13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "c1/c1_Compilation.hpp"
26 #include "c1/c1_Defs.hpp"
27 #include "c1/c1_FrameMap.hpp"
28 #include "c1/c1_Instruction.hpp"
29 #include "c1/c1_LIRAssembler.hpp"
30 #include "c1/c1_LIRGenerator.hpp"
31 #include "c1/c1_ValueStack.hpp"
32 #include "ci/ciArrayKlass.hpp"
33 #include "ci/ciInstance.hpp"
34 #include "ci/ciObjArray.hpp"
35 #include "ci/ciUtilities.hpp"
36 #include "compiler/compilerDefinitions.inline.hpp"
37 #include "compiler/compilerOracle.hpp"
38 #include "gc/shared/barrierSet.hpp"
39 #include "gc/shared/c1/barrierSetC1.hpp"
40 #include "oops/klass.inline.hpp"
41 #include "oops/methodCounters.hpp"
42 #include "runtime/sharedRuntime.hpp"
43 #include "runtime/stubRoutines.hpp"
44 #include "runtime/vm_version.hpp"
45 #include "utilities/bitMap.inline.hpp"
46 #include "utilities/macros.hpp"
47 #include "utilities/powerOfTwo.hpp"
48
49 #ifdef ASSERT
50 #define __ gen()->lir(__FILE__, __LINE__)->
51 #else
52 #define __ gen()->lir()->
198 }
199
200
201 //--------------------------------------------------------------
202 // LIRItem
203
204 void LIRItem::set_result(LIR_Opr opr) {
205 assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
206 value()->set_operand(opr);
207
208 #ifdef ASSERT
209 if (opr->is_virtual()) {
210 _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), nullptr);
211 }
212 #endif
213
214 _result = opr;
215 }
216
217 void LIRItem::load_item() {
218 if (result()->is_illegal()) {
219 // update the items result
220 _result = value()->operand();
221 }
222 if (!result()->is_register()) {
223 LIR_Opr reg = _gen->new_register(value()->type());
224 __ move(result(), reg);
225 if (result()->is_constant()) {
226 _result = reg;
227 } else {
228 set_result(reg);
229 }
230 }
231 }
232
233
234 void LIRItem::load_for_store(BasicType type) {
235 if (_gen->can_store_as_constant(value(), type)) {
236 _result = value()->operand();
237 if (!_result->is_constant()) {
605 assert(right_op != result_op, "malformed");
606 __ move(left_op, result_op);
607 left_op = result_op;
608 }
609
610 switch(code) {
611 case Bytecodes::_iand:
612 case Bytecodes::_land: __ logical_and(left_op, right_op, result_op); break;
613
614 case Bytecodes::_ior:
615 case Bytecodes::_lor: __ logical_or(left_op, right_op, result_op); break;
616
617 case Bytecodes::_ixor:
618 case Bytecodes::_lxor: __ logical_xor(left_op, right_op, result_op); break;
619
620 default: ShouldNotReachHere();
621 }
622 }
623
624
625 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
626 if (!GenerateSynchronizationCode) return;
627 // for slow path, use debug info for state after successful locking
628 CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
629 __ load_stack_address_monitor(monitor_no, lock);
630 // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
631 __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
632 }
633
634
635 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
636 if (!GenerateSynchronizationCode) return;
637 // setup registers
638 LIR_Opr hdr = lock;
639 lock = new_hdr;
640 CodeStub* slow_path = new MonitorExitStub(lock, LockingMode != LM_MONITOR, monitor_no);
641 __ load_stack_address_monitor(monitor_no, lock);
642 __ unlock_object(hdr, object, lock, scratch, slow_path);
643 }
644
645 #ifndef PRODUCT
646 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
647 if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
648 tty->print_cr(" ###class not loaded at new bci %d", new_instance->printable_bci());
649 } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) {
650 tty->print_cr(" ###class not resolved at new bci %d", new_instance->printable_bci());
651 }
652 }
653 #endif
654
655 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
656 klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
657 // If klass is not loaded we do not know if the klass has finalizers:
658 if (UseFastNewInstance && klass->is_loaded()
659 && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
660
661 C1StubId stub_id = klass->is_initialized() ? C1StubId::fast_new_instance_id : C1StubId::fast_new_instance_init_check_id;
662
663 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
664
665 assert(klass->is_loaded(), "must be loaded");
666 // allocate space for instance
667 assert(klass->size_helper() > 0, "illegal instance size");
668 const int instance_size = align_object_size(klass->size_helper());
669 __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
670 oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
671 } else {
672 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, C1StubId::new_instance_id);
673 __ branch(lir_cond_always, slow_path);
674 __ branch_destination(slow_path->continuation());
675 }
676 }
677
678
679 static bool is_constant_zero(Instruction* inst) {
680 IntConstant* c = inst->type()->as_IntConstant();
681 if (c) {
682 return (c->value() == 0);
683 }
684 return false;
685 }
686
687
688 static bool positive_constant(Instruction* inst) {
689 IntConstant* c = inst->type()->as_IntConstant();
690 if (c) {
691 return (c->value() >= 0);
692 }
693 return false;
753 if (src_type != nullptr) {
754 if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
755 is_exact = true;
756 expected_type = dst_type;
757 }
758 }
759 }
760 // at least pass along a good guess
761 if (expected_type == nullptr) expected_type = dst_exact_type;
762 if (expected_type == nullptr) expected_type = src_declared_type;
763 if (expected_type == nullptr) expected_type = dst_declared_type;
764
765 src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
766 dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
767 }
768
769 // if a probable array type has been identified, figure out if any
770 // of the required checks for a fast case can be elided.
771 int flags = LIR_OpArrayCopy::all_flags;
772
773 if (!src_objarray)
774 flags &= ~LIR_OpArrayCopy::src_objarray;
775 if (!dst_objarray)
776 flags &= ~LIR_OpArrayCopy::dst_objarray;
777
778 if (!x->arg_needs_null_check(0))
779 flags &= ~LIR_OpArrayCopy::src_null_check;
780 if (!x->arg_needs_null_check(2))
781 flags &= ~LIR_OpArrayCopy::dst_null_check;
782
783
784 if (expected_type != nullptr) {
785 Value length_limit = nullptr;
786
787 IfOp* ifop = length->as_IfOp();
788 if (ifop != nullptr) {
789 // look for expressions like min(v, a.length) which ends up as
790 // x > y ? y : x or x >= y ? y : x
791 if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
792 ifop->x() == ifop->fval() &&
1445 }
1446 return _vreg_flags.at(vreg_num, f);
1447 }
1448
1449
1450 // Block local constant handling. This code is useful for keeping
1451 // unpinned constants and constants which aren't exposed in the IR in
1452 // registers. Unpinned Constant instructions have their operands
1453 // cleared when the block is finished so that other blocks can't end
1454 // up referring to their registers.
1455
1456 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1457 assert(!x->is_pinned(), "only for unpinned constants");
1458 _unpinned_constants.append(x);
1459 return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1460 }
1461
1462
1463 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1464 BasicType t = c->type();
1465 for (int i = 0; i < _constants.length(); i++) {
1466 LIR_Const* other = _constants.at(i);
1467 if (t == other->type()) {
1468 switch (t) {
1469 case T_INT:
1470 case T_FLOAT:
1471 if (c->as_jint_bits() != other->as_jint_bits()) continue;
1472 break;
1473 case T_LONG:
1474 case T_DOUBLE:
1475 if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1476 if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1477 break;
1478 case T_OBJECT:
1479 if (c->as_jobject() != other->as_jobject()) continue;
1480 break;
1481 default:
1482 break;
1483 }
1484 return _reg_for_constants.at(i);
1485 }
1486 }
1487
1488 LIR_Opr result = new_register(t);
1489 __ move((LIR_Opr)c, result);
1490 _constants.append(c);
1491 _reg_for_constants.append(result);
1492 return result;
1493 }
1494
1495 //------------------------field access--------------------------------------
1496
1497 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
1498 assert(x->number_of_arguments() == 4, "wrong type");
1499 LIRItem obj (x->argument_at(0), this); // object
1500 LIRItem offset(x->argument_at(1), this); // offset of field
1501 LIRItem cmp (x->argument_at(2), this); // value to compare with field
1502 LIRItem val (x->argument_at(3), this); // replace field with val if matches cmp
1503 assert(obj.type()->tag() == objectTag, "invalid type");
1504 assert(cmp.type()->tag() == type->tag(), "invalid type");
1505 assert(val.type()->tag() == type->tag(), "invalid type");
1506
1507 LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type),
1508 obj, offset, cmp, val);
1509 set_result(x, result);
1510 }
1511
1512 // Comment copied form templateTable_i486.cpp
1513 // ----------------------------------------------------------------------------
1514 // Volatile variables demand their effects be made known to all CPU's in
1515 // order. Store buffers on most chips allow reads & writes to reorder; the
1516 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1517 // memory barrier (i.e., it's not sufficient that the interpreter does not
1518 // reorder volatile references, the hardware also must not reorder them).
1519 //
1520 // According to the new Java Memory Model (JMM):
1521 // (1) All volatiles are serialized wrt to each other.
1522 // ALSO reads & writes act as acquire & release, so:
1523 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1524 // the read float up to before the read. It's OK for non-volatile memory refs
1525 // that happen before the volatile read to float down below it.
1526 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1527 // that happen BEFORE the write float down to after the write. It's OK for
1528 // non-volatile memory refs that happen after the volatile write to float up
1529 // before it.
1530 //
1531 // We only put in barriers around volatile refs (they are expensive), not
1532 // _between_ memory refs (that would require us to track the flavor of the
1533 // previous memory refs). Requirements (2) and (3) require some barriers
1534 // before volatile stores and after volatile loads. These nearly cover
1535 // requirement (1) but miss the volatile-store-volatile-load case. This final
1536 // case is placed after volatile-stores although it could just as well go
1537 // before volatile-loads.
1538
1539
1540 void LIRGenerator::do_StoreField(StoreField* x) {
1541 bool needs_patching = x->needs_patching();
1542 bool is_volatile = x->field()->is_volatile();
1543 BasicType field_type = x->field_type();
1544
1545 CodeEmitInfo* info = nullptr;
1546 if (needs_patching) {
1547 assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access");
1548 info = state_for(x, x->state_before());
1549 } else if (x->needs_null_check()) {
1550 NullCheck* nc = x->explicit_null_check();
1551 if (nc == nullptr) {
1552 info = state_for(x);
1553 } else {
1554 info = state_for(nc);
1555 }
1556 }
1557
1558 LIRItem object(x->obj(), this);
1559 LIRItem value(x->value(), this);
1560
1561 object.load_item();
1562
1563 if (is_volatile || needs_patching) {
1564 // load item if field is volatile (fewer special cases for volatiles)
1565 // load item if field not initialized
1566 // load item if field not constant
1567 // because of code patching we cannot inline constants
1568 if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1569 value.load_byte_item();
1570 } else {
1571 value.load_item();
1572 }
1573 } else {
1574 value.load_for_store(field_type);
1575 }
1576
1577 set_no_result(x);
1578
1579 #ifndef PRODUCT
1580 if (PrintNotLoaded && needs_patching) {
1581 tty->print_cr(" ###class not loaded at store_%s bci %d",
1582 x->is_static() ? "static" : "field", x->printable_bci());
1583 }
1584 #endif
1585
1586 if (x->needs_null_check() &&
1587 (needs_patching ||
1588 MacroAssembler::needs_explicit_null_check(x->offset()))) {
1589 // Emit an explicit null check because the offset is too large.
1590 // If the class is not loaded and the object is null, we need to deoptimize to throw a
1591 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1592 __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1593 }
1594
1595 DecoratorSet decorators = IN_HEAP;
1596 if (is_volatile) {
1597 decorators |= MO_SEQ_CST;
1598 }
1599 if (needs_patching) {
1600 decorators |= C1_NEEDS_PATCHING;
1601 }
1602
1603 access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()),
1604 value.result(), info != nullptr ? new CodeEmitInfo(info) : nullptr, info);
1605 }
1606
1607 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
1608 assert(x->is_pinned(),"");
1609 bool needs_range_check = x->compute_needs_range_check();
1610 bool use_length = x->length() != nullptr;
1611 bool obj_store = is_reference_type(x->elt_type());
1612 bool needs_store_check = obj_store && (x->value()->as_Constant() == nullptr ||
1613 !get_jobject_constant(x->value())->is_null_object() ||
1614 x->should_profile());
1615
1616 LIRItem array(x->array(), this);
1617 LIRItem index(x->index(), this);
1618 LIRItem value(x->value(), this);
1619 LIRItem length(this);
1620
1621 array.load_item();
1622 index.load_nonconstant();
1623
1624 if (use_length && needs_range_check) {
1625 length.set_instruction(x->length());
1626 length.load_item();
1627
1628 }
1629 if (needs_store_check || x->check_boolean()) {
1630 value.load_item();
1631 } else {
1632 value.load_for_store(x->elt_type());
1633 }
1634
1635 set_no_result(x);
1636
1637 // the CodeEmitInfo must be duplicated for each different
1638 // LIR-instruction because spilling can occur anywhere between two
1639 // instructions and so the debug information must be different
1640 CodeEmitInfo* range_check_info = state_for(x);
1641 CodeEmitInfo* null_check_info = nullptr;
1642 if (x->needs_null_check()) {
1643 null_check_info = new CodeEmitInfo(range_check_info);
1644 }
1645
1646 if (needs_range_check) {
1647 if (use_length) {
1648 __ cmp(lir_cond_belowEqual, length.result(), index.result());
1649 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1650 } else {
1651 array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1652 // range_check also does the null check
1653 null_check_info = nullptr;
1654 }
1655 }
1656
1657 if (GenerateArrayStoreCheck && needs_store_check) {
1658 CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
1659 array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci());
1660 }
1661
1662 DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1663 if (x->check_boolean()) {
1664 decorators |= C1_MASK_BOOLEAN;
1665 }
1666
1667 access_store_at(decorators, x->elt_type(), array, index.result(), value.result(),
1668 nullptr, null_check_info);
1669 }
1670
1671 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type,
1672 LIRItem& base, LIR_Opr offset, LIR_Opr result,
1673 CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) {
1674 decorators |= ACCESS_READ;
1675 LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info);
1676 if (access.is_raw()) {
1677 _barrier_set->BarrierSetC1::load_at(access, result);
1678 } else {
1679 _barrier_set->load_at(access, result);
1680 }
1681 }
1682
1683 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type,
1684 LIR_Opr addr, LIR_Opr result) {
1685 decorators |= ACCESS_READ;
1686 LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type);
1687 access.set_resolved_addr(addr);
1688 if (access.is_raw()) {
1689 _barrier_set->BarrierSetC1::load(access, result);
1690 } else {
1691 _barrier_set->load(access, result);
1692 }
1693 }
1694
1695 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type,
1696 LIRItem& base, LIR_Opr offset, LIR_Opr value,
1697 CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) {
1698 decorators |= ACCESS_WRITE;
1699 LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info);
1700 if (access.is_raw()) {
1701 _barrier_set->BarrierSetC1::store_at(access, value);
1702 } else {
1703 _barrier_set->store_at(access, value);
1704 }
1705 }
1706
1707 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type,
1708 LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) {
1709 decorators |= ACCESS_READ;
1710 decorators |= ACCESS_WRITE;
1711 // Atomic operations are SEQ_CST by default
1712 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1713 LIRAccess access(this, decorators, base, offset, type);
1714 if (access.is_raw()) {
1715 return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value);
1716 } else {
1717 return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value);
1718 }
1719 }
1730 } else {
1731 return _barrier_set->atomic_xchg_at(access, value);
1732 }
1733 }
1734
1735 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type,
1736 LIRItem& base, LIRItem& offset, LIRItem& value) {
1737 decorators |= ACCESS_READ;
1738 decorators |= ACCESS_WRITE;
1739 // Atomic operations are SEQ_CST by default
1740 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1741 LIRAccess access(this, decorators, base, offset, type);
1742 if (access.is_raw()) {
1743 return _barrier_set->BarrierSetC1::atomic_add_at(access, value);
1744 } else {
1745 return _barrier_set->atomic_add_at(access, value);
1746 }
1747 }
1748
1749 void LIRGenerator::do_LoadField(LoadField* x) {
1750 bool needs_patching = x->needs_patching();
1751 bool is_volatile = x->field()->is_volatile();
1752 BasicType field_type = x->field_type();
1753
1754 CodeEmitInfo* info = nullptr;
1755 if (needs_patching) {
1756 assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access");
1757 info = state_for(x, x->state_before());
1758 } else if (x->needs_null_check()) {
1759 NullCheck* nc = x->explicit_null_check();
1760 if (nc == nullptr) {
1761 info = state_for(x);
1762 } else {
1763 info = state_for(nc);
1764 }
1765 }
1766
1767 LIRItem object(x->obj(), this);
1768
1769 object.load_item();
1770
1771 #ifndef PRODUCT
1782 stress_deopt)) {
1783 LIR_Opr obj = object.result();
1784 if (stress_deopt) {
1785 obj = new_register(T_OBJECT);
1786 __ move(LIR_OprFact::oopConst(nullptr), obj);
1787 }
1788 // Emit an explicit null check because the offset is too large.
1789 // If the class is not loaded and the object is null, we need to deoptimize to throw a
1790 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1791 __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1792 }
1793
1794 DecoratorSet decorators = IN_HEAP;
1795 if (is_volatile) {
1796 decorators |= MO_SEQ_CST;
1797 }
1798 if (needs_patching) {
1799 decorators |= C1_NEEDS_PATCHING;
1800 }
1801
1802 LIR_Opr result = rlock_result(x, field_type);
1803 access_load_at(decorators, field_type,
1804 object, LIR_OprFact::intConst(x->offset()), result,
1805 info ? new CodeEmitInfo(info) : nullptr, info);
1806 }
1807
1808 // int/long jdk.internal.util.Preconditions.checkIndex
1809 void LIRGenerator::do_PreconditionsCheckIndex(Intrinsic* x, BasicType type) {
1810 assert(x->number_of_arguments() == 3, "wrong type");
1811 LIRItem index(x->argument_at(0), this);
1812 LIRItem length(x->argument_at(1), this);
1813 LIRItem oobef(x->argument_at(2), this);
1814
1815 index.load_item();
1816 length.load_item();
1817 oobef.load_item();
1818
1819 LIR_Opr result = rlock_result(x);
1820 // x->state() is created from copy_state_for_exception, it does not contains arguments
1821 // we should prepare them before entering into interpreter mode due to deoptimization.
1930 __ move(LIR_OprFact::oopConst(nullptr), obj);
1931 __ null_check(obj, new CodeEmitInfo(null_check_info));
1932 }
1933 }
1934
1935 if (needs_range_check) {
1936 if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
1937 __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result()));
1938 } else if (use_length) {
1939 // TODO: use a (modified) version of array_range_check that does not require a
1940 // constant length to be loaded to a register
1941 __ cmp(lir_cond_belowEqual, length.result(), index.result());
1942 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1943 } else {
1944 array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1945 // The range check performs the null check, so clear it out for the load
1946 null_check_info = nullptr;
1947 }
1948 }
1949
1950 DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1951
1952 LIR_Opr result = rlock_result(x, x->elt_type());
1953 access_load_at(decorators, x->elt_type(),
1954 array, index.result(), result,
1955 nullptr, null_check_info);
1956 }
1957
1958
1959 void LIRGenerator::do_NullCheck(NullCheck* x) {
1960 if (x->can_trap()) {
1961 LIRItem value(x->obj(), this);
1962 value.load_item();
1963 CodeEmitInfo* info = state_for(x);
1964 __ null_check(value.result(), info);
1965 }
1966 }
1967
1968
1969 void LIRGenerator::do_TypeCast(TypeCast* x) {
1970 LIRItem value(x->obj(), this);
1971 value.load_item();
1972 // the result is the same as from the node we are casting
1973 set_result(x, value.result());
1974 }
1975
2418 Compilation* comp = Compilation::current();
2419 if (do_update) {
2420 // try to find exact type, using CHA if possible, so that loading
2421 // the klass from the object can be avoided
2422 ciType* type = obj->exact_type();
2423 if (type == nullptr) {
2424 type = obj->declared_type();
2425 type = comp->cha_exact_type(type);
2426 }
2427 assert(type == nullptr || type->is_klass(), "type should be class");
2428 exact_klass = (type != nullptr && type->is_loaded()) ? (ciKlass*)type : nullptr;
2429
2430 do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2431 }
2432
2433 if (!do_null && !do_update) {
2434 return result;
2435 }
2436
2437 ciKlass* exact_signature_k = nullptr;
2438 if (do_update) {
2439 // Is the type from the signature exact (the only one possible)?
2440 exact_signature_k = signature_at_call_k->exact_klass();
2441 if (exact_signature_k == nullptr) {
2442 exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2443 } else {
2444 result = exact_signature_k;
2445 // Known statically. No need to emit any code: prevent
2446 // LIR_Assembler::emit_profile_type() from emitting useless code
2447 profiled_k = ciTypeEntries::with_status(result, profiled_k);
2448 }
2449 // exact_klass and exact_signature_k can be both non null but
2450 // different if exact_klass is loaded after the ciObject for
2451 // exact_signature_k is created.
2452 if (exact_klass == nullptr && exact_signature_k != nullptr && exact_klass != exact_signature_k) {
2453 // sometimes the type of the signature is better than the best type
2454 // the compiler has
2455 exact_klass = exact_signature_k;
2456 }
2457 if (callee_signature_k != nullptr &&
2458 callee_signature_k != signature_at_call_k) {
2503 assert(!src->is_illegal(), "check");
2504 BasicType t = src->type();
2505 if (is_reference_type(t)) {
2506 intptr_t profiled_k = parameters->type(j);
2507 Local* local = x->state()->local_at(java_index)->as_Local();
2508 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2509 in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2510 profiled_k, local, mdp, false, local->declared_type()->as_klass(), nullptr);
2511 // If the profile is known statically set it once for all and do not emit any code
2512 if (exact != nullptr) {
2513 md->set_parameter_type(j, exact);
2514 }
2515 j++;
2516 }
2517 java_index += type2size[t];
2518 }
2519 }
2520 }
2521 }
2522
2523 void LIRGenerator::do_Base(Base* x) {
2524 __ std_entry(LIR_OprFact::illegalOpr);
2525 // Emit moves from physical registers / stack slots to virtual registers
2526 CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2527 IRScope* irScope = compilation()->hir()->top_scope();
2528 int java_index = 0;
2529 for (int i = 0; i < args->length(); i++) {
2530 LIR_Opr src = args->at(i);
2531 assert(!src->is_illegal(), "check");
2532 BasicType t = src->type();
2533
2534 // Types which are smaller than int are passed as int, so
2535 // correct the type which passed.
2536 switch (t) {
2537 case T_BYTE:
2538 case T_BOOLEAN:
2539 case T_SHORT:
2540 case T_CHAR:
2541 t = T_INT;
2542 break;
2585 }
2586 assert(obj->is_valid(), "must be valid");
2587
2588 if (method()->is_synchronized() && GenerateSynchronizationCode) {
2589 LIR_Opr lock = syncLockOpr();
2590 __ load_stack_address_monitor(0, lock);
2591
2592 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, x->check_flag(Instruction::DeoptimizeOnException));
2593 CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2594
2595 // receiver is guaranteed non-null so don't need CodeEmitInfo
2596 __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, nullptr);
2597 }
2598 }
2599 // increment invocation counters if needed
2600 if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2601 profile_parameters(x);
2602 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, false);
2603 increment_invocation_counter(info);
2604 }
2605
2606 // all blocks with a successor must end with an unconditional jump
2607 // to the successor even if they are consecutive
2608 __ jump(x->default_sux());
2609 }
2610
2611
2612 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2613 // construct our frame and model the production of incoming pointer
2614 // to the OSR buffer.
2615 __ osr_entry(LIR_Assembler::osrBufferPointer());
2616 LIR_Opr result = rlock_result(x);
2617 __ move(LIR_Assembler::osrBufferPointer(), result);
2618 }
2619
2620
2621 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2622 assert(args->length() == arg_list->length(),
2623 "args=%d, arg_list=%d", args->length(), arg_list->length());
2624 for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2625 LIRItem* param = args->at(i);
2626 LIR_Opr loc = arg_list->at(i);
2627 if (loc->is_register()) {
2628 param->load_item_force(loc);
2629 } else {
2630 LIR_Address* addr = loc->as_address_ptr();
2631 param->load_for_store(addr->type());
2632 if (addr->type() == T_OBJECT) {
2633 __ move_wide(param->result(), addr);
2634 } else
2635 __ move(param->result(), addr);
2636 }
2637 }
2638
2639 if (x->has_receiver()) {
2640 LIRItem* receiver = args->at(0);
2641 LIR_Opr loc = arg_list->at(0);
2642 if (loc->is_register()) {
2643 receiver->load_item_force(loc);
2644 } else {
2645 assert(loc->is_address(), "just checking");
2646 receiver->load_for_store(T_OBJECT);
2647 __ move_wide(receiver->result(), loc->as_address_ptr());
2648 }
2649 }
2650 }
2651
2652
2653 // Visits all arguments, returns appropriate items without loading them
2654 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2655 LIRItemList* argument_items = new LIRItemList();
2656 if (x->has_receiver()) {
2782 __ move(tmp, reg);
2783 }
2784
2785
2786
2787 // Code for : x->x() {x->cond()} x->y() ? x->tval() : x->fval()
2788 void LIRGenerator::do_IfOp(IfOp* x) {
2789 #ifdef ASSERT
2790 {
2791 ValueTag xtag = x->x()->type()->tag();
2792 ValueTag ttag = x->tval()->type()->tag();
2793 assert(xtag == intTag || xtag == objectTag, "cannot handle others");
2794 assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
2795 assert(ttag == x->fval()->type()->tag(), "cannot handle others");
2796 }
2797 #endif
2798
2799 LIRItem left(x->x(), this);
2800 LIRItem right(x->y(), this);
2801 left.load_item();
2802 if (can_inline_as_constant(right.value())) {
2803 right.dont_load_item();
2804 } else {
2805 right.load_item();
2806 }
2807
2808 LIRItem t_val(x->tval(), this);
2809 LIRItem f_val(x->fval(), this);
2810 t_val.dont_load_item();
2811 f_val.dont_load_item();
2812 LIR_Opr reg = rlock_result(x);
2813
2814 __ cmp(lir_cond(x->cond()), left.result(), right.result());
2815 __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
2816 }
2817
2818 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
2819 assert(x->number_of_arguments() == 0, "wrong type");
2820 // Enforce computation of _reserved_argument_area_size which is required on some platforms.
2821 BasicTypeList signature;
2822 CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2823 LIR_Opr reg = result_register_for(x->type());
2824 __ call_runtime_leaf(routine, getThreadTemp(),
2825 reg, new LIR_OprList());
2826 LIR_Opr result = rlock_result(x);
2827 __ move(reg, result);
2828 }
2829
2830
2831
2832 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
2833 switch (x->id()) {
2834 case vmIntrinsics::_intBitsToFloat :
2835 case vmIntrinsics::_doubleToRawLongBits :
3068 if (x->recv() != nullptr || x->nb_profiled_args() > 0) {
3069 profile_parameters_at_call(x);
3070 }
3071
3072 if (x->recv() != nullptr) {
3073 LIRItem value(x->recv(), this);
3074 value.load_item();
3075 recv = new_register(T_OBJECT);
3076 __ move(value.result(), recv);
3077 }
3078 __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3079 }
3080
3081 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3082 int bci = x->bci_of_invoke();
3083 ciMethodData* md = x->method()->method_data_or_null();
3084 assert(md != nullptr, "Sanity");
3085 ciProfileData* data = md->bci_to_data(bci);
3086 if (data != nullptr) {
3087 assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3088 ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3089 LIR_Opr mdp = LIR_OprFact::illegalOpr;
3090
3091 bool ignored_will_link;
3092 ciSignature* signature_at_call = nullptr;
3093 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3094
3095 // The offset within the MDO of the entry to update may be too large
3096 // to be used in load/store instructions on some platforms. So have
3097 // profile_type() compute the address of the profile in a register.
3098 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3099 ret->type(), x->ret(), mdp,
3100 !x->needs_null_check(),
3101 signature_at_call->return_type()->as_klass(),
3102 x->callee()->signature()->return_type()->as_klass());
3103 if (exact != nullptr) {
3104 md->set_return_type(bci, exact);
3105 }
3106 }
3107 }
3108
3109 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3110 // We can safely ignore accessors here, since c2 will inline them anyway,
3111 // accessors are also always mature.
3112 if (!x->inlinee()->is_accessor()) {
3113 CodeEmitInfo* info = state_for(x, x->state(), true);
3114 // Notify the runtime very infrequently only to take care of counter overflows
3115 int freq_log = Tier23InlineeNotifyFreqLog;
3116 double scale;
3117 if (_method->has_option_value(CompileCommandEnum::CompileThresholdScaling, scale)) {
3118 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3119 }
3120 increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true);
3121 }
3122 }
3123
3124 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) {
3125 if (compilation()->is_profiling()) {
3126 #if defined(X86) && !defined(_LP64)
3127 // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
3128 LIR_Opr left_copy = new_register(left->type());
|
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "c1/c1_Compilation.hpp"
26 #include "c1/c1_Defs.hpp"
27 #include "c1/c1_FrameMap.hpp"
28 #include "c1/c1_Instruction.hpp"
29 #include "c1/c1_LIRAssembler.hpp"
30 #include "c1/c1_LIRGenerator.hpp"
31 #include "c1/c1_ValueStack.hpp"
32 #include "ci/ciArrayKlass.hpp"
33 #include "ci/ciFlatArrayKlass.hpp"
34 #include "ci/ciInlineKlass.hpp"
35 #include "ci/ciInstance.hpp"
36 #include "ci/ciObjArray.hpp"
37 #include "ci/ciUtilities.hpp"
38 #include "compiler/compilerDefinitions.inline.hpp"
39 #include "compiler/compilerOracle.hpp"
40 #include "gc/shared/barrierSet.hpp"
41 #include "gc/shared/c1/barrierSetC1.hpp"
42 #include "oops/klass.inline.hpp"
43 #include "oops/methodCounters.hpp"
44 #include "runtime/sharedRuntime.hpp"
45 #include "runtime/stubRoutines.hpp"
46 #include "runtime/vm_version.hpp"
47 #include "utilities/bitMap.inline.hpp"
48 #include "utilities/macros.hpp"
49 #include "utilities/powerOfTwo.hpp"
50
51 #ifdef ASSERT
52 #define __ gen()->lir(__FILE__, __LINE__)->
53 #else
54 #define __ gen()->lir()->
200 }
201
202
203 //--------------------------------------------------------------
204 // LIRItem
205
206 void LIRItem::set_result(LIR_Opr opr) {
207 assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
208 value()->set_operand(opr);
209
210 #ifdef ASSERT
211 if (opr->is_virtual()) {
212 _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), nullptr);
213 }
214 #endif
215
216 _result = opr;
217 }
218
219 void LIRItem::load_item() {
220 assert(!_gen->in_conditional_code(), "LIRItem cannot be loaded in conditional code");
221
222 if (result()->is_illegal()) {
223 // update the items result
224 _result = value()->operand();
225 }
226 if (!result()->is_register()) {
227 LIR_Opr reg = _gen->new_register(value()->type());
228 __ move(result(), reg);
229 if (result()->is_constant()) {
230 _result = reg;
231 } else {
232 set_result(reg);
233 }
234 }
235 }
236
237
238 void LIRItem::load_for_store(BasicType type) {
239 if (_gen->can_store_as_constant(value(), type)) {
240 _result = value()->operand();
241 if (!_result->is_constant()) {
609 assert(right_op != result_op, "malformed");
610 __ move(left_op, result_op);
611 left_op = result_op;
612 }
613
614 switch(code) {
615 case Bytecodes::_iand:
616 case Bytecodes::_land: __ logical_and(left_op, right_op, result_op); break;
617
618 case Bytecodes::_ior:
619 case Bytecodes::_lor: __ logical_or(left_op, right_op, result_op); break;
620
621 case Bytecodes::_ixor:
622 case Bytecodes::_lxor: __ logical_xor(left_op, right_op, result_op); break;
623
624 default: ShouldNotReachHere();
625 }
626 }
627
628
629 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no,
630 CodeEmitInfo* info_for_exception, CodeEmitInfo* info, CodeStub* throw_ie_stub) {
631 if (!GenerateSynchronizationCode) return;
632 // for slow path, use debug info for state after successful locking
633 CodeStub* slow_path = new MonitorEnterStub(object, lock, info, throw_ie_stub, scratch);
634 __ load_stack_address_monitor(monitor_no, lock);
635 // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
636 __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception, throw_ie_stub);
637 }
638
639
640 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
641 if (!GenerateSynchronizationCode) return;
642 // setup registers
643 LIR_Opr hdr = lock;
644 lock = new_hdr;
645 CodeStub* slow_path = new MonitorExitStub(lock, LockingMode != LM_MONITOR, monitor_no);
646 __ load_stack_address_monitor(monitor_no, lock);
647 __ unlock_object(hdr, object, lock, scratch, slow_path);
648 }
649
650 #ifndef PRODUCT
651 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
652 if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
653 tty->print_cr(" ###class not loaded at new bci %d", new_instance->printable_bci());
654 } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) {
655 tty->print_cr(" ###class not resolved at new bci %d", new_instance->printable_bci());
656 }
657 }
658 #endif
659
660 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, bool allow_inline, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
661 if (allow_inline) {
662 assert(!is_unresolved && klass->is_loaded(), "inline type klass should be resolved");
663 __ metadata2reg(klass->constant_encoding(), klass_reg);
664 } else {
665 klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
666 }
667 // If klass is not loaded we do not know if the klass has finalizers or is an unexpected inline klass
668 if (UseFastNewInstance && klass->is_loaded() && (allow_inline || !klass->is_inlinetype())
669 && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
670
671 C1StubId stub_id = klass->is_initialized() ? C1StubId::fast_new_instance_id : C1StubId::fast_new_instance_init_check_id;
672
673 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
674
675 assert(klass->is_loaded(), "must be loaded");
676 // allocate space for instance
677 assert(klass->size_helper() > 0, "illegal instance size");
678 const int instance_size = align_object_size(klass->size_helper());
679 __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
680 oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
681 } else {
682 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, C1StubId::new_instance_id);
683 __ jump(slow_path);
684 __ branch_destination(slow_path->continuation());
685 }
686 }
687
688
689 static bool is_constant_zero(Instruction* inst) {
690 IntConstant* c = inst->type()->as_IntConstant();
691 if (c) {
692 return (c->value() == 0);
693 }
694 return false;
695 }
696
697
698 static bool positive_constant(Instruction* inst) {
699 IntConstant* c = inst->type()->as_IntConstant();
700 if (c) {
701 return (c->value() >= 0);
702 }
703 return false;
763 if (src_type != nullptr) {
764 if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
765 is_exact = true;
766 expected_type = dst_type;
767 }
768 }
769 }
770 // at least pass along a good guess
771 if (expected_type == nullptr) expected_type = dst_exact_type;
772 if (expected_type == nullptr) expected_type = src_declared_type;
773 if (expected_type == nullptr) expected_type = dst_declared_type;
774
775 src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
776 dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
777 }
778
779 // if a probable array type has been identified, figure out if any
780 // of the required checks for a fast case can be elided.
781 int flags = LIR_OpArrayCopy::all_flags;
782
783 if (!src->is_loaded_flat_array() && !dst->is_loaded_flat_array()) {
784 flags &= ~LIR_OpArrayCopy::always_slow_path;
785 }
786 if (!src->maybe_flat_array()) {
787 flags &= ~LIR_OpArrayCopy::src_inlinetype_check;
788 }
789 if (!dst->maybe_flat_array() && !dst->maybe_null_free_array()) {
790 flags &= ~LIR_OpArrayCopy::dst_inlinetype_check;
791 }
792
793 if (!src_objarray)
794 flags &= ~LIR_OpArrayCopy::src_objarray;
795 if (!dst_objarray)
796 flags &= ~LIR_OpArrayCopy::dst_objarray;
797
798 if (!x->arg_needs_null_check(0))
799 flags &= ~LIR_OpArrayCopy::src_null_check;
800 if (!x->arg_needs_null_check(2))
801 flags &= ~LIR_OpArrayCopy::dst_null_check;
802
803
804 if (expected_type != nullptr) {
805 Value length_limit = nullptr;
806
807 IfOp* ifop = length->as_IfOp();
808 if (ifop != nullptr) {
809 // look for expressions like min(v, a.length) which ends up as
810 // x > y ? y : x or x >= y ? y : x
811 if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
812 ifop->x() == ifop->fval() &&
1465 }
1466 return _vreg_flags.at(vreg_num, f);
1467 }
1468
1469
1470 // Block local constant handling. This code is useful for keeping
1471 // unpinned constants and constants which aren't exposed in the IR in
1472 // registers. Unpinned Constant instructions have their operands
1473 // cleared when the block is finished so that other blocks can't end
1474 // up referring to their registers.
1475
1476 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1477 assert(!x->is_pinned(), "only for unpinned constants");
1478 _unpinned_constants.append(x);
1479 return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1480 }
1481
1482
1483 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1484 BasicType t = c->type();
1485 for (int i = 0; i < _constants.length() && !in_conditional_code(); i++) {
1486 LIR_Const* other = _constants.at(i);
1487 if (t == other->type()) {
1488 switch (t) {
1489 case T_INT:
1490 case T_FLOAT:
1491 if (c->as_jint_bits() != other->as_jint_bits()) continue;
1492 break;
1493 case T_LONG:
1494 case T_DOUBLE:
1495 if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1496 if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1497 break;
1498 case T_OBJECT:
1499 if (c->as_jobject() != other->as_jobject()) continue;
1500 break;
1501 default:
1502 break;
1503 }
1504 return _reg_for_constants.at(i);
1505 }
1506 }
1507
1508 LIR_Opr result = new_register(t);
1509 __ move((LIR_Opr)c, result);
1510 if (!in_conditional_code()) {
1511 _constants.append(c);
1512 _reg_for_constants.append(result);
1513 }
1514 return result;
1515 }
1516
1517 void LIRGenerator::set_in_conditional_code(bool v) {
1518 assert(v != _in_conditional_code, "must change state");
1519 _in_conditional_code = v;
1520 }
1521
1522
1523 //------------------------field access--------------------------------------
1524
1525 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
1526 assert(x->number_of_arguments() == 4, "wrong type");
1527 LIRItem obj (x->argument_at(0), this); // object
1528 LIRItem offset(x->argument_at(1), this); // offset of field
1529 LIRItem cmp (x->argument_at(2), this); // value to compare with field
1530 LIRItem val (x->argument_at(3), this); // replace field with val if matches cmp
1531 assert(obj.type()->tag() == objectTag, "invalid type");
1532 assert(cmp.type()->tag() == type->tag(), "invalid type");
1533 assert(val.type()->tag() == type->tag(), "invalid type");
1534
1535 LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type),
1536 obj, offset, cmp, val);
1537 set_result(x, result);
1538 }
1539
1540 // Returns a int/long value with the null marker bit set
1541 static LIR_Opr null_marker_mask(BasicType bt, ciField* field) {
1542 assert(field->null_marker_offset() != -1, "field does not have null marker");
1543 int nm_offset = field->null_marker_offset() - field->offset_in_bytes();
1544 jlong null_marker = 1ULL << (nm_offset << LogBitsPerByte);
1545 return (bt == T_LONG) ? LIR_OprFact::longConst(null_marker) : LIR_OprFact::intConst(null_marker);
1546 }
1547
1548 // Comment copied form templateTable_i486.cpp
1549 // ----------------------------------------------------------------------------
1550 // Volatile variables demand their effects be made known to all CPU's in
1551 // order. Store buffers on most chips allow reads & writes to reorder; the
1552 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1553 // memory barrier (i.e., it's not sufficient that the interpreter does not
1554 // reorder volatile references, the hardware also must not reorder them).
1555 //
1556 // According to the new Java Memory Model (JMM):
1557 // (1) All volatiles are serialized wrt to each other.
1558 // ALSO reads & writes act as acquire & release, so:
1559 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1560 // the read float up to before the read. It's OK for non-volatile memory refs
1561 // that happen before the volatile read to float down below it.
1562 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1563 // that happen BEFORE the write float down to after the write. It's OK for
1564 // non-volatile memory refs that happen after the volatile write to float up
1565 // before it.
1566 //
1567 // We only put in barriers around volatile refs (they are expensive), not
1568 // _between_ memory refs (that would require us to track the flavor of the
1569 // previous memory refs). Requirements (2) and (3) require some barriers
1570 // before volatile stores and after volatile loads. These nearly cover
1571 // requirement (1) but miss the volatile-store-volatile-load case. This final
1572 // case is placed after volatile-stores although it could just as well go
1573 // before volatile-loads.
1574
1575
1576 void LIRGenerator::do_StoreField(StoreField* x) {
1577 ciField* field = x->field();
1578 bool needs_patching = x->needs_patching();
1579 bool is_volatile = field->is_volatile();
1580 BasicType field_type = x->field_type();
1581
1582 CodeEmitInfo* info = nullptr;
1583 if (needs_patching) {
1584 assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access");
1585 info = state_for(x, x->state_before());
1586 } else if (x->needs_null_check()) {
1587 NullCheck* nc = x->explicit_null_check();
1588 if (nc == nullptr) {
1589 info = state_for(x);
1590 } else {
1591 info = state_for(nc);
1592 }
1593 }
1594
1595 LIRItem object(x->obj(), this);
1596 LIRItem value(x->value(), this);
1597
1598 object.load_item();
1599
1600 if (field->is_flat()) {
1601 value.load_item();
1602 } else {
1603 if (is_volatile || needs_patching) {
1604 // load item if field is volatile (fewer special cases for volatiles)
1605 // load item if field not initialized
1606 // load item if field not constant
1607 // because of code patching we cannot inline constants
1608 if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1609 value.load_byte_item();
1610 } else {
1611 value.load_item();
1612 }
1613 } else {
1614 value.load_for_store(field_type);
1615 }
1616 }
1617
1618 set_no_result(x);
1619
1620 #ifndef PRODUCT
1621 if (PrintNotLoaded && needs_patching) {
1622 tty->print_cr(" ###class not loaded at store_%s bci %d",
1623 x->is_static() ? "static" : "field", x->printable_bci());
1624 }
1625 #endif
1626
1627 if (x->needs_null_check() &&
1628 (needs_patching ||
1629 MacroAssembler::needs_explicit_null_check(x->offset()))) {
1630 // Emit an explicit null check because the offset is too large.
1631 // If the class is not loaded and the object is null, we need to deoptimize to throw a
1632 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1633 __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1634 }
1635
1636 DecoratorSet decorators = IN_HEAP;
1637 if (is_volatile) {
1638 decorators |= MO_SEQ_CST;
1639 }
1640 if (needs_patching) {
1641 decorators |= C1_NEEDS_PATCHING;
1642 }
1643
1644 if (field->is_flat()) {
1645 ciInlineKlass* vk = field->type()->as_inline_klass();
1646
1647 #ifdef ASSERT
1648 bool is_naturally_atomic = vk->nof_declared_nonstatic_fields() <= 1;
1649 bool needs_atomic_access = !field->is_null_free() || (field->is_volatile() && !is_naturally_atomic);
1650 assert(needs_atomic_access, "No atomic access required");
1651 // ZGC does not support compressed oops, so only one oop can be in the payload which is written by a "normal" oop store.
1652 assert(!vk->contains_oops() || !UseZGC, "ZGC does not support embedded oops in flat fields");
1653 #endif
1654
1655 // Zero the payload
1656 BasicType bt = vk->atomic_size_to_basic_type(field->is_null_free());
1657 LIR_Opr payload = new_register((bt == T_LONG) ? bt : T_INT);
1658 LIR_Opr zero = (bt == T_LONG) ? LIR_OprFact::longConst(0) : LIR_OprFact::intConst(0);
1659 __ move(zero, payload);
1660
1661 bool is_constant_null = value.is_constant() && value.value()->is_null_obj();
1662 if (!is_constant_null) {
1663 LabelObj* L_isNull = new LabelObj();
1664 bool needs_null_check = !value.is_constant() || value.value()->is_null_obj();
1665 if (needs_null_check) {
1666 __ cmp(lir_cond_equal, value.result(), LIR_OprFact::oopConst(nullptr));
1667 __ branch(lir_cond_equal, L_isNull->label());
1668 }
1669 // Load payload (if not empty) and set null marker (if not null-free)
1670 if (!vk->is_empty()) {
1671 access_load_at(decorators, bt, value, LIR_OprFact::intConst(vk->payload_offset()), payload);
1672 }
1673 if (!field->is_null_free()) {
1674 __ logical_or(payload, null_marker_mask(bt, field), payload);
1675 }
1676 if (needs_null_check) {
1677 __ branch_destination(L_isNull->label());
1678 }
1679 }
1680 access_store_at(decorators, bt, object, LIR_OprFact::intConst(x->offset()), payload,
1681 // Make sure to emit an implicit null check and pass the information
1682 // that this is a flat store that might require gc barriers for oop fields.
1683 info != nullptr ? new CodeEmitInfo(info) : nullptr, info, vk);
1684 return;
1685 }
1686
1687 access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()),
1688 value.result(), info != nullptr ? new CodeEmitInfo(info) : nullptr, info);
1689 }
1690
1691 // FIXME -- I can't find any other way to pass an address to access_load_at().
1692 class TempResolvedAddress: public Instruction {
1693 public:
1694 TempResolvedAddress(ValueType* type, LIR_Opr addr) : Instruction(type) {
1695 set_operand(addr);
1696 }
1697 virtual void input_values_do(ValueVisitor*) {}
1698 virtual void visit(InstructionVisitor* v) {}
1699 virtual const char* name() const { return "TempResolvedAddress"; }
1700 };
1701
1702 LIR_Opr LIRGenerator::get_and_load_element_address(LIRItem& array, LIRItem& index) {
1703 ciType* array_type = array.value()->declared_type();
1704 ciFlatArrayKlass* flat_array_klass = array_type->as_flat_array_klass();
1705 assert(flat_array_klass->is_loaded(), "must be");
1706
1707 int array_header_size = flat_array_klass->array_header_in_bytes();
1708 int shift = flat_array_klass->log2_element_size();
1709
1710 #ifndef _LP64
1711 LIR_Opr index_op = new_register(T_INT);
1712 // FIXME -- on 32-bit, the shift below can overflow, so we need to check that
1713 // the top (shift+1) bits of index_op must be zero, or
1714 // else throw ArrayIndexOutOfBoundsException
1715 if (index.result()->is_constant()) {
1716 jint const_index = index.result()->as_jint();
1717 __ move(LIR_OprFact::intConst(const_index << shift), index_op);
1718 } else {
1719 __ shift_left(index_op, shift, index.result());
1720 }
1721 #else
1722 LIR_Opr index_op = new_register(T_LONG);
1723 if (index.result()->is_constant()) {
1724 jint const_index = index.result()->as_jint();
1725 __ move(LIR_OprFact::longConst(const_index << shift), index_op);
1726 } else {
1727 __ convert(Bytecodes::_i2l, index.result(), index_op);
1728 // Need to shift manually, as LIR_Address can scale only up to 3.
1729 __ shift_left(index_op, shift, index_op);
1730 }
1731 #endif
1732
1733 LIR_Opr elm_op = new_pointer_register();
1734 LIR_Address* elm_address = generate_address(array.result(), index_op, 0, array_header_size, T_ADDRESS);
1735 __ leal(LIR_OprFact::address(elm_address), elm_op);
1736 return elm_op;
1737 }
1738
1739 void LIRGenerator::access_sub_element(LIRItem& array, LIRItem& index, LIR_Opr& result, ciField* field, int sub_offset) {
1740 assert(field != nullptr, "Need a subelement type specified");
1741
1742 // Find the starting address of the source (inside the array)
1743 LIR_Opr elm_op = get_and_load_element_address(array, index);
1744
1745 BasicType subelt_type = field->type()->basic_type();
1746 TempResolvedAddress* elm_resolved_addr = new TempResolvedAddress(as_ValueType(subelt_type), elm_op);
1747 LIRItem elm_item(elm_resolved_addr, this);
1748
1749 DecoratorSet decorators = IN_HEAP;
1750 access_load_at(decorators, subelt_type,
1751 elm_item, LIR_OprFact::intConst(sub_offset), result,
1752 nullptr, nullptr);
1753 }
1754
1755 void LIRGenerator::access_flat_array(bool is_load, LIRItem& array, LIRItem& index, LIRItem& obj_item,
1756 ciField* field, int sub_offset) {
1757 assert(sub_offset == 0 || field != nullptr, "Sanity check");
1758
1759 // Find the starting address of the source (inside the array)
1760 LIR_Opr elm_op = get_and_load_element_address(array, index);
1761
1762 ciInlineKlass* elem_klass = nullptr;
1763 if (field != nullptr) {
1764 elem_klass = field->type()->as_inline_klass();
1765 } else {
1766 elem_klass = array.value()->declared_type()->as_flat_array_klass()->element_klass()->as_inline_klass();
1767 }
1768 for (int i = 0; i < elem_klass->nof_nonstatic_fields(); i++) {
1769 ciField* inner_field = elem_klass->nonstatic_field_at(i);
1770 assert(!inner_field->is_flat(), "flat fields must have been expanded");
1771 int obj_offset = inner_field->offset_in_bytes();
1772 int elm_offset = obj_offset - elem_klass->payload_offset() + sub_offset; // object header is not stored in array.
1773 BasicType field_type = inner_field->type()->basic_type();
1774
1775 // Types which are smaller than int are still passed in an int register.
1776 BasicType reg_type = field_type;
1777 switch (reg_type) {
1778 case T_BYTE:
1779 case T_BOOLEAN:
1780 case T_SHORT:
1781 case T_CHAR:
1782 reg_type = T_INT;
1783 break;
1784 default:
1785 break;
1786 }
1787
1788 LIR_Opr temp = new_register(reg_type);
1789 TempResolvedAddress* elm_resolved_addr = new TempResolvedAddress(as_ValueType(field_type), elm_op);
1790 LIRItem elm_item(elm_resolved_addr, this);
1791
1792 DecoratorSet decorators = IN_HEAP;
1793 if (is_load) {
1794 access_load_at(decorators, field_type,
1795 elm_item, LIR_OprFact::intConst(elm_offset), temp,
1796 nullptr, nullptr);
1797 access_store_at(decorators, field_type,
1798 obj_item, LIR_OprFact::intConst(obj_offset), temp,
1799 nullptr, nullptr);
1800 } else {
1801 access_load_at(decorators, field_type,
1802 obj_item, LIR_OprFact::intConst(obj_offset), temp,
1803 nullptr, nullptr);
1804 access_store_at(decorators, field_type,
1805 elm_item, LIR_OprFact::intConst(elm_offset), temp,
1806 nullptr, nullptr);
1807 }
1808 }
1809 }
1810
1811 void LIRGenerator::check_flat_array(LIR_Opr array, LIR_Opr value, CodeStub* slow_path) {
1812 LIR_Opr tmp = new_register(T_METADATA);
1813 __ check_flat_array(array, value, tmp, slow_path);
1814 }
1815
1816 void LIRGenerator::check_null_free_array(LIRItem& array, LIRItem& value, CodeEmitInfo* info) {
1817 LabelObj* L_end = new LabelObj();
1818 LIR_Opr tmp = new_register(T_METADATA);
1819 __ check_null_free_array(array.result(), tmp);
1820 __ branch(lir_cond_equal, L_end->label());
1821 __ null_check(value.result(), info);
1822 __ branch_destination(L_end->label());
1823 }
1824
1825 bool LIRGenerator::needs_flat_array_store_check(StoreIndexed* x) {
1826 if (x->elt_type() == T_OBJECT && x->array()->maybe_flat_array()) {
1827 ciType* type = x->value()->declared_type();
1828 if (type != nullptr && type->is_klass()) {
1829 ciKlass* klass = type->as_klass();
1830 if (!klass->can_be_inline_klass() || (klass->is_inlinetype() && !klass->as_inline_klass()->flat_in_array())) {
1831 // This is known to be a non-flat object. If the array is a flat array,
1832 // it will be caught by the code generated by array_store_check().
1833 return false;
1834 }
1835 }
1836 // We're not 100% sure, so let's do the flat_array_store_check.
1837 return true;
1838 }
1839 return false;
1840 }
1841
1842 bool LIRGenerator::needs_null_free_array_store_check(StoreIndexed* x) {
1843 return x->elt_type() == T_OBJECT && x->array()->maybe_null_free_array();
1844 }
1845
1846 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
1847 assert(x->is_pinned(),"");
1848 assert(x->elt_type() != T_ARRAY, "never used");
1849 bool is_loaded_flat_array = x->array()->is_loaded_flat_array();
1850 bool needs_range_check = x->compute_needs_range_check();
1851 bool use_length = x->length() != nullptr;
1852 bool obj_store = is_reference_type(x->elt_type());
1853 bool needs_store_check = obj_store && !(is_loaded_flat_array && x->is_exact_flat_array_store()) &&
1854 (x->value()->as_Constant() == nullptr ||
1855 !get_jobject_constant(x->value())->is_null_object());
1856
1857 LIRItem array(x->array(), this);
1858 LIRItem index(x->index(), this);
1859 LIRItem value(x->value(), this);
1860 LIRItem length(this);
1861
1862 array.load_item();
1863 index.load_nonconstant();
1864
1865 if (use_length && needs_range_check) {
1866 length.set_instruction(x->length());
1867 length.load_item();
1868 }
1869
1870 if (needs_store_check || x->check_boolean()
1871 || is_loaded_flat_array || needs_flat_array_store_check(x) || needs_null_free_array_store_check(x)) {
1872 value.load_item();
1873 } else {
1874 value.load_for_store(x->elt_type());
1875 }
1876
1877 set_no_result(x);
1878
1879 // the CodeEmitInfo must be duplicated for each different
1880 // LIR-instruction because spilling can occur anywhere between two
1881 // instructions and so the debug information must be different
1882 CodeEmitInfo* range_check_info = state_for(x);
1883 CodeEmitInfo* null_check_info = nullptr;
1884 if (x->needs_null_check()) {
1885 null_check_info = new CodeEmitInfo(range_check_info);
1886 }
1887
1888 if (needs_range_check) {
1889 if (use_length) {
1890 __ cmp(lir_cond_belowEqual, length.result(), index.result());
1891 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1892 } else {
1893 array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1894 // range_check also does the null check
1895 null_check_info = nullptr;
1896 }
1897 }
1898
1899 if (x->should_profile()) {
1900 if (is_loaded_flat_array) {
1901 // No need to profile a store to a flat array of known type. This can happen if
1902 // the type only became known after optimizations (for example, after the PhiSimplifier).
1903 x->set_should_profile(false);
1904 } else {
1905 int bci = x->profiled_bci();
1906 ciMethodData* md = x->profiled_method()->method_data();
1907 assert(md != nullptr, "Sanity");
1908 ciProfileData* data = md->bci_to_data(bci);
1909 assert(data != nullptr && data->is_ArrayStoreData(), "incorrect profiling entry");
1910 ciArrayStoreData* store_data = (ciArrayStoreData*)data;
1911 profile_array_type(x, md, store_data);
1912 assert(store_data->is_ArrayStoreData(), "incorrect profiling entry");
1913 if (x->array()->maybe_null_free_array()) {
1914 profile_null_free_array(array, md, store_data);
1915 }
1916 }
1917 }
1918
1919 if (GenerateArrayStoreCheck && needs_store_check) {
1920 CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
1921 array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci());
1922 }
1923
1924 if (is_loaded_flat_array) {
1925 // TODO 8350865 This is currently dead code
1926 if (!x->value()->is_null_free()) {
1927 __ null_check(value.result(), new CodeEmitInfo(range_check_info));
1928 }
1929 // If array element is an empty inline type, no need to copy anything
1930 if (!x->array()->declared_type()->as_flat_array_klass()->element_klass()->as_inline_klass()->is_empty()) {
1931 access_flat_array(false, array, index, value);
1932 }
1933 } else {
1934 StoreFlattenedArrayStub* slow_path = nullptr;
1935
1936 if (needs_flat_array_store_check(x)) {
1937 // Check if we indeed have a flat array
1938 index.load_item();
1939 slow_path = new StoreFlattenedArrayStub(array.result(), index.result(), value.result(), state_for(x, x->state_before()));
1940 check_flat_array(array.result(), value.result(), slow_path);
1941 set_in_conditional_code(true);
1942 } else if (needs_null_free_array_store_check(x)) {
1943 CodeEmitInfo* info = new CodeEmitInfo(range_check_info);
1944 check_null_free_array(array, value, info);
1945 }
1946
1947 DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1948 if (x->check_boolean()) {
1949 decorators |= C1_MASK_BOOLEAN;
1950 }
1951
1952 access_store_at(decorators, x->elt_type(), array, index.result(), value.result(), nullptr, null_check_info);
1953 if (slow_path != nullptr) {
1954 __ branch_destination(slow_path->continuation());
1955 set_in_conditional_code(false);
1956 }
1957 }
1958 }
1959
1960 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type,
1961 LIRItem& base, LIR_Opr offset, LIR_Opr result,
1962 CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) {
1963 decorators |= ACCESS_READ;
1964 LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info);
1965 if (access.is_raw()) {
1966 _barrier_set->BarrierSetC1::load_at(access, result);
1967 } else {
1968 _barrier_set->load_at(access, result);
1969 }
1970 }
1971
1972 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type,
1973 LIR_Opr addr, LIR_Opr result) {
1974 decorators |= ACCESS_READ;
1975 LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type);
1976 access.set_resolved_addr(addr);
1977 if (access.is_raw()) {
1978 _barrier_set->BarrierSetC1::load(access, result);
1979 } else {
1980 _barrier_set->load(access, result);
1981 }
1982 }
1983
1984 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type,
1985 LIRItem& base, LIR_Opr offset, LIR_Opr value,
1986 CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info,
1987 ciInlineKlass* vk) {
1988 decorators |= ACCESS_WRITE;
1989 LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info, vk);
1990 if (access.is_raw()) {
1991 _barrier_set->BarrierSetC1::store_at(access, value);
1992 } else {
1993 _barrier_set->store_at(access, value);
1994 }
1995 }
1996
1997 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type,
1998 LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) {
1999 decorators |= ACCESS_READ;
2000 decorators |= ACCESS_WRITE;
2001 // Atomic operations are SEQ_CST by default
2002 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
2003 LIRAccess access(this, decorators, base, offset, type);
2004 if (access.is_raw()) {
2005 return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value);
2006 } else {
2007 return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value);
2008 }
2009 }
2020 } else {
2021 return _barrier_set->atomic_xchg_at(access, value);
2022 }
2023 }
2024
2025 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type,
2026 LIRItem& base, LIRItem& offset, LIRItem& value) {
2027 decorators |= ACCESS_READ;
2028 decorators |= ACCESS_WRITE;
2029 // Atomic operations are SEQ_CST by default
2030 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
2031 LIRAccess access(this, decorators, base, offset, type);
2032 if (access.is_raw()) {
2033 return _barrier_set->BarrierSetC1::atomic_add_at(access, value);
2034 } else {
2035 return _barrier_set->atomic_add_at(access, value);
2036 }
2037 }
2038
2039 void LIRGenerator::do_LoadField(LoadField* x) {
2040 ciField* field = x->field();
2041 bool needs_patching = x->needs_patching();
2042 bool is_volatile = field->is_volatile();
2043 BasicType field_type = x->field_type();
2044
2045 CodeEmitInfo* info = nullptr;
2046 if (needs_patching) {
2047 assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access");
2048 info = state_for(x, x->state_before());
2049 } else if (x->needs_null_check()) {
2050 NullCheck* nc = x->explicit_null_check();
2051 if (nc == nullptr) {
2052 info = state_for(x);
2053 } else {
2054 info = state_for(nc);
2055 }
2056 }
2057
2058 LIRItem object(x->obj(), this);
2059
2060 object.load_item();
2061
2062 #ifndef PRODUCT
2073 stress_deopt)) {
2074 LIR_Opr obj = object.result();
2075 if (stress_deopt) {
2076 obj = new_register(T_OBJECT);
2077 __ move(LIR_OprFact::oopConst(nullptr), obj);
2078 }
2079 // Emit an explicit null check because the offset is too large.
2080 // If the class is not loaded and the object is null, we need to deoptimize to throw a
2081 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
2082 __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
2083 }
2084
2085 DecoratorSet decorators = IN_HEAP;
2086 if (is_volatile) {
2087 decorators |= MO_SEQ_CST;
2088 }
2089 if (needs_patching) {
2090 decorators |= C1_NEEDS_PATCHING;
2091 }
2092
2093 if (field->is_flat()) {
2094 ciInlineKlass* vk = field->type()->as_inline_klass();
2095 #ifdef ASSERT
2096 bool is_naturally_atomic = vk->nof_declared_nonstatic_fields() <= 1;
2097 bool needs_atomic_access = !field->is_null_free() || (field->is_volatile() && !is_naturally_atomic);
2098 assert(needs_atomic_access, "No atomic access required");
2099 assert(x->state_before() != nullptr, "Needs state before");
2100 #endif
2101
2102 // Allocate buffer (we can't easily do this conditionally on the null check below
2103 // because branches added in the LIR are opaque to the register allocator).
2104 NewInstance* buffer = new NewInstance(vk, x->state_before(), false, true);
2105 do_NewInstance(buffer);
2106 LIRItem dest(buffer, this);
2107
2108 // Copy the payload to the buffer
2109 BasicType bt = vk->atomic_size_to_basic_type(field->is_null_free());
2110 LIR_Opr payload = new_register((bt == T_LONG) ? bt : T_INT);
2111 access_load_at(decorators, bt, object, LIR_OprFact::intConst(field->offset_in_bytes()), payload,
2112 // Make sure to emit an implicit null check
2113 info ? new CodeEmitInfo(info) : nullptr, info);
2114 access_store_at(decorators, bt, dest, LIR_OprFact::intConst(vk->payload_offset()), payload);
2115
2116 if (field->is_null_free()) {
2117 set_result(x, buffer->operand());
2118 } else {
2119 // Check the null marker and set result to null if it's not set
2120 __ logical_and(payload, null_marker_mask(bt, field), payload);
2121 __ cmp(lir_cond_equal, payload, (bt == T_LONG) ? LIR_OprFact::longConst(0) : LIR_OprFact::intConst(0));
2122 __ cmove(lir_cond_equal, LIR_OprFact::oopConst(nullptr), buffer->operand(), rlock_result(x), T_OBJECT);
2123 }
2124
2125 // Ensure the copy is visible before any subsequent store that publishes the buffer.
2126 __ membar_storestore();
2127 return;
2128 }
2129
2130 LIR_Opr result = rlock_result(x, field_type);
2131 access_load_at(decorators, field_type,
2132 object, LIR_OprFact::intConst(x->offset()), result,
2133 info ? new CodeEmitInfo(info) : nullptr, info);
2134 }
2135
2136 // int/long jdk.internal.util.Preconditions.checkIndex
2137 void LIRGenerator::do_PreconditionsCheckIndex(Intrinsic* x, BasicType type) {
2138 assert(x->number_of_arguments() == 3, "wrong type");
2139 LIRItem index(x->argument_at(0), this);
2140 LIRItem length(x->argument_at(1), this);
2141 LIRItem oobef(x->argument_at(2), this);
2142
2143 index.load_item();
2144 length.load_item();
2145 oobef.load_item();
2146
2147 LIR_Opr result = rlock_result(x);
2148 // x->state() is created from copy_state_for_exception, it does not contains arguments
2149 // we should prepare them before entering into interpreter mode due to deoptimization.
2258 __ move(LIR_OprFact::oopConst(nullptr), obj);
2259 __ null_check(obj, new CodeEmitInfo(null_check_info));
2260 }
2261 }
2262
2263 if (needs_range_check) {
2264 if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
2265 __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result()));
2266 } else if (use_length) {
2267 // TODO: use a (modified) version of array_range_check that does not require a
2268 // constant length to be loaded to a register
2269 __ cmp(lir_cond_belowEqual, length.result(), index.result());
2270 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
2271 } else {
2272 array_range_check(array.result(), index.result(), null_check_info, range_check_info);
2273 // The range check performs the null check, so clear it out for the load
2274 null_check_info = nullptr;
2275 }
2276 }
2277
2278 ciMethodData* md = nullptr;
2279 ciArrayLoadData* load_data = nullptr;
2280 if (x->should_profile()) {
2281 if (x->array()->is_loaded_flat_array()) {
2282 // No need to profile a load from a flat array of known type. This can happen if
2283 // the type only became known after optimizations (for example, after the PhiSimplifier).
2284 x->set_should_profile(false);
2285 } else {
2286 int bci = x->profiled_bci();
2287 md = x->profiled_method()->method_data();
2288 assert(md != nullptr, "Sanity");
2289 ciProfileData* data = md->bci_to_data(bci);
2290 assert(data != nullptr && data->is_ArrayLoadData(), "incorrect profiling entry");
2291 load_data = (ciArrayLoadData*)data;
2292 profile_array_type(x, md, load_data);
2293 }
2294 }
2295
2296 Value element;
2297 if (x->vt() != nullptr) {
2298 assert(x->array()->is_loaded_flat_array(), "must be");
2299 // Find the destination address (of the NewInlineTypeInstance).
2300 LIRItem obj_item(x->vt(), this);
2301
2302 access_flat_array(true, array, index, obj_item,
2303 x->delayed() == nullptr ? 0 : x->delayed()->field(),
2304 x->delayed() == nullptr ? 0 : x->delayed()->offset());
2305 set_no_result(x);
2306 } else if (x->delayed() != nullptr) {
2307 assert(x->array()->is_loaded_flat_array(), "must be");
2308 LIR_Opr result = rlock_result(x, x->delayed()->field()->type()->basic_type());
2309 access_sub_element(array, index, result, x->delayed()->field(), x->delayed()->offset());
2310 } else {
2311 LIR_Opr result = rlock_result(x, x->elt_type());
2312 LoadFlattenedArrayStub* slow_path = nullptr;
2313
2314 if (x->should_profile() && x->array()->maybe_null_free_array()) {
2315 profile_null_free_array(array, md, load_data);
2316 }
2317
2318 if (x->elt_type() == T_OBJECT && x->array()->maybe_flat_array()) {
2319 assert(x->delayed() == nullptr, "Delayed LoadIndexed only apply to loaded_flat_arrays");
2320 index.load_item();
2321 // if we are loading from a flat array, load it using a runtime call
2322 slow_path = new LoadFlattenedArrayStub(array.result(), index.result(), result, state_for(x, x->state_before()));
2323 check_flat_array(array.result(), LIR_OprFact::illegalOpr, slow_path);
2324 set_in_conditional_code(true);
2325 }
2326
2327 DecoratorSet decorators = IN_HEAP | IS_ARRAY;
2328 access_load_at(decorators, x->elt_type(),
2329 array, index.result(), result,
2330 nullptr, null_check_info);
2331
2332 if (slow_path != nullptr) {
2333 __ branch_destination(slow_path->continuation());
2334 set_in_conditional_code(false);
2335 }
2336
2337 element = x;
2338 }
2339
2340 if (x->should_profile()) {
2341 profile_element_type(element, md, load_data);
2342 }
2343 }
2344
2345
2346 void LIRGenerator::do_NullCheck(NullCheck* x) {
2347 if (x->can_trap()) {
2348 LIRItem value(x->obj(), this);
2349 value.load_item();
2350 CodeEmitInfo* info = state_for(x);
2351 __ null_check(value.result(), info);
2352 }
2353 }
2354
2355
2356 void LIRGenerator::do_TypeCast(TypeCast* x) {
2357 LIRItem value(x->obj(), this);
2358 value.load_item();
2359 // the result is the same as from the node we are casting
2360 set_result(x, value.result());
2361 }
2362
2805 Compilation* comp = Compilation::current();
2806 if (do_update) {
2807 // try to find exact type, using CHA if possible, so that loading
2808 // the klass from the object can be avoided
2809 ciType* type = obj->exact_type();
2810 if (type == nullptr) {
2811 type = obj->declared_type();
2812 type = comp->cha_exact_type(type);
2813 }
2814 assert(type == nullptr || type->is_klass(), "type should be class");
2815 exact_klass = (type != nullptr && type->is_loaded()) ? (ciKlass*)type : nullptr;
2816
2817 do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2818 }
2819
2820 if (!do_null && !do_update) {
2821 return result;
2822 }
2823
2824 ciKlass* exact_signature_k = nullptr;
2825 if (do_update && signature_at_call_k != nullptr) {
2826 // Is the type from the signature exact (the only one possible)?
2827 exact_signature_k = signature_at_call_k->exact_klass();
2828 if (exact_signature_k == nullptr) {
2829 exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2830 } else {
2831 result = exact_signature_k;
2832 // Known statically. No need to emit any code: prevent
2833 // LIR_Assembler::emit_profile_type() from emitting useless code
2834 profiled_k = ciTypeEntries::with_status(result, profiled_k);
2835 }
2836 // exact_klass and exact_signature_k can be both non null but
2837 // different if exact_klass is loaded after the ciObject for
2838 // exact_signature_k is created.
2839 if (exact_klass == nullptr && exact_signature_k != nullptr && exact_klass != exact_signature_k) {
2840 // sometimes the type of the signature is better than the best type
2841 // the compiler has
2842 exact_klass = exact_signature_k;
2843 }
2844 if (callee_signature_k != nullptr &&
2845 callee_signature_k != signature_at_call_k) {
2890 assert(!src->is_illegal(), "check");
2891 BasicType t = src->type();
2892 if (is_reference_type(t)) {
2893 intptr_t profiled_k = parameters->type(j);
2894 Local* local = x->state()->local_at(java_index)->as_Local();
2895 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2896 in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2897 profiled_k, local, mdp, false, local->declared_type()->as_klass(), nullptr);
2898 // If the profile is known statically set it once for all and do not emit any code
2899 if (exact != nullptr) {
2900 md->set_parameter_type(j, exact);
2901 }
2902 j++;
2903 }
2904 java_index += type2size[t];
2905 }
2906 }
2907 }
2908 }
2909
2910 void LIRGenerator::profile_flags(ciMethodData* md, ciProfileData* data, int flag, LIR_Condition condition) {
2911 assert(md != nullptr && data != nullptr, "should have been initialized");
2912 LIR_Opr mdp = new_register(T_METADATA);
2913 __ metadata2reg(md->constant_encoding(), mdp);
2914 LIR_Address* addr = new LIR_Address(mdp, md->byte_offset_of_slot(data, DataLayout::flags_offset()), T_BYTE);
2915 LIR_Opr flags = new_register(T_INT);
2916 __ move(addr, flags);
2917 if (condition != lir_cond_always) {
2918 LIR_Opr update = new_register(T_INT);
2919 __ cmove(condition, LIR_OprFact::intConst(0), LIR_OprFact::intConst(flag), update, T_INT);
2920 } else {
2921 __ logical_or(flags, LIR_OprFact::intConst(flag), flags);
2922 }
2923 __ store(flags, addr);
2924 }
2925
2926 template <class ArrayData> void LIRGenerator::profile_null_free_array(LIRItem array, ciMethodData* md, ArrayData* load_store) {
2927 assert(compilation()->profile_array_accesses(), "array access profiling is disabled");
2928 LabelObj* L_end = new LabelObj();
2929 LIR_Opr tmp = new_register(T_METADATA);
2930 __ check_null_free_array(array.result(), tmp);
2931
2932 profile_flags(md, load_store, ArrayStoreData::null_free_array_byte_constant(), lir_cond_equal);
2933 }
2934
2935 template <class ArrayData> void LIRGenerator::profile_array_type(AccessIndexed* x, ciMethodData*& md, ArrayData*& load_store) {
2936 assert(compilation()->profile_array_accesses(), "array access profiling is disabled");
2937 LIR_Opr mdp = LIR_OprFact::illegalOpr;
2938 profile_type(md, md->byte_offset_of_slot(load_store, ArrayData::array_offset()), 0,
2939 load_store->array()->type(), x->array(), mdp, true, nullptr, nullptr);
2940 }
2941
2942 void LIRGenerator::profile_element_type(Value element, ciMethodData* md, ciArrayLoadData* load_data) {
2943 assert(compilation()->profile_array_accesses(), "array access profiling is disabled");
2944 assert(md != nullptr && load_data != nullptr, "should have been initialized");
2945 LIR_Opr mdp = LIR_OprFact::illegalOpr;
2946 profile_type(md, md->byte_offset_of_slot(load_data, ArrayLoadData::element_offset()), 0,
2947 load_data->element()->type(), element, mdp, false, nullptr, nullptr);
2948 }
2949
2950 void LIRGenerator::do_Base(Base* x) {
2951 __ std_entry(LIR_OprFact::illegalOpr);
2952 // Emit moves from physical registers / stack slots to virtual registers
2953 CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2954 IRScope* irScope = compilation()->hir()->top_scope();
2955 int java_index = 0;
2956 for (int i = 0; i < args->length(); i++) {
2957 LIR_Opr src = args->at(i);
2958 assert(!src->is_illegal(), "check");
2959 BasicType t = src->type();
2960
2961 // Types which are smaller than int are passed as int, so
2962 // correct the type which passed.
2963 switch (t) {
2964 case T_BYTE:
2965 case T_BOOLEAN:
2966 case T_SHORT:
2967 case T_CHAR:
2968 t = T_INT;
2969 break;
3012 }
3013 assert(obj->is_valid(), "must be valid");
3014
3015 if (method()->is_synchronized() && GenerateSynchronizationCode) {
3016 LIR_Opr lock = syncLockOpr();
3017 __ load_stack_address_monitor(0, lock);
3018
3019 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, x->check_flag(Instruction::DeoptimizeOnException));
3020 CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
3021
3022 // receiver is guaranteed non-null so don't need CodeEmitInfo
3023 __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, nullptr);
3024 }
3025 }
3026 // increment invocation counters if needed
3027 if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
3028 profile_parameters(x);
3029 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, false);
3030 increment_invocation_counter(info);
3031 }
3032 if (method()->has_scalarized_args()) {
3033 // Check if deoptimization was triggered (i.e. orig_pc was set) while buffering scalarized inline type arguments
3034 // in the entry point (see comments in frame::deoptimize). If so, deoptimize only now that we have the right state.
3035 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), nullptr, false);
3036 CodeStub* deopt_stub = new DeoptimizeStub(info, Deoptimization::Reason_none, Deoptimization::Action_none);
3037 __ append(new LIR_Op0(lir_check_orig_pc));
3038 __ branch(lir_cond_notEqual, deopt_stub);
3039 }
3040
3041 // all blocks with a successor must end with an unconditional jump
3042 // to the successor even if they are consecutive
3043 __ jump(x->default_sux());
3044 }
3045
3046
3047 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
3048 // construct our frame and model the production of incoming pointer
3049 // to the OSR buffer.
3050 __ osr_entry(LIR_Assembler::osrBufferPointer());
3051 LIR_Opr result = rlock_result(x);
3052 __ move(LIR_Assembler::osrBufferPointer(), result);
3053 }
3054
3055 void LIRGenerator::invoke_load_one_argument(LIRItem* param, LIR_Opr loc) {
3056 if (loc->is_register()) {
3057 param->load_item_force(loc);
3058 } else {
3059 LIR_Address* addr = loc->as_address_ptr();
3060 param->load_for_store(addr->type());
3061 if (addr->type() == T_OBJECT) {
3062 __ move_wide(param->result(), addr);
3063 } else {
3064 __ move(param->result(), addr);
3065 }
3066 }
3067 }
3068
3069 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
3070 assert(args->length() == arg_list->length(),
3071 "args=%d, arg_list=%d", args->length(), arg_list->length());
3072 for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
3073 LIRItem* param = args->at(i);
3074 LIR_Opr loc = arg_list->at(i);
3075 invoke_load_one_argument(param, loc);
3076 }
3077
3078 if (x->has_receiver()) {
3079 LIRItem* receiver = args->at(0);
3080 LIR_Opr loc = arg_list->at(0);
3081 if (loc->is_register()) {
3082 receiver->load_item_force(loc);
3083 } else {
3084 assert(loc->is_address(), "just checking");
3085 receiver->load_for_store(T_OBJECT);
3086 __ move_wide(receiver->result(), loc->as_address_ptr());
3087 }
3088 }
3089 }
3090
3091
3092 // Visits all arguments, returns appropriate items without loading them
3093 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
3094 LIRItemList* argument_items = new LIRItemList();
3095 if (x->has_receiver()) {
3221 __ move(tmp, reg);
3222 }
3223
3224
3225
3226 // Code for : x->x() {x->cond()} x->y() ? x->tval() : x->fval()
3227 void LIRGenerator::do_IfOp(IfOp* x) {
3228 #ifdef ASSERT
3229 {
3230 ValueTag xtag = x->x()->type()->tag();
3231 ValueTag ttag = x->tval()->type()->tag();
3232 assert(xtag == intTag || xtag == objectTag, "cannot handle others");
3233 assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
3234 assert(ttag == x->fval()->type()->tag(), "cannot handle others");
3235 }
3236 #endif
3237
3238 LIRItem left(x->x(), this);
3239 LIRItem right(x->y(), this);
3240 left.load_item();
3241 if (can_inline_as_constant(right.value()) && !x->substitutability_check()) {
3242 right.dont_load_item();
3243 } else {
3244 // substitutability_check() needs to use right as a base register.
3245 right.load_item();
3246 }
3247
3248 LIRItem t_val(x->tval(), this);
3249 LIRItem f_val(x->fval(), this);
3250 t_val.dont_load_item();
3251 f_val.dont_load_item();
3252
3253 if (x->substitutability_check()) {
3254 substitutability_check(x, left, right, t_val, f_val);
3255 } else {
3256 LIR_Opr reg = rlock_result(x);
3257 __ cmp(lir_cond(x->cond()), left.result(), right.result());
3258 __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
3259 }
3260 }
3261
3262 void LIRGenerator::substitutability_check(IfOp* x, LIRItem& left, LIRItem& right, LIRItem& t_val, LIRItem& f_val) {
3263 assert(x->cond() == If::eql || x->cond() == If::neq, "must be");
3264 bool is_acmpeq = (x->cond() == If::eql);
3265 LIR_Opr equal_result = is_acmpeq ? t_val.result() : f_val.result();
3266 LIR_Opr not_equal_result = is_acmpeq ? f_val.result() : t_val.result();
3267 LIR_Opr result = rlock_result(x);
3268 CodeEmitInfo* info = state_for(x, x->state_before());
3269
3270 substitutability_check_common(x->x(), x->y(), left, right, equal_result, not_equal_result, result, info);
3271 }
3272
3273 void LIRGenerator::substitutability_check(If* x, LIRItem& left, LIRItem& right) {
3274 LIR_Opr equal_result = LIR_OprFact::intConst(1);
3275 LIR_Opr not_equal_result = LIR_OprFact::intConst(0);
3276 LIR_Opr result = new_register(T_INT);
3277 CodeEmitInfo* info = state_for(x, x->state_before());
3278
3279 substitutability_check_common(x->x(), x->y(), left, right, equal_result, not_equal_result, result, info);
3280
3281 assert(x->cond() == If::eql || x->cond() == If::neq, "must be");
3282 __ cmp(lir_cond(x->cond()), result, equal_result);
3283 }
3284
3285 void LIRGenerator::substitutability_check_common(Value left_val, Value right_val, LIRItem& left, LIRItem& right,
3286 LIR_Opr equal_result, LIR_Opr not_equal_result, LIR_Opr result,
3287 CodeEmitInfo* info) {
3288 LIR_Opr tmp1 = LIR_OprFact::illegalOpr;
3289 LIR_Opr tmp2 = LIR_OprFact::illegalOpr;
3290 LIR_Opr left_klass_op = LIR_OprFact::illegalOpr;
3291 LIR_Opr right_klass_op = LIR_OprFact::illegalOpr;
3292
3293 ciKlass* left_klass = left_val ->as_loaded_klass_or_null();
3294 ciKlass* right_klass = right_val->as_loaded_klass_or_null();
3295
3296 if ((left_klass == nullptr || right_klass == nullptr) ||// The klass is still unloaded, or came from a Phi node.
3297 !left_klass->is_inlinetype() || !right_klass->is_inlinetype()) {
3298 init_temps_for_substitutability_check(tmp1, tmp2);
3299 }
3300
3301 if (left_klass != nullptr && left_klass->is_inlinetype() && left_klass == right_klass) {
3302 // No need to load klass -- the operands are statically known to be the same inline klass.
3303 } else {
3304 BasicType t_klass = UseCompressedOops ? T_INT : T_METADATA;
3305 left_klass_op = new_register(t_klass);
3306 right_klass_op = new_register(t_klass);
3307 }
3308
3309 CodeStub* slow_path = new SubstitutabilityCheckStub(left.result(), right.result(), info);
3310 __ substitutability_check(result, left.result(), right.result(), equal_result, not_equal_result,
3311 tmp1, tmp2,
3312 left_klass, right_klass, left_klass_op, right_klass_op, info, slow_path);
3313 }
3314
3315 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
3316 assert(x->number_of_arguments() == 0, "wrong type");
3317 // Enforce computation of _reserved_argument_area_size which is required on some platforms.
3318 BasicTypeList signature;
3319 CallingConvention* cc = frame_map()->c_calling_convention(&signature);
3320 LIR_Opr reg = result_register_for(x->type());
3321 __ call_runtime_leaf(routine, getThreadTemp(),
3322 reg, new LIR_OprList());
3323 LIR_Opr result = rlock_result(x);
3324 __ move(reg, result);
3325 }
3326
3327
3328
3329 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
3330 switch (x->id()) {
3331 case vmIntrinsics::_intBitsToFloat :
3332 case vmIntrinsics::_doubleToRawLongBits :
3565 if (x->recv() != nullptr || x->nb_profiled_args() > 0) {
3566 profile_parameters_at_call(x);
3567 }
3568
3569 if (x->recv() != nullptr) {
3570 LIRItem value(x->recv(), this);
3571 value.load_item();
3572 recv = new_register(T_OBJECT);
3573 __ move(value.result(), recv);
3574 }
3575 __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3576 }
3577
3578 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3579 int bci = x->bci_of_invoke();
3580 ciMethodData* md = x->method()->method_data_or_null();
3581 assert(md != nullptr, "Sanity");
3582 ciProfileData* data = md->bci_to_data(bci);
3583 if (data != nullptr) {
3584 assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3585 ciSingleTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3586 LIR_Opr mdp = LIR_OprFact::illegalOpr;
3587
3588 bool ignored_will_link;
3589 ciSignature* signature_at_call = nullptr;
3590 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3591
3592 // The offset within the MDO of the entry to update may be too large
3593 // to be used in load/store instructions on some platforms. So have
3594 // profile_type() compute the address of the profile in a register.
3595 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3596 ret->type(), x->ret(), mdp,
3597 !x->needs_null_check(),
3598 signature_at_call->return_type()->as_klass(),
3599 x->callee()->signature()->return_type()->as_klass());
3600 if (exact != nullptr) {
3601 md->set_return_type(bci, exact);
3602 }
3603 }
3604 }
3605
3606 bool LIRGenerator::profile_inline_klass(ciMethodData* md, ciProfileData* data, Value value, int flag) {
3607 ciKlass* klass = value->as_loaded_klass_or_null();
3608 if (klass != nullptr) {
3609 if (klass->is_inlinetype()) {
3610 profile_flags(md, data, flag, lir_cond_always);
3611 } else if (klass->can_be_inline_klass()) {
3612 return false;
3613 }
3614 } else {
3615 return false;
3616 }
3617 return true;
3618 }
3619
3620
3621 void LIRGenerator::do_ProfileACmpTypes(ProfileACmpTypes* x) {
3622 ciMethod* method = x->method();
3623 assert(method != nullptr, "method should be set if branch is profiled");
3624 ciMethodData* md = method->method_data_or_null();
3625 assert(md != nullptr, "Sanity");
3626 ciProfileData* data = md->bci_to_data(x->bci());
3627 assert(data != nullptr, "must have profiling data");
3628 assert(data->is_ACmpData(), "need BranchData for two-way branches");
3629 ciACmpData* acmp = (ciACmpData*)data;
3630 LIR_Opr mdp = LIR_OprFact::illegalOpr;
3631 profile_type(md, md->byte_offset_of_slot(acmp, ACmpData::left_offset()), 0,
3632 acmp->left()->type(), x->left(), mdp, !x->left_maybe_null(), nullptr, nullptr);
3633 int flags_offset = md->byte_offset_of_slot(data, DataLayout::flags_offset());
3634 if (!profile_inline_klass(md, acmp, x->left(), ACmpData::left_inline_type_byte_constant())) {
3635 LIR_Opr mdp = new_register(T_METADATA);
3636 __ metadata2reg(md->constant_encoding(), mdp);
3637 LIRItem value(x->left(), this);
3638 value.load_item();
3639 __ profile_inline_type(new LIR_Address(mdp, flags_offset, T_INT), value.result(), ACmpData::left_inline_type_byte_constant(), new_register(T_INT), !x->left_maybe_null());
3640 }
3641 profile_type(md, md->byte_offset_of_slot(acmp, ACmpData::left_offset()),
3642 in_bytes(ACmpData::right_offset()) - in_bytes(ACmpData::left_offset()),
3643 acmp->right()->type(), x->right(), mdp, !x->right_maybe_null(), nullptr, nullptr);
3644 if (!profile_inline_klass(md, acmp, x->right(), ACmpData::right_inline_type_byte_constant())) {
3645 LIR_Opr mdp = new_register(T_METADATA);
3646 __ metadata2reg(md->constant_encoding(), mdp);
3647 LIRItem value(x->right(), this);
3648 value.load_item();
3649 __ profile_inline_type(new LIR_Address(mdp, flags_offset, T_INT), value.result(), ACmpData::right_inline_type_byte_constant(), new_register(T_INT), !x->left_maybe_null());
3650 }
3651 }
3652
3653 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3654 // We can safely ignore accessors here, since c2 will inline them anyway,
3655 // accessors are also always mature.
3656 if (!x->inlinee()->is_accessor()) {
3657 CodeEmitInfo* info = state_for(x, x->state(), true);
3658 // Notify the runtime very infrequently only to take care of counter overflows
3659 int freq_log = Tier23InlineeNotifyFreqLog;
3660 double scale;
3661 if (_method->has_option_value(CompileCommandEnum::CompileThresholdScaling, scale)) {
3662 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3663 }
3664 increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true);
3665 }
3666 }
3667
3668 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) {
3669 if (compilation()->is_profiling()) {
3670 #if defined(X86) && !defined(_LP64)
3671 // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
3672 LIR_Opr left_copy = new_register(left->type());
|