< prev index next >

src/hotspot/share/c1/c1_LIRGenerator.cpp

Print this page

  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "c1/c1_Compilation.hpp"
  26 #include "c1/c1_Defs.hpp"
  27 #include "c1/c1_FrameMap.hpp"
  28 #include "c1/c1_Instruction.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_LIRGenerator.hpp"
  31 #include "c1/c1_ValueStack.hpp"
  32 #include "ci/ciArrayKlass.hpp"


  33 #include "ci/ciInstance.hpp"
  34 #include "ci/ciObjArray.hpp"

  35 #include "ci/ciUtilities.hpp"
  36 #include "compiler/compilerDefinitions.inline.hpp"
  37 #include "compiler/compilerOracle.hpp"
  38 #include "gc/shared/barrierSet.hpp"
  39 #include "gc/shared/c1/barrierSetC1.hpp"
  40 #include "oops/klass.inline.hpp"
  41 #include "oops/methodCounters.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/stubRoutines.hpp"
  44 #include "runtime/vm_version.hpp"
  45 #include "utilities/bitMap.inline.hpp"
  46 #include "utilities/macros.hpp"
  47 #include "utilities/powerOfTwo.hpp"
  48 
  49 #ifdef ASSERT
  50 #define __ gen()->lir(__FILE__, __LINE__)->
  51 #else
  52 #define __ gen()->lir()->
  53 #endif
  54 

 198 }
 199 
 200 
 201 //--------------------------------------------------------------
 202 // LIRItem
 203 
 204 void LIRItem::set_result(LIR_Opr opr) {
 205   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 206   value()->set_operand(opr);
 207 
 208 #ifdef ASSERT
 209   if (opr->is_virtual()) {
 210     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), nullptr);
 211   }
 212 #endif
 213 
 214   _result = opr;
 215 }
 216 
 217 void LIRItem::load_item() {


 218   if (result()->is_illegal()) {
 219     // update the items result
 220     _result = value()->operand();
 221   }
 222   if (!result()->is_register()) {
 223     LIR_Opr reg = _gen->new_register(value()->type());
 224     __ move(result(), reg);
 225     if (result()->is_constant()) {
 226       _result = reg;
 227     } else {
 228       set_result(reg);
 229     }
 230   }
 231 }
 232 
 233 
 234 void LIRItem::load_for_store(BasicType type) {
 235   if (_gen->can_store_as_constant(value(), type)) {
 236     _result = value()->operand();
 237     if (!_result->is_constant()) {

 605     assert(right_op != result_op, "malformed");
 606     __ move(left_op, result_op);
 607     left_op = result_op;
 608   }
 609 
 610   switch(code) {
 611     case Bytecodes::_iand:
 612     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 613 
 614     case Bytecodes::_ior:
 615     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 616 
 617     case Bytecodes::_ixor:
 618     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 619 
 620     default: ShouldNotReachHere();
 621   }
 622 }
 623 
 624 
 625 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {

 626   if (!GenerateSynchronizationCode) return;
 627   // for slow path, use debug info for state after successful locking
 628   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
 629   __ load_stack_address_monitor(monitor_no, lock);
 630   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 631   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
 632 }
 633 
 634 
 635 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 636   if (!GenerateSynchronizationCode) return;
 637   // setup registers
 638   LIR_Opr hdr = lock;
 639   lock = new_hdr;
 640   CodeStub* slow_path = new MonitorExitStub(lock, LockingMode != LM_MONITOR, monitor_no);
 641   __ load_stack_address_monitor(monitor_no, lock);
 642   __ unlock_object(hdr, object, lock, scratch, slow_path);
 643 }
 644 
 645 #ifndef PRODUCT
 646 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 647   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 648     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 649   } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) {
 650     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 651   }
 652 }
 653 #endif
 654 
 655 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 656   klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 657   // If klass is not loaded we do not know if the klass has finalizers:
 658   if (UseFastNewInstance && klass->is_loaded()





 659       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 660 
 661     C1StubId stub_id = klass->is_initialized() ? C1StubId::fast_new_instance_id : C1StubId::fast_new_instance_init_check_id;
 662 
 663     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 664 
 665     assert(klass->is_loaded(), "must be loaded");
 666     // allocate space for instance
 667     assert(klass->size_helper() > 0, "illegal instance size");
 668     const int instance_size = align_object_size(klass->size_helper());
 669     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 670                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 671   } else {
 672     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, C1StubId::new_instance_id);
 673     __ branch(lir_cond_always, slow_path);
 674     __ branch_destination(slow_path->continuation());
 675   }
 676 }
 677 
 678 
 679 static bool is_constant_zero(Instruction* inst) {
 680   IntConstant* c = inst->type()->as_IntConstant();
 681   if (c) {
 682     return (c->value() == 0);
 683   }
 684   return false;
 685 }
 686 
 687 
 688 static bool positive_constant(Instruction* inst) {
 689   IntConstant* c = inst->type()->as_IntConstant();
 690   if (c) {
 691     return (c->value() >= 0);
 692   }
 693   return false;

 753       if (src_type != nullptr) {
 754         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 755           is_exact = true;
 756           expected_type = dst_type;
 757         }
 758       }
 759     }
 760     // at least pass along a good guess
 761     if (expected_type == nullptr) expected_type = dst_exact_type;
 762     if (expected_type == nullptr) expected_type = src_declared_type;
 763     if (expected_type == nullptr) expected_type = dst_declared_type;
 764 
 765     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 766     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 767   }
 768 
 769   // if a probable array type has been identified, figure out if any
 770   // of the required checks for a fast case can be elided.
 771   int flags = LIR_OpArrayCopy::all_flags;
 772 










 773   if (!src_objarray)
 774     flags &= ~LIR_OpArrayCopy::src_objarray;
 775   if (!dst_objarray)
 776     flags &= ~LIR_OpArrayCopy::dst_objarray;
 777 
 778   if (!x->arg_needs_null_check(0))
 779     flags &= ~LIR_OpArrayCopy::src_null_check;
 780   if (!x->arg_needs_null_check(2))
 781     flags &= ~LIR_OpArrayCopy::dst_null_check;
 782 
 783 
 784   if (expected_type != nullptr) {
 785     Value length_limit = nullptr;
 786 
 787     IfOp* ifop = length->as_IfOp();
 788     if (ifop != nullptr) {
 789       // look for expressions like min(v, a.length) which ends up as
 790       //   x > y ? y : x  or  x >= y ? y : x
 791       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 792           ifop->x() == ifop->fval() &&

 860       BasicType t = expected_type->element_type()->basic_type();
 861       int element_size = type2aelembytes(t);
 862       if (((arrayOopDesc::base_offset_in_bytes(t) + (uint)s_offs * element_size) % HeapWordSize == 0) &&
 863           ((arrayOopDesc::base_offset_in_bytes(t) + (uint)d_offs * element_size) % HeapWordSize == 0)) {
 864         flags &= ~LIR_OpArrayCopy::unaligned;
 865       }
 866     }
 867   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 868     // src and dest positions are the same, or dst is zero so assume
 869     // nonoverlapping copy.
 870     flags &= ~LIR_OpArrayCopy::overlapping;
 871   }
 872 
 873   if (src == dst) {
 874     // moving within a single array so no type checks are needed
 875     if (flags & LIR_OpArrayCopy::type_check) {
 876       flags &= ~LIR_OpArrayCopy::type_check;
 877     }
 878   }
 879   *flagsp = flags;






 880   *expected_typep = (ciArrayKlass*)expected_type;
 881 }
 882 
 883 
 884 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 885   assert(type2size[t] == type2size[value->type()],
 886          "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
 887   if (!value->is_register()) {
 888     // force into a register
 889     LIR_Opr r = new_register(value->type());
 890     __ move(value, r);
 891     value = r;
 892   }
 893 
 894   // create a spill location
 895   LIR_Opr tmp = new_register(t);
 896   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 897 
 898   // move from register to spill
 899   __ move(value, tmp);

1445   }
1446   return _vreg_flags.at(vreg_num, f);
1447 }
1448 
1449 
1450 // Block local constant handling.  This code is useful for keeping
1451 // unpinned constants and constants which aren't exposed in the IR in
1452 // registers.  Unpinned Constant instructions have their operands
1453 // cleared when the block is finished so that other blocks can't end
1454 // up referring to their registers.
1455 
1456 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1457   assert(!x->is_pinned(), "only for unpinned constants");
1458   _unpinned_constants.append(x);
1459   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1460 }
1461 
1462 
1463 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1464   BasicType t = c->type();
1465   for (int i = 0; i < _constants.length(); i++) {
1466     LIR_Const* other = _constants.at(i);
1467     if (t == other->type()) {
1468       switch (t) {
1469       case T_INT:
1470       case T_FLOAT:
1471         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1472         break;
1473       case T_LONG:
1474       case T_DOUBLE:
1475         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1476         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1477         break;
1478       case T_OBJECT:
1479         if (c->as_jobject() != other->as_jobject()) continue;
1480         break;
1481       default:
1482         break;
1483       }
1484       return _reg_for_constants.at(i);
1485     }
1486   }
1487 
1488   LIR_Opr result = new_register(t);
1489   __ move((LIR_Opr)c, result);
1490   _constants.append(c);
1491   _reg_for_constants.append(result);


1492   return result;
1493 }
1494 






1495 //------------------------field access--------------------------------------
1496 
1497 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
1498   assert(x->number_of_arguments() == 4, "wrong type");
1499   LIRItem obj   (x->argument_at(0), this);  // object
1500   LIRItem offset(x->argument_at(1), this);  // offset of field
1501   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
1502   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
1503   assert(obj.type()->tag() == objectTag, "invalid type");
1504   assert(cmp.type()->tag() == type->tag(), "invalid type");
1505   assert(val.type()->tag() == type->tag(), "invalid type");
1506 
1507   LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type),
1508                                             obj, offset, cmp, val);
1509   set_result(x, result);
1510 }
1511 








1512 // Comment copied form templateTable_i486.cpp
1513 // ----------------------------------------------------------------------------
1514 // Volatile variables demand their effects be made known to all CPU's in
1515 // order.  Store buffers on most chips allow reads & writes to reorder; the
1516 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1517 // memory barrier (i.e., it's not sufficient that the interpreter does not
1518 // reorder volatile references, the hardware also must not reorder them).
1519 //
1520 // According to the new Java Memory Model (JMM):
1521 // (1) All volatiles are serialized wrt to each other.
1522 // ALSO reads & writes act as acquire & release, so:
1523 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1524 // the read float up to before the read.  It's OK for non-volatile memory refs
1525 // that happen before the volatile read to float down below it.
1526 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1527 // that happen BEFORE the write float down to after the write.  It's OK for
1528 // non-volatile memory refs that happen after the volatile write to float up
1529 // before it.
1530 //
1531 // We only put in barriers around volatile refs (they are expensive), not
1532 // _between_ memory refs (that would require us to track the flavor of the
1533 // previous memory refs).  Requirements (2) and (3) require some barriers
1534 // before volatile stores and after volatile loads.  These nearly cover
1535 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1536 // case is placed after volatile-stores although it could just as well go
1537 // before volatile-loads.
1538 
1539 
1540 void LIRGenerator::do_StoreField(StoreField* x) {

1541   bool needs_patching = x->needs_patching();
1542   bool is_volatile = x->field()->is_volatile();
1543   BasicType field_type = x->field_type();
1544 
1545   CodeEmitInfo* info = nullptr;
1546   if (needs_patching) {
1547     assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access");
1548     info = state_for(x, x->state_before());
1549   } else if (x->needs_null_check()) {
1550     NullCheck* nc = x->explicit_null_check();
1551     if (nc == nullptr) {
1552       info = state_for(x);
1553     } else {
1554       info = state_for(nc);
1555     }
1556   }
1557 
1558   LIRItem object(x->obj(), this);
1559   LIRItem value(x->value(),  this);
1560 
1561   object.load_item();
1562 
1563   if (is_volatile || needs_patching) {
1564     // load item if field is volatile (fewer special cases for volatiles)
1565     // load item if field not initialized
1566     // load item if field not constant
1567     // because of code patching we cannot inline constants
1568     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1569       value.load_byte_item();
1570     } else  {
1571       value.load_item();
1572     }
1573   } else {
1574     value.load_for_store(field_type);












1575   }
1576 
1577   set_no_result(x);
1578 
1579 #ifndef PRODUCT
1580   if (PrintNotLoaded && needs_patching) {
1581     tty->print_cr("   ###class not loaded at store_%s bci %d",
1582                   x->is_static() ?  "static" : "field", x->printable_bci());
1583   }
1584 #endif
1585 
1586   if (x->needs_null_check() &&
1587       (needs_patching ||
1588        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1589     // Emit an explicit null check because the offset is too large.
1590     // If the class is not loaded and the object is null, we need to deoptimize to throw a
1591     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1592     __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1593   }
1594 
1595   DecoratorSet decorators = IN_HEAP;
1596   if (is_volatile) {
1597     decorators |= MO_SEQ_CST;
1598   }
1599   if (needs_patching) {
1600     decorators |= C1_NEEDS_PATCHING;
1601   }
1602 











































1603   access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()),
1604                   value.result(), info != nullptr ? new CodeEmitInfo(info) : nullptr, info);
1605 }
1606 



























































































































































1607 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
1608   assert(x->is_pinned(),"");


1609   bool needs_range_check = x->compute_needs_range_check();
1610   bool use_length = x->length() != nullptr;
1611   bool obj_store = is_reference_type(x->elt_type());
1612   bool needs_store_check = obj_store && (x->value()->as_Constant() == nullptr ||
1613                                          !get_jobject_constant(x->value())->is_null_object() ||
1614                                          x->should_profile());
1615 
1616   LIRItem array(x->array(), this);
1617   LIRItem index(x->index(), this);
1618   LIRItem value(x->value(), this);
1619   LIRItem length(this);
1620 
1621   array.load_item();
1622   index.load_nonconstant();
1623 
1624   if (use_length && needs_range_check) {
1625     length.set_instruction(x->length());
1626     length.load_item();
1627 
1628   }
1629   if (needs_store_check || x->check_boolean()) {


1630     value.load_item();
1631   } else {
1632     value.load_for_store(x->elt_type());
1633   }
1634 
1635   set_no_result(x);
1636 
1637   // the CodeEmitInfo must be duplicated for each different
1638   // LIR-instruction because spilling can occur anywhere between two
1639   // instructions and so the debug information must be different
1640   CodeEmitInfo* range_check_info = state_for(x);
1641   CodeEmitInfo* null_check_info = nullptr;
1642   if (x->needs_null_check()) {
1643     null_check_info = new CodeEmitInfo(range_check_info);
1644   }
1645 
1646   if (needs_range_check) {
1647     if (use_length) {
1648       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1649       __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1650     } else {
1651       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1652       // range_check also does the null check
1653       null_check_info = nullptr;
1654     }
1655   }
1656 




















1657   if (GenerateArrayStoreCheck && needs_store_check) {
1658     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
1659     array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci());
1660   }
1661 
1662   DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1663   if (x->check_boolean()) {
1664     decorators |= C1_MASK_BOOLEAN;
1665   }























1666 
1667   access_store_at(decorators, x->elt_type(), array, index.result(), value.result(),
1668                   nullptr, null_check_info);




1669 }
1670 
1671 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type,
1672                                   LIRItem& base, LIR_Opr offset, LIR_Opr result,
1673                                   CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) {
1674   decorators |= ACCESS_READ;
1675   LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info);
1676   if (access.is_raw()) {
1677     _barrier_set->BarrierSetC1::load_at(access, result);
1678   } else {
1679     _barrier_set->load_at(access, result);
1680   }
1681 }
1682 
1683 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type,
1684                                LIR_Opr addr, LIR_Opr result) {
1685   decorators |= ACCESS_READ;
1686   LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type);
1687   access.set_resolved_addr(addr);
1688   if (access.is_raw()) {
1689     _barrier_set->BarrierSetC1::load(access, result);
1690   } else {
1691     _barrier_set->load(access, result);
1692   }
1693 }
1694 
1695 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type,
1696                                    LIRItem& base, LIR_Opr offset, LIR_Opr value,
1697                                    CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) {

1698   decorators |= ACCESS_WRITE;
1699   LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info);
1700   if (access.is_raw()) {
1701     _barrier_set->BarrierSetC1::store_at(access, value);
1702   } else {
1703     _barrier_set->store_at(access, value);
1704   }
1705 }
1706 
1707 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type,
1708                                                LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) {
1709   decorators |= ACCESS_READ;
1710   decorators |= ACCESS_WRITE;
1711   // Atomic operations are SEQ_CST by default
1712   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1713   LIRAccess access(this, decorators, base, offset, type);
1714   if (access.is_raw()) {
1715     return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value);
1716   } else {
1717     return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value);
1718   }
1719 }

1730   } else {
1731     return _barrier_set->atomic_xchg_at(access, value);
1732   }
1733 }
1734 
1735 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type,
1736                                            LIRItem& base, LIRItem& offset, LIRItem& value) {
1737   decorators |= ACCESS_READ;
1738   decorators |= ACCESS_WRITE;
1739   // Atomic operations are SEQ_CST by default
1740   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1741   LIRAccess access(this, decorators, base, offset, type);
1742   if (access.is_raw()) {
1743     return _barrier_set->BarrierSetC1::atomic_add_at(access, value);
1744   } else {
1745     return _barrier_set->atomic_add_at(access, value);
1746   }
1747 }
1748 
1749 void LIRGenerator::do_LoadField(LoadField* x) {

1750   bool needs_patching = x->needs_patching();
1751   bool is_volatile = x->field()->is_volatile();
1752   BasicType field_type = x->field_type();
1753 
1754   CodeEmitInfo* info = nullptr;
1755   if (needs_patching) {
1756     assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access");
1757     info = state_for(x, x->state_before());
1758   } else if (x->needs_null_check()) {
1759     NullCheck* nc = x->explicit_null_check();
1760     if (nc == nullptr) {
1761       info = state_for(x);
1762     } else {
1763       info = state_for(nc);
1764     }
1765   }
1766 
1767   LIRItem object(x->obj(), this);
1768 
1769   object.load_item();
1770 
1771 #ifndef PRODUCT

1782        stress_deopt)) {
1783     LIR_Opr obj = object.result();
1784     if (stress_deopt) {
1785       obj = new_register(T_OBJECT);
1786       __ move(LIR_OprFact::oopConst(nullptr), obj);
1787     }
1788     // Emit an explicit null check because the offset is too large.
1789     // If the class is not loaded and the object is null, we need to deoptimize to throw a
1790     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1791     __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1792   }
1793 
1794   DecoratorSet decorators = IN_HEAP;
1795   if (is_volatile) {
1796     decorators |= MO_SEQ_CST;
1797   }
1798   if (needs_patching) {
1799     decorators |= C1_NEEDS_PATCHING;
1800   }
1801 





































1802   LIR_Opr result = rlock_result(x, field_type);
1803   access_load_at(decorators, field_type,
1804                  object, LIR_OprFact::intConst(x->offset()), result,
1805                  info ? new CodeEmitInfo(info) : nullptr, info);
1806 }
1807 
1808 // int/long jdk.internal.util.Preconditions.checkIndex
1809 void LIRGenerator::do_PreconditionsCheckIndex(Intrinsic* x, BasicType type) {
1810   assert(x->number_of_arguments() == 3, "wrong type");
1811   LIRItem index(x->argument_at(0), this);
1812   LIRItem length(x->argument_at(1), this);
1813   LIRItem oobef(x->argument_at(2), this);
1814 
1815   index.load_item();
1816   length.load_item();
1817   oobef.load_item();
1818 
1819   LIR_Opr result = rlock_result(x);
1820   // x->state() is created from copy_state_for_exception, it does not contains arguments
1821   // we should prepare them before entering into interpreter mode due to deoptimization.

1930       __ move(LIR_OprFact::oopConst(nullptr), obj);
1931       __ null_check(obj, new CodeEmitInfo(null_check_info));
1932     }
1933   }
1934 
1935   if (needs_range_check) {
1936     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
1937       __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result()));
1938     } else if (use_length) {
1939       // TODO: use a (modified) version of array_range_check that does not require a
1940       //       constant length to be loaded to a register
1941       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1942       __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1943     } else {
1944       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1945       // The range check performs the null check, so clear it out for the load
1946       null_check_info = nullptr;
1947     }
1948   }
1949 
1950   DecoratorSet decorators = IN_HEAP | IS_ARRAY;




















































1951 
1952   LIR_Opr result = rlock_result(x, x->elt_type());
1953   access_load_at(decorators, x->elt_type(),
1954                  array, index.result(), result,
1955                  nullptr, null_check_info);







1956 }
1957 
1958 
1959 void LIRGenerator::do_NullCheck(NullCheck* x) {
1960   if (x->can_trap()) {
1961     LIRItem value(x->obj(), this);
1962     value.load_item();
1963     CodeEmitInfo* info = state_for(x);
1964     __ null_check(value.result(), info);
1965   }
1966 }
1967 
1968 
1969 void LIRGenerator::do_TypeCast(TypeCast* x) {
1970   LIRItem value(x->obj(), this);
1971   value.load_item();
1972   // the result is the same as from the node we are casting
1973   set_result(x, value.result());
1974 }
1975 

2410   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2411   // known not to be null or null bit already set and already set to
2412   // unknown: nothing we can do to improve profiling
2413   if (!do_null && !do_update) {
2414     return result;
2415   }
2416 
2417   ciKlass* exact_klass = nullptr;
2418   Compilation* comp = Compilation::current();
2419   if (do_update) {
2420     // try to find exact type, using CHA if possible, so that loading
2421     // the klass from the object can be avoided
2422     ciType* type = obj->exact_type();
2423     if (type == nullptr) {
2424       type = obj->declared_type();
2425       type = comp->cha_exact_type(type);
2426     }
2427     assert(type == nullptr || type->is_klass(), "type should be class");
2428     exact_klass = (type != nullptr && type->is_loaded()) ? (ciKlass*)type : nullptr;
2429 










2430     do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2431   }
2432 
2433   if (!do_null && !do_update) {
2434     return result;
2435   }
2436 
2437   ciKlass* exact_signature_k = nullptr;
2438   if (do_update) {
2439     // Is the type from the signature exact (the only one possible)?
2440     exact_signature_k = signature_at_call_k->exact_klass();
2441     if (exact_signature_k == nullptr) {
2442       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2443     } else {
2444       result = exact_signature_k;
2445       // Known statically. No need to emit any code: prevent
2446       // LIR_Assembler::emit_profile_type() from emitting useless code
2447       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2448     }
2449     // exact_klass and exact_signature_k can be both non null but
2450     // different if exact_klass is loaded after the ciObject for
2451     // exact_signature_k is created.
2452     if (exact_klass == nullptr && exact_signature_k != nullptr && exact_klass != exact_signature_k) {
2453       // sometimes the type of the signature is better than the best type
2454       // the compiler has
2455       exact_klass = exact_signature_k;
2456     }
2457     if (callee_signature_k != nullptr &&
2458         callee_signature_k != signature_at_call_k) {
2459       ciKlass* improved_klass = callee_signature_k->exact_klass();
2460       if (improved_klass == nullptr) {
2461         improved_klass = comp->cha_exact_type(callee_signature_k);
2462       }
2463       if (exact_klass == nullptr && improved_klass != nullptr && exact_klass != improved_klass) {
2464         exact_klass = exact_signature_k;
2465       }
2466     }











2467     do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2468   }
2469 
2470   if (!do_null && !do_update) {
2471     return result;
2472   }
2473 
2474   if (mdp == LIR_OprFact::illegalOpr) {
2475     mdp = new_register(T_METADATA);
2476     __ metadata2reg(md->constant_encoding(), mdp);
2477     if (md_base_offset != 0) {
2478       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2479       mdp = new_pointer_register();
2480       __ leal(LIR_OprFact::address(base_type_address), mdp);
2481     }
2482   }
2483   LIRItem value(obj, this);
2484   value.load_item();
2485   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2486                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != nullptr);

2503         assert(!src->is_illegal(), "check");
2504         BasicType t = src->type();
2505         if (is_reference_type(t)) {
2506           intptr_t profiled_k = parameters->type(j);
2507           Local* local = x->state()->local_at(java_index)->as_Local();
2508           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2509                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2510                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), nullptr);
2511           // If the profile is known statically set it once for all and do not emit any code
2512           if (exact != nullptr) {
2513             md->set_parameter_type(j, exact);
2514           }
2515           j++;
2516         }
2517         java_index += type2size[t];
2518       }
2519     }
2520   }
2521 }
2522 








































2523 void LIRGenerator::do_Base(Base* x) {
2524   __ std_entry(LIR_OprFact::illegalOpr);
2525   // Emit moves from physical registers / stack slots to virtual registers
2526   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2527   IRScope* irScope = compilation()->hir()->top_scope();
2528   int java_index = 0;
2529   for (int i = 0; i < args->length(); i++) {
2530     LIR_Opr src = args->at(i);
2531     assert(!src->is_illegal(), "check");
2532     BasicType t = src->type();
2533 
2534     // Types which are smaller than int are passed as int, so
2535     // correct the type which passed.
2536     switch (t) {
2537     case T_BYTE:
2538     case T_BOOLEAN:
2539     case T_SHORT:
2540     case T_CHAR:
2541       t = T_INT;
2542       break;

2585     }
2586     assert(obj->is_valid(), "must be valid");
2587 
2588     if (method()->is_synchronized() && GenerateSynchronizationCode) {
2589       LIR_Opr lock = syncLockOpr();
2590       __ load_stack_address_monitor(0, lock);
2591 
2592       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, x->check_flag(Instruction::DeoptimizeOnException));
2593       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2594 
2595       // receiver is guaranteed non-null so don't need CodeEmitInfo
2596       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, nullptr);
2597     }
2598   }
2599   // increment invocation counters if needed
2600   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2601     profile_parameters(x);
2602     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, false);
2603     increment_invocation_counter(info);
2604   }








2605 
2606   // all blocks with a successor must end with an unconditional jump
2607   // to the successor even if they are consecutive
2608   __ jump(x->default_sux());
2609 }
2610 
2611 
2612 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2613   // construct our frame and model the production of incoming pointer
2614   // to the OSR buffer.
2615   __ osr_entry(LIR_Assembler::osrBufferPointer());
2616   LIR_Opr result = rlock_result(x);
2617   __ move(LIR_Assembler::osrBufferPointer(), result);
2618 }
2619 













2620 
2621 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2622   assert(args->length() == arg_list->length(),
2623          "args=%d, arg_list=%d", args->length(), arg_list->length());
2624   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2625     LIRItem* param = args->at(i);
2626     LIR_Opr loc = arg_list->at(i);
2627     if (loc->is_register()) {
2628       param->load_item_force(loc);
2629     } else {
2630       LIR_Address* addr = loc->as_address_ptr();
2631       param->load_for_store(addr->type());
2632       if (addr->type() == T_OBJECT) {
2633         __ move_wide(param->result(), addr);
2634       } else
2635         __ move(param->result(), addr);
2636     }
2637   }
2638 
2639   if (x->has_receiver()) {
2640     LIRItem* receiver = args->at(0);
2641     LIR_Opr loc = arg_list->at(0);
2642     if (loc->is_register()) {
2643       receiver->load_item_force(loc);
2644     } else {
2645       assert(loc->is_address(), "just checking");
2646       receiver->load_for_store(T_OBJECT);
2647       __ move_wide(receiver->result(), loc->as_address_ptr());
2648     }
2649   }
2650 }
2651 
2652 
2653 // Visits all arguments, returns appropriate items without loading them
2654 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2655   LIRItemList* argument_items = new LIRItemList();
2656   if (x->has_receiver()) {

2782   __ move(tmp, reg);
2783 }
2784 
2785 
2786 
2787 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
2788 void LIRGenerator::do_IfOp(IfOp* x) {
2789 #ifdef ASSERT
2790   {
2791     ValueTag xtag = x->x()->type()->tag();
2792     ValueTag ttag = x->tval()->type()->tag();
2793     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
2794     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
2795     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
2796   }
2797 #endif
2798 
2799   LIRItem left(x->x(), this);
2800   LIRItem right(x->y(), this);
2801   left.load_item();
2802   if (can_inline_as_constant(right.value())) {
2803     right.dont_load_item();
2804   } else {

2805     right.load_item();
2806   }
2807 
2808   LIRItem t_val(x->tval(), this);
2809   LIRItem f_val(x->fval(), this);
2810   t_val.dont_load_item();
2811   f_val.dont_load_item();
2812   LIR_Opr reg = rlock_result(x);
2813 
2814   __ cmp(lir_cond(x->cond()), left.result(), right.result());
2815   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));


























































2816 }
2817 
2818 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
2819   assert(x->number_of_arguments() == 0, "wrong type");
2820   // Enforce computation of _reserved_argument_area_size which is required on some platforms.
2821   BasicTypeList signature;
2822   CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2823   LIR_Opr reg = result_register_for(x->type());
2824   __ call_runtime_leaf(routine, getThreadTemp(),
2825                        reg, new LIR_OprList());
2826   LIR_Opr result = rlock_result(x);
2827   __ move(reg, result);
2828 }
2829 
2830 
2831 
2832 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
2833   switch (x->id()) {
2834   case vmIntrinsics::_intBitsToFloat      :
2835   case vmIntrinsics::_doubleToRawLongBits :

3069   if (x->recv() != nullptr || x->nb_profiled_args() > 0) {
3070     profile_parameters_at_call(x);
3071   }
3072 
3073   if (x->recv() != nullptr) {
3074     LIRItem value(x->recv(), this);
3075     value.load_item();
3076     recv = new_register(T_OBJECT);
3077     __ move(value.result(), recv);
3078   }
3079   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3080 }
3081 
3082 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3083   int bci = x->bci_of_invoke();
3084   ciMethodData* md = x->method()->method_data_or_null();
3085   assert(md != nullptr, "Sanity");
3086   ciProfileData* data = md->bci_to_data(bci);
3087   if (data != nullptr) {
3088     assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3089     ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3090     LIR_Opr mdp = LIR_OprFact::illegalOpr;
3091 
3092     bool ignored_will_link;
3093     ciSignature* signature_at_call = nullptr;
3094     x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3095 
3096     // The offset within the MDO of the entry to update may be too large
3097     // to be used in load/store instructions on some platforms. So have
3098     // profile_type() compute the address of the profile in a register.
3099     ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3100         ret->type(), x->ret(), mdp,
3101         !x->needs_null_check(),
3102         signature_at_call->return_type()->as_klass(),
3103         x->callee()->signature()->return_type()->as_klass());
3104     if (exact != nullptr) {
3105       md->set_return_type(bci, exact);
3106     }
3107   }
3108 }
3109 















































3110 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3111   // We can safely ignore accessors here, since c2 will inline them anyway,
3112   // accessors are also always mature.
3113   if (!x->inlinee()->is_accessor()) {
3114     CodeEmitInfo* info = state_for(x, x->state(), true);
3115     // Notify the runtime very infrequently only to take care of counter overflows
3116     int freq_log = Tier23InlineeNotifyFreqLog;
3117     double scale;
3118     if (_method->has_option_value(CompileCommandEnum::CompileThresholdScaling, scale)) {
3119       freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3120     }
3121     increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true);
3122   }
3123 }
3124 
3125 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) {
3126   if (compilation()->is_profiling()) {
3127 #if defined(X86) && !defined(_LP64)
3128     // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
3129     LIR_Opr left_copy = new_register(left->type());

  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "c1/c1_Compilation.hpp"
  26 #include "c1/c1_Defs.hpp"
  27 #include "c1/c1_FrameMap.hpp"
  28 #include "c1/c1_Instruction.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_LIRGenerator.hpp"
  31 #include "c1/c1_ValueStack.hpp"
  32 #include "ci/ciArrayKlass.hpp"
  33 #include "ci/ciFlatArrayKlass.hpp"
  34 #include "ci/ciInlineKlass.hpp"
  35 #include "ci/ciInstance.hpp"
  36 #include "ci/ciObjArray.hpp"
  37 #include "ci/ciObjArrayKlass.hpp"
  38 #include "ci/ciUtilities.hpp"
  39 #include "compiler/compilerDefinitions.inline.hpp"
  40 #include "compiler/compilerOracle.hpp"
  41 #include "gc/shared/barrierSet.hpp"
  42 #include "gc/shared/c1/barrierSetC1.hpp"
  43 #include "oops/klass.inline.hpp"
  44 #include "oops/methodCounters.hpp"
  45 #include "runtime/sharedRuntime.hpp"
  46 #include "runtime/stubRoutines.hpp"
  47 #include "runtime/vm_version.hpp"
  48 #include "utilities/bitMap.inline.hpp"
  49 #include "utilities/macros.hpp"
  50 #include "utilities/powerOfTwo.hpp"
  51 
  52 #ifdef ASSERT
  53 #define __ gen()->lir(__FILE__, __LINE__)->
  54 #else
  55 #define __ gen()->lir()->
  56 #endif
  57 

 201 }
 202 
 203 
 204 //--------------------------------------------------------------
 205 // LIRItem
 206 
 207 void LIRItem::set_result(LIR_Opr opr) {
 208   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 209   value()->set_operand(opr);
 210 
 211 #ifdef ASSERT
 212   if (opr->is_virtual()) {
 213     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), nullptr);
 214   }
 215 #endif
 216 
 217   _result = opr;
 218 }
 219 
 220 void LIRItem::load_item() {
 221   assert(!_gen->in_conditional_code(), "LIRItem cannot be loaded in conditional code");
 222 
 223   if (result()->is_illegal()) {
 224     // update the items result
 225     _result = value()->operand();
 226   }
 227   if (!result()->is_register()) {
 228     LIR_Opr reg = _gen->new_register(value()->type());
 229     __ move(result(), reg);
 230     if (result()->is_constant()) {
 231       _result = reg;
 232     } else {
 233       set_result(reg);
 234     }
 235   }
 236 }
 237 
 238 
 239 void LIRItem::load_for_store(BasicType type) {
 240   if (_gen->can_store_as_constant(value(), type)) {
 241     _result = value()->operand();
 242     if (!_result->is_constant()) {

 610     assert(right_op != result_op, "malformed");
 611     __ move(left_op, result_op);
 612     left_op = result_op;
 613   }
 614 
 615   switch(code) {
 616     case Bytecodes::_iand:
 617     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 618 
 619     case Bytecodes::_ior:
 620     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 621 
 622     case Bytecodes::_ixor:
 623     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 624 
 625     default: ShouldNotReachHere();
 626   }
 627 }
 628 
 629 
 630 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no,
 631                                  CodeEmitInfo* info_for_exception, CodeEmitInfo* info, CodeStub* throw_ie_stub) {
 632   if (!GenerateSynchronizationCode) return;
 633   // for slow path, use debug info for state after successful locking
 634   CodeStub* slow_path = new MonitorEnterStub(object, lock, info, throw_ie_stub, scratch);
 635   __ load_stack_address_monitor(monitor_no, lock);
 636   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 637   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception, throw_ie_stub);
 638 }
 639 
 640 
 641 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 642   if (!GenerateSynchronizationCode) return;
 643   // setup registers
 644   LIR_Opr hdr = lock;
 645   lock = new_hdr;
 646   CodeStub* slow_path = new MonitorExitStub(lock, LockingMode != LM_MONITOR, monitor_no);
 647   __ load_stack_address_monitor(monitor_no, lock);
 648   __ unlock_object(hdr, object, lock, scratch, slow_path);
 649 }
 650 
 651 #ifndef PRODUCT
 652 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 653   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 654     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 655   } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) {
 656     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 657   }
 658 }
 659 #endif
 660 
 661 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, bool allow_inline, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 662   if (allow_inline) {
 663     assert(!is_unresolved && klass->is_loaded(), "inline type klass should be resolved");
 664     __ metadata2reg(klass->constant_encoding(), klass_reg);
 665   } else {
 666     klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 667   }
 668   // If klass is not loaded we do not know if the klass has finalizers or is an unexpected inline klass
 669   if (UseFastNewInstance && klass->is_loaded() && (allow_inline || !klass->is_inlinetype())
 670       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 671 
 672     C1StubId stub_id = klass->is_initialized() ? C1StubId::fast_new_instance_id : C1StubId::fast_new_instance_init_check_id;
 673 
 674     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 675 
 676     assert(klass->is_loaded(), "must be loaded");
 677     // allocate space for instance
 678     assert(klass->size_helper() > 0, "illegal instance size");
 679     const int instance_size = align_object_size(klass->size_helper());
 680     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 681                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 682   } else {
 683     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, C1StubId::new_instance_id);
 684     __ jump(slow_path);
 685     __ branch_destination(slow_path->continuation());
 686   }
 687 }
 688 
 689 
 690 static bool is_constant_zero(Instruction* inst) {
 691   IntConstant* c = inst->type()->as_IntConstant();
 692   if (c) {
 693     return (c->value() == 0);
 694   }
 695   return false;
 696 }
 697 
 698 
 699 static bool positive_constant(Instruction* inst) {
 700   IntConstant* c = inst->type()->as_IntConstant();
 701   if (c) {
 702     return (c->value() >= 0);
 703   }
 704   return false;

 764       if (src_type != nullptr) {
 765         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 766           is_exact = true;
 767           expected_type = dst_type;
 768         }
 769       }
 770     }
 771     // at least pass along a good guess
 772     if (expected_type == nullptr) expected_type = dst_exact_type;
 773     if (expected_type == nullptr) expected_type = src_declared_type;
 774     if (expected_type == nullptr) expected_type = dst_declared_type;
 775 
 776     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 777     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 778   }
 779 
 780   // if a probable array type has been identified, figure out if any
 781   // of the required checks for a fast case can be elided.
 782   int flags = LIR_OpArrayCopy::all_flags;
 783 
 784   if (!src->is_loaded_flat_array() && !dst->is_loaded_flat_array()) {
 785     flags &= ~LIR_OpArrayCopy::always_slow_path;
 786   }
 787   if (!src->maybe_flat_array()) {
 788     flags &= ~LIR_OpArrayCopy::src_inlinetype_check;
 789   }
 790   if (!dst->maybe_flat_array() && !dst->maybe_null_free_array()) {
 791     flags &= ~LIR_OpArrayCopy::dst_inlinetype_check;
 792   }
 793 
 794   if (!src_objarray)
 795     flags &= ~LIR_OpArrayCopy::src_objarray;
 796   if (!dst_objarray)
 797     flags &= ~LIR_OpArrayCopy::dst_objarray;
 798 
 799   if (!x->arg_needs_null_check(0))
 800     flags &= ~LIR_OpArrayCopy::src_null_check;
 801   if (!x->arg_needs_null_check(2))
 802     flags &= ~LIR_OpArrayCopy::dst_null_check;
 803 
 804 
 805   if (expected_type != nullptr) {
 806     Value length_limit = nullptr;
 807 
 808     IfOp* ifop = length->as_IfOp();
 809     if (ifop != nullptr) {
 810       // look for expressions like min(v, a.length) which ends up as
 811       //   x > y ? y : x  or  x >= y ? y : x
 812       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 813           ifop->x() == ifop->fval() &&

 881       BasicType t = expected_type->element_type()->basic_type();
 882       int element_size = type2aelembytes(t);
 883       if (((arrayOopDesc::base_offset_in_bytes(t) + (uint)s_offs * element_size) % HeapWordSize == 0) &&
 884           ((arrayOopDesc::base_offset_in_bytes(t) + (uint)d_offs * element_size) % HeapWordSize == 0)) {
 885         flags &= ~LIR_OpArrayCopy::unaligned;
 886       }
 887     }
 888   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 889     // src and dest positions are the same, or dst is zero so assume
 890     // nonoverlapping copy.
 891     flags &= ~LIR_OpArrayCopy::overlapping;
 892   }
 893 
 894   if (src == dst) {
 895     // moving within a single array so no type checks are needed
 896     if (flags & LIR_OpArrayCopy::type_check) {
 897       flags &= ~LIR_OpArrayCopy::type_check;
 898     }
 899   }
 900   *flagsp = flags;
 901 
 902   // TODO 8366668
 903   if (expected_type != nullptr && expected_type->is_obj_array_klass()) {
 904     expected_type = ciArrayKlass::make(expected_type->as_array_klass()->element_klass(), false, true, true);
 905   }
 906 
 907   *expected_typep = (ciArrayKlass*)expected_type;
 908 }
 909 
 910 
 911 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 912   assert(type2size[t] == type2size[value->type()],
 913          "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
 914   if (!value->is_register()) {
 915     // force into a register
 916     LIR_Opr r = new_register(value->type());
 917     __ move(value, r);
 918     value = r;
 919   }
 920 
 921   // create a spill location
 922   LIR_Opr tmp = new_register(t);
 923   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 924 
 925   // move from register to spill
 926   __ move(value, tmp);

1472   }
1473   return _vreg_flags.at(vreg_num, f);
1474 }
1475 
1476 
1477 // Block local constant handling.  This code is useful for keeping
1478 // unpinned constants and constants which aren't exposed in the IR in
1479 // registers.  Unpinned Constant instructions have their operands
1480 // cleared when the block is finished so that other blocks can't end
1481 // up referring to their registers.
1482 
1483 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1484   assert(!x->is_pinned(), "only for unpinned constants");
1485   _unpinned_constants.append(x);
1486   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1487 }
1488 
1489 
1490 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1491   BasicType t = c->type();
1492   for (int i = 0; i < _constants.length() && !in_conditional_code(); i++) {
1493     LIR_Const* other = _constants.at(i);
1494     if (t == other->type()) {
1495       switch (t) {
1496       case T_INT:
1497       case T_FLOAT:
1498         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1499         break;
1500       case T_LONG:
1501       case T_DOUBLE:
1502         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1503         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1504         break;
1505       case T_OBJECT:
1506         if (c->as_jobject() != other->as_jobject()) continue;
1507         break;
1508       default:
1509         break;
1510       }
1511       return _reg_for_constants.at(i);
1512     }
1513   }
1514 
1515   LIR_Opr result = new_register(t);
1516   __ move((LIR_Opr)c, result);
1517   if (!in_conditional_code()) {
1518     _constants.append(c);
1519     _reg_for_constants.append(result);
1520   }
1521   return result;
1522 }
1523 
1524 void LIRGenerator::set_in_conditional_code(bool v) {
1525   assert(v != _in_conditional_code, "must change state");
1526   _in_conditional_code = v;
1527 }
1528 
1529 
1530 //------------------------field access--------------------------------------
1531 
1532 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
1533   assert(x->number_of_arguments() == 4, "wrong type");
1534   LIRItem obj   (x->argument_at(0), this);  // object
1535   LIRItem offset(x->argument_at(1), this);  // offset of field
1536   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
1537   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
1538   assert(obj.type()->tag() == objectTag, "invalid type");
1539   assert(cmp.type()->tag() == type->tag(), "invalid type");
1540   assert(val.type()->tag() == type->tag(), "invalid type");
1541 
1542   LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type),
1543                                             obj, offset, cmp, val);
1544   set_result(x, result);
1545 }
1546 
1547 // Returns a int/long value with the null marker bit set
1548 static LIR_Opr null_marker_mask(BasicType bt, ciField* field) {
1549   assert(field->null_marker_offset() != -1, "field does not have null marker");
1550   int nm_offset = field->null_marker_offset() - field->offset_in_bytes();
1551   jlong null_marker = 1ULL << (nm_offset << LogBitsPerByte);
1552   return (bt == T_LONG) ? LIR_OprFact::longConst(null_marker) : LIR_OprFact::intConst(null_marker);
1553 }
1554 
1555 // Comment copied form templateTable_i486.cpp
1556 // ----------------------------------------------------------------------------
1557 // Volatile variables demand their effects be made known to all CPU's in
1558 // order.  Store buffers on most chips allow reads & writes to reorder; the
1559 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1560 // memory barrier (i.e., it's not sufficient that the interpreter does not
1561 // reorder volatile references, the hardware also must not reorder them).
1562 //
1563 // According to the new Java Memory Model (JMM):
1564 // (1) All volatiles are serialized wrt to each other.
1565 // ALSO reads & writes act as acquire & release, so:
1566 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1567 // the read float up to before the read.  It's OK for non-volatile memory refs
1568 // that happen before the volatile read to float down below it.
1569 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1570 // that happen BEFORE the write float down to after the write.  It's OK for
1571 // non-volatile memory refs that happen after the volatile write to float up
1572 // before it.
1573 //
1574 // We only put in barriers around volatile refs (they are expensive), not
1575 // _between_ memory refs (that would require us to track the flavor of the
1576 // previous memory refs).  Requirements (2) and (3) require some barriers
1577 // before volatile stores and after volatile loads.  These nearly cover
1578 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1579 // case is placed after volatile-stores although it could just as well go
1580 // before volatile-loads.
1581 
1582 
1583 void LIRGenerator::do_StoreField(StoreField* x) {
1584   ciField* field = x->field();
1585   bool needs_patching = x->needs_patching();
1586   bool is_volatile = field->is_volatile();
1587   BasicType field_type = x->field_type();
1588 
1589   CodeEmitInfo* info = nullptr;
1590   if (needs_patching) {
1591     assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access");
1592     info = state_for(x, x->state_before());
1593   } else if (x->needs_null_check()) {
1594     NullCheck* nc = x->explicit_null_check();
1595     if (nc == nullptr) {
1596       info = state_for(x);
1597     } else {
1598       info = state_for(nc);
1599     }
1600   }
1601 
1602   LIRItem object(x->obj(), this);
1603   LIRItem value(x->value(),  this);
1604 
1605   object.load_item();
1606 
1607   if (field->is_flat()) {
1608     value.load_item();








1609   } else {
1610     if (is_volatile || needs_patching) {
1611       // load item if field is volatile (fewer special cases for volatiles)
1612       // load item if field not initialized
1613       // load item if field not constant
1614       // because of code patching we cannot inline constants
1615       if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1616         value.load_byte_item();
1617       } else  {
1618         value.load_item();
1619       }
1620     } else {
1621       value.load_for_store(field_type);
1622     }
1623   }
1624 
1625   set_no_result(x);
1626 
1627 #ifndef PRODUCT
1628   if (PrintNotLoaded && needs_patching) {
1629     tty->print_cr("   ###class not loaded at store_%s bci %d",
1630                   x->is_static() ?  "static" : "field", x->printable_bci());
1631   }
1632 #endif
1633 
1634   if (x->needs_null_check() &&
1635       (needs_patching ||
1636        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1637     // Emit an explicit null check because the offset is too large.
1638     // If the class is not loaded and the object is null, we need to deoptimize to throw a
1639     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1640     __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1641   }
1642 
1643   DecoratorSet decorators = IN_HEAP;
1644   if (is_volatile) {
1645     decorators |= MO_SEQ_CST;
1646   }
1647   if (needs_patching) {
1648     decorators |= C1_NEEDS_PATCHING;
1649   }
1650 
1651   if (field->is_flat()) {
1652     ciInlineKlass* vk = field->type()->as_inline_klass();
1653 
1654 #ifdef ASSERT
1655     bool is_naturally_atomic = vk->nof_declared_nonstatic_fields() <= 1;
1656     bool needs_atomic_access = !field->is_null_free() || (field->is_volatile() && !is_naturally_atomic);
1657     assert(needs_atomic_access, "No atomic access required");
1658     // ZGC does not support compressed oops, so only one oop can be in the payload which is written by a "normal" oop store.
1659     assert(!vk->contains_oops() || !UseZGC, "ZGC does not support embedded oops in flat fields");
1660 #endif
1661 
1662     // Zero the payload
1663     BasicType bt = vk->atomic_size_to_basic_type(field->is_null_free());
1664     LIR_Opr payload = new_register((bt == T_LONG) ? bt : T_INT);
1665     LIR_Opr zero = (bt == T_LONG) ? LIR_OprFact::longConst(0) : LIR_OprFact::intConst(0);
1666     __ move(zero, payload);
1667 
1668     bool is_constant_null = value.is_constant() && value.value()->is_null_obj();
1669     if (!is_constant_null) {
1670       LabelObj* L_isNull = new LabelObj();
1671       bool needs_null_check = !value.is_constant() || value.value()->is_null_obj();
1672       if (needs_null_check) {
1673         __ cmp(lir_cond_equal, value.result(), LIR_OprFact::oopConst(nullptr));
1674         __ branch(lir_cond_equal, L_isNull->label());
1675       }
1676       // Load payload (if not empty) and set null marker (if not null-free)
1677       if (!vk->is_empty()) {
1678         access_load_at(decorators, bt, value, LIR_OprFact::intConst(vk->payload_offset()), payload);
1679       }
1680       if (!field->is_null_free()) {
1681         __ logical_or(payload, null_marker_mask(bt, field), payload);
1682       }
1683       if (needs_null_check) {
1684         __ branch_destination(L_isNull->label());
1685       }
1686     }
1687     access_store_at(decorators, bt, object, LIR_OprFact::intConst(x->offset()), payload,
1688                     // Make sure to emit an implicit null check and pass the information
1689                     // that this is a flat store that might require gc barriers for oop fields.
1690                     info != nullptr ? new CodeEmitInfo(info) : nullptr, info, vk);
1691     return;
1692   }
1693 
1694   access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()),
1695                   value.result(), info != nullptr ? new CodeEmitInfo(info) : nullptr, info);
1696 }
1697 
1698 // FIXME -- I can't find any other way to pass an address to access_load_at().
1699 class TempResolvedAddress: public Instruction {
1700  public:
1701   TempResolvedAddress(ValueType* type, LIR_Opr addr) : Instruction(type) {
1702     set_operand(addr);
1703   }
1704   virtual void input_values_do(ValueVisitor*) {}
1705   virtual void visit(InstructionVisitor* v)   {}
1706   virtual const char* name() const  { return "TempResolvedAddress"; }
1707 };
1708 
1709 LIR_Opr LIRGenerator::get_and_load_element_address(LIRItem& array, LIRItem& index) {
1710   ciType* array_type = array.value()->declared_type();
1711   ciFlatArrayKlass* flat_array_klass = array_type->as_flat_array_klass();
1712   assert(flat_array_klass->is_loaded(), "must be");
1713 
1714   int array_header_size = flat_array_klass->array_header_in_bytes();
1715   int shift = flat_array_klass->log2_element_size();
1716 
1717 #ifndef _LP64
1718   LIR_Opr index_op = new_register(T_INT);
1719   // FIXME -- on 32-bit, the shift below can overflow, so we need to check that
1720   // the top (shift+1) bits of index_op must be zero, or
1721   // else throw ArrayIndexOutOfBoundsException
1722   if (index.result()->is_constant()) {
1723     jint const_index = index.result()->as_jint();
1724     __ move(LIR_OprFact::intConst(const_index << shift), index_op);
1725   } else {
1726     __ shift_left(index_op, shift, index.result());
1727   }
1728 #else
1729   LIR_Opr index_op = new_register(T_LONG);
1730   if (index.result()->is_constant()) {
1731     jint const_index = index.result()->as_jint();
1732     __ move(LIR_OprFact::longConst(const_index << shift), index_op);
1733   } else {
1734     __ convert(Bytecodes::_i2l, index.result(), index_op);
1735     // Need to shift manually, as LIR_Address can scale only up to 3.
1736     __ shift_left(index_op, shift, index_op);
1737   }
1738 #endif
1739 
1740   LIR_Opr elm_op = new_pointer_register();
1741   LIR_Address* elm_address = generate_address(array.result(), index_op, 0, array_header_size, T_ADDRESS);
1742   __ leal(LIR_OprFact::address(elm_address), elm_op);
1743   return elm_op;
1744 }
1745 
1746 void LIRGenerator::access_sub_element(LIRItem& array, LIRItem& index, LIR_Opr& result, ciField* field, int sub_offset) {
1747   assert(field != nullptr, "Need a subelement type specified");
1748 
1749   // Find the starting address of the source (inside the array)
1750   LIR_Opr elm_op = get_and_load_element_address(array, index);
1751 
1752   BasicType subelt_type = field->type()->basic_type();
1753   TempResolvedAddress* elm_resolved_addr = new TempResolvedAddress(as_ValueType(subelt_type), elm_op);
1754   LIRItem elm_item(elm_resolved_addr, this);
1755 
1756   DecoratorSet decorators = IN_HEAP;
1757   access_load_at(decorators, subelt_type,
1758                      elm_item, LIR_OprFact::intConst(sub_offset), result,
1759                      nullptr, nullptr);
1760 }
1761 
1762 void LIRGenerator::access_flat_array(bool is_load, LIRItem& array, LIRItem& index, LIRItem& obj_item,
1763                                           ciField* field, int sub_offset) {
1764   assert(sub_offset == 0 || field != nullptr, "Sanity check");
1765 
1766   // Find the starting address of the source (inside the array)
1767   LIR_Opr elm_op = get_and_load_element_address(array, index);
1768 
1769   ciInlineKlass* elem_klass = nullptr;
1770   if (field != nullptr) {
1771     elem_klass = field->type()->as_inline_klass();
1772   } else {
1773     elem_klass = array.value()->declared_type()->as_flat_array_klass()->element_klass()->as_inline_klass();
1774   }
1775   for (int i = 0; i < elem_klass->nof_nonstatic_fields(); i++) {
1776     ciField* inner_field = elem_klass->nonstatic_field_at(i);
1777     assert(!inner_field->is_flat(), "flat fields must have been expanded");
1778     int obj_offset = inner_field->offset_in_bytes();
1779     int elm_offset = obj_offset - elem_klass->payload_offset() + sub_offset; // object header is not stored in array.
1780     BasicType field_type = inner_field->type()->basic_type();
1781 
1782     // Types which are smaller than int are still passed in an int register.
1783     BasicType reg_type = field_type;
1784     switch (reg_type) {
1785     case T_BYTE:
1786     case T_BOOLEAN:
1787     case T_SHORT:
1788     case T_CHAR:
1789       reg_type = T_INT;
1790       break;
1791     default:
1792       break;
1793     }
1794 
1795     LIR_Opr temp = new_register(reg_type);
1796     TempResolvedAddress* elm_resolved_addr = new TempResolvedAddress(as_ValueType(field_type), elm_op);
1797     LIRItem elm_item(elm_resolved_addr, this);
1798 
1799     DecoratorSet decorators = IN_HEAP;
1800     if (is_load) {
1801       access_load_at(decorators, field_type,
1802                      elm_item, LIR_OprFact::intConst(elm_offset), temp,
1803                      nullptr, nullptr);
1804       access_store_at(decorators, field_type,
1805                       obj_item, LIR_OprFact::intConst(obj_offset), temp,
1806                       nullptr, nullptr);
1807     } else {
1808       access_load_at(decorators, field_type,
1809                      obj_item, LIR_OprFact::intConst(obj_offset), temp,
1810                      nullptr, nullptr);
1811       access_store_at(decorators, field_type,
1812                       elm_item, LIR_OprFact::intConst(elm_offset), temp,
1813                       nullptr, nullptr);
1814     }
1815   }
1816 }
1817 
1818 void LIRGenerator::check_flat_array(LIR_Opr array, LIR_Opr value, CodeStub* slow_path) {
1819   LIR_Opr tmp = new_register(T_METADATA);
1820   __ check_flat_array(array, value, tmp, slow_path);
1821 }
1822 
1823 void LIRGenerator::check_null_free_array(LIRItem& array, LIRItem& value, CodeEmitInfo* info) {
1824   LabelObj* L_end = new LabelObj();
1825   LIR_Opr tmp = new_register(T_METADATA);
1826   __ check_null_free_array(array.result(), tmp);
1827   __ branch(lir_cond_equal, L_end->label());
1828   __ null_check(value.result(), info);
1829   __ branch_destination(L_end->label());
1830 }
1831 
1832 bool LIRGenerator::needs_flat_array_store_check(StoreIndexed* x) {
1833   if (x->elt_type() == T_OBJECT && x->array()->maybe_flat_array()) {
1834     ciType* type = x->value()->declared_type();
1835     if (type != nullptr && type->is_klass()) {
1836       ciKlass* klass = type->as_klass();
1837       if (!klass->can_be_inline_klass() || (klass->is_inlinetype() && !klass->as_inline_klass()->maybe_flat_in_array())) {
1838         // This is known to be a non-flat object. If the array is a flat array,
1839         // it will be caught by the code generated by array_store_check().
1840         return false;
1841       }
1842     }
1843     // We're not 100% sure, so let's do the flat_array_store_check.
1844     return true;
1845   }
1846   return false;
1847 }
1848 
1849 bool LIRGenerator::needs_null_free_array_store_check(StoreIndexed* x) {
1850   return x->elt_type() == T_OBJECT && x->array()->maybe_null_free_array();
1851 }
1852 
1853 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
1854   assert(x->is_pinned(),"");
1855   assert(x->elt_type() != T_ARRAY, "never used");
1856   bool is_loaded_flat_array = x->array()->is_loaded_flat_array();
1857   bool needs_range_check = x->compute_needs_range_check();
1858   bool use_length = x->length() != nullptr;
1859   bool obj_store = is_reference_type(x->elt_type());
1860   bool needs_store_check = obj_store && !(is_loaded_flat_array && x->is_exact_flat_array_store()) &&
1861                                         (x->value()->as_Constant() == nullptr ||
1862                                          !get_jobject_constant(x->value())->is_null_object());
1863 
1864   LIRItem array(x->array(), this);
1865   LIRItem index(x->index(), this);
1866   LIRItem value(x->value(), this);
1867   LIRItem length(this);
1868 
1869   array.load_item();
1870   index.load_nonconstant();
1871 
1872   if (use_length && needs_range_check) {
1873     length.set_instruction(x->length());
1874     length.load_item();

1875   }
1876 
1877   if (needs_store_check || x->check_boolean()
1878       || is_loaded_flat_array || needs_flat_array_store_check(x) || needs_null_free_array_store_check(x)) {
1879     value.load_item();
1880   } else {
1881     value.load_for_store(x->elt_type());
1882   }
1883 
1884   set_no_result(x);
1885 
1886   // the CodeEmitInfo must be duplicated for each different
1887   // LIR-instruction because spilling can occur anywhere between two
1888   // instructions and so the debug information must be different
1889   CodeEmitInfo* range_check_info = state_for(x);
1890   CodeEmitInfo* null_check_info = nullptr;
1891   if (x->needs_null_check()) {
1892     null_check_info = new CodeEmitInfo(range_check_info);
1893   }
1894 
1895   if (needs_range_check) {
1896     if (use_length) {
1897       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1898       __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1899     } else {
1900       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1901       // range_check also does the null check
1902       null_check_info = nullptr;
1903     }
1904   }
1905 
1906   if (x->should_profile()) {
1907     if (is_loaded_flat_array) {
1908       // No need to profile a store to a flat array of known type. This can happen if
1909       // the type only became known after optimizations (for example, after the PhiSimplifier).
1910       x->set_should_profile(false);
1911     } else {
1912       int bci = x->profiled_bci();
1913       ciMethodData* md = x->profiled_method()->method_data();
1914       assert(md != nullptr, "Sanity");
1915       ciProfileData* data = md->bci_to_data(bci);
1916       assert(data != nullptr && data->is_ArrayStoreData(), "incorrect profiling entry");
1917       ciArrayStoreData* store_data = (ciArrayStoreData*)data;
1918       profile_array_type(x, md, store_data);
1919       assert(store_data->is_ArrayStoreData(), "incorrect profiling entry");
1920       if (x->array()->maybe_null_free_array()) {
1921         profile_null_free_array(array, md, store_data);
1922       }
1923     }
1924   }
1925 
1926   if (GenerateArrayStoreCheck && needs_store_check) {
1927     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
1928     array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci());
1929   }
1930 
1931   if (is_loaded_flat_array) {
1932     // TODO 8350865 This is currently dead code
1933     if (!x->value()->is_null_free()) {
1934       __ null_check(value.result(), new CodeEmitInfo(range_check_info));
1935     }
1936     // If array element is an empty inline type, no need to copy anything
1937     if (!x->array()->declared_type()->as_flat_array_klass()->element_klass()->as_inline_klass()->is_empty()) {
1938       access_flat_array(false, array, index, value);
1939     }
1940   } else {
1941     StoreFlattenedArrayStub* slow_path = nullptr;
1942 
1943     if (needs_flat_array_store_check(x)) {
1944       // Check if we indeed have a flat array
1945       index.load_item();
1946       slow_path = new StoreFlattenedArrayStub(array.result(), index.result(), value.result(), state_for(x, x->state_before()));
1947       check_flat_array(array.result(), value.result(), slow_path);
1948       set_in_conditional_code(true);
1949     } else if (needs_null_free_array_store_check(x)) {
1950       CodeEmitInfo* info = new CodeEmitInfo(range_check_info);
1951       check_null_free_array(array, value, info);
1952     }
1953 
1954     DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1955     if (x->check_boolean()) {
1956       decorators |= C1_MASK_BOOLEAN;
1957     }
1958 
1959     access_store_at(decorators, x->elt_type(), array, index.result(), value.result(), nullptr, null_check_info);
1960     if (slow_path != nullptr) {
1961       __ branch_destination(slow_path->continuation());
1962       set_in_conditional_code(false);
1963     }
1964   }
1965 }
1966 
1967 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type,
1968                                   LIRItem& base, LIR_Opr offset, LIR_Opr result,
1969                                   CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) {
1970   decorators |= ACCESS_READ;
1971   LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info);
1972   if (access.is_raw()) {
1973     _barrier_set->BarrierSetC1::load_at(access, result);
1974   } else {
1975     _barrier_set->load_at(access, result);
1976   }
1977 }
1978 
1979 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type,
1980                                LIR_Opr addr, LIR_Opr result) {
1981   decorators |= ACCESS_READ;
1982   LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type);
1983   access.set_resolved_addr(addr);
1984   if (access.is_raw()) {
1985     _barrier_set->BarrierSetC1::load(access, result);
1986   } else {
1987     _barrier_set->load(access, result);
1988   }
1989 }
1990 
1991 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type,
1992                                    LIRItem& base, LIR_Opr offset, LIR_Opr value,
1993                                    CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info,
1994                                    ciInlineKlass* vk) {
1995   decorators |= ACCESS_WRITE;
1996   LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info, vk);
1997   if (access.is_raw()) {
1998     _barrier_set->BarrierSetC1::store_at(access, value);
1999   } else {
2000     _barrier_set->store_at(access, value);
2001   }
2002 }
2003 
2004 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type,
2005                                                LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) {
2006   decorators |= ACCESS_READ;
2007   decorators |= ACCESS_WRITE;
2008   // Atomic operations are SEQ_CST by default
2009   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
2010   LIRAccess access(this, decorators, base, offset, type);
2011   if (access.is_raw()) {
2012     return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value);
2013   } else {
2014     return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value);
2015   }
2016 }

2027   } else {
2028     return _barrier_set->atomic_xchg_at(access, value);
2029   }
2030 }
2031 
2032 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type,
2033                                            LIRItem& base, LIRItem& offset, LIRItem& value) {
2034   decorators |= ACCESS_READ;
2035   decorators |= ACCESS_WRITE;
2036   // Atomic operations are SEQ_CST by default
2037   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
2038   LIRAccess access(this, decorators, base, offset, type);
2039   if (access.is_raw()) {
2040     return _barrier_set->BarrierSetC1::atomic_add_at(access, value);
2041   } else {
2042     return _barrier_set->atomic_add_at(access, value);
2043   }
2044 }
2045 
2046 void LIRGenerator::do_LoadField(LoadField* x) {
2047   ciField* field = x->field();
2048   bool needs_patching = x->needs_patching();
2049   bool is_volatile = field->is_volatile();
2050   BasicType field_type = x->field_type();
2051 
2052   CodeEmitInfo* info = nullptr;
2053   if (needs_patching) {
2054     assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access");
2055     info = state_for(x, x->state_before());
2056   } else if (x->needs_null_check()) {
2057     NullCheck* nc = x->explicit_null_check();
2058     if (nc == nullptr) {
2059       info = state_for(x);
2060     } else {
2061       info = state_for(nc);
2062     }
2063   }
2064 
2065   LIRItem object(x->obj(), this);
2066 
2067   object.load_item();
2068 
2069 #ifndef PRODUCT

2080        stress_deopt)) {
2081     LIR_Opr obj = object.result();
2082     if (stress_deopt) {
2083       obj = new_register(T_OBJECT);
2084       __ move(LIR_OprFact::oopConst(nullptr), obj);
2085     }
2086     // Emit an explicit null check because the offset is too large.
2087     // If the class is not loaded and the object is null, we need to deoptimize to throw a
2088     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
2089     __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
2090   }
2091 
2092   DecoratorSet decorators = IN_HEAP;
2093   if (is_volatile) {
2094     decorators |= MO_SEQ_CST;
2095   }
2096   if (needs_patching) {
2097     decorators |= C1_NEEDS_PATCHING;
2098   }
2099 
2100   if (field->is_flat()) {
2101     ciInlineKlass* vk = field->type()->as_inline_klass();
2102 #ifdef ASSERT
2103     bool is_naturally_atomic = vk->nof_declared_nonstatic_fields() <= 1;
2104     bool needs_atomic_access = !field->is_null_free() || (field->is_volatile() && !is_naturally_atomic);
2105     assert(needs_atomic_access, "No atomic access required");
2106     assert(x->state_before() != nullptr, "Needs state before");
2107 #endif
2108 
2109     // Allocate buffer (we can't easily do this conditionally on the null check below
2110     // because branches added in the LIR are opaque to the register allocator).
2111     NewInstance* buffer = new NewInstance(vk, x->state_before(), false, true);
2112     do_NewInstance(buffer);
2113     LIRItem dest(buffer, this);
2114 
2115     // Copy the payload to the buffer
2116     BasicType bt = vk->atomic_size_to_basic_type(field->is_null_free());
2117     LIR_Opr payload = new_register((bt == T_LONG) ? bt : T_INT);
2118     access_load_at(decorators, bt, object, LIR_OprFact::intConst(field->offset_in_bytes()), payload,
2119                    // Make sure to emit an implicit null check
2120                    info ? new CodeEmitInfo(info) : nullptr, info);
2121     access_store_at(decorators, bt, dest, LIR_OprFact::intConst(vk->payload_offset()), payload);
2122 
2123     if (field->is_null_free()) {
2124       set_result(x, buffer->operand());
2125     } else {
2126       // Check the null marker and set result to null if it's not set
2127       __ logical_and(payload, null_marker_mask(bt, field), payload);
2128       __ cmp(lir_cond_equal, payload, (bt == T_LONG) ? LIR_OprFact::longConst(0) : LIR_OprFact::intConst(0));
2129       __ cmove(lir_cond_equal, LIR_OprFact::oopConst(nullptr), buffer->operand(), rlock_result(x), T_OBJECT);
2130     }
2131 
2132     // Ensure the copy is visible before any subsequent store that publishes the buffer.
2133     __ membar_storestore();
2134     return;
2135   }
2136 
2137   LIR_Opr result = rlock_result(x, field_type);
2138   access_load_at(decorators, field_type,
2139                  object, LIR_OprFact::intConst(x->offset()), result,
2140                  info ? new CodeEmitInfo(info) : nullptr, info);
2141 }
2142 
2143 // int/long jdk.internal.util.Preconditions.checkIndex
2144 void LIRGenerator::do_PreconditionsCheckIndex(Intrinsic* x, BasicType type) {
2145   assert(x->number_of_arguments() == 3, "wrong type");
2146   LIRItem index(x->argument_at(0), this);
2147   LIRItem length(x->argument_at(1), this);
2148   LIRItem oobef(x->argument_at(2), this);
2149 
2150   index.load_item();
2151   length.load_item();
2152   oobef.load_item();
2153 
2154   LIR_Opr result = rlock_result(x);
2155   // x->state() is created from copy_state_for_exception, it does not contains arguments
2156   // we should prepare them before entering into interpreter mode due to deoptimization.

2265       __ move(LIR_OprFact::oopConst(nullptr), obj);
2266       __ null_check(obj, new CodeEmitInfo(null_check_info));
2267     }
2268   }
2269 
2270   if (needs_range_check) {
2271     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
2272       __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result()));
2273     } else if (use_length) {
2274       // TODO: use a (modified) version of array_range_check that does not require a
2275       //       constant length to be loaded to a register
2276       __ cmp(lir_cond_belowEqual, length.result(), index.result());
2277       __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
2278     } else {
2279       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
2280       // The range check performs the null check, so clear it out for the load
2281       null_check_info = nullptr;
2282     }
2283   }
2284 
2285   ciMethodData* md = nullptr;
2286   ciArrayLoadData* load_data = nullptr;
2287   if (x->should_profile()) {
2288     if (x->array()->is_loaded_flat_array()) {
2289       // No need to profile a load from a flat array of known type. This can happen if
2290       // the type only became known after optimizations (for example, after the PhiSimplifier).
2291       x->set_should_profile(false);
2292     } else {
2293       int bci = x->profiled_bci();
2294       md = x->profiled_method()->method_data();
2295       assert(md != nullptr, "Sanity");
2296       ciProfileData* data = md->bci_to_data(bci);
2297       assert(data != nullptr && data->is_ArrayLoadData(), "incorrect profiling entry");
2298       load_data = (ciArrayLoadData*)data;
2299       profile_array_type(x, md, load_data);
2300     }
2301   }
2302 
2303   Value element;
2304   if (x->vt() != nullptr) {
2305     assert(x->array()->is_loaded_flat_array(), "must be");
2306     // Find the destination address (of the NewInlineTypeInstance).
2307     LIRItem obj_item(x->vt(), this);
2308 
2309     access_flat_array(true, array, index, obj_item,
2310                       x->delayed() == nullptr ? 0 : x->delayed()->field(),
2311                       x->delayed() == nullptr ? 0 : x->delayed()->offset());
2312     set_no_result(x);
2313   } else if (x->delayed() != nullptr) {
2314     assert(x->array()->is_loaded_flat_array(), "must be");
2315     LIR_Opr result = rlock_result(x, x->delayed()->field()->type()->basic_type());
2316     access_sub_element(array, index, result, x->delayed()->field(), x->delayed()->offset());
2317   } else {
2318     LIR_Opr result = rlock_result(x, x->elt_type());
2319     LoadFlattenedArrayStub* slow_path = nullptr;
2320 
2321     if (x->should_profile() && x->array()->maybe_null_free_array()) {
2322       profile_null_free_array(array, md, load_data);
2323     }
2324 
2325     if (x->elt_type() == T_OBJECT && x->array()->maybe_flat_array()) {
2326       assert(x->delayed() == nullptr, "Delayed LoadIndexed only apply to loaded_flat_arrays");
2327       index.load_item();
2328       // if we are loading from a flat array, load it using a runtime call
2329       slow_path = new LoadFlattenedArrayStub(array.result(), index.result(), result, state_for(x, x->state_before()));
2330       check_flat_array(array.result(), LIR_OprFact::illegalOpr, slow_path);
2331       set_in_conditional_code(true);
2332     }
2333 
2334     DecoratorSet decorators = IN_HEAP | IS_ARRAY;
2335     access_load_at(decorators, x->elt_type(),
2336                    array, index.result(), result,
2337                    nullptr, null_check_info);
2338 
2339     if (slow_path != nullptr) {
2340       __ branch_destination(slow_path->continuation());
2341       set_in_conditional_code(false);
2342     }
2343 
2344     element = x;
2345   }
2346 
2347   if (x->should_profile()) {
2348     profile_element_type(element, md, load_data);
2349   }
2350 }
2351 
2352 
2353 void LIRGenerator::do_NullCheck(NullCheck* x) {
2354   if (x->can_trap()) {
2355     LIRItem value(x->obj(), this);
2356     value.load_item();
2357     CodeEmitInfo* info = state_for(x);
2358     __ null_check(value.result(), info);
2359   }
2360 }
2361 
2362 
2363 void LIRGenerator::do_TypeCast(TypeCast* x) {
2364   LIRItem value(x->obj(), this);
2365   value.load_item();
2366   // the result is the same as from the node we are casting
2367   set_result(x, value.result());
2368 }
2369 

2804   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2805   // known not to be null or null bit already set and already set to
2806   // unknown: nothing we can do to improve profiling
2807   if (!do_null && !do_update) {
2808     return result;
2809   }
2810 
2811   ciKlass* exact_klass = nullptr;
2812   Compilation* comp = Compilation::current();
2813   if (do_update) {
2814     // try to find exact type, using CHA if possible, so that loading
2815     // the klass from the object can be avoided
2816     ciType* type = obj->exact_type();
2817     if (type == nullptr) {
2818       type = obj->declared_type();
2819       type = comp->cha_exact_type(type);
2820     }
2821     assert(type == nullptr || type->is_klass(), "type should be class");
2822     exact_klass = (type != nullptr && type->is_loaded()) ? (ciKlass*)type : nullptr;
2823 
2824     // TODO 8366668
2825     if (exact_klass != nullptr && exact_klass->is_obj_array_klass()) {
2826       if (exact_klass->as_obj_array_klass()->element_klass()->is_inlinetype()) {
2827         // Could be flat, null free etc.
2828         exact_klass = nullptr;
2829       } else {
2830         exact_klass = ciObjArrayKlass::make(exact_klass->as_array_klass()->element_klass(), true);
2831       }
2832     }
2833 
2834     do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2835   }
2836 
2837   if (!do_null && !do_update) {
2838     return result;
2839   }
2840 
2841   ciKlass* exact_signature_k = nullptr;
2842   if (do_update && signature_at_call_k != nullptr) {
2843     // Is the type from the signature exact (the only one possible)?
2844     exact_signature_k = signature_at_call_k->exact_klass();
2845     if (exact_signature_k == nullptr) {
2846       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2847     } else {
2848       result = exact_signature_k;
2849       // Known statically. No need to emit any code: prevent
2850       // LIR_Assembler::emit_profile_type() from emitting useless code
2851       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2852     }
2853     // exact_klass and exact_signature_k can be both non null but
2854     // different if exact_klass is loaded after the ciObject for
2855     // exact_signature_k is created.
2856     if (exact_klass == nullptr && exact_signature_k != nullptr && exact_klass != exact_signature_k) {
2857       // sometimes the type of the signature is better than the best type
2858       // the compiler has
2859       exact_klass = exact_signature_k;
2860     }
2861     if (callee_signature_k != nullptr &&
2862         callee_signature_k != signature_at_call_k) {
2863       ciKlass* improved_klass = callee_signature_k->exact_klass();
2864       if (improved_klass == nullptr) {
2865         improved_klass = comp->cha_exact_type(callee_signature_k);
2866       }
2867       if (exact_klass == nullptr && improved_klass != nullptr && exact_klass != improved_klass) {
2868         exact_klass = exact_signature_k;
2869       }
2870     }
2871 
2872     // TODO 8366668
2873     if (exact_klass != nullptr && exact_klass->is_obj_array_klass()) {
2874       if (exact_klass->as_obj_array_klass()->element_klass()->is_inlinetype()) {
2875         // Could be flat, null free etc.
2876         exact_klass = nullptr;
2877       } else {
2878         exact_klass = ciObjArrayKlass::make(exact_klass->as_array_klass()->element_klass(), true);
2879       }
2880     }
2881 
2882     do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2883   }
2884 
2885   if (!do_null && !do_update) {
2886     return result;
2887   }
2888 
2889   if (mdp == LIR_OprFact::illegalOpr) {
2890     mdp = new_register(T_METADATA);
2891     __ metadata2reg(md->constant_encoding(), mdp);
2892     if (md_base_offset != 0) {
2893       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2894       mdp = new_pointer_register();
2895       __ leal(LIR_OprFact::address(base_type_address), mdp);
2896     }
2897   }
2898   LIRItem value(obj, this);
2899   value.load_item();
2900   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2901                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != nullptr);

2918         assert(!src->is_illegal(), "check");
2919         BasicType t = src->type();
2920         if (is_reference_type(t)) {
2921           intptr_t profiled_k = parameters->type(j);
2922           Local* local = x->state()->local_at(java_index)->as_Local();
2923           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2924                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2925                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), nullptr);
2926           // If the profile is known statically set it once for all and do not emit any code
2927           if (exact != nullptr) {
2928             md->set_parameter_type(j, exact);
2929           }
2930           j++;
2931         }
2932         java_index += type2size[t];
2933       }
2934     }
2935   }
2936 }
2937 
2938 void LIRGenerator::profile_flags(ciMethodData* md, ciProfileData* data, int flag, LIR_Condition condition) {
2939   assert(md != nullptr && data != nullptr, "should have been initialized");
2940   LIR_Opr mdp = new_register(T_METADATA);
2941   __ metadata2reg(md->constant_encoding(), mdp);
2942   LIR_Address* addr = new LIR_Address(mdp, md->byte_offset_of_slot(data, DataLayout::flags_offset()), T_BYTE);
2943   LIR_Opr flags = new_register(T_INT);
2944   __ move(addr, flags);
2945   if (condition != lir_cond_always) {
2946     LIR_Opr update = new_register(T_INT);
2947     __ cmove(condition, LIR_OprFact::intConst(0), LIR_OprFact::intConst(flag), update, T_INT);
2948   } else {
2949     __ logical_or(flags, LIR_OprFact::intConst(flag), flags);
2950   }
2951   __ store(flags, addr);
2952 }
2953 
2954 template <class ArrayData> void LIRGenerator::profile_null_free_array(LIRItem array, ciMethodData* md, ArrayData* load_store) {
2955   assert(compilation()->profile_array_accesses(), "array access profiling is disabled");
2956   LabelObj* L_end = new LabelObj();
2957   LIR_Opr tmp = new_register(T_METADATA);
2958   __ check_null_free_array(array.result(), tmp);
2959 
2960   profile_flags(md, load_store, ArrayStoreData::null_free_array_byte_constant(), lir_cond_equal);
2961 }
2962 
2963 template <class ArrayData> void LIRGenerator::profile_array_type(AccessIndexed* x, ciMethodData*& md, ArrayData*& load_store) {
2964   assert(compilation()->profile_array_accesses(), "array access profiling is disabled");
2965   LIR_Opr mdp = LIR_OprFact::illegalOpr;
2966   profile_type(md, md->byte_offset_of_slot(load_store, ArrayData::array_offset()), 0,
2967                load_store->array()->type(), x->array(), mdp, true, nullptr, nullptr);
2968 }
2969 
2970 void LIRGenerator::profile_element_type(Value element, ciMethodData* md, ciArrayLoadData* load_data) {
2971   assert(compilation()->profile_array_accesses(), "array access profiling is disabled");
2972   assert(md != nullptr && load_data != nullptr, "should have been initialized");
2973   LIR_Opr mdp = LIR_OprFact::illegalOpr;
2974   profile_type(md, md->byte_offset_of_slot(load_data, ArrayLoadData::element_offset()), 0,
2975                load_data->element()->type(), element, mdp, false, nullptr, nullptr);
2976 }
2977 
2978 void LIRGenerator::do_Base(Base* x) {
2979   __ std_entry(LIR_OprFact::illegalOpr);
2980   // Emit moves from physical registers / stack slots to virtual registers
2981   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2982   IRScope* irScope = compilation()->hir()->top_scope();
2983   int java_index = 0;
2984   for (int i = 0; i < args->length(); i++) {
2985     LIR_Opr src = args->at(i);
2986     assert(!src->is_illegal(), "check");
2987     BasicType t = src->type();
2988 
2989     // Types which are smaller than int are passed as int, so
2990     // correct the type which passed.
2991     switch (t) {
2992     case T_BYTE:
2993     case T_BOOLEAN:
2994     case T_SHORT:
2995     case T_CHAR:
2996       t = T_INT;
2997       break;

3040     }
3041     assert(obj->is_valid(), "must be valid");
3042 
3043     if (method()->is_synchronized() && GenerateSynchronizationCode) {
3044       LIR_Opr lock = syncLockOpr();
3045       __ load_stack_address_monitor(0, lock);
3046 
3047       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, x->check_flag(Instruction::DeoptimizeOnException));
3048       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
3049 
3050       // receiver is guaranteed non-null so don't need CodeEmitInfo
3051       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, nullptr);
3052     }
3053   }
3054   // increment invocation counters if needed
3055   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
3056     profile_parameters(x);
3057     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, false);
3058     increment_invocation_counter(info);
3059   }
3060   if (method()->has_scalarized_args()) {
3061     // Check if deoptimization was triggered (i.e. orig_pc was set) while buffering scalarized inline type arguments
3062     // in the entry point (see comments in frame::deoptimize). If so, deoptimize only now that we have the right state.
3063     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), nullptr, false);
3064     CodeStub* deopt_stub = new DeoptimizeStub(info, Deoptimization::Reason_none, Deoptimization::Action_none);
3065     __ append(new LIR_Op0(lir_check_orig_pc));
3066     __ branch(lir_cond_notEqual, deopt_stub);
3067   }
3068 
3069   // all blocks with a successor must end with an unconditional jump
3070   // to the successor even if they are consecutive
3071   __ jump(x->default_sux());
3072 }
3073 
3074 
3075 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
3076   // construct our frame and model the production of incoming pointer
3077   // to the OSR buffer.
3078   __ osr_entry(LIR_Assembler::osrBufferPointer());
3079   LIR_Opr result = rlock_result(x);
3080   __ move(LIR_Assembler::osrBufferPointer(), result);
3081 }
3082 
3083 void LIRGenerator::invoke_load_one_argument(LIRItem* param, LIR_Opr loc) {
3084   if (loc->is_register()) {
3085     param->load_item_force(loc);
3086   } else {
3087     LIR_Address* addr = loc->as_address_ptr();
3088     param->load_for_store(addr->type());
3089     if (addr->type() == T_OBJECT) {
3090       __ move_wide(param->result(), addr);
3091     } else {
3092       __ move(param->result(), addr);
3093     }
3094   }
3095 }
3096 
3097 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
3098   assert(args->length() == arg_list->length(),
3099          "args=%d, arg_list=%d", args->length(), arg_list->length());
3100   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
3101     LIRItem* param = args->at(i);
3102     LIR_Opr loc = arg_list->at(i);
3103     invoke_load_one_argument(param, loc);









3104   }
3105 
3106   if (x->has_receiver()) {
3107     LIRItem* receiver = args->at(0);
3108     LIR_Opr loc = arg_list->at(0);
3109     if (loc->is_register()) {
3110       receiver->load_item_force(loc);
3111     } else {
3112       assert(loc->is_address(), "just checking");
3113       receiver->load_for_store(T_OBJECT);
3114       __ move_wide(receiver->result(), loc->as_address_ptr());
3115     }
3116   }
3117 }
3118 
3119 
3120 // Visits all arguments, returns appropriate items without loading them
3121 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
3122   LIRItemList* argument_items = new LIRItemList();
3123   if (x->has_receiver()) {

3249   __ move(tmp, reg);
3250 }
3251 
3252 
3253 
3254 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
3255 void LIRGenerator::do_IfOp(IfOp* x) {
3256 #ifdef ASSERT
3257   {
3258     ValueTag xtag = x->x()->type()->tag();
3259     ValueTag ttag = x->tval()->type()->tag();
3260     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
3261     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
3262     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
3263   }
3264 #endif
3265 
3266   LIRItem left(x->x(), this);
3267   LIRItem right(x->y(), this);
3268   left.load_item();
3269   if (can_inline_as_constant(right.value()) && !x->substitutability_check()) {
3270     right.dont_load_item();
3271   } else {
3272     // substitutability_check() needs to use right as a base register.
3273     right.load_item();
3274   }
3275 
3276   LIRItem t_val(x->tval(), this);
3277   LIRItem f_val(x->fval(), this);
3278   t_val.dont_load_item();
3279   f_val.dont_load_item();

3280 
3281   if (x->substitutability_check()) {
3282     substitutability_check(x, left, right, t_val, f_val);
3283   } else {
3284     LIR_Opr reg = rlock_result(x);
3285     __ cmp(lir_cond(x->cond()), left.result(), right.result());
3286     __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
3287   }
3288 }
3289 
3290 void LIRGenerator::substitutability_check(IfOp* x, LIRItem& left, LIRItem& right, LIRItem& t_val, LIRItem& f_val) {
3291   assert(x->cond() == If::eql || x->cond() == If::neq, "must be");
3292   bool is_acmpeq = (x->cond() == If::eql);
3293   LIR_Opr equal_result     = is_acmpeq ? t_val.result() : f_val.result();
3294   LIR_Opr not_equal_result = is_acmpeq ? f_val.result() : t_val.result();
3295   LIR_Opr result = rlock_result(x);
3296   CodeEmitInfo* info = state_for(x, x->state_before());
3297 
3298   substitutability_check_common(x->x(), x->y(), left, right, equal_result, not_equal_result, result, info);
3299 }
3300 
3301 void LIRGenerator::substitutability_check(If* x, LIRItem& left, LIRItem& right) {
3302   LIR_Opr equal_result     = LIR_OprFact::intConst(1);
3303   LIR_Opr not_equal_result = LIR_OprFact::intConst(0);
3304   LIR_Opr result = new_register(T_INT);
3305   CodeEmitInfo* info = state_for(x, x->state_before());
3306 
3307   substitutability_check_common(x->x(), x->y(), left, right, equal_result, not_equal_result, result, info);
3308 
3309   assert(x->cond() == If::eql || x->cond() == If::neq, "must be");
3310   __ cmp(lir_cond(x->cond()), result, equal_result);
3311 }
3312 
3313 void LIRGenerator::substitutability_check_common(Value left_val, Value right_val, LIRItem& left, LIRItem& right,
3314                                                  LIR_Opr equal_result, LIR_Opr not_equal_result, LIR_Opr result,
3315                                                  CodeEmitInfo* info) {
3316   LIR_Opr tmp1 = LIR_OprFact::illegalOpr;
3317   LIR_Opr tmp2 = LIR_OprFact::illegalOpr;
3318   LIR_Opr left_klass_op = LIR_OprFact::illegalOpr;
3319   LIR_Opr right_klass_op = LIR_OprFact::illegalOpr;
3320 
3321   ciKlass* left_klass  = left_val ->as_loaded_klass_or_null();
3322   ciKlass* right_klass = right_val->as_loaded_klass_or_null();
3323 
3324   if ((left_klass == nullptr || right_klass == nullptr) ||// The klass is still unloaded, or came from a Phi node.
3325       !left_klass->is_inlinetype() || !right_klass->is_inlinetype()) {
3326     init_temps_for_substitutability_check(tmp1, tmp2);
3327   }
3328 
3329   if (left_klass != nullptr && left_klass->is_inlinetype() && left_klass == right_klass) {
3330     // No need to load klass -- the operands are statically known to be the same inline klass.
3331   } else {
3332     BasicType t_klass = UseCompressedOops ? T_INT : T_METADATA;
3333     left_klass_op = new_register(t_klass);
3334     right_klass_op = new_register(t_klass);
3335   }
3336 
3337   CodeStub* slow_path = new SubstitutabilityCheckStub(left.result(), right.result(), info);
3338   __ substitutability_check(result, left.result(), right.result(), equal_result, not_equal_result,
3339                             tmp1, tmp2,
3340                             left_klass, right_klass, left_klass_op, right_klass_op, info, slow_path);
3341 }
3342 
3343 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
3344   assert(x->number_of_arguments() == 0, "wrong type");
3345   // Enforce computation of _reserved_argument_area_size which is required on some platforms.
3346   BasicTypeList signature;
3347   CallingConvention* cc = frame_map()->c_calling_convention(&signature);
3348   LIR_Opr reg = result_register_for(x->type());
3349   __ call_runtime_leaf(routine, getThreadTemp(),
3350                        reg, new LIR_OprList());
3351   LIR_Opr result = rlock_result(x);
3352   __ move(reg, result);
3353 }
3354 
3355 
3356 
3357 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
3358   switch (x->id()) {
3359   case vmIntrinsics::_intBitsToFloat      :
3360   case vmIntrinsics::_doubleToRawLongBits :

3594   if (x->recv() != nullptr || x->nb_profiled_args() > 0) {
3595     profile_parameters_at_call(x);
3596   }
3597 
3598   if (x->recv() != nullptr) {
3599     LIRItem value(x->recv(), this);
3600     value.load_item();
3601     recv = new_register(T_OBJECT);
3602     __ move(value.result(), recv);
3603   }
3604   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3605 }
3606 
3607 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3608   int bci = x->bci_of_invoke();
3609   ciMethodData* md = x->method()->method_data_or_null();
3610   assert(md != nullptr, "Sanity");
3611   ciProfileData* data = md->bci_to_data(bci);
3612   if (data != nullptr) {
3613     assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3614     ciSingleTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3615     LIR_Opr mdp = LIR_OprFact::illegalOpr;
3616 
3617     bool ignored_will_link;
3618     ciSignature* signature_at_call = nullptr;
3619     x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3620 
3621     // The offset within the MDO of the entry to update may be too large
3622     // to be used in load/store instructions on some platforms. So have
3623     // profile_type() compute the address of the profile in a register.
3624     ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3625         ret->type(), x->ret(), mdp,
3626         !x->needs_null_check(),
3627         signature_at_call->return_type()->as_klass(),
3628         x->callee()->signature()->return_type()->as_klass());
3629     if (exact != nullptr) {
3630       md->set_return_type(bci, exact);
3631     }
3632   }
3633 }
3634 
3635 bool LIRGenerator::profile_inline_klass(ciMethodData* md, ciProfileData* data, Value value, int flag) {
3636   ciKlass* klass = value->as_loaded_klass_or_null();
3637   if (klass != nullptr) {
3638     if (klass->is_inlinetype()) {
3639       profile_flags(md, data, flag, lir_cond_always);
3640     } else if (klass->can_be_inline_klass()) {
3641       return false;
3642     }
3643   } else {
3644     return false;
3645   }
3646   return true;
3647 }
3648 
3649 
3650 void LIRGenerator::do_ProfileACmpTypes(ProfileACmpTypes* x) {
3651   ciMethod* method = x->method();
3652   assert(method != nullptr, "method should be set if branch is profiled");
3653   ciMethodData* md = method->method_data_or_null();
3654   assert(md != nullptr, "Sanity");
3655   ciProfileData* data = md->bci_to_data(x->bci());
3656   assert(data != nullptr, "must have profiling data");
3657   assert(data->is_ACmpData(), "need BranchData for two-way branches");
3658   ciACmpData* acmp = (ciACmpData*)data;
3659   LIR_Opr mdp = LIR_OprFact::illegalOpr;
3660   profile_type(md, md->byte_offset_of_slot(acmp, ACmpData::left_offset()), 0,
3661                acmp->left()->type(), x->left(), mdp, !x->left_maybe_null(), nullptr, nullptr);
3662   int flags_offset = md->byte_offset_of_slot(data, DataLayout::flags_offset());
3663   if (!profile_inline_klass(md, acmp, x->left(), ACmpData::left_inline_type_byte_constant())) {
3664     LIR_Opr mdp = new_register(T_METADATA);
3665     __ metadata2reg(md->constant_encoding(), mdp);
3666     LIRItem value(x->left(), this);
3667     value.load_item();
3668     __ profile_inline_type(new LIR_Address(mdp, flags_offset, T_INT), value.result(), ACmpData::left_inline_type_byte_constant(), new_register(T_INT), !x->left_maybe_null());
3669   }
3670   profile_type(md, md->byte_offset_of_slot(acmp, ACmpData::left_offset()),
3671                in_bytes(ACmpData::right_offset()) - in_bytes(ACmpData::left_offset()),
3672                acmp->right()->type(), x->right(), mdp, !x->right_maybe_null(), nullptr, nullptr);
3673   if (!profile_inline_klass(md, acmp, x->right(), ACmpData::right_inline_type_byte_constant())) {
3674     LIR_Opr mdp = new_register(T_METADATA);
3675     __ metadata2reg(md->constant_encoding(), mdp);
3676     LIRItem value(x->right(), this);
3677     value.load_item();
3678     __ profile_inline_type(new LIR_Address(mdp, flags_offset, T_INT), value.result(), ACmpData::right_inline_type_byte_constant(), new_register(T_INT), !x->left_maybe_null());
3679   }
3680 }
3681 
3682 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3683   // We can safely ignore accessors here, since c2 will inline them anyway,
3684   // accessors are also always mature.
3685   if (!x->inlinee()->is_accessor()) {
3686     CodeEmitInfo* info = state_for(x, x->state(), true);
3687     // Notify the runtime very infrequently only to take care of counter overflows
3688     int freq_log = Tier23InlineeNotifyFreqLog;
3689     double scale;
3690     if (_method->has_option_value(CompileCommandEnum::CompileThresholdScaling, scale)) {
3691       freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3692     }
3693     increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true);
3694   }
3695 }
3696 
3697 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) {
3698   if (compilation()->is_profiling()) {
3699 #if defined(X86) && !defined(_LP64)
3700     // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
3701     LIR_Opr left_copy = new_register(left->type());
< prev index next >