< prev index next >

src/hotspot/share/c1/c1_LIRGenerator.cpp

Print this page

  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "c1/c1_Compilation.hpp"
  26 #include "c1/c1_Defs.hpp"
  27 #include "c1/c1_FrameMap.hpp"
  28 #include "c1/c1_Instruction.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_LIRGenerator.hpp"
  31 #include "c1/c1_ValueStack.hpp"
  32 #include "ci/ciArrayKlass.hpp"


  33 #include "ci/ciInstance.hpp"
  34 #include "ci/ciObjArray.hpp"

  35 #include "ci/ciUtilities.hpp"
  36 #include "compiler/compilerDefinitions.inline.hpp"
  37 #include "compiler/compilerOracle.hpp"
  38 #include "gc/shared/barrierSet.hpp"
  39 #include "gc/shared/c1/barrierSetC1.hpp"
  40 #include "oops/klass.inline.hpp"
  41 #include "oops/methodCounters.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/stubRoutines.hpp"
  44 #include "runtime/vm_version.hpp"
  45 #include "utilities/bitMap.inline.hpp"
  46 #include "utilities/macros.hpp"
  47 #include "utilities/powerOfTwo.hpp"
  48 
  49 #ifdef ASSERT
  50 #define __ gen()->lir(__FILE__, __LINE__)->
  51 #else
  52 #define __ gen()->lir()->
  53 #endif
  54 

 198 }
 199 
 200 
 201 //--------------------------------------------------------------
 202 // LIRItem
 203 
 204 void LIRItem::set_result(LIR_Opr opr) {
 205   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 206   value()->set_operand(opr);
 207 
 208 #ifdef ASSERT
 209   if (opr->is_virtual()) {
 210     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), nullptr);
 211   }
 212 #endif
 213 
 214   _result = opr;
 215 }
 216 
 217 void LIRItem::load_item() {


 218   if (result()->is_illegal()) {
 219     // update the items result
 220     _result = value()->operand();
 221   }
 222   if (!result()->is_register()) {
 223     LIR_Opr reg = _gen->new_register(value()->type());
 224     __ move(result(), reg);
 225     if (result()->is_constant()) {
 226       _result = reg;
 227     } else {
 228       set_result(reg);
 229     }
 230   }
 231 }
 232 
 233 
 234 void LIRItem::load_for_store(BasicType type) {
 235   if (_gen->can_store_as_constant(value(), type)) {
 236     _result = value()->operand();
 237     if (!_result->is_constant()) {

 605     assert(right_op != result_op, "malformed");
 606     __ move(left_op, result_op);
 607     left_op = result_op;
 608   }
 609 
 610   switch(code) {
 611     case Bytecodes::_iand:
 612     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 613 
 614     case Bytecodes::_ior:
 615     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 616 
 617     case Bytecodes::_ixor:
 618     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 619 
 620     default: ShouldNotReachHere();
 621   }
 622 }
 623 
 624 
 625 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {

 626   // for slow path, use debug info for state after successful locking
 627   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
 628   __ load_stack_address_monitor(monitor_no, lock);
 629   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 630   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
 631 }
 632 
 633 
 634 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 635   // setup registers
 636   LIR_Opr hdr = lock;
 637   lock = new_hdr;
 638   CodeStub* slow_path = new MonitorExitStub(lock, monitor_no);
 639   __ load_stack_address_monitor(monitor_no, lock);
 640   __ unlock_object(hdr, object, lock, scratch, slow_path);
 641 }
 642 
 643 #ifndef PRODUCT
 644 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 645   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 646     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 647   } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) {
 648     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 649   }
 650 }
 651 #endif
 652 
 653 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 654   klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 655   // If klass is not loaded we do not know if the klass has finalizers:
 656   if (UseFastNewInstance && klass->is_loaded()





 657       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 658 
 659     StubId stub_id = klass->is_initialized() ? StubId::c1_fast_new_instance_id : StubId::c1_fast_new_instance_init_check_id;
 660 
 661     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 662 
 663     assert(klass->is_loaded(), "must be loaded");
 664     // allocate space for instance
 665     assert(klass->size_helper() > 0, "illegal instance size");
 666     const int instance_size = align_object_size(klass->size_helper());
 667     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 668                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 669   } else {
 670     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, StubId::c1_new_instance_id);
 671     __ branch(lir_cond_always, slow_path);
 672     __ branch_destination(slow_path->continuation());
 673   }
 674 }
 675 
 676 
 677 static bool is_constant_zero(Instruction* inst) {
 678   IntConstant* c = inst->type()->as_IntConstant();
 679   if (c) {
 680     return (c->value() == 0);
 681   }
 682   return false;
 683 }
 684 
 685 
 686 static bool positive_constant(Instruction* inst) {
 687   IntConstant* c = inst->type()->as_IntConstant();
 688   if (c) {
 689     return (c->value() >= 0);
 690   }
 691   return false;

 743     } else if (dst_exact_type != nullptr && dst_exact_type->is_obj_array_klass()) {
 744       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 745       ciArrayKlass* src_type = nullptr;
 746       if (src_exact_type != nullptr && src_exact_type->is_obj_array_klass()) {
 747         src_type = (ciArrayKlass*) src_exact_type;
 748       } else if (src_declared_type != nullptr && src_declared_type->is_obj_array_klass()) {
 749         src_type = (ciArrayKlass*) src_declared_type;
 750       }
 751       if (src_type != nullptr) {
 752         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 753           is_exact = true;
 754           expected_type = dst_type;
 755         }
 756       }
 757     }
 758     // at least pass along a good guess
 759     if (expected_type == nullptr) expected_type = dst_exact_type;
 760     if (expected_type == nullptr) expected_type = src_declared_type;
 761     if (expected_type == nullptr) expected_type = dst_declared_type;
 762 





 763     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 764     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 765   }
 766 
 767   // if a probable array type has been identified, figure out if any
 768   // of the required checks for a fast case can be elided.
 769   int flags = LIR_OpArrayCopy::all_flags;
 770 










 771   if (!src_objarray)
 772     flags &= ~LIR_OpArrayCopy::src_objarray;
 773   if (!dst_objarray)
 774     flags &= ~LIR_OpArrayCopy::dst_objarray;
 775 
 776   if (!x->arg_needs_null_check(0))
 777     flags &= ~LIR_OpArrayCopy::src_null_check;
 778   if (!x->arg_needs_null_check(2))
 779     flags &= ~LIR_OpArrayCopy::dst_null_check;
 780 
 781 
 782   if (expected_type != nullptr) {
 783     Value length_limit = nullptr;
 784 
 785     IfOp* ifop = length->as_IfOp();
 786     if (ifop != nullptr) {
 787       // look for expressions like min(v, a.length) which ends up as
 788       //   x > y ? y : x  or  x >= y ? y : x
 789       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 790           ifop->x() == ifop->fval() &&

1443   }
1444   return _vreg_flags.at(vreg_num, f);
1445 }
1446 
1447 
1448 // Block local constant handling.  This code is useful for keeping
1449 // unpinned constants and constants which aren't exposed in the IR in
1450 // registers.  Unpinned Constant instructions have their operands
1451 // cleared when the block is finished so that other blocks can't end
1452 // up referring to their registers.
1453 
1454 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1455   assert(!x->is_pinned(), "only for unpinned constants");
1456   _unpinned_constants.append(x);
1457   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1458 }
1459 
1460 
1461 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1462   BasicType t = c->type();
1463   for (int i = 0; i < _constants.length(); i++) {
1464     LIR_Const* other = _constants.at(i);
1465     if (t == other->type()) {
1466       switch (t) {
1467       case T_INT:
1468       case T_FLOAT:
1469         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1470         break;
1471       case T_LONG:
1472       case T_DOUBLE:
1473         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1474         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1475         break;
1476       case T_OBJECT:
1477         if (c->as_jobject() != other->as_jobject()) continue;
1478         break;
1479       default:
1480         break;
1481       }
1482       return _reg_for_constants.at(i);
1483     }
1484   }
1485 
1486   LIR_Opr result = new_register(t);
1487   __ move((LIR_Opr)c, result);
1488   _constants.append(c);
1489   _reg_for_constants.append(result);


1490   return result;
1491 }
1492 






1493 //------------------------field access--------------------------------------
1494 
1495 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
1496   assert(x->number_of_arguments() == 4, "wrong type");
1497   LIRItem obj   (x->argument_at(0), this);  // object
1498   LIRItem offset(x->argument_at(1), this);  // offset of field
1499   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
1500   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
1501   assert(obj.type()->tag() == objectTag, "invalid type");
1502   assert(cmp.type()->tag() == type->tag(), "invalid type");
1503   assert(val.type()->tag() == type->tag(), "invalid type");
1504 
1505   LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type),
1506                                             obj, offset, cmp, val);
1507   set_result(x, result);
1508 }
1509 








1510 // Comment copied form templateTable_i486.cpp
1511 // ----------------------------------------------------------------------------
1512 // Volatile variables demand their effects be made known to all CPU's in
1513 // order.  Store buffers on most chips allow reads & writes to reorder; the
1514 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1515 // memory barrier (i.e., it's not sufficient that the interpreter does not
1516 // reorder volatile references, the hardware also must not reorder them).
1517 //
1518 // According to the new Java Memory Model (JMM):
1519 // (1) All volatiles are serialized wrt to each other.
1520 // ALSO reads & writes act as acquire & release, so:
1521 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1522 // the read float up to before the read.  It's OK for non-volatile memory refs
1523 // that happen before the volatile read to float down below it.
1524 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1525 // that happen BEFORE the write float down to after the write.  It's OK for
1526 // non-volatile memory refs that happen after the volatile write to float up
1527 // before it.
1528 //
1529 // We only put in barriers around volatile refs (they are expensive), not
1530 // _between_ memory refs (that would require us to track the flavor of the
1531 // previous memory refs).  Requirements (2) and (3) require some barriers
1532 // before volatile stores and after volatile loads.  These nearly cover
1533 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1534 // case is placed after volatile-stores although it could just as well go
1535 // before volatile-loads.
1536 
1537 
1538 void LIRGenerator::do_StoreField(StoreField* x) {

1539   bool needs_patching = x->needs_patching();
1540   bool is_volatile = x->field()->is_volatile();
1541   BasicType field_type = x->field_type();
1542 
1543   CodeEmitInfo* info = nullptr;
1544   if (needs_patching) {
1545     assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access");
1546     info = state_for(x, x->state_before());
1547   } else if (x->needs_null_check()) {
1548     NullCheck* nc = x->explicit_null_check();
1549     if (nc == nullptr) {
1550       info = state_for(x);
1551     } else {
1552       info = state_for(nc);
1553     }
1554   }
1555 
1556   LIRItem object(x->obj(), this);
1557   LIRItem value(x->value(),  this);
1558 
1559   object.load_item();
1560 
1561   if (is_volatile || needs_patching) {
1562     // load item if field is volatile (fewer special cases for volatiles)
1563     // load item if field not initialized
1564     // load item if field not constant
1565     // because of code patching we cannot inline constants
1566     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1567       value.load_byte_item();
1568     } else  {
1569       value.load_item();
1570     }
1571   } else {
1572     value.load_for_store(field_type);












1573   }
1574 
1575   set_no_result(x);
1576 
1577 #ifndef PRODUCT
1578   if (PrintNotLoaded && needs_patching) {
1579     tty->print_cr("   ###class not loaded at store_%s bci %d",
1580                   x->is_static() ?  "static" : "field", x->printable_bci());
1581   }
1582 #endif
1583 
1584   if (x->needs_null_check() &&
1585       (needs_patching ||
1586        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1587     // Emit an explicit null check because the offset is too large.
1588     // If the class is not loaded and the object is null, we need to deoptimize to throw a
1589     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1590     __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1591   }
1592 
1593   DecoratorSet decorators = IN_HEAP;
1594   if (is_volatile) {
1595     decorators |= MO_SEQ_CST;
1596   }
1597   if (needs_patching) {
1598     decorators |= C1_NEEDS_PATCHING;
1599   }
1600 











































1601   access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()),
1602                   value.result(), info != nullptr ? new CodeEmitInfo(info) : nullptr, info);
1603 }
1604 



























































































































































1605 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
1606   assert(x->is_pinned(),"");


1607   bool needs_range_check = x->compute_needs_range_check();
1608   bool use_length = x->length() != nullptr;
1609   bool obj_store = is_reference_type(x->elt_type());
1610   bool needs_store_check = obj_store && (x->value()->as_Constant() == nullptr ||
1611                                          !get_jobject_constant(x->value())->is_null_object() ||
1612                                          x->should_profile());
1613 
1614   LIRItem array(x->array(), this);
1615   LIRItem index(x->index(), this);
1616   LIRItem value(x->value(), this);
1617   LIRItem length(this);
1618 
1619   array.load_item();
1620   index.load_nonconstant();
1621 
1622   if (use_length && needs_range_check) {
1623     length.set_instruction(x->length());
1624     length.load_item();
1625 
1626   }
1627   if (needs_store_check || x->check_boolean()) {


1628     value.load_item();
1629   } else {
1630     value.load_for_store(x->elt_type());
1631   }
1632 
1633   set_no_result(x);
1634 
1635   // the CodeEmitInfo must be duplicated for each different
1636   // LIR-instruction because spilling can occur anywhere between two
1637   // instructions and so the debug information must be different
1638   CodeEmitInfo* range_check_info = state_for(x);
1639   CodeEmitInfo* null_check_info = nullptr;
1640   if (x->needs_null_check()) {
1641     null_check_info = new CodeEmitInfo(range_check_info);
1642   }
1643 
1644   if (needs_range_check) {
1645     if (use_length) {
1646       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1647       __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1648     } else {
1649       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1650       // range_check also does the null check
1651       null_check_info = nullptr;
1652     }
1653   }
1654 
1655   if (GenerateArrayStoreCheck && needs_store_check) {
1656     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
1657     array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci());
1658   }
1659 
1660   DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1661   if (x->check_boolean()) {
1662     decorators |= C1_MASK_BOOLEAN;















1663   }
1664 
1665   access_store_at(decorators, x->elt_type(), array, index.result(), value.result(),
1666                   nullptr, null_check_info);
































1667 }
1668 
1669 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type,
1670                                   LIRItem& base, LIR_Opr offset, LIR_Opr result,
1671                                   CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) {
1672   decorators |= ACCESS_READ;
1673   LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info);
1674   if (access.is_raw()) {
1675     _barrier_set->BarrierSetC1::load_at(access, result);
1676   } else {
1677     _barrier_set->load_at(access, result);
1678   }
1679 }
1680 
1681 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type,
1682                                LIR_Opr addr, LIR_Opr result) {
1683   decorators |= ACCESS_READ;
1684   LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type);
1685   access.set_resolved_addr(addr);
1686   if (access.is_raw()) {
1687     _barrier_set->BarrierSetC1::load(access, result);
1688   } else {
1689     _barrier_set->load(access, result);
1690   }
1691 }
1692 
1693 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type,
1694                                    LIRItem& base, LIR_Opr offset, LIR_Opr value,
1695                                    CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) {

1696   decorators |= ACCESS_WRITE;
1697   LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info);
1698   if (access.is_raw()) {
1699     _barrier_set->BarrierSetC1::store_at(access, value);
1700   } else {
1701     _barrier_set->store_at(access, value);
1702   }
1703 }
1704 
1705 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type,
1706                                                LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) {
1707   decorators |= ACCESS_READ;
1708   decorators |= ACCESS_WRITE;
1709   // Atomic operations are SEQ_CST by default
1710   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1711   LIRAccess access(this, decorators, base, offset, type);
1712   if (access.is_raw()) {
1713     return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value);
1714   } else {
1715     return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value);
1716   }
1717 }

1728   } else {
1729     return _barrier_set->atomic_xchg_at(access, value);
1730   }
1731 }
1732 
1733 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type,
1734                                            LIRItem& base, LIRItem& offset, LIRItem& value) {
1735   decorators |= ACCESS_READ;
1736   decorators |= ACCESS_WRITE;
1737   // Atomic operations are SEQ_CST by default
1738   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1739   LIRAccess access(this, decorators, base, offset, type);
1740   if (access.is_raw()) {
1741     return _barrier_set->BarrierSetC1::atomic_add_at(access, value);
1742   } else {
1743     return _barrier_set->atomic_add_at(access, value);
1744   }
1745 }
1746 
1747 void LIRGenerator::do_LoadField(LoadField* x) {

1748   bool needs_patching = x->needs_patching();
1749   bool is_volatile = x->field()->is_volatile();
1750   BasicType field_type = x->field_type();
1751 
1752   CodeEmitInfo* info = nullptr;
1753   if (needs_patching) {
1754     assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access");
1755     info = state_for(x, x->state_before());
1756   } else if (x->needs_null_check()) {
1757     NullCheck* nc = x->explicit_null_check();
1758     if (nc == nullptr) {
1759       info = state_for(x);
1760     } else {
1761       info = state_for(nc);
1762     }
1763   }
1764 
1765   LIRItem object(x->obj(), this);
1766 
1767   object.load_item();
1768 
1769 #ifndef PRODUCT

1780        stress_deopt)) {
1781     LIR_Opr obj = object.result();
1782     if (stress_deopt) {
1783       obj = new_register(T_OBJECT);
1784       __ move(LIR_OprFact::oopConst(nullptr), obj);
1785     }
1786     // Emit an explicit null check because the offset is too large.
1787     // If the class is not loaded and the object is null, we need to deoptimize to throw a
1788     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1789     __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1790   }
1791 
1792   DecoratorSet decorators = IN_HEAP;
1793   if (is_volatile) {
1794     decorators |= MO_SEQ_CST;
1795   }
1796   if (needs_patching) {
1797     decorators |= C1_NEEDS_PATCHING;
1798   }
1799 





































1800   LIR_Opr result = rlock_result(x, field_type);
1801   access_load_at(decorators, field_type,
1802                  object, LIR_OprFact::intConst(x->offset()), result,
1803                  info ? new CodeEmitInfo(info) : nullptr, info);
1804 }
1805 
1806 // int/long jdk.internal.util.Preconditions.checkIndex
1807 void LIRGenerator::do_PreconditionsCheckIndex(Intrinsic* x, BasicType type) {
1808   assert(x->number_of_arguments() == 3, "wrong type");
1809   LIRItem index(x->argument_at(0), this);
1810   LIRItem length(x->argument_at(1), this);
1811   LIRItem oobef(x->argument_at(2), this);
1812 
1813   index.load_item();
1814   length.load_item();
1815   oobef.load_item();
1816 
1817   LIR_Opr result = rlock_result(x);
1818   // x->state() is created from copy_state_for_exception, it does not contains arguments
1819   // we should prepare them before entering into interpreter mode due to deoptimization.

1928       __ move(LIR_OprFact::oopConst(nullptr), obj);
1929       __ null_check(obj, new CodeEmitInfo(null_check_info));
1930     }
1931   }
1932 
1933   if (needs_range_check) {
1934     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
1935       __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result()));
1936     } else if (use_length) {
1937       // TODO: use a (modified) version of array_range_check that does not require a
1938       //       constant length to be loaded to a register
1939       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1940       __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1941     } else {
1942       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1943       // The range check performs the null check, so clear it out for the load
1944       null_check_info = nullptr;
1945     }
1946   }
1947 
1948   DecoratorSet decorators = IN_HEAP | IS_ARRAY;




























































1949 
1950   LIR_Opr result = rlock_result(x, x->elt_type());
1951   access_load_at(decorators, x->elt_type(),
1952                  array, index.result(), result,
1953                  nullptr, null_check_info);
1954 }
1955 
1956 
1957 void LIRGenerator::do_NullCheck(NullCheck* x) {
1958   if (x->can_trap()) {
1959     LIRItem value(x->obj(), this);
1960     value.load_item();
1961     CodeEmitInfo* info = state_for(x);
1962     __ null_check(value.result(), info);
1963   }
1964 }
1965 
1966 
1967 void LIRGenerator::do_TypeCast(TypeCast* x) {
1968   LIRItem value(x->obj(), this);
1969   value.load_item();
1970   // the result is the same as from the node we are casting
1971   set_result(x, value.result());
1972 }
1973 

2416   Compilation* comp = Compilation::current();
2417   if (do_update) {
2418     // try to find exact type, using CHA if possible, so that loading
2419     // the klass from the object can be avoided
2420     ciType* type = obj->exact_type();
2421     if (type == nullptr) {
2422       type = obj->declared_type();
2423       type = comp->cha_exact_type(type);
2424     }
2425     assert(type == nullptr || type->is_klass(), "type should be class");
2426     exact_klass = (type != nullptr && type->is_loaded()) ? (ciKlass*)type : nullptr;
2427 
2428     do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2429   }
2430 
2431   if (!do_null && !do_update) {
2432     return result;
2433   }
2434 
2435   ciKlass* exact_signature_k = nullptr;
2436   if (do_update) {
2437     // Is the type from the signature exact (the only one possible)?
2438     exact_signature_k = signature_at_call_k->exact_klass();
2439     if (exact_signature_k == nullptr) {
2440       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2441     } else {
2442       result = exact_signature_k;
2443       // Known statically. No need to emit any code: prevent
2444       // LIR_Assembler::emit_profile_type() from emitting useless code
2445       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2446     }
2447     // exact_klass and exact_signature_k can be both non null but
2448     // different if exact_klass is loaded after the ciObject for
2449     // exact_signature_k is created.
2450     if (exact_klass == nullptr && exact_signature_k != nullptr && exact_klass != exact_signature_k) {
2451       // sometimes the type of the signature is better than the best type
2452       // the compiler has
2453       exact_klass = exact_signature_k;
2454     }
2455     if (callee_signature_k != nullptr &&
2456         callee_signature_k != signature_at_call_k) {
2457       ciKlass* improved_klass = callee_signature_k->exact_klass();
2458       if (improved_klass == nullptr) {
2459         improved_klass = comp->cha_exact_type(callee_signature_k);
2460       }
2461       if (exact_klass == nullptr && improved_klass != nullptr && exact_klass != improved_klass) {
2462         exact_klass = exact_signature_k;
2463       }
2464     }
2465     do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2466   }
2467 












2468   if (!do_null && !do_update) {
2469     return result;
2470   }
2471 
2472   if (mdp == LIR_OprFact::illegalOpr) {
2473     mdp = new_register(T_METADATA);
2474     __ metadata2reg(md->constant_encoding(), mdp);
2475     if (md_base_offset != 0) {
2476       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2477       mdp = new_pointer_register();
2478       __ leal(LIR_OprFact::address(base_type_address), mdp);
2479     }
2480   }
2481   LIRItem value(obj, this);
2482   value.load_item();
2483   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2484                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != nullptr);
2485   return result;
2486 }
2487 

2501         assert(!src->is_illegal(), "check");
2502         BasicType t = src->type();
2503         if (is_reference_type(t)) {
2504           intptr_t profiled_k = parameters->type(j);
2505           Local* local = x->state()->local_at(java_index)->as_Local();
2506           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2507                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2508                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), nullptr);
2509           // If the profile is known statically set it once for all and do not emit any code
2510           if (exact != nullptr) {
2511             md->set_parameter_type(j, exact);
2512           }
2513           j++;
2514         }
2515         java_index += type2size[t];
2516       }
2517     }
2518   }
2519 }
2520 










































2521 void LIRGenerator::do_Base(Base* x) {
2522   __ std_entry(LIR_OprFact::illegalOpr);
2523   // Emit moves from physical registers / stack slots to virtual registers
2524   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2525   IRScope* irScope = compilation()->hir()->top_scope();
2526   int java_index = 0;
2527   for (int i = 0; i < args->length(); i++) {
2528     LIR_Opr src = args->at(i);
2529     assert(!src->is_illegal(), "check");
2530     BasicType t = src->type();
2531 
2532     // Types which are smaller than int are passed as int, so
2533     // correct the type which passed.
2534     switch (t) {
2535     case T_BYTE:
2536     case T_BOOLEAN:
2537     case T_SHORT:
2538     case T_CHAR:
2539       t = T_INT;
2540       break;

2542       break;
2543     }
2544 
2545     LIR_Opr dest = new_register(t);
2546     __ move(src, dest);
2547 
2548     // Assign new location to Local instruction for this local
2549     Local* local = x->state()->local_at(java_index)->as_Local();
2550     assert(local != nullptr, "Locals for incoming arguments must have been created");
2551 #ifndef __SOFTFP__
2552     // The java calling convention passes double as long and float as int.
2553     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2554 #endif // __SOFTFP__
2555     local->set_operand(dest);
2556 #ifdef ASSERT
2557     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, nullptr);
2558 #endif
2559     java_index += type2size[t];
2560   }
2561 






2562   if (compilation()->env()->dtrace_method_probes()) {
2563     BasicTypeList signature;
2564     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2565     signature.append(T_METADATA); // Method*
2566     LIR_OprList* args = new LIR_OprList();
2567     args->append(getThreadPointer());
2568     LIR_Opr meth = new_register(T_METADATA);
2569     __ metadata2reg(method()->constant_encoding(), meth);
2570     args->append(meth);
2571     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, nullptr);
2572   }
2573 
2574   if (method()->is_synchronized()) {
2575     LIR_Opr obj;
2576     if (method()->is_static()) {
2577       obj = new_register(T_OBJECT);
2578       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2579     } else {
2580       Local* receiver = x->state()->local_at(0)->as_Local();
2581       assert(receiver != nullptr, "must already exist");

2583     }
2584     assert(obj->is_valid(), "must be valid");
2585 
2586     if (method()->is_synchronized()) {
2587       LIR_Opr lock = syncLockOpr();
2588       __ load_stack_address_monitor(0, lock);
2589 
2590       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, x->check_flag(Instruction::DeoptimizeOnException));
2591       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2592 
2593       // receiver is guaranteed non-null so don't need CodeEmitInfo
2594       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, nullptr);
2595     }
2596   }
2597   // increment invocation counters if needed
2598   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2599     profile_parameters(x);
2600     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, false);
2601     increment_invocation_counter(info);
2602   }








2603 
2604   // all blocks with a successor must end with an unconditional jump
2605   // to the successor even if they are consecutive
2606   __ jump(x->default_sux());
2607 }
2608 
2609 
2610 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2611   // construct our frame and model the production of incoming pointer
2612   // to the OSR buffer.
2613   __ osr_entry(LIR_Assembler::osrBufferPointer());
2614   LIR_Opr result = rlock_result(x);
2615   __ move(LIR_Assembler::osrBufferPointer(), result);
2616 }
2617 













2618 
2619 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2620   assert(args->length() == arg_list->length(),
2621          "args=%d, arg_list=%d", args->length(), arg_list->length());
2622   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2623     LIRItem* param = args->at(i);
2624     LIR_Opr loc = arg_list->at(i);
2625     if (loc->is_register()) {
2626       param->load_item_force(loc);
2627     } else {
2628       LIR_Address* addr = loc->as_address_ptr();
2629       param->load_for_store(addr->type());
2630       if (addr->type() == T_OBJECT) {
2631         __ move_wide(param->result(), addr);
2632       } else
2633         __ move(param->result(), addr);
2634     }
2635   }
2636 
2637   if (x->has_receiver()) {
2638     LIRItem* receiver = args->at(0);
2639     LIR_Opr loc = arg_list->at(0);
2640     if (loc->is_register()) {
2641       receiver->load_item_force(loc);
2642     } else {
2643       assert(loc->is_address(), "just checking");
2644       receiver->load_for_store(T_OBJECT);
2645       __ move_wide(receiver->result(), loc->as_address_ptr());
2646     }
2647   }
2648 }
2649 
2650 
2651 // Visits all arguments, returns appropriate items without loading them
2652 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2653   LIRItemList* argument_items = new LIRItemList();
2654   if (x->has_receiver()) {

2761   __ move(tmp, reg);
2762 }
2763 
2764 
2765 
2766 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
2767 void LIRGenerator::do_IfOp(IfOp* x) {
2768 #ifdef ASSERT
2769   {
2770     ValueTag xtag = x->x()->type()->tag();
2771     ValueTag ttag = x->tval()->type()->tag();
2772     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
2773     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
2774     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
2775   }
2776 #endif
2777 
2778   LIRItem left(x->x(), this);
2779   LIRItem right(x->y(), this);
2780   left.load_item();
2781   if (can_inline_as_constant(right.value())) {
2782     right.dont_load_item();
2783   } else {

2784     right.load_item();
2785   }
2786 
2787   LIRItem t_val(x->tval(), this);
2788   LIRItem f_val(x->fval(), this);
2789   t_val.dont_load_item();
2790   f_val.dont_load_item();
2791   LIR_Opr reg = rlock_result(x);
2792 
2793   __ cmp(lir_cond(x->cond()), left.result(), right.result());
2794   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));


























































2795 }
2796 
2797 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
2798   assert(x->number_of_arguments() == 0, "wrong type");
2799   // Enforce computation of _reserved_argument_area_size which is required on some platforms.
2800   BasicTypeList signature;
2801   CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2802   LIR_Opr reg = result_register_for(x->type());
2803   __ call_runtime_leaf(routine, getThreadTemp(),
2804                        reg, new LIR_OprList());
2805   LIR_Opr result = rlock_result(x);
2806   __ move(reg, result);
2807 }
2808 
2809 
2810 
2811 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
2812   switch (x->id()) {
2813   case vmIntrinsics::_intBitsToFloat      :
2814   case vmIntrinsics::_doubleToRawLongBits :

3049   if (x->recv() != nullptr || x->nb_profiled_args() > 0) {
3050     profile_parameters_at_call(x);
3051   }
3052 
3053   if (x->recv() != nullptr) {
3054     LIRItem value(x->recv(), this);
3055     value.load_item();
3056     recv = new_register(T_OBJECT);
3057     __ move(value.result(), recv);
3058   }
3059   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3060 }
3061 
3062 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3063   int bci = x->bci_of_invoke();
3064   ciMethodData* md = x->method()->method_data_or_null();
3065   assert(md != nullptr, "Sanity");
3066   ciProfileData* data = md->bci_to_data(bci);
3067   if (data != nullptr) {
3068     assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3069     ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3070     LIR_Opr mdp = LIR_OprFact::illegalOpr;
3071 
3072     bool ignored_will_link;
3073     ciSignature* signature_at_call = nullptr;
3074     x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3075 
3076     // The offset within the MDO of the entry to update may be too large
3077     // to be used in load/store instructions on some platforms. So have
3078     // profile_type() compute the address of the profile in a register.
3079     ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3080         ret->type(), x->ret(), mdp,
3081         !x->needs_null_check(),
3082         signature_at_call->return_type()->as_klass(),
3083         x->callee()->signature()->return_type()->as_klass());
3084     if (exact != nullptr) {
3085       md->set_return_type(bci, exact);
3086     }
3087   }
3088 }
3089 















































3090 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3091   // We can safely ignore accessors here, since c2 will inline them anyway,
3092   // accessors are also always mature.
3093   if (!x->inlinee()->is_accessor()) {
3094     CodeEmitInfo* info = state_for(x, x->state(), true);
3095     // Notify the runtime very infrequently only to take care of counter overflows
3096     int freq_log = Tier23InlineeNotifyFreqLog;
3097     double scale;
3098     if (_method->has_option_value(CompileCommandEnum::CompileThresholdScaling, scale)) {
3099       freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3100     }
3101     increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true);
3102   }
3103 }
3104 
3105 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) {
3106   if (compilation()->is_profiling()) {
3107 #if defined(X86) && !defined(_LP64)
3108     // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
3109     LIR_Opr left_copy = new_register(left->type());

  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "c1/c1_Compilation.hpp"
  26 #include "c1/c1_Defs.hpp"
  27 #include "c1/c1_FrameMap.hpp"
  28 #include "c1/c1_Instruction.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_LIRGenerator.hpp"
  31 #include "c1/c1_ValueStack.hpp"
  32 #include "ci/ciArrayKlass.hpp"
  33 #include "ci/ciFlatArrayKlass.hpp"
  34 #include "ci/ciInlineKlass.hpp"
  35 #include "ci/ciInstance.hpp"
  36 #include "ci/ciObjArray.hpp"
  37 #include "ci/ciObjArrayKlass.hpp"
  38 #include "ci/ciUtilities.hpp"
  39 #include "compiler/compilerDefinitions.inline.hpp"
  40 #include "compiler/compilerOracle.hpp"
  41 #include "gc/shared/barrierSet.hpp"
  42 #include "gc/shared/c1/barrierSetC1.hpp"
  43 #include "oops/klass.inline.hpp"
  44 #include "oops/methodCounters.hpp"
  45 #include "runtime/sharedRuntime.hpp"
  46 #include "runtime/stubRoutines.hpp"
  47 #include "runtime/vm_version.hpp"
  48 #include "utilities/bitMap.inline.hpp"
  49 #include "utilities/macros.hpp"
  50 #include "utilities/powerOfTwo.hpp"
  51 
  52 #ifdef ASSERT
  53 #define __ gen()->lir(__FILE__, __LINE__)->
  54 #else
  55 #define __ gen()->lir()->
  56 #endif
  57 

 201 }
 202 
 203 
 204 //--------------------------------------------------------------
 205 // LIRItem
 206 
 207 void LIRItem::set_result(LIR_Opr opr) {
 208   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 209   value()->set_operand(opr);
 210 
 211 #ifdef ASSERT
 212   if (opr->is_virtual()) {
 213     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), nullptr);
 214   }
 215 #endif
 216 
 217   _result = opr;
 218 }
 219 
 220 void LIRItem::load_item() {
 221   assert(!_gen->in_conditional_code(), "LIRItem cannot be loaded in conditional code");
 222 
 223   if (result()->is_illegal()) {
 224     // update the items result
 225     _result = value()->operand();
 226   }
 227   if (!result()->is_register()) {
 228     LIR_Opr reg = _gen->new_register(value()->type());
 229     __ move(result(), reg);
 230     if (result()->is_constant()) {
 231       _result = reg;
 232     } else {
 233       set_result(reg);
 234     }
 235   }
 236 }
 237 
 238 
 239 void LIRItem::load_for_store(BasicType type) {
 240   if (_gen->can_store_as_constant(value(), type)) {
 241     _result = value()->operand();
 242     if (!_result->is_constant()) {

 610     assert(right_op != result_op, "malformed");
 611     __ move(left_op, result_op);
 612     left_op = result_op;
 613   }
 614 
 615   switch(code) {
 616     case Bytecodes::_iand:
 617     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 618 
 619     case Bytecodes::_ior:
 620     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 621 
 622     case Bytecodes::_ixor:
 623     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 624 
 625     default: ShouldNotReachHere();
 626   }
 627 }
 628 
 629 
 630 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no,
 631                                  CodeEmitInfo* info_for_exception, CodeEmitInfo* info, CodeStub* throw_ie_stub) {
 632   // for slow path, use debug info for state after successful locking
 633   CodeStub* slow_path = new MonitorEnterStub(object, lock, info, throw_ie_stub, scratch);
 634   __ load_stack_address_monitor(monitor_no, lock);
 635   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 636   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception, throw_ie_stub);
 637 }
 638 
 639 
 640 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 641   // setup registers
 642   LIR_Opr hdr = lock;
 643   lock = new_hdr;
 644   CodeStub* slow_path = new MonitorExitStub(lock, monitor_no);
 645   __ load_stack_address_monitor(monitor_no, lock);
 646   __ unlock_object(hdr, object, lock, scratch, slow_path);
 647 }
 648 
 649 #ifndef PRODUCT
 650 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 651   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 652     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 653   } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) {
 654     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 655   }
 656 }
 657 #endif
 658 
 659 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, bool allow_inline, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 660   if (allow_inline) {
 661     assert(!is_unresolved && klass->is_loaded(), "inline type klass should be resolved");
 662     __ metadata2reg(klass->constant_encoding(), klass_reg);
 663   } else {
 664     klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 665   }
 666   // If klass is not loaded we do not know if the klass has finalizers or is an unexpected inline klass
 667   if (UseFastNewInstance && klass->is_loaded() && (allow_inline || !klass->is_inlinetype())
 668       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 669 
 670     StubId stub_id = klass->is_initialized() ? StubId::c1_fast_new_instance_id : StubId::c1_fast_new_instance_init_check_id;
 671 
 672     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 673 
 674     assert(klass->is_loaded(), "must be loaded");
 675     // allocate space for instance
 676     assert(klass->size_helper() > 0, "illegal instance size");
 677     const int instance_size = align_object_size(klass->size_helper());
 678     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 679                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 680   } else {
 681     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, StubId::c1_new_instance_id);
 682     __ jump(slow_path);
 683     __ branch_destination(slow_path->continuation());
 684   }
 685 }
 686 
 687 
 688 static bool is_constant_zero(Instruction* inst) {
 689   IntConstant* c = inst->type()->as_IntConstant();
 690   if (c) {
 691     return (c->value() == 0);
 692   }
 693   return false;
 694 }
 695 
 696 
 697 static bool positive_constant(Instruction* inst) {
 698   IntConstant* c = inst->type()->as_IntConstant();
 699   if (c) {
 700     return (c->value() >= 0);
 701   }
 702   return false;

 754     } else if (dst_exact_type != nullptr && dst_exact_type->is_obj_array_klass()) {
 755       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 756       ciArrayKlass* src_type = nullptr;
 757       if (src_exact_type != nullptr && src_exact_type->is_obj_array_klass()) {
 758         src_type = (ciArrayKlass*) src_exact_type;
 759       } else if (src_declared_type != nullptr && src_declared_type->is_obj_array_klass()) {
 760         src_type = (ciArrayKlass*) src_declared_type;
 761       }
 762       if (src_type != nullptr) {
 763         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 764           is_exact = true;
 765           expected_type = dst_type;
 766         }
 767       }
 768     }
 769     // at least pass along a good guess
 770     if (expected_type == nullptr) expected_type = dst_exact_type;
 771     if (expected_type == nullptr) expected_type = src_declared_type;
 772     if (expected_type == nullptr) expected_type = dst_declared_type;
 773 
 774     if (expected_type != nullptr && expected_type->is_obj_array_klass()) {
 775       // For a direct pointer comparison, we need the refined array klass pointer
 776       expected_type = ciObjArrayKlass::make(expected_type->as_array_klass()->element_klass());
 777     }
 778 
 779     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 780     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 781   }
 782 
 783   // if a probable array type has been identified, figure out if any
 784   // of the required checks for a fast case can be elided.
 785   int flags = LIR_OpArrayCopy::all_flags;
 786 
 787   if (!src->is_loaded_flat_array() && !dst->is_loaded_flat_array()) {
 788     flags &= ~LIR_OpArrayCopy::always_slow_path;
 789   }
 790   if (!src->maybe_flat_array()) {
 791     flags &= ~LIR_OpArrayCopy::src_inlinetype_check;
 792   }
 793   if (!dst->maybe_flat_array() && !dst->maybe_null_free_array()) {
 794     flags &= ~LIR_OpArrayCopy::dst_inlinetype_check;
 795   }
 796 
 797   if (!src_objarray)
 798     flags &= ~LIR_OpArrayCopy::src_objarray;
 799   if (!dst_objarray)
 800     flags &= ~LIR_OpArrayCopy::dst_objarray;
 801 
 802   if (!x->arg_needs_null_check(0))
 803     flags &= ~LIR_OpArrayCopy::src_null_check;
 804   if (!x->arg_needs_null_check(2))
 805     flags &= ~LIR_OpArrayCopy::dst_null_check;
 806 
 807 
 808   if (expected_type != nullptr) {
 809     Value length_limit = nullptr;
 810 
 811     IfOp* ifop = length->as_IfOp();
 812     if (ifop != nullptr) {
 813       // look for expressions like min(v, a.length) which ends up as
 814       //   x > y ? y : x  or  x >= y ? y : x
 815       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 816           ifop->x() == ifop->fval() &&

1469   }
1470   return _vreg_flags.at(vreg_num, f);
1471 }
1472 
1473 
1474 // Block local constant handling.  This code is useful for keeping
1475 // unpinned constants and constants which aren't exposed in the IR in
1476 // registers.  Unpinned Constant instructions have their operands
1477 // cleared when the block is finished so that other blocks can't end
1478 // up referring to their registers.
1479 
1480 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1481   assert(!x->is_pinned(), "only for unpinned constants");
1482   _unpinned_constants.append(x);
1483   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1484 }
1485 
1486 
1487 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1488   BasicType t = c->type();
1489   for (int i = 0; i < _constants.length() && !in_conditional_code(); i++) {
1490     LIR_Const* other = _constants.at(i);
1491     if (t == other->type()) {
1492       switch (t) {
1493       case T_INT:
1494       case T_FLOAT:
1495         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1496         break;
1497       case T_LONG:
1498       case T_DOUBLE:
1499         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1500         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1501         break;
1502       case T_OBJECT:
1503         if (c->as_jobject() != other->as_jobject()) continue;
1504         break;
1505       default:
1506         break;
1507       }
1508       return _reg_for_constants.at(i);
1509     }
1510   }
1511 
1512   LIR_Opr result = new_register(t);
1513   __ move((LIR_Opr)c, result);
1514   if (!in_conditional_code()) {
1515     _constants.append(c);
1516     _reg_for_constants.append(result);
1517   }
1518   return result;
1519 }
1520 
1521 void LIRGenerator::set_in_conditional_code(bool v) {
1522   assert(v != _in_conditional_code, "must change state");
1523   _in_conditional_code = v;
1524 }
1525 
1526 
1527 //------------------------field access--------------------------------------
1528 
1529 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
1530   assert(x->number_of_arguments() == 4, "wrong type");
1531   LIRItem obj   (x->argument_at(0), this);  // object
1532   LIRItem offset(x->argument_at(1), this);  // offset of field
1533   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
1534   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
1535   assert(obj.type()->tag() == objectTag, "invalid type");
1536   assert(cmp.type()->tag() == type->tag(), "invalid type");
1537   assert(val.type()->tag() == type->tag(), "invalid type");
1538 
1539   LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type),
1540                                             obj, offset, cmp, val);
1541   set_result(x, result);
1542 }
1543 
1544 // Returns a int/long value with the null marker bit set
1545 static LIR_Opr null_marker_mask(BasicType bt, ciField* field) {
1546   assert(field->null_marker_offset() != -1, "field does not have null marker");
1547   int nm_offset = field->null_marker_offset() - field->offset_in_bytes();
1548   jlong null_marker = 1ULL << (nm_offset << LogBitsPerByte);
1549   return (bt == T_LONG) ? LIR_OprFact::longConst(null_marker) : LIR_OprFact::intConst(null_marker);
1550 }
1551 
1552 // Comment copied form templateTable_i486.cpp
1553 // ----------------------------------------------------------------------------
1554 // Volatile variables demand their effects be made known to all CPU's in
1555 // order.  Store buffers on most chips allow reads & writes to reorder; the
1556 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1557 // memory barrier (i.e., it's not sufficient that the interpreter does not
1558 // reorder volatile references, the hardware also must not reorder them).
1559 //
1560 // According to the new Java Memory Model (JMM):
1561 // (1) All volatiles are serialized wrt to each other.
1562 // ALSO reads & writes act as acquire & release, so:
1563 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1564 // the read float up to before the read.  It's OK for non-volatile memory refs
1565 // that happen before the volatile read to float down below it.
1566 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1567 // that happen BEFORE the write float down to after the write.  It's OK for
1568 // non-volatile memory refs that happen after the volatile write to float up
1569 // before it.
1570 //
1571 // We only put in barriers around volatile refs (they are expensive), not
1572 // _between_ memory refs (that would require us to track the flavor of the
1573 // previous memory refs).  Requirements (2) and (3) require some barriers
1574 // before volatile stores and after volatile loads.  These nearly cover
1575 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1576 // case is placed after volatile-stores although it could just as well go
1577 // before volatile-loads.
1578 
1579 
1580 void LIRGenerator::do_StoreField(StoreField* x) {
1581   ciField* field = x->field();
1582   bool needs_patching = x->needs_patching();
1583   bool is_volatile = field->is_volatile();
1584   BasicType field_type = x->field_type();
1585 
1586   CodeEmitInfo* info = nullptr;
1587   if (needs_patching) {
1588     assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access");
1589     info = state_for(x, x->state_before());
1590   } else if (x->needs_null_check()) {
1591     NullCheck* nc = x->explicit_null_check();
1592     if (nc == nullptr) {
1593       info = state_for(x);
1594     } else {
1595       info = state_for(nc);
1596     }
1597   }
1598 
1599   LIRItem object(x->obj(), this);
1600   LIRItem value(x->value(),  this);
1601 
1602   object.load_item();
1603 
1604   if (field->is_flat()) {
1605     value.load_item();








1606   } else {
1607     if (is_volatile || needs_patching) {
1608       // load item if field is volatile (fewer special cases for volatiles)
1609       // load item if field not initialized
1610       // load item if field not constant
1611       // because of code patching we cannot inline constants
1612       if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1613         value.load_byte_item();
1614       } else  {
1615         value.load_item();
1616       }
1617     } else {
1618       value.load_for_store(field_type);
1619     }
1620   }
1621 
1622   set_no_result(x);
1623 
1624 #ifndef PRODUCT
1625   if (PrintNotLoaded && needs_patching) {
1626     tty->print_cr("   ###class not loaded at store_%s bci %d",
1627                   x->is_static() ?  "static" : "field", x->printable_bci());
1628   }
1629 #endif
1630 
1631   if (x->needs_null_check() &&
1632       (needs_patching ||
1633        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1634     // Emit an explicit null check because the offset is too large.
1635     // If the class is not loaded and the object is null, we need to deoptimize to throw a
1636     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1637     __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1638   }
1639 
1640   DecoratorSet decorators = IN_HEAP;
1641   if (is_volatile) {
1642     decorators |= MO_SEQ_CST;
1643   }
1644   if (needs_patching) {
1645     decorators |= C1_NEEDS_PATCHING;
1646   }
1647 
1648   if (field->is_flat()) {
1649     ciInlineKlass* vk = field->type()->as_inline_klass();
1650 
1651 #ifdef ASSERT
1652     bool is_naturally_atomic = vk->nof_declared_nonstatic_fields() <= 1;
1653     bool needs_atomic_access = !field->is_null_free() || (field->is_volatile() && !is_naturally_atomic);
1654     assert(needs_atomic_access, "No atomic access required");
1655     // ZGC does not support compressed oops, so only one oop can be in the payload which is written by a "normal" oop store.
1656     assert(!vk->contains_oops() || !UseZGC, "ZGC does not support embedded oops in flat fields");
1657 #endif
1658 
1659     // Zero the payload
1660     BasicType bt = vk->atomic_size_to_basic_type(field->is_null_free());
1661     LIR_Opr payload = new_register((bt == T_LONG) ? bt : T_INT);
1662     LIR_Opr zero = (bt == T_LONG) ? LIR_OprFact::longConst(0) : LIR_OprFact::intConst(0);
1663     __ move(zero, payload);
1664 
1665     bool is_constant_null = value.is_constant() && value.value()->is_null_obj();
1666     if (!is_constant_null) {
1667       LabelObj* L_isNull = new LabelObj();
1668       bool needs_null_check = !value.is_constant() || value.value()->is_null_obj();
1669       if (needs_null_check) {
1670         __ cmp(lir_cond_equal, value.result(), LIR_OprFact::oopConst(nullptr));
1671         __ branch(lir_cond_equal, L_isNull->label());
1672       }
1673       // Load payload (if not empty) and set null marker (if not null-free)
1674       if (!vk->is_empty()) {
1675         access_load_at(decorators, bt, value, LIR_OprFact::intConst(vk->payload_offset()), payload);
1676       }
1677       if (!field->is_null_free()) {
1678         __ logical_or(payload, null_marker_mask(bt, field), payload);
1679       }
1680       if (needs_null_check) {
1681         __ branch_destination(L_isNull->label());
1682       }
1683     }
1684     access_store_at(decorators, bt, object, LIR_OprFact::intConst(x->offset()), payload,
1685                     // Make sure to emit an implicit null check and pass the information
1686                     // that this is a flat store that might require gc barriers for oop fields.
1687                     info != nullptr ? new CodeEmitInfo(info) : nullptr, info, vk);
1688     return;
1689   }
1690 
1691   access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()),
1692                   value.result(), info != nullptr ? new CodeEmitInfo(info) : nullptr, info);
1693 }
1694 
1695 // FIXME -- I can't find any other way to pass an address to access_load_at().
1696 class TempResolvedAddress: public Instruction {
1697  public:
1698   TempResolvedAddress(ValueType* type, LIR_Opr addr) : Instruction(type) {
1699     set_operand(addr);
1700   }
1701   virtual void input_values_do(ValueVisitor*) {}
1702   virtual void visit(InstructionVisitor* v)   {}
1703   virtual const char* name() const  { return "TempResolvedAddress"; }
1704 };
1705 
1706 LIR_Opr LIRGenerator::get_and_load_element_address(LIRItem& array, LIRItem& index) {
1707   ciType* array_type = array.value()->declared_type();
1708   ciFlatArrayKlass* flat_array_klass = array_type->as_flat_array_klass();
1709   assert(flat_array_klass->is_loaded(), "must be");
1710 
1711   int array_header_size = flat_array_klass->array_header_in_bytes();
1712   int shift = flat_array_klass->log2_element_size();
1713 
1714 #ifndef _LP64
1715   LIR_Opr index_op = new_register(T_INT);
1716   // FIXME -- on 32-bit, the shift below can overflow, so we need to check that
1717   // the top (shift+1) bits of index_op must be zero, or
1718   // else throw ArrayIndexOutOfBoundsException
1719   if (index.result()->is_constant()) {
1720     jint const_index = index.result()->as_jint();
1721     __ move(LIR_OprFact::intConst(const_index << shift), index_op);
1722   } else {
1723     __ shift_left(index_op, shift, index.result());
1724   }
1725 #else
1726   LIR_Opr index_op = new_register(T_LONG);
1727   if (index.result()->is_constant()) {
1728     jint const_index = index.result()->as_jint();
1729     __ move(LIR_OprFact::longConst(const_index << shift), index_op);
1730   } else {
1731     __ convert(Bytecodes::_i2l, index.result(), index_op);
1732     // Need to shift manually, as LIR_Address can scale only up to 3.
1733     __ shift_left(index_op, shift, index_op);
1734   }
1735 #endif
1736 
1737   LIR_Opr elm_op = new_pointer_register();
1738   LIR_Address* elm_address = generate_address(array.result(), index_op, 0, array_header_size, T_ADDRESS);
1739   __ leal(LIR_OprFact::address(elm_address), elm_op);
1740   return elm_op;
1741 }
1742 
1743 void LIRGenerator::access_sub_element(LIRItem& array, LIRItem& index, LIR_Opr& result, ciField* field, int sub_offset) {
1744   assert(field != nullptr, "Need a subelement type specified");
1745 
1746   // Find the starting address of the source (inside the array)
1747   LIR_Opr elm_op = get_and_load_element_address(array, index);
1748 
1749   BasicType subelt_type = field->type()->basic_type();
1750   TempResolvedAddress* elm_resolved_addr = new TempResolvedAddress(as_ValueType(subelt_type), elm_op);
1751   LIRItem elm_item(elm_resolved_addr, this);
1752 
1753   DecoratorSet decorators = IN_HEAP;
1754   access_load_at(decorators, subelt_type,
1755                      elm_item, LIR_OprFact::intConst(sub_offset), result,
1756                      nullptr, nullptr);
1757 }
1758 
1759 void LIRGenerator::access_flat_array(bool is_load, LIRItem& array, LIRItem& index, LIRItem& obj_item,
1760                                           ciField* field, int sub_offset) {
1761   assert(sub_offset == 0 || field != nullptr, "Sanity check");
1762 
1763   // Find the starting address of the source (inside the array)
1764   LIR_Opr elm_op = get_and_load_element_address(array, index);
1765 
1766   ciInlineKlass* elem_klass = nullptr;
1767   if (field != nullptr) {
1768     elem_klass = field->type()->as_inline_klass();
1769   } else {
1770     elem_klass = array.value()->declared_type()->as_flat_array_klass()->element_klass()->as_inline_klass();
1771   }
1772   for (int i = 0; i < elem_klass->nof_nonstatic_fields(); i++) {
1773     ciField* inner_field = elem_klass->nonstatic_field_at(i);
1774     assert(!inner_field->is_flat(), "flat fields must have been expanded");
1775     int obj_offset = inner_field->offset_in_bytes();
1776     int elm_offset = obj_offset - elem_klass->payload_offset() + sub_offset; // object header is not stored in array.
1777     BasicType field_type = inner_field->type()->basic_type();
1778 
1779     // Types which are smaller than int are still passed in an int register.
1780     BasicType reg_type = field_type;
1781     switch (reg_type) {
1782     case T_BYTE:
1783     case T_BOOLEAN:
1784     case T_SHORT:
1785     case T_CHAR:
1786       reg_type = T_INT;
1787       break;
1788     default:
1789       break;
1790     }
1791 
1792     LIR_Opr temp = new_register(reg_type);
1793     TempResolvedAddress* elm_resolved_addr = new TempResolvedAddress(as_ValueType(field_type), elm_op);
1794     LIRItem elm_item(elm_resolved_addr, this);
1795 
1796     DecoratorSet decorators = IN_HEAP;
1797     if (is_load) {
1798       access_load_at(decorators, field_type,
1799                      elm_item, LIR_OprFact::intConst(elm_offset), temp,
1800                      nullptr, nullptr);
1801       access_store_at(decorators, field_type,
1802                       obj_item, LIR_OprFact::intConst(obj_offset), temp,
1803                       nullptr, nullptr);
1804     } else {
1805       access_load_at(decorators, field_type,
1806                      obj_item, LIR_OprFact::intConst(obj_offset), temp,
1807                      nullptr, nullptr);
1808       access_store_at(decorators, field_type,
1809                       elm_item, LIR_OprFact::intConst(elm_offset), temp,
1810                       nullptr, nullptr);
1811     }
1812   }
1813 }
1814 
1815 void LIRGenerator::check_flat_array(LIR_Opr array, LIR_Opr value, CodeStub* slow_path) {
1816   LIR_Opr tmp = new_register(T_METADATA);
1817   __ check_flat_array(array, value, tmp, slow_path);
1818 }
1819 
1820 void LIRGenerator::check_null_free_array(LIRItem& array, LIRItem& value, CodeEmitInfo* info) {
1821   LabelObj* L_end = new LabelObj();
1822   LIR_Opr tmp = new_register(T_METADATA);
1823   __ check_null_free_array(array.result(), tmp);
1824   __ branch(lir_cond_equal, L_end->label());
1825   __ null_check(value.result(), info);
1826   __ branch_destination(L_end->label());
1827 }
1828 
1829 bool LIRGenerator::needs_flat_array_store_check(StoreIndexed* x) {
1830   if (x->elt_type() == T_OBJECT && x->array()->maybe_flat_array()) {
1831     ciType* type = x->value()->declared_type();
1832     if (type != nullptr && type->is_klass()) {
1833       ciKlass* klass = type->as_klass();
1834       if (!klass->can_be_inline_klass() || (klass->is_inlinetype() && !klass->as_inline_klass()->maybe_flat_in_array())) {
1835         // This is known to be a non-flat object. If the array is a flat array,
1836         // it will be caught by the code generated by array_store_check().
1837         return false;
1838       }
1839     }
1840     // We're not 100% sure, so let's do the flat_array_store_check.
1841     return true;
1842   }
1843   return false;
1844 }
1845 
1846 bool LIRGenerator::needs_null_free_array_store_check(StoreIndexed* x) {
1847   return x->elt_type() == T_OBJECT && x->array()->maybe_null_free_array();
1848 }
1849 
1850 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
1851   assert(x->is_pinned(),"");
1852   assert(x->elt_type() != T_ARRAY, "never used");
1853   bool is_loaded_flat_array = x->array()->is_loaded_flat_array();
1854   bool needs_range_check = x->compute_needs_range_check();
1855   bool use_length = x->length() != nullptr;
1856   bool obj_store = is_reference_type(x->elt_type());
1857   bool needs_store_check = obj_store && !(is_loaded_flat_array && x->is_exact_flat_array_store()) &&
1858                                         (x->value()->as_Constant() == nullptr ||
1859                                          !get_jobject_constant(x->value())->is_null_object());
1860 
1861   LIRItem array(x->array(), this);
1862   LIRItem index(x->index(), this);
1863   LIRItem value(x->value(), this);
1864   LIRItem length(this);
1865 
1866   array.load_item();
1867   index.load_nonconstant();
1868 
1869   if (use_length && needs_range_check) {
1870     length.set_instruction(x->length());
1871     length.load_item();

1872   }
1873 
1874   if (needs_store_check || x->check_boolean()
1875       || is_loaded_flat_array || needs_flat_array_store_check(x) || needs_null_free_array_store_check(x)) {
1876     value.load_item();
1877   } else {
1878     value.load_for_store(x->elt_type());
1879   }
1880 
1881   set_no_result(x);
1882 
1883   // the CodeEmitInfo must be duplicated for each different
1884   // LIR-instruction because spilling can occur anywhere between two
1885   // instructions and so the debug information must be different
1886   CodeEmitInfo* range_check_info = state_for(x);
1887   CodeEmitInfo* null_check_info = nullptr;
1888   if (x->needs_null_check()) {
1889     null_check_info = new CodeEmitInfo(range_check_info);
1890   }
1891 
1892   if (needs_range_check) {
1893     if (use_length) {
1894       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1895       __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1896     } else {
1897       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1898       // range_check also does the null check
1899       null_check_info = nullptr;
1900     }
1901   }
1902 
1903   if (GenerateArrayStoreCheck && needs_store_check) {
1904     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
1905     array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci());
1906   }
1907 
1908   if (x->should_profile()) {
1909     if (is_loaded_flat_array) {
1910       // No need to profile a store to a flat array of known type. This can happen if
1911       // the type only became known after optimizations (for example, after the PhiSimplifier).
1912       x->set_should_profile(false);
1913     } else {
1914       int bci = x->profiled_bci();
1915       ciMethodData* md = x->profiled_method()->method_data();
1916       assert(md != nullptr, "Sanity");
1917       ciProfileData* data = md->bci_to_data(bci);
1918       assert(data != nullptr && data->is_ArrayStoreData(), "incorrect profiling entry");
1919       ciArrayStoreData* store_data = (ciArrayStoreData*)data;
1920       profile_array_type(x, md, store_data);
1921       assert(store_data->is_ArrayStoreData(), "incorrect profiling entry");
1922       if (x->array()->maybe_null_free_array()) {
1923         profile_null_free_array(array, md, data);
1924       }
1925     }
1926   }
1927 
1928   if (is_loaded_flat_array) {
1929     // TODO 8350865 This is currently dead code
1930     if (!x->value()->is_null_free()) {
1931       __ null_check(value.result(), new CodeEmitInfo(range_check_info));
1932     }
1933     // If array element is an empty inline type, no need to copy anything
1934     if (!x->array()->declared_type()->as_flat_array_klass()->element_klass()->as_inline_klass()->is_empty()) {
1935       access_flat_array(false, array, index, value);
1936     }
1937   } else {
1938     StoreFlattenedArrayStub* slow_path = nullptr;
1939 
1940     if (needs_flat_array_store_check(x)) {
1941       // Check if we indeed have a flat array
1942       index.load_item();
1943       slow_path = new StoreFlattenedArrayStub(array.result(), index.result(), value.result(), state_for(x, x->state_before()));
1944       check_flat_array(array.result(), value.result(), slow_path);
1945       set_in_conditional_code(true);
1946     } else if (needs_null_free_array_store_check(x)) {
1947       CodeEmitInfo* info = new CodeEmitInfo(range_check_info);
1948       check_null_free_array(array, value, info);
1949     }
1950 
1951     DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1952     if (x->check_boolean()) {
1953       decorators |= C1_MASK_BOOLEAN;
1954     }
1955 
1956     access_store_at(decorators, x->elt_type(), array, index.result(), value.result(), nullptr, null_check_info);
1957     if (slow_path != nullptr) {
1958       __ branch_destination(slow_path->continuation());
1959       set_in_conditional_code(false);
1960     }
1961   }
1962 }
1963 
1964 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type,
1965                                   LIRItem& base, LIR_Opr offset, LIR_Opr result,
1966                                   CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) {
1967   decorators |= ACCESS_READ;
1968   LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info);
1969   if (access.is_raw()) {
1970     _barrier_set->BarrierSetC1::load_at(access, result);
1971   } else {
1972     _barrier_set->load_at(access, result);
1973   }
1974 }
1975 
1976 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type,
1977                                LIR_Opr addr, LIR_Opr result) {
1978   decorators |= ACCESS_READ;
1979   LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type);
1980   access.set_resolved_addr(addr);
1981   if (access.is_raw()) {
1982     _barrier_set->BarrierSetC1::load(access, result);
1983   } else {
1984     _barrier_set->load(access, result);
1985   }
1986 }
1987 
1988 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type,
1989                                    LIRItem& base, LIR_Opr offset, LIR_Opr value,
1990                                    CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info,
1991                                    ciInlineKlass* vk) {
1992   decorators |= ACCESS_WRITE;
1993   LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info, vk);
1994   if (access.is_raw()) {
1995     _barrier_set->BarrierSetC1::store_at(access, value);
1996   } else {
1997     _barrier_set->store_at(access, value);
1998   }
1999 }
2000 
2001 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type,
2002                                                LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) {
2003   decorators |= ACCESS_READ;
2004   decorators |= ACCESS_WRITE;
2005   // Atomic operations are SEQ_CST by default
2006   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
2007   LIRAccess access(this, decorators, base, offset, type);
2008   if (access.is_raw()) {
2009     return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value);
2010   } else {
2011     return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value);
2012   }
2013 }

2024   } else {
2025     return _barrier_set->atomic_xchg_at(access, value);
2026   }
2027 }
2028 
2029 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type,
2030                                            LIRItem& base, LIRItem& offset, LIRItem& value) {
2031   decorators |= ACCESS_READ;
2032   decorators |= ACCESS_WRITE;
2033   // Atomic operations are SEQ_CST by default
2034   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
2035   LIRAccess access(this, decorators, base, offset, type);
2036   if (access.is_raw()) {
2037     return _barrier_set->BarrierSetC1::atomic_add_at(access, value);
2038   } else {
2039     return _barrier_set->atomic_add_at(access, value);
2040   }
2041 }
2042 
2043 void LIRGenerator::do_LoadField(LoadField* x) {
2044   ciField* field = x->field();
2045   bool needs_patching = x->needs_patching();
2046   bool is_volatile = field->is_volatile();
2047   BasicType field_type = x->field_type();
2048 
2049   CodeEmitInfo* info = nullptr;
2050   if (needs_patching) {
2051     assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access");
2052     info = state_for(x, x->state_before());
2053   } else if (x->needs_null_check()) {
2054     NullCheck* nc = x->explicit_null_check();
2055     if (nc == nullptr) {
2056       info = state_for(x);
2057     } else {
2058       info = state_for(nc);
2059     }
2060   }
2061 
2062   LIRItem object(x->obj(), this);
2063 
2064   object.load_item();
2065 
2066 #ifndef PRODUCT

2077        stress_deopt)) {
2078     LIR_Opr obj = object.result();
2079     if (stress_deopt) {
2080       obj = new_register(T_OBJECT);
2081       __ move(LIR_OprFact::oopConst(nullptr), obj);
2082     }
2083     // Emit an explicit null check because the offset is too large.
2084     // If the class is not loaded and the object is null, we need to deoptimize to throw a
2085     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
2086     __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
2087   }
2088 
2089   DecoratorSet decorators = IN_HEAP;
2090   if (is_volatile) {
2091     decorators |= MO_SEQ_CST;
2092   }
2093   if (needs_patching) {
2094     decorators |= C1_NEEDS_PATCHING;
2095   }
2096 
2097   if (field->is_flat()) {
2098     ciInlineKlass* vk = field->type()->as_inline_klass();
2099 #ifdef ASSERT
2100     bool is_naturally_atomic = vk->nof_declared_nonstatic_fields() <= 1;
2101     bool needs_atomic_access = !field->is_null_free() || (field->is_volatile() && !is_naturally_atomic);
2102     assert(needs_atomic_access, "No atomic access required");
2103     assert(x->state_before() != nullptr, "Needs state before");
2104 #endif
2105 
2106     // Allocate buffer (we can't easily do this conditionally on the null check below
2107     // because branches added in the LIR are opaque to the register allocator).
2108     NewInstance* buffer = new NewInstance(vk, x->state_before(), false, true);
2109     do_NewInstance(buffer);
2110     LIRItem dest(buffer, this);
2111 
2112     // Copy the payload to the buffer
2113     BasicType bt = vk->atomic_size_to_basic_type(field->is_null_free());
2114     LIR_Opr payload = new_register((bt == T_LONG) ? bt : T_INT);
2115     access_load_at(decorators, bt, object, LIR_OprFact::intConst(field->offset_in_bytes()), payload,
2116                    // Make sure to emit an implicit null check
2117                    info ? new CodeEmitInfo(info) : nullptr, info);
2118     access_store_at(decorators, bt, dest, LIR_OprFact::intConst(vk->payload_offset()), payload);
2119 
2120     if (field->is_null_free()) {
2121       set_result(x, buffer->operand());
2122     } else {
2123       // Check the null marker and set result to null if it's not set
2124       __ logical_and(payload, null_marker_mask(bt, field), payload);
2125       __ cmp(lir_cond_equal, payload, (bt == T_LONG) ? LIR_OprFact::longConst(0) : LIR_OprFact::intConst(0));
2126       __ cmove(lir_cond_equal, LIR_OprFact::oopConst(nullptr), buffer->operand(), rlock_result(x), T_OBJECT);
2127     }
2128 
2129     // Ensure the copy is visible before any subsequent store that publishes the buffer.
2130     __ membar_storestore();
2131     return;
2132   }
2133 
2134   LIR_Opr result = rlock_result(x, field_type);
2135   access_load_at(decorators, field_type,
2136                  object, LIR_OprFact::intConst(x->offset()), result,
2137                  info ? new CodeEmitInfo(info) : nullptr, info);
2138 }
2139 
2140 // int/long jdk.internal.util.Preconditions.checkIndex
2141 void LIRGenerator::do_PreconditionsCheckIndex(Intrinsic* x, BasicType type) {
2142   assert(x->number_of_arguments() == 3, "wrong type");
2143   LIRItem index(x->argument_at(0), this);
2144   LIRItem length(x->argument_at(1), this);
2145   LIRItem oobef(x->argument_at(2), this);
2146 
2147   index.load_item();
2148   length.load_item();
2149   oobef.load_item();
2150 
2151   LIR_Opr result = rlock_result(x);
2152   // x->state() is created from copy_state_for_exception, it does not contains arguments
2153   // we should prepare them before entering into interpreter mode due to deoptimization.

2262       __ move(LIR_OprFact::oopConst(nullptr), obj);
2263       __ null_check(obj, new CodeEmitInfo(null_check_info));
2264     }
2265   }
2266 
2267   if (needs_range_check) {
2268     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
2269       __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result()));
2270     } else if (use_length) {
2271       // TODO: use a (modified) version of array_range_check that does not require a
2272       //       constant length to be loaded to a register
2273       __ cmp(lir_cond_belowEqual, length.result(), index.result());
2274       __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
2275     } else {
2276       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
2277       // The range check performs the null check, so clear it out for the load
2278       null_check_info = nullptr;
2279     }
2280   }
2281 
2282   ciMethodData* md = nullptr;
2283   ciProfileData* data = nullptr;
2284   if (x->should_profile()) {
2285     if (x->array()->is_loaded_flat_array()) {
2286       // No need to profile a load from a flat array of known type. This can happen if
2287       // the type only became known after optimizations (for example, after the PhiSimplifier).
2288       x->set_should_profile(false);
2289     } else {
2290       int bci = x->profiled_bci();
2291       md = x->profiled_method()->method_data();
2292       assert(md != nullptr, "Sanity");
2293       data = md->bci_to_data(bci);
2294       assert(data != nullptr && data->is_ArrayLoadData(), "incorrect profiling entry");
2295       ciArrayLoadData* load_data = (ciArrayLoadData*)data;
2296       profile_array_type(x, md, load_data);
2297     }
2298   }
2299 
2300   Value element;
2301   if (x->vt() != nullptr) {
2302     assert(x->array()->is_loaded_flat_array(), "must be");
2303     // Find the destination address (of the NewInlineTypeInstance).
2304     LIRItem obj_item(x->vt(), this);
2305 
2306     access_flat_array(true, array, index, obj_item,
2307                       x->delayed() == nullptr ? 0 : x->delayed()->field(),
2308                       x->delayed() == nullptr ? 0 : x->delayed()->offset());
2309     set_no_result(x);
2310   } else if (x->delayed() != nullptr) {
2311     assert(x->array()->is_loaded_flat_array(), "must be");
2312     LIR_Opr result = rlock_result(x, x->delayed()->field()->type()->basic_type());
2313     access_sub_element(array, index, result, x->delayed()->field(), x->delayed()->offset());
2314   } else {
2315     LIR_Opr result = rlock_result(x, x->elt_type());
2316     LoadFlattenedArrayStub* slow_path = nullptr;
2317 
2318     if (x->should_profile() && x->array()->maybe_null_free_array()) {
2319       profile_null_free_array(array, md, data);
2320     }
2321 
2322     if (x->elt_type() == T_OBJECT && x->array()->maybe_flat_array()) {
2323       assert(x->delayed() == nullptr, "Delayed LoadIndexed only apply to loaded_flat_arrays");
2324       index.load_item();
2325       // if we are loading from a flat array, load it using a runtime call
2326       slow_path = new LoadFlattenedArrayStub(array.result(), index.result(), result, state_for(x, x->state_before()));
2327       check_flat_array(array.result(), LIR_OprFact::illegalOpr, slow_path);
2328       set_in_conditional_code(true);
2329     }
2330 
2331     DecoratorSet decorators = IN_HEAP | IS_ARRAY;
2332     access_load_at(decorators, x->elt_type(),
2333                    array, index.result(), result,
2334                    nullptr, null_check_info);
2335 
2336     if (slow_path != nullptr) {
2337       __ branch_destination(slow_path->continuation());
2338       set_in_conditional_code(false);
2339     }
2340 
2341     element = x;
2342   }
2343 
2344   if (x->should_profile()) {
2345     profile_element_type(element, md, (ciArrayLoadData*)data);
2346   }

2347 }
2348 
2349 
2350 void LIRGenerator::do_NullCheck(NullCheck* x) {
2351   if (x->can_trap()) {
2352     LIRItem value(x->obj(), this);
2353     value.load_item();
2354     CodeEmitInfo* info = state_for(x);
2355     __ null_check(value.result(), info);
2356   }
2357 }
2358 
2359 
2360 void LIRGenerator::do_TypeCast(TypeCast* x) {
2361   LIRItem value(x->obj(), this);
2362   value.load_item();
2363   // the result is the same as from the node we are casting
2364   set_result(x, value.result());
2365 }
2366 

2809   Compilation* comp = Compilation::current();
2810   if (do_update) {
2811     // try to find exact type, using CHA if possible, so that loading
2812     // the klass from the object can be avoided
2813     ciType* type = obj->exact_type();
2814     if (type == nullptr) {
2815       type = obj->declared_type();
2816       type = comp->cha_exact_type(type);
2817     }
2818     assert(type == nullptr || type->is_klass(), "type should be class");
2819     exact_klass = (type != nullptr && type->is_loaded()) ? (ciKlass*)type : nullptr;
2820 
2821     do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2822   }
2823 
2824   if (!do_null && !do_update) {
2825     return result;
2826   }
2827 
2828   ciKlass* exact_signature_k = nullptr;
2829   if (do_update && signature_at_call_k != nullptr) {
2830     // Is the type from the signature exact (the only one possible)?
2831     exact_signature_k = signature_at_call_k->exact_klass();
2832     if (exact_signature_k == nullptr) {
2833       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2834     } else {
2835       result = exact_signature_k;
2836       // Known statically. No need to emit any code: prevent
2837       // LIR_Assembler::emit_profile_type() from emitting useless code
2838       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2839     }
2840     // exact_klass and exact_signature_k can be both non null but
2841     // different if exact_klass is loaded after the ciObject for
2842     // exact_signature_k is created.
2843     if (exact_klass == nullptr && exact_signature_k != nullptr && exact_klass != exact_signature_k) {
2844       // sometimes the type of the signature is better than the best type
2845       // the compiler has
2846       exact_klass = exact_signature_k;
2847     }
2848     if (callee_signature_k != nullptr &&
2849         callee_signature_k != signature_at_call_k) {
2850       ciKlass* improved_klass = callee_signature_k->exact_klass();
2851       if (improved_klass == nullptr) {
2852         improved_klass = comp->cha_exact_type(callee_signature_k);
2853       }
2854       if (exact_klass == nullptr && improved_klass != nullptr && exact_klass != improved_klass) {
2855         exact_klass = exact_signature_k;
2856       }
2857     }
2858     do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2859   }
2860 
2861   if (exact_klass != nullptr && exact_klass->is_obj_array_klass()) {
2862     if (exact_klass->can_be_inline_array_klass()) {
2863       // Inline type arrays can have additional properties, we need to load the klass
2864       // TODO 8350865 Can we do better here and track the properties?
2865       exact_klass = nullptr;
2866       do_update = true;
2867     } else {
2868       // For a direct pointer comparison, we need the refined array klass pointer
2869       exact_klass = ciObjArrayKlass::make(exact_klass->as_array_klass()->element_klass());
2870       do_update = ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2871     }
2872   }
2873   if (!do_null && !do_update) {
2874     return result;
2875   }
2876 
2877   if (mdp == LIR_OprFact::illegalOpr) {
2878     mdp = new_register(T_METADATA);
2879     __ metadata2reg(md->constant_encoding(), mdp);
2880     if (md_base_offset != 0) {
2881       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2882       mdp = new_pointer_register();
2883       __ leal(LIR_OprFact::address(base_type_address), mdp);
2884     }
2885   }
2886   LIRItem value(obj, this);
2887   value.load_item();
2888   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2889                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != nullptr);
2890   return result;
2891 }
2892 

2906         assert(!src->is_illegal(), "check");
2907         BasicType t = src->type();
2908         if (is_reference_type(t)) {
2909           intptr_t profiled_k = parameters->type(j);
2910           Local* local = x->state()->local_at(java_index)->as_Local();
2911           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2912                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2913                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), nullptr);
2914           // If the profile is known statically set it once for all and do not emit any code
2915           if (exact != nullptr) {
2916             md->set_parameter_type(j, exact);
2917           }
2918           j++;
2919         }
2920         java_index += type2size[t];
2921       }
2922     }
2923   }
2924 }
2925 
2926 void LIRGenerator::profile_flags(ciMethodData* md, ciProfileData* data, int flag, LIR_Condition condition) {
2927   assert(md != nullptr && data != nullptr, "should have been initialized");
2928   LIR_Opr mdp = new_register(T_METADATA);
2929   __ metadata2reg(md->constant_encoding(), mdp);
2930   LIR_Address* addr = new LIR_Address(mdp, md->byte_offset_of_slot(data, DataLayout::flags_offset()), T_BYTE);
2931   LIR_Opr flags = new_register(T_INT);
2932   __ move(addr, flags);
2933   LIR_Opr update;
2934   if (condition != lir_cond_always) {
2935     update = new_register(T_INT);
2936     __ cmove(condition, LIR_OprFact::intConst(0), LIR_OprFact::intConst(flag), update, T_INT);
2937   } else {
2938     update = LIR_OprFact::intConst(flag);
2939   }
2940   __ logical_or(flags, update, flags);
2941   __ store(flags, addr);
2942 }
2943 
2944 void LIRGenerator::profile_null_free_array(LIRItem array, ciMethodData* md, ciProfileData* data) {
2945   assert(compilation()->profile_array_accesses(), "array access profiling is disabled");
2946   LabelObj* L_end = new LabelObj();
2947   LIR_Opr tmp = new_register(T_METADATA);
2948   __ check_null_free_array(array.result(), tmp);
2949 
2950   profile_flags(md, data, ArrayStoreData::null_free_array_byte_constant(), lir_cond_equal);
2951 }
2952 
2953 template <class ArrayData> void LIRGenerator::profile_array_type(AccessIndexed* x, ciMethodData*& md, ArrayData*& load_store) {
2954   assert(compilation()->profile_array_accesses(), "array access profiling is disabled");
2955   LIR_Opr mdp = LIR_OprFact::illegalOpr;
2956   profile_type(md, md->byte_offset_of_slot(load_store, ArrayData::array_offset()), 0,
2957                load_store->array()->type(), x->array(), mdp, true, nullptr, nullptr);
2958 }
2959 
2960 void LIRGenerator::profile_element_type(Value element, ciMethodData* md, ciArrayLoadData* load_data) {
2961   assert(compilation()->profile_array_accesses(), "array access profiling is disabled");
2962   assert(md != nullptr && load_data != nullptr, "should have been initialized");
2963   LIR_Opr mdp = LIR_OprFact::illegalOpr;
2964   profile_type(md, md->byte_offset_of_slot(load_data, ArrayLoadData::element_offset()), 0,
2965                load_data->element()->type(), element, mdp, false, nullptr, nullptr);
2966 }
2967 
2968 void LIRGenerator::do_Base(Base* x) {
2969   __ std_entry(LIR_OprFact::illegalOpr);
2970   // Emit moves from physical registers / stack slots to virtual registers
2971   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2972   IRScope* irScope = compilation()->hir()->top_scope();
2973   int java_index = 0;
2974   for (int i = 0; i < args->length(); i++) {
2975     LIR_Opr src = args->at(i);
2976     assert(!src->is_illegal(), "check");
2977     BasicType t = src->type();
2978 
2979     // Types which are smaller than int are passed as int, so
2980     // correct the type which passed.
2981     switch (t) {
2982     case T_BYTE:
2983     case T_BOOLEAN:
2984     case T_SHORT:
2985     case T_CHAR:
2986       t = T_INT;
2987       break;

2989       break;
2990     }
2991 
2992     LIR_Opr dest = new_register(t);
2993     __ move(src, dest);
2994 
2995     // Assign new location to Local instruction for this local
2996     Local* local = x->state()->local_at(java_index)->as_Local();
2997     assert(local != nullptr, "Locals for incoming arguments must have been created");
2998 #ifndef __SOFTFP__
2999     // The java calling convention passes double as long and float as int.
3000     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
3001 #endif // __SOFTFP__
3002     local->set_operand(dest);
3003 #ifdef ASSERT
3004     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, nullptr);
3005 #endif
3006     java_index += type2size[t];
3007   }
3008 
3009   // Check if we need a membar at the beginning of the java.lang.Object
3010   // constructor to satisfy the memory model for strict fields.
3011   if (EnableValhalla && method()->intrinsic_id() == vmIntrinsics::_Object_init) {
3012     __ membar_storestore();
3013   }
3014 
3015   if (compilation()->env()->dtrace_method_probes()) {
3016     BasicTypeList signature;
3017     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3018     signature.append(T_METADATA); // Method*
3019     LIR_OprList* args = new LIR_OprList();
3020     args->append(getThreadPointer());
3021     LIR_Opr meth = new_register(T_METADATA);
3022     __ metadata2reg(method()->constant_encoding(), meth);
3023     args->append(meth);
3024     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, nullptr);
3025   }
3026 
3027   if (method()->is_synchronized()) {
3028     LIR_Opr obj;
3029     if (method()->is_static()) {
3030       obj = new_register(T_OBJECT);
3031       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
3032     } else {
3033       Local* receiver = x->state()->local_at(0)->as_Local();
3034       assert(receiver != nullptr, "must already exist");

3036     }
3037     assert(obj->is_valid(), "must be valid");
3038 
3039     if (method()->is_synchronized()) {
3040       LIR_Opr lock = syncLockOpr();
3041       __ load_stack_address_monitor(0, lock);
3042 
3043       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, x->check_flag(Instruction::DeoptimizeOnException));
3044       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
3045 
3046       // receiver is guaranteed non-null so don't need CodeEmitInfo
3047       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, nullptr);
3048     }
3049   }
3050   // increment invocation counters if needed
3051   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
3052     profile_parameters(x);
3053     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, false);
3054     increment_invocation_counter(info);
3055   }
3056   if (method()->has_scalarized_args()) {
3057     // Check if deoptimization was triggered (i.e. orig_pc was set) while buffering scalarized inline type arguments
3058     // in the entry point (see comments in frame::deoptimize). If so, deoptimize only now that we have the right state.
3059     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), nullptr, false);
3060     CodeStub* deopt_stub = new DeoptimizeStub(info, Deoptimization::Reason_none, Deoptimization::Action_none);
3061     __ append(new LIR_Op0(lir_check_orig_pc));
3062     __ branch(lir_cond_notEqual, deopt_stub);
3063   }
3064 
3065   // all blocks with a successor must end with an unconditional jump
3066   // to the successor even if they are consecutive
3067   __ jump(x->default_sux());
3068 }
3069 
3070 
3071 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
3072   // construct our frame and model the production of incoming pointer
3073   // to the OSR buffer.
3074   __ osr_entry(LIR_Assembler::osrBufferPointer());
3075   LIR_Opr result = rlock_result(x);
3076   __ move(LIR_Assembler::osrBufferPointer(), result);
3077 }
3078 
3079 void LIRGenerator::invoke_load_one_argument(LIRItem* param, LIR_Opr loc) {
3080   if (loc->is_register()) {
3081     param->load_item_force(loc);
3082   } else {
3083     LIR_Address* addr = loc->as_address_ptr();
3084     param->load_for_store(addr->type());
3085     if (addr->type() == T_OBJECT) {
3086       __ move_wide(param->result(), addr);
3087     } else {
3088       __ move(param->result(), addr);
3089     }
3090   }
3091 }
3092 
3093 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
3094   assert(args->length() == arg_list->length(),
3095          "args=%d, arg_list=%d", args->length(), arg_list->length());
3096   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
3097     LIRItem* param = args->at(i);
3098     LIR_Opr loc = arg_list->at(i);
3099     invoke_load_one_argument(param, loc);









3100   }
3101 
3102   if (x->has_receiver()) {
3103     LIRItem* receiver = args->at(0);
3104     LIR_Opr loc = arg_list->at(0);
3105     if (loc->is_register()) {
3106       receiver->load_item_force(loc);
3107     } else {
3108       assert(loc->is_address(), "just checking");
3109       receiver->load_for_store(T_OBJECT);
3110       __ move_wide(receiver->result(), loc->as_address_ptr());
3111     }
3112   }
3113 }
3114 
3115 
3116 // Visits all arguments, returns appropriate items without loading them
3117 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
3118   LIRItemList* argument_items = new LIRItemList();
3119   if (x->has_receiver()) {

3226   __ move(tmp, reg);
3227 }
3228 
3229 
3230 
3231 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
3232 void LIRGenerator::do_IfOp(IfOp* x) {
3233 #ifdef ASSERT
3234   {
3235     ValueTag xtag = x->x()->type()->tag();
3236     ValueTag ttag = x->tval()->type()->tag();
3237     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
3238     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
3239     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
3240   }
3241 #endif
3242 
3243   LIRItem left(x->x(), this);
3244   LIRItem right(x->y(), this);
3245   left.load_item();
3246   if (can_inline_as_constant(right.value()) && !x->substitutability_check()) {
3247     right.dont_load_item();
3248   } else {
3249     // substitutability_check() needs to use right as a base register.
3250     right.load_item();
3251   }
3252 
3253   LIRItem t_val(x->tval(), this);
3254   LIRItem f_val(x->fval(), this);
3255   t_val.dont_load_item();
3256   f_val.dont_load_item();

3257 
3258   if (x->substitutability_check()) {
3259     substitutability_check(x, left, right, t_val, f_val);
3260   } else {
3261     LIR_Opr reg = rlock_result(x);
3262     __ cmp(lir_cond(x->cond()), left.result(), right.result());
3263     __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
3264   }
3265 }
3266 
3267 void LIRGenerator::substitutability_check(IfOp* x, LIRItem& left, LIRItem& right, LIRItem& t_val, LIRItem& f_val) {
3268   assert(x->cond() == If::eql || x->cond() == If::neq, "must be");
3269   bool is_acmpeq = (x->cond() == If::eql);
3270   LIR_Opr equal_result     = is_acmpeq ? t_val.result() : f_val.result();
3271   LIR_Opr not_equal_result = is_acmpeq ? f_val.result() : t_val.result();
3272   LIR_Opr result = rlock_result(x);
3273   CodeEmitInfo* info = state_for(x, x->state_before());
3274 
3275   substitutability_check_common(x->x(), x->y(), left, right, equal_result, not_equal_result, result, info);
3276 }
3277 
3278 void LIRGenerator::substitutability_check(If* x, LIRItem& left, LIRItem& right) {
3279   LIR_Opr equal_result     = LIR_OprFact::intConst(1);
3280   LIR_Opr not_equal_result = LIR_OprFact::intConst(0);
3281   LIR_Opr result = new_register(T_INT);
3282   CodeEmitInfo* info = state_for(x, x->state_before());
3283 
3284   substitutability_check_common(x->x(), x->y(), left, right, equal_result, not_equal_result, result, info);
3285 
3286   assert(x->cond() == If::eql || x->cond() == If::neq, "must be");
3287   __ cmp(lir_cond(x->cond()), result, equal_result);
3288 }
3289 
3290 void LIRGenerator::substitutability_check_common(Value left_val, Value right_val, LIRItem& left, LIRItem& right,
3291                                                  LIR_Opr equal_result, LIR_Opr not_equal_result, LIR_Opr result,
3292                                                  CodeEmitInfo* info) {
3293   LIR_Opr tmp1 = LIR_OprFact::illegalOpr;
3294   LIR_Opr tmp2 = LIR_OprFact::illegalOpr;
3295   LIR_Opr left_klass_op = LIR_OprFact::illegalOpr;
3296   LIR_Opr right_klass_op = LIR_OprFact::illegalOpr;
3297 
3298   ciKlass* left_klass  = left_val ->as_loaded_klass_or_null();
3299   ciKlass* right_klass = right_val->as_loaded_klass_or_null();
3300 
3301   if ((left_klass == nullptr || right_klass == nullptr) ||// The klass is still unloaded, or came from a Phi node.
3302       !left_klass->is_inlinetype() || !right_klass->is_inlinetype()) {
3303     init_temps_for_substitutability_check(tmp1, tmp2);
3304   }
3305 
3306   if (left_klass != nullptr && left_klass->is_inlinetype() && left_klass == right_klass) {
3307     // No need to load klass -- the operands are statically known to be the same inline klass.
3308   } else {
3309     BasicType t_klass = UseCompressedOops ? T_INT : T_METADATA;
3310     left_klass_op = new_register(t_klass);
3311     right_klass_op = new_register(t_klass);
3312   }
3313 
3314   CodeStub* slow_path = new SubstitutabilityCheckStub(left.result(), right.result(), info);
3315   __ substitutability_check(result, left.result(), right.result(), equal_result, not_equal_result,
3316                             tmp1, tmp2,
3317                             left_klass, right_klass, left_klass_op, right_klass_op, info, slow_path);
3318 }
3319 
3320 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
3321   assert(x->number_of_arguments() == 0, "wrong type");
3322   // Enforce computation of _reserved_argument_area_size which is required on some platforms.
3323   BasicTypeList signature;
3324   CallingConvention* cc = frame_map()->c_calling_convention(&signature);
3325   LIR_Opr reg = result_register_for(x->type());
3326   __ call_runtime_leaf(routine, getThreadTemp(),
3327                        reg, new LIR_OprList());
3328   LIR_Opr result = rlock_result(x);
3329   __ move(reg, result);
3330 }
3331 
3332 
3333 
3334 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
3335   switch (x->id()) {
3336   case vmIntrinsics::_intBitsToFloat      :
3337   case vmIntrinsics::_doubleToRawLongBits :

3572   if (x->recv() != nullptr || x->nb_profiled_args() > 0) {
3573     profile_parameters_at_call(x);
3574   }
3575 
3576   if (x->recv() != nullptr) {
3577     LIRItem value(x->recv(), this);
3578     value.load_item();
3579     recv = new_register(T_OBJECT);
3580     __ move(value.result(), recv);
3581   }
3582   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3583 }
3584 
3585 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3586   int bci = x->bci_of_invoke();
3587   ciMethodData* md = x->method()->method_data_or_null();
3588   assert(md != nullptr, "Sanity");
3589   ciProfileData* data = md->bci_to_data(bci);
3590   if (data != nullptr) {
3591     assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3592     ciSingleTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3593     LIR_Opr mdp = LIR_OprFact::illegalOpr;
3594 
3595     bool ignored_will_link;
3596     ciSignature* signature_at_call = nullptr;
3597     x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3598 
3599     // The offset within the MDO of the entry to update may be too large
3600     // to be used in load/store instructions on some platforms. So have
3601     // profile_type() compute the address of the profile in a register.
3602     ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3603         ret->type(), x->ret(), mdp,
3604         !x->needs_null_check(),
3605         signature_at_call->return_type()->as_klass(),
3606         x->callee()->signature()->return_type()->as_klass());
3607     if (exact != nullptr) {
3608       md->set_return_type(bci, exact);
3609     }
3610   }
3611 }
3612 
3613 bool LIRGenerator::profile_inline_klass(ciMethodData* md, ciProfileData* data, Value value, int flag) {
3614   ciKlass* klass = value->as_loaded_klass_or_null();
3615   if (klass != nullptr) {
3616     if (klass->is_inlinetype()) {
3617       profile_flags(md, data, flag, lir_cond_always);
3618     } else if (klass->can_be_inline_klass()) {
3619       return false;
3620     }
3621   } else {
3622     return false;
3623   }
3624   return true;
3625 }
3626 
3627 
3628 void LIRGenerator::do_ProfileACmpTypes(ProfileACmpTypes* x) {
3629   ciMethod* method = x->method();
3630   assert(method != nullptr, "method should be set if branch is profiled");
3631   ciMethodData* md = method->method_data_or_null();
3632   assert(md != nullptr, "Sanity");
3633   ciProfileData* data = md->bci_to_data(x->bci());
3634   assert(data != nullptr, "must have profiling data");
3635   assert(data->is_ACmpData(), "need BranchData for two-way branches");
3636   ciACmpData* acmp = (ciACmpData*)data;
3637   LIR_Opr mdp = LIR_OprFact::illegalOpr;
3638   profile_type(md, md->byte_offset_of_slot(acmp, ACmpData::left_offset()), 0,
3639                acmp->left()->type(), x->left(), mdp, !x->left_maybe_null(), nullptr, nullptr);
3640   int flags_offset = md->byte_offset_of_slot(data, DataLayout::flags_offset());
3641   if (!profile_inline_klass(md, acmp, x->left(), ACmpData::left_inline_type_byte_constant())) {
3642     LIR_Opr mdp = new_register(T_METADATA);
3643     __ metadata2reg(md->constant_encoding(), mdp);
3644     LIRItem value(x->left(), this);
3645     value.load_item();
3646     __ profile_inline_type(new LIR_Address(mdp, flags_offset, T_INT), value.result(), ACmpData::left_inline_type_byte_constant(), new_register(T_INT), !x->left_maybe_null());
3647   }
3648   profile_type(md, md->byte_offset_of_slot(acmp, ACmpData::left_offset()),
3649                in_bytes(ACmpData::right_offset()) - in_bytes(ACmpData::left_offset()),
3650                acmp->right()->type(), x->right(), mdp, !x->right_maybe_null(), nullptr, nullptr);
3651   if (!profile_inline_klass(md, acmp, x->right(), ACmpData::right_inline_type_byte_constant())) {
3652     LIR_Opr mdp = new_register(T_METADATA);
3653     __ metadata2reg(md->constant_encoding(), mdp);
3654     LIRItem value(x->right(), this);
3655     value.load_item();
3656     __ profile_inline_type(new LIR_Address(mdp, flags_offset, T_INT), value.result(), ACmpData::right_inline_type_byte_constant(), new_register(T_INT), !x->left_maybe_null());
3657   }
3658 }
3659 
3660 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3661   // We can safely ignore accessors here, since c2 will inline them anyway,
3662   // accessors are also always mature.
3663   if (!x->inlinee()->is_accessor()) {
3664     CodeEmitInfo* info = state_for(x, x->state(), true);
3665     // Notify the runtime very infrequently only to take care of counter overflows
3666     int freq_log = Tier23InlineeNotifyFreqLog;
3667     double scale;
3668     if (_method->has_option_value(CompileCommandEnum::CompileThresholdScaling, scale)) {
3669       freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3670     }
3671     increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true);
3672   }
3673 }
3674 
3675 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) {
3676   if (compilation()->is_profiling()) {
3677 #if defined(X86) && !defined(_LP64)
3678     // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
3679     LIR_Opr left_copy = new_register(left->type());
< prev index next >