< prev index next >

src/hotspot/share/c1/c1_LIRGenerator.cpp

Print this page

  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_Defs.hpp"
  28 #include "c1/c1_FrameMap.hpp"
  29 #include "c1/c1_Instruction.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"


  34 #include "ci/ciInstance.hpp"
  35 #include "ci/ciObjArray.hpp"
  36 #include "ci/ciUtilities.hpp"
  37 #include "compiler/compilerDefinitions.inline.hpp"
  38 #include "gc/shared/barrierSet.hpp"
  39 #include "gc/shared/c1/barrierSetC1.hpp"
  40 #include "oops/klass.inline.hpp"
  41 #include "oops/methodCounters.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/stubRoutines.hpp"
  44 #include "runtime/vm_version.hpp"
  45 #include "utilities/bitMap.inline.hpp"
  46 #include "utilities/macros.hpp"
  47 #include "utilities/powerOfTwo.hpp"
  48 
  49 #ifdef ASSERT
  50 #define __ gen()->lir(__FILE__, __LINE__)->
  51 #else
  52 #define __ gen()->lir()->
  53 #endif

 196   ResolveNode* source = source_node(src);
 197   source->append(destination_node(dest));
 198 }
 199 
 200 
 201 //--------------------------------------------------------------
 202 // LIRItem
 203 
 204 void LIRItem::set_result(LIR_Opr opr) {
 205   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 206   value()->set_operand(opr);
 207 
 208   if (opr->is_virtual()) {
 209     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), nullptr);
 210   }
 211 
 212   _result = opr;
 213 }
 214 
 215 void LIRItem::load_item() {


 216   if (result()->is_illegal()) {
 217     // update the items result
 218     _result = value()->operand();
 219   }
 220   if (!result()->is_register()) {
 221     LIR_Opr reg = _gen->new_register(value()->type());
 222     __ move(result(), reg);
 223     if (result()->is_constant()) {
 224       _result = reg;
 225     } else {
 226       set_result(reg);
 227     }
 228   }
 229 }
 230 
 231 
 232 void LIRItem::load_for_store(BasicType type) {
 233   if (_gen->can_store_as_constant(value(), type)) {
 234     _result = value()->operand();
 235     if (!_result->is_constant()) {

 603     assert(right_op != result_op, "malformed");
 604     __ move(left_op, result_op);
 605     left_op = result_op;
 606   }
 607 
 608   switch(code) {
 609     case Bytecodes::_iand:
 610     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 611 
 612     case Bytecodes::_ior:
 613     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 614 
 615     case Bytecodes::_ixor:
 616     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 617 
 618     default: ShouldNotReachHere();
 619   }
 620 }
 621 
 622 
 623 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {

 624   if (!GenerateSynchronizationCode) return;
 625   // for slow path, use debug info for state after successful locking
 626   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
 627   __ load_stack_address_monitor(monitor_no, lock);
 628   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 629   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
 630 }
 631 
 632 
 633 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 634   if (!GenerateSynchronizationCode) return;
 635   // setup registers
 636   LIR_Opr hdr = lock;
 637   lock = new_hdr;
 638   CodeStub* slow_path = new MonitorExitStub(lock, LockingMode != LM_MONITOR, monitor_no);
 639   __ load_stack_address_monitor(monitor_no, lock);
 640   __ unlock_object(hdr, object, lock, scratch, slow_path);
 641 }
 642 
 643 #ifndef PRODUCT
 644 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 645   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 646     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 647   } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) {
 648     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 649   }
 650 }
 651 #endif
 652 
 653 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 654   klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 655   // If klass is not loaded we do not know if the klass has finalizers:
 656   if (UseFastNewInstance && klass->is_loaded()





 657       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 658 
 659     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
 660 
 661     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 662 
 663     assert(klass->is_loaded(), "must be loaded");
 664     // allocate space for instance
 665     assert(klass->size_helper() > 0, "illegal instance size");
 666     const int instance_size = align_object_size(klass->size_helper());
 667     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 668                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 669   } else {
 670     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
 671     __ branch(lir_cond_always, slow_path);
 672     __ branch_destination(slow_path->continuation());
 673   }
 674 }
 675 
 676 
 677 static bool is_constant_zero(Instruction* inst) {
 678   IntConstant* c = inst->type()->as_IntConstant();
 679   if (c) {
 680     return (c->value() == 0);
 681   }
 682   return false;
 683 }
 684 
 685 
 686 static bool positive_constant(Instruction* inst) {
 687   IntConstant* c = inst->type()->as_IntConstant();
 688   if (c) {
 689     return (c->value() >= 0);
 690   }
 691   return false;

 751       if (src_type != nullptr) {
 752         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 753           is_exact = true;
 754           expected_type = dst_type;
 755         }
 756       }
 757     }
 758     // at least pass along a good guess
 759     if (expected_type == nullptr) expected_type = dst_exact_type;
 760     if (expected_type == nullptr) expected_type = src_declared_type;
 761     if (expected_type == nullptr) expected_type = dst_declared_type;
 762 
 763     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 764     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 765   }
 766 
 767   // if a probable array type has been identified, figure out if any
 768   // of the required checks for a fast case can be elided.
 769   int flags = LIR_OpArrayCopy::all_flags;
 770 










 771   if (!src_objarray)
 772     flags &= ~LIR_OpArrayCopy::src_objarray;
 773   if (!dst_objarray)
 774     flags &= ~LIR_OpArrayCopy::dst_objarray;
 775 
 776   if (!x->arg_needs_null_check(0))
 777     flags &= ~LIR_OpArrayCopy::src_null_check;
 778   if (!x->arg_needs_null_check(2))
 779     flags &= ~LIR_OpArrayCopy::dst_null_check;
 780 
 781 
 782   if (expected_type != nullptr) {
 783     Value length_limit = nullptr;
 784 
 785     IfOp* ifop = length->as_IfOp();
 786     if (ifop != nullptr) {
 787       // look for expressions like min(v, a.length) which ends up as
 788       //   x > y ? y : x  or  x >= y ? y : x
 789       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 790           ifop->x() == ifop->fval() &&

1556       case T_FLOAT:
1557         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1558         break;
1559       case T_LONG:
1560       case T_DOUBLE:
1561         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1562         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1563         break;
1564       case T_OBJECT:
1565         if (c->as_jobject() != other->as_jobject()) continue;
1566         break;
1567       default:
1568         break;
1569       }
1570       return _reg_for_constants.at(i);
1571     }
1572   }
1573 
1574   LIR_Opr result = new_register(t);
1575   __ move((LIR_Opr)c, result);
1576   _constants.append(c);
1577   _reg_for_constants.append(result);


1578   return result;
1579 }
1580 






1581 //------------------------field access--------------------------------------
1582 
1583 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
1584   assert(x->number_of_arguments() == 4, "wrong type");
1585   LIRItem obj   (x->argument_at(0), this);  // object
1586   LIRItem offset(x->argument_at(1), this);  // offset of field
1587   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
1588   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
1589   assert(obj.type()->tag() == objectTag, "invalid type");
1590   assert(cmp.type()->tag() == type->tag(), "invalid type");
1591   assert(val.type()->tag() == type->tag(), "invalid type");
1592 
1593   LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type),
1594                                             obj, offset, cmp, val);
1595   set_result(x, result);
1596 }
1597 
1598 // Comment copied form templateTable_i486.cpp
1599 // ----------------------------------------------------------------------------
1600 // Volatile variables demand their effects be made known to all CPU's in

1673       (needs_patching ||
1674        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1675     // Emit an explicit null check because the offset is too large.
1676     // If the class is not loaded and the object is null, we need to deoptimize to throw a
1677     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1678     __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1679   }
1680 
1681   DecoratorSet decorators = IN_HEAP;
1682   if (is_volatile) {
1683     decorators |= MO_SEQ_CST;
1684   }
1685   if (needs_patching) {
1686     decorators |= C1_NEEDS_PATCHING;
1687   }
1688 
1689   access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()),
1690                   value.result(), info != nullptr ? new CodeEmitInfo(info) : nullptr, info);
1691 }
1692 













































































































































































1693 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
1694   assert(x->is_pinned(),"");


1695   bool needs_range_check = x->compute_needs_range_check();
1696   bool use_length = x->length() != nullptr;
1697   bool obj_store = is_reference_type(x->elt_type());
1698   bool needs_store_check = obj_store && (x->value()->as_Constant() == nullptr ||
1699                                          !get_jobject_constant(x->value())->is_null_object() ||
1700                                          x->should_profile());
1701 
1702   LIRItem array(x->array(), this);
1703   LIRItem index(x->index(), this);
1704   LIRItem value(x->value(), this);
1705   LIRItem length(this);
1706 
1707   array.load_item();
1708   index.load_nonconstant();
1709 
1710   if (use_length && needs_range_check) {
1711     length.set_instruction(x->length());
1712     length.load_item();
1713 
1714   }
1715   if (needs_store_check || x->check_boolean()) {


1716     value.load_item();
1717   } else {
1718     value.load_for_store(x->elt_type());
1719   }
1720 
1721   set_no_result(x);
1722 
1723   // the CodeEmitInfo must be duplicated for each different
1724   // LIR-instruction because spilling can occur anywhere between two
1725   // instructions and so the debug information must be different
1726   CodeEmitInfo* range_check_info = state_for(x);
1727   CodeEmitInfo* null_check_info = nullptr;
1728   if (x->needs_null_check()) {
1729     null_check_info = new CodeEmitInfo(range_check_info);
1730   }
1731 
1732   if (needs_range_check) {
1733     if (use_length) {
1734       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1735       __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1736     } else {
1737       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1738       // range_check also does the null check
1739       null_check_info = nullptr;
1740     }
1741   }
1742 




















1743   if (GenerateArrayStoreCheck && needs_store_check) {
1744     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
1745     array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci());
1746   }
1747 
1748   DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1749   if (x->check_boolean()) {
1750     decorators |= C1_MASK_BOOLEAN;
1751   }






















1752 
1753   access_store_at(decorators, x->elt_type(), array, index.result(), value.result(),
1754                   nullptr, null_check_info);





1755 }
1756 
1757 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type,
1758                                   LIRItem& base, LIR_Opr offset, LIR_Opr result,
1759                                   CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) {
1760   decorators |= ACCESS_READ;
1761   LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info);
1762   if (access.is_raw()) {
1763     _barrier_set->BarrierSetC1::load_at(access, result);
1764   } else {
1765     _barrier_set->load_at(access, result);
1766   }
1767 }
1768 
1769 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type,
1770                                LIR_Opr addr, LIR_Opr result) {
1771   decorators |= ACCESS_READ;
1772   LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type);
1773   access.set_resolved_addr(addr);
1774   if (access.is_raw()) {

1872       __ move(LIR_OprFact::oopConst(nullptr), obj);
1873     }
1874     // Emit an explicit null check because the offset is too large.
1875     // If the class is not loaded and the object is null, we need to deoptimize to throw a
1876     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1877     __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1878   }
1879 
1880   DecoratorSet decorators = IN_HEAP;
1881   if (is_volatile) {
1882     decorators |= MO_SEQ_CST;
1883   }
1884   if (needs_patching) {
1885     decorators |= C1_NEEDS_PATCHING;
1886   }
1887 
1888   LIR_Opr result = rlock_result(x, field_type);
1889   access_load_at(decorators, field_type,
1890                  object, LIR_OprFact::intConst(x->offset()), result,
1891                  info ? new CodeEmitInfo(info) : nullptr, info);


































1892 }
1893 
1894 // int/long jdk.internal.util.Preconditions.checkIndex
1895 void LIRGenerator::do_PreconditionsCheckIndex(Intrinsic* x, BasicType type) {
1896   assert(x->number_of_arguments() == 3, "wrong type");
1897   LIRItem index(x->argument_at(0), this);
1898   LIRItem length(x->argument_at(1), this);
1899   LIRItem oobef(x->argument_at(2), this);
1900 
1901   index.load_item();
1902   length.load_item();
1903   oobef.load_item();
1904 
1905   LIR_Opr result = rlock_result(x);
1906   // x->state() is created from copy_state_for_exception, it does not contains arguments
1907   // we should prepare them before entering into interpreter mode due to deoptimization.
1908   ValueStack* state = x->state();
1909   for (int i = 0; i < x->number_of_arguments(); i++) {
1910     Value arg = x->argument_at(i);
1911     state->push(arg->type(), arg);

2016       __ move(LIR_OprFact::oopConst(nullptr), obj);
2017       __ null_check(obj, new CodeEmitInfo(null_check_info));
2018     }
2019   }
2020 
2021   if (needs_range_check) {
2022     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
2023       __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result()));
2024     } else if (use_length) {
2025       // TODO: use a (modified) version of array_range_check that does not require a
2026       //       constant length to be loaded to a register
2027       __ cmp(lir_cond_belowEqual, length.result(), index.result());
2028       __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
2029     } else {
2030       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
2031       // The range check performs the null check, so clear it out for the load
2032       null_check_info = nullptr;
2033     }
2034   }
2035 
2036   DecoratorSet decorators = IN_HEAP | IS_ARRAY;









































































2037 
2038   LIR_Opr result = rlock_result(x, x->elt_type());
2039   access_load_at(decorators, x->elt_type(),
2040                  array, index.result(), result,
2041                  nullptr, null_check_info);
2042 }
2043 
2044 
2045 void LIRGenerator::do_NullCheck(NullCheck* x) {
2046   if (x->can_trap()) {
2047     LIRItem value(x->obj(), this);
2048     value.load_item();
2049     CodeEmitInfo* info = state_for(x);
2050     __ null_check(value.result(), info);
2051   }
2052 }
2053 
2054 
2055 void LIRGenerator::do_TypeCast(TypeCast* x) {
2056   LIRItem value(x->obj(), this);
2057   value.load_item();
2058   // the result is the same as from the node we are casting
2059   set_result(x, value.result());
2060 }
2061 

2523   Compilation* comp = Compilation::current();
2524   if (do_update) {
2525     // try to find exact type, using CHA if possible, so that loading
2526     // the klass from the object can be avoided
2527     ciType* type = obj->exact_type();
2528     if (type == nullptr) {
2529       type = obj->declared_type();
2530       type = comp->cha_exact_type(type);
2531     }
2532     assert(type == nullptr || type->is_klass(), "type should be class");
2533     exact_klass = (type != nullptr && type->is_loaded()) ? (ciKlass*)type : nullptr;
2534 
2535     do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2536   }
2537 
2538   if (!do_null && !do_update) {
2539     return result;
2540   }
2541 
2542   ciKlass* exact_signature_k = nullptr;
2543   if (do_update) {
2544     // Is the type from the signature exact (the only one possible)?
2545     exact_signature_k = signature_at_call_k->exact_klass();
2546     if (exact_signature_k == nullptr) {
2547       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2548     } else {
2549       result = exact_signature_k;
2550       // Known statically. No need to emit any code: prevent
2551       // LIR_Assembler::emit_profile_type() from emitting useless code
2552       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2553     }
2554     // exact_klass and exact_signature_k can be both non null but
2555     // different if exact_klass is loaded after the ciObject for
2556     // exact_signature_k is created.
2557     if (exact_klass == nullptr && exact_signature_k != nullptr && exact_klass != exact_signature_k) {
2558       // sometimes the type of the signature is better than the best type
2559       // the compiler has
2560       exact_klass = exact_signature_k;
2561     }
2562     if (callee_signature_k != nullptr &&
2563         callee_signature_k != signature_at_call_k) {

2608         assert(!src->is_illegal(), "check");
2609         BasicType t = src->type();
2610         if (is_reference_type(t)) {
2611           intptr_t profiled_k = parameters->type(j);
2612           Local* local = x->state()->local_at(java_index)->as_Local();
2613           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2614                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2615                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), nullptr);
2616           // If the profile is known statically set it once for all and do not emit any code
2617           if (exact != nullptr) {
2618             md->set_parameter_type(j, exact);
2619           }
2620           j++;
2621         }
2622         java_index += type2size[t];
2623       }
2624     }
2625   }
2626 }
2627 








































2628 void LIRGenerator::do_Base(Base* x) {
2629   __ std_entry(LIR_OprFact::illegalOpr);
2630   // Emit moves from physical registers / stack slots to virtual registers
2631   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2632   IRScope* irScope = compilation()->hir()->top_scope();
2633   int java_index = 0;
2634   for (int i = 0; i < args->length(); i++) {
2635     LIR_Opr src = args->at(i);
2636     assert(!src->is_illegal(), "check");
2637     BasicType t = src->type();
2638 
2639     // Types which are smaller than int are passed as int, so
2640     // correct the type which passed.
2641     switch (t) {
2642     case T_BYTE:
2643     case T_BOOLEAN:
2644     case T_SHORT:
2645     case T_CHAR:
2646       t = T_INT;
2647       break;

2688     }
2689     assert(obj->is_valid(), "must be valid");
2690 
2691     if (method()->is_synchronized() && GenerateSynchronizationCode) {
2692       LIR_Opr lock = syncLockOpr();
2693       __ load_stack_address_monitor(0, lock);
2694 
2695       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, x->check_flag(Instruction::DeoptimizeOnException));
2696       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2697 
2698       // receiver is guaranteed non-null so don't need CodeEmitInfo
2699       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, nullptr);
2700     }
2701   }
2702   // increment invocation counters if needed
2703   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2704     profile_parameters(x);
2705     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, false);
2706     increment_invocation_counter(info);
2707   }








2708 
2709   // all blocks with a successor must end with an unconditional jump
2710   // to the successor even if they are consecutive
2711   __ jump(x->default_sux());
2712 }
2713 
2714 
2715 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2716   // construct our frame and model the production of incoming pointer
2717   // to the OSR buffer.
2718   __ osr_entry(LIR_Assembler::osrBufferPointer());
2719   LIR_Opr result = rlock_result(x);
2720   __ move(LIR_Assembler::osrBufferPointer(), result);
2721 }
2722 













2723 
2724 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2725   assert(args->length() == arg_list->length(),
2726          "args=%d, arg_list=%d", args->length(), arg_list->length());
2727   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2728     LIRItem* param = args->at(i);
2729     LIR_Opr loc = arg_list->at(i);
2730     if (loc->is_register()) {
2731       param->load_item_force(loc);
2732     } else {
2733       LIR_Address* addr = loc->as_address_ptr();
2734       param->load_for_store(addr->type());
2735       if (addr->type() == T_OBJECT) {
2736         __ move_wide(param->result(), addr);
2737       } else
2738         __ move(param->result(), addr);
2739     }
2740   }
2741 
2742   if (x->has_receiver()) {
2743     LIRItem* receiver = args->at(0);
2744     LIR_Opr loc = arg_list->at(0);
2745     if (loc->is_register()) {
2746       receiver->load_item_force(loc);
2747     } else {
2748       assert(loc->is_address(), "just checking");
2749       receiver->load_for_store(T_OBJECT);
2750       __ move_wide(receiver->result(), loc->as_address_ptr());
2751     }
2752   }
2753 }
2754 
2755 
2756 // Visits all arguments, returns appropriate items without loading them
2757 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2758   LIRItemList* argument_items = new LIRItemList();
2759   if (x->has_receiver()) {

2885   __ move(tmp, reg);
2886 }
2887 
2888 
2889 
2890 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
2891 void LIRGenerator::do_IfOp(IfOp* x) {
2892 #ifdef ASSERT
2893   {
2894     ValueTag xtag = x->x()->type()->tag();
2895     ValueTag ttag = x->tval()->type()->tag();
2896     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
2897     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
2898     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
2899   }
2900 #endif
2901 
2902   LIRItem left(x->x(), this);
2903   LIRItem right(x->y(), this);
2904   left.load_item();
2905   if (can_inline_as_constant(right.value())) {
2906     right.dont_load_item();
2907   } else {

2908     right.load_item();
2909   }
2910 
2911   LIRItem t_val(x->tval(), this);
2912   LIRItem f_val(x->fval(), this);
2913   t_val.dont_load_item();
2914   f_val.dont_load_item();
2915   LIR_Opr reg = rlock_result(x);
2916 
2917   __ cmp(lir_cond(x->cond()), left.result(), right.result());
2918   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));


























































2919 }
2920 
2921 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
2922   assert(x->number_of_arguments() == 0, "wrong type");
2923   // Enforce computation of _reserved_argument_area_size which is required on some platforms.
2924   BasicTypeList signature;
2925   CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2926   LIR_Opr reg = result_register_for(x->type());
2927   __ call_runtime_leaf(routine, getThreadTemp(),
2928                        reg, new LIR_OprList());
2929   LIR_Opr result = rlock_result(x);
2930   __ move(reg, result);
2931 }
2932 
2933 
2934 
2935 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
2936   switch (x->id()) {
2937   case vmIntrinsics::_intBitsToFloat      :
2938   case vmIntrinsics::_doubleToRawLongBits :

3172   if (x->recv() != nullptr || x->nb_profiled_args() > 0) {
3173     profile_parameters_at_call(x);
3174   }
3175 
3176   if (x->recv() != nullptr) {
3177     LIRItem value(x->recv(), this);
3178     value.load_item();
3179     recv = new_register(T_OBJECT);
3180     __ move(value.result(), recv);
3181   }
3182   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3183 }
3184 
3185 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3186   int bci = x->bci_of_invoke();
3187   ciMethodData* md = x->method()->method_data_or_null();
3188   assert(md != nullptr, "Sanity");
3189   ciProfileData* data = md->bci_to_data(bci);
3190   if (data != nullptr) {
3191     assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3192     ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3193     LIR_Opr mdp = LIR_OprFact::illegalOpr;
3194 
3195     bool ignored_will_link;
3196     ciSignature* signature_at_call = nullptr;
3197     x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3198 
3199     // The offset within the MDO of the entry to update may be too large
3200     // to be used in load/store instructions on some platforms. So have
3201     // profile_type() compute the address of the profile in a register.
3202     ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3203         ret->type(), x->ret(), mdp,
3204         !x->needs_null_check(),
3205         signature_at_call->return_type()->as_klass(),
3206         x->callee()->signature()->return_type()->as_klass());
3207     if (exact != nullptr) {
3208       md->set_return_type(bci, exact);
3209     }
3210   }
3211 }
3212 















































3213 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3214   // We can safely ignore accessors here, since c2 will inline them anyway,
3215   // accessors are also always mature.
3216   if (!x->inlinee()->is_accessor()) {
3217     CodeEmitInfo* info = state_for(x, x->state(), true);
3218     // Notify the runtime very infrequently only to take care of counter overflows
3219     int freq_log = Tier23InlineeNotifyFreqLog;
3220     double scale;
3221     if (_method->has_option_value(CompileCommand::CompileThresholdScaling, scale)) {
3222       freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3223     }
3224     increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true);
3225   }
3226 }
3227 
3228 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) {
3229   if (compilation()->is_profiling()) {
3230 #if defined(X86) && !defined(_LP64)
3231     // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
3232     LIR_Opr left_copy = new_register(left->type());

  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_Defs.hpp"
  28 #include "c1/c1_FrameMap.hpp"
  29 #include "c1/c1_Instruction.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciFlatArrayKlass.hpp"
  35 #include "ci/ciInlineKlass.hpp"
  36 #include "ci/ciInstance.hpp"
  37 #include "ci/ciObjArray.hpp"
  38 #include "ci/ciUtilities.hpp"
  39 #include "compiler/compilerDefinitions.inline.hpp"
  40 #include "gc/shared/barrierSet.hpp"
  41 #include "gc/shared/c1/barrierSetC1.hpp"
  42 #include "oops/klass.inline.hpp"
  43 #include "oops/methodCounters.hpp"
  44 #include "runtime/sharedRuntime.hpp"
  45 #include "runtime/stubRoutines.hpp"
  46 #include "runtime/vm_version.hpp"
  47 #include "utilities/bitMap.inline.hpp"
  48 #include "utilities/macros.hpp"
  49 #include "utilities/powerOfTwo.hpp"
  50 
  51 #ifdef ASSERT
  52 #define __ gen()->lir(__FILE__, __LINE__)->
  53 #else
  54 #define __ gen()->lir()->
  55 #endif

 198   ResolveNode* source = source_node(src);
 199   source->append(destination_node(dest));
 200 }
 201 
 202 
 203 //--------------------------------------------------------------
 204 // LIRItem
 205 
 206 void LIRItem::set_result(LIR_Opr opr) {
 207   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 208   value()->set_operand(opr);
 209 
 210   if (opr->is_virtual()) {
 211     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), nullptr);
 212   }
 213 
 214   _result = opr;
 215 }
 216 
 217 void LIRItem::load_item() {
 218   assert(!_gen->in_conditional_code(), "LIRItem cannot be loaded in conditional code");
 219 
 220   if (result()->is_illegal()) {
 221     // update the items result
 222     _result = value()->operand();
 223   }
 224   if (!result()->is_register()) {
 225     LIR_Opr reg = _gen->new_register(value()->type());
 226     __ move(result(), reg);
 227     if (result()->is_constant()) {
 228       _result = reg;
 229     } else {
 230       set_result(reg);
 231     }
 232   }
 233 }
 234 
 235 
 236 void LIRItem::load_for_store(BasicType type) {
 237   if (_gen->can_store_as_constant(value(), type)) {
 238     _result = value()->operand();
 239     if (!_result->is_constant()) {

 607     assert(right_op != result_op, "malformed");
 608     __ move(left_op, result_op);
 609     left_op = result_op;
 610   }
 611 
 612   switch(code) {
 613     case Bytecodes::_iand:
 614     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 615 
 616     case Bytecodes::_ior:
 617     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 618 
 619     case Bytecodes::_ixor:
 620     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 621 
 622     default: ShouldNotReachHere();
 623   }
 624 }
 625 
 626 
 627 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no,
 628                                  CodeEmitInfo* info_for_exception, CodeEmitInfo* info, CodeStub* throw_imse_stub) {
 629   if (!GenerateSynchronizationCode) return;
 630   // for slow path, use debug info for state after successful locking
 631   CodeStub* slow_path = new MonitorEnterStub(object, lock, info, throw_imse_stub, scratch);
 632   __ load_stack_address_monitor(monitor_no, lock);
 633   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 634   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception, throw_imse_stub);
 635 }
 636 
 637 
 638 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 639   if (!GenerateSynchronizationCode) return;
 640   // setup registers
 641   LIR_Opr hdr = lock;
 642   lock = new_hdr;
 643   CodeStub* slow_path = new MonitorExitStub(lock, LockingMode != LM_MONITOR, monitor_no);
 644   __ load_stack_address_monitor(monitor_no, lock);
 645   __ unlock_object(hdr, object, lock, scratch, slow_path);
 646 }
 647 
 648 #ifndef PRODUCT
 649 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 650   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 651     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 652   } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) {
 653     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 654   }
 655 }
 656 #endif
 657 
 658 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, bool allow_inline, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 659   if (allow_inline) {
 660     assert(!is_unresolved && klass->is_loaded(), "inline type klass should be resolved");
 661     __ metadata2reg(klass->constant_encoding(), klass_reg);
 662   } else {
 663     klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 664   }
 665   // If klass is not loaded we do not know if the klass has finalizers or is an unexpected inline klass
 666   if (UseFastNewInstance && klass->is_loaded() && (allow_inline || !klass->is_inlinetype())
 667       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 668 
 669     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
 670 
 671     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 672 
 673     assert(klass->is_loaded(), "must be loaded");
 674     // allocate space for instance
 675     assert(klass->size_helper() > 0, "illegal instance size");
 676     const int instance_size = align_object_size(klass->size_helper());
 677     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 678                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 679   } else {
 680     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
 681     __ jump(slow_path);
 682     __ branch_destination(slow_path->continuation());
 683   }
 684 }
 685 
 686 
 687 static bool is_constant_zero(Instruction* inst) {
 688   IntConstant* c = inst->type()->as_IntConstant();
 689   if (c) {
 690     return (c->value() == 0);
 691   }
 692   return false;
 693 }
 694 
 695 
 696 static bool positive_constant(Instruction* inst) {
 697   IntConstant* c = inst->type()->as_IntConstant();
 698   if (c) {
 699     return (c->value() >= 0);
 700   }
 701   return false;

 761       if (src_type != nullptr) {
 762         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 763           is_exact = true;
 764           expected_type = dst_type;
 765         }
 766       }
 767     }
 768     // at least pass along a good guess
 769     if (expected_type == nullptr) expected_type = dst_exact_type;
 770     if (expected_type == nullptr) expected_type = src_declared_type;
 771     if (expected_type == nullptr) expected_type = dst_declared_type;
 772 
 773     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 774     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 775   }
 776 
 777   // if a probable array type has been identified, figure out if any
 778   // of the required checks for a fast case can be elided.
 779   int flags = LIR_OpArrayCopy::all_flags;
 780 
 781   if (!src->is_loaded_flat_array() && !dst->is_loaded_flat_array()) {
 782     flags &= ~LIR_OpArrayCopy::always_slow_path;
 783   }
 784   if (!src->maybe_flat_array()) {
 785     flags &= ~LIR_OpArrayCopy::src_inlinetype_check;
 786   }
 787   if (!dst->maybe_flat_array() && !dst->maybe_null_free_array()) {
 788     flags &= ~LIR_OpArrayCopy::dst_inlinetype_check;
 789   }
 790 
 791   if (!src_objarray)
 792     flags &= ~LIR_OpArrayCopy::src_objarray;
 793   if (!dst_objarray)
 794     flags &= ~LIR_OpArrayCopy::dst_objarray;
 795 
 796   if (!x->arg_needs_null_check(0))
 797     flags &= ~LIR_OpArrayCopy::src_null_check;
 798   if (!x->arg_needs_null_check(2))
 799     flags &= ~LIR_OpArrayCopy::dst_null_check;
 800 
 801 
 802   if (expected_type != nullptr) {
 803     Value length_limit = nullptr;
 804 
 805     IfOp* ifop = length->as_IfOp();
 806     if (ifop != nullptr) {
 807       // look for expressions like min(v, a.length) which ends up as
 808       //   x > y ? y : x  or  x >= y ? y : x
 809       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 810           ifop->x() == ifop->fval() &&

1576       case T_FLOAT:
1577         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1578         break;
1579       case T_LONG:
1580       case T_DOUBLE:
1581         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1582         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1583         break;
1584       case T_OBJECT:
1585         if (c->as_jobject() != other->as_jobject()) continue;
1586         break;
1587       default:
1588         break;
1589       }
1590       return _reg_for_constants.at(i);
1591     }
1592   }
1593 
1594   LIR_Opr result = new_register(t);
1595   __ move((LIR_Opr)c, result);
1596   if (!in_conditional_code()) {
1597     _constants.append(c);
1598     _reg_for_constants.append(result);
1599   }
1600   return result;
1601 }
1602 
1603 void LIRGenerator::set_in_conditional_code(bool v) {
1604   assert(v != _in_conditional_code, "must change state");
1605   _in_conditional_code = v;
1606 }
1607 
1608 
1609 //------------------------field access--------------------------------------
1610 
1611 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
1612   assert(x->number_of_arguments() == 4, "wrong type");
1613   LIRItem obj   (x->argument_at(0), this);  // object
1614   LIRItem offset(x->argument_at(1), this);  // offset of field
1615   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
1616   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
1617   assert(obj.type()->tag() == objectTag, "invalid type");
1618   assert(cmp.type()->tag() == type->tag(), "invalid type");
1619   assert(val.type()->tag() == type->tag(), "invalid type");
1620 
1621   LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type),
1622                                             obj, offset, cmp, val);
1623   set_result(x, result);
1624 }
1625 
1626 // Comment copied form templateTable_i486.cpp
1627 // ----------------------------------------------------------------------------
1628 // Volatile variables demand their effects be made known to all CPU's in

1701       (needs_patching ||
1702        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1703     // Emit an explicit null check because the offset is too large.
1704     // If the class is not loaded and the object is null, we need to deoptimize to throw a
1705     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1706     __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1707   }
1708 
1709   DecoratorSet decorators = IN_HEAP;
1710   if (is_volatile) {
1711     decorators |= MO_SEQ_CST;
1712   }
1713   if (needs_patching) {
1714     decorators |= C1_NEEDS_PATCHING;
1715   }
1716 
1717   access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()),
1718                   value.result(), info != nullptr ? new CodeEmitInfo(info) : nullptr, info);
1719 }
1720 
1721 // FIXME -- I can't find any other way to pass an address to access_load_at().
1722 class TempResolvedAddress: public Instruction {
1723  public:
1724   TempResolvedAddress(ValueType* type, LIR_Opr addr) : Instruction(type) {
1725     set_operand(addr);
1726   }
1727   virtual void input_values_do(ValueVisitor*) {}
1728   virtual void visit(InstructionVisitor* v)   {}
1729   virtual const char* name() const  { return "TempResolvedAddress"; }
1730 };
1731 
1732 LIR_Opr LIRGenerator::get_and_load_element_address(LIRItem& array, LIRItem& index) {
1733   ciType* array_type = array.value()->declared_type();
1734   ciFlatArrayKlass* flat_array_klass = array_type->as_flat_array_klass();
1735   assert(flat_array_klass->is_loaded(), "must be");
1736 
1737   int array_header_size = flat_array_klass->array_header_in_bytes();
1738   int shift = flat_array_klass->log2_element_size();
1739 
1740 #ifndef _LP64
1741   LIR_Opr index_op = new_register(T_INT);
1742   // FIXME -- on 32-bit, the shift below can overflow, so we need to check that
1743   // the top (shift+1) bits of index_op must be zero, or
1744   // else throw ArrayIndexOutOfBoundsException
1745   if (index.result()->is_constant()) {
1746     jint const_index = index.result()->as_jint();
1747     __ move(LIR_OprFact::intConst(const_index << shift), index_op);
1748   } else {
1749     __ shift_left(index_op, shift, index.result());
1750   }
1751 #else
1752   LIR_Opr index_op = new_register(T_LONG);
1753   if (index.result()->is_constant()) {
1754     jint const_index = index.result()->as_jint();
1755     __ move(LIR_OprFact::longConst(const_index << shift), index_op);
1756   } else {
1757     __ convert(Bytecodes::_i2l, index.result(), index_op);
1758     // Need to shift manually, as LIR_Address can scale only up to 3.
1759     __ shift_left(index_op, shift, index_op);
1760   }
1761 #endif
1762 
1763   LIR_Opr elm_op = new_pointer_register();
1764   LIR_Address* elm_address = generate_address(array.result(), index_op, 0, array_header_size, T_ADDRESS);
1765   __ leal(LIR_OprFact::address(elm_address), elm_op);
1766   return elm_op;
1767 }
1768 
1769 void LIRGenerator::access_sub_element(LIRItem& array, LIRItem& index, LIR_Opr& result, ciField* field, int sub_offset) {
1770   assert(field != nullptr, "Need a subelement type specified");
1771 
1772   // Find the starting address of the source (inside the array)
1773   LIR_Opr elm_op = get_and_load_element_address(array, index);
1774 
1775   BasicType subelt_type = field->type()->basic_type();
1776   TempResolvedAddress* elm_resolved_addr = new TempResolvedAddress(as_ValueType(subelt_type), elm_op);
1777   LIRItem elm_item(elm_resolved_addr, this);
1778 
1779   DecoratorSet decorators = IN_HEAP;
1780   access_load_at(decorators, subelt_type,
1781                      elm_item, LIR_OprFact::intConst(sub_offset), result,
1782                      nullptr, nullptr);
1783 
1784   if (field->is_null_free()) {
1785     assert(field->type()->is_loaded(), "Must be");
1786     assert(field->type()->is_inlinetype(), "Must be if loaded");
1787     assert(field->type()->as_inline_klass()->is_initialized(), "Must be");
1788     LabelObj* L_end = new LabelObj();
1789     __ cmp(lir_cond_notEqual, result, LIR_OprFact::oopConst(nullptr));
1790     __ branch(lir_cond_notEqual, L_end->label());
1791     set_in_conditional_code(true);
1792     Constant* default_value = new Constant(new InstanceConstant(field->type()->as_inline_klass()->default_instance()));
1793     if (default_value->is_pinned()) {
1794       __ move(LIR_OprFact::value_type(default_value->type()), result);
1795     } else {
1796       __ move(load_constant(default_value), result);
1797     }
1798     __ branch_destination(L_end->label());
1799     set_in_conditional_code(false);
1800   }
1801 }
1802 
1803 void LIRGenerator::access_flat_array(bool is_load, LIRItem& array, LIRItem& index, LIRItem& obj_item,
1804                                           ciField* field, int sub_offset) {
1805   assert(sub_offset == 0 || field != nullptr, "Sanity check");
1806 
1807   // Find the starting address of the source (inside the array)
1808   LIR_Opr elm_op = get_and_load_element_address(array, index);
1809 
1810   ciInlineKlass* elem_klass = nullptr;
1811   if (field != nullptr) {
1812     elem_klass = field->type()->as_inline_klass();
1813   } else {
1814     elem_klass = array.value()->declared_type()->as_flat_array_klass()->element_klass()->as_inline_klass();
1815   }
1816   for (int i = 0; i < elem_klass->nof_nonstatic_fields(); i++) {
1817     ciField* inner_field = elem_klass->nonstatic_field_at(i);
1818     assert(!inner_field->is_flat(), "flat fields must have been expanded");
1819     int obj_offset = inner_field->offset_in_bytes();
1820     int elm_offset = obj_offset - elem_klass->first_field_offset() + sub_offset; // object header is not stored in array.
1821     BasicType field_type = inner_field->type()->basic_type();
1822 
1823     // Types which are smaller than int are still passed in an int register.
1824     BasicType reg_type = field_type;
1825     switch (reg_type) {
1826     case T_BYTE:
1827     case T_BOOLEAN:
1828     case T_SHORT:
1829     case T_CHAR:
1830       reg_type = T_INT;
1831       break;
1832     default:
1833       break;
1834     }
1835 
1836     LIR_Opr temp = new_register(reg_type);
1837     TempResolvedAddress* elm_resolved_addr = new TempResolvedAddress(as_ValueType(field_type), elm_op);
1838     LIRItem elm_item(elm_resolved_addr, this);
1839 
1840     DecoratorSet decorators = IN_HEAP;
1841     if (is_load) {
1842       access_load_at(decorators, field_type,
1843                      elm_item, LIR_OprFact::intConst(elm_offset), temp,
1844                      nullptr, nullptr);
1845       access_store_at(decorators, field_type,
1846                       obj_item, LIR_OprFact::intConst(obj_offset), temp,
1847                       nullptr, nullptr);
1848     } else {
1849       access_load_at(decorators, field_type,
1850                      obj_item, LIR_OprFact::intConst(obj_offset), temp,
1851                      nullptr, nullptr);
1852       access_store_at(decorators, field_type,
1853                       elm_item, LIR_OprFact::intConst(elm_offset), temp,
1854                       nullptr, nullptr);
1855     }
1856   }
1857 }
1858 
1859 void LIRGenerator::check_flat_array(LIR_Opr array, LIR_Opr value, CodeStub* slow_path) {
1860   LIR_Opr tmp = new_register(T_METADATA);
1861   __ check_flat_array(array, value, tmp, slow_path);
1862 }
1863 
1864 void LIRGenerator::check_null_free_array(LIRItem& array, LIRItem& value, CodeEmitInfo* info) {
1865   LabelObj* L_end = new LabelObj();
1866   LIR_Opr tmp = new_register(T_METADATA);
1867   __ check_null_free_array(array.result(), tmp);
1868   __ branch(lir_cond_equal, L_end->label());
1869   __ null_check(value.result(), info);
1870   __ branch_destination(L_end->label());
1871 }
1872 
1873 bool LIRGenerator::needs_flat_array_store_check(StoreIndexed* x) {
1874   if (x->elt_type() == T_OBJECT && x->array()->maybe_flat_array()) {
1875     ciType* type = x->value()->declared_type();
1876     if (type != nullptr && type->is_klass()) {
1877       ciKlass* klass = type->as_klass();
1878       if (!klass->can_be_inline_klass() || (klass->is_inlinetype() && !klass->as_inline_klass()->flat_in_array())) {
1879         // This is known to be a non-flat object. If the array is a flat array,
1880         // it will be caught by the code generated by array_store_check().
1881         return false;
1882       }
1883     }
1884     // We're not 100% sure, so let's do the flat_array_store_check.
1885     return true;
1886   }
1887   return false;
1888 }
1889 
1890 bool LIRGenerator::needs_null_free_array_store_check(StoreIndexed* x) {
1891   return x->elt_type() == T_OBJECT && x->array()->maybe_null_free_array();
1892 }
1893 
1894 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
1895   assert(x->is_pinned(),"");
1896   assert(x->elt_type() != T_ARRAY, "never used");
1897   bool is_loaded_flat_array = x->array()->is_loaded_flat_array();
1898   bool needs_range_check = x->compute_needs_range_check();
1899   bool use_length = x->length() != nullptr;
1900   bool obj_store = is_reference_type(x->elt_type());
1901   bool needs_store_check = obj_store && !(is_loaded_flat_array && x->is_exact_flat_array_store()) &&
1902                                         (x->value()->as_Constant() == nullptr ||
1903                                          !get_jobject_constant(x->value())->is_null_object());
1904 
1905   LIRItem array(x->array(), this);
1906   LIRItem index(x->index(), this);
1907   LIRItem value(x->value(), this);
1908   LIRItem length(this);
1909 
1910   array.load_item();
1911   index.load_nonconstant();
1912 
1913   if (use_length && needs_range_check) {
1914     length.set_instruction(x->length());
1915     length.load_item();

1916   }
1917 
1918   if (needs_store_check || x->check_boolean()
1919       || is_loaded_flat_array || needs_flat_array_store_check(x) || needs_null_free_array_store_check(x)) {
1920     value.load_item();
1921   } else {
1922     value.load_for_store(x->elt_type());
1923   }
1924 
1925   set_no_result(x);
1926 
1927   // the CodeEmitInfo must be duplicated for each different
1928   // LIR-instruction because spilling can occur anywhere between two
1929   // instructions and so the debug information must be different
1930   CodeEmitInfo* range_check_info = state_for(x);
1931   CodeEmitInfo* null_check_info = nullptr;
1932   if (x->needs_null_check()) {
1933     null_check_info = new CodeEmitInfo(range_check_info);
1934   }
1935 
1936   if (needs_range_check) {
1937     if (use_length) {
1938       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1939       __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1940     } else {
1941       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1942       // range_check also does the null check
1943       null_check_info = nullptr;
1944     }
1945   }
1946 
1947   if (x->should_profile()) {
1948     if (x->array()->is_loaded_flat_array()) {
1949       // No need to profile a store to a flat array of known type. This can happen if
1950       // the type only became known after optimizations (for example, after the PhiSimplifier).
1951       x->set_should_profile(false);
1952     } else {
1953       int bci = x->profiled_bci();
1954       ciMethodData* md = x->profiled_method()->method_data();
1955       assert(md != nullptr, "Sanity");
1956       ciProfileData* data = md->bci_to_data(bci);
1957       assert(data != nullptr && data->is_ArrayStoreData(), "incorrect profiling entry");
1958       ciArrayStoreData* store_data = (ciArrayStoreData*)data;
1959       profile_array_type(x, md, store_data);
1960       assert(store_data->is_ArrayStoreData(), "incorrect profiling entry");
1961       if (x->array()->maybe_null_free_array()) {
1962         profile_null_free_array(array, md, store_data);
1963       }
1964     }
1965   }
1966 
1967   if (GenerateArrayStoreCheck && needs_store_check) {
1968     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
1969     array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci());
1970   }
1971 
1972   if (is_loaded_flat_array) {
1973     if (!x->value()->is_null_free()) {
1974       __ null_check(value.result(), new CodeEmitInfo(range_check_info));
1975     }
1976     // If array element is an empty inline type, no need to copy anything
1977     if (!x->array()->declared_type()->as_flat_array_klass()->element_klass()->as_inline_klass()->is_empty()) {
1978       access_flat_array(false, array, index, value);
1979     }
1980   } else {
1981     StoreFlattenedArrayStub* slow_path = nullptr;
1982 
1983     if (needs_flat_array_store_check(x)) {
1984       // Check if we indeed have a flat array
1985       index.load_item();
1986       slow_path = new StoreFlattenedArrayStub(array.result(), index.result(), value.result(), state_for(x, x->state_before()));
1987       check_flat_array(array.result(), value.result(), slow_path);
1988       set_in_conditional_code(true);
1989     } else if (needs_null_free_array_store_check(x)) {
1990       CodeEmitInfo* info = new CodeEmitInfo(range_check_info);
1991       check_null_free_array(array, value, info);
1992     }
1993 
1994     DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1995     if (x->check_boolean()) {
1996       decorators |= C1_MASK_BOOLEAN;
1997     }
1998 
1999     access_store_at(decorators, x->elt_type(), array, index.result(), value.result(),
2000                     nullptr, null_check_info);
2001     if (slow_path != nullptr) {
2002       __ branch_destination(slow_path->continuation());
2003       set_in_conditional_code(false);
2004     }
2005   }
2006 }
2007 
2008 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type,
2009                                   LIRItem& base, LIR_Opr offset, LIR_Opr result,
2010                                   CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) {
2011   decorators |= ACCESS_READ;
2012   LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info);
2013   if (access.is_raw()) {
2014     _barrier_set->BarrierSetC1::load_at(access, result);
2015   } else {
2016     _barrier_set->load_at(access, result);
2017   }
2018 }
2019 
2020 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type,
2021                                LIR_Opr addr, LIR_Opr result) {
2022   decorators |= ACCESS_READ;
2023   LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type);
2024   access.set_resolved_addr(addr);
2025   if (access.is_raw()) {

2123       __ move(LIR_OprFact::oopConst(nullptr), obj);
2124     }
2125     // Emit an explicit null check because the offset is too large.
2126     // If the class is not loaded and the object is null, we need to deoptimize to throw a
2127     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
2128     __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
2129   }
2130 
2131   DecoratorSet decorators = IN_HEAP;
2132   if (is_volatile) {
2133     decorators |= MO_SEQ_CST;
2134   }
2135   if (needs_patching) {
2136     decorators |= C1_NEEDS_PATCHING;
2137   }
2138 
2139   LIR_Opr result = rlock_result(x, field_type);
2140   access_load_at(decorators, field_type,
2141                  object, LIR_OprFact::intConst(x->offset()), result,
2142                  info ? new CodeEmitInfo(info) : nullptr, info);
2143 
2144   ciField* field = x->field();
2145   if (field->is_null_free()) {
2146     // Load from non-flat inline type field requires
2147     // a null check to replace null with the default value.
2148     ciInstanceKlass* holder = field->holder();
2149     if (field->is_static() && holder->is_loaded()) {
2150       ciObject* val = holder->java_mirror()->field_value(field).as_object();
2151       if (!val->is_null_object()) {
2152         // Static field is initialized, we don't need to perform a null check.
2153         return;
2154       }
2155     }
2156     ciInlineKlass* inline_klass = field->type()->as_inline_klass();
2157     if (inline_klass->is_initialized()) {
2158       LabelObj* L_end = new LabelObj();
2159       __ cmp(lir_cond_notEqual, result, LIR_OprFact::oopConst(nullptr));
2160       __ branch(lir_cond_notEqual, L_end->label());
2161       set_in_conditional_code(true);
2162       Constant* default_value = new Constant(new InstanceConstant(inline_klass->default_instance()));
2163       if (default_value->is_pinned()) {
2164         __ move(LIR_OprFact::value_type(default_value->type()), result);
2165       } else {
2166         __ move(load_constant(default_value), result);
2167       }
2168       __ branch_destination(L_end->label());
2169       set_in_conditional_code(false);
2170     } else {
2171       info = state_for(x, x->state_before());
2172       __ cmp(lir_cond_equal, result, LIR_OprFact::oopConst(nullptr));
2173       __ branch(lir_cond_equal, new DeoptimizeStub(info, Deoptimization::Reason_uninitialized,
2174                                                          Deoptimization::Action_make_not_entrant));
2175     }
2176   }
2177 }
2178 
2179 // int/long jdk.internal.util.Preconditions.checkIndex
2180 void LIRGenerator::do_PreconditionsCheckIndex(Intrinsic* x, BasicType type) {
2181   assert(x->number_of_arguments() == 3, "wrong type");
2182   LIRItem index(x->argument_at(0), this);
2183   LIRItem length(x->argument_at(1), this);
2184   LIRItem oobef(x->argument_at(2), this);
2185 
2186   index.load_item();
2187   length.load_item();
2188   oobef.load_item();
2189 
2190   LIR_Opr result = rlock_result(x);
2191   // x->state() is created from copy_state_for_exception, it does not contains arguments
2192   // we should prepare them before entering into interpreter mode due to deoptimization.
2193   ValueStack* state = x->state();
2194   for (int i = 0; i < x->number_of_arguments(); i++) {
2195     Value arg = x->argument_at(i);
2196     state->push(arg->type(), arg);

2301       __ move(LIR_OprFact::oopConst(nullptr), obj);
2302       __ null_check(obj, new CodeEmitInfo(null_check_info));
2303     }
2304   }
2305 
2306   if (needs_range_check) {
2307     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
2308       __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result()));
2309     } else if (use_length) {
2310       // TODO: use a (modified) version of array_range_check that does not require a
2311       //       constant length to be loaded to a register
2312       __ cmp(lir_cond_belowEqual, length.result(), index.result());
2313       __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
2314     } else {
2315       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
2316       // The range check performs the null check, so clear it out for the load
2317       null_check_info = nullptr;
2318     }
2319   }
2320 
2321   ciMethodData* md = nullptr;
2322   ciArrayLoadData* load_data = nullptr;
2323   if (x->should_profile()) {
2324     if (x->array()->is_loaded_flat_array()) {
2325       // No need to profile a load from a flat array of known type. This can happen if
2326       // the type only became known after optimizations (for example, after the PhiSimplifier).
2327       x->set_should_profile(false);
2328     } else {
2329       int bci = x->profiled_bci();
2330       md = x->profiled_method()->method_data();
2331       assert(md != nullptr, "Sanity");
2332       ciProfileData* data = md->bci_to_data(bci);
2333       assert(data != nullptr && data->is_ArrayLoadData(), "incorrect profiling entry");
2334       load_data = (ciArrayLoadData*)data;
2335       profile_array_type(x, md, load_data);
2336     }
2337   }
2338 
2339   Value element;
2340   if (x->vt() != nullptr) {
2341     assert(x->array()->is_loaded_flat_array(), "must be");
2342     // Find the destination address (of the NewInlineTypeInstance).
2343     LIRItem obj_item(x->vt(), this);
2344 
2345     access_flat_array(true, array, index, obj_item,
2346                       x->delayed() == nullptr ? 0 : x->delayed()->field(),
2347                       x->delayed() == nullptr ? 0 : x->delayed()->offset());
2348     set_no_result(x);
2349   } else if (x->delayed() != nullptr) {
2350     assert(x->array()->is_loaded_flat_array(), "must be");
2351     LIR_Opr result = rlock_result(x, x->delayed()->field()->type()->basic_type());
2352     access_sub_element(array, index, result, x->delayed()->field(), x->delayed()->offset());
2353   } else if (x->array() != nullptr && x->array()->is_loaded_flat_array() &&
2354              x->array()->declared_type()->as_flat_array_klass()->element_klass()->as_inline_klass()->is_initialized() &&
2355              x->array()->declared_type()->as_flat_array_klass()->element_klass()->as_inline_klass()->is_empty()) {
2356     // Load the default instance instead of reading the element
2357     ciInlineKlass* elem_klass = x->array()->declared_type()->as_flat_array_klass()->element_klass()->as_inline_klass();
2358     LIR_Opr result = rlock_result(x, x->elt_type());
2359     assert(elem_klass->is_initialized(), "Must be");
2360     Constant* default_value = new Constant(new InstanceConstant(elem_klass->default_instance()));
2361     if (default_value->is_pinned()) {
2362       __ move(LIR_OprFact::value_type(default_value->type()), result);
2363     } else {
2364       __ move(load_constant(default_value), result);
2365     }
2366   } else {
2367     LIR_Opr result = rlock_result(x, x->elt_type());
2368     LoadFlattenedArrayStub* slow_path = nullptr;
2369 
2370     if (x->should_profile() && x->array()->maybe_null_free_array()) {
2371       profile_null_free_array(array, md, load_data);
2372     }
2373 
2374     if (x->elt_type() == T_OBJECT && x->array()->maybe_flat_array()) {
2375       assert(x->delayed() == nullptr, "Delayed LoadIndexed only apply to loaded_flat_arrays");
2376       index.load_item();
2377       // if we are loading from a flat array, load it using a runtime call
2378       slow_path = new LoadFlattenedArrayStub(array.result(), index.result(), result, state_for(x, x->state_before()));
2379       check_flat_array(array.result(), LIR_OprFact::illegalOpr, slow_path);
2380       set_in_conditional_code(true);
2381     }
2382 
2383     DecoratorSet decorators = IN_HEAP | IS_ARRAY;
2384     access_load_at(decorators, x->elt_type(),
2385                    array, index.result(), result,
2386                    nullptr, null_check_info);
2387 
2388     if (slow_path != nullptr) {
2389       __ branch_destination(slow_path->continuation());
2390       set_in_conditional_code(false);
2391     }
2392 
2393     element = x;
2394   }
2395 
2396   if (x->should_profile()) {
2397     profile_element_type(element, md, load_data);
2398   }

2399 }
2400 
2401 
2402 void LIRGenerator::do_NullCheck(NullCheck* x) {
2403   if (x->can_trap()) {
2404     LIRItem value(x->obj(), this);
2405     value.load_item();
2406     CodeEmitInfo* info = state_for(x);
2407     __ null_check(value.result(), info);
2408   }
2409 }
2410 
2411 
2412 void LIRGenerator::do_TypeCast(TypeCast* x) {
2413   LIRItem value(x->obj(), this);
2414   value.load_item();
2415   // the result is the same as from the node we are casting
2416   set_result(x, value.result());
2417 }
2418 

2880   Compilation* comp = Compilation::current();
2881   if (do_update) {
2882     // try to find exact type, using CHA if possible, so that loading
2883     // the klass from the object can be avoided
2884     ciType* type = obj->exact_type();
2885     if (type == nullptr) {
2886       type = obj->declared_type();
2887       type = comp->cha_exact_type(type);
2888     }
2889     assert(type == nullptr || type->is_klass(), "type should be class");
2890     exact_klass = (type != nullptr && type->is_loaded()) ? (ciKlass*)type : nullptr;
2891 
2892     do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2893   }
2894 
2895   if (!do_null && !do_update) {
2896     return result;
2897   }
2898 
2899   ciKlass* exact_signature_k = nullptr;
2900   if (do_update && signature_at_call_k != nullptr) {
2901     // Is the type from the signature exact (the only one possible)?
2902     exact_signature_k = signature_at_call_k->exact_klass();
2903     if (exact_signature_k == nullptr) {
2904       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2905     } else {
2906       result = exact_signature_k;
2907       // Known statically. No need to emit any code: prevent
2908       // LIR_Assembler::emit_profile_type() from emitting useless code
2909       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2910     }
2911     // exact_klass and exact_signature_k can be both non null but
2912     // different if exact_klass is loaded after the ciObject for
2913     // exact_signature_k is created.
2914     if (exact_klass == nullptr && exact_signature_k != nullptr && exact_klass != exact_signature_k) {
2915       // sometimes the type of the signature is better than the best type
2916       // the compiler has
2917       exact_klass = exact_signature_k;
2918     }
2919     if (callee_signature_k != nullptr &&
2920         callee_signature_k != signature_at_call_k) {

2965         assert(!src->is_illegal(), "check");
2966         BasicType t = src->type();
2967         if (is_reference_type(t)) {
2968           intptr_t profiled_k = parameters->type(j);
2969           Local* local = x->state()->local_at(java_index)->as_Local();
2970           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2971                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2972                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), nullptr);
2973           // If the profile is known statically set it once for all and do not emit any code
2974           if (exact != nullptr) {
2975             md->set_parameter_type(j, exact);
2976           }
2977           j++;
2978         }
2979         java_index += type2size[t];
2980       }
2981     }
2982   }
2983 }
2984 
2985 void LIRGenerator::profile_flags(ciMethodData* md, ciProfileData* data, int flag, LIR_Condition condition) {
2986   assert(md != nullptr && data != nullptr, "should have been initialized");
2987   LIR_Opr mdp = new_register(T_METADATA);
2988   __ metadata2reg(md->constant_encoding(), mdp);
2989   LIR_Address* addr = new LIR_Address(mdp, md->byte_offset_of_slot(data, DataLayout::flags_offset()), T_BYTE);
2990   LIR_Opr flags = new_register(T_INT);
2991   __ move(addr, flags);
2992   if (condition != lir_cond_always) {
2993     LIR_Opr update = new_register(T_INT);
2994     __ cmove(condition, LIR_OprFact::intConst(0), LIR_OprFact::intConst(flag), update, T_INT);
2995   } else {
2996     __ logical_or(flags, LIR_OprFact::intConst(flag), flags);
2997   }
2998   __ store(flags, addr);
2999 }
3000 
3001 template <class ArrayData> void LIRGenerator::profile_null_free_array(LIRItem array, ciMethodData* md, ArrayData* load_store) {
3002   assert(compilation()->profile_array_accesses(), "array access profiling is disabled");
3003   LabelObj* L_end = new LabelObj();
3004   LIR_Opr tmp = new_register(T_METADATA);
3005   __ check_null_free_array(array.result(), tmp);
3006 
3007   profile_flags(md, load_store, ArrayStoreData::null_free_array_byte_constant(), lir_cond_equal);
3008 }
3009 
3010 template <class ArrayData> void LIRGenerator::profile_array_type(AccessIndexed* x, ciMethodData*& md, ArrayData*& load_store) {
3011   assert(compilation()->profile_array_accesses(), "array access profiling is disabled");
3012   LIR_Opr mdp = LIR_OprFact::illegalOpr;
3013   profile_type(md, md->byte_offset_of_slot(load_store, ArrayData::array_offset()), 0,
3014                load_store->array()->type(), x->array(), mdp, true, nullptr, nullptr);
3015 }
3016 
3017 void LIRGenerator::profile_element_type(Value element, ciMethodData* md, ciArrayLoadData* load_data) {
3018   assert(compilation()->profile_array_accesses(), "array access profiling is disabled");
3019   assert(md != nullptr && load_data != nullptr, "should have been initialized");
3020   LIR_Opr mdp = LIR_OprFact::illegalOpr;
3021   profile_type(md, md->byte_offset_of_slot(load_data, ArrayLoadData::element_offset()), 0,
3022                load_data->element()->type(), element, mdp, false, nullptr, nullptr);
3023 }
3024 
3025 void LIRGenerator::do_Base(Base* x) {
3026   __ std_entry(LIR_OprFact::illegalOpr);
3027   // Emit moves from physical registers / stack slots to virtual registers
3028   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
3029   IRScope* irScope = compilation()->hir()->top_scope();
3030   int java_index = 0;
3031   for (int i = 0; i < args->length(); i++) {
3032     LIR_Opr src = args->at(i);
3033     assert(!src->is_illegal(), "check");
3034     BasicType t = src->type();
3035 
3036     // Types which are smaller than int are passed as int, so
3037     // correct the type which passed.
3038     switch (t) {
3039     case T_BYTE:
3040     case T_BOOLEAN:
3041     case T_SHORT:
3042     case T_CHAR:
3043       t = T_INT;
3044       break;

3085     }
3086     assert(obj->is_valid(), "must be valid");
3087 
3088     if (method()->is_synchronized() && GenerateSynchronizationCode) {
3089       LIR_Opr lock = syncLockOpr();
3090       __ load_stack_address_monitor(0, lock);
3091 
3092       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, x->check_flag(Instruction::DeoptimizeOnException));
3093       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
3094 
3095       // receiver is guaranteed non-null so don't need CodeEmitInfo
3096       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, nullptr);
3097     }
3098   }
3099   // increment invocation counters if needed
3100   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
3101     profile_parameters(x);
3102     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, false);
3103     increment_invocation_counter(info);
3104   }
3105   if (method()->has_scalarized_args()) {
3106     // Check if deoptimization was triggered (i.e. orig_pc was set) while buffering scalarized inline type arguments
3107     // in the entry point (see comments in frame::deoptimize). If so, deoptimize only now that we have the right state.
3108     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), nullptr, false);
3109     CodeStub* deopt_stub = new DeoptimizeStub(info, Deoptimization::Reason_none, Deoptimization::Action_none);
3110     __ append(new LIR_Op0(lir_check_orig_pc));
3111     __ branch(lir_cond_notEqual, deopt_stub);
3112   }
3113 
3114   // all blocks with a successor must end with an unconditional jump
3115   // to the successor even if they are consecutive
3116   __ jump(x->default_sux());
3117 }
3118 
3119 
3120 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
3121   // construct our frame and model the production of incoming pointer
3122   // to the OSR buffer.
3123   __ osr_entry(LIR_Assembler::osrBufferPointer());
3124   LIR_Opr result = rlock_result(x);
3125   __ move(LIR_Assembler::osrBufferPointer(), result);
3126 }
3127 
3128 void LIRGenerator::invoke_load_one_argument(LIRItem* param, LIR_Opr loc) {
3129   if (loc->is_register()) {
3130     param->load_item_force(loc);
3131   } else {
3132     LIR_Address* addr = loc->as_address_ptr();
3133     param->load_for_store(addr->type());
3134     if (addr->type() == T_OBJECT) {
3135       __ move_wide(param->result(), addr);
3136     } else {
3137       __ move(param->result(), addr);
3138     }
3139   }
3140 }
3141 
3142 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
3143   assert(args->length() == arg_list->length(),
3144          "args=%d, arg_list=%d", args->length(), arg_list->length());
3145   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
3146     LIRItem* param = args->at(i);
3147     LIR_Opr loc = arg_list->at(i);
3148     invoke_load_one_argument(param, loc);









3149   }
3150 
3151   if (x->has_receiver()) {
3152     LIRItem* receiver = args->at(0);
3153     LIR_Opr loc = arg_list->at(0);
3154     if (loc->is_register()) {
3155       receiver->load_item_force(loc);
3156     } else {
3157       assert(loc->is_address(), "just checking");
3158       receiver->load_for_store(T_OBJECT);
3159       __ move_wide(receiver->result(), loc->as_address_ptr());
3160     }
3161   }
3162 }
3163 
3164 
3165 // Visits all arguments, returns appropriate items without loading them
3166 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
3167   LIRItemList* argument_items = new LIRItemList();
3168   if (x->has_receiver()) {

3294   __ move(tmp, reg);
3295 }
3296 
3297 
3298 
3299 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
3300 void LIRGenerator::do_IfOp(IfOp* x) {
3301 #ifdef ASSERT
3302   {
3303     ValueTag xtag = x->x()->type()->tag();
3304     ValueTag ttag = x->tval()->type()->tag();
3305     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
3306     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
3307     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
3308   }
3309 #endif
3310 
3311   LIRItem left(x->x(), this);
3312   LIRItem right(x->y(), this);
3313   left.load_item();
3314   if (can_inline_as_constant(right.value()) && !x->substitutability_check()) {
3315     right.dont_load_item();
3316   } else {
3317     // substitutability_check() needs to use right as a base register.
3318     right.load_item();
3319   }
3320 
3321   LIRItem t_val(x->tval(), this);
3322   LIRItem f_val(x->fval(), this);
3323   t_val.dont_load_item();
3324   f_val.dont_load_item();

3325 
3326   if (x->substitutability_check()) {
3327     substitutability_check(x, left, right, t_val, f_val);
3328   } else {
3329     LIR_Opr reg = rlock_result(x);
3330     __ cmp(lir_cond(x->cond()), left.result(), right.result());
3331     __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
3332   }
3333 }
3334 
3335 void LIRGenerator::substitutability_check(IfOp* x, LIRItem& left, LIRItem& right, LIRItem& t_val, LIRItem& f_val) {
3336   assert(x->cond() == If::eql || x->cond() == If::neq, "must be");
3337   bool is_acmpeq = (x->cond() == If::eql);
3338   LIR_Opr equal_result     = is_acmpeq ? t_val.result() : f_val.result();
3339   LIR_Opr not_equal_result = is_acmpeq ? f_val.result() : t_val.result();
3340   LIR_Opr result = rlock_result(x);
3341   CodeEmitInfo* info = state_for(x, x->state_before());
3342 
3343   substitutability_check_common(x->x(), x->y(), left, right, equal_result, not_equal_result, result, info);
3344 }
3345 
3346 void LIRGenerator::substitutability_check(If* x, LIRItem& left, LIRItem& right) {
3347   LIR_Opr equal_result     = LIR_OprFact::intConst(1);
3348   LIR_Opr not_equal_result = LIR_OprFact::intConst(0);
3349   LIR_Opr result = new_register(T_INT);
3350   CodeEmitInfo* info = state_for(x, x->state_before());
3351 
3352   substitutability_check_common(x->x(), x->y(), left, right, equal_result, not_equal_result, result, info);
3353 
3354   assert(x->cond() == If::eql || x->cond() == If::neq, "must be");
3355   __ cmp(lir_cond(x->cond()), result, equal_result);
3356 }
3357 
3358 void LIRGenerator::substitutability_check_common(Value left_val, Value right_val, LIRItem& left, LIRItem& right,
3359                                                  LIR_Opr equal_result, LIR_Opr not_equal_result, LIR_Opr result,
3360                                                  CodeEmitInfo* info) {
3361   LIR_Opr tmp1 = LIR_OprFact::illegalOpr;
3362   LIR_Opr tmp2 = LIR_OprFact::illegalOpr;
3363   LIR_Opr left_klass_op = LIR_OprFact::illegalOpr;
3364   LIR_Opr right_klass_op = LIR_OprFact::illegalOpr;
3365 
3366   ciKlass* left_klass  = left_val ->as_loaded_klass_or_null();
3367   ciKlass* right_klass = right_val->as_loaded_klass_or_null();
3368 
3369   if ((left_klass == nullptr || right_klass == nullptr) ||// The klass is still unloaded, or came from a Phi node.
3370       !left_klass->is_inlinetype() || !right_klass->is_inlinetype()) {
3371     init_temps_for_substitutability_check(tmp1, tmp2);
3372   }
3373 
3374   if (left_klass != nullptr && left_klass->is_inlinetype() && left_klass == right_klass) {
3375     // No need to load klass -- the operands are statically known to be the same inline klass.
3376   } else {
3377     BasicType t_klass = UseCompressedOops ? T_INT : T_METADATA;
3378     left_klass_op = new_register(t_klass);
3379     right_klass_op = new_register(t_klass);
3380   }
3381 
3382   CodeStub* slow_path = new SubstitutabilityCheckStub(left.result(), right.result(), info);
3383   __ substitutability_check(result, left.result(), right.result(), equal_result, not_equal_result,
3384                             tmp1, tmp2,
3385                             left_klass, right_klass, left_klass_op, right_klass_op, info, slow_path);
3386 }
3387 
3388 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
3389   assert(x->number_of_arguments() == 0, "wrong type");
3390   // Enforce computation of _reserved_argument_area_size which is required on some platforms.
3391   BasicTypeList signature;
3392   CallingConvention* cc = frame_map()->c_calling_convention(&signature);
3393   LIR_Opr reg = result_register_for(x->type());
3394   __ call_runtime_leaf(routine, getThreadTemp(),
3395                        reg, new LIR_OprList());
3396   LIR_Opr result = rlock_result(x);
3397   __ move(reg, result);
3398 }
3399 
3400 
3401 
3402 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
3403   switch (x->id()) {
3404   case vmIntrinsics::_intBitsToFloat      :
3405   case vmIntrinsics::_doubleToRawLongBits :

3639   if (x->recv() != nullptr || x->nb_profiled_args() > 0) {
3640     profile_parameters_at_call(x);
3641   }
3642 
3643   if (x->recv() != nullptr) {
3644     LIRItem value(x->recv(), this);
3645     value.load_item();
3646     recv = new_register(T_OBJECT);
3647     __ move(value.result(), recv);
3648   }
3649   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3650 }
3651 
3652 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3653   int bci = x->bci_of_invoke();
3654   ciMethodData* md = x->method()->method_data_or_null();
3655   assert(md != nullptr, "Sanity");
3656   ciProfileData* data = md->bci_to_data(bci);
3657   if (data != nullptr) {
3658     assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3659     ciSingleTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3660     LIR_Opr mdp = LIR_OprFact::illegalOpr;
3661 
3662     bool ignored_will_link;
3663     ciSignature* signature_at_call = nullptr;
3664     x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3665 
3666     // The offset within the MDO of the entry to update may be too large
3667     // to be used in load/store instructions on some platforms. So have
3668     // profile_type() compute the address of the profile in a register.
3669     ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3670         ret->type(), x->ret(), mdp,
3671         !x->needs_null_check(),
3672         signature_at_call->return_type()->as_klass(),
3673         x->callee()->signature()->return_type()->as_klass());
3674     if (exact != nullptr) {
3675       md->set_return_type(bci, exact);
3676     }
3677   }
3678 }
3679 
3680 bool LIRGenerator::profile_inline_klass(ciMethodData* md, ciProfileData* data, Value value, int flag) {
3681   ciKlass* klass = value->as_loaded_klass_or_null();
3682   if (klass != nullptr) {
3683     if (klass->is_inlinetype()) {
3684       profile_flags(md, data, flag, lir_cond_always);
3685     } else if (klass->can_be_inline_klass()) {
3686       return false;
3687     }
3688   } else {
3689     return false;
3690   }
3691   return true;
3692 }
3693 
3694 
3695 void LIRGenerator::do_ProfileACmpTypes(ProfileACmpTypes* x) {
3696   ciMethod* method = x->method();
3697   assert(method != nullptr, "method should be set if branch is profiled");
3698   ciMethodData* md = method->method_data_or_null();
3699   assert(md != nullptr, "Sanity");
3700   ciProfileData* data = md->bci_to_data(x->bci());
3701   assert(data != nullptr, "must have profiling data");
3702   assert(data->is_ACmpData(), "need BranchData for two-way branches");
3703   ciACmpData* acmp = (ciACmpData*)data;
3704   LIR_Opr mdp = LIR_OprFact::illegalOpr;
3705   profile_type(md, md->byte_offset_of_slot(acmp, ACmpData::left_offset()), 0,
3706                acmp->left()->type(), x->left(), mdp, !x->left_maybe_null(), nullptr, nullptr);
3707   int flags_offset = md->byte_offset_of_slot(data, DataLayout::flags_offset());
3708   if (!profile_inline_klass(md, acmp, x->left(), ACmpData::left_inline_type_byte_constant())) {
3709     LIR_Opr mdp = new_register(T_METADATA);
3710     __ metadata2reg(md->constant_encoding(), mdp);
3711     LIRItem value(x->left(), this);
3712     value.load_item();
3713     __ profile_inline_type(new LIR_Address(mdp, flags_offset, T_INT), value.result(), ACmpData::left_inline_type_byte_constant(), new_register(T_INT), !x->left_maybe_null());
3714   }
3715   profile_type(md, md->byte_offset_of_slot(acmp, ACmpData::left_offset()),
3716                in_bytes(ACmpData::right_offset()) - in_bytes(ACmpData::left_offset()),
3717                acmp->right()->type(), x->right(), mdp, !x->right_maybe_null(), nullptr, nullptr);
3718   if (!profile_inline_klass(md, acmp, x->right(), ACmpData::right_inline_type_byte_constant())) {
3719     LIR_Opr mdp = new_register(T_METADATA);
3720     __ metadata2reg(md->constant_encoding(), mdp);
3721     LIRItem value(x->right(), this);
3722     value.load_item();
3723     __ profile_inline_type(new LIR_Address(mdp, flags_offset, T_INT), value.result(), ACmpData::right_inline_type_byte_constant(), new_register(T_INT), !x->left_maybe_null());
3724   }
3725 }
3726 
3727 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3728   // We can safely ignore accessors here, since c2 will inline them anyway,
3729   // accessors are also always mature.
3730   if (!x->inlinee()->is_accessor()) {
3731     CodeEmitInfo* info = state_for(x, x->state(), true);
3732     // Notify the runtime very infrequently only to take care of counter overflows
3733     int freq_log = Tier23InlineeNotifyFreqLog;
3734     double scale;
3735     if (_method->has_option_value(CompileCommand::CompileThresholdScaling, scale)) {
3736       freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3737     }
3738     increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true);
3739   }
3740 }
3741 
3742 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) {
3743   if (compilation()->is_profiling()) {
3744 #if defined(X86) && !defined(_LP64)
3745     // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
3746     LIR_Opr left_copy = new_register(left->type());
< prev index next >