, base, offset, type);
2009   if (access.is_raw()) {
2010     return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value);
2011   } else {
2012     return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value);
2013   }
2014 }

2025   } else {
2026     return _barrier_set->atomic_xchg_at(access, value);
2027   }
2028 }
2029 
2030 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type,
2031                                            LIRItem& base, LIRItem& offset, LIRItem& value) {
2032   decorators |= ACCESS_READ;
2033   decorators |= ACCESS_WRITE;
2034   // Atomic operations are SEQ_CST by default
2035   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
2036   LIRAccess access(this, decorators, base, offset, type);
2037   if (access.is_raw()) {
2038     return _barrier_set->BarrierSetC1::atomic_add_at(access, value);
2039   } else {
2040     return _barrier_set->atomic_add_at(access, value);
2041   }
2042 }
2043 
2044 void LIRGenerator::do_LoadField(LoadField* x) {
2045   ciField* field = x->field();
2046   bool needs_patching = x->needs_patching();
2047   bool is_volatile = field->is_volatile();
2048   BasicType field_type = x->field_type();
2049 
2050   CodeEmitInfo* info = nullptr;
2051   if (needs_patching) {
2052     assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access");
2053     info = state_for(x, x->state_before());
2054   } else if (x->needs_null_check()) {
2055     NullCheck* nc = x->explicit_null_check();
2056     if (nc == nullptr) {
2057       info = state_for(x);
2058     } else {
2059       info = state_for(nc);
2060     }
2061   }
2062 
2063   LIRItem object(x->obj(), this);
2064 
2065   object.load_item();
2066 
2067 #ifndef PRODUCT

2078        stress_deopt)) {
2079     LIR_Opr obj = object.result();
2080     if (stress_deopt) {
2081       obj = new_register(T_OBJECT);
2082       __ move(LIR_OprFact::oopConst(nullptr), obj);
2083     }
2084     // Emit an explicit null check because the offset is too large.
2085     // If the class is not loaded and the object is null, we need to deoptimize to throw a
2086     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
2087     __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
2088   }
2089 
2090   DecoratorSet decorators = IN_HEAP;
2091   if (is_volatile) {
2092     decorators |= MO_SEQ_CST;
2093   }
2094   if (needs_patching) {
2095     decorators |= C1_NEEDS_PATCHING;
2096   }
2097 
2098   if (field->is_flat()) {
2099     ciInlineKlass* vk = field->type()->as_inline_klass();
2100 #ifdef ASSERT
2101     bool is_naturally_atomic = vk->nof_declared_nonstatic_fields() <= 1;
2102     bool needs_atomic_access = !field->is_null_free() || (field->is_volatile() && !is_naturally_atomic);
2103     assert(needs_atomic_access, "No atomic access required");
2104     assert(x->state_before() != nullptr, "Needs state before");
2105 #endif
2106 
2107     // Allocate buffer (we can't easily do this conditionally on the null check below
2108     // because branches added in the LIR are opaque to the register allocator).
2109     NewInstance* buffer = new NewInstance(vk, x->state_before(), false, true);
2110     do_NewInstance(buffer);
2111     LIRItem dest(buffer, this);
2112 
2113     // Copy the payload to the buffer
2114     BasicType bt = vk->atomic_size_to_basic_type(field->is_null_free());
2115     LIR_Opr payload = new_register((bt == T_LONG) ? bt : T_INT);
2116     access_load_at(decorators, bt, object, LIR_OprFact::intConst(field->offset_in_bytes()), payload,
2117                    // Make sure to emit an implicit null check
2118                    info ? new CodeEmitInfo(info) : nullptr, info);
2119     access_store_at(decorators, bt, dest, LIR_OprFact::intConst(vk->payload_offset()), payload);
2120 
2121     if (field->is_null_free()) {
2122       set_result(x, buffer->operand());
2123     } else {
2124       // Check the null marker and set result to null if it's not set
2125       __ logical_and(payload, null_marker_mask(bt, field), payload);
2126       __ cmp(lir_cond_equal, payload, (bt == T_LONG) ? LIR_OprFact::longConst(0) : LIR_OprFact::intConst(0));
2127       __ cmove(lir_cond_equal, LIR_OprFact::oopConst(nullptr), buffer->operand(), rlock_result(x), T_OBJECT);
2128     }
2129 
2130     // Ensure the copy is visible before any subsequent store that publishes the buffer.
2131     __ membar_storestore();
2132     return;
2133   }
2134 
2135   LIR_Opr result = rlock_result(x, field_type);
2136   access_load_at(decorators, field_type,
2137                  object, LIR_OprFact::intConst(x->offset()), result,
2138                  info ? new CodeEmitInfo(info) : nullptr, info);
2139 }
2140 
2141 // int/long jdk.internal.util.Preconditions.checkIndex
2142 void LIRGenerator::do_PreconditionsCheckIndex(Intrinsic* x, BasicType type) {
2143   assert(x->number_of_arguments() == 3, "wrong type");
2144   LIRItem index(x->argument_at(0), this);
2145   LIRItem length(x->argument_at(1), this);
2146   LIRItem oobef(x->argument_at(2), this);
2147 
2148   index.load_item();
2149   length.load_item();
2150   oobef.load_item();
2151 
2152   LIR_Opr result = rlock_result(x);
2153   // x->state() is created from copy_state_for_exception, it does not contains arguments
2154   // we should prepare them before entering into interpreter mode due to deoptimization.

2263       __ move(LIR_OprFact::oopConst(nullptr), obj);
2264       __ null_check(obj, new CodeEmitInfo(null_check_info));
2265     }
2266   }
2267 
2268   if (needs_range_check) {
2269     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
2270       __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result()));
2271     } else if (use_length) {
2272       // TODO: use a (modified) version of array_range_check that does not require a
2273       //       constant length to be loaded to a register
2274       __ cmp(lir_cond_belowEqual, length.result(), index.result());
2275       __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
2276     } else {
2277       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
2278       // The range check performs the null check, so clear it out for the load
2279       null_check_info = nullptr;
2280     }
2281   }
2282 
2283   ciMethodData* md = nullptr;
2284   ciArrayLoadData* load_data = nullptr;
2285   if (x->should_profile()) {
2286     if (x->array()->is_loaded_flat_array()) {
2287       // No need to profile a load from a flat array of known type. This can happen if
2288       // the type only became known after optimizations (for example, after the PhiSimplifier).
2289       x->set_should_profile(false);
2290     } else {
2291       int bci = x->profiled_bci();
2292       md = x->profiled_method()->method_data();
2293       assert(md != nullptr, "Sanity");
2294       ciProfileData* data = md->bci_to_data(bci);
2295       assert(data != nullptr && data->is_ArrayLoadData(), "incorrect profiling entry");
2296       load_data = (ciArrayLoadData*)data;
2297       profile_array_type(x, md, load_data);
2298     }
2299   }
2300 
2301   Value element;
2302   if (x->vt() != nullptr) {
2303     assert(x->array()->is_loaded_flat_array(), "must be");
2304     // Find the destination address (of the NewInlineTypeInstance).
2305     LIRItem obj_item(x->vt(), this);
2306 
2307     access_flat_array(true, array, index, obj_item,
2308                       x->delayed() == nullptr ? 0 : x->delayed()->field(),
2309                       x->delayed() == nullptr ? 0 : x->delayed()->offset());
2310     set_no_result(x);
2311   } else if (x->delayed() != nullptr) {
2312     assert(x->array()->is_loaded_flat_array(), "must be");
2313     LIR_Opr result = rlock_result(x, x->delayed()->field()->type()->basic_type());
2314     access_sub_element(array, index, result, x->delayed()->field(), x->delayed()->offset());
2315   } else {
2316     LIR_Opr result = rlock_result(x, x->elt_type());
2317     LoadFlattenedArrayStub* slow_path = nullptr;
2318 
2319     if (x->should_profile() && x->array()->maybe_null_free_array()) {
2320       profile_null_free_array(array, md, load_data);
2321     }
2322 
2323     if (x->elt_type() == T_OBJECT && x->array()->maybe_flat_array()) {
2324       assert(x->delayed() == nullptr, "Delayed LoadIndexed only apply to loaded_flat_arrays");
2325       index.load_item();
2326       // if we are loading from a flat array, load it using a runtime call
2327       slow_path = new LoadFlattenedArrayStub(array.result(), index.result(), result, state_for(x, x->state_before()));
2328       check_flat_array(array.result(), LIR_OprFact::illegalOpr, slow_path);
2329       set_in_conditional_code(true);
2330     }
2331 
2332     DecoratorSet decorators = IN_HEAP | IS_ARRAY;
2333     access_load_at(decorators, x->elt_type(),
2334                    array, index.result(), result,
2335                    nullptr, null_check_info);
2336 
2337     if (slow_path != nullptr) {
2338       __ branch_destination(slow_path->continuation());
2339       set_in_conditional_code(false);
2340     }
2341 
2342     element = x;
2343   }
2344 
2345   if (x->should_profile()) {
2346     profile_element_type(element, md, load_data);
2347   }
2348 }
2349 
2350 
2351 void LIRGenerator::do_NullCheck(NullCheck* x) {
2352   if (x->can_trap()) {
2353     LIRItem value(x->obj(), this);
2354     value.load_item();
2355     CodeEmitInfo* info = state_for(x);
2356     __ null_check(value.result(), info);
2357   }
2358 }
2359 
2360 
2361 void LIRGenerator::do_TypeCast(TypeCast* x) {
2362   LIRItem value(x->obj(), this);
2363   value.load_item();
2364   // the result is the same as from the node we are casting
2365   set_result(x, value.result());
2366 }
2367 

2802   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2803   // known not to be null or null bit already set and already set to
2804   // unknown: nothing we can do to improve profiling
2805   if (!do_null && !do_update) {
2806     return result;
2807   }
2808 
2809   ciKlass* exact_klass = nullptr;
2810   Compilation* comp = Compilation::current();
2811   if (do_update) {
2812     // try to find exact type, using CHA if possible, so that loading
2813     // the klass from the object can be avoided
2814     ciType* type = obj->exact_type();
2815     if (type == nullptr) {
2816       type = obj->declared_type();
2817       type = comp->cha_exact_type(type);
2818     }
2819     assert(type == nullptr || type->is_klass(), "type should be class");
2820     exact_klass = (type != nullptr && type->is_loaded()) ? (ciKlass*)type : nullptr;
2821 
2822     // TODO 8366668
2823     if (exact_klass != nullptr && exact_klass->is_obj_array_klass()) {
2824       if (exact_klass->as_obj_array_klass()->element_klass()->is_inlinetype()) {
2825         // Could be flat, null free etc.
2826         exact_klass = nullptr;
2827       } else {
2828         exact_klass = ciObjArrayKlass::make(exact_klass->as_array_klass()->element_klass(), true);
2829       }
2830     }
2831 
2832     do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2833   }
2834 
2835   if (!do_null && !do_update) {
2836     return result;
2837   }
2838 
2839   ciKlass* exact_signature_k = nullptr;
2840   if (do_update && signature_at_call_k != nullptr) {
2841     // Is the type from the signature exact (the only one possible)?
2842     exact_signature_k = signature_at_call_k->exact_klass();
2843     if (exact_signature_k == nullptr) {
2844       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2845     } else {
2846       result = exact_signature_k;
2847       // Known statically. No need to emit any code: prevent
2848       // LIR_Assembler::emit_profile_type() from emitting useless code
2849       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2850     }
2851     // exact_klass and exact_signature_k can be both non null but
2852     // different if exact_klass is loaded after the ciObject for
2853     // exact_signature_k is created.
2854     if (exact_klass == nullptr && exact_signature_k != nullptr && exact_klass != exact_signature_k) {
2855       // sometimes the type of the signature is better than the best type
2856       // the compiler has
2857       exact_klass = exact_signature_k;
2858     }
2859     if (callee_signature_k != nullptr &&
2860         callee_signature_k != signature_at_call_k) {
2861       ciKlass* improved_klass = callee_signature_k->exact_klass();
2862       if (improved_klass == nullptr) {
2863         improved_klass = comp->cha_exact_type(callee_signature_k);
2864       }
2865       if (exact_klass == nullptr && improved_klass != nullptr && exact_klass != improved_klass) {
2866         exact_klass = exact_signature_k;
2867       }
2868     }
2869 
2870     // TODO 8366668
2871     if (exact_klass != nullptr && exact_klass->is_obj_array_klass()) {
2872       if (exact_klass->as_obj_array_klass()->element_klass()->is_inlinetype()) {
2873         // Could be flat, null free etc.
2874         exact_klass = nullptr;
2875       } else {
2876         exact_klass = ciObjArrayKlass::make(exact_klass->as_array_klass()->element_klass(), true);
2877       }
2878     }
2879 
2880     do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2881   }
2882 
2883   if (!do_null && !do_update) {
2884     return result;
2885   }
2886 
2887   if (mdp == LIR_OprFact::illegalOpr) {
2888     mdp = new_register(T_METADATA);
2889     __ metadata2reg(md->constant_encoding(), mdp);
2890     if (md_base_offset != 0) {
2891       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2892       mdp = new_pointer_register();
2893       __ leal(LIR_OprFact::address(base_type_address), mdp);
2894     }
2895   }
2896   LIRItem value(obj, this);
2897   value.load_item();
2898   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2899                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != nullptr);

2916         assert(!src->is_illegal(), "check");
2917         BasicType t = src->type();
2918         if (is_reference_type(t)) {
2919           intptr_t profiled_k = parameters->type(j);
2920           Local* local = x->state()->local_at(java_index)->as_Local();
2921           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2922                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2923                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), nullptr);
2924           // If the profile is known statically set it once for all and do not emit any code
2925           if (exact != nullptr) {
2926             md->set_parameter_type(j, exact);
2927           }
2928           j++;
2929         }
2930         java_index += type2size[t];
2931       }
2932     }
2933   }
2934 }
2935 
2936 void LIRGenerator::profile_flags(ciMethodData* md, ciProfileData* data, int flag, LIR_Condition condition) {
2937   assert(md != nullptr && data != nullptr, "should have been initialized");
2938   LIR_Opr mdp = new_register(T_METADATA);
2939   __ metadata2reg(md->constant_encoding(), mdp);
2940   LIR_Address* addr = new LIR_Address(mdp, md->byte_offset_of_slot(data, DataLayout::flags_offset()), T_BYTE);
2941   LIR_Opr flags = new_register(T_INT);
2942   __ move(addr, flags);
2943   if (condition != lir_cond_always) {
2944     LIR_Opr update = new_register(T_INT);
2945     __ cmove(condition, LIR_OprFact::intConst(0), LIR_OprFact::intConst(flag), update, T_INT);
2946   } else {
2947     __ logical_or(flags, LIR_OprFact::intConst(flag), flags);
2948   }
2949   __ store(flags, addr);
2950 }
2951 
2952 template <class ArrayData> void LIRGenerator::profile_null_free_array(LIRItem array, ciMethodData* md, ArrayData* load_store) {
2953   assert(compilation()->profile_array_accesses(), "array access profiling is disabled");
2954   LabelObj* L_end = new LabelObj();
2955   LIR_Opr tmp = new_register(T_METADATA);
2956   __ check_null_free_array(array.result(), tmp);
2957 
2958   profile_flags(md, load_store, ArrayStoreData::null_free_array_byte_constant(), lir_cond_equal);
2959 }
2960 
2961 template <class ArrayData> void LIRGenerator::profile_array_type(AccessIndexed* x, ciMethodData*& md, ArrayData*& load_store) {
2962   assert(compilation()->profile_array_accesses(), "array access profiling is disabled");
2963   LIR_Opr mdp = LIR_OprFact::illegalOpr;
2964   profile_type(md, md->byte_offset_of_slot(load_store, ArrayData::array_offset()), 0,
2965                load_store->array()->type(), x->array(), mdp, true, nullptr, nullptr);
2966 }
2967 
2968 void LIRGenerator::profile_element_type(Value element, ciMethodData* md, ciArrayLoadData* load_data) {
2969   assert(compilation()->profile_array_accesses(), "array access profiling is disabled");
2970   assert(md != nullptr && load_data != nullptr, "should have been initialized");
2971   LIR_Opr mdp = LIR_OprFact::illegalOpr;
2972   profile_type(md, md->byte_offset_of_slot(load_data, ArrayLoadData::element_offset()), 0,
2973                load_data->element()->type(), element, mdp, false, nullptr, nullptr);
2974 }
2975 
2976 void LIRGenerator::do_Base(Base* x) {
2977   __ std_entry(LIR_OprFact::illegalOpr);
2978   // Emit moves from physical registers / stack slots to virtual registers
2979   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2980   IRScope* irScope = compilation()->hir()->top_scope();
2981   int java_index = 0;
2982   for (int i = 0; i < args->length(); i++) {
2983     LIR_Opr src = args->at(i);
2984     assert(!src->is_illegal(), "check");
2985     BasicType t = src->type();
2986 
2987     // Types which are smaller than int are passed as int, so
2988     // correct the type which passed.
2989     switch (t) {
2990     case T_BYTE:
2991     case T_BOOLEAN:
2992     case T_SHORT:
2993     case T_CHAR:
2994       t = T_INT;
2995       break;

3038     }
3039     assert(obj->is_valid(), "must be valid");
3040 
3041     if (method()->is_synchronized()) {
3042       LIR_Opr lock = syncLockOpr();
3043       __ load_stack_address_monitor(0, lock);
3044 
3045       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, x->check_flag(Instruction::DeoptimizeOnException));
3046       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
3047 
3048       // receiver is guaranteed non-null so don't need CodeEmitInfo
3049       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, nullptr);
3050     }
3051   }
3052   // increment invocation counters if needed
3053   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
3054     profile_parameters(x);
3055     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, false);
3056     increment_invocation_counter(info);
3057   }
3058   if (method()->has_scalarized_args()) {
3059     // Check if deoptimization was triggered (i.e. orig_pc was set) while buffering scalarized inline type arguments
3060     // in the entry point (see comments in frame::deoptimize). If so, deoptimize only now that we have the right state.
3061     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), nullptr, false);
3062     CodeStub* deopt_stub = new DeoptimizeStub(info, Deoptimization::Reason_none, Deoptimization::Action_none);
3063     __ append(new LIR_Op0(lir_check_orig_pc));
3064     __ branch(lir_cond_notEqual, deopt_stub);
3065   }
3066 
3067   // all blocks with a successor must end with an unconditional jump
3068   // to the successor even if they are consecutive
3069   __ jump(x->default_sux());
3070 }
3071 
3072 
3073 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
3074   // construct our frame and model the production of incoming pointer
3075   // to the OSR buffer.
3076   __ osr_entry(LIR_Assembler::osrBufferPointer());
3077   LIR_Opr result = rlock_result(x);
3078   __ move(LIR_Assembler::osrBufferPointer(), result);
3079 }
3080 
3081 void LIRGenerator::invoke_load_one_argument(LIRItem* param, LIR_Opr loc) {
3082   if (loc->is_register()) {
3083     param->load_item_force(loc);
3084   } else {
3085     LIR_Address* addr = loc->as_address_ptr();
3086     param->load_for_store(addr->type());
3087     if (addr->type() == T_OBJECT) {
3088       __ move_wide(param->result(), addr);
3089     } else {
3090       __ move(param->result(), addr);
3091     }
3092   }
3093 }
3094 
3095 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
3096   assert(args->length() == arg_list->length(),
3097          "args=%d, arg_list=%d", args->length(), arg_list->length());
3098   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
3099     LIRItem* param = args->at(i);
3100     LIR_Opr loc = arg_list->at(i);
3101     invoke_load_one_argument(param, loc);









3102   }
3103 
3104   if (x->has_receiver()) {
3105     LIRItem* receiver = args->at(0);
3106     LIR_Opr loc = arg_list->at(0);
3107     if (loc->is_register()) {
3108       receiver->load_item_force(loc);
3109     } else {
3110       assert(loc->is_address(), "just checking");
3111       receiver->load_for_store(T_OBJECT);
3112       __ move_wide(receiver->result(), loc->as_address_ptr());
3113     }
3114   }
3115 }
3116 
3117 
3118 // Visits all arguments, returns appropriate items without loading them
3119 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
3120   LIRItemList* argument_items = new LIRItemList();
3121   if (x->has_receiver()) {

3247   __ move(tmp, reg);
3248 }
3249 
3250 
3251 
3252 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
3253 void LIRGenerator::do_IfOp(IfOp* x) {
3254 #ifdef ASSERT
3255   {
3256     ValueTag xtag = x->x()->type()->tag();
3257     ValueTag ttag = x->tval()->type()->tag();
3258     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
3259     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
3260     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
3261   }
3262 #endif
3263 
3264   LIRItem left(x->x(), this);
3265   LIRItem right(x->y(), this);
3266   left.load_item();
3267   if (can_inline_as_constant(right.value()) && !x->substitutability_check()) {
3268     right.dont_load_item();
3269   } else {
3270     // substitutability_check() needs to use right as a base register.
3271     right.load_item();
3272   }
3273 
3274   LIRItem t_val(x->tval(), this);
3275   LIRItem f_val(x->fval(), this);
3276   t_val.dont_load_item();
3277   f_val.dont_load_item();

3278 
3279   if (x->substitutability_check()) {
3280     substitutability_check(x, left, right, t_val, f_val);
3281   } else {
3282     LIR_Opr reg = rlock_result(x);
3283     __ cmp(lir_cond(x->cond()), left.result(), right.result());
3284     __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
3285   }
3286 }
3287 
3288 void LIRGenerator::substitutability_check(IfOp* x, LIRItem& left, LIRItem& right, LIRItem& t_val, LIRItem& f_val) {
3289   assert(x->cond() == If::eql || x->cond() == If::neq, "must be");
3290   bool is_acmpeq = (x->cond() == If::eql);
3291   LIR_Opr equal_result     = is_acmpeq ? t_val.result() : f_val.result();
3292   LIR_Opr not_equal_result = is_acmpeq ? f_val.result() : t_val.result();
3293   LIR_Opr result = rlock_result(x);
3294   CodeEmitInfo* info = state_for(x, x->state_before());
3295 
3296   substitutability_check_common(x->x(), x->y(), left, right, equal_result, not_equal_result, result, info);
3297 }
3298 
3299 void LIRGenerator::substitutability_check(If* x, LIRItem& left, LIRItem& right) {
3300   LIR_Opr equal_result     = LIR_OprFact::intConst(1);
3301   LIR_Opr not_equal_result = LIR_OprFact::intConst(0);
3302   LIR_Opr result = new_register(T_INT);
3303   CodeEmitInfo* info = state_for(x, x->state_before());
3304 
3305   substitutability_check_common(x->x(), x->y(), left, right, equal_result, not_equal_result, result, info);
3306 
3307   assert(x->cond() == If::eql || x->cond() == If::neq, "must be");
3308   __ cmp(lir_cond(x->cond()), result, equal_result);
3309 }
3310 
3311 void LIRGenerator::substitutability_check_common(Value left_val, Value right_val, LIRItem& left, LIRItem& right,
3312                                                  LIR_Opr equal_result, LIR_Opr not_equal_result, LIR_Opr result,
3313                                                  CodeEmitInfo* info) {
3314   LIR_Opr tmp1 = LIR_OprFact::illegalOpr;
3315   LIR_Opr tmp2 = LIR_OprFact::illegalOpr;
3316   LIR_Opr left_klass_op = LIR_OprFact::illegalOpr;
3317   LIR_Opr right_klass_op = LIR_OprFact::illegalOpr;
3318 
3319   ciKlass* left_klass  = left_val ->as_loaded_klass_or_null();
3320   ciKlass* right_klass = right_val->as_loaded_klass_or_null();
3321 
3322   if ((left_klass == nullptr || right_klass == nullptr) ||// The klass is still unloaded, or came from a Phi node.
3323       !left_klass->is_inlinetype() || !right_klass->is_inlinetype()) {
3324     init_temps_for_substitutability_check(tmp1, tmp2);
3325   }
3326 
3327   if (left_klass != nullptr && left_klass->is_inlinetype() && left_klass == right_klass) {
3328     // No need to load klass -- the operands are statically known to be the same inline klass.
3329   } else {
3330     BasicType t_klass = UseCompressedOops ? T_INT : T_METADATA;
3331     left_klass_op = new_register(t_klass);
3332     right_klass_op = new_register(t_klass);
3333   }
3334 
3335   CodeStub* slow_path = new SubstitutabilityCheckStub(left.result(), right.result(), info);
3336   __ substitutability_check(result, left.result(), right.result(), equal_result, not_equal_result,
3337                             tmp1, tmp2,
3338                             left_klass, right_klass, left_klass_op, right_klass_op, info, slow_path);
3339 }
3340 
3341 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
3342   assert(x->number_of_arguments() == 0, "wrong type");
3343   // Enforce computation of _reserved_argument_area_size which is required on some platforms.
3344   BasicTypeList signature;
3345   CallingConvention* cc = frame_map()->c_calling_convention(&signature);
3346   LIR_Opr reg = result_register_for(x->type());
3347   __ call_runtime_leaf(routine, getThreadTemp(),
3348                        reg, new LIR_OprList());
3349   LIR_Opr result = rlock_result(x);
3350   __ move(reg, result);
3351 }
3352 
3353 
3354 
3355 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
3356   switch (x->id()) {
3357   case vmIntrinsics::_intBitsToFloat      :
3358   case vmIntrinsics::_doubleToRawLongBits :

3593   if (x->recv() != nullptr || x->nb_profiled_args() > 0) {
3594     profile_parameters_at_call(x);
3595   }
3596 
3597   if (x->recv() != nullptr) {
3598     LIRItem value(x->recv(), this);
3599     value.load_item();
3600     recv = new_register(T_OBJECT);
3601     __ move(value.result(), recv);
3602   }
3603   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3604 }
3605 
3606 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3607   int bci = x->bci_of_invoke();
3608   ciMethodData* md = x->method()->method_data_or_null();
3609   assert(md != nullptr, "Sanity");
3610   ciProfileData* data = md->bci_to_data(bci);
3611   if (data != nullptr) {
3612     assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3613     ciSingleTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3614     LIR_Opr mdp = LIR_OprFact::illegalOpr;
3615 
3616     bool ignored_will_link;
3617     ciSignature* signature_at_call = nullptr;
3618     x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3619 
3620     // The offset within the MDO of the entry to update may be too large
3621     // to be used in load/store instructions on some platforms. So have
3622     // profile_type() compute the address of the profile in a register.
3623     ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3624         ret->type(), x->ret(), mdp,
3625         !x->needs_null_check(),
3626         signature_at_call->return_type()->as_klass(),
3627         x->callee()->signature()->return_type()->as_klass());
3628     if (exact != nullptr) {
3629       md->set_return_type(bci, exact);
3630     }
3631   }
3632 }
3633 
3634 bool LIRGenerator::profile_inline_klass(ciMethodData* md, ciProfileData* data, Value value, int flag) {
3635   ciKlass* klass = value->as_loaded_klass_or_null();
3636   if (klass != nullptr) {
3637     if (klass->is_inlinetype()) {
3638       profile_flags(md, data, flag, lir_cond_always);
3639     } else if (klass->can_be_inline_klass()) {
3640       return false;
3641     }
3642   } else {
3643     return false;
3644   }
3645   return true;
3646 }
3647 
3648 
3649 void LIRGenerator::do_ProfileACmpTypes(ProfileACmpTypes* x) {
3650   ciMethod* method = x->method();
3651   assert(method != nullptr, "method should be set if branch is profiled");
3652   ciMethodData* md = method->method_data_or_null();
3653   assert(md != nullptr, "Sanity");
3654   ciProfileData* data = md->bci_to_data(x->bci());
3655   assert(data != nullptr, "must have profiling data");
3656   assert(data->is_ACmpData(), "need BranchData for two-way branches");
3657   ciACmpData* acmp = (ciACmpData*)data;
3658   LIR_Opr mdp = LIR_OprFact::illegalOpr;
3659   profile_type(md, md->byte_offset_of_slot(acmp, ACmpData::left_offset()), 0,
3660                acmp->left()->type(), x->left(), mdp, !x->left_maybe_null(), nullptr, nullptr);
3661   int flags_offset = md->byte_offset_of_slot(data, DataLayout::flags_offset());
3662   if (!profile_inline_klass(md, acmp, x->left(), ACmpData::left_inline_type_byte_constant())) {
3663     LIR_Opr mdp = new_register(T_METADATA);
3664     __ metadata2reg(md->constant_encoding(), mdp);
3665     LIRItem value(x->left(), this);
3666     value.load_item();
3667     __ profile_inline_type(new LIR_Address(mdp, flags_offset, T_INT), value.result(), ACmpData::left_inline_type_byte_constant(), new_register(T_INT), !x->left_maybe_null());
3668   }
3669   profile_type(md, md->byte_offset_of_slot(acmp, ACmpData::left_offset()),
3670                in_bytes(ACmpData::right_offset()) - in_bytes(ACmpData::left_offset()),
3671                acmp->right()->type(), x->right(), mdp, !x->right_maybe_null(), nullptr, nullptr);
3672   if (!profile_inline_klass(md, acmp, x->right(), ACmpData::right_inline_type_byte_constant())) {
3673     LIR_Opr mdp = new_register(T_METADATA);
3674     __ metadata2reg(md->constant_encoding(), mdp);
3675     LIRItem value(x->right(), this);
3676     value.load_item();
3677     __ profile_inline_type(new LIR_Address(mdp, flags_offset, T_INT), value.result(), ACmpData::right_inline_type_byte_constant(), new_register(T_INT), !x->left_maybe_null());
3678   }
3679 }
3680 
3681 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3682   // We can safely ignore accessors here, since c2 will inline them anyway,
3683   // accessors are also always mature.
3684   if (!x->inlinee()->is_accessor()) {
3685     CodeEmitInfo* info = state_for(x, x->state(), true);
3686     // Notify the runtime very infrequently only to take care of counter overflows
3687     int freq_log = Tier23InlineeNotifyFreqLog;
3688     double scale;
3689     if (_method->has_option_value(CompileCommandEnum::CompileThresholdScaling, scale)) {
3690       freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3691     }
3692     increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true);
3693   }
3694 }
3695 
3696 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) {
3697   if (compilation()->is_profiling()) {
3698 #if defined(X86) && !defined(_LP64)
3699     // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
3700     LIR_Opr left_copy = new_register(left->type());
< prev index next >