13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "c1/c1_Compilation.hpp"
26 #include "c1/c1_Defs.hpp"
27 #include "c1/c1_FrameMap.hpp"
28 #include "c1/c1_Instruction.hpp"
29 #include "c1/c1_LIRAssembler.hpp"
30 #include "c1/c1_LIRGenerator.hpp"
31 #include "c1/c1_ValueStack.hpp"
32 #include "ci/ciArrayKlass.hpp"
33 #include "ci/ciInstance.hpp"
34 #include "ci/ciObjArray.hpp"
35 #include "ci/ciUtilities.hpp"
36 #include "compiler/compilerDefinitions.inline.hpp"
37 #include "compiler/compilerOracle.hpp"
38 #include "gc/shared/barrierSet.hpp"
39 #include "gc/shared/c1/barrierSetC1.hpp"
40 #include "oops/klass.inline.hpp"
41 #include "oops/methodCounters.hpp"
42 #include "runtime/sharedRuntime.hpp"
43 #include "runtime/stubRoutines.hpp"
44 #include "runtime/vm_version.hpp"
45 #include "utilities/bitMap.inline.hpp"
46 #include "utilities/macros.hpp"
47 #include "utilities/powerOfTwo.hpp"
48
49 #ifdef ASSERT
50 #define __ gen()->lir(__FILE__, __LINE__)->
51 #else
52 #define __ gen()->lir()->
53 #endif
54
198 }
199
200
201 //--------------------------------------------------------------
202 // LIRItem
203
204 void LIRItem::set_result(LIR_Opr opr) {
205 assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
206 value()->set_operand(opr);
207
208 #ifdef ASSERT
209 if (opr->is_virtual()) {
210 _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), nullptr);
211 }
212 #endif
213
214 _result = opr;
215 }
216
217 void LIRItem::load_item() {
218 if (result()->is_illegal()) {
219 // update the items result
220 _result = value()->operand();
221 }
222 if (!result()->is_register()) {
223 LIR_Opr reg = _gen->new_register(value()->type());
224 __ move(result(), reg);
225 if (result()->is_constant()) {
226 _result = reg;
227 } else {
228 set_result(reg);
229 }
230 }
231 }
232
233
234 void LIRItem::load_for_store(BasicType type) {
235 if (_gen->can_store_as_constant(value(), type)) {
236 _result = value()->operand();
237 if (!_result->is_constant()) {
605 assert(right_op != result_op, "malformed");
606 __ move(left_op, result_op);
607 left_op = result_op;
608 }
609
610 switch(code) {
611 case Bytecodes::_iand:
612 case Bytecodes::_land: __ logical_and(left_op, right_op, result_op); break;
613
614 case Bytecodes::_ior:
615 case Bytecodes::_lor: __ logical_or(left_op, right_op, result_op); break;
616
617 case Bytecodes::_ixor:
618 case Bytecodes::_lxor: __ logical_xor(left_op, right_op, result_op); break;
619
620 default: ShouldNotReachHere();
621 }
622 }
623
624
625 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
626 // for slow path, use debug info for state after successful locking
627 CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
628 __ load_stack_address_monitor(monitor_no, lock);
629 // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
630 __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
631 }
632
633
634 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
635 // setup registers
636 LIR_Opr hdr = lock;
637 lock = new_hdr;
638 CodeStub* slow_path = new MonitorExitStub(lock, monitor_no);
639 __ load_stack_address_monitor(monitor_no, lock);
640 __ unlock_object(hdr, object, lock, scratch, slow_path);
641 }
642
643 #ifndef PRODUCT
644 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
645 if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
646 tty->print_cr(" ###class not loaded at new bci %d", new_instance->printable_bci());
647 } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) {
648 tty->print_cr(" ###class not resolved at new bci %d", new_instance->printable_bci());
649 }
650 }
651 #endif
652
653 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
654 klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
655 // If klass is not loaded we do not know if the klass has finalizers:
656 if (UseFastNewInstance && klass->is_loaded()
657 && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
658
659 StubId stub_id = klass->is_initialized() ? StubId::c1_fast_new_instance_id : StubId::c1_fast_new_instance_init_check_id;
660
661 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
662
663 assert(klass->is_loaded(), "must be loaded");
664 // allocate space for instance
665 assert(klass->size_helper() > 0, "illegal instance size");
666 const int instance_size = align_object_size(klass->size_helper());
667 __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
668 oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
669 } else {
670 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, StubId::c1_new_instance_id);
671 __ branch(lir_cond_always, slow_path);
672 __ branch_destination(slow_path->continuation());
673 }
674 }
675
676
677 static bool is_constant_zero(Instruction* inst) {
678 IntConstant* c = inst->type()->as_IntConstant();
679 if (c) {
680 return (c->value() == 0);
681 }
682 return false;
683 }
684
685
686 static bool positive_constant(Instruction* inst) {
687 IntConstant* c = inst->type()->as_IntConstant();
688 if (c) {
689 return (c->value() >= 0);
690 }
691 return false;
743 } else if (dst_exact_type != nullptr && dst_exact_type->is_obj_array_klass()) {
744 ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
745 ciArrayKlass* src_type = nullptr;
746 if (src_exact_type != nullptr && src_exact_type->is_obj_array_klass()) {
747 src_type = (ciArrayKlass*) src_exact_type;
748 } else if (src_declared_type != nullptr && src_declared_type->is_obj_array_klass()) {
749 src_type = (ciArrayKlass*) src_declared_type;
750 }
751 if (src_type != nullptr) {
752 if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
753 is_exact = true;
754 expected_type = dst_type;
755 }
756 }
757 }
758 // at least pass along a good guess
759 if (expected_type == nullptr) expected_type = dst_exact_type;
760 if (expected_type == nullptr) expected_type = src_declared_type;
761 if (expected_type == nullptr) expected_type = dst_declared_type;
762
763 src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
764 dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
765 }
766
767 // if a probable array type has been identified, figure out if any
768 // of the required checks for a fast case can be elided.
769 int flags = LIR_OpArrayCopy::all_flags;
770
771 if (!src_objarray)
772 flags &= ~LIR_OpArrayCopy::src_objarray;
773 if (!dst_objarray)
774 flags &= ~LIR_OpArrayCopy::dst_objarray;
775
776 if (!x->arg_needs_null_check(0))
777 flags &= ~LIR_OpArrayCopy::src_null_check;
778 if (!x->arg_needs_null_check(2))
779 flags &= ~LIR_OpArrayCopy::dst_null_check;
780
781
782 if (expected_type != nullptr) {
783 Value length_limit = nullptr;
784
785 IfOp* ifop = length->as_IfOp();
786 if (ifop != nullptr) {
787 // look for expressions like min(v, a.length) which ends up as
788 // x > y ? y : x or x >= y ? y : x
789 if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
790 ifop->x() == ifop->fval() &&
1443 }
1444 return _vreg_flags.at(vreg_num, f);
1445 }
1446
1447
1448 // Block local constant handling. This code is useful for keeping
1449 // unpinned constants and constants which aren't exposed in the IR in
1450 // registers. Unpinned Constant instructions have their operands
1451 // cleared when the block is finished so that other blocks can't end
1452 // up referring to their registers.
1453
1454 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1455 assert(!x->is_pinned(), "only for unpinned constants");
1456 _unpinned_constants.append(x);
1457 return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1458 }
1459
1460
1461 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1462 BasicType t = c->type();
1463 for (int i = 0; i < _constants.length(); i++) {
1464 LIR_Const* other = _constants.at(i);
1465 if (t == other->type()) {
1466 switch (t) {
1467 case T_INT:
1468 case T_FLOAT:
1469 if (c->as_jint_bits() != other->as_jint_bits()) continue;
1470 break;
1471 case T_LONG:
1472 case T_DOUBLE:
1473 if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1474 if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1475 break;
1476 case T_OBJECT:
1477 if (c->as_jobject() != other->as_jobject()) continue;
1478 break;
1479 default:
1480 break;
1481 }
1482 return _reg_for_constants.at(i);
1483 }
1484 }
1485
1486 LIR_Opr result = new_register(t);
1487 __ move((LIR_Opr)c, result);
1488 _constants.append(c);
1489 _reg_for_constants.append(result);
1490 return result;
1491 }
1492
1493 //------------------------field access--------------------------------------
1494
1495 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
1496 assert(x->number_of_arguments() == 4, "wrong type");
1497 LIRItem obj (x->argument_at(0), this); // object
1498 LIRItem offset(x->argument_at(1), this); // offset of field
1499 LIRItem cmp (x->argument_at(2), this); // value to compare with field
1500 LIRItem val (x->argument_at(3), this); // replace field with val if matches cmp
1501 assert(obj.type()->tag() == objectTag, "invalid type");
1502 assert(cmp.type()->tag() == type->tag(), "invalid type");
1503 assert(val.type()->tag() == type->tag(), "invalid type");
1504
1505 LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type),
1506 obj, offset, cmp, val);
1507 set_result(x, result);
1508 }
1509
1510 // Comment copied form templateTable_i486.cpp
1511 // ----------------------------------------------------------------------------
1512 // Volatile variables demand their effects be made known to all CPU's in
1513 // order. Store buffers on most chips allow reads & writes to reorder; the
1514 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1515 // memory barrier (i.e., it's not sufficient that the interpreter does not
1516 // reorder volatile references, the hardware also must not reorder them).
1517 //
1518 // According to the new Java Memory Model (JMM):
1519 // (1) All volatiles are serialized wrt to each other.
1520 // ALSO reads & writes act as acquire & release, so:
1521 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1522 // the read float up to before the read. It's OK for non-volatile memory refs
1523 // that happen before the volatile read to float down below it.
1524 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1525 // that happen BEFORE the write float down to after the write. It's OK for
1526 // non-volatile memory refs that happen after the volatile write to float up
1527 // before it.
1528 //
1529 // We only put in barriers around volatile refs (they are expensive), not
1530 // _between_ memory refs (that would require us to track the flavor of the
1531 // previous memory refs). Requirements (2) and (3) require some barriers
1532 // before volatile stores and after volatile loads. These nearly cover
1533 // requirement (1) but miss the volatile-store-volatile-load case. This final
1534 // case is placed after volatile-stores although it could just as well go
1535 // before volatile-loads.
1536
1537
1538 void LIRGenerator::do_StoreField(StoreField* x) {
1539 bool needs_patching = x->needs_patching();
1540 bool is_volatile = x->field()->is_volatile();
1541 BasicType field_type = x->field_type();
1542
1543 CodeEmitInfo* info = nullptr;
1544 if (needs_patching) {
1545 assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access");
1546 info = state_for(x, x->state_before());
1547 } else if (x->needs_null_check()) {
1548 NullCheck* nc = x->explicit_null_check();
1549 if (nc == nullptr) {
1550 info = state_for(x);
1551 } else {
1552 info = state_for(nc);
1553 }
1554 }
1555
1556 LIRItem object(x->obj(), this);
1557 LIRItem value(x->value(), this);
1558
1559 object.load_item();
1560
1561 if (is_volatile || needs_patching) {
1562 // load item if field is volatile (fewer special cases for volatiles)
1563 // load item if field not initialized
1564 // load item if field not constant
1565 // because of code patching we cannot inline constants
1566 if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1567 value.load_byte_item();
1568 } else {
1569 value.load_item();
1570 }
1571 } else {
1572 value.load_for_store(field_type);
1573 }
1574
1575 set_no_result(x);
1576
1577 #ifndef PRODUCT
1578 if (PrintNotLoaded && needs_patching) {
1579 tty->print_cr(" ###class not loaded at store_%s bci %d",
1580 x->is_static() ? "static" : "field", x->printable_bci());
1581 }
1582 #endif
1583
1584 if (x->needs_null_check() &&
1585 (needs_patching ||
1586 MacroAssembler::needs_explicit_null_check(x->offset()))) {
1587 // Emit an explicit null check because the offset is too large.
1588 // If the class is not loaded and the object is null, we need to deoptimize to throw a
1589 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1590 __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1591 }
1592
1593 DecoratorSet decorators = IN_HEAP;
1594 if (is_volatile) {
1595 decorators |= MO_SEQ_CST;
1596 }
1597 if (needs_patching) {
1598 decorators |= C1_NEEDS_PATCHING;
1599 }
1600
1601 access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()),
1602 value.result(), info != nullptr ? new CodeEmitInfo(info) : nullptr, info);
1603 }
1604
1605 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
1606 assert(x->is_pinned(),"");
1607 bool needs_range_check = x->compute_needs_range_check();
1608 bool use_length = x->length() != nullptr;
1609 bool obj_store = is_reference_type(x->elt_type());
1610 bool needs_store_check = obj_store && (x->value()->as_Constant() == nullptr ||
1611 !get_jobject_constant(x->value())->is_null_object() ||
1612 x->should_profile());
1613
1614 LIRItem array(x->array(), this);
1615 LIRItem index(x->index(), this);
1616 LIRItem value(x->value(), this);
1617 LIRItem length(this);
1618
1619 array.load_item();
1620 index.load_nonconstant();
1621
1622 if (use_length && needs_range_check) {
1623 length.set_instruction(x->length());
1624 length.load_item();
1625
1626 }
1627 if (needs_store_check || x->check_boolean()) {
1628 value.load_item();
1629 } else {
1630 value.load_for_store(x->elt_type());
1631 }
1632
1633 set_no_result(x);
1634
1635 // the CodeEmitInfo must be duplicated for each different
1636 // LIR-instruction because spilling can occur anywhere between two
1637 // instructions and so the debug information must be different
1638 CodeEmitInfo* range_check_info = state_for(x);
1639 CodeEmitInfo* null_check_info = nullptr;
1640 if (x->needs_null_check()) {
1641 null_check_info = new CodeEmitInfo(range_check_info);
1642 }
1643
1644 if (needs_range_check) {
1645 if (use_length) {
1646 __ cmp(lir_cond_belowEqual, length.result(), index.result());
1647 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1648 } else {
1649 array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1650 // range_check also does the null check
1651 null_check_info = nullptr;
1652 }
1653 }
1654
1655 if (GenerateArrayStoreCheck && needs_store_check) {
1656 CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
1657 array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci());
1658 }
1659
1660 DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1661 if (x->check_boolean()) {
1662 decorators |= C1_MASK_BOOLEAN;
1663 }
1664
1665 access_store_at(decorators, x->elt_type(), array, index.result(), value.result(),
1666 nullptr, null_check_info);
1667 }
1668
1669 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type,
1670 LIRItem& base, LIR_Opr offset, LIR_Opr result,
1671 CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) {
1672 decorators |= ACCESS_READ;
1673 LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info);
1674 if (access.is_raw()) {
1675 _barrier_set->BarrierSetC1::load_at(access, result);
1676 } else {
1677 _barrier_set->load_at(access, result);
1678 }
1679 }
1680
1681 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type,
1682 LIR_Opr addr, LIR_Opr result) {
1683 decorators |= ACCESS_READ;
1684 LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type);
1685 access.set_resolved_addr(addr);
1686 if (access.is_raw()) {
1687 _barrier_set->BarrierSetC1::load(access, result);
1688 } else {
1689 _barrier_set->load(access, result);
1690 }
1691 }
1692
1693 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type,
1694 LIRItem& base, LIR_Opr offset, LIR_Opr value,
1695 CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) {
1696 decorators |= ACCESS_WRITE;
1697 LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info);
1698 if (access.is_raw()) {
1699 _barrier_set->BarrierSetC1::store_at(access, value);
1700 } else {
1701 _barrier_set->store_at(access, value);
1702 }
1703 }
1704
1705 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type,
1706 LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) {
1707 decorators |= ACCESS_READ;
1708 decorators |= ACCESS_WRITE;
1709 // Atomic operations are SEQ_CST by default
1710 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1711 LIRAccess access(this, decorators, base, offset, type);
1712 if (access.is_raw()) {
1713 return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value);
1714 } else {
1715 return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value);
1716 }
1717 }
1728 } else {
1729 return _barrier_set->atomic_xchg_at(access, value);
1730 }
1731 }
1732
1733 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type,
1734 LIRItem& base, LIRItem& offset, LIRItem& value) {
1735 decorators |= ACCESS_READ;
1736 decorators |= ACCESS_WRITE;
1737 // Atomic operations are SEQ_CST by default
1738 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1739 LIRAccess access(this, decorators, base, offset, type);
1740 if (access.is_raw()) {
1741 return _barrier_set->BarrierSetC1::atomic_add_at(access, value);
1742 } else {
1743 return _barrier_set->atomic_add_at(access, value);
1744 }
1745 }
1746
1747 void LIRGenerator::do_LoadField(LoadField* x) {
1748 bool needs_patching = x->needs_patching();
1749 bool is_volatile = x->field()->is_volatile();
1750 BasicType field_type = x->field_type();
1751
1752 CodeEmitInfo* info = nullptr;
1753 if (needs_patching) {
1754 assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access");
1755 info = state_for(x, x->state_before());
1756 } else if (x->needs_null_check()) {
1757 NullCheck* nc = x->explicit_null_check();
1758 if (nc == nullptr) {
1759 info = state_for(x);
1760 } else {
1761 info = state_for(nc);
1762 }
1763 }
1764
1765 LIRItem object(x->obj(), this);
1766
1767 object.load_item();
1768
1769 #ifndef PRODUCT
1780 stress_deopt)) {
1781 LIR_Opr obj = object.result();
1782 if (stress_deopt) {
1783 obj = new_register(T_OBJECT);
1784 __ move(LIR_OprFact::oopConst(nullptr), obj);
1785 }
1786 // Emit an explicit null check because the offset is too large.
1787 // If the class is not loaded and the object is null, we need to deoptimize to throw a
1788 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1789 __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1790 }
1791
1792 DecoratorSet decorators = IN_HEAP;
1793 if (is_volatile) {
1794 decorators |= MO_SEQ_CST;
1795 }
1796 if (needs_patching) {
1797 decorators |= C1_NEEDS_PATCHING;
1798 }
1799
1800 LIR_Opr result = rlock_result(x, field_type);
1801 access_load_at(decorators, field_type,
1802 object, LIR_OprFact::intConst(x->offset()), result,
1803 info ? new CodeEmitInfo(info) : nullptr, info);
1804 }
1805
1806 // int/long jdk.internal.util.Preconditions.checkIndex
1807 void LIRGenerator::do_PreconditionsCheckIndex(Intrinsic* x, BasicType type) {
1808 assert(x->number_of_arguments() == 3, "wrong type");
1809 LIRItem index(x->argument_at(0), this);
1810 LIRItem length(x->argument_at(1), this);
1811 LIRItem oobef(x->argument_at(2), this);
1812
1813 index.load_item();
1814 length.load_item();
1815 oobef.load_item();
1816
1817 LIR_Opr result = rlock_result(x);
1818 // x->state() is created from copy_state_for_exception, it does not contains arguments
1819 // we should prepare them before entering into interpreter mode due to deoptimization.
1928 __ move(LIR_OprFact::oopConst(nullptr), obj);
1929 __ null_check(obj, new CodeEmitInfo(null_check_info));
1930 }
1931 }
1932
1933 if (needs_range_check) {
1934 if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
1935 __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result()));
1936 } else if (use_length) {
1937 // TODO: use a (modified) version of array_range_check that does not require a
1938 // constant length to be loaded to a register
1939 __ cmp(lir_cond_belowEqual, length.result(), index.result());
1940 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1941 } else {
1942 array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1943 // The range check performs the null check, so clear it out for the load
1944 null_check_info = nullptr;
1945 }
1946 }
1947
1948 DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1949
1950 LIR_Opr result = rlock_result(x, x->elt_type());
1951 access_load_at(decorators, x->elt_type(),
1952 array, index.result(), result,
1953 nullptr, null_check_info);
1954 }
1955
1956
1957 void LIRGenerator::do_NullCheck(NullCheck* x) {
1958 if (x->can_trap()) {
1959 LIRItem value(x->obj(), this);
1960 value.load_item();
1961 CodeEmitInfo* info = state_for(x);
1962 __ null_check(value.result(), info);
1963 }
1964 }
1965
1966
1967 void LIRGenerator::do_TypeCast(TypeCast* x) {
1968 LIRItem value(x->obj(), this);
1969 value.load_item();
1970 // the result is the same as from the node we are casting
1971 set_result(x, value.result());
1972 }
1973
2416 Compilation* comp = Compilation::current();
2417 if (do_update) {
2418 // try to find exact type, using CHA if possible, so that loading
2419 // the klass from the object can be avoided
2420 ciType* type = obj->exact_type();
2421 if (type == nullptr) {
2422 type = obj->declared_type();
2423 type = comp->cha_exact_type(type);
2424 }
2425 assert(type == nullptr || type->is_klass(), "type should be class");
2426 exact_klass = (type != nullptr && type->is_loaded()) ? (ciKlass*)type : nullptr;
2427
2428 do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2429 }
2430
2431 if (!do_null && !do_update) {
2432 return result;
2433 }
2434
2435 ciKlass* exact_signature_k = nullptr;
2436 if (do_update) {
2437 // Is the type from the signature exact (the only one possible)?
2438 exact_signature_k = signature_at_call_k->exact_klass();
2439 if (exact_signature_k == nullptr) {
2440 exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2441 } else {
2442 result = exact_signature_k;
2443 // Known statically. No need to emit any code: prevent
2444 // LIR_Assembler::emit_profile_type() from emitting useless code
2445 profiled_k = ciTypeEntries::with_status(result, profiled_k);
2446 }
2447 // exact_klass and exact_signature_k can be both non null but
2448 // different if exact_klass is loaded after the ciObject for
2449 // exact_signature_k is created.
2450 if (exact_klass == nullptr && exact_signature_k != nullptr && exact_klass != exact_signature_k) {
2451 // sometimes the type of the signature is better than the best type
2452 // the compiler has
2453 exact_klass = exact_signature_k;
2454 }
2455 if (callee_signature_k != nullptr &&
2456 callee_signature_k != signature_at_call_k) {
2457 ciKlass* improved_klass = callee_signature_k->exact_klass();
2458 if (improved_klass == nullptr) {
2459 improved_klass = comp->cha_exact_type(callee_signature_k);
2460 }
2461 if (exact_klass == nullptr && improved_klass != nullptr && exact_klass != improved_klass) {
2462 exact_klass = exact_signature_k;
2463 }
2464 }
2465 do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2466 }
2467
2468 if (!do_null && !do_update) {
2469 return result;
2470 }
2471
2472 if (mdp == LIR_OprFact::illegalOpr) {
2473 mdp = new_register(T_METADATA);
2474 __ metadata2reg(md->constant_encoding(), mdp);
2475 if (md_base_offset != 0) {
2476 LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2477 mdp = new_pointer_register();
2478 __ leal(LIR_OprFact::address(base_type_address), mdp);
2479 }
2480 }
2481 LIRItem value(obj, this);
2482 value.load_item();
2483 __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2484 value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != nullptr);
2485 return result;
2486 }
2487
2501 assert(!src->is_illegal(), "check");
2502 BasicType t = src->type();
2503 if (is_reference_type(t)) {
2504 intptr_t profiled_k = parameters->type(j);
2505 Local* local = x->state()->local_at(java_index)->as_Local();
2506 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2507 in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2508 profiled_k, local, mdp, false, local->declared_type()->as_klass(), nullptr);
2509 // If the profile is known statically set it once for all and do not emit any code
2510 if (exact != nullptr) {
2511 md->set_parameter_type(j, exact);
2512 }
2513 j++;
2514 }
2515 java_index += type2size[t];
2516 }
2517 }
2518 }
2519 }
2520
2521 void LIRGenerator::do_Base(Base* x) {
2522 __ std_entry(LIR_OprFact::illegalOpr);
2523 // Emit moves from physical registers / stack slots to virtual registers
2524 CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2525 IRScope* irScope = compilation()->hir()->top_scope();
2526 int java_index = 0;
2527 for (int i = 0; i < args->length(); i++) {
2528 LIR_Opr src = args->at(i);
2529 assert(!src->is_illegal(), "check");
2530 BasicType t = src->type();
2531
2532 // Types which are smaller than int are passed as int, so
2533 // correct the type which passed.
2534 switch (t) {
2535 case T_BYTE:
2536 case T_BOOLEAN:
2537 case T_SHORT:
2538 case T_CHAR:
2539 t = T_INT;
2540 break;
2542 break;
2543 }
2544
2545 LIR_Opr dest = new_register(t);
2546 __ move(src, dest);
2547
2548 // Assign new location to Local instruction for this local
2549 Local* local = x->state()->local_at(java_index)->as_Local();
2550 assert(local != nullptr, "Locals for incoming arguments must have been created");
2551 #ifndef __SOFTFP__
2552 // The java calling convention passes double as long and float as int.
2553 assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2554 #endif // __SOFTFP__
2555 local->set_operand(dest);
2556 #ifdef ASSERT
2557 _instruction_for_operand.at_put_grow(dest->vreg_number(), local, nullptr);
2558 #endif
2559 java_index += type2size[t];
2560 }
2561
2562 if (compilation()->env()->dtrace_method_probes()) {
2563 BasicTypeList signature;
2564 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread
2565 signature.append(T_METADATA); // Method*
2566 LIR_OprList* args = new LIR_OprList();
2567 args->append(getThreadPointer());
2568 LIR_Opr meth = new_register(T_METADATA);
2569 __ metadata2reg(method()->constant_encoding(), meth);
2570 args->append(meth);
2571 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, nullptr);
2572 }
2573
2574 if (method()->is_synchronized()) {
2575 LIR_Opr obj;
2576 if (method()->is_static()) {
2577 obj = new_register(T_OBJECT);
2578 __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2579 } else {
2580 Local* receiver = x->state()->local_at(0)->as_Local();
2581 assert(receiver != nullptr, "must already exist");
2583 }
2584 assert(obj->is_valid(), "must be valid");
2585
2586 if (method()->is_synchronized()) {
2587 LIR_Opr lock = syncLockOpr();
2588 __ load_stack_address_monitor(0, lock);
2589
2590 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, x->check_flag(Instruction::DeoptimizeOnException));
2591 CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2592
2593 // receiver is guaranteed non-null so don't need CodeEmitInfo
2594 __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, nullptr);
2595 }
2596 }
2597 // increment invocation counters if needed
2598 if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2599 profile_parameters(x);
2600 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, false);
2601 increment_invocation_counter(info);
2602 }
2603
2604 // all blocks with a successor must end with an unconditional jump
2605 // to the successor even if they are consecutive
2606 __ jump(x->default_sux());
2607 }
2608
2609
2610 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2611 // construct our frame and model the production of incoming pointer
2612 // to the OSR buffer.
2613 __ osr_entry(LIR_Assembler::osrBufferPointer());
2614 LIR_Opr result = rlock_result(x);
2615 __ move(LIR_Assembler::osrBufferPointer(), result);
2616 }
2617
2618
2619 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2620 assert(args->length() == arg_list->length(),
2621 "args=%d, arg_list=%d", args->length(), arg_list->length());
2622 for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2623 LIRItem* param = args->at(i);
2624 LIR_Opr loc = arg_list->at(i);
2625 if (loc->is_register()) {
2626 param->load_item_force(loc);
2627 } else {
2628 LIR_Address* addr = loc->as_address_ptr();
2629 param->load_for_store(addr->type());
2630 if (addr->type() == T_OBJECT) {
2631 __ move_wide(param->result(), addr);
2632 } else
2633 __ move(param->result(), addr);
2634 }
2635 }
2636
2637 if (x->has_receiver()) {
2638 LIRItem* receiver = args->at(0);
2639 LIR_Opr loc = arg_list->at(0);
2640 if (loc->is_register()) {
2641 receiver->load_item_force(loc);
2642 } else {
2643 assert(loc->is_address(), "just checking");
2644 receiver->load_for_store(T_OBJECT);
2645 __ move_wide(receiver->result(), loc->as_address_ptr());
2646 }
2647 }
2648 }
2649
2650
2651 // Visits all arguments, returns appropriate items without loading them
2652 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2653 LIRItemList* argument_items = new LIRItemList();
2654 if (x->has_receiver()) {
2761 __ move(tmp, reg);
2762 }
2763
2764
2765
2766 // Code for : x->x() {x->cond()} x->y() ? x->tval() : x->fval()
2767 void LIRGenerator::do_IfOp(IfOp* x) {
2768 #ifdef ASSERT
2769 {
2770 ValueTag xtag = x->x()->type()->tag();
2771 ValueTag ttag = x->tval()->type()->tag();
2772 assert(xtag == intTag || xtag == objectTag, "cannot handle others");
2773 assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
2774 assert(ttag == x->fval()->type()->tag(), "cannot handle others");
2775 }
2776 #endif
2777
2778 LIRItem left(x->x(), this);
2779 LIRItem right(x->y(), this);
2780 left.load_item();
2781 if (can_inline_as_constant(right.value())) {
2782 right.dont_load_item();
2783 } else {
2784 right.load_item();
2785 }
2786
2787 LIRItem t_val(x->tval(), this);
2788 LIRItem f_val(x->fval(), this);
2789 t_val.dont_load_item();
2790 f_val.dont_load_item();
2791 LIR_Opr reg = rlock_result(x);
2792
2793 __ cmp(lir_cond(x->cond()), left.result(), right.result());
2794 __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
2795 }
2796
2797 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
2798 assert(x->number_of_arguments() == 0, "wrong type");
2799 // Enforce computation of _reserved_argument_area_size which is required on some platforms.
2800 BasicTypeList signature;
2801 CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2802 LIR_Opr reg = result_register_for(x->type());
2803 __ call_runtime_leaf(routine, getThreadTemp(),
2804 reg, new LIR_OprList());
2805 LIR_Opr result = rlock_result(x);
2806 __ move(reg, result);
2807 }
2808
2809
2810
2811 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
2812 switch (x->id()) {
2813 case vmIntrinsics::_intBitsToFloat :
2814 case vmIntrinsics::_doubleToRawLongBits :
3049 if (x->recv() != nullptr || x->nb_profiled_args() > 0) {
3050 profile_parameters_at_call(x);
3051 }
3052
3053 if (x->recv() != nullptr) {
3054 LIRItem value(x->recv(), this);
3055 value.load_item();
3056 recv = new_register(T_OBJECT);
3057 __ move(value.result(), recv);
3058 }
3059 __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3060 }
3061
3062 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3063 int bci = x->bci_of_invoke();
3064 ciMethodData* md = x->method()->method_data_or_null();
3065 assert(md != nullptr, "Sanity");
3066 ciProfileData* data = md->bci_to_data(bci);
3067 if (data != nullptr) {
3068 assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3069 ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3070 LIR_Opr mdp = LIR_OprFact::illegalOpr;
3071
3072 bool ignored_will_link;
3073 ciSignature* signature_at_call = nullptr;
3074 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3075
3076 // The offset within the MDO of the entry to update may be too large
3077 // to be used in load/store instructions on some platforms. So have
3078 // profile_type() compute the address of the profile in a register.
3079 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3080 ret->type(), x->ret(), mdp,
3081 !x->needs_null_check(),
3082 signature_at_call->return_type()->as_klass(),
3083 x->callee()->signature()->return_type()->as_klass());
3084 if (exact != nullptr) {
3085 md->set_return_type(bci, exact);
3086 }
3087 }
3088 }
3089
3090 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3091 // We can safely ignore accessors here, since c2 will inline them anyway,
3092 // accessors are also always mature.
3093 if (!x->inlinee()->is_accessor()) {
3094 CodeEmitInfo* info = state_for(x, x->state(), true);
3095 // Notify the runtime very infrequently only to take care of counter overflows
3096 int freq_log = Tier23InlineeNotifyFreqLog;
3097 double scale;
3098 if (_method->has_option_value(CompileCommandEnum::CompileThresholdScaling, scale)) {
3099 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3100 }
3101 increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true);
3102 }
3103 }
3104
3105 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) {
3106 if (compilation()->is_profiling()) {
3107 #if defined(X86) && !defined(_LP64)
3108 // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
3109 LIR_Opr left_copy = new_register(left->type());
|
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "c1/c1_Compilation.hpp"
26 #include "c1/c1_Defs.hpp"
27 #include "c1/c1_FrameMap.hpp"
28 #include "c1/c1_Instruction.hpp"
29 #include "c1/c1_LIRAssembler.hpp"
30 #include "c1/c1_LIRGenerator.hpp"
31 #include "c1/c1_ValueStack.hpp"
32 #include "ci/ciArrayKlass.hpp"
33 #include "ci/ciFlatArrayKlass.hpp"
34 #include "ci/ciInlineKlass.hpp"
35 #include "ci/ciInstance.hpp"
36 #include "ci/ciObjArray.hpp"
37 #include "ci/ciObjArrayKlass.hpp"
38 #include "ci/ciUtilities.hpp"
39 #include "compiler/compilerDefinitions.inline.hpp"
40 #include "compiler/compilerOracle.hpp"
41 #include "gc/shared/barrierSet.hpp"
42 #include "gc/shared/c1/barrierSetC1.hpp"
43 #include "oops/klass.inline.hpp"
44 #include "oops/methodCounters.hpp"
45 #include "runtime/sharedRuntime.hpp"
46 #include "runtime/stubRoutines.hpp"
47 #include "runtime/vm_version.hpp"
48 #include "utilities/bitMap.inline.hpp"
49 #include "utilities/macros.hpp"
50 #include "utilities/powerOfTwo.hpp"
51
52 #ifdef ASSERT
53 #define __ gen()->lir(__FILE__, __LINE__)->
54 #else
55 #define __ gen()->lir()->
56 #endif
57
201 }
202
203
204 //--------------------------------------------------------------
205 // LIRItem
206
207 void LIRItem::set_result(LIR_Opr opr) {
208 assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
209 value()->set_operand(opr);
210
211 #ifdef ASSERT
212 if (opr->is_virtual()) {
213 _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), nullptr);
214 }
215 #endif
216
217 _result = opr;
218 }
219
220 void LIRItem::load_item() {
221 assert(!_gen->in_conditional_code(), "LIRItem cannot be loaded in conditional code");
222
223 if (result()->is_illegal()) {
224 // update the items result
225 _result = value()->operand();
226 }
227 if (!result()->is_register()) {
228 LIR_Opr reg = _gen->new_register(value()->type());
229 __ move(result(), reg);
230 if (result()->is_constant()) {
231 _result = reg;
232 } else {
233 set_result(reg);
234 }
235 }
236 }
237
238
239 void LIRItem::load_for_store(BasicType type) {
240 if (_gen->can_store_as_constant(value(), type)) {
241 _result = value()->operand();
242 if (!_result->is_constant()) {
610 assert(right_op != result_op, "malformed");
611 __ move(left_op, result_op);
612 left_op = result_op;
613 }
614
615 switch(code) {
616 case Bytecodes::_iand:
617 case Bytecodes::_land: __ logical_and(left_op, right_op, result_op); break;
618
619 case Bytecodes::_ior:
620 case Bytecodes::_lor: __ logical_or(left_op, right_op, result_op); break;
621
622 case Bytecodes::_ixor:
623 case Bytecodes::_lxor: __ logical_xor(left_op, right_op, result_op); break;
624
625 default: ShouldNotReachHere();
626 }
627 }
628
629
630 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no,
631 CodeEmitInfo* info_for_exception, CodeEmitInfo* info, CodeStub* throw_ie_stub) {
632 // for slow path, use debug info for state after successful locking
633 CodeStub* slow_path = new MonitorEnterStub(object, lock, info, throw_ie_stub, scratch);
634 __ load_stack_address_monitor(monitor_no, lock);
635 // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
636 __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception, throw_ie_stub);
637 }
638
639
640 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
641 // setup registers
642 LIR_Opr hdr = lock;
643 lock = new_hdr;
644 CodeStub* slow_path = new MonitorExitStub(lock, monitor_no);
645 __ load_stack_address_monitor(monitor_no, lock);
646 __ unlock_object(hdr, object, lock, scratch, slow_path);
647 }
648
649 #ifndef PRODUCT
650 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
651 if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
652 tty->print_cr(" ###class not loaded at new bci %d", new_instance->printable_bci());
653 } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) {
654 tty->print_cr(" ###class not resolved at new bci %d", new_instance->printable_bci());
655 }
656 }
657 #endif
658
659 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, bool allow_inline, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
660 if (allow_inline) {
661 assert(!is_unresolved && klass->is_loaded(), "inline type klass should be resolved");
662 __ metadata2reg(klass->constant_encoding(), klass_reg);
663 } else {
664 klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
665 }
666 // If klass is not loaded we do not know if the klass has finalizers or is an unexpected inline klass
667 if (UseFastNewInstance && klass->is_loaded() && (allow_inline || !klass->is_inlinetype())
668 && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
669
670 StubId stub_id = klass->is_initialized() ? StubId::c1_fast_new_instance_id : StubId::c1_fast_new_instance_init_check_id;
671
672 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
673
674 assert(klass->is_loaded(), "must be loaded");
675 // allocate space for instance
676 assert(klass->size_helper() > 0, "illegal instance size");
677 const int instance_size = align_object_size(klass->size_helper());
678 __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
679 oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
680 } else {
681 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, StubId::c1_new_instance_id);
682 __ jump(slow_path);
683 __ branch_destination(slow_path->continuation());
684 }
685 }
686
687
688 static bool is_constant_zero(Instruction* inst) {
689 IntConstant* c = inst->type()->as_IntConstant();
690 if (c) {
691 return (c->value() == 0);
692 }
693 return false;
694 }
695
696
697 static bool positive_constant(Instruction* inst) {
698 IntConstant* c = inst->type()->as_IntConstant();
699 if (c) {
700 return (c->value() >= 0);
701 }
702 return false;
754 } else if (dst_exact_type != nullptr && dst_exact_type->is_obj_array_klass()) {
755 ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
756 ciArrayKlass* src_type = nullptr;
757 if (src_exact_type != nullptr && src_exact_type->is_obj_array_klass()) {
758 src_type = (ciArrayKlass*) src_exact_type;
759 } else if (src_declared_type != nullptr && src_declared_type->is_obj_array_klass()) {
760 src_type = (ciArrayKlass*) src_declared_type;
761 }
762 if (src_type != nullptr) {
763 if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
764 is_exact = true;
765 expected_type = dst_type;
766 }
767 }
768 }
769 // at least pass along a good guess
770 if (expected_type == nullptr) expected_type = dst_exact_type;
771 if (expected_type == nullptr) expected_type = src_declared_type;
772 if (expected_type == nullptr) expected_type = dst_declared_type;
773
774 if (expected_type != nullptr && expected_type->is_obj_array_klass()) {
775 // For a direct pointer comparison, we need the refined array klass pointer
776 expected_type = ciObjArrayKlass::make(expected_type->as_array_klass()->element_klass());
777 }
778
779 src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
780 dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
781 }
782
783 // if a probable array type has been identified, figure out if any
784 // of the required checks for a fast case can be elided.
785 int flags = LIR_OpArrayCopy::all_flags;
786
787 if (!src->is_loaded_flat_array() && !dst->is_loaded_flat_array()) {
788 flags &= ~LIR_OpArrayCopy::always_slow_path;
789 }
790 if (!src->maybe_flat_array()) {
791 flags &= ~LIR_OpArrayCopy::src_inlinetype_check;
792 }
793 if (!dst->maybe_flat_array() && !dst->maybe_null_free_array()) {
794 flags &= ~LIR_OpArrayCopy::dst_inlinetype_check;
795 }
796
797 if (!src_objarray)
798 flags &= ~LIR_OpArrayCopy::src_objarray;
799 if (!dst_objarray)
800 flags &= ~LIR_OpArrayCopy::dst_objarray;
801
802 if (!x->arg_needs_null_check(0))
803 flags &= ~LIR_OpArrayCopy::src_null_check;
804 if (!x->arg_needs_null_check(2))
805 flags &= ~LIR_OpArrayCopy::dst_null_check;
806
807
808 if (expected_type != nullptr) {
809 Value length_limit = nullptr;
810
811 IfOp* ifop = length->as_IfOp();
812 if (ifop != nullptr) {
813 // look for expressions like min(v, a.length) which ends up as
814 // x > y ? y : x or x >= y ? y : x
815 if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
816 ifop->x() == ifop->fval() &&
1469 }
1470 return _vreg_flags.at(vreg_num, f);
1471 }
1472
1473
1474 // Block local constant handling. This code is useful for keeping
1475 // unpinned constants and constants which aren't exposed in the IR in
1476 // registers. Unpinned Constant instructions have their operands
1477 // cleared when the block is finished so that other blocks can't end
1478 // up referring to their registers.
1479
1480 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1481 assert(!x->is_pinned(), "only for unpinned constants");
1482 _unpinned_constants.append(x);
1483 return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1484 }
1485
1486
1487 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1488 BasicType t = c->type();
1489 for (int i = 0; i < _constants.length() && !in_conditional_code(); i++) {
1490 LIR_Const* other = _constants.at(i);
1491 if (t == other->type()) {
1492 switch (t) {
1493 case T_INT:
1494 case T_FLOAT:
1495 if (c->as_jint_bits() != other->as_jint_bits()) continue;
1496 break;
1497 case T_LONG:
1498 case T_DOUBLE:
1499 if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1500 if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1501 break;
1502 case T_OBJECT:
1503 if (c->as_jobject() != other->as_jobject()) continue;
1504 break;
1505 default:
1506 break;
1507 }
1508 return _reg_for_constants.at(i);
1509 }
1510 }
1511
1512 LIR_Opr result = new_register(t);
1513 __ move((LIR_Opr)c, result);
1514 if (!in_conditional_code()) {
1515 _constants.append(c);
1516 _reg_for_constants.append(result);
1517 }
1518 return result;
1519 }
1520
1521 void LIRGenerator::set_in_conditional_code(bool v) {
1522 assert(v != _in_conditional_code, "must change state");
1523 _in_conditional_code = v;
1524 }
1525
1526
1527 //------------------------field access--------------------------------------
1528
1529 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
1530 assert(x->number_of_arguments() == 4, "wrong type");
1531 LIRItem obj (x->argument_at(0), this); // object
1532 LIRItem offset(x->argument_at(1), this); // offset of field
1533 LIRItem cmp (x->argument_at(2), this); // value to compare with field
1534 LIRItem val (x->argument_at(3), this); // replace field with val if matches cmp
1535 assert(obj.type()->tag() == objectTag, "invalid type");
1536 assert(cmp.type()->tag() == type->tag(), "invalid type");
1537 assert(val.type()->tag() == type->tag(), "invalid type");
1538
1539 LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type),
1540 obj, offset, cmp, val);
1541 set_result(x, result);
1542 }
1543
1544 // Returns a int/long value with the null marker bit set
1545 static LIR_Opr null_marker_mask(BasicType bt, ciField* field) {
1546 assert(field->null_marker_offset() != -1, "field does not have null marker");
1547 int nm_offset = field->null_marker_offset() - field->offset_in_bytes();
1548 jlong null_marker = 1ULL << (nm_offset << LogBitsPerByte);
1549 return (bt == T_LONG) ? LIR_OprFact::longConst(null_marker) : LIR_OprFact::intConst(null_marker);
1550 }
1551
1552 // Comment copied form templateTable_i486.cpp
1553 // ----------------------------------------------------------------------------
1554 // Volatile variables demand their effects be made known to all CPU's in
1555 // order. Store buffers on most chips allow reads & writes to reorder; the
1556 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1557 // memory barrier (i.e., it's not sufficient that the interpreter does not
1558 // reorder volatile references, the hardware also must not reorder them).
1559 //
1560 // According to the new Java Memory Model (JMM):
1561 // (1) All volatiles are serialized wrt to each other.
1562 // ALSO reads & writes act as acquire & release, so:
1563 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1564 // the read float up to before the read. It's OK for non-volatile memory refs
1565 // that happen before the volatile read to float down below it.
1566 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1567 // that happen BEFORE the write float down to after the write. It's OK for
1568 // non-volatile memory refs that happen after the volatile write to float up
1569 // before it.
1570 //
1571 // We only put in barriers around volatile refs (they are expensive), not
1572 // _between_ memory refs (that would require us to track the flavor of the
1573 // previous memory refs). Requirements (2) and (3) require some barriers
1574 // before volatile stores and after volatile loads. These nearly cover
1575 // requirement (1) but miss the volatile-store-volatile-load case. This final
1576 // case is placed after volatile-stores although it could just as well go
1577 // before volatile-loads.
1578
1579
1580 void LIRGenerator::do_StoreField(StoreField* x) {
1581 ciField* field = x->field();
1582 bool needs_patching = x->needs_patching();
1583 bool is_volatile = field->is_volatile();
1584 BasicType field_type = x->field_type();
1585
1586 CodeEmitInfo* info = nullptr;
1587 if (needs_patching) {
1588 assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access");
1589 info = state_for(x, x->state_before());
1590 } else if (x->needs_null_check()) {
1591 NullCheck* nc = x->explicit_null_check();
1592 if (nc == nullptr) {
1593 info = state_for(x);
1594 } else {
1595 info = state_for(nc);
1596 }
1597 }
1598
1599 LIRItem object(x->obj(), this);
1600 LIRItem value(x->value(), this);
1601
1602 object.load_item();
1603
1604 if (field->is_flat()) {
1605 value.load_item();
1606 } else {
1607 if (is_volatile || needs_patching) {
1608 // load item if field is volatile (fewer special cases for volatiles)
1609 // load item if field not initialized
1610 // load item if field not constant
1611 // because of code patching we cannot inline constants
1612 if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1613 value.load_byte_item();
1614 } else {
1615 value.load_item();
1616 }
1617 } else {
1618 value.load_for_store(field_type);
1619 }
1620 }
1621
1622 set_no_result(x);
1623
1624 #ifndef PRODUCT
1625 if (PrintNotLoaded && needs_patching) {
1626 tty->print_cr(" ###class not loaded at store_%s bci %d",
1627 x->is_static() ? "static" : "field", x->printable_bci());
1628 }
1629 #endif
1630
1631 if (x->needs_null_check() &&
1632 (needs_patching ||
1633 MacroAssembler::needs_explicit_null_check(x->offset()))) {
1634 // Emit an explicit null check because the offset is too large.
1635 // If the class is not loaded and the object is null, we need to deoptimize to throw a
1636 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1637 __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1638 }
1639
1640 DecoratorSet decorators = IN_HEAP;
1641 if (is_volatile) {
1642 decorators |= MO_SEQ_CST;
1643 }
1644 if (needs_patching) {
1645 decorators |= C1_NEEDS_PATCHING;
1646 }
1647
1648 if (field->is_flat()) {
1649 ciInlineKlass* vk = field->type()->as_inline_klass();
1650
1651 #ifdef ASSERT
1652 bool is_naturally_atomic = vk->nof_declared_nonstatic_fields() <= 1;
1653 bool needs_atomic_access = !field->is_null_free() || (field->is_volatile() && !is_naturally_atomic);
1654 assert(needs_atomic_access, "No atomic access required");
1655 // ZGC does not support compressed oops, so only one oop can be in the payload which is written by a "normal" oop store.
1656 assert(!vk->contains_oops() || !UseZGC, "ZGC does not support embedded oops in flat fields");
1657 #endif
1658
1659 // Zero the payload
1660 BasicType bt = vk->atomic_size_to_basic_type(field->is_null_free());
1661 LIR_Opr payload = new_register((bt == T_LONG) ? bt : T_INT);
1662 LIR_Opr zero = (bt == T_LONG) ? LIR_OprFact::longConst(0) : LIR_OprFact::intConst(0);
1663 __ move(zero, payload);
1664
1665 bool is_constant_null = value.is_constant() && value.value()->is_null_obj();
1666 if (!is_constant_null) {
1667 LabelObj* L_isNull = new LabelObj();
1668 bool needs_null_check = !value.is_constant() || value.value()->is_null_obj();
1669 if (needs_null_check) {
1670 __ cmp(lir_cond_equal, value.result(), LIR_OprFact::oopConst(nullptr));
1671 __ branch(lir_cond_equal, L_isNull->label());
1672 }
1673 // Load payload (if not empty) and set null marker (if not null-free)
1674 if (!vk->is_empty()) {
1675 access_load_at(decorators, bt, value, LIR_OprFact::intConst(vk->payload_offset()), payload);
1676 }
1677 if (!field->is_null_free()) {
1678 __ logical_or(payload, null_marker_mask(bt, field), payload);
1679 }
1680 if (needs_null_check) {
1681 __ branch_destination(L_isNull->label());
1682 }
1683 }
1684 access_store_at(decorators, bt, object, LIR_OprFact::intConst(x->offset()), payload,
1685 // Make sure to emit an implicit null check and pass the information
1686 // that this is a flat store that might require gc barriers for oop fields.
1687 info != nullptr ? new CodeEmitInfo(info) : nullptr, info, vk);
1688 return;
1689 }
1690
1691 access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()),
1692 value.result(), info != nullptr ? new CodeEmitInfo(info) : nullptr, info);
1693 }
1694
1695 // FIXME -- I can't find any other way to pass an address to access_load_at().
1696 class TempResolvedAddress: public Instruction {
1697 public:
1698 TempResolvedAddress(ValueType* type, LIR_Opr addr) : Instruction(type) {
1699 set_operand(addr);
1700 }
1701 virtual void input_values_do(ValueVisitor*) {}
1702 virtual void visit(InstructionVisitor* v) {}
1703 virtual const char* name() const { return "TempResolvedAddress"; }
1704 };
1705
1706 LIR_Opr LIRGenerator::get_and_load_element_address(LIRItem& array, LIRItem& index) {
1707 ciType* array_type = array.value()->declared_type();
1708 ciFlatArrayKlass* flat_array_klass = array_type->as_flat_array_klass();
1709 assert(flat_array_klass->is_loaded(), "must be");
1710
1711 int array_header_size = flat_array_klass->array_header_in_bytes();
1712 int shift = flat_array_klass->log2_element_size();
1713
1714 #ifndef _LP64
1715 LIR_Opr index_op = new_register(T_INT);
1716 // FIXME -- on 32-bit, the shift below can overflow, so we need to check that
1717 // the top (shift+1) bits of index_op must be zero, or
1718 // else throw ArrayIndexOutOfBoundsException
1719 if (index.result()->is_constant()) {
1720 jint const_index = index.result()->as_jint();
1721 __ move(LIR_OprFact::intConst(const_index << shift), index_op);
1722 } else {
1723 __ shift_left(index_op, shift, index.result());
1724 }
1725 #else
1726 LIR_Opr index_op = new_register(T_LONG);
1727 if (index.result()->is_constant()) {
1728 jint const_index = index.result()->as_jint();
1729 __ move(LIR_OprFact::longConst(const_index << shift), index_op);
1730 } else {
1731 __ convert(Bytecodes::_i2l, index.result(), index_op);
1732 // Need to shift manually, as LIR_Address can scale only up to 3.
1733 __ shift_left(index_op, shift, index_op);
1734 }
1735 #endif
1736
1737 LIR_Opr elm_op = new_pointer_register();
1738 LIR_Address* elm_address = generate_address(array.result(), index_op, 0, array_header_size, T_ADDRESS);
1739 __ leal(LIR_OprFact::address(elm_address), elm_op);
1740 return elm_op;
1741 }
1742
1743 void LIRGenerator::access_sub_element(LIRItem& array, LIRItem& index, LIR_Opr& result, ciField* field, int sub_offset) {
1744 assert(field != nullptr, "Need a subelement type specified");
1745
1746 // Find the starting address of the source (inside the array)
1747 LIR_Opr elm_op = get_and_load_element_address(array, index);
1748
1749 BasicType subelt_type = field->type()->basic_type();
1750 TempResolvedAddress* elm_resolved_addr = new TempResolvedAddress(as_ValueType(subelt_type), elm_op);
1751 LIRItem elm_item(elm_resolved_addr, this);
1752
1753 DecoratorSet decorators = IN_HEAP;
1754 access_load_at(decorators, subelt_type,
1755 elm_item, LIR_OprFact::intConst(sub_offset), result,
1756 nullptr, nullptr);
1757 }
1758
1759 void LIRGenerator::access_flat_array(bool is_load, LIRItem& array, LIRItem& index, LIRItem& obj_item,
1760 ciField* field, int sub_offset) {
1761 assert(sub_offset == 0 || field != nullptr, "Sanity check");
1762
1763 // Find the starting address of the source (inside the array)
1764 LIR_Opr elm_op = get_and_load_element_address(array, index);
1765
1766 ciInlineKlass* elem_klass = nullptr;
1767 if (field != nullptr) {
1768 elem_klass = field->type()->as_inline_klass();
1769 } else {
1770 elem_klass = array.value()->declared_type()->as_flat_array_klass()->element_klass()->as_inline_klass();
1771 }
1772 for (int i = 0; i < elem_klass->nof_nonstatic_fields(); i++) {
1773 ciField* inner_field = elem_klass->nonstatic_field_at(i);
1774 assert(!inner_field->is_flat(), "flat fields must have been expanded");
1775 int obj_offset = inner_field->offset_in_bytes();
1776 int elm_offset = obj_offset - elem_klass->payload_offset() + sub_offset; // object header is not stored in array.
1777 BasicType field_type = inner_field->type()->basic_type();
1778
1779 // Types which are smaller than int are still passed in an int register.
1780 BasicType reg_type = field_type;
1781 switch (reg_type) {
1782 case T_BYTE:
1783 case T_BOOLEAN:
1784 case T_SHORT:
1785 case T_CHAR:
1786 reg_type = T_INT;
1787 break;
1788 default:
1789 break;
1790 }
1791
1792 LIR_Opr temp = new_register(reg_type);
1793 TempResolvedAddress* elm_resolved_addr = new TempResolvedAddress(as_ValueType(field_type), elm_op);
1794 LIRItem elm_item(elm_resolved_addr, this);
1795
1796 DecoratorSet decorators = IN_HEAP;
1797 if (is_load) {
1798 access_load_at(decorators, field_type,
1799 elm_item, LIR_OprFact::intConst(elm_offset), temp,
1800 nullptr, nullptr);
1801 access_store_at(decorators, field_type,
1802 obj_item, LIR_OprFact::intConst(obj_offset), temp,
1803 nullptr, nullptr);
1804 } else {
1805 access_load_at(decorators, field_type,
1806 obj_item, LIR_OprFact::intConst(obj_offset), temp,
1807 nullptr, nullptr);
1808 access_store_at(decorators, field_type,
1809 elm_item, LIR_OprFact::intConst(elm_offset), temp,
1810 nullptr, nullptr);
1811 }
1812 }
1813 }
1814
1815 void LIRGenerator::check_flat_array(LIR_Opr array, LIR_Opr value, CodeStub* slow_path) {
1816 LIR_Opr tmp = new_register(T_METADATA);
1817 __ check_flat_array(array, value, tmp, slow_path);
1818 }
1819
1820 void LIRGenerator::check_null_free_array(LIRItem& array, LIRItem& value, CodeEmitInfo* info) {
1821 LabelObj* L_end = new LabelObj();
1822 LIR_Opr tmp = new_register(T_METADATA);
1823 __ check_null_free_array(array.result(), tmp);
1824 __ branch(lir_cond_equal, L_end->label());
1825 __ null_check(value.result(), info);
1826 __ branch_destination(L_end->label());
1827 }
1828
1829 bool LIRGenerator::needs_flat_array_store_check(StoreIndexed* x) {
1830 if (x->elt_type() == T_OBJECT && x->array()->maybe_flat_array()) {
1831 ciType* type = x->value()->declared_type();
1832 if (type != nullptr && type->is_klass()) {
1833 ciKlass* klass = type->as_klass();
1834 if (!klass->can_be_inline_klass() || (klass->is_inlinetype() && !klass->as_inline_klass()->maybe_flat_in_array())) {
1835 // This is known to be a non-flat object. If the array is a flat array,
1836 // it will be caught by the code generated by array_store_check().
1837 return false;
1838 }
1839 }
1840 // We're not 100% sure, so let's do the flat_array_store_check.
1841 return true;
1842 }
1843 return false;
1844 }
1845
1846 bool LIRGenerator::needs_null_free_array_store_check(StoreIndexed* x) {
1847 return x->elt_type() == T_OBJECT && x->array()->maybe_null_free_array();
1848 }
1849
1850 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
1851 assert(x->is_pinned(),"");
1852 assert(x->elt_type() != T_ARRAY, "never used");
1853 bool is_loaded_flat_array = x->array()->is_loaded_flat_array();
1854 bool needs_range_check = x->compute_needs_range_check();
1855 bool use_length = x->length() != nullptr;
1856 bool obj_store = is_reference_type(x->elt_type());
1857 bool needs_store_check = obj_store && !(is_loaded_flat_array && x->is_exact_flat_array_store()) &&
1858 (x->value()->as_Constant() == nullptr ||
1859 !get_jobject_constant(x->value())->is_null_object());
1860
1861 LIRItem array(x->array(), this);
1862 LIRItem index(x->index(), this);
1863 LIRItem value(x->value(), this);
1864 LIRItem length(this);
1865
1866 array.load_item();
1867 index.load_nonconstant();
1868
1869 if (use_length && needs_range_check) {
1870 length.set_instruction(x->length());
1871 length.load_item();
1872 }
1873
1874 if (needs_store_check || x->check_boolean()
1875 || is_loaded_flat_array || needs_flat_array_store_check(x) || needs_null_free_array_store_check(x)) {
1876 value.load_item();
1877 } else {
1878 value.load_for_store(x->elt_type());
1879 }
1880
1881 set_no_result(x);
1882
1883 // the CodeEmitInfo must be duplicated for each different
1884 // LIR-instruction because spilling can occur anywhere between two
1885 // instructions and so the debug information must be different
1886 CodeEmitInfo* range_check_info = state_for(x);
1887 CodeEmitInfo* null_check_info = nullptr;
1888 if (x->needs_null_check()) {
1889 null_check_info = new CodeEmitInfo(range_check_info);
1890 }
1891
1892 if (needs_range_check) {
1893 if (use_length) {
1894 __ cmp(lir_cond_belowEqual, length.result(), index.result());
1895 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1896 } else {
1897 array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1898 // range_check also does the null check
1899 null_check_info = nullptr;
1900 }
1901 }
1902
1903 if (GenerateArrayStoreCheck && needs_store_check) {
1904 CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
1905 array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci());
1906 }
1907
1908 if (x->should_profile()) {
1909 if (is_loaded_flat_array) {
1910 // No need to profile a store to a flat array of known type. This can happen if
1911 // the type only became known after optimizations (for example, after the PhiSimplifier).
1912 x->set_should_profile(false);
1913 } else {
1914 int bci = x->profiled_bci();
1915 ciMethodData* md = x->profiled_method()->method_data();
1916 assert(md != nullptr, "Sanity");
1917 ciProfileData* data = md->bci_to_data(bci);
1918 assert(data != nullptr && data->is_ArrayStoreData(), "incorrect profiling entry");
1919 ciArrayStoreData* store_data = (ciArrayStoreData*)data;
1920 profile_array_type(x, md, store_data);
1921 assert(store_data->is_ArrayStoreData(), "incorrect profiling entry");
1922 if (x->array()->maybe_null_free_array()) {
1923 profile_null_free_array(array, md, data);
1924 }
1925 }
1926 }
1927
1928 if (is_loaded_flat_array) {
1929 // TODO 8350865 This is currently dead code
1930 if (!x->value()->is_null_free()) {
1931 __ null_check(value.result(), new CodeEmitInfo(range_check_info));
1932 }
1933 // If array element is an empty inline type, no need to copy anything
1934 if (!x->array()->declared_type()->as_flat_array_klass()->element_klass()->as_inline_klass()->is_empty()) {
1935 access_flat_array(false, array, index, value);
1936 }
1937 } else {
1938 StoreFlattenedArrayStub* slow_path = nullptr;
1939
1940 if (needs_flat_array_store_check(x)) {
1941 // Check if we indeed have a flat array
1942 index.load_item();
1943 slow_path = new StoreFlattenedArrayStub(array.result(), index.result(), value.result(), state_for(x, x->state_before()));
1944 check_flat_array(array.result(), value.result(), slow_path);
1945 set_in_conditional_code(true);
1946 } else if (needs_null_free_array_store_check(x)) {
1947 CodeEmitInfo* info = new CodeEmitInfo(range_check_info);
1948 check_null_free_array(array, value, info);
1949 }
1950
1951 DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1952 if (x->check_boolean()) {
1953 decorators |= C1_MASK_BOOLEAN;
1954 }
1955
1956 access_store_at(decorators, x->elt_type(), array, index.result(), value.result(), nullptr, null_check_info);
1957 if (slow_path != nullptr) {
1958 __ branch_destination(slow_path->continuation());
1959 set_in_conditional_code(false);
1960 }
1961 }
1962 }
1963
1964 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type,
1965 LIRItem& base, LIR_Opr offset, LIR_Opr result,
1966 CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) {
1967 decorators |= ACCESS_READ;
1968 LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info);
1969 if (access.is_raw()) {
1970 _barrier_set->BarrierSetC1::load_at(access, result);
1971 } else {
1972 _barrier_set->load_at(access, result);
1973 }
1974 }
1975
1976 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type,
1977 LIR_Opr addr, LIR_Opr result) {
1978 decorators |= ACCESS_READ;
1979 LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type);
1980 access.set_resolved_addr(addr);
1981 if (access.is_raw()) {
1982 _barrier_set->BarrierSetC1::load(access, result);
1983 } else {
1984 _barrier_set->load(access, result);
1985 }
1986 }
1987
1988 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type,
1989 LIRItem& base, LIR_Opr offset, LIR_Opr value,
1990 CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info,
1991 ciInlineKlass* vk) {
1992 decorators |= ACCESS_WRITE;
1993 LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info, vk);
1994 if (access.is_raw()) {
1995 _barrier_set->BarrierSetC1::store_at(access, value);
1996 } else {
1997 _barrier_set->store_at(access, value);
1998 }
1999 }
2000
2001 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type,
2002 LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) {
2003 decorators |= ACCESS_READ;
2004 decorators |= ACCESS_WRITE;
2005 // Atomic operations are SEQ_CST by default
2006 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
2007 LIRAccess access(this, decorators, base, offset, type);
2008 if (access.is_raw()) {
2009 return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value);
2010 } else {
2011 return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value);
2012 }
2013 }
2024 } else {
2025 return _barrier_set->atomic_xchg_at(access, value);
2026 }
2027 }
2028
2029 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type,
2030 LIRItem& base, LIRItem& offset, LIRItem& value) {
2031 decorators |= ACCESS_READ;
2032 decorators |= ACCESS_WRITE;
2033 // Atomic operations are SEQ_CST by default
2034 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
2035 LIRAccess access(this, decorators, base, offset, type);
2036 if (access.is_raw()) {
2037 return _barrier_set->BarrierSetC1::atomic_add_at(access, value);
2038 } else {
2039 return _barrier_set->atomic_add_at(access, value);
2040 }
2041 }
2042
2043 void LIRGenerator::do_LoadField(LoadField* x) {
2044 ciField* field = x->field();
2045 bool needs_patching = x->needs_patching();
2046 bool is_volatile = field->is_volatile();
2047 BasicType field_type = x->field_type();
2048
2049 CodeEmitInfo* info = nullptr;
2050 if (needs_patching) {
2051 assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access");
2052 info = state_for(x, x->state_before());
2053 } else if (x->needs_null_check()) {
2054 NullCheck* nc = x->explicit_null_check();
2055 if (nc == nullptr) {
2056 info = state_for(x);
2057 } else {
2058 info = state_for(nc);
2059 }
2060 }
2061
2062 LIRItem object(x->obj(), this);
2063
2064 object.load_item();
2065
2066 #ifndef PRODUCT
2077 stress_deopt)) {
2078 LIR_Opr obj = object.result();
2079 if (stress_deopt) {
2080 obj = new_register(T_OBJECT);
2081 __ move(LIR_OprFact::oopConst(nullptr), obj);
2082 }
2083 // Emit an explicit null check because the offset is too large.
2084 // If the class is not loaded and the object is null, we need to deoptimize to throw a
2085 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
2086 __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
2087 }
2088
2089 DecoratorSet decorators = IN_HEAP;
2090 if (is_volatile) {
2091 decorators |= MO_SEQ_CST;
2092 }
2093 if (needs_patching) {
2094 decorators |= C1_NEEDS_PATCHING;
2095 }
2096
2097 if (field->is_flat()) {
2098 ciInlineKlass* vk = field->type()->as_inline_klass();
2099 #ifdef ASSERT
2100 bool is_naturally_atomic = vk->nof_declared_nonstatic_fields() <= 1;
2101 bool needs_atomic_access = !field->is_null_free() || (field->is_volatile() && !is_naturally_atomic);
2102 assert(needs_atomic_access, "No atomic access required");
2103 assert(x->state_before() != nullptr, "Needs state before");
2104 #endif
2105
2106 // Allocate buffer (we can't easily do this conditionally on the null check below
2107 // because branches added in the LIR are opaque to the register allocator).
2108 NewInstance* buffer = new NewInstance(vk, x->state_before(), false, true);
2109 do_NewInstance(buffer);
2110 LIRItem dest(buffer, this);
2111
2112 // Copy the payload to the buffer
2113 BasicType bt = vk->atomic_size_to_basic_type(field->is_null_free());
2114 LIR_Opr payload = new_register((bt == T_LONG) ? bt : T_INT);
2115 access_load_at(decorators, bt, object, LIR_OprFact::intConst(field->offset_in_bytes()), payload,
2116 // Make sure to emit an implicit null check
2117 info ? new CodeEmitInfo(info) : nullptr, info);
2118 access_store_at(decorators, bt, dest, LIR_OprFact::intConst(vk->payload_offset()), payload);
2119
2120 if (field->is_null_free()) {
2121 set_result(x, buffer->operand());
2122 } else {
2123 // Check the null marker and set result to null if it's not set
2124 __ logical_and(payload, null_marker_mask(bt, field), payload);
2125 __ cmp(lir_cond_equal, payload, (bt == T_LONG) ? LIR_OprFact::longConst(0) : LIR_OprFact::intConst(0));
2126 __ cmove(lir_cond_equal, LIR_OprFact::oopConst(nullptr), buffer->operand(), rlock_result(x), T_OBJECT);
2127 }
2128
2129 // Ensure the copy is visible before any subsequent store that publishes the buffer.
2130 __ membar_storestore();
2131 return;
2132 }
2133
2134 LIR_Opr result = rlock_result(x, field_type);
2135 access_load_at(decorators, field_type,
2136 object, LIR_OprFact::intConst(x->offset()), result,
2137 info ? new CodeEmitInfo(info) : nullptr, info);
2138 }
2139
2140 // int/long jdk.internal.util.Preconditions.checkIndex
2141 void LIRGenerator::do_PreconditionsCheckIndex(Intrinsic* x, BasicType type) {
2142 assert(x->number_of_arguments() == 3, "wrong type");
2143 LIRItem index(x->argument_at(0), this);
2144 LIRItem length(x->argument_at(1), this);
2145 LIRItem oobef(x->argument_at(2), this);
2146
2147 index.load_item();
2148 length.load_item();
2149 oobef.load_item();
2150
2151 LIR_Opr result = rlock_result(x);
2152 // x->state() is created from copy_state_for_exception, it does not contains arguments
2153 // we should prepare them before entering into interpreter mode due to deoptimization.
2262 __ move(LIR_OprFact::oopConst(nullptr), obj);
2263 __ null_check(obj, new CodeEmitInfo(null_check_info));
2264 }
2265 }
2266
2267 if (needs_range_check) {
2268 if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
2269 __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result()));
2270 } else if (use_length) {
2271 // TODO: use a (modified) version of array_range_check that does not require a
2272 // constant length to be loaded to a register
2273 __ cmp(lir_cond_belowEqual, length.result(), index.result());
2274 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
2275 } else {
2276 array_range_check(array.result(), index.result(), null_check_info, range_check_info);
2277 // The range check performs the null check, so clear it out for the load
2278 null_check_info = nullptr;
2279 }
2280 }
2281
2282 ciMethodData* md = nullptr;
2283 ciProfileData* data = nullptr;
2284 if (x->should_profile()) {
2285 if (x->array()->is_loaded_flat_array()) {
2286 // No need to profile a load from a flat array of known type. This can happen if
2287 // the type only became known after optimizations (for example, after the PhiSimplifier).
2288 x->set_should_profile(false);
2289 } else {
2290 int bci = x->profiled_bci();
2291 md = x->profiled_method()->method_data();
2292 assert(md != nullptr, "Sanity");
2293 data = md->bci_to_data(bci);
2294 assert(data != nullptr && data->is_ArrayLoadData(), "incorrect profiling entry");
2295 ciArrayLoadData* load_data = (ciArrayLoadData*)data;
2296 profile_array_type(x, md, load_data);
2297 }
2298 }
2299
2300 Value element;
2301 if (x->vt() != nullptr) {
2302 assert(x->array()->is_loaded_flat_array(), "must be");
2303 // Find the destination address (of the NewInlineTypeInstance).
2304 LIRItem obj_item(x->vt(), this);
2305
2306 access_flat_array(true, array, index, obj_item,
2307 x->delayed() == nullptr ? 0 : x->delayed()->field(),
2308 x->delayed() == nullptr ? 0 : x->delayed()->offset());
2309 set_no_result(x);
2310 } else if (x->delayed() != nullptr) {
2311 assert(x->array()->is_loaded_flat_array(), "must be");
2312 LIR_Opr result = rlock_result(x, x->delayed()->field()->type()->basic_type());
2313 access_sub_element(array, index, result, x->delayed()->field(), x->delayed()->offset());
2314 } else {
2315 LIR_Opr result = rlock_result(x, x->elt_type());
2316 LoadFlattenedArrayStub* slow_path = nullptr;
2317
2318 if (x->should_profile() && x->array()->maybe_null_free_array()) {
2319 profile_null_free_array(array, md, data);
2320 }
2321
2322 if (x->elt_type() == T_OBJECT && x->array()->maybe_flat_array()) {
2323 assert(x->delayed() == nullptr, "Delayed LoadIndexed only apply to loaded_flat_arrays");
2324 index.load_item();
2325 // if we are loading from a flat array, load it using a runtime call
2326 slow_path = new LoadFlattenedArrayStub(array.result(), index.result(), result, state_for(x, x->state_before()));
2327 check_flat_array(array.result(), LIR_OprFact::illegalOpr, slow_path);
2328 set_in_conditional_code(true);
2329 }
2330
2331 DecoratorSet decorators = IN_HEAP | IS_ARRAY;
2332 access_load_at(decorators, x->elt_type(),
2333 array, index.result(), result,
2334 nullptr, null_check_info);
2335
2336 if (slow_path != nullptr) {
2337 __ branch_destination(slow_path->continuation());
2338 set_in_conditional_code(false);
2339 }
2340
2341 element = x;
2342 }
2343
2344 if (x->should_profile()) {
2345 profile_element_type(element, md, (ciArrayLoadData*)data);
2346 }
2347 }
2348
2349
2350 void LIRGenerator::do_NullCheck(NullCheck* x) {
2351 if (x->can_trap()) {
2352 LIRItem value(x->obj(), this);
2353 value.load_item();
2354 CodeEmitInfo* info = state_for(x);
2355 __ null_check(value.result(), info);
2356 }
2357 }
2358
2359
2360 void LIRGenerator::do_TypeCast(TypeCast* x) {
2361 LIRItem value(x->obj(), this);
2362 value.load_item();
2363 // the result is the same as from the node we are casting
2364 set_result(x, value.result());
2365 }
2366
2809 Compilation* comp = Compilation::current();
2810 if (do_update) {
2811 // try to find exact type, using CHA if possible, so that loading
2812 // the klass from the object can be avoided
2813 ciType* type = obj->exact_type();
2814 if (type == nullptr) {
2815 type = obj->declared_type();
2816 type = comp->cha_exact_type(type);
2817 }
2818 assert(type == nullptr || type->is_klass(), "type should be class");
2819 exact_klass = (type != nullptr && type->is_loaded()) ? (ciKlass*)type : nullptr;
2820
2821 do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2822 }
2823
2824 if (!do_null && !do_update) {
2825 return result;
2826 }
2827
2828 ciKlass* exact_signature_k = nullptr;
2829 if (do_update && signature_at_call_k != nullptr) {
2830 // Is the type from the signature exact (the only one possible)?
2831 exact_signature_k = signature_at_call_k->exact_klass();
2832 if (exact_signature_k == nullptr) {
2833 exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2834 } else {
2835 result = exact_signature_k;
2836 // Known statically. No need to emit any code: prevent
2837 // LIR_Assembler::emit_profile_type() from emitting useless code
2838 profiled_k = ciTypeEntries::with_status(result, profiled_k);
2839 }
2840 // exact_klass and exact_signature_k can be both non null but
2841 // different if exact_klass is loaded after the ciObject for
2842 // exact_signature_k is created.
2843 if (exact_klass == nullptr && exact_signature_k != nullptr && exact_klass != exact_signature_k) {
2844 // sometimes the type of the signature is better than the best type
2845 // the compiler has
2846 exact_klass = exact_signature_k;
2847 }
2848 if (callee_signature_k != nullptr &&
2849 callee_signature_k != signature_at_call_k) {
2850 ciKlass* improved_klass = callee_signature_k->exact_klass();
2851 if (improved_klass == nullptr) {
2852 improved_klass = comp->cha_exact_type(callee_signature_k);
2853 }
2854 if (exact_klass == nullptr && improved_klass != nullptr && exact_klass != improved_klass) {
2855 exact_klass = exact_signature_k;
2856 }
2857 }
2858 do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2859 }
2860
2861 if (exact_klass != nullptr && exact_klass->is_obj_array_klass()) {
2862 if (exact_klass->can_be_inline_array_klass()) {
2863 // Inline type arrays can have additional properties, we need to load the klass
2864 // TODO 8350865 Can we do better here and track the properties?
2865 exact_klass = nullptr;
2866 do_update = true;
2867 } else {
2868 // For a direct pointer comparison, we need the refined array klass pointer
2869 exact_klass = ciObjArrayKlass::make(exact_klass->as_array_klass()->element_klass());
2870 do_update = ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2871 }
2872 }
2873 if (!do_null && !do_update) {
2874 return result;
2875 }
2876
2877 if (mdp == LIR_OprFact::illegalOpr) {
2878 mdp = new_register(T_METADATA);
2879 __ metadata2reg(md->constant_encoding(), mdp);
2880 if (md_base_offset != 0) {
2881 LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2882 mdp = new_pointer_register();
2883 __ leal(LIR_OprFact::address(base_type_address), mdp);
2884 }
2885 }
2886 LIRItem value(obj, this);
2887 value.load_item();
2888 __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2889 value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != nullptr);
2890 return result;
2891 }
2892
2906 assert(!src->is_illegal(), "check");
2907 BasicType t = src->type();
2908 if (is_reference_type(t)) {
2909 intptr_t profiled_k = parameters->type(j);
2910 Local* local = x->state()->local_at(java_index)->as_Local();
2911 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2912 in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2913 profiled_k, local, mdp, false, local->declared_type()->as_klass(), nullptr);
2914 // If the profile is known statically set it once for all and do not emit any code
2915 if (exact != nullptr) {
2916 md->set_parameter_type(j, exact);
2917 }
2918 j++;
2919 }
2920 java_index += type2size[t];
2921 }
2922 }
2923 }
2924 }
2925
2926 void LIRGenerator::profile_flags(ciMethodData* md, ciProfileData* data, int flag, LIR_Condition condition) {
2927 assert(md != nullptr && data != nullptr, "should have been initialized");
2928 LIR_Opr mdp = new_register(T_METADATA);
2929 __ metadata2reg(md->constant_encoding(), mdp);
2930 LIR_Address* addr = new LIR_Address(mdp, md->byte_offset_of_slot(data, DataLayout::flags_offset()), T_BYTE);
2931 LIR_Opr flags = new_register(T_INT);
2932 __ move(addr, flags);
2933 LIR_Opr update;
2934 if (condition != lir_cond_always) {
2935 update = new_register(T_INT);
2936 __ cmove(condition, LIR_OprFact::intConst(0), LIR_OprFact::intConst(flag), update, T_INT);
2937 } else {
2938 update = LIR_OprFact::intConst(flag);
2939 }
2940 __ logical_or(flags, update, flags);
2941 __ store(flags, addr);
2942 }
2943
2944 void LIRGenerator::profile_null_free_array(LIRItem array, ciMethodData* md, ciProfileData* data) {
2945 assert(compilation()->profile_array_accesses(), "array access profiling is disabled");
2946 LabelObj* L_end = new LabelObj();
2947 LIR_Opr tmp = new_register(T_METADATA);
2948 __ check_null_free_array(array.result(), tmp);
2949
2950 profile_flags(md, data, ArrayStoreData::null_free_array_byte_constant(), lir_cond_equal);
2951 }
2952
2953 template <class ArrayData> void LIRGenerator::profile_array_type(AccessIndexed* x, ciMethodData*& md, ArrayData*& load_store) {
2954 assert(compilation()->profile_array_accesses(), "array access profiling is disabled");
2955 LIR_Opr mdp = LIR_OprFact::illegalOpr;
2956 profile_type(md, md->byte_offset_of_slot(load_store, ArrayData::array_offset()), 0,
2957 load_store->array()->type(), x->array(), mdp, true, nullptr, nullptr);
2958 }
2959
2960 void LIRGenerator::profile_element_type(Value element, ciMethodData* md, ciArrayLoadData* load_data) {
2961 assert(compilation()->profile_array_accesses(), "array access profiling is disabled");
2962 assert(md != nullptr && load_data != nullptr, "should have been initialized");
2963 LIR_Opr mdp = LIR_OprFact::illegalOpr;
2964 profile_type(md, md->byte_offset_of_slot(load_data, ArrayLoadData::element_offset()), 0,
2965 load_data->element()->type(), element, mdp, false, nullptr, nullptr);
2966 }
2967
2968 void LIRGenerator::do_Base(Base* x) {
2969 __ std_entry(LIR_OprFact::illegalOpr);
2970 // Emit moves from physical registers / stack slots to virtual registers
2971 CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2972 IRScope* irScope = compilation()->hir()->top_scope();
2973 int java_index = 0;
2974 for (int i = 0; i < args->length(); i++) {
2975 LIR_Opr src = args->at(i);
2976 assert(!src->is_illegal(), "check");
2977 BasicType t = src->type();
2978
2979 // Types which are smaller than int are passed as int, so
2980 // correct the type which passed.
2981 switch (t) {
2982 case T_BYTE:
2983 case T_BOOLEAN:
2984 case T_SHORT:
2985 case T_CHAR:
2986 t = T_INT;
2987 break;
2989 break;
2990 }
2991
2992 LIR_Opr dest = new_register(t);
2993 __ move(src, dest);
2994
2995 // Assign new location to Local instruction for this local
2996 Local* local = x->state()->local_at(java_index)->as_Local();
2997 assert(local != nullptr, "Locals for incoming arguments must have been created");
2998 #ifndef __SOFTFP__
2999 // The java calling convention passes double as long and float as int.
3000 assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
3001 #endif // __SOFTFP__
3002 local->set_operand(dest);
3003 #ifdef ASSERT
3004 _instruction_for_operand.at_put_grow(dest->vreg_number(), local, nullptr);
3005 #endif
3006 java_index += type2size[t];
3007 }
3008
3009 // Check if we need a membar at the beginning of the java.lang.Object
3010 // constructor to satisfy the memory model for strict fields.
3011 if (EnableValhalla && method()->intrinsic_id() == vmIntrinsics::_Object_init) {
3012 __ membar_storestore();
3013 }
3014
3015 if (compilation()->env()->dtrace_method_probes()) {
3016 BasicTypeList signature;
3017 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread
3018 signature.append(T_METADATA); // Method*
3019 LIR_OprList* args = new LIR_OprList();
3020 args->append(getThreadPointer());
3021 LIR_Opr meth = new_register(T_METADATA);
3022 __ metadata2reg(method()->constant_encoding(), meth);
3023 args->append(meth);
3024 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, nullptr);
3025 }
3026
3027 if (method()->is_synchronized()) {
3028 LIR_Opr obj;
3029 if (method()->is_static()) {
3030 obj = new_register(T_OBJECT);
3031 __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
3032 } else {
3033 Local* receiver = x->state()->local_at(0)->as_Local();
3034 assert(receiver != nullptr, "must already exist");
3036 }
3037 assert(obj->is_valid(), "must be valid");
3038
3039 if (method()->is_synchronized()) {
3040 LIR_Opr lock = syncLockOpr();
3041 __ load_stack_address_monitor(0, lock);
3042
3043 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, x->check_flag(Instruction::DeoptimizeOnException));
3044 CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
3045
3046 // receiver is guaranteed non-null so don't need CodeEmitInfo
3047 __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, nullptr);
3048 }
3049 }
3050 // increment invocation counters if needed
3051 if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
3052 profile_parameters(x);
3053 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, false);
3054 increment_invocation_counter(info);
3055 }
3056 if (method()->has_scalarized_args()) {
3057 // Check if deoptimization was triggered (i.e. orig_pc was set) while buffering scalarized inline type arguments
3058 // in the entry point (see comments in frame::deoptimize). If so, deoptimize only now that we have the right state.
3059 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), nullptr, false);
3060 CodeStub* deopt_stub = new DeoptimizeStub(info, Deoptimization::Reason_none, Deoptimization::Action_none);
3061 __ append(new LIR_Op0(lir_check_orig_pc));
3062 __ branch(lir_cond_notEqual, deopt_stub);
3063 }
3064
3065 // all blocks with a successor must end with an unconditional jump
3066 // to the successor even if they are consecutive
3067 __ jump(x->default_sux());
3068 }
3069
3070
3071 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
3072 // construct our frame and model the production of incoming pointer
3073 // to the OSR buffer.
3074 __ osr_entry(LIR_Assembler::osrBufferPointer());
3075 LIR_Opr result = rlock_result(x);
3076 __ move(LIR_Assembler::osrBufferPointer(), result);
3077 }
3078
3079 void LIRGenerator::invoke_load_one_argument(LIRItem* param, LIR_Opr loc) {
3080 if (loc->is_register()) {
3081 param->load_item_force(loc);
3082 } else {
3083 LIR_Address* addr = loc->as_address_ptr();
3084 param->load_for_store(addr->type());
3085 if (addr->type() == T_OBJECT) {
3086 __ move_wide(param->result(), addr);
3087 } else {
3088 __ move(param->result(), addr);
3089 }
3090 }
3091 }
3092
3093 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
3094 assert(args->length() == arg_list->length(),
3095 "args=%d, arg_list=%d", args->length(), arg_list->length());
3096 for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
3097 LIRItem* param = args->at(i);
3098 LIR_Opr loc = arg_list->at(i);
3099 invoke_load_one_argument(param, loc);
3100 }
3101
3102 if (x->has_receiver()) {
3103 LIRItem* receiver = args->at(0);
3104 LIR_Opr loc = arg_list->at(0);
3105 if (loc->is_register()) {
3106 receiver->load_item_force(loc);
3107 } else {
3108 assert(loc->is_address(), "just checking");
3109 receiver->load_for_store(T_OBJECT);
3110 __ move_wide(receiver->result(), loc->as_address_ptr());
3111 }
3112 }
3113 }
3114
3115
3116 // Visits all arguments, returns appropriate items without loading them
3117 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
3118 LIRItemList* argument_items = new LIRItemList();
3119 if (x->has_receiver()) {
3226 __ move(tmp, reg);
3227 }
3228
3229
3230
3231 // Code for : x->x() {x->cond()} x->y() ? x->tval() : x->fval()
3232 void LIRGenerator::do_IfOp(IfOp* x) {
3233 #ifdef ASSERT
3234 {
3235 ValueTag xtag = x->x()->type()->tag();
3236 ValueTag ttag = x->tval()->type()->tag();
3237 assert(xtag == intTag || xtag == objectTag, "cannot handle others");
3238 assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
3239 assert(ttag == x->fval()->type()->tag(), "cannot handle others");
3240 }
3241 #endif
3242
3243 LIRItem left(x->x(), this);
3244 LIRItem right(x->y(), this);
3245 left.load_item();
3246 if (can_inline_as_constant(right.value()) && !x->substitutability_check()) {
3247 right.dont_load_item();
3248 } else {
3249 // substitutability_check() needs to use right as a base register.
3250 right.load_item();
3251 }
3252
3253 LIRItem t_val(x->tval(), this);
3254 LIRItem f_val(x->fval(), this);
3255 t_val.dont_load_item();
3256 f_val.dont_load_item();
3257
3258 if (x->substitutability_check()) {
3259 substitutability_check(x, left, right, t_val, f_val);
3260 } else {
3261 LIR_Opr reg = rlock_result(x);
3262 __ cmp(lir_cond(x->cond()), left.result(), right.result());
3263 __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
3264 }
3265 }
3266
3267 void LIRGenerator::substitutability_check(IfOp* x, LIRItem& left, LIRItem& right, LIRItem& t_val, LIRItem& f_val) {
3268 assert(x->cond() == If::eql || x->cond() == If::neq, "must be");
3269 bool is_acmpeq = (x->cond() == If::eql);
3270 LIR_Opr equal_result = is_acmpeq ? t_val.result() : f_val.result();
3271 LIR_Opr not_equal_result = is_acmpeq ? f_val.result() : t_val.result();
3272 LIR_Opr result = rlock_result(x);
3273 CodeEmitInfo* info = state_for(x, x->state_before());
3274
3275 substitutability_check_common(x->x(), x->y(), left, right, equal_result, not_equal_result, result, info);
3276 }
3277
3278 void LIRGenerator::substitutability_check(If* x, LIRItem& left, LIRItem& right) {
3279 LIR_Opr equal_result = LIR_OprFact::intConst(1);
3280 LIR_Opr not_equal_result = LIR_OprFact::intConst(0);
3281 LIR_Opr result = new_register(T_INT);
3282 CodeEmitInfo* info = state_for(x, x->state_before());
3283
3284 substitutability_check_common(x->x(), x->y(), left, right, equal_result, not_equal_result, result, info);
3285
3286 assert(x->cond() == If::eql || x->cond() == If::neq, "must be");
3287 __ cmp(lir_cond(x->cond()), result, equal_result);
3288 }
3289
3290 void LIRGenerator::substitutability_check_common(Value left_val, Value right_val, LIRItem& left, LIRItem& right,
3291 LIR_Opr equal_result, LIR_Opr not_equal_result, LIR_Opr result,
3292 CodeEmitInfo* info) {
3293 LIR_Opr tmp1 = LIR_OprFact::illegalOpr;
3294 LIR_Opr tmp2 = LIR_OprFact::illegalOpr;
3295 LIR_Opr left_klass_op = LIR_OprFact::illegalOpr;
3296 LIR_Opr right_klass_op = LIR_OprFact::illegalOpr;
3297
3298 ciKlass* left_klass = left_val ->as_loaded_klass_or_null();
3299 ciKlass* right_klass = right_val->as_loaded_klass_or_null();
3300
3301 if ((left_klass == nullptr || right_klass == nullptr) ||// The klass is still unloaded, or came from a Phi node.
3302 !left_klass->is_inlinetype() || !right_klass->is_inlinetype()) {
3303 init_temps_for_substitutability_check(tmp1, tmp2);
3304 }
3305
3306 if (left_klass != nullptr && left_klass->is_inlinetype() && left_klass == right_klass) {
3307 // No need to load klass -- the operands are statically known to be the same inline klass.
3308 } else {
3309 BasicType t_klass = UseCompressedOops ? T_INT : T_METADATA;
3310 left_klass_op = new_register(t_klass);
3311 right_klass_op = new_register(t_klass);
3312 }
3313
3314 CodeStub* slow_path = new SubstitutabilityCheckStub(left.result(), right.result(), info);
3315 __ substitutability_check(result, left.result(), right.result(), equal_result, not_equal_result,
3316 tmp1, tmp2,
3317 left_klass, right_klass, left_klass_op, right_klass_op, info, slow_path);
3318 }
3319
3320 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
3321 assert(x->number_of_arguments() == 0, "wrong type");
3322 // Enforce computation of _reserved_argument_area_size which is required on some platforms.
3323 BasicTypeList signature;
3324 CallingConvention* cc = frame_map()->c_calling_convention(&signature);
3325 LIR_Opr reg = result_register_for(x->type());
3326 __ call_runtime_leaf(routine, getThreadTemp(),
3327 reg, new LIR_OprList());
3328 LIR_Opr result = rlock_result(x);
3329 __ move(reg, result);
3330 }
3331
3332
3333
3334 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
3335 switch (x->id()) {
3336 case vmIntrinsics::_intBitsToFloat :
3337 case vmIntrinsics::_doubleToRawLongBits :
3572 if (x->recv() != nullptr || x->nb_profiled_args() > 0) {
3573 profile_parameters_at_call(x);
3574 }
3575
3576 if (x->recv() != nullptr) {
3577 LIRItem value(x->recv(), this);
3578 value.load_item();
3579 recv = new_register(T_OBJECT);
3580 __ move(value.result(), recv);
3581 }
3582 __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3583 }
3584
3585 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3586 int bci = x->bci_of_invoke();
3587 ciMethodData* md = x->method()->method_data_or_null();
3588 assert(md != nullptr, "Sanity");
3589 ciProfileData* data = md->bci_to_data(bci);
3590 if (data != nullptr) {
3591 assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3592 ciSingleTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3593 LIR_Opr mdp = LIR_OprFact::illegalOpr;
3594
3595 bool ignored_will_link;
3596 ciSignature* signature_at_call = nullptr;
3597 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3598
3599 // The offset within the MDO of the entry to update may be too large
3600 // to be used in load/store instructions on some platforms. So have
3601 // profile_type() compute the address of the profile in a register.
3602 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3603 ret->type(), x->ret(), mdp,
3604 !x->needs_null_check(),
3605 signature_at_call->return_type()->as_klass(),
3606 x->callee()->signature()->return_type()->as_klass());
3607 if (exact != nullptr) {
3608 md->set_return_type(bci, exact);
3609 }
3610 }
3611 }
3612
3613 bool LIRGenerator::profile_inline_klass(ciMethodData* md, ciProfileData* data, Value value, int flag) {
3614 ciKlass* klass = value->as_loaded_klass_or_null();
3615 if (klass != nullptr) {
3616 if (klass->is_inlinetype()) {
3617 profile_flags(md, data, flag, lir_cond_always);
3618 } else if (klass->can_be_inline_klass()) {
3619 return false;
3620 }
3621 } else {
3622 return false;
3623 }
3624 return true;
3625 }
3626
3627
3628 void LIRGenerator::do_ProfileACmpTypes(ProfileACmpTypes* x) {
3629 ciMethod* method = x->method();
3630 assert(method != nullptr, "method should be set if branch is profiled");
3631 ciMethodData* md = method->method_data_or_null();
3632 assert(md != nullptr, "Sanity");
3633 ciProfileData* data = md->bci_to_data(x->bci());
3634 assert(data != nullptr, "must have profiling data");
3635 assert(data->is_ACmpData(), "need BranchData for two-way branches");
3636 ciACmpData* acmp = (ciACmpData*)data;
3637 LIR_Opr mdp = LIR_OprFact::illegalOpr;
3638 profile_type(md, md->byte_offset_of_slot(acmp, ACmpData::left_offset()), 0,
3639 acmp->left()->type(), x->left(), mdp, !x->left_maybe_null(), nullptr, nullptr);
3640 int flags_offset = md->byte_offset_of_slot(data, DataLayout::flags_offset());
3641 if (!profile_inline_klass(md, acmp, x->left(), ACmpData::left_inline_type_byte_constant())) {
3642 LIR_Opr mdp = new_register(T_METADATA);
3643 __ metadata2reg(md->constant_encoding(), mdp);
3644 LIRItem value(x->left(), this);
3645 value.load_item();
3646 __ profile_inline_type(new LIR_Address(mdp, flags_offset, T_INT), value.result(), ACmpData::left_inline_type_byte_constant(), new_register(T_INT), !x->left_maybe_null());
3647 }
3648 profile_type(md, md->byte_offset_of_slot(acmp, ACmpData::left_offset()),
3649 in_bytes(ACmpData::right_offset()) - in_bytes(ACmpData::left_offset()),
3650 acmp->right()->type(), x->right(), mdp, !x->right_maybe_null(), nullptr, nullptr);
3651 if (!profile_inline_klass(md, acmp, x->right(), ACmpData::right_inline_type_byte_constant())) {
3652 LIR_Opr mdp = new_register(T_METADATA);
3653 __ metadata2reg(md->constant_encoding(), mdp);
3654 LIRItem value(x->right(), this);
3655 value.load_item();
3656 __ profile_inline_type(new LIR_Address(mdp, flags_offset, T_INT), value.result(), ACmpData::right_inline_type_byte_constant(), new_register(T_INT), !x->left_maybe_null());
3657 }
3658 }
3659
3660 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3661 // We can safely ignore accessors here, since c2 will inline them anyway,
3662 // accessors are also always mature.
3663 if (!x->inlinee()->is_accessor()) {
3664 CodeEmitInfo* info = state_for(x, x->state(), true);
3665 // Notify the runtime very infrequently only to take care of counter overflows
3666 int freq_log = Tier23InlineeNotifyFreqLog;
3667 double scale;
3668 if (_method->has_option_value(CompileCommandEnum::CompileThresholdScaling, scale)) {
3669 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3670 }
3671 increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true);
3672 }
3673 }
3674
3675 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) {
3676 if (compilation()->is_profiling()) {
3677 #if defined(X86) && !defined(_LP64)
3678 // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
3679 LIR_Opr left_copy = new_register(left->type());
|