1 /*
2 * Copyright (c) 2005, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "c1/c1_Compilation.hpp"
26 #include "c1/c1_Defs.hpp"
27 #include "c1/c1_FrameMap.hpp"
28 #include "c1/c1_Instruction.hpp"
29 #include "c1/c1_LIRAssembler.hpp"
30 #include "c1/c1_LIRGenerator.hpp"
31 #include "c1/c1_ValueStack.hpp"
32 #include "ci/ciArrayKlass.hpp"
33 #include "ci/ciInstance.hpp"
34 #include "ci/ciObjArray.hpp"
35 #include "ci/ciUtilities.hpp"
36 #include "compiler/compilerDefinitions.inline.hpp"
37 #include "compiler/compilerOracle.hpp"
38 #include "gc/shared/barrierSet.hpp"
39 #include "gc/shared/c1/barrierSetC1.hpp"
40 #include "oops/klass.inline.hpp"
41 #include "oops/methodCounters.hpp"
42 #include "runtime/sharedRuntime.hpp"
43 #include "runtime/stubRoutines.hpp"
44 #include "runtime/vm_version.hpp"
45 #include "utilities/bitMap.inline.hpp"
46 #include "utilities/macros.hpp"
47 #include "utilities/powerOfTwo.hpp"
48
49 #ifdef ASSERT
50 #define __ gen()->lir(__FILE__, __LINE__)->
51 #else
52 #define __ gen()->lir()->
53 #endif
54
55 #ifndef PATCHED_ADDR
56 #define PATCHED_ADDR (max_jint)
57 #endif
58
59 void PhiResolverState::reset() {
60 _virtual_operands.clear();
61 _other_operands.clear();
198 }
199
200
201 //--------------------------------------------------------------
202 // LIRItem
203
204 void LIRItem::set_result(LIR_Opr opr) {
205 assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
206 value()->set_operand(opr);
207
208 #ifdef ASSERT
209 if (opr->is_virtual()) {
210 _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), nullptr);
211 }
212 #endif
213
214 _result = opr;
215 }
216
217 void LIRItem::load_item() {
218 if (result()->is_illegal()) {
219 // update the items result
220 _result = value()->operand();
221 }
222 if (!result()->is_register()) {
223 LIR_Opr reg = _gen->new_register(value()->type());
224 __ move(result(), reg);
225 if (result()->is_constant()) {
226 _result = reg;
227 } else {
228 set_result(reg);
229 }
230 }
231 }
232
233
234 void LIRItem::load_for_store(BasicType type) {
235 if (_gen->can_store_as_constant(value(), type)) {
236 _result = value()->operand();
237 if (!_result->is_constant()) {
605 assert(right_op != result_op, "malformed");
606 __ move(left_op, result_op);
607 left_op = result_op;
608 }
609
610 switch(code) {
611 case Bytecodes::_iand:
612 case Bytecodes::_land: __ logical_and(left_op, right_op, result_op); break;
613
614 case Bytecodes::_ior:
615 case Bytecodes::_lor: __ logical_or(left_op, right_op, result_op); break;
616
617 case Bytecodes::_ixor:
618 case Bytecodes::_lxor: __ logical_xor(left_op, right_op, result_op); break;
619
620 default: ShouldNotReachHere();
621 }
622 }
623
624
625 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
626 // for slow path, use debug info for state after successful locking
627 CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
628 __ load_stack_address_monitor(monitor_no, lock);
629 // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
630 __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
631 }
632
633
634 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
635 // setup registers
636 LIR_Opr hdr = lock;
637 lock = new_hdr;
638 CodeStub* slow_path = new MonitorExitStub(lock, monitor_no);
639 __ load_stack_address_monitor(monitor_no, lock);
640 __ unlock_object(hdr, object, lock, scratch, slow_path);
641 }
642
643 #ifndef PRODUCT
644 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
645 if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
646 tty->print_cr(" ###class not loaded at new bci %d", new_instance->printable_bci());
647 } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) {
648 tty->print_cr(" ###class not resolved at new bci %d", new_instance->printable_bci());
649 }
650 }
651 #endif
652
653 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
654 klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
655 // If klass is not loaded we do not know if the klass has finalizers:
656 if (UseFastNewInstance && klass->is_loaded()
657 && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
658
659 StubId stub_id = klass->is_initialized() ? StubId::c1_fast_new_instance_id : StubId::c1_fast_new_instance_init_check_id;
660
661 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
662
663 assert(klass->is_loaded(), "must be loaded");
664 // allocate space for instance
665 assert(klass->size_helper() > 0, "illegal instance size");
666 const int instance_size = align_object_size(klass->size_helper());
667 __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
668 oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
669 } else {
670 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, StubId::c1_new_instance_id);
671 __ branch(lir_cond_always, slow_path);
672 __ branch_destination(slow_path->continuation());
673 }
674 }
675
676
677 static bool is_constant_zero(Instruction* inst) {
678 IntConstant* c = inst->type()->as_IntConstant();
679 if (c) {
680 return (c->value() == 0);
681 }
682 return false;
683 }
684
685
686 static bool positive_constant(Instruction* inst) {
687 IntConstant* c = inst->type()->as_IntConstant();
688 if (c) {
689 return (c->value() >= 0);
690 }
691 return false;
743 } else if (dst_exact_type != nullptr && dst_exact_type->is_obj_array_klass()) {
744 ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
745 ciArrayKlass* src_type = nullptr;
746 if (src_exact_type != nullptr && src_exact_type->is_obj_array_klass()) {
747 src_type = (ciArrayKlass*) src_exact_type;
748 } else if (src_declared_type != nullptr && src_declared_type->is_obj_array_klass()) {
749 src_type = (ciArrayKlass*) src_declared_type;
750 }
751 if (src_type != nullptr) {
752 if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
753 is_exact = true;
754 expected_type = dst_type;
755 }
756 }
757 }
758 // at least pass along a good guess
759 if (expected_type == nullptr) expected_type = dst_exact_type;
760 if (expected_type == nullptr) expected_type = src_declared_type;
761 if (expected_type == nullptr) expected_type = dst_declared_type;
762
763 src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
764 dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
765 }
766
767 // if a probable array type has been identified, figure out if any
768 // of the required checks for a fast case can be elided.
769 int flags = LIR_OpArrayCopy::all_flags;
770
771 if (!src_objarray)
772 flags &= ~LIR_OpArrayCopy::src_objarray;
773 if (!dst_objarray)
774 flags &= ~LIR_OpArrayCopy::dst_objarray;
775
776 if (!x->arg_needs_null_check(0))
777 flags &= ~LIR_OpArrayCopy::src_null_check;
778 if (!x->arg_needs_null_check(2))
779 flags &= ~LIR_OpArrayCopy::dst_null_check;
780
781
782 if (expected_type != nullptr) {
783 Value length_limit = nullptr;
784
785 IfOp* ifop = length->as_IfOp();
786 if (ifop != nullptr) {
787 // look for expressions like min(v, a.length) which ends up as
788 // x > y ? y : x or x >= y ? y : x
789 if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
790 ifop->x() == ifop->fval() &&
1443 }
1444 return _vreg_flags.at(vreg_num, f);
1445 }
1446
1447
1448 // Block local constant handling. This code is useful for keeping
1449 // unpinned constants and constants which aren't exposed in the IR in
1450 // registers. Unpinned Constant instructions have their operands
1451 // cleared when the block is finished so that other blocks can't end
1452 // up referring to their registers.
1453
1454 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1455 assert(!x->is_pinned(), "only for unpinned constants");
1456 _unpinned_constants.append(x);
1457 return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1458 }
1459
1460
1461 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1462 BasicType t = c->type();
1463 for (int i = 0; i < _constants.length(); i++) {
1464 LIR_Const* other = _constants.at(i);
1465 if (t == other->type()) {
1466 switch (t) {
1467 case T_INT:
1468 case T_FLOAT:
1469 if (c->as_jint_bits() != other->as_jint_bits()) continue;
1470 break;
1471 case T_LONG:
1472 case T_DOUBLE:
1473 if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1474 if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1475 break;
1476 case T_OBJECT:
1477 if (c->as_jobject() != other->as_jobject()) continue;
1478 break;
1479 default:
1480 break;
1481 }
1482 return _reg_for_constants.at(i);
1483 }
1484 }
1485
1486 LIR_Opr result = new_register(t);
1487 __ move((LIR_Opr)c, result);
1488 _constants.append(c);
1489 _reg_for_constants.append(result);
1490 return result;
1491 }
1492
1493 //------------------------field access--------------------------------------
1494
1495 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
1496 assert(x->number_of_arguments() == 4, "wrong type");
1497 LIRItem obj (x->argument_at(0), this); // object
1498 LIRItem offset(x->argument_at(1), this); // offset of field
1499 LIRItem cmp (x->argument_at(2), this); // value to compare with field
1500 LIRItem val (x->argument_at(3), this); // replace field with val if matches cmp
1501 assert(obj.type()->tag() == objectTag, "invalid type");
1502 assert(cmp.type()->tag() == type->tag(), "invalid type");
1503 assert(val.type()->tag() == type->tag(), "invalid type");
1504
1505 LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type),
1506 obj, offset, cmp, val);
1507 set_result(x, result);
1508 }
1509
1510 // Comment copied form templateTable_i486.cpp
1511 // ----------------------------------------------------------------------------
1512 // Volatile variables demand their effects be made known to all CPU's in
1513 // order. Store buffers on most chips allow reads & writes to reorder; the
1514 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1515 // memory barrier (i.e., it's not sufficient that the interpreter does not
1516 // reorder volatile references, the hardware also must not reorder them).
1517 //
1518 // According to the new Java Memory Model (JMM):
1519 // (1) All volatiles are serialized wrt to each other.
1520 // ALSO reads & writes act as acquire & release, so:
1521 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1522 // the read float up to before the read. It's OK for non-volatile memory refs
1523 // that happen before the volatile read to float down below it.
1524 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1525 // that happen BEFORE the write float down to after the write. It's OK for
1526 // non-volatile memory refs that happen after the volatile write to float up
1527 // before it.
1528 //
1529 // We only put in barriers around volatile refs (they are expensive), not
1530 // _between_ memory refs (that would require us to track the flavor of the
1531 // previous memory refs). Requirements (2) and (3) require some barriers
1532 // before volatile stores and after volatile loads. These nearly cover
1533 // requirement (1) but miss the volatile-store-volatile-load case. This final
1534 // case is placed after volatile-stores although it could just as well go
1535 // before volatile-loads.
1536
1537
1538 void LIRGenerator::do_StoreField(StoreField* x) {
1539 bool needs_patching = x->needs_patching();
1540 bool is_volatile = x->field()->is_volatile();
1541 BasicType field_type = x->field_type();
1542
1543 CodeEmitInfo* info = nullptr;
1544 if (needs_patching) {
1545 assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access");
1546 info = state_for(x, x->state_before());
1547 } else if (x->needs_null_check()) {
1548 NullCheck* nc = x->explicit_null_check();
1549 if (nc == nullptr) {
1550 info = state_for(x);
1551 } else {
1552 info = state_for(nc);
1553 }
1554 }
1555
1556 LIRItem object(x->obj(), this);
1557 LIRItem value(x->value(), this);
1558
1559 object.load_item();
1560
1561 if (is_volatile || needs_patching) {
1562 // load item if field is volatile (fewer special cases for volatiles)
1563 // load item if field not initialized
1564 // load item if field not constant
1565 // because of code patching we cannot inline constants
1566 if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1567 value.load_byte_item();
1568 } else {
1569 value.load_item();
1570 }
1571 } else {
1572 value.load_for_store(field_type);
1573 }
1574
1575 set_no_result(x);
1576
1577 #ifndef PRODUCT
1578 if (PrintNotLoaded && needs_patching) {
1579 tty->print_cr(" ###class not loaded at store_%s bci %d",
1580 x->is_static() ? "static" : "field", x->printable_bci());
1581 }
1582 #endif
1583
1584 if (x->needs_null_check() &&
1585 (needs_patching ||
1586 MacroAssembler::needs_explicit_null_check(x->offset()))) {
1587 // Emit an explicit null check because the offset is too large.
1588 // If the class is not loaded and the object is null, we need to deoptimize to throw a
1589 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1590 __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1591 }
1592
1593 DecoratorSet decorators = IN_HEAP;
1594 if (is_volatile) {
1595 decorators |= MO_SEQ_CST;
1596 }
1597 if (needs_patching) {
1598 decorators |= C1_NEEDS_PATCHING;
1599 }
1600
1601 access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()),
1602 value.result(), info != nullptr ? new CodeEmitInfo(info) : nullptr, info);
1603 }
1604
1605 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
1606 assert(x->is_pinned(),"");
1607 bool needs_range_check = x->compute_needs_range_check();
1608 bool use_length = x->length() != nullptr;
1609 bool obj_store = is_reference_type(x->elt_type());
1610 bool needs_store_check = obj_store && (x->value()->as_Constant() == nullptr ||
1611 !get_jobject_constant(x->value())->is_null_object() ||
1612 x->should_profile());
1613
1614 LIRItem array(x->array(), this);
1615 LIRItem index(x->index(), this);
1616 LIRItem value(x->value(), this);
1617 LIRItem length(this);
1618
1619 array.load_item();
1620 index.load_nonconstant();
1621
1622 if (use_length && needs_range_check) {
1623 length.set_instruction(x->length());
1624 length.load_item();
1625
1626 }
1627 if (needs_store_check || x->check_boolean()) {
1628 value.load_item();
1629 } else {
1630 value.load_for_store(x->elt_type());
1631 }
1632
1633 set_no_result(x);
1634
1635 // the CodeEmitInfo must be duplicated for each different
1636 // LIR-instruction because spilling can occur anywhere between two
1637 // instructions and so the debug information must be different
1638 CodeEmitInfo* range_check_info = state_for(x);
1639 CodeEmitInfo* null_check_info = nullptr;
1640 if (x->needs_null_check()) {
1641 null_check_info = new CodeEmitInfo(range_check_info);
1642 }
1643
1644 if (needs_range_check) {
1645 if (use_length) {
1646 __ cmp(lir_cond_belowEqual, length.result(), index.result());
1647 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1648 } else {
1649 array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1650 // range_check also does the null check
1651 null_check_info = nullptr;
1652 }
1653 }
1654
1655 if (GenerateArrayStoreCheck && needs_store_check) {
1656 CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
1657 array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci());
1658 }
1659
1660 DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1661 if (x->check_boolean()) {
1662 decorators |= C1_MASK_BOOLEAN;
1663 }
1664
1665 access_store_at(decorators, x->elt_type(), array, index.result(), value.result(),
1666 nullptr, null_check_info);
1667 }
1668
1669 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type,
1670 LIRItem& base, LIR_Opr offset, LIR_Opr result,
1671 CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) {
1672 decorators |= ACCESS_READ;
1673 LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info);
1674 if (access.is_raw()) {
1675 _barrier_set->BarrierSetC1::load_at(access, result);
1676 } else {
1677 _barrier_set->load_at(access, result);
1678 }
1679 }
1680
1681 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type,
1682 LIR_Opr addr, LIR_Opr result) {
1683 decorators |= ACCESS_READ;
1684 LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type);
1685 access.set_resolved_addr(addr);
1686 if (access.is_raw()) {
1687 _barrier_set->BarrierSetC1::load(access, result);
1688 } else {
1689 _barrier_set->load(access, result);
1690 }
1691 }
1692
1693 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type,
1694 LIRItem& base, LIR_Opr offset, LIR_Opr value,
1695 CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) {
1696 decorators |= ACCESS_WRITE;
1697 LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info);
1698 if (access.is_raw()) {
1699 _barrier_set->BarrierSetC1::store_at(access, value);
1700 } else {
1701 _barrier_set->store_at(access, value);
1702 }
1703 }
1704
1705 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type,
1706 LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) {
1707 decorators |= ACCESS_READ;
1708 decorators |= ACCESS_WRITE;
1709 // Atomic operations are SEQ_CST by default
1710 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1711 LIRAccess access(this, decorators, base, offset, type);
1712 if (access.is_raw()) {
1713 return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value);
1714 } else {
1715 return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value);
1716 }
1717 }
1728 } else {
1729 return _barrier_set->atomic_xchg_at(access, value);
1730 }
1731 }
1732
1733 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type,
1734 LIRItem& base, LIRItem& offset, LIRItem& value) {
1735 decorators |= ACCESS_READ;
1736 decorators |= ACCESS_WRITE;
1737 // Atomic operations are SEQ_CST by default
1738 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1739 LIRAccess access(this, decorators, base, offset, type);
1740 if (access.is_raw()) {
1741 return _barrier_set->BarrierSetC1::atomic_add_at(access, value);
1742 } else {
1743 return _barrier_set->atomic_add_at(access, value);
1744 }
1745 }
1746
1747 void LIRGenerator::do_LoadField(LoadField* x) {
1748 bool needs_patching = x->needs_patching();
1749 bool is_volatile = x->field()->is_volatile();
1750 BasicType field_type = x->field_type();
1751
1752 CodeEmitInfo* info = nullptr;
1753 if (needs_patching) {
1754 assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access");
1755 info = state_for(x, x->state_before());
1756 } else if (x->needs_null_check()) {
1757 NullCheck* nc = x->explicit_null_check();
1758 if (nc == nullptr) {
1759 info = state_for(x);
1760 } else {
1761 info = state_for(nc);
1762 }
1763 }
1764
1765 LIRItem object(x->obj(), this);
1766
1767 object.load_item();
1768
1769 #ifndef PRODUCT
1780 stress_deopt)) {
1781 LIR_Opr obj = object.result();
1782 if (stress_deopt) {
1783 obj = new_register(T_OBJECT);
1784 __ move(LIR_OprFact::oopConst(nullptr), obj);
1785 }
1786 // Emit an explicit null check because the offset is too large.
1787 // If the class is not loaded and the object is null, we need to deoptimize to throw a
1788 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1789 __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1790 }
1791
1792 DecoratorSet decorators = IN_HEAP;
1793 if (is_volatile) {
1794 decorators |= MO_SEQ_CST;
1795 }
1796 if (needs_patching) {
1797 decorators |= C1_NEEDS_PATCHING;
1798 }
1799
1800 LIR_Opr result = rlock_result(x, field_type);
1801 access_load_at(decorators, field_type,
1802 object, LIR_OprFact::intConst(x->offset()), result,
1803 info ? new CodeEmitInfo(info) : nullptr, info);
1804 }
1805
1806 // int/long jdk.internal.util.Preconditions.checkIndex
1807 void LIRGenerator::do_PreconditionsCheckIndex(Intrinsic* x, BasicType type) {
1808 assert(x->number_of_arguments() == 3, "wrong type");
1809 LIRItem index(x->argument_at(0), this);
1810 LIRItem length(x->argument_at(1), this);
1811 LIRItem oobef(x->argument_at(2), this);
1812
1813 index.load_item();
1814 length.load_item();
1815 oobef.load_item();
1816
1817 LIR_Opr result = rlock_result(x);
1818 // x->state() is created from copy_state_for_exception, it does not contains arguments
1819 // we should prepare them before entering into interpreter mode due to deoptimization.
1928 __ move(LIR_OprFact::oopConst(nullptr), obj);
1929 __ null_check(obj, new CodeEmitInfo(null_check_info));
1930 }
1931 }
1932
1933 if (needs_range_check) {
1934 if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
1935 __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result()));
1936 } else if (use_length) {
1937 // TODO: use a (modified) version of array_range_check that does not require a
1938 // constant length to be loaded to a register
1939 __ cmp(lir_cond_belowEqual, length.result(), index.result());
1940 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1941 } else {
1942 array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1943 // The range check performs the null check, so clear it out for the load
1944 null_check_info = nullptr;
1945 }
1946 }
1947
1948 DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1949
1950 LIR_Opr result = rlock_result(x, x->elt_type());
1951 access_load_at(decorators, x->elt_type(),
1952 array, index.result(), result,
1953 nullptr, null_check_info);
1954 }
1955
1956
1957 void LIRGenerator::do_NullCheck(NullCheck* x) {
1958 if (x->can_trap()) {
1959 LIRItem value(x->obj(), this);
1960 value.load_item();
1961 CodeEmitInfo* info = state_for(x);
1962 __ null_check(value.result(), info);
1963 }
1964 }
1965
1966
1967 void LIRGenerator::do_TypeCast(TypeCast* x) {
1968 LIRItem value(x->obj(), this);
1969 value.load_item();
1970 // the result is the same as from the node we are casting
1971 set_result(x, value.result());
1972 }
1973
2416 Compilation* comp = Compilation::current();
2417 if (do_update) {
2418 // try to find exact type, using CHA if possible, so that loading
2419 // the klass from the object can be avoided
2420 ciType* type = obj->exact_type();
2421 if (type == nullptr) {
2422 type = obj->declared_type();
2423 type = comp->cha_exact_type(type);
2424 }
2425 assert(type == nullptr || type->is_klass(), "type should be class");
2426 exact_klass = (type != nullptr && type->is_loaded()) ? (ciKlass*)type : nullptr;
2427
2428 do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2429 }
2430
2431 if (!do_null && !do_update) {
2432 return result;
2433 }
2434
2435 ciKlass* exact_signature_k = nullptr;
2436 if (do_update) {
2437 // Is the type from the signature exact (the only one possible)?
2438 exact_signature_k = signature_at_call_k->exact_klass();
2439 if (exact_signature_k == nullptr) {
2440 exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2441 } else {
2442 result = exact_signature_k;
2443 // Known statically. No need to emit any code: prevent
2444 // LIR_Assembler::emit_profile_type() from emitting useless code
2445 profiled_k = ciTypeEntries::with_status(result, profiled_k);
2446 }
2447 // exact_klass and exact_signature_k can be both non null but
2448 // different if exact_klass is loaded after the ciObject for
2449 // exact_signature_k is created.
2450 if (exact_klass == nullptr && exact_signature_k != nullptr && exact_klass != exact_signature_k) {
2451 // sometimes the type of the signature is better than the best type
2452 // the compiler has
2453 exact_klass = exact_signature_k;
2454 }
2455 if (callee_signature_k != nullptr &&
2456 callee_signature_k != signature_at_call_k) {
2457 ciKlass* improved_klass = callee_signature_k->exact_klass();
2458 if (improved_klass == nullptr) {
2459 improved_klass = comp->cha_exact_type(callee_signature_k);
2460 }
2461 if (exact_klass == nullptr && improved_klass != nullptr && exact_klass != improved_klass) {
2462 exact_klass = exact_signature_k;
2463 }
2464 }
2465 do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2466 }
2467
2468 if (!do_null && !do_update) {
2469 return result;
2470 }
2471
2472 if (mdp == LIR_OprFact::illegalOpr) {
2473 mdp = new_register(T_METADATA);
2474 __ metadata2reg(md->constant_encoding(), mdp);
2475 if (md_base_offset != 0) {
2476 LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2477 mdp = new_pointer_register();
2478 __ leal(LIR_OprFact::address(base_type_address), mdp);
2479 }
2480 }
2481 LIRItem value(obj, this);
2482 value.load_item();
2483 __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2484 value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != nullptr);
2485 return result;
2486 }
2487
2501 assert(!src->is_illegal(), "check");
2502 BasicType t = src->type();
2503 if (is_reference_type(t)) {
2504 intptr_t profiled_k = parameters->type(j);
2505 Local* local = x->state()->local_at(java_index)->as_Local();
2506 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2507 in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2508 profiled_k, local, mdp, false, local->declared_type()->as_klass(), nullptr);
2509 // If the profile is known statically set it once for all and do not emit any code
2510 if (exact != nullptr) {
2511 md->set_parameter_type(j, exact);
2512 }
2513 j++;
2514 }
2515 java_index += type2size[t];
2516 }
2517 }
2518 }
2519 }
2520
2521 void LIRGenerator::do_Base(Base* x) {
2522 __ std_entry(LIR_OprFact::illegalOpr);
2523 // Emit moves from physical registers / stack slots to virtual registers
2524 CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2525 IRScope* irScope = compilation()->hir()->top_scope();
2526 int java_index = 0;
2527 for (int i = 0; i < args->length(); i++) {
2528 LIR_Opr src = args->at(i);
2529 assert(!src->is_illegal(), "check");
2530 BasicType t = src->type();
2531
2532 // Types which are smaller than int are passed as int, so
2533 // correct the type which passed.
2534 switch (t) {
2535 case T_BYTE:
2536 case T_BOOLEAN:
2537 case T_SHORT:
2538 case T_CHAR:
2539 t = T_INT;
2540 break;
2542 break;
2543 }
2544
2545 LIR_Opr dest = new_register(t);
2546 __ move(src, dest);
2547
2548 // Assign new location to Local instruction for this local
2549 Local* local = x->state()->local_at(java_index)->as_Local();
2550 assert(local != nullptr, "Locals for incoming arguments must have been created");
2551 #ifndef __SOFTFP__
2552 // The java calling convention passes double as long and float as int.
2553 assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2554 #endif // __SOFTFP__
2555 local->set_operand(dest);
2556 #ifdef ASSERT
2557 _instruction_for_operand.at_put_grow(dest->vreg_number(), local, nullptr);
2558 #endif
2559 java_index += type2size[t];
2560 }
2561
2562 if (compilation()->env()->dtrace_method_probes()) {
2563 BasicTypeList signature;
2564 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread
2565 signature.append(T_METADATA); // Method*
2566 LIR_OprList* args = new LIR_OprList();
2567 args->append(getThreadPointer());
2568 LIR_Opr meth = new_register(T_METADATA);
2569 __ metadata2reg(method()->constant_encoding(), meth);
2570 args->append(meth);
2571 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, nullptr);
2572 }
2573
2574 if (method()->is_synchronized()) {
2575 LIR_Opr obj;
2576 if (method()->is_static()) {
2577 obj = new_register(T_OBJECT);
2578 __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2579 } else {
2580 Local* receiver = x->state()->local_at(0)->as_Local();
2581 assert(receiver != nullptr, "must already exist");
2583 }
2584 assert(obj->is_valid(), "must be valid");
2585
2586 if (method()->is_synchronized()) {
2587 LIR_Opr lock = syncLockOpr();
2588 __ load_stack_address_monitor(0, lock);
2589
2590 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, x->check_flag(Instruction::DeoptimizeOnException));
2591 CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2592
2593 // receiver is guaranteed non-null so don't need CodeEmitInfo
2594 __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, nullptr);
2595 }
2596 }
2597 // increment invocation counters if needed
2598 if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2599 profile_parameters(x);
2600 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, false);
2601 increment_invocation_counter(info);
2602 }
2603
2604 // all blocks with a successor must end with an unconditional jump
2605 // to the successor even if they are consecutive
2606 __ jump(x->default_sux());
2607 }
2608
2609
2610 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2611 // construct our frame and model the production of incoming pointer
2612 // to the OSR buffer.
2613 __ osr_entry(LIR_Assembler::osrBufferPointer());
2614 LIR_Opr result = rlock_result(x);
2615 __ move(LIR_Assembler::osrBufferPointer(), result);
2616 }
2617
2618
2619 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2620 assert(args->length() == arg_list->length(),
2621 "args=%d, arg_list=%d", args->length(), arg_list->length());
2622 for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2623 LIRItem* param = args->at(i);
2624 LIR_Opr loc = arg_list->at(i);
2625 if (loc->is_register()) {
2626 param->load_item_force(loc);
2627 } else {
2628 LIR_Address* addr = loc->as_address_ptr();
2629 param->load_for_store(addr->type());
2630 if (addr->type() == T_OBJECT) {
2631 __ move_wide(param->result(), addr);
2632 } else
2633 __ move(param->result(), addr);
2634 }
2635 }
2636
2637 if (x->has_receiver()) {
2638 LIRItem* receiver = args->at(0);
2639 LIR_Opr loc = arg_list->at(0);
2640 if (loc->is_register()) {
2641 receiver->load_item_force(loc);
2642 } else {
2643 assert(loc->is_address(), "just checking");
2644 receiver->load_for_store(T_OBJECT);
2645 __ move_wide(receiver->result(), loc->as_address_ptr());
2646 }
2647 }
2648 }
2649
2650
2651 // Visits all arguments, returns appropriate items without loading them
2652 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2653 LIRItemList* argument_items = new LIRItemList();
2654 if (x->has_receiver()) {
2761 __ move(tmp, reg);
2762 }
2763
2764
2765
2766 // Code for : x->x() {x->cond()} x->y() ? x->tval() : x->fval()
2767 void LIRGenerator::do_IfOp(IfOp* x) {
2768 #ifdef ASSERT
2769 {
2770 ValueTag xtag = x->x()->type()->tag();
2771 ValueTag ttag = x->tval()->type()->tag();
2772 assert(xtag == intTag || xtag == objectTag, "cannot handle others");
2773 assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
2774 assert(ttag == x->fval()->type()->tag(), "cannot handle others");
2775 }
2776 #endif
2777
2778 LIRItem left(x->x(), this);
2779 LIRItem right(x->y(), this);
2780 left.load_item();
2781 if (can_inline_as_constant(right.value())) {
2782 right.dont_load_item();
2783 } else {
2784 right.load_item();
2785 }
2786
2787 LIRItem t_val(x->tval(), this);
2788 LIRItem f_val(x->fval(), this);
2789 t_val.dont_load_item();
2790 f_val.dont_load_item();
2791 LIR_Opr reg = rlock_result(x);
2792
2793 __ cmp(lir_cond(x->cond()), left.result(), right.result());
2794 __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
2795 }
2796
2797 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
2798 assert(x->number_of_arguments() == 0, "wrong type");
2799 // Enforce computation of _reserved_argument_area_size which is required on some platforms.
2800 BasicTypeList signature;
2801 CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2802 LIR_Opr reg = result_register_for(x->type());
2803 __ call_runtime_leaf(routine, getThreadTemp(),
2804 reg, new LIR_OprList());
2805 LIR_Opr result = rlock_result(x);
2806 __ move(reg, result);
2807 }
2808
2809
2810
2811 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
2812 switch (x->id()) {
2813 case vmIntrinsics::_intBitsToFloat :
2814 case vmIntrinsics::_doubleToRawLongBits :
3049 if (x->recv() != nullptr || x->nb_profiled_args() > 0) {
3050 profile_parameters_at_call(x);
3051 }
3052
3053 if (x->recv() != nullptr) {
3054 LIRItem value(x->recv(), this);
3055 value.load_item();
3056 recv = new_register(T_OBJECT);
3057 __ move(value.result(), recv);
3058 }
3059 __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3060 }
3061
3062 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3063 int bci = x->bci_of_invoke();
3064 ciMethodData* md = x->method()->method_data_or_null();
3065 assert(md != nullptr, "Sanity");
3066 ciProfileData* data = md->bci_to_data(bci);
3067 if (data != nullptr) {
3068 assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3069 ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3070 LIR_Opr mdp = LIR_OprFact::illegalOpr;
3071
3072 bool ignored_will_link;
3073 ciSignature* signature_at_call = nullptr;
3074 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3075
3076 // The offset within the MDO of the entry to update may be too large
3077 // to be used in load/store instructions on some platforms. So have
3078 // profile_type() compute the address of the profile in a register.
3079 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3080 ret->type(), x->ret(), mdp,
3081 !x->needs_null_check(),
3082 signature_at_call->return_type()->as_klass(),
3083 x->callee()->signature()->return_type()->as_klass());
3084 if (exact != nullptr) {
3085 md->set_return_type(bci, exact);
3086 }
3087 }
3088 }
3089
3090 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3091 // We can safely ignore accessors here, since c2 will inline them anyway,
3092 // accessors are also always mature.
3093 if (!x->inlinee()->is_accessor()) {
3094 CodeEmitInfo* info = state_for(x, x->state(), true);
3095 // Notify the runtime very infrequently only to take care of counter overflows
3096 int freq_log = Tier23InlineeNotifyFreqLog;
3097 double scale;
3098 if (_method->has_option_value(CompileCommandEnum::CompileThresholdScaling, scale)) {
3099 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3100 }
3101 increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true);
3102 }
3103 }
3104
3105 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) {
3106 if (compilation()->is_profiling()) {
3107 #if defined(X86) && !defined(_LP64)
3108 // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
3109 LIR_Opr left_copy = new_register(left->type());
|
1 /*
2 * Copyright (c) 2005, 2026, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "c1/c1_Compilation.hpp"
26 #include "c1/c1_Defs.hpp"
27 #include "c1/c1_FrameMap.hpp"
28 #include "c1/c1_Instruction.hpp"
29 #include "c1/c1_LIRAssembler.hpp"
30 #include "c1/c1_LIRGenerator.hpp"
31 #include "c1/c1_ValueStack.hpp"
32 #include "ci/ciArrayKlass.hpp"
33 #include "ci/ciFlatArrayKlass.hpp"
34 #include "ci/ciInlineKlass.hpp"
35 #include "ci/ciInstance.hpp"
36 #include "ci/ciObjArray.hpp"
37 #include "ci/ciObjArrayKlass.hpp"
38 #include "ci/ciUtilities.hpp"
39 #include "compiler/compilerDefinitions.inline.hpp"
40 #include "compiler/compilerOracle.hpp"
41 #include "gc/shared/barrierSet.hpp"
42 #include "gc/shared/c1/barrierSetC1.hpp"
43 #include "oops/klass.inline.hpp"
44 #include "oops/methodCounters.hpp"
45 #include "runtime/arguments.hpp"
46 #include "runtime/sharedRuntime.hpp"
47 #include "runtime/stubRoutines.hpp"
48 #include "runtime/vm_version.hpp"
49 #include "utilities/bitMap.inline.hpp"
50 #include "utilities/macros.hpp"
51 #include "utilities/powerOfTwo.hpp"
52
53 #ifdef ASSERT
54 #define __ gen()->lir(__FILE__, __LINE__)->
55 #else
56 #define __ gen()->lir()->
57 #endif
58
59 #ifndef PATCHED_ADDR
60 #define PATCHED_ADDR (max_jint)
61 #endif
62
63 void PhiResolverState::reset() {
64 _virtual_operands.clear();
65 _other_operands.clear();
202 }
203
204
205 //--------------------------------------------------------------
206 // LIRItem
207
208 void LIRItem::set_result(LIR_Opr opr) {
209 assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
210 value()->set_operand(opr);
211
212 #ifdef ASSERT
213 if (opr->is_virtual()) {
214 _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), nullptr);
215 }
216 #endif
217
218 _result = opr;
219 }
220
221 void LIRItem::load_item() {
222 assert(!_gen->in_conditional_code(), "LIRItem cannot be loaded in conditional code");
223
224 if (result()->is_illegal()) {
225 // update the items result
226 _result = value()->operand();
227 }
228 if (!result()->is_register()) {
229 LIR_Opr reg = _gen->new_register(value()->type());
230 __ move(result(), reg);
231 if (result()->is_constant()) {
232 _result = reg;
233 } else {
234 set_result(reg);
235 }
236 }
237 }
238
239
240 void LIRItem::load_for_store(BasicType type) {
241 if (_gen->can_store_as_constant(value(), type)) {
242 _result = value()->operand();
243 if (!_result->is_constant()) {
611 assert(right_op != result_op, "malformed");
612 __ move(left_op, result_op);
613 left_op = result_op;
614 }
615
616 switch(code) {
617 case Bytecodes::_iand:
618 case Bytecodes::_land: __ logical_and(left_op, right_op, result_op); break;
619
620 case Bytecodes::_ior:
621 case Bytecodes::_lor: __ logical_or(left_op, right_op, result_op); break;
622
623 case Bytecodes::_ixor:
624 case Bytecodes::_lxor: __ logical_xor(left_op, right_op, result_op); break;
625
626 default: ShouldNotReachHere();
627 }
628 }
629
630
631 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no,
632 CodeEmitInfo* info_for_exception, CodeEmitInfo* info, CodeStub* throw_ie_stub) {
633 // for slow path, use debug info for state after successful locking
634 CodeStub* slow_path = new MonitorEnterStub(object, lock, info, throw_ie_stub, scratch);
635 __ load_stack_address_monitor(monitor_no, lock);
636 // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
637 __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception, throw_ie_stub);
638 }
639
640
641 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
642 // setup registers
643 LIR_Opr hdr = lock;
644 lock = new_hdr;
645 CodeStub* slow_path = new MonitorExitStub(lock, monitor_no);
646 __ load_stack_address_monitor(monitor_no, lock);
647 __ unlock_object(hdr, object, lock, scratch, slow_path);
648 }
649
650 #ifndef PRODUCT
651 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
652 if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
653 tty->print_cr(" ###class not loaded at new bci %d", new_instance->printable_bci());
654 } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) {
655 tty->print_cr(" ###class not resolved at new bci %d", new_instance->printable_bci());
656 }
657 }
658 #endif
659
660 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, bool allow_inline, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
661 if (allow_inline) {
662 assert(!is_unresolved && klass->is_loaded(), "inline type klass should be resolved");
663 __ metadata2reg(klass->constant_encoding(), klass_reg);
664 } else {
665 klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
666 }
667 // If klass is not loaded we do not know if the klass has finalizers or is an unexpected inline klass
668 if (UseFastNewInstance && klass->is_loaded() && (allow_inline || !klass->is_inlinetype())
669 && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
670
671 StubId stub_id = klass->is_initialized() ? StubId::c1_fast_new_instance_id : StubId::c1_fast_new_instance_init_check_id;
672
673 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
674
675 assert(klass->is_loaded(), "must be loaded");
676 // allocate space for instance
677 assert(klass->size_helper() > 0, "illegal instance size");
678 const int instance_size = align_object_size(klass->size_helper());
679 __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
680 oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
681 } else {
682 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, StubId::c1_new_instance_id);
683 __ jump(slow_path);
684 __ branch_destination(slow_path->continuation());
685 }
686 }
687
688
689 static bool is_constant_zero(Instruction* inst) {
690 IntConstant* c = inst->type()->as_IntConstant();
691 if (c) {
692 return (c->value() == 0);
693 }
694 return false;
695 }
696
697
698 static bool positive_constant(Instruction* inst) {
699 IntConstant* c = inst->type()->as_IntConstant();
700 if (c) {
701 return (c->value() >= 0);
702 }
703 return false;
755 } else if (dst_exact_type != nullptr && dst_exact_type->is_obj_array_klass()) {
756 ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
757 ciArrayKlass* src_type = nullptr;
758 if (src_exact_type != nullptr && src_exact_type->is_obj_array_klass()) {
759 src_type = (ciArrayKlass*) src_exact_type;
760 } else if (src_declared_type != nullptr && src_declared_type->is_obj_array_klass()) {
761 src_type = (ciArrayKlass*) src_declared_type;
762 }
763 if (src_type != nullptr) {
764 if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
765 is_exact = true;
766 expected_type = dst_type;
767 }
768 }
769 }
770 // at least pass along a good guess
771 if (expected_type == nullptr) expected_type = dst_exact_type;
772 if (expected_type == nullptr) expected_type = src_declared_type;
773 if (expected_type == nullptr) expected_type = dst_declared_type;
774
775 if (expected_type != nullptr && expected_type->is_obj_array_klass()) {
776 // For a direct pointer comparison, we need the refined array klass pointer
777 expected_type = ciObjArrayKlass::make(expected_type->as_array_klass()->element_klass());
778 }
779
780 src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
781 dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
782 }
783
784 // if a probable array type has been identified, figure out if any
785 // of the required checks for a fast case can be elided.
786 int flags = LIR_OpArrayCopy::all_flags;
787
788 if (!src->is_loaded_flat_array() && !dst->is_loaded_flat_array()) {
789 flags &= ~LIR_OpArrayCopy::always_slow_path;
790 }
791 if (!src->maybe_flat_array()) {
792 flags &= ~LIR_OpArrayCopy::src_inlinetype_check;
793 }
794 if (!dst->maybe_flat_array() && !dst->maybe_null_free_array()) {
795 flags &= ~LIR_OpArrayCopy::dst_inlinetype_check;
796 }
797
798 if (!src_objarray)
799 flags &= ~LIR_OpArrayCopy::src_objarray;
800 if (!dst_objarray)
801 flags &= ~LIR_OpArrayCopy::dst_objarray;
802
803 if (!x->arg_needs_null_check(0))
804 flags &= ~LIR_OpArrayCopy::src_null_check;
805 if (!x->arg_needs_null_check(2))
806 flags &= ~LIR_OpArrayCopy::dst_null_check;
807
808
809 if (expected_type != nullptr) {
810 Value length_limit = nullptr;
811
812 IfOp* ifop = length->as_IfOp();
813 if (ifop != nullptr) {
814 // look for expressions like min(v, a.length) which ends up as
815 // x > y ? y : x or x >= y ? y : x
816 if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
817 ifop->x() == ifop->fval() &&
1470 }
1471 return _vreg_flags.at(vreg_num, f);
1472 }
1473
1474
1475 // Block local constant handling. This code is useful for keeping
1476 // unpinned constants and constants which aren't exposed in the IR in
1477 // registers. Unpinned Constant instructions have their operands
1478 // cleared when the block is finished so that other blocks can't end
1479 // up referring to their registers.
1480
1481 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1482 assert(!x->is_pinned(), "only for unpinned constants");
1483 _unpinned_constants.append(x);
1484 return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1485 }
1486
1487
1488 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1489 BasicType t = c->type();
1490 for (int i = 0; i < _constants.length() && !in_conditional_code(); i++) {
1491 LIR_Const* other = _constants.at(i);
1492 if (t == other->type()) {
1493 switch (t) {
1494 case T_INT:
1495 case T_FLOAT:
1496 if (c->as_jint_bits() != other->as_jint_bits()) continue;
1497 break;
1498 case T_LONG:
1499 case T_DOUBLE:
1500 if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1501 if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1502 break;
1503 case T_OBJECT:
1504 if (c->as_jobject() != other->as_jobject()) continue;
1505 break;
1506 default:
1507 break;
1508 }
1509 return _reg_for_constants.at(i);
1510 }
1511 }
1512
1513 LIR_Opr result = new_register(t);
1514 __ move((LIR_Opr)c, result);
1515 if (!in_conditional_code()) {
1516 _constants.append(c);
1517 _reg_for_constants.append(result);
1518 }
1519 return result;
1520 }
1521
1522 void LIRGenerator::set_in_conditional_code(bool v) {
1523 assert(v != _in_conditional_code, "must change state");
1524 _in_conditional_code = v;
1525 }
1526
1527
1528 //------------------------field access--------------------------------------
1529
1530 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
1531 assert(x->number_of_arguments() == 4, "wrong type");
1532 LIRItem obj (x->argument_at(0), this); // object
1533 LIRItem offset(x->argument_at(1), this); // offset of field
1534 LIRItem cmp (x->argument_at(2), this); // value to compare with field
1535 LIRItem val (x->argument_at(3), this); // replace field with val if matches cmp
1536 assert(obj.type()->tag() == objectTag, "invalid type");
1537 assert(cmp.type()->tag() == type->tag(), "invalid type");
1538 assert(val.type()->tag() == type->tag(), "invalid type");
1539
1540 LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type),
1541 obj, offset, cmp, val);
1542 set_result(x, result);
1543 }
1544
1545 // Returns a int/long value with the null marker bit set
1546 static LIR_Opr null_marker_mask(BasicType bt, ciField* field) {
1547 assert(field->null_marker_offset() != -1, "field does not have null marker");
1548 int nm_offset = field->null_marker_offset() - field->offset_in_bytes();
1549 jlong null_marker = 1ULL << (nm_offset << LogBitsPerByte);
1550 return (bt == T_LONG) ? LIR_OprFact::longConst(null_marker) : LIR_OprFact::intConst(null_marker);
1551 }
1552
1553 // Comment copied form templateTable_i486.cpp
1554 // ----------------------------------------------------------------------------
1555 // Volatile variables demand their effects be made known to all CPU's in
1556 // order. Store buffers on most chips allow reads & writes to reorder; the
1557 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1558 // memory barrier (i.e., it's not sufficient that the interpreter does not
1559 // reorder volatile references, the hardware also must not reorder them).
1560 //
1561 // According to the new Java Memory Model (JMM):
1562 // (1) All volatiles are serialized wrt to each other.
1563 // ALSO reads & writes act as acquire & release, so:
1564 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1565 // the read float up to before the read. It's OK for non-volatile memory refs
1566 // that happen before the volatile read to float down below it.
1567 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1568 // that happen BEFORE the write float down to after the write. It's OK for
1569 // non-volatile memory refs that happen after the volatile write to float up
1570 // before it.
1571 //
1572 // We only put in barriers around volatile refs (they are expensive), not
1573 // _between_ memory refs (that would require us to track the flavor of the
1574 // previous memory refs). Requirements (2) and (3) require some barriers
1575 // before volatile stores and after volatile loads. These nearly cover
1576 // requirement (1) but miss the volatile-store-volatile-load case. This final
1577 // case is placed after volatile-stores although it could just as well go
1578 // before volatile-loads.
1579
1580
1581 void LIRGenerator::do_StoreField(StoreField* x) {
1582 ciField* field = x->field();
1583 bool needs_patching = x->needs_patching();
1584 bool is_volatile = field->is_volatile();
1585 BasicType field_type = x->field_type();
1586
1587 CodeEmitInfo* info = nullptr;
1588 if (needs_patching) {
1589 assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access");
1590 info = state_for(x, x->state_before());
1591 } else if (x->needs_null_check()) {
1592 NullCheck* nc = x->explicit_null_check();
1593 if (nc == nullptr) {
1594 info = state_for(x);
1595 } else {
1596 info = state_for(nc);
1597 }
1598 }
1599
1600 LIRItem object(x->obj(), this);
1601 LIRItem value(x->value(), this);
1602
1603 object.load_item();
1604
1605 if (field->is_flat()) {
1606 value.load_item();
1607 } else {
1608 if (is_volatile || needs_patching) {
1609 // load item if field is volatile (fewer special cases for volatiles)
1610 // load item if field not initialized
1611 // load item if field not constant
1612 // because of code patching we cannot inline constants
1613 if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1614 value.load_byte_item();
1615 } else {
1616 value.load_item();
1617 }
1618 } else {
1619 value.load_for_store(field_type);
1620 }
1621 }
1622
1623 set_no_result(x);
1624
1625 #ifndef PRODUCT
1626 if (PrintNotLoaded && needs_patching) {
1627 tty->print_cr(" ###class not loaded at store_%s bci %d",
1628 x->is_static() ? "static" : "field", x->printable_bci());
1629 }
1630 #endif
1631
1632 if (x->needs_null_check() &&
1633 (needs_patching ||
1634 MacroAssembler::needs_explicit_null_check(x->offset()))) {
1635 // Emit an explicit null check because the offset is too large.
1636 // If the class is not loaded and the object is null, we need to deoptimize to throw a
1637 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1638 __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1639 }
1640
1641 DecoratorSet decorators = IN_HEAP;
1642 if (is_volatile) {
1643 decorators |= MO_SEQ_CST;
1644 }
1645 if (needs_patching) {
1646 decorators |= C1_NEEDS_PATCHING;
1647 }
1648
1649 if (field->is_flat()) {
1650 ciInlineKlass* vk = field->type()->as_inline_klass();
1651
1652 #ifdef ASSERT
1653 assert(field->is_atomic(), "No atomic access required %s.%s", field->holder()->name()->as_utf8(), field->name()->as_utf8());
1654 // ZGC does not support compressed oops, so only one oop can be in the payload which is written by a "normal" oop store.
1655 assert(!vk->contains_oops() || !UseZGC, "ZGC does not support embedded oops in flat fields");
1656 #endif
1657
1658 // Zero the payload
1659 BasicType bt = vk->atomic_size_to_basic_type(field->is_null_free());
1660 LIR_Opr payload = new_register((bt == T_LONG) ? bt : T_INT);
1661 LIR_Opr zero = (bt == T_LONG) ? LIR_OprFact::longConst(0) : LIR_OprFact::intConst(0);
1662 __ move(zero, payload);
1663
1664 bool is_constant_null = value.is_constant() && value.value()->is_null_obj();
1665 if (!is_constant_null) {
1666 LabelObj* L_isNull = new LabelObj();
1667 bool needs_null_check = !value.is_constant() || value.value()->is_null_obj();
1668 if (needs_null_check) {
1669 __ cmp(lir_cond_equal, value.result(), LIR_OprFact::oopConst(nullptr));
1670 __ branch(lir_cond_equal, L_isNull->label());
1671 }
1672 // Load payload (if not empty) and set null marker (if not null-free)
1673 if (!vk->is_empty()) {
1674 access_load_at(decorators, bt, value, LIR_OprFact::intConst(vk->payload_offset()), payload);
1675 }
1676 if (!field->is_null_free()) {
1677 __ logical_or(payload, null_marker_mask(bt, field), payload);
1678 }
1679 if (needs_null_check) {
1680 __ branch_destination(L_isNull->label());
1681 }
1682 }
1683 access_store_at(decorators, bt, object, LIR_OprFact::intConst(x->offset()), payload,
1684 // Make sure to emit an implicit null check and pass the information
1685 // that this is a flat store that might require gc barriers for oop fields.
1686 info != nullptr ? new CodeEmitInfo(info) : nullptr, info, vk);
1687 return;
1688 }
1689
1690 access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()),
1691 value.result(), info != nullptr ? new CodeEmitInfo(info) : nullptr, info);
1692 }
1693
1694 // FIXME -- I can't find any other way to pass an address to access_load_at().
1695 class TempResolvedAddress: public Instruction {
1696 public:
1697 TempResolvedAddress(ValueType* type, LIR_Opr addr) : Instruction(type) {
1698 set_operand(addr);
1699 }
1700 virtual void input_values_do(ValueVisitor*) {}
1701 virtual void visit(InstructionVisitor* v) {}
1702 virtual const char* name() const { return "TempResolvedAddress"; }
1703 };
1704
1705 LIR_Opr LIRGenerator::get_and_load_element_address(LIRItem& array, LIRItem& index) {
1706 ciType* array_type = array.value()->declared_type();
1707 ciFlatArrayKlass* flat_array_klass = array_type->as_flat_array_klass();
1708 assert(flat_array_klass->is_loaded(), "must be");
1709
1710 int array_header_size = flat_array_klass->array_header_in_bytes();
1711 int shift = flat_array_klass->log2_element_size();
1712
1713 #ifndef _LP64
1714 LIR_Opr index_op = new_register(T_INT);
1715 // FIXME -- on 32-bit, the shift below can overflow, so we need to check that
1716 // the top (shift+1) bits of index_op must be zero, or
1717 // else throw ArrayIndexOutOfBoundsException
1718 if (index.result()->is_constant()) {
1719 jint const_index = index.result()->as_jint();
1720 __ move(LIR_OprFact::intConst(const_index << shift), index_op);
1721 } else {
1722 __ shift_left(index_op, shift, index.result());
1723 }
1724 #else
1725 LIR_Opr index_op = new_register(T_LONG);
1726 if (index.result()->is_constant()) {
1727 jint const_index = index.result()->as_jint();
1728 __ move(LIR_OprFact::longConst(const_index << shift), index_op);
1729 } else {
1730 __ convert(Bytecodes::_i2l, index.result(), index_op);
1731 // Need to shift manually, as LIR_Address can scale only up to 3.
1732 __ shift_left(index_op, shift, index_op);
1733 }
1734 #endif
1735
1736 LIR_Opr elm_op = new_pointer_register();
1737 LIR_Address* elm_address = generate_address(array.result(), index_op, 0, array_header_size, T_ADDRESS);
1738 __ leal(LIR_OprFact::address(elm_address), elm_op);
1739 return elm_op;
1740 }
1741
1742 void LIRGenerator::access_sub_element(LIRItem& array, LIRItem& index, LIR_Opr& result, ciField* field, size_t sub_offset) {
1743 assert(field != nullptr, "Need a subelement type specified");
1744
1745 // Find the starting address of the source (inside the array)
1746 LIR_Opr elm_op = get_and_load_element_address(array, index);
1747
1748 BasicType subelt_type = field->type()->basic_type();
1749 TempResolvedAddress* elm_resolved_addr = new TempResolvedAddress(as_ValueType(subelt_type), elm_op);
1750 LIRItem elm_item(elm_resolved_addr, this);
1751
1752 DecoratorSet decorators = IN_HEAP;
1753 access_load_at(decorators, subelt_type,
1754 elm_item, LIR_OprFact::longConst(sub_offset), result,
1755 nullptr, nullptr);
1756 }
1757
1758 void LIRGenerator::access_flat_array(bool is_load, LIRItem& array, LIRItem& index, LIRItem& obj_item,
1759 ciField* field, size_t sub_offset) {
1760 assert(sub_offset == 0 || field != nullptr, "Sanity check");
1761
1762 // Find the starting address of the source (inside the array)
1763 LIR_Opr elm_op = get_and_load_element_address(array, index);
1764
1765 ciInlineKlass* elem_klass = nullptr;
1766 if (field != nullptr) {
1767 elem_klass = field->type()->as_inline_klass();
1768 } else {
1769 elem_klass = array.value()->declared_type()->as_flat_array_klass()->element_klass()->as_inline_klass();
1770 }
1771 for (int i = 0; i < elem_klass->nof_nonstatic_fields(); i++) {
1772 ciField* inner_field = elem_klass->nonstatic_field_at(i);
1773 assert(!inner_field->is_flat(), "flat fields must have been expanded");
1774 int obj_offset = inner_field->offset_in_bytes();
1775 size_t elm_offset = obj_offset - elem_klass->payload_offset() + sub_offset; // object header is not stored in array.
1776 BasicType field_type = inner_field->type()->basic_type();
1777
1778 // Types which are smaller than int are still passed in an int register.
1779 BasicType reg_type = field_type;
1780 switch (reg_type) {
1781 case T_BYTE:
1782 case T_BOOLEAN:
1783 case T_SHORT:
1784 case T_CHAR:
1785 reg_type = T_INT;
1786 break;
1787 default:
1788 break;
1789 }
1790
1791 LIR_Opr temp = new_register(reg_type);
1792 TempResolvedAddress* elm_resolved_addr = new TempResolvedAddress(as_ValueType(field_type), elm_op);
1793 LIRItem elm_item(elm_resolved_addr, this);
1794
1795 DecoratorSet decorators = IN_HEAP;
1796 if (is_load) {
1797 access_load_at(decorators, field_type,
1798 elm_item, LIR_OprFact::longConst(elm_offset), temp,
1799 nullptr, nullptr);
1800 access_store_at(decorators, field_type,
1801 obj_item, LIR_OprFact::intConst(obj_offset), temp,
1802 nullptr, nullptr);
1803 } else {
1804 access_load_at(decorators, field_type,
1805 obj_item, LIR_OprFact::intConst(obj_offset), temp,
1806 nullptr, nullptr);
1807 access_store_at(decorators, field_type,
1808 elm_item, LIR_OprFact::longConst(elm_offset), temp,
1809 nullptr, nullptr);
1810 }
1811 }
1812 }
1813
1814 void LIRGenerator::check_flat_array(LIR_Opr array, LIR_Opr value, CodeStub* slow_path) {
1815 LIR_Opr tmp = new_register(T_METADATA);
1816 __ check_flat_array(array, value, tmp, slow_path);
1817 }
1818
1819 void LIRGenerator::check_null_free_array(LIRItem& array, LIRItem& value, CodeEmitInfo* info) {
1820 LabelObj* L_end = new LabelObj();
1821 LIR_Opr tmp = new_register(T_METADATA);
1822 __ check_null_free_array(array.result(), tmp);
1823 __ branch(lir_cond_equal, L_end->label());
1824 __ null_check(value.result(), info);
1825 __ branch_destination(L_end->label());
1826 }
1827
1828 bool LIRGenerator::needs_flat_array_store_check(StoreIndexed* x) {
1829 if (x->elt_type() == T_OBJECT && x->array()->maybe_flat_array()) {
1830 ciType* type = x->value()->declared_type();
1831 if (type != nullptr && type->is_klass()) {
1832 ciKlass* klass = type->as_klass();
1833 if (!klass->can_be_inline_klass() || (klass->is_inlinetype() && !klass->as_inline_klass()->maybe_flat_in_array())) {
1834 // This is known to be a non-flat object. If the array is a flat array,
1835 // it will be caught by the code generated by array_store_check().
1836 return false;
1837 }
1838 }
1839 // We're not 100% sure, so let's do the flat_array_store_check.
1840 return true;
1841 }
1842 return false;
1843 }
1844
1845 bool LIRGenerator::needs_null_free_array_store_check(StoreIndexed* x) {
1846 return x->elt_type() == T_OBJECT && x->array()->maybe_null_free_array();
1847 }
1848
1849 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
1850 assert(x->is_pinned(),"");
1851 assert(x->elt_type() != T_ARRAY, "never used");
1852 bool is_loaded_flat_array = x->array()->is_loaded_flat_array();
1853 bool needs_range_check = x->compute_needs_range_check();
1854 bool use_length = x->length() != nullptr;
1855 bool obj_store = is_reference_type(x->elt_type());
1856 bool needs_store_check = obj_store && !(is_loaded_flat_array && x->is_exact_flat_array_store()) &&
1857 (x->value()->as_Constant() == nullptr ||
1858 !get_jobject_constant(x->value())->is_null_object());
1859
1860 LIRItem array(x->array(), this);
1861 LIRItem index(x->index(), this);
1862 LIRItem value(x->value(), this);
1863 LIRItem length(this);
1864
1865 array.load_item();
1866 index.load_nonconstant();
1867
1868 if (use_length && needs_range_check) {
1869 length.set_instruction(x->length());
1870 length.load_item();
1871 }
1872
1873 if (needs_store_check || x->check_boolean()
1874 || is_loaded_flat_array || needs_flat_array_store_check(x) || needs_null_free_array_store_check(x)) {
1875 value.load_item();
1876 } else {
1877 value.load_for_store(x->elt_type());
1878 }
1879
1880 set_no_result(x);
1881
1882 // the CodeEmitInfo must be duplicated for each different
1883 // LIR-instruction because spilling can occur anywhere between two
1884 // instructions and so the debug information must be different
1885 CodeEmitInfo* range_check_info = state_for(x);
1886 CodeEmitInfo* null_check_info = nullptr;
1887 if (x->needs_null_check()) {
1888 null_check_info = new CodeEmitInfo(range_check_info);
1889 }
1890
1891 if (needs_range_check) {
1892 if (use_length) {
1893 __ cmp(lir_cond_belowEqual, length.result(), index.result());
1894 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1895 } else {
1896 array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1897 // range_check also does the null check
1898 null_check_info = nullptr;
1899 }
1900 }
1901
1902 if (GenerateArrayStoreCheck && needs_store_check) {
1903 CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
1904 array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci());
1905 }
1906
1907 if (x->should_profile()) {
1908 if (is_loaded_flat_array) {
1909 // No need to profile a store to a flat array of known type. This can happen if
1910 // the type only became known after optimizations (for example, after the PhiSimplifier).
1911 x->set_should_profile(false);
1912 } else {
1913 int bci = x->profiled_bci();
1914 ciMethodData* md = x->profiled_method()->method_data();
1915 assert(md != nullptr, "Sanity");
1916 ciProfileData* data = md->bci_to_data(bci);
1917 assert(data != nullptr && data->is_ArrayStoreData(), "incorrect profiling entry");
1918 ciArrayStoreData* store_data = (ciArrayStoreData*)data;
1919 profile_array_type(x, md, store_data);
1920 assert(store_data->is_ArrayStoreData(), "incorrect profiling entry");
1921 if (x->array()->maybe_null_free_array()) {
1922 profile_null_free_array(array, md, data);
1923 }
1924 }
1925 }
1926
1927 if (is_loaded_flat_array) {
1928 // TODO 8350865 This is currently dead code
1929 if (!x->value()->is_null_free()) {
1930 __ null_check(value.result(), new CodeEmitInfo(range_check_info));
1931 }
1932 // If array element is an empty inline type, no need to copy anything
1933 if (!x->array()->declared_type()->as_flat_array_klass()->element_klass()->as_inline_klass()->is_empty()) {
1934 access_flat_array(false, array, index, value);
1935 }
1936 } else {
1937 StoreFlattenedArrayStub* slow_path = nullptr;
1938
1939 if (needs_flat_array_store_check(x)) {
1940 // Check if we indeed have a flat array
1941 index.load_item();
1942 slow_path = new StoreFlattenedArrayStub(array.result(), index.result(), value.result(), state_for(x, x->state_before()));
1943 check_flat_array(array.result(), value.result(), slow_path);
1944 set_in_conditional_code(true);
1945 } else if (needs_null_free_array_store_check(x)) {
1946 CodeEmitInfo* info = new CodeEmitInfo(range_check_info);
1947 check_null_free_array(array, value, info);
1948 }
1949
1950 DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1951 if (x->check_boolean()) {
1952 decorators |= C1_MASK_BOOLEAN;
1953 }
1954
1955 access_store_at(decorators, x->elt_type(), array, index.result(), value.result(), nullptr, null_check_info);
1956 if (slow_path != nullptr) {
1957 __ branch_destination(slow_path->continuation());
1958 set_in_conditional_code(false);
1959 }
1960 }
1961 }
1962
1963 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type,
1964 LIRItem& base, LIR_Opr offset, LIR_Opr result,
1965 CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) {
1966 decorators |= ACCESS_READ;
1967 LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info);
1968 if (access.is_raw()) {
1969 _barrier_set->BarrierSetC1::load_at(access, result);
1970 } else {
1971 _barrier_set->load_at(access, result);
1972 }
1973 }
1974
1975 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type,
1976 LIR_Opr addr, LIR_Opr result) {
1977 decorators |= ACCESS_READ;
1978 LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type);
1979 access.set_resolved_addr(addr);
1980 if (access.is_raw()) {
1981 _barrier_set->BarrierSetC1::load(access, result);
1982 } else {
1983 _barrier_set->load(access, result);
1984 }
1985 }
1986
1987 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type,
1988 LIRItem& base, LIR_Opr offset, LIR_Opr value,
1989 CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info,
1990 ciInlineKlass* vk) {
1991 decorators |= ACCESS_WRITE;
1992 LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info, vk);
1993 if (access.is_raw()) {
1994 _barrier_set->BarrierSetC1::store_at(access, value);
1995 } else {
1996 _barrier_set->store_at(access, value);
1997 }
1998 }
1999
2000 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type,
2001 LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) {
2002 decorators |= ACCESS_READ;
2003 decorators |= ACCESS_WRITE;
2004 // Atomic operations are SEQ_CST by default
2005 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
2006 LIRAccess access(this, decorators, base, offset, type);
2007 if (access.is_raw()) {
2008 return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value);
2009 } else {
2010 return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value);
2011 }
2012 }
2023 } else {
2024 return _barrier_set->atomic_xchg_at(access, value);
2025 }
2026 }
2027
2028 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type,
2029 LIRItem& base, LIRItem& offset, LIRItem& value) {
2030 decorators |= ACCESS_READ;
2031 decorators |= ACCESS_WRITE;
2032 // Atomic operations are SEQ_CST by default
2033 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
2034 LIRAccess access(this, decorators, base, offset, type);
2035 if (access.is_raw()) {
2036 return _barrier_set->BarrierSetC1::atomic_add_at(access, value);
2037 } else {
2038 return _barrier_set->atomic_add_at(access, value);
2039 }
2040 }
2041
2042 void LIRGenerator::do_LoadField(LoadField* x) {
2043 ciField* field = x->field();
2044 bool needs_patching = x->needs_patching();
2045 bool is_volatile = field->is_volatile();
2046 BasicType field_type = x->field_type();
2047
2048 CodeEmitInfo* info = nullptr;
2049 if (needs_patching) {
2050 assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access");
2051 info = state_for(x, x->state_before());
2052 } else if (x->needs_null_check()) {
2053 NullCheck* nc = x->explicit_null_check();
2054 if (nc == nullptr) {
2055 info = state_for(x);
2056 } else {
2057 info = state_for(nc);
2058 }
2059 }
2060
2061 LIRItem object(x->obj(), this);
2062
2063 object.load_item();
2064
2065 #ifndef PRODUCT
2076 stress_deopt)) {
2077 LIR_Opr obj = object.result();
2078 if (stress_deopt) {
2079 obj = new_register(T_OBJECT);
2080 __ move(LIR_OprFact::oopConst(nullptr), obj);
2081 }
2082 // Emit an explicit null check because the offset is too large.
2083 // If the class is not loaded and the object is null, we need to deoptimize to throw a
2084 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
2085 __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
2086 }
2087
2088 DecoratorSet decorators = IN_HEAP;
2089 if (is_volatile) {
2090 decorators |= MO_SEQ_CST;
2091 }
2092 if (needs_patching) {
2093 decorators |= C1_NEEDS_PATCHING;
2094 }
2095
2096 if (field->is_flat()) {
2097 ciInlineKlass* vk = field->type()->as_inline_klass();
2098 #ifdef ASSERT
2099 assert(field->is_atomic(), "No atomic access required");
2100 assert(x->state_before() != nullptr, "Needs state before");
2101 #endif
2102
2103 // Allocate buffer (we can't easily do this conditionally on the null check below
2104 // because branches added in the LIR are opaque to the register allocator).
2105 NewInstance* buffer = new NewInstance(vk, x->state_before(), false, true);
2106 do_NewInstance(buffer);
2107 LIRItem dest(buffer, this);
2108
2109 // Copy the payload to the buffer
2110 BasicType bt = vk->atomic_size_to_basic_type(field->is_null_free());
2111 LIR_Opr payload = new_register((bt == T_LONG) ? bt : T_INT);
2112 access_load_at(decorators, bt, object, LIR_OprFact::intConst(field->offset_in_bytes()), payload,
2113 // Make sure to emit an implicit null check
2114 info ? new CodeEmitInfo(info) : nullptr, info);
2115 access_store_at(decorators, bt, dest, LIR_OprFact::intConst(vk->payload_offset()), payload);
2116
2117 if (field->is_null_free()) {
2118 set_result(x, buffer->operand());
2119 } else {
2120 // Check the null marker and set result to null if it's not set
2121 __ logical_and(payload, null_marker_mask(bt, field), payload);
2122 __ cmp(lir_cond_equal, payload, (bt == T_LONG) ? LIR_OprFact::longConst(0) : LIR_OprFact::intConst(0));
2123 __ cmove(lir_cond_equal, LIR_OprFact::oopConst(nullptr), buffer->operand(), rlock_result(x), T_OBJECT);
2124 }
2125
2126 // Ensure the copy is visible before any subsequent store that publishes the buffer.
2127 __ membar_storestore();
2128 return;
2129 }
2130
2131 LIR_Opr result = rlock_result(x, field_type);
2132 access_load_at(decorators, field_type,
2133 object, LIR_OprFact::intConst(x->offset()), result,
2134 info ? new CodeEmitInfo(info) : nullptr, info);
2135 }
2136
2137 // int/long jdk.internal.util.Preconditions.checkIndex
2138 void LIRGenerator::do_PreconditionsCheckIndex(Intrinsic* x, BasicType type) {
2139 assert(x->number_of_arguments() == 3, "wrong type");
2140 LIRItem index(x->argument_at(0), this);
2141 LIRItem length(x->argument_at(1), this);
2142 LIRItem oobef(x->argument_at(2), this);
2143
2144 index.load_item();
2145 length.load_item();
2146 oobef.load_item();
2147
2148 LIR_Opr result = rlock_result(x);
2149 // x->state() is created from copy_state_for_exception, it does not contains arguments
2150 // we should prepare them before entering into interpreter mode due to deoptimization.
2259 __ move(LIR_OprFact::oopConst(nullptr), obj);
2260 __ null_check(obj, new CodeEmitInfo(null_check_info));
2261 }
2262 }
2263
2264 if (needs_range_check) {
2265 if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
2266 __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result()));
2267 } else if (use_length) {
2268 // TODO: use a (modified) version of array_range_check that does not require a
2269 // constant length to be loaded to a register
2270 __ cmp(lir_cond_belowEqual, length.result(), index.result());
2271 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
2272 } else {
2273 array_range_check(array.result(), index.result(), null_check_info, range_check_info);
2274 // The range check performs the null check, so clear it out for the load
2275 null_check_info = nullptr;
2276 }
2277 }
2278
2279 ciMethodData* md = nullptr;
2280 ciProfileData* data = nullptr;
2281 if (x->should_profile()) {
2282 if (x->array()->is_loaded_flat_array()) {
2283 // No need to profile a load from a flat array of known type. This can happen if
2284 // the type only became known after optimizations (for example, after the PhiSimplifier).
2285 x->set_should_profile(false);
2286 } else {
2287 int bci = x->profiled_bci();
2288 md = x->profiled_method()->method_data();
2289 assert(md != nullptr, "Sanity");
2290 data = md->bci_to_data(bci);
2291 assert(data != nullptr && data->is_ArrayLoadData(), "incorrect profiling entry");
2292 ciArrayLoadData* load_data = (ciArrayLoadData*)data;
2293 profile_array_type(x, md, load_data);
2294 }
2295 }
2296
2297 Value element = nullptr;
2298 if (x->vt() != nullptr) {
2299 assert(x->array()->is_loaded_flat_array(), "must be");
2300 // Find the destination address (of the NewInlineTypeInstance).
2301 LIRItem obj_item(x->vt(), this);
2302
2303 access_flat_array(true, array, index, obj_item,
2304 x->delayed() == nullptr ? 0 : x->delayed()->field(),
2305 x->delayed() == nullptr ? 0 : x->delayed()->offset());
2306 set_no_result(x);
2307 } else if (x->delayed() != nullptr) {
2308 assert(x->array()->is_loaded_flat_array(), "must be");
2309 LIR_Opr result = rlock_result(x, x->delayed()->field()->type()->basic_type());
2310 access_sub_element(array, index, result, x->delayed()->field(), x->delayed()->offset());
2311 } else {
2312 LIR_Opr result = rlock_result(x, x->elt_type());
2313 LoadFlattenedArrayStub* slow_path = nullptr;
2314
2315 if (x->should_profile() && x->array()->maybe_null_free_array()) {
2316 profile_null_free_array(array, md, data);
2317 }
2318
2319 if (x->elt_type() == T_OBJECT && x->array()->maybe_flat_array()) {
2320 assert(x->delayed() == nullptr, "Delayed LoadIndexed only apply to loaded_flat_arrays");
2321 index.load_item();
2322 // if we are loading from a flat array, load it using a runtime call
2323 slow_path = new LoadFlattenedArrayStub(array.result(), index.result(), result, state_for(x, x->state_before()));
2324 check_flat_array(array.result(), LIR_OprFact::illegalOpr, slow_path);
2325 set_in_conditional_code(true);
2326 }
2327
2328 DecoratorSet decorators = IN_HEAP | IS_ARRAY;
2329 access_load_at(decorators, x->elt_type(),
2330 array, index.result(), result,
2331 nullptr, null_check_info);
2332
2333 if (slow_path != nullptr) {
2334 __ branch_destination(slow_path->continuation());
2335 set_in_conditional_code(false);
2336 }
2337
2338 element = x;
2339 }
2340
2341 if (x->should_profile()) {
2342 profile_element_type(element, md, (ciArrayLoadData*)data);
2343 }
2344 }
2345
2346
2347 void LIRGenerator::do_NullCheck(NullCheck* x) {
2348 if (x->can_trap()) {
2349 LIRItem value(x->obj(), this);
2350 value.load_item();
2351 CodeEmitInfo* info = state_for(x);
2352 __ null_check(value.result(), info);
2353 }
2354 }
2355
2356
2357 void LIRGenerator::do_TypeCast(TypeCast* x) {
2358 LIRItem value(x->obj(), this);
2359 value.load_item();
2360 // the result is the same as from the node we are casting
2361 set_result(x, value.result());
2362 }
2363
2806 Compilation* comp = Compilation::current();
2807 if (do_update) {
2808 // try to find exact type, using CHA if possible, so that loading
2809 // the klass from the object can be avoided
2810 ciType* type = obj->exact_type();
2811 if (type == nullptr) {
2812 type = obj->declared_type();
2813 type = comp->cha_exact_type(type);
2814 }
2815 assert(type == nullptr || type->is_klass(), "type should be class");
2816 exact_klass = (type != nullptr && type->is_loaded()) ? (ciKlass*)type : nullptr;
2817
2818 do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2819 }
2820
2821 if (!do_null && !do_update) {
2822 return result;
2823 }
2824
2825 ciKlass* exact_signature_k = nullptr;
2826 if (do_update && signature_at_call_k != nullptr) {
2827 // Is the type from the signature exact (the only one possible)?
2828 exact_signature_k = signature_at_call_k->exact_klass();
2829 if (exact_signature_k == nullptr) {
2830 exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2831 } else {
2832 result = exact_signature_k;
2833 // Known statically. No need to emit any code: prevent
2834 // LIR_Assembler::emit_profile_type() from emitting useless code
2835 profiled_k = ciTypeEntries::with_status(result, profiled_k);
2836 }
2837 // exact_klass and exact_signature_k can be both non null but
2838 // different if exact_klass is loaded after the ciObject for
2839 // exact_signature_k is created.
2840 if (exact_klass == nullptr && exact_signature_k != nullptr && exact_klass != exact_signature_k) {
2841 // sometimes the type of the signature is better than the best type
2842 // the compiler has
2843 exact_klass = exact_signature_k;
2844 }
2845 if (callee_signature_k != nullptr &&
2846 callee_signature_k != signature_at_call_k) {
2847 ciKlass* improved_klass = callee_signature_k->exact_klass();
2848 if (improved_klass == nullptr) {
2849 improved_klass = comp->cha_exact_type(callee_signature_k);
2850 }
2851 if (exact_klass == nullptr && improved_klass != nullptr && exact_klass != improved_klass) {
2852 exact_klass = exact_signature_k;
2853 }
2854 }
2855 do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2856 }
2857
2858 if (exact_klass != nullptr && exact_klass->is_obj_array_klass()) {
2859 if (exact_klass->can_be_inline_array_klass()) {
2860 // Inline type arrays can have additional properties, we need to load the klass
2861 // TODO 8350865 Can we do better here and track the properties?
2862 exact_klass = nullptr;
2863 do_update = true;
2864 } else {
2865 // For a direct pointer comparison, we need the refined array klass pointer
2866 exact_klass = ciObjArrayKlass::make(exact_klass->as_array_klass()->element_klass());
2867 do_update = ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2868 }
2869 }
2870 if (!do_null && !do_update) {
2871 return result;
2872 }
2873
2874 if (mdp == LIR_OprFact::illegalOpr) {
2875 mdp = new_register(T_METADATA);
2876 __ metadata2reg(md->constant_encoding(), mdp);
2877 if (md_base_offset != 0) {
2878 LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2879 mdp = new_pointer_register();
2880 __ leal(LIR_OprFact::address(base_type_address), mdp);
2881 }
2882 }
2883 LIRItem value(obj, this);
2884 value.load_item();
2885 __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2886 value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != nullptr);
2887 return result;
2888 }
2889
2903 assert(!src->is_illegal(), "check");
2904 BasicType t = src->type();
2905 if (is_reference_type(t)) {
2906 intptr_t profiled_k = parameters->type(j);
2907 Local* local = x->state()->local_at(java_index)->as_Local();
2908 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2909 in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2910 profiled_k, local, mdp, false, local->declared_type()->as_klass(), nullptr);
2911 // If the profile is known statically set it once for all and do not emit any code
2912 if (exact != nullptr) {
2913 md->set_parameter_type(j, exact);
2914 }
2915 j++;
2916 }
2917 java_index += type2size[t];
2918 }
2919 }
2920 }
2921 }
2922
2923 void LIRGenerator::profile_flags(ciMethodData* md, ciProfileData* data, int flag, LIR_Condition condition) {
2924 assert(md != nullptr && data != nullptr, "should have been initialized");
2925 LIR_Opr mdp = new_register(T_METADATA);
2926 __ metadata2reg(md->constant_encoding(), mdp);
2927 LIR_Address* addr = new LIR_Address(mdp, md->byte_offset_of_slot(data, DataLayout::flags_offset()), T_BYTE);
2928 LIR_Opr flags = new_register(T_INT);
2929 __ move(addr, flags);
2930 LIR_Opr update;
2931 if (condition != lir_cond_always) {
2932 update = new_register(T_INT);
2933 __ cmove(condition, LIR_OprFact::intConst(0), LIR_OprFact::intConst(flag), update, T_INT);
2934 } else {
2935 update = LIR_OprFact::intConst(flag);
2936 }
2937 __ logical_or(flags, update, flags);
2938 __ store(flags, addr);
2939 }
2940
2941 void LIRGenerator::profile_null_free_array(LIRItem array, ciMethodData* md, ciProfileData* data) {
2942 assert(compilation()->profile_array_accesses(), "array access profiling is disabled");
2943 LabelObj* L_end = new LabelObj();
2944 LIR_Opr tmp = new_register(T_METADATA);
2945 __ check_null_free_array(array.result(), tmp);
2946
2947 profile_flags(md, data, ArrayStoreData::null_free_array_byte_constant(), lir_cond_equal);
2948 }
2949
2950 template <class ArrayData> void LIRGenerator::profile_array_type(AccessIndexed* x, ciMethodData*& md, ArrayData*& load_store) {
2951 assert(compilation()->profile_array_accesses(), "array access profiling is disabled");
2952 LIR_Opr mdp = LIR_OprFact::illegalOpr;
2953 profile_type(md, md->byte_offset_of_slot(load_store, ArrayData::array_offset()), 0,
2954 load_store->array()->type(), x->array(), mdp, true, nullptr, nullptr);
2955 }
2956
2957 void LIRGenerator::profile_element_type(Value element, ciMethodData* md, ciArrayLoadData* load_data) {
2958 assert(compilation()->profile_array_accesses(), "array access profiling is disabled");
2959 assert(md != nullptr && load_data != nullptr, "should have been initialized");
2960 LIR_Opr mdp = LIR_OprFact::illegalOpr;
2961 profile_type(md, md->byte_offset_of_slot(load_data, ArrayLoadData::element_offset()), 0,
2962 load_data->element()->type(), element, mdp, false, nullptr, nullptr);
2963 }
2964
2965 void LIRGenerator::do_Base(Base* x) {
2966 __ std_entry(LIR_OprFact::illegalOpr);
2967 // Emit moves from physical registers / stack slots to virtual registers
2968 CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2969 IRScope* irScope = compilation()->hir()->top_scope();
2970 int java_index = 0;
2971 for (int i = 0; i < args->length(); i++) {
2972 LIR_Opr src = args->at(i);
2973 assert(!src->is_illegal(), "check");
2974 BasicType t = src->type();
2975
2976 // Types which are smaller than int are passed as int, so
2977 // correct the type which passed.
2978 switch (t) {
2979 case T_BYTE:
2980 case T_BOOLEAN:
2981 case T_SHORT:
2982 case T_CHAR:
2983 t = T_INT;
2984 break;
2986 break;
2987 }
2988
2989 LIR_Opr dest = new_register(t);
2990 __ move(src, dest);
2991
2992 // Assign new location to Local instruction for this local
2993 Local* local = x->state()->local_at(java_index)->as_Local();
2994 assert(local != nullptr, "Locals for incoming arguments must have been created");
2995 #ifndef __SOFTFP__
2996 // The java calling convention passes double as long and float as int.
2997 assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2998 #endif // __SOFTFP__
2999 local->set_operand(dest);
3000 #ifdef ASSERT
3001 _instruction_for_operand.at_put_grow(dest->vreg_number(), local, nullptr);
3002 #endif
3003 java_index += type2size[t];
3004 }
3005
3006 // Check if we need a membar at the beginning of the java.lang.Object
3007 // constructor to satisfy the memory model for strict fields.
3008 if (Arguments::is_valhalla_enabled() && method()->intrinsic_id() == vmIntrinsics::_Object_init) {
3009 __ membar_storestore();
3010 }
3011
3012 if (compilation()->env()->dtrace_method_probes()) {
3013 BasicTypeList signature;
3014 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread
3015 signature.append(T_METADATA); // Method*
3016 LIR_OprList* args = new LIR_OprList();
3017 args->append(getThreadPointer());
3018 LIR_Opr meth = new_register(T_METADATA);
3019 __ metadata2reg(method()->constant_encoding(), meth);
3020 args->append(meth);
3021 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, nullptr);
3022 }
3023
3024 if (method()->is_synchronized()) {
3025 LIR_Opr obj;
3026 if (method()->is_static()) {
3027 obj = new_register(T_OBJECT);
3028 __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
3029 } else {
3030 Local* receiver = x->state()->local_at(0)->as_Local();
3031 assert(receiver != nullptr, "must already exist");
3033 }
3034 assert(obj->is_valid(), "must be valid");
3035
3036 if (method()->is_synchronized()) {
3037 LIR_Opr lock = syncLockOpr();
3038 __ load_stack_address_monitor(0, lock);
3039
3040 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, x->check_flag(Instruction::DeoptimizeOnException));
3041 CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
3042
3043 // receiver is guaranteed non-null so don't need CodeEmitInfo
3044 __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, nullptr);
3045 }
3046 }
3047 // increment invocation counters if needed
3048 if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
3049 profile_parameters(x);
3050 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, false);
3051 increment_invocation_counter(info);
3052 }
3053 if (method()->has_scalarized_args()) {
3054 // Check if deoptimization was triggered (i.e. orig_pc was set) while buffering scalarized inline type arguments
3055 // in the entry point (see comments in frame::deoptimize). If so, deoptimize only now that we have the right state.
3056 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), nullptr, false);
3057 CodeStub* deopt_stub = new DeoptimizeStub(info, Deoptimization::Reason_none, Deoptimization::Action_none);
3058 __ append(new LIR_Op0(lir_check_orig_pc));
3059 __ branch(lir_cond_notEqual, deopt_stub);
3060 }
3061
3062 // all blocks with a successor must end with an unconditional jump
3063 // to the successor even if they are consecutive
3064 __ jump(x->default_sux());
3065 }
3066
3067
3068 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
3069 // construct our frame and model the production of incoming pointer
3070 // to the OSR buffer.
3071 __ osr_entry(LIR_Assembler::osrBufferPointer());
3072 LIR_Opr result = rlock_result(x);
3073 __ move(LIR_Assembler::osrBufferPointer(), result);
3074 }
3075
3076 void LIRGenerator::invoke_load_one_argument(LIRItem* param, LIR_Opr loc) {
3077 if (loc->is_register()) {
3078 param->load_item_force(loc);
3079 } else {
3080 LIR_Address* addr = loc->as_address_ptr();
3081 param->load_for_store(addr->type());
3082 if (addr->type() == T_OBJECT) {
3083 __ move_wide(param->result(), addr);
3084 } else {
3085 __ move(param->result(), addr);
3086 }
3087 }
3088 }
3089
3090 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
3091 assert(args->length() == arg_list->length(),
3092 "args=%d, arg_list=%d", args->length(), arg_list->length());
3093 for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
3094 LIRItem* param = args->at(i);
3095 LIR_Opr loc = arg_list->at(i);
3096 invoke_load_one_argument(param, loc);
3097 }
3098
3099 if (x->has_receiver()) {
3100 LIRItem* receiver = args->at(0);
3101 LIR_Opr loc = arg_list->at(0);
3102 if (loc->is_register()) {
3103 receiver->load_item_force(loc);
3104 } else {
3105 assert(loc->is_address(), "just checking");
3106 receiver->load_for_store(T_OBJECT);
3107 __ move_wide(receiver->result(), loc->as_address_ptr());
3108 }
3109 }
3110 }
3111
3112
3113 // Visits all arguments, returns appropriate items without loading them
3114 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
3115 LIRItemList* argument_items = new LIRItemList();
3116 if (x->has_receiver()) {
3223 __ move(tmp, reg);
3224 }
3225
3226
3227
3228 // Code for : x->x() {x->cond()} x->y() ? x->tval() : x->fval()
3229 void LIRGenerator::do_IfOp(IfOp* x) {
3230 #ifdef ASSERT
3231 {
3232 ValueTag xtag = x->x()->type()->tag();
3233 ValueTag ttag = x->tval()->type()->tag();
3234 assert(xtag == intTag || xtag == objectTag, "cannot handle others");
3235 assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
3236 assert(ttag == x->fval()->type()->tag(), "cannot handle others");
3237 }
3238 #endif
3239
3240 LIRItem left(x->x(), this);
3241 LIRItem right(x->y(), this);
3242 left.load_item();
3243 if (can_inline_as_constant(right.value()) && !x->substitutability_check()) {
3244 right.dont_load_item();
3245 } else {
3246 // substitutability_check() needs to use right as a base register.
3247 right.load_item();
3248 }
3249
3250 LIRItem t_val(x->tval(), this);
3251 LIRItem f_val(x->fval(), this);
3252 t_val.dont_load_item();
3253 f_val.dont_load_item();
3254
3255 if (x->substitutability_check()) {
3256 substitutability_check(x, left, right, t_val, f_val);
3257 } else {
3258 LIR_Opr reg = rlock_result(x);
3259 __ cmp(lir_cond(x->cond()), left.result(), right.result());
3260 __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
3261 }
3262 }
3263
3264 void LIRGenerator::substitutability_check(IfOp* x, LIRItem& left, LIRItem& right, LIRItem& t_val, LIRItem& f_val) {
3265 assert(x->cond() == If::eql || x->cond() == If::neq, "must be");
3266 bool is_acmpeq = (x->cond() == If::eql);
3267 LIR_Opr equal_result = is_acmpeq ? t_val.result() : f_val.result();
3268 LIR_Opr not_equal_result = is_acmpeq ? f_val.result() : t_val.result();
3269 LIR_Opr result = rlock_result(x);
3270 CodeEmitInfo* info = state_for(x, x->state_before());
3271
3272 substitutability_check_common(x->x(), x->y(), left, right, equal_result, not_equal_result, result, info);
3273 }
3274
3275 void LIRGenerator::substitutability_check(If* x, LIRItem& left, LIRItem& right) {
3276 LIR_Opr equal_result = LIR_OprFact::intConst(1);
3277 LIR_Opr not_equal_result = LIR_OprFact::intConst(0);
3278 LIR_Opr result = new_register(T_INT);
3279 CodeEmitInfo* info = state_for(x, x->state_before());
3280
3281 substitutability_check_common(x->x(), x->y(), left, right, equal_result, not_equal_result, result, info);
3282
3283 assert(x->cond() == If::eql || x->cond() == If::neq, "must be");
3284 __ cmp(lir_cond(x->cond()), result, equal_result);
3285 }
3286
3287 void LIRGenerator::substitutability_check_common(Value left_val, Value right_val, LIRItem& left, LIRItem& right,
3288 LIR_Opr equal_result, LIR_Opr not_equal_result, LIR_Opr result,
3289 CodeEmitInfo* info) {
3290 LIR_Opr tmp1 = LIR_OprFact::illegalOpr;
3291 LIR_Opr tmp2 = LIR_OprFact::illegalOpr;
3292 LIR_Opr left_klass_op = LIR_OprFact::illegalOpr;
3293 LIR_Opr right_klass_op = LIR_OprFact::illegalOpr;
3294
3295 ciKlass* left_klass = left_val ->as_loaded_klass_or_null();
3296 ciKlass* right_klass = right_val->as_loaded_klass_or_null();
3297
3298 if ((left_klass == nullptr || right_klass == nullptr) ||// The klass is still unloaded, or came from a Phi node.
3299 !left_klass->is_inlinetype() || !right_klass->is_inlinetype()) {
3300 init_temps_for_substitutability_check(tmp1, tmp2);
3301 }
3302
3303 if (left_klass != nullptr && left_klass->is_inlinetype() && left_klass == right_klass) {
3304 // No need to load klass -- the operands are statically known to be the same inline klass.
3305 } else {
3306 BasicType t_klass = UseCompressedOops ? T_INT : T_METADATA;
3307 left_klass_op = new_register(t_klass);
3308 right_klass_op = new_register(t_klass);
3309 }
3310
3311 CodeStub* slow_path = new SubstitutabilityCheckStub(left.result(), right.result(), info);
3312 __ substitutability_check(result, left.result(), right.result(), equal_result, not_equal_result,
3313 tmp1, tmp2,
3314 left_klass, right_klass, left_klass_op, right_klass_op, info, slow_path);
3315 }
3316
3317 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
3318 assert(x->number_of_arguments() == 0, "wrong type");
3319 // Enforce computation of _reserved_argument_area_size which is required on some platforms.
3320 BasicTypeList signature;
3321 CallingConvention* cc = frame_map()->c_calling_convention(&signature);
3322 LIR_Opr reg = result_register_for(x->type());
3323 __ call_runtime_leaf(routine, getThreadTemp(),
3324 reg, new LIR_OprList());
3325 LIR_Opr result = rlock_result(x);
3326 __ move(reg, result);
3327 }
3328
3329
3330
3331 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
3332 switch (x->id()) {
3333 case vmIntrinsics::_intBitsToFloat :
3334 case vmIntrinsics::_doubleToRawLongBits :
3569 if (x->recv() != nullptr || x->nb_profiled_args() > 0) {
3570 profile_parameters_at_call(x);
3571 }
3572
3573 if (x->recv() != nullptr) {
3574 LIRItem value(x->recv(), this);
3575 value.load_item();
3576 recv = new_register(T_OBJECT);
3577 __ move(value.result(), recv);
3578 }
3579 __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3580 }
3581
3582 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3583 int bci = x->bci_of_invoke();
3584 ciMethodData* md = x->method()->method_data_or_null();
3585 assert(md != nullptr, "Sanity");
3586 ciProfileData* data = md->bci_to_data(bci);
3587 if (data != nullptr) {
3588 assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3589 ciSingleTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3590 LIR_Opr mdp = LIR_OprFact::illegalOpr;
3591
3592 bool ignored_will_link;
3593 ciSignature* signature_at_call = nullptr;
3594 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3595
3596 // The offset within the MDO of the entry to update may be too large
3597 // to be used in load/store instructions on some platforms. So have
3598 // profile_type() compute the address of the profile in a register.
3599 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3600 ret->type(), x->ret(), mdp,
3601 !x->needs_null_check(),
3602 signature_at_call->return_type()->as_klass(),
3603 x->callee()->signature()->return_type()->as_klass());
3604 if (exact != nullptr) {
3605 md->set_return_type(bci, exact);
3606 }
3607 }
3608 }
3609
3610 bool LIRGenerator::profile_inline_klass(ciMethodData* md, ciProfileData* data, Value value, int flag) {
3611 ciKlass* klass = value->as_loaded_klass_or_null();
3612 if (klass != nullptr) {
3613 if (klass->is_inlinetype()) {
3614 profile_flags(md, data, flag, lir_cond_always);
3615 } else if (klass->can_be_inline_klass()) {
3616 return false;
3617 }
3618 } else {
3619 return false;
3620 }
3621 return true;
3622 }
3623
3624
3625 void LIRGenerator::do_ProfileACmpTypes(ProfileACmpTypes* x) {
3626 ciMethod* method = x->method();
3627 assert(method != nullptr, "method should be set if branch is profiled");
3628 ciMethodData* md = method->method_data_or_null();
3629 assert(md != nullptr, "Sanity");
3630 ciProfileData* data = md->bci_to_data(x->bci());
3631 assert(data != nullptr, "must have profiling data");
3632 assert(data->is_ACmpData(), "need BranchData for two-way branches");
3633 ciACmpData* acmp = (ciACmpData*)data;
3634 LIR_Opr mdp = LIR_OprFact::illegalOpr;
3635 profile_type(md, md->byte_offset_of_slot(acmp, ACmpData::left_offset()), 0,
3636 acmp->left()->type(), x->left(), mdp, !x->left_maybe_null(), nullptr, nullptr);
3637 int flags_offset = md->byte_offset_of_slot(data, DataLayout::flags_offset());
3638 if (!profile_inline_klass(md, acmp, x->left(), ACmpData::left_inline_type_byte_constant())) {
3639 LIR_Opr mdp = new_register(T_METADATA);
3640 __ metadata2reg(md->constant_encoding(), mdp);
3641 LIRItem value(x->left(), this);
3642 value.load_item();
3643 __ profile_inline_type(new LIR_Address(mdp, flags_offset, T_INT), value.result(), ACmpData::left_inline_type_byte_constant(), new_register(T_INT), !x->left_maybe_null());
3644 }
3645 profile_type(md, md->byte_offset_of_slot(acmp, ACmpData::left_offset()),
3646 in_bytes(ACmpData::right_offset()) - in_bytes(ACmpData::left_offset()),
3647 acmp->right()->type(), x->right(), mdp, !x->right_maybe_null(), nullptr, nullptr);
3648 if (!profile_inline_klass(md, acmp, x->right(), ACmpData::right_inline_type_byte_constant())) {
3649 LIR_Opr mdp = new_register(T_METADATA);
3650 __ metadata2reg(md->constant_encoding(), mdp);
3651 LIRItem value(x->right(), this);
3652 value.load_item();
3653 __ profile_inline_type(new LIR_Address(mdp, flags_offset, T_INT), value.result(), ACmpData::right_inline_type_byte_constant(), new_register(T_INT), !x->left_maybe_null());
3654 }
3655 }
3656
3657 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3658 // We can safely ignore accessors here, since c2 will inline them anyway,
3659 // accessors are also always mature.
3660 if (!x->inlinee()->is_accessor()) {
3661 CodeEmitInfo* info = state_for(x, x->state(), true);
3662 // Notify the runtime very infrequently only to take care of counter overflows
3663 int freq_log = Tier23InlineeNotifyFreqLog;
3664 double scale;
3665 if (_method->has_option_value(CompileCommandEnum::CompileThresholdScaling, scale)) {
3666 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3667 }
3668 increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true);
3669 }
3670 }
3671
3672 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) {
3673 if (compilation()->is_profiling()) {
3674 #if defined(X86) && !defined(_LP64)
3675 // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
3676 LIR_Opr left_copy = new_register(left->type());
|