< prev index next >

src/hotspot/share/c1/c1_LIRGenerator.cpp

Print this page

  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_Defs.hpp"
  28 #include "c1/c1_FrameMap.hpp"
  29 #include "c1/c1_Instruction.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"


  34 #include "ci/ciInstance.hpp"
  35 #include "ci/ciObjArray.hpp"
  36 #include "ci/ciUtilities.hpp"
  37 #include "compiler/compilerDefinitions.inline.hpp"
  38 #include "compiler/compilerOracle.hpp"
  39 #include "gc/shared/barrierSet.hpp"
  40 #include "gc/shared/c1/barrierSetC1.hpp"
  41 #include "oops/klass.inline.hpp"
  42 #include "oops/methodCounters.hpp"
  43 #include "runtime/sharedRuntime.hpp"
  44 #include "runtime/stubRoutines.hpp"
  45 #include "runtime/vm_version.hpp"
  46 #include "utilities/bitMap.inline.hpp"
  47 #include "utilities/macros.hpp"
  48 #include "utilities/powerOfTwo.hpp"
  49 
  50 #ifdef ASSERT
  51 #define __ gen()->lir(__FILE__, __LINE__)->
  52 #else
  53 #define __ gen()->lir()->

 199 }
 200 
 201 
 202 //--------------------------------------------------------------
 203 // LIRItem
 204 
 205 void LIRItem::set_result(LIR_Opr opr) {
 206   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 207   value()->set_operand(opr);
 208 
 209 #ifdef ASSERT
 210   if (opr->is_virtual()) {
 211     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), nullptr);
 212   }
 213 #endif
 214 
 215   _result = opr;
 216 }
 217 
 218 void LIRItem::load_item() {


 219   if (result()->is_illegal()) {
 220     // update the items result
 221     _result = value()->operand();
 222   }
 223   if (!result()->is_register()) {
 224     LIR_Opr reg = _gen->new_register(value()->type());
 225     __ move(result(), reg);
 226     if (result()->is_constant()) {
 227       _result = reg;
 228     } else {
 229       set_result(reg);
 230     }
 231   }
 232 }
 233 
 234 
 235 void LIRItem::load_for_store(BasicType type) {
 236   if (_gen->can_store_as_constant(value(), type)) {
 237     _result = value()->operand();
 238     if (!_result->is_constant()) {

 606     assert(right_op != result_op, "malformed");
 607     __ move(left_op, result_op);
 608     left_op = result_op;
 609   }
 610 
 611   switch(code) {
 612     case Bytecodes::_iand:
 613     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 614 
 615     case Bytecodes::_ior:
 616     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 617 
 618     case Bytecodes::_ixor:
 619     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 620 
 621     default: ShouldNotReachHere();
 622   }
 623 }
 624 
 625 
 626 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {

 627   if (!GenerateSynchronizationCode) return;
 628   // for slow path, use debug info for state after successful locking
 629   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
 630   __ load_stack_address_monitor(monitor_no, lock);
 631   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 632   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
 633 }
 634 
 635 
 636 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 637   if (!GenerateSynchronizationCode) return;
 638   // setup registers
 639   LIR_Opr hdr = lock;
 640   lock = new_hdr;
 641   CodeStub* slow_path = new MonitorExitStub(lock, LockingMode != LM_MONITOR, monitor_no);
 642   __ load_stack_address_monitor(monitor_no, lock);
 643   __ unlock_object(hdr, object, lock, scratch, slow_path);
 644 }
 645 
 646 #ifndef PRODUCT
 647 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 648   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 649     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 650   } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) {
 651     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 652   }
 653 }
 654 #endif
 655 
 656 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 657   klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 658   // If klass is not loaded we do not know if the klass has finalizers:
 659   if (UseFastNewInstance && klass->is_loaded()





 660       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 661 
 662     C1StubId stub_id = klass->is_initialized() ? C1StubId::fast_new_instance_id : C1StubId::fast_new_instance_init_check_id;
 663 
 664     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 665 
 666     assert(klass->is_loaded(), "must be loaded");
 667     // allocate space for instance
 668     assert(klass->size_helper() > 0, "illegal instance size");
 669     const int instance_size = align_object_size(klass->size_helper());
 670     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 671                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 672   } else {
 673     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, C1StubId::new_instance_id);
 674     __ branch(lir_cond_always, slow_path);
 675     __ branch_destination(slow_path->continuation());
 676   }
 677 }
 678 
 679 
 680 static bool is_constant_zero(Instruction* inst) {
 681   IntConstant* c = inst->type()->as_IntConstant();
 682   if (c) {
 683     return (c->value() == 0);
 684   }
 685   return false;
 686 }
 687 
 688 
 689 static bool positive_constant(Instruction* inst) {
 690   IntConstant* c = inst->type()->as_IntConstant();
 691   if (c) {
 692     return (c->value() >= 0);
 693   }
 694   return false;

 754       if (src_type != nullptr) {
 755         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 756           is_exact = true;
 757           expected_type = dst_type;
 758         }
 759       }
 760     }
 761     // at least pass along a good guess
 762     if (expected_type == nullptr) expected_type = dst_exact_type;
 763     if (expected_type == nullptr) expected_type = src_declared_type;
 764     if (expected_type == nullptr) expected_type = dst_declared_type;
 765 
 766     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 767     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 768   }
 769 
 770   // if a probable array type has been identified, figure out if any
 771   // of the required checks for a fast case can be elided.
 772   int flags = LIR_OpArrayCopy::all_flags;
 773 










 774   if (!src_objarray)
 775     flags &= ~LIR_OpArrayCopy::src_objarray;
 776   if (!dst_objarray)
 777     flags &= ~LIR_OpArrayCopy::dst_objarray;
 778 
 779   if (!x->arg_needs_null_check(0))
 780     flags &= ~LIR_OpArrayCopy::src_null_check;
 781   if (!x->arg_needs_null_check(2))
 782     flags &= ~LIR_OpArrayCopy::dst_null_check;
 783 
 784 
 785   if (expected_type != nullptr) {
 786     Value length_limit = nullptr;
 787 
 788     IfOp* ifop = length->as_IfOp();
 789     if (ifop != nullptr) {
 790       // look for expressions like min(v, a.length) which ends up as
 791       //   x > y ? y : x  or  x >= y ? y : x
 792       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 793           ifop->x() == ifop->fval() &&

1307 // Example: Foo.class.getModifiers()
1308 void LIRGenerator::do_getModifiers(Intrinsic* x) {
1309   assert(x->number_of_arguments() == 1, "wrong type");
1310 
1311   LIRItem receiver(x->argument_at(0), this);
1312   receiver.load_item();
1313   LIR_Opr result = rlock_result(x);
1314 
1315   CodeEmitInfo* info = nullptr;
1316   if (x->needs_null_check()) {
1317     info = state_for(x);
1318   }
1319 
1320   // While reading off the universal constant mirror is less efficient than doing
1321   // another branch and returning the constant answer, this branchless code runs into
1322   // much less risk of confusion for C1 register allocator. The choice of the universe
1323   // object here is correct as long as it returns the same modifiers we would expect
1324   // from the primitive class itself. See spec for Class.getModifiers that provides
1325   // the typed array klasses with similar modifiers as their component types.
1326 









1327   Klass* univ_klass = Universe::byteArrayKlass();
1328   assert(univ_klass->modifier_flags() == (JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC), "Sanity");

1329   LIR_Opr prim_klass = LIR_OprFact::metadataConst(univ_klass);
1330 
1331   LIR_Opr recv_klass = new_register(T_METADATA);
1332   __ move(new LIR_Address(receiver.result(), java_lang_Class::klass_offset(), T_ADDRESS), recv_klass, info);
1333 
1334   // Check if this is a Java mirror of primitive type, and select the appropriate klass.
1335   LIR_Opr klass = new_register(T_METADATA);
1336   __ cmp(lir_cond_equal, recv_klass, LIR_OprFact::metadataConst(nullptr));
1337   __ cmove(lir_cond_equal, prim_klass, recv_klass, klass, T_ADDRESS);







1338 
1339   // Get the answer.
1340   __ move(new LIR_Address(klass, in_bytes(Klass::modifier_flags_offset()), T_INT), result);
1341 }
1342 
1343 void LIRGenerator::do_getObjectSize(Intrinsic* x) {
1344   assert(x->number_of_arguments() == 3, "wrong type");
1345   LIR_Opr result_reg = rlock_result(x);
1346 
1347   LIRItem value(x->argument_at(2), this);
1348   value.load_item();
1349 
1350   LIR_Opr klass = new_register(T_METADATA);
1351   load_klass(value.result(), klass, nullptr);
1352   LIR_Opr layout = new_register(T_INT);
1353   __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
1354 
1355   LabelObj* L_done = new LabelObj();
1356   LabelObj* L_array = new LabelObj();
1357 
1358   __ cmp(lir_cond_lessEqual, layout, 0);
1359   __ branch(lir_cond_lessEqual, L_array->label());
1360 

1553       case T_FLOAT:
1554         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1555         break;
1556       case T_LONG:
1557       case T_DOUBLE:
1558         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1559         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1560         break;
1561       case T_OBJECT:
1562         if (c->as_jobject() != other->as_jobject()) continue;
1563         break;
1564       default:
1565         break;
1566       }
1567       return _reg_for_constants.at(i);
1568     }
1569   }
1570 
1571   LIR_Opr result = new_register(t);
1572   __ move((LIR_Opr)c, result);
1573   _constants.append(c);
1574   _reg_for_constants.append(result);


1575   return result;
1576 }
1577 






1578 //------------------------field access--------------------------------------
1579 
1580 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
1581   assert(x->number_of_arguments() == 4, "wrong type");
1582   LIRItem obj   (x->argument_at(0), this);  // object
1583   LIRItem offset(x->argument_at(1), this);  // offset of field
1584   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
1585   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
1586   assert(obj.type()->tag() == objectTag, "invalid type");
1587   assert(cmp.type()->tag() == type->tag(), "invalid type");
1588   assert(val.type()->tag() == type->tag(), "invalid type");
1589 
1590   LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type),
1591                                             obj, offset, cmp, val);
1592   set_result(x, result);
1593 }
1594 
1595 // Comment copied form templateTable_i486.cpp
1596 // ----------------------------------------------------------------------------
1597 // Volatile variables demand their effects be made known to all CPU's in

1670       (needs_patching ||
1671        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1672     // Emit an explicit null check because the offset is too large.
1673     // If the class is not loaded and the object is null, we need to deoptimize to throw a
1674     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1675     __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1676   }
1677 
1678   DecoratorSet decorators = IN_HEAP;
1679   if (is_volatile) {
1680     decorators |= MO_SEQ_CST;
1681   }
1682   if (needs_patching) {
1683     decorators |= C1_NEEDS_PATCHING;
1684   }
1685 
1686   access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()),
1687                   value.result(), info != nullptr ? new CodeEmitInfo(info) : nullptr, info);
1688 }
1689 













































































































































































1690 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
1691   assert(x->is_pinned(),"");


1692   bool needs_range_check = x->compute_needs_range_check();
1693   bool use_length = x->length() != nullptr;
1694   bool obj_store = is_reference_type(x->elt_type());
1695   bool needs_store_check = obj_store && (x->value()->as_Constant() == nullptr ||
1696                                          !get_jobject_constant(x->value())->is_null_object() ||
1697                                          x->should_profile());
1698 
1699   LIRItem array(x->array(), this);
1700   LIRItem index(x->index(), this);
1701   LIRItem value(x->value(), this);
1702   LIRItem length(this);
1703 
1704   array.load_item();
1705   index.load_nonconstant();
1706 
1707   if (use_length && needs_range_check) {
1708     length.set_instruction(x->length());
1709     length.load_item();
1710 
1711   }
1712   if (needs_store_check || x->check_boolean()) {


1713     value.load_item();
1714   } else {
1715     value.load_for_store(x->elt_type());
1716   }
1717 
1718   set_no_result(x);
1719 
1720   // the CodeEmitInfo must be duplicated for each different
1721   // LIR-instruction because spilling can occur anywhere between two
1722   // instructions and so the debug information must be different
1723   CodeEmitInfo* range_check_info = state_for(x);
1724   CodeEmitInfo* null_check_info = nullptr;
1725   if (x->needs_null_check()) {
1726     null_check_info = new CodeEmitInfo(range_check_info);
1727   }
1728 
1729   if (needs_range_check) {
1730     if (use_length) {
1731       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1732       __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1733     } else {
1734       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1735       // range_check also does the null check
1736       null_check_info = nullptr;
1737     }
1738   }
1739 




















1740   if (GenerateArrayStoreCheck && needs_store_check) {
1741     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
1742     array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci());
1743   }
1744 
1745   DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1746   if (x->check_boolean()) {
1747     decorators |= C1_MASK_BOOLEAN;
1748   }






















1749 
1750   access_store_at(decorators, x->elt_type(), array, index.result(), value.result(),
1751                   nullptr, null_check_info);





1752 }
1753 
1754 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type,
1755                                   LIRItem& base, LIR_Opr offset, LIR_Opr result,
1756                                   CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) {
1757   decorators |= ACCESS_READ;
1758   LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info);
1759   if (access.is_raw()) {
1760     _barrier_set->BarrierSetC1::load_at(access, result);
1761   } else {
1762     _barrier_set->load_at(access, result);
1763   }
1764 }
1765 
1766 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type,
1767                                LIR_Opr addr, LIR_Opr result) {
1768   decorators |= ACCESS_READ;
1769   LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type);
1770   access.set_resolved_addr(addr);
1771   if (access.is_raw()) {

1869       __ move(LIR_OprFact::oopConst(nullptr), obj);
1870     }
1871     // Emit an explicit null check because the offset is too large.
1872     // If the class is not loaded and the object is null, we need to deoptimize to throw a
1873     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1874     __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1875   }
1876 
1877   DecoratorSet decorators = IN_HEAP;
1878   if (is_volatile) {
1879     decorators |= MO_SEQ_CST;
1880   }
1881   if (needs_patching) {
1882     decorators |= C1_NEEDS_PATCHING;
1883   }
1884 
1885   LIR_Opr result = rlock_result(x, field_type);
1886   access_load_at(decorators, field_type,
1887                  object, LIR_OprFact::intConst(x->offset()), result,
1888                  info ? new CodeEmitInfo(info) : nullptr, info);


































1889 }
1890 
1891 // int/long jdk.internal.util.Preconditions.checkIndex
1892 void LIRGenerator::do_PreconditionsCheckIndex(Intrinsic* x, BasicType type) {
1893   assert(x->number_of_arguments() == 3, "wrong type");
1894   LIRItem index(x->argument_at(0), this);
1895   LIRItem length(x->argument_at(1), this);
1896   LIRItem oobef(x->argument_at(2), this);
1897 
1898   index.load_item();
1899   length.load_item();
1900   oobef.load_item();
1901 
1902   LIR_Opr result = rlock_result(x);
1903   // x->state() is created from copy_state_for_exception, it does not contains arguments
1904   // we should prepare them before entering into interpreter mode due to deoptimization.
1905   ValueStack* state = x->state();
1906   for (int i = 0; i < x->number_of_arguments(); i++) {
1907     Value arg = x->argument_at(i);
1908     state->push(arg->type(), arg);

2013       __ move(LIR_OprFact::oopConst(nullptr), obj);
2014       __ null_check(obj, new CodeEmitInfo(null_check_info));
2015     }
2016   }
2017 
2018   if (needs_range_check) {
2019     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
2020       __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result()));
2021     } else if (use_length) {
2022       // TODO: use a (modified) version of array_range_check that does not require a
2023       //       constant length to be loaded to a register
2024       __ cmp(lir_cond_belowEqual, length.result(), index.result());
2025       __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
2026     } else {
2027       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
2028       // The range check performs the null check, so clear it out for the load
2029       null_check_info = nullptr;
2030     }
2031   }
2032 
2033   DecoratorSet decorators = IN_HEAP | IS_ARRAY;

































































2034 
2035   LIR_Opr result = rlock_result(x, x->elt_type());
2036   access_load_at(decorators, x->elt_type(),
2037                  array, index.result(), result,
2038                  nullptr, null_check_info);







2039 }
2040 
2041 
2042 void LIRGenerator::do_NullCheck(NullCheck* x) {
2043   if (x->can_trap()) {
2044     LIRItem value(x->obj(), this);
2045     value.load_item();
2046     CodeEmitInfo* info = state_for(x);
2047     __ null_check(value.result(), info);
2048   }
2049 }
2050 
2051 
2052 void LIRGenerator::do_TypeCast(TypeCast* x) {
2053   LIRItem value(x->obj(), this);
2054   value.load_item();
2055   // the result is the same as from the node we are casting
2056   set_result(x, value.result());
2057 }
2058 

2520   Compilation* comp = Compilation::current();
2521   if (do_update) {
2522     // try to find exact type, using CHA if possible, so that loading
2523     // the klass from the object can be avoided
2524     ciType* type = obj->exact_type();
2525     if (type == nullptr) {
2526       type = obj->declared_type();
2527       type = comp->cha_exact_type(type);
2528     }
2529     assert(type == nullptr || type->is_klass(), "type should be class");
2530     exact_klass = (type != nullptr && type->is_loaded()) ? (ciKlass*)type : nullptr;
2531 
2532     do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2533   }
2534 
2535   if (!do_null && !do_update) {
2536     return result;
2537   }
2538 
2539   ciKlass* exact_signature_k = nullptr;
2540   if (do_update) {
2541     // Is the type from the signature exact (the only one possible)?
2542     exact_signature_k = signature_at_call_k->exact_klass();
2543     if (exact_signature_k == nullptr) {
2544       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2545     } else {
2546       result = exact_signature_k;
2547       // Known statically. No need to emit any code: prevent
2548       // LIR_Assembler::emit_profile_type() from emitting useless code
2549       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2550     }
2551     // exact_klass and exact_signature_k can be both non null but
2552     // different if exact_klass is loaded after the ciObject for
2553     // exact_signature_k is created.
2554     if (exact_klass == nullptr && exact_signature_k != nullptr && exact_klass != exact_signature_k) {
2555       // sometimes the type of the signature is better than the best type
2556       // the compiler has
2557       exact_klass = exact_signature_k;
2558     }
2559     if (callee_signature_k != nullptr &&
2560         callee_signature_k != signature_at_call_k) {

2605         assert(!src->is_illegal(), "check");
2606         BasicType t = src->type();
2607         if (is_reference_type(t)) {
2608           intptr_t profiled_k = parameters->type(j);
2609           Local* local = x->state()->local_at(java_index)->as_Local();
2610           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2611                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2612                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), nullptr);
2613           // If the profile is known statically set it once for all and do not emit any code
2614           if (exact != nullptr) {
2615             md->set_parameter_type(j, exact);
2616           }
2617           j++;
2618         }
2619         java_index += type2size[t];
2620       }
2621     }
2622   }
2623 }
2624 








































2625 void LIRGenerator::do_Base(Base* x) {
2626   __ std_entry(LIR_OprFact::illegalOpr);
2627   // Emit moves from physical registers / stack slots to virtual registers
2628   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2629   IRScope* irScope = compilation()->hir()->top_scope();
2630   int java_index = 0;
2631   for (int i = 0; i < args->length(); i++) {
2632     LIR_Opr src = args->at(i);
2633     assert(!src->is_illegal(), "check");
2634     BasicType t = src->type();
2635 
2636     // Types which are smaller than int are passed as int, so
2637     // correct the type which passed.
2638     switch (t) {
2639     case T_BYTE:
2640     case T_BOOLEAN:
2641     case T_SHORT:
2642     case T_CHAR:
2643       t = T_INT;
2644       break;

2687     }
2688     assert(obj->is_valid(), "must be valid");
2689 
2690     if (method()->is_synchronized() && GenerateSynchronizationCode) {
2691       LIR_Opr lock = syncLockOpr();
2692       __ load_stack_address_monitor(0, lock);
2693 
2694       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, x->check_flag(Instruction::DeoptimizeOnException));
2695       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2696 
2697       // receiver is guaranteed non-null so don't need CodeEmitInfo
2698       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, nullptr);
2699     }
2700   }
2701   // increment invocation counters if needed
2702   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2703     profile_parameters(x);
2704     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, false);
2705     increment_invocation_counter(info);
2706   }








2707 
2708   // all blocks with a successor must end with an unconditional jump
2709   // to the successor even if they are consecutive
2710   __ jump(x->default_sux());
2711 }
2712 
2713 
2714 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2715   // construct our frame and model the production of incoming pointer
2716   // to the OSR buffer.
2717   __ osr_entry(LIR_Assembler::osrBufferPointer());
2718   LIR_Opr result = rlock_result(x);
2719   __ move(LIR_Assembler::osrBufferPointer(), result);
2720 }
2721 













2722 
2723 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2724   assert(args->length() == arg_list->length(),
2725          "args=%d, arg_list=%d", args->length(), arg_list->length());
2726   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2727     LIRItem* param = args->at(i);
2728     LIR_Opr loc = arg_list->at(i);
2729     if (loc->is_register()) {
2730       param->load_item_force(loc);
2731     } else {
2732       LIR_Address* addr = loc->as_address_ptr();
2733       param->load_for_store(addr->type());
2734       if (addr->type() == T_OBJECT) {
2735         __ move_wide(param->result(), addr);
2736       } else
2737         __ move(param->result(), addr);
2738     }
2739   }
2740 
2741   if (x->has_receiver()) {
2742     LIRItem* receiver = args->at(0);
2743     LIR_Opr loc = arg_list->at(0);
2744     if (loc->is_register()) {
2745       receiver->load_item_force(loc);
2746     } else {
2747       assert(loc->is_address(), "just checking");
2748       receiver->load_for_store(T_OBJECT);
2749       __ move_wide(receiver->result(), loc->as_address_ptr());
2750     }
2751   }
2752 }
2753 
2754 
2755 // Visits all arguments, returns appropriate items without loading them
2756 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2757   LIRItemList* argument_items = new LIRItemList();
2758   if (x->has_receiver()) {

2884   __ move(tmp, reg);
2885 }
2886 
2887 
2888 
2889 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
2890 void LIRGenerator::do_IfOp(IfOp* x) {
2891 #ifdef ASSERT
2892   {
2893     ValueTag xtag = x->x()->type()->tag();
2894     ValueTag ttag = x->tval()->type()->tag();
2895     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
2896     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
2897     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
2898   }
2899 #endif
2900 
2901   LIRItem left(x->x(), this);
2902   LIRItem right(x->y(), this);
2903   left.load_item();
2904   if (can_inline_as_constant(right.value())) {
2905     right.dont_load_item();
2906   } else {

2907     right.load_item();
2908   }
2909 
2910   LIRItem t_val(x->tval(), this);
2911   LIRItem f_val(x->fval(), this);
2912   t_val.dont_load_item();
2913   f_val.dont_load_item();
2914   LIR_Opr reg = rlock_result(x);
2915 
2916   __ cmp(lir_cond(x->cond()), left.result(), right.result());
2917   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));


























































2918 }
2919 
2920 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
2921   assert(x->number_of_arguments() == 0, "wrong type");
2922   // Enforce computation of _reserved_argument_area_size which is required on some platforms.
2923   BasicTypeList signature;
2924   CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2925   LIR_Opr reg = result_register_for(x->type());
2926   __ call_runtime_leaf(routine, getThreadTemp(),
2927                        reg, new LIR_OprList());
2928   LIR_Opr result = rlock_result(x);
2929   __ move(reg, result);
2930 }
2931 
2932 
2933 
2934 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
2935   switch (x->id()) {
2936   case vmIntrinsics::_intBitsToFloat      :
2937   case vmIntrinsics::_doubleToRawLongBits :

3172   if (x->recv() != nullptr || x->nb_profiled_args() > 0) {
3173     profile_parameters_at_call(x);
3174   }
3175 
3176   if (x->recv() != nullptr) {
3177     LIRItem value(x->recv(), this);
3178     value.load_item();
3179     recv = new_register(T_OBJECT);
3180     __ move(value.result(), recv);
3181   }
3182   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3183 }
3184 
3185 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3186   int bci = x->bci_of_invoke();
3187   ciMethodData* md = x->method()->method_data_or_null();
3188   assert(md != nullptr, "Sanity");
3189   ciProfileData* data = md->bci_to_data(bci);
3190   if (data != nullptr) {
3191     assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3192     ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3193     LIR_Opr mdp = LIR_OprFact::illegalOpr;
3194 
3195     bool ignored_will_link;
3196     ciSignature* signature_at_call = nullptr;
3197     x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3198 
3199     // The offset within the MDO of the entry to update may be too large
3200     // to be used in load/store instructions on some platforms. So have
3201     // profile_type() compute the address of the profile in a register.
3202     ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3203         ret->type(), x->ret(), mdp,
3204         !x->needs_null_check(),
3205         signature_at_call->return_type()->as_klass(),
3206         x->callee()->signature()->return_type()->as_klass());
3207     if (exact != nullptr) {
3208       md->set_return_type(bci, exact);
3209     }
3210   }
3211 }
3212 















































3213 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3214   // We can safely ignore accessors here, since c2 will inline them anyway,
3215   // accessors are also always mature.
3216   if (!x->inlinee()->is_accessor()) {
3217     CodeEmitInfo* info = state_for(x, x->state(), true);
3218     // Notify the runtime very infrequently only to take care of counter overflows
3219     int freq_log = Tier23InlineeNotifyFreqLog;
3220     double scale;
3221     if (_method->has_option_value(CompileCommandEnum::CompileThresholdScaling, scale)) {
3222       freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3223     }
3224     increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true);
3225   }
3226 }
3227 
3228 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) {
3229   if (compilation()->is_profiling()) {
3230 #if defined(X86) && !defined(_LP64)
3231     // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
3232     LIR_Opr left_copy = new_register(left->type());

  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_Defs.hpp"
  28 #include "c1/c1_FrameMap.hpp"
  29 #include "c1/c1_Instruction.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciFlatArrayKlass.hpp"
  35 #include "ci/ciInlineKlass.hpp"
  36 #include "ci/ciInstance.hpp"
  37 #include "ci/ciObjArray.hpp"
  38 #include "ci/ciUtilities.hpp"
  39 #include "compiler/compilerDefinitions.inline.hpp"
  40 #include "compiler/compilerOracle.hpp"
  41 #include "gc/shared/barrierSet.hpp"
  42 #include "gc/shared/c1/barrierSetC1.hpp"
  43 #include "oops/klass.inline.hpp"
  44 #include "oops/methodCounters.hpp"
  45 #include "runtime/sharedRuntime.hpp"
  46 #include "runtime/stubRoutines.hpp"
  47 #include "runtime/vm_version.hpp"
  48 #include "utilities/bitMap.inline.hpp"
  49 #include "utilities/macros.hpp"
  50 #include "utilities/powerOfTwo.hpp"
  51 
  52 #ifdef ASSERT
  53 #define __ gen()->lir(__FILE__, __LINE__)->
  54 #else
  55 #define __ gen()->lir()->

 201 }
 202 
 203 
 204 //--------------------------------------------------------------
 205 // LIRItem
 206 
 207 void LIRItem::set_result(LIR_Opr opr) {
 208   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 209   value()->set_operand(opr);
 210 
 211 #ifdef ASSERT
 212   if (opr->is_virtual()) {
 213     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), nullptr);
 214   }
 215 #endif
 216 
 217   _result = opr;
 218 }
 219 
 220 void LIRItem::load_item() {
 221   assert(!_gen->in_conditional_code(), "LIRItem cannot be loaded in conditional code");
 222 
 223   if (result()->is_illegal()) {
 224     // update the items result
 225     _result = value()->operand();
 226   }
 227   if (!result()->is_register()) {
 228     LIR_Opr reg = _gen->new_register(value()->type());
 229     __ move(result(), reg);
 230     if (result()->is_constant()) {
 231       _result = reg;
 232     } else {
 233       set_result(reg);
 234     }
 235   }
 236 }
 237 
 238 
 239 void LIRItem::load_for_store(BasicType type) {
 240   if (_gen->can_store_as_constant(value(), type)) {
 241     _result = value()->operand();
 242     if (!_result->is_constant()) {

 610     assert(right_op != result_op, "malformed");
 611     __ move(left_op, result_op);
 612     left_op = result_op;
 613   }
 614 
 615   switch(code) {
 616     case Bytecodes::_iand:
 617     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 618 
 619     case Bytecodes::_ior:
 620     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 621 
 622     case Bytecodes::_ixor:
 623     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 624 
 625     default: ShouldNotReachHere();
 626   }
 627 }
 628 
 629 
 630 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no,
 631                                  CodeEmitInfo* info_for_exception, CodeEmitInfo* info, CodeStub* throw_ie_stub) {
 632   if (!GenerateSynchronizationCode) return;
 633   // for slow path, use debug info for state after successful locking
 634   CodeStub* slow_path = new MonitorEnterStub(object, lock, info, throw_ie_stub, scratch);
 635   __ load_stack_address_monitor(monitor_no, lock);
 636   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 637   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception, throw_ie_stub);
 638 }
 639 
 640 
 641 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 642   if (!GenerateSynchronizationCode) return;
 643   // setup registers
 644   LIR_Opr hdr = lock;
 645   lock = new_hdr;
 646   CodeStub* slow_path = new MonitorExitStub(lock, LockingMode != LM_MONITOR, monitor_no);
 647   __ load_stack_address_monitor(monitor_no, lock);
 648   __ unlock_object(hdr, object, lock, scratch, slow_path);
 649 }
 650 
 651 #ifndef PRODUCT
 652 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 653   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 654     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 655   } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) {
 656     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 657   }
 658 }
 659 #endif
 660 
 661 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, bool allow_inline, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 662   if (allow_inline) {
 663     assert(!is_unresolved && klass->is_loaded(), "inline type klass should be resolved");
 664     __ metadata2reg(klass->constant_encoding(), klass_reg);
 665   } else {
 666     klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 667   }
 668   // If klass is not loaded we do not know if the klass has finalizers or is an unexpected inline klass
 669   if (UseFastNewInstance && klass->is_loaded() && (allow_inline || !klass->is_inlinetype())
 670       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 671 
 672     C1StubId stub_id = klass->is_initialized() ? C1StubId::fast_new_instance_id : C1StubId::fast_new_instance_init_check_id;
 673 
 674     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 675 
 676     assert(klass->is_loaded(), "must be loaded");
 677     // allocate space for instance
 678     assert(klass->size_helper() > 0, "illegal instance size");
 679     const int instance_size = align_object_size(klass->size_helper());
 680     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 681                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 682   } else {
 683     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, C1StubId::new_instance_id);
 684     __ jump(slow_path);
 685     __ branch_destination(slow_path->continuation());
 686   }
 687 }
 688 
 689 
 690 static bool is_constant_zero(Instruction* inst) {
 691   IntConstant* c = inst->type()->as_IntConstant();
 692   if (c) {
 693     return (c->value() == 0);
 694   }
 695   return false;
 696 }
 697 
 698 
 699 static bool positive_constant(Instruction* inst) {
 700   IntConstant* c = inst->type()->as_IntConstant();
 701   if (c) {
 702     return (c->value() >= 0);
 703   }
 704   return false;

 764       if (src_type != nullptr) {
 765         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 766           is_exact = true;
 767           expected_type = dst_type;
 768         }
 769       }
 770     }
 771     // at least pass along a good guess
 772     if (expected_type == nullptr) expected_type = dst_exact_type;
 773     if (expected_type == nullptr) expected_type = src_declared_type;
 774     if (expected_type == nullptr) expected_type = dst_declared_type;
 775 
 776     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 777     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 778   }
 779 
 780   // if a probable array type has been identified, figure out if any
 781   // of the required checks for a fast case can be elided.
 782   int flags = LIR_OpArrayCopy::all_flags;
 783 
 784   if (!src->is_loaded_flat_array() && !dst->is_loaded_flat_array()) {
 785     flags &= ~LIR_OpArrayCopy::always_slow_path;
 786   }
 787   if (!src->maybe_flat_array()) {
 788     flags &= ~LIR_OpArrayCopy::src_inlinetype_check;
 789   }
 790   if (!dst->maybe_flat_array() && !dst->maybe_null_free_array()) {
 791     flags &= ~LIR_OpArrayCopy::dst_inlinetype_check;
 792   }
 793 
 794   if (!src_objarray)
 795     flags &= ~LIR_OpArrayCopy::src_objarray;
 796   if (!dst_objarray)
 797     flags &= ~LIR_OpArrayCopy::dst_objarray;
 798 
 799   if (!x->arg_needs_null_check(0))
 800     flags &= ~LIR_OpArrayCopy::src_null_check;
 801   if (!x->arg_needs_null_check(2))
 802     flags &= ~LIR_OpArrayCopy::dst_null_check;
 803 
 804 
 805   if (expected_type != nullptr) {
 806     Value length_limit = nullptr;
 807 
 808     IfOp* ifop = length->as_IfOp();
 809     if (ifop != nullptr) {
 810       // look for expressions like min(v, a.length) which ends up as
 811       //   x > y ? y : x  or  x >= y ? y : x
 812       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 813           ifop->x() == ifop->fval() &&

1327 // Example: Foo.class.getModifiers()
1328 void LIRGenerator::do_getModifiers(Intrinsic* x) {
1329   assert(x->number_of_arguments() == 1, "wrong type");
1330 
1331   LIRItem receiver(x->argument_at(0), this);
1332   receiver.load_item();
1333   LIR_Opr result = rlock_result(x);
1334 
1335   CodeEmitInfo* info = nullptr;
1336   if (x->needs_null_check()) {
1337     info = state_for(x);
1338   }
1339 
1340   // While reading off the universal constant mirror is less efficient than doing
1341   // another branch and returning the constant answer, this branchless code runs into
1342   // much less risk of confusion for C1 register allocator. The choice of the universe
1343   // object here is correct as long as it returns the same modifiers we would expect
1344   // from the primitive class itself. See spec for Class.getModifiers that provides
1345   // the typed array klasses with similar modifiers as their component types.
1346 
1347   // Valhalla update: the code is now a bit convuloted because arrays and primitive
1348   // classes don't have the same modifiers set anymore, but we cannot introduce
1349   // branches in LIR generation (JDK-8211231). So, the first part of the code remains
1350   // identical, using the byteArrayKlass object to avoid a NPE when accessing the
1351   // modifiers. But then the code also prepares the correct modifiers set for
1352   // primitive classes, and there's a second conditional move to put the right
1353   // value into result.
1354 
1355 
1356   Klass* univ_klass = Universe::byteArrayKlass();
1357   assert(univ_klass->modifier_flags() == (JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC
1358                                           | (Arguments::enable_preview() ? JVM_ACC_IDENTITY : 0)), "Sanity");
1359   LIR_Opr prim_klass = LIR_OprFact::metadataConst(univ_klass);
1360 
1361   LIR_Opr recv_klass = new_register(T_METADATA);
1362   __ move(new LIR_Address(receiver.result(), java_lang_Class::klass_offset(), T_ADDRESS), recv_klass, info);
1363 
1364   // Check if this is a Java mirror of primitive type, and select the appropriate klass.
1365   LIR_Opr klass = new_register(T_METADATA);
1366   __ cmp(lir_cond_equal, recv_klass, LIR_OprFact::metadataConst(nullptr));
1367   __ cmove(lir_cond_equal, prim_klass, recv_klass, klass, T_ADDRESS);
1368   LIR_Opr klass_modifiers = new_register(T_INT);
1369   __ move(new LIR_Address(klass, in_bytes(Klass::modifier_flags_offset()), T_INT), klass_modifiers);
1370 
1371   LIR_Opr prim_modifiers = load_immediate(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC, T_INT);
1372 
1373   __ cmp(lir_cond_equal, recv_klass, LIR_OprFact::metadataConst(0));
1374   __ cmove(lir_cond_equal, prim_modifiers, klass_modifiers, result, T_INT);
1375 


1376 }
1377 
1378 void LIRGenerator::do_getObjectSize(Intrinsic* x) {
1379   assert(x->number_of_arguments() == 3, "wrong type");
1380   LIR_Opr result_reg = rlock_result(x);
1381 
1382   LIRItem value(x->argument_at(2), this);
1383   value.load_item();
1384 
1385   LIR_Opr klass = new_register(T_METADATA);
1386   load_klass(value.result(), klass, nullptr);
1387   LIR_Opr layout = new_register(T_INT);
1388   __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
1389 
1390   LabelObj* L_done = new LabelObj();
1391   LabelObj* L_array = new LabelObj();
1392 
1393   __ cmp(lir_cond_lessEqual, layout, 0);
1394   __ branch(lir_cond_lessEqual, L_array->label());
1395 

1588       case T_FLOAT:
1589         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1590         break;
1591       case T_LONG:
1592       case T_DOUBLE:
1593         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1594         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1595         break;
1596       case T_OBJECT:
1597         if (c->as_jobject() != other->as_jobject()) continue;
1598         break;
1599       default:
1600         break;
1601       }
1602       return _reg_for_constants.at(i);
1603     }
1604   }
1605 
1606   LIR_Opr result = new_register(t);
1607   __ move((LIR_Opr)c, result);
1608   if (!in_conditional_code()) {
1609     _constants.append(c);
1610     _reg_for_constants.append(result);
1611   }
1612   return result;
1613 }
1614 
1615 void LIRGenerator::set_in_conditional_code(bool v) {
1616   assert(v != _in_conditional_code, "must change state");
1617   _in_conditional_code = v;
1618 }
1619 
1620 
1621 //------------------------field access--------------------------------------
1622 
1623 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
1624   assert(x->number_of_arguments() == 4, "wrong type");
1625   LIRItem obj   (x->argument_at(0), this);  // object
1626   LIRItem offset(x->argument_at(1), this);  // offset of field
1627   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
1628   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
1629   assert(obj.type()->tag() == objectTag, "invalid type");
1630   assert(cmp.type()->tag() == type->tag(), "invalid type");
1631   assert(val.type()->tag() == type->tag(), "invalid type");
1632 
1633   LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type),
1634                                             obj, offset, cmp, val);
1635   set_result(x, result);
1636 }
1637 
1638 // Comment copied form templateTable_i486.cpp
1639 // ----------------------------------------------------------------------------
1640 // Volatile variables demand their effects be made known to all CPU's in

1713       (needs_patching ||
1714        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1715     // Emit an explicit null check because the offset is too large.
1716     // If the class is not loaded and the object is null, we need to deoptimize to throw a
1717     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1718     __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1719   }
1720 
1721   DecoratorSet decorators = IN_HEAP;
1722   if (is_volatile) {
1723     decorators |= MO_SEQ_CST;
1724   }
1725   if (needs_patching) {
1726     decorators |= C1_NEEDS_PATCHING;
1727   }
1728 
1729   access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()),
1730                   value.result(), info != nullptr ? new CodeEmitInfo(info) : nullptr, info);
1731 }
1732 
1733 // FIXME -- I can't find any other way to pass an address to access_load_at().
1734 class TempResolvedAddress: public Instruction {
1735  public:
1736   TempResolvedAddress(ValueType* type, LIR_Opr addr) : Instruction(type) {
1737     set_operand(addr);
1738   }
1739   virtual void input_values_do(ValueVisitor*) {}
1740   virtual void visit(InstructionVisitor* v)   {}
1741   virtual const char* name() const  { return "TempResolvedAddress"; }
1742 };
1743 
1744 LIR_Opr LIRGenerator::get_and_load_element_address(LIRItem& array, LIRItem& index) {
1745   ciType* array_type = array.value()->declared_type();
1746   ciFlatArrayKlass* flat_array_klass = array_type->as_flat_array_klass();
1747   assert(flat_array_klass->is_loaded(), "must be");
1748 
1749   int array_header_size = flat_array_klass->array_header_in_bytes();
1750   int shift = flat_array_klass->log2_element_size();
1751 
1752 #ifndef _LP64
1753   LIR_Opr index_op = new_register(T_INT);
1754   // FIXME -- on 32-bit, the shift below can overflow, so we need to check that
1755   // the top (shift+1) bits of index_op must be zero, or
1756   // else throw ArrayIndexOutOfBoundsException
1757   if (index.result()->is_constant()) {
1758     jint const_index = index.result()->as_jint();
1759     __ move(LIR_OprFact::intConst(const_index << shift), index_op);
1760   } else {
1761     __ shift_left(index_op, shift, index.result());
1762   }
1763 #else
1764   LIR_Opr index_op = new_register(T_LONG);
1765   if (index.result()->is_constant()) {
1766     jint const_index = index.result()->as_jint();
1767     __ move(LIR_OprFact::longConst(const_index << shift), index_op);
1768   } else {
1769     __ convert(Bytecodes::_i2l, index.result(), index_op);
1770     // Need to shift manually, as LIR_Address can scale only up to 3.
1771     __ shift_left(index_op, shift, index_op);
1772   }
1773 #endif
1774 
1775   LIR_Opr elm_op = new_pointer_register();
1776   LIR_Address* elm_address = generate_address(array.result(), index_op, 0, array_header_size, T_ADDRESS);
1777   __ leal(LIR_OprFact::address(elm_address), elm_op);
1778   return elm_op;
1779 }
1780 
1781 void LIRGenerator::access_sub_element(LIRItem& array, LIRItem& index, LIR_Opr& result, ciField* field, int sub_offset) {
1782   assert(field != nullptr, "Need a subelement type specified");
1783 
1784   // Find the starting address of the source (inside the array)
1785   LIR_Opr elm_op = get_and_load_element_address(array, index);
1786 
1787   BasicType subelt_type = field->type()->basic_type();
1788   TempResolvedAddress* elm_resolved_addr = new TempResolvedAddress(as_ValueType(subelt_type), elm_op);
1789   LIRItem elm_item(elm_resolved_addr, this);
1790 
1791   DecoratorSet decorators = IN_HEAP;
1792   access_load_at(decorators, subelt_type,
1793                      elm_item, LIR_OprFact::intConst(sub_offset), result,
1794                      nullptr, nullptr);
1795 
1796   if (field->is_null_free()) {
1797     assert(field->type()->is_loaded(), "Must be");
1798     assert(field->type()->is_inlinetype(), "Must be if loaded");
1799     assert(field->type()->as_inline_klass()->is_initialized(), "Must be");
1800     LabelObj* L_end = new LabelObj();
1801     __ cmp(lir_cond_notEqual, result, LIR_OprFact::oopConst(nullptr));
1802     __ branch(lir_cond_notEqual, L_end->label());
1803     set_in_conditional_code(true);
1804     Constant* default_value = new Constant(new InstanceConstant(field->type()->as_inline_klass()->default_instance()));
1805     if (default_value->is_pinned()) {
1806       __ move(LIR_OprFact::value_type(default_value->type()), result);
1807     } else {
1808       __ move(load_constant(default_value), result);
1809     }
1810     __ branch_destination(L_end->label());
1811     set_in_conditional_code(false);
1812   }
1813 }
1814 
1815 void LIRGenerator::access_flat_array(bool is_load, LIRItem& array, LIRItem& index, LIRItem& obj_item,
1816                                           ciField* field, int sub_offset) {
1817   assert(sub_offset == 0 || field != nullptr, "Sanity check");
1818 
1819   // Find the starting address of the source (inside the array)
1820   LIR_Opr elm_op = get_and_load_element_address(array, index);
1821 
1822   ciInlineKlass* elem_klass = nullptr;
1823   if (field != nullptr) {
1824     elem_klass = field->type()->as_inline_klass();
1825   } else {
1826     elem_klass = array.value()->declared_type()->as_flat_array_klass()->element_klass()->as_inline_klass();
1827   }
1828   for (int i = 0; i < elem_klass->nof_nonstatic_fields(); i++) {
1829     ciField* inner_field = elem_klass->nonstatic_field_at(i);
1830     assert(!inner_field->is_flat(), "flat fields must have been expanded");
1831     int obj_offset = inner_field->offset_in_bytes();
1832     int elm_offset = obj_offset - elem_klass->first_field_offset() + sub_offset; // object header is not stored in array.
1833     BasicType field_type = inner_field->type()->basic_type();
1834 
1835     // Types which are smaller than int are still passed in an int register.
1836     BasicType reg_type = field_type;
1837     switch (reg_type) {
1838     case T_BYTE:
1839     case T_BOOLEAN:
1840     case T_SHORT:
1841     case T_CHAR:
1842       reg_type = T_INT;
1843       break;
1844     default:
1845       break;
1846     }
1847 
1848     LIR_Opr temp = new_register(reg_type);
1849     TempResolvedAddress* elm_resolved_addr = new TempResolvedAddress(as_ValueType(field_type), elm_op);
1850     LIRItem elm_item(elm_resolved_addr, this);
1851 
1852     DecoratorSet decorators = IN_HEAP;
1853     if (is_load) {
1854       access_load_at(decorators, field_type,
1855                      elm_item, LIR_OprFact::intConst(elm_offset), temp,
1856                      nullptr, nullptr);
1857       access_store_at(decorators, field_type,
1858                       obj_item, LIR_OprFact::intConst(obj_offset), temp,
1859                       nullptr, nullptr);
1860     } else {
1861       access_load_at(decorators, field_type,
1862                      obj_item, LIR_OprFact::intConst(obj_offset), temp,
1863                      nullptr, nullptr);
1864       access_store_at(decorators, field_type,
1865                       elm_item, LIR_OprFact::intConst(elm_offset), temp,
1866                       nullptr, nullptr);
1867     }
1868   }
1869 }
1870 
1871 void LIRGenerator::check_flat_array(LIR_Opr array, LIR_Opr value, CodeStub* slow_path) {
1872   LIR_Opr tmp = new_register(T_METADATA);
1873   __ check_flat_array(array, value, tmp, slow_path);
1874 }
1875 
1876 void LIRGenerator::check_null_free_array(LIRItem& array, LIRItem& value, CodeEmitInfo* info) {
1877   LabelObj* L_end = new LabelObj();
1878   LIR_Opr tmp = new_register(T_METADATA);
1879   __ check_null_free_array(array.result(), tmp);
1880   __ branch(lir_cond_equal, L_end->label());
1881   __ null_check(value.result(), info);
1882   __ branch_destination(L_end->label());
1883 }
1884 
1885 bool LIRGenerator::needs_flat_array_store_check(StoreIndexed* x) {
1886   if (x->elt_type() == T_OBJECT && x->array()->maybe_flat_array()) {
1887     ciType* type = x->value()->declared_type();
1888     if (type != nullptr && type->is_klass()) {
1889       ciKlass* klass = type->as_klass();
1890       if (!klass->can_be_inline_klass() || (klass->is_inlinetype() && !klass->as_inline_klass()->flat_in_array())) {
1891         // This is known to be a non-flat object. If the array is a flat array,
1892         // it will be caught by the code generated by array_store_check().
1893         return false;
1894       }
1895     }
1896     // We're not 100% sure, so let's do the flat_array_store_check.
1897     return true;
1898   }
1899   return false;
1900 }
1901 
1902 bool LIRGenerator::needs_null_free_array_store_check(StoreIndexed* x) {
1903   return x->elt_type() == T_OBJECT && x->array()->maybe_null_free_array();
1904 }
1905 
1906 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
1907   assert(x->is_pinned(),"");
1908   assert(x->elt_type() != T_ARRAY, "never used");
1909   bool is_loaded_flat_array = x->array()->is_loaded_flat_array();
1910   bool needs_range_check = x->compute_needs_range_check();
1911   bool use_length = x->length() != nullptr;
1912   bool obj_store = is_reference_type(x->elt_type());
1913   bool needs_store_check = obj_store && !(is_loaded_flat_array && x->is_exact_flat_array_store()) &&
1914                                         (x->value()->as_Constant() == nullptr ||
1915                                          !get_jobject_constant(x->value())->is_null_object());
1916 
1917   LIRItem array(x->array(), this);
1918   LIRItem index(x->index(), this);
1919   LIRItem value(x->value(), this);
1920   LIRItem length(this);
1921 
1922   array.load_item();
1923   index.load_nonconstant();
1924 
1925   if (use_length && needs_range_check) {
1926     length.set_instruction(x->length());
1927     length.load_item();

1928   }
1929 
1930   if (needs_store_check || x->check_boolean()
1931       || is_loaded_flat_array || needs_flat_array_store_check(x) || needs_null_free_array_store_check(x)) {
1932     value.load_item();
1933   } else {
1934     value.load_for_store(x->elt_type());
1935   }
1936 
1937   set_no_result(x);
1938 
1939   // the CodeEmitInfo must be duplicated for each different
1940   // LIR-instruction because spilling can occur anywhere between two
1941   // instructions and so the debug information must be different
1942   CodeEmitInfo* range_check_info = state_for(x);
1943   CodeEmitInfo* null_check_info = nullptr;
1944   if (x->needs_null_check()) {
1945     null_check_info = new CodeEmitInfo(range_check_info);
1946   }
1947 
1948   if (needs_range_check) {
1949     if (use_length) {
1950       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1951       __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1952     } else {
1953       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1954       // range_check also does the null check
1955       null_check_info = nullptr;
1956     }
1957   }
1958 
1959   if (x->should_profile()) {
1960     if (x->array()->is_loaded_flat_array()) {
1961       // No need to profile a store to a flat array of known type. This can happen if
1962       // the type only became known after optimizations (for example, after the PhiSimplifier).
1963       x->set_should_profile(false);
1964     } else {
1965       int bci = x->profiled_bci();
1966       ciMethodData* md = x->profiled_method()->method_data();
1967       assert(md != nullptr, "Sanity");
1968       ciProfileData* data = md->bci_to_data(bci);
1969       assert(data != nullptr && data->is_ArrayStoreData(), "incorrect profiling entry");
1970       ciArrayStoreData* store_data = (ciArrayStoreData*)data;
1971       profile_array_type(x, md, store_data);
1972       assert(store_data->is_ArrayStoreData(), "incorrect profiling entry");
1973       if (x->array()->maybe_null_free_array()) {
1974         profile_null_free_array(array, md, store_data);
1975       }
1976     }
1977   }
1978 
1979   if (GenerateArrayStoreCheck && needs_store_check) {
1980     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
1981     array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci());
1982   }
1983 
1984   if (is_loaded_flat_array) {
1985     if (!x->value()->is_null_free()) {
1986       __ null_check(value.result(), new CodeEmitInfo(range_check_info));
1987     }
1988     // If array element is an empty inline type, no need to copy anything
1989     if (!x->array()->declared_type()->as_flat_array_klass()->element_klass()->as_inline_klass()->is_empty()) {
1990       access_flat_array(false, array, index, value);
1991     }
1992   } else {
1993     StoreFlattenedArrayStub* slow_path = nullptr;
1994 
1995     if (needs_flat_array_store_check(x)) {
1996       // Check if we indeed have a flat array
1997       index.load_item();
1998       slow_path = new StoreFlattenedArrayStub(array.result(), index.result(), value.result(), state_for(x, x->state_before()));
1999       check_flat_array(array.result(), value.result(), slow_path);
2000       set_in_conditional_code(true);
2001     } else if (needs_null_free_array_store_check(x)) {
2002       CodeEmitInfo* info = new CodeEmitInfo(range_check_info);
2003       check_null_free_array(array, value, info);
2004     }
2005 
2006     DecoratorSet decorators = IN_HEAP | IS_ARRAY;
2007     if (x->check_boolean()) {
2008       decorators |= C1_MASK_BOOLEAN;
2009     }
2010 
2011     access_store_at(decorators, x->elt_type(), array, index.result(), value.result(),
2012                     nullptr, null_check_info);
2013     if (slow_path != nullptr) {
2014       __ branch_destination(slow_path->continuation());
2015       set_in_conditional_code(false);
2016     }
2017   }
2018 }
2019 
2020 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type,
2021                                   LIRItem& base, LIR_Opr offset, LIR_Opr result,
2022                                   CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) {
2023   decorators |= ACCESS_READ;
2024   LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info);
2025   if (access.is_raw()) {
2026     _barrier_set->BarrierSetC1::load_at(access, result);
2027   } else {
2028     _barrier_set->load_at(access, result);
2029   }
2030 }
2031 
2032 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type,
2033                                LIR_Opr addr, LIR_Opr result) {
2034   decorators |= ACCESS_READ;
2035   LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type);
2036   access.set_resolved_addr(addr);
2037   if (access.is_raw()) {

2135       __ move(LIR_OprFact::oopConst(nullptr), obj);
2136     }
2137     // Emit an explicit null check because the offset is too large.
2138     // If the class is not loaded and the object is null, we need to deoptimize to throw a
2139     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
2140     __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
2141   }
2142 
2143   DecoratorSet decorators = IN_HEAP;
2144   if (is_volatile) {
2145     decorators |= MO_SEQ_CST;
2146   }
2147   if (needs_patching) {
2148     decorators |= C1_NEEDS_PATCHING;
2149   }
2150 
2151   LIR_Opr result = rlock_result(x, field_type);
2152   access_load_at(decorators, field_type,
2153                  object, LIR_OprFact::intConst(x->offset()), result,
2154                  info ? new CodeEmitInfo(info) : nullptr, info);
2155 
2156   ciField* field = x->field();
2157   if (field->is_null_free()) {
2158     // Load from non-flat inline type field requires
2159     // a null check to replace null with the default value.
2160     ciInstanceKlass* holder = field->holder();
2161     if (field->is_static() && holder->is_loaded()) {
2162       ciObject* val = holder->java_mirror()->field_value(field).as_object();
2163       if (!val->is_null_object()) {
2164         // Static field is initialized, we don't need to perform a null check.
2165         return;
2166       }
2167     }
2168     ciInlineKlass* inline_klass = field->type()->as_inline_klass();
2169     if (inline_klass->is_initialized()) {
2170       LabelObj* L_end = new LabelObj();
2171       __ cmp(lir_cond_notEqual, result, LIR_OprFact::oopConst(nullptr));
2172       __ branch(lir_cond_notEqual, L_end->label());
2173       set_in_conditional_code(true);
2174       Constant* default_value = new Constant(new InstanceConstant(inline_klass->default_instance()));
2175       if (default_value->is_pinned()) {
2176         __ move(LIR_OprFact::value_type(default_value->type()), result);
2177       } else {
2178         __ move(load_constant(default_value), result);
2179       }
2180       __ branch_destination(L_end->label());
2181       set_in_conditional_code(false);
2182     } else {
2183       info = state_for(x, x->state_before());
2184       __ cmp(lir_cond_equal, result, LIR_OprFact::oopConst(nullptr));
2185       __ branch(lir_cond_equal, new DeoptimizeStub(info, Deoptimization::Reason_uninitialized,
2186                                                          Deoptimization::Action_make_not_entrant));
2187     }
2188   }
2189 }
2190 
2191 // int/long jdk.internal.util.Preconditions.checkIndex
2192 void LIRGenerator::do_PreconditionsCheckIndex(Intrinsic* x, BasicType type) {
2193   assert(x->number_of_arguments() == 3, "wrong type");
2194   LIRItem index(x->argument_at(0), this);
2195   LIRItem length(x->argument_at(1), this);
2196   LIRItem oobef(x->argument_at(2), this);
2197 
2198   index.load_item();
2199   length.load_item();
2200   oobef.load_item();
2201 
2202   LIR_Opr result = rlock_result(x);
2203   // x->state() is created from copy_state_for_exception, it does not contains arguments
2204   // we should prepare them before entering into interpreter mode due to deoptimization.
2205   ValueStack* state = x->state();
2206   for (int i = 0; i < x->number_of_arguments(); i++) {
2207     Value arg = x->argument_at(i);
2208     state->push(arg->type(), arg);

2313       __ move(LIR_OprFact::oopConst(nullptr), obj);
2314       __ null_check(obj, new CodeEmitInfo(null_check_info));
2315     }
2316   }
2317 
2318   if (needs_range_check) {
2319     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
2320       __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result()));
2321     } else if (use_length) {
2322       // TODO: use a (modified) version of array_range_check that does not require a
2323       //       constant length to be loaded to a register
2324       __ cmp(lir_cond_belowEqual, length.result(), index.result());
2325       __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
2326     } else {
2327       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
2328       // The range check performs the null check, so clear it out for the load
2329       null_check_info = nullptr;
2330     }
2331   }
2332 
2333   ciMethodData* md = nullptr;
2334   ciArrayLoadData* load_data = nullptr;
2335   if (x->should_profile()) {
2336     if (x->array()->is_loaded_flat_array()) {
2337       // No need to profile a load from a flat array of known type. This can happen if
2338       // the type only became known after optimizations (for example, after the PhiSimplifier).
2339       x->set_should_profile(false);
2340     } else {
2341       int bci = x->profiled_bci();
2342       md = x->profiled_method()->method_data();
2343       assert(md != nullptr, "Sanity");
2344       ciProfileData* data = md->bci_to_data(bci);
2345       assert(data != nullptr && data->is_ArrayLoadData(), "incorrect profiling entry");
2346       load_data = (ciArrayLoadData*)data;
2347       profile_array_type(x, md, load_data);
2348     }
2349   }
2350 
2351   Value element;
2352   if (x->vt() != nullptr) {
2353     assert(x->array()->is_loaded_flat_array(), "must be");
2354     // Find the destination address (of the NewInlineTypeInstance).
2355     LIRItem obj_item(x->vt(), this);
2356 
2357     access_flat_array(true, array, index, obj_item,
2358                       x->delayed() == nullptr ? 0 : x->delayed()->field(),
2359                       x->delayed() == nullptr ? 0 : x->delayed()->offset());
2360     set_no_result(x);
2361   } else if (x->delayed() != nullptr) {
2362     assert(x->array()->is_loaded_flat_array(), "must be");
2363     LIR_Opr result = rlock_result(x, x->delayed()->field()->type()->basic_type());
2364     access_sub_element(array, index, result, x->delayed()->field(), x->delayed()->offset());
2365   } else if (x->array() != nullptr && x->array()->is_loaded_flat_array() &&
2366              x->array()->declared_type()->as_flat_array_klass()->element_klass()->as_inline_klass()->is_initialized() &&
2367              x->array()->declared_type()->as_flat_array_klass()->element_klass()->as_inline_klass()->is_empty()) {
2368     // Load the default instance instead of reading the element
2369     ciInlineKlass* elem_klass = x->array()->declared_type()->as_flat_array_klass()->element_klass()->as_inline_klass();
2370     LIR_Opr result = rlock_result(x, x->elt_type());
2371     assert(elem_klass->is_initialized(), "Must be");
2372     Constant* default_value = new Constant(new InstanceConstant(elem_klass->default_instance()));
2373     if (default_value->is_pinned()) {
2374       __ move(LIR_OprFact::value_type(default_value->type()), result);
2375     } else {
2376       __ move(load_constant(default_value), result);
2377     }
2378   } else {
2379     LIR_Opr result = rlock_result(x, x->elt_type());
2380     LoadFlattenedArrayStub* slow_path = nullptr;
2381 
2382     if (x->should_profile() && x->array()->maybe_null_free_array()) {
2383       profile_null_free_array(array, md, load_data);
2384     }
2385 
2386     if (x->elt_type() == T_OBJECT && x->array()->maybe_flat_array()) {
2387       assert(x->delayed() == nullptr, "Delayed LoadIndexed only apply to loaded_flat_arrays");
2388       index.load_item();
2389       // if we are loading from a flat array, load it using a runtime call
2390       slow_path = new LoadFlattenedArrayStub(array.result(), index.result(), result, state_for(x, x->state_before()));
2391       check_flat_array(array.result(), LIR_OprFact::illegalOpr, slow_path);
2392       set_in_conditional_code(true);
2393     }
2394 
2395     DecoratorSet decorators = IN_HEAP | IS_ARRAY;
2396     access_load_at(decorators, x->elt_type(),
2397                    array, index.result(), result,
2398                    nullptr, null_check_info);
2399 
2400     if (slow_path != nullptr) {
2401       __ branch_destination(slow_path->continuation());
2402       set_in_conditional_code(false);
2403     }
2404 
2405     element = x;
2406   }
2407 
2408   if (x->should_profile()) {
2409     profile_element_type(element, md, load_data);
2410   }
2411 }
2412 
2413 
2414 void LIRGenerator::do_NullCheck(NullCheck* x) {
2415   if (x->can_trap()) {
2416     LIRItem value(x->obj(), this);
2417     value.load_item();
2418     CodeEmitInfo* info = state_for(x);
2419     __ null_check(value.result(), info);
2420   }
2421 }
2422 
2423 
2424 void LIRGenerator::do_TypeCast(TypeCast* x) {
2425   LIRItem value(x->obj(), this);
2426   value.load_item();
2427   // the result is the same as from the node we are casting
2428   set_result(x, value.result());
2429 }
2430 

2892   Compilation* comp = Compilation::current();
2893   if (do_update) {
2894     // try to find exact type, using CHA if possible, so that loading
2895     // the klass from the object can be avoided
2896     ciType* type = obj->exact_type();
2897     if (type == nullptr) {
2898       type = obj->declared_type();
2899       type = comp->cha_exact_type(type);
2900     }
2901     assert(type == nullptr || type->is_klass(), "type should be class");
2902     exact_klass = (type != nullptr && type->is_loaded()) ? (ciKlass*)type : nullptr;
2903 
2904     do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2905   }
2906 
2907   if (!do_null && !do_update) {
2908     return result;
2909   }
2910 
2911   ciKlass* exact_signature_k = nullptr;
2912   if (do_update && signature_at_call_k != nullptr) {
2913     // Is the type from the signature exact (the only one possible)?
2914     exact_signature_k = signature_at_call_k->exact_klass();
2915     if (exact_signature_k == nullptr) {
2916       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2917     } else {
2918       result = exact_signature_k;
2919       // Known statically. No need to emit any code: prevent
2920       // LIR_Assembler::emit_profile_type() from emitting useless code
2921       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2922     }
2923     // exact_klass and exact_signature_k can be both non null but
2924     // different if exact_klass is loaded after the ciObject for
2925     // exact_signature_k is created.
2926     if (exact_klass == nullptr && exact_signature_k != nullptr && exact_klass != exact_signature_k) {
2927       // sometimes the type of the signature is better than the best type
2928       // the compiler has
2929       exact_klass = exact_signature_k;
2930     }
2931     if (callee_signature_k != nullptr &&
2932         callee_signature_k != signature_at_call_k) {

2977         assert(!src->is_illegal(), "check");
2978         BasicType t = src->type();
2979         if (is_reference_type(t)) {
2980           intptr_t profiled_k = parameters->type(j);
2981           Local* local = x->state()->local_at(java_index)->as_Local();
2982           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2983                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2984                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), nullptr);
2985           // If the profile is known statically set it once for all and do not emit any code
2986           if (exact != nullptr) {
2987             md->set_parameter_type(j, exact);
2988           }
2989           j++;
2990         }
2991         java_index += type2size[t];
2992       }
2993     }
2994   }
2995 }
2996 
2997 void LIRGenerator::profile_flags(ciMethodData* md, ciProfileData* data, int flag, LIR_Condition condition) {
2998   assert(md != nullptr && data != nullptr, "should have been initialized");
2999   LIR_Opr mdp = new_register(T_METADATA);
3000   __ metadata2reg(md->constant_encoding(), mdp);
3001   LIR_Address* addr = new LIR_Address(mdp, md->byte_offset_of_slot(data, DataLayout::flags_offset()), T_BYTE);
3002   LIR_Opr flags = new_register(T_INT);
3003   __ move(addr, flags);
3004   if (condition != lir_cond_always) {
3005     LIR_Opr update = new_register(T_INT);
3006     __ cmove(condition, LIR_OprFact::intConst(0), LIR_OprFact::intConst(flag), update, T_INT);
3007   } else {
3008     __ logical_or(flags, LIR_OprFact::intConst(flag), flags);
3009   }
3010   __ store(flags, addr);
3011 }
3012 
3013 template <class ArrayData> void LIRGenerator::profile_null_free_array(LIRItem array, ciMethodData* md, ArrayData* load_store) {
3014   assert(compilation()->profile_array_accesses(), "array access profiling is disabled");
3015   LabelObj* L_end = new LabelObj();
3016   LIR_Opr tmp = new_register(T_METADATA);
3017   __ check_null_free_array(array.result(), tmp);
3018 
3019   profile_flags(md, load_store, ArrayStoreData::null_free_array_byte_constant(), lir_cond_equal);
3020 }
3021 
3022 template <class ArrayData> void LIRGenerator::profile_array_type(AccessIndexed* x, ciMethodData*& md, ArrayData*& load_store) {
3023   assert(compilation()->profile_array_accesses(), "array access profiling is disabled");
3024   LIR_Opr mdp = LIR_OprFact::illegalOpr;
3025   profile_type(md, md->byte_offset_of_slot(load_store, ArrayData::array_offset()), 0,
3026                load_store->array()->type(), x->array(), mdp, true, nullptr, nullptr);
3027 }
3028 
3029 void LIRGenerator::profile_element_type(Value element, ciMethodData* md, ciArrayLoadData* load_data) {
3030   assert(compilation()->profile_array_accesses(), "array access profiling is disabled");
3031   assert(md != nullptr && load_data != nullptr, "should have been initialized");
3032   LIR_Opr mdp = LIR_OprFact::illegalOpr;
3033   profile_type(md, md->byte_offset_of_slot(load_data, ArrayLoadData::element_offset()), 0,
3034                load_data->element()->type(), element, mdp, false, nullptr, nullptr);
3035 }
3036 
3037 void LIRGenerator::do_Base(Base* x) {
3038   __ std_entry(LIR_OprFact::illegalOpr);
3039   // Emit moves from physical registers / stack slots to virtual registers
3040   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
3041   IRScope* irScope = compilation()->hir()->top_scope();
3042   int java_index = 0;
3043   for (int i = 0; i < args->length(); i++) {
3044     LIR_Opr src = args->at(i);
3045     assert(!src->is_illegal(), "check");
3046     BasicType t = src->type();
3047 
3048     // Types which are smaller than int are passed as int, so
3049     // correct the type which passed.
3050     switch (t) {
3051     case T_BYTE:
3052     case T_BOOLEAN:
3053     case T_SHORT:
3054     case T_CHAR:
3055       t = T_INT;
3056       break;

3099     }
3100     assert(obj->is_valid(), "must be valid");
3101 
3102     if (method()->is_synchronized() && GenerateSynchronizationCode) {
3103       LIR_Opr lock = syncLockOpr();
3104       __ load_stack_address_monitor(0, lock);
3105 
3106       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, x->check_flag(Instruction::DeoptimizeOnException));
3107       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
3108 
3109       // receiver is guaranteed non-null so don't need CodeEmitInfo
3110       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, nullptr);
3111     }
3112   }
3113   // increment invocation counters if needed
3114   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
3115     profile_parameters(x);
3116     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, false);
3117     increment_invocation_counter(info);
3118   }
3119   if (method()->has_scalarized_args()) {
3120     // Check if deoptimization was triggered (i.e. orig_pc was set) while buffering scalarized inline type arguments
3121     // in the entry point (see comments in frame::deoptimize). If so, deoptimize only now that we have the right state.
3122     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), nullptr, false);
3123     CodeStub* deopt_stub = new DeoptimizeStub(info, Deoptimization::Reason_none, Deoptimization::Action_none);
3124     __ append(new LIR_Op0(lir_check_orig_pc));
3125     __ branch(lir_cond_notEqual, deopt_stub);
3126   }
3127 
3128   // all blocks with a successor must end with an unconditional jump
3129   // to the successor even if they are consecutive
3130   __ jump(x->default_sux());
3131 }
3132 
3133 
3134 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
3135   // construct our frame and model the production of incoming pointer
3136   // to the OSR buffer.
3137   __ osr_entry(LIR_Assembler::osrBufferPointer());
3138   LIR_Opr result = rlock_result(x);
3139   __ move(LIR_Assembler::osrBufferPointer(), result);
3140 }
3141 
3142 void LIRGenerator::invoke_load_one_argument(LIRItem* param, LIR_Opr loc) {
3143   if (loc->is_register()) {
3144     param->load_item_force(loc);
3145   } else {
3146     LIR_Address* addr = loc->as_address_ptr();
3147     param->load_for_store(addr->type());
3148     if (addr->type() == T_OBJECT) {
3149       __ move_wide(param->result(), addr);
3150     } else {
3151       __ move(param->result(), addr);
3152     }
3153   }
3154 }
3155 
3156 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
3157   assert(args->length() == arg_list->length(),
3158          "args=%d, arg_list=%d", args->length(), arg_list->length());
3159   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
3160     LIRItem* param = args->at(i);
3161     LIR_Opr loc = arg_list->at(i);
3162     invoke_load_one_argument(param, loc);









3163   }
3164 
3165   if (x->has_receiver()) {
3166     LIRItem* receiver = args->at(0);
3167     LIR_Opr loc = arg_list->at(0);
3168     if (loc->is_register()) {
3169       receiver->load_item_force(loc);
3170     } else {
3171       assert(loc->is_address(), "just checking");
3172       receiver->load_for_store(T_OBJECT);
3173       __ move_wide(receiver->result(), loc->as_address_ptr());
3174     }
3175   }
3176 }
3177 
3178 
3179 // Visits all arguments, returns appropriate items without loading them
3180 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
3181   LIRItemList* argument_items = new LIRItemList();
3182   if (x->has_receiver()) {

3308   __ move(tmp, reg);
3309 }
3310 
3311 
3312 
3313 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
3314 void LIRGenerator::do_IfOp(IfOp* x) {
3315 #ifdef ASSERT
3316   {
3317     ValueTag xtag = x->x()->type()->tag();
3318     ValueTag ttag = x->tval()->type()->tag();
3319     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
3320     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
3321     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
3322   }
3323 #endif
3324 
3325   LIRItem left(x->x(), this);
3326   LIRItem right(x->y(), this);
3327   left.load_item();
3328   if (can_inline_as_constant(right.value()) && !x->substitutability_check()) {
3329     right.dont_load_item();
3330   } else {
3331     // substitutability_check() needs to use right as a base register.
3332     right.load_item();
3333   }
3334 
3335   LIRItem t_val(x->tval(), this);
3336   LIRItem f_val(x->fval(), this);
3337   t_val.dont_load_item();
3338   f_val.dont_load_item();

3339 
3340   if (x->substitutability_check()) {
3341     substitutability_check(x, left, right, t_val, f_val);
3342   } else {
3343     LIR_Opr reg = rlock_result(x);
3344     __ cmp(lir_cond(x->cond()), left.result(), right.result());
3345     __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
3346   }
3347 }
3348 
3349 void LIRGenerator::substitutability_check(IfOp* x, LIRItem& left, LIRItem& right, LIRItem& t_val, LIRItem& f_val) {
3350   assert(x->cond() == If::eql || x->cond() == If::neq, "must be");
3351   bool is_acmpeq = (x->cond() == If::eql);
3352   LIR_Opr equal_result     = is_acmpeq ? t_val.result() : f_val.result();
3353   LIR_Opr not_equal_result = is_acmpeq ? f_val.result() : t_val.result();
3354   LIR_Opr result = rlock_result(x);
3355   CodeEmitInfo* info = state_for(x, x->state_before());
3356 
3357   substitutability_check_common(x->x(), x->y(), left, right, equal_result, not_equal_result, result, info);
3358 }
3359 
3360 void LIRGenerator::substitutability_check(If* x, LIRItem& left, LIRItem& right) {
3361   LIR_Opr equal_result     = LIR_OprFact::intConst(1);
3362   LIR_Opr not_equal_result = LIR_OprFact::intConst(0);
3363   LIR_Opr result = new_register(T_INT);
3364   CodeEmitInfo* info = state_for(x, x->state_before());
3365 
3366   substitutability_check_common(x->x(), x->y(), left, right, equal_result, not_equal_result, result, info);
3367 
3368   assert(x->cond() == If::eql || x->cond() == If::neq, "must be");
3369   __ cmp(lir_cond(x->cond()), result, equal_result);
3370 }
3371 
3372 void LIRGenerator::substitutability_check_common(Value left_val, Value right_val, LIRItem& left, LIRItem& right,
3373                                                  LIR_Opr equal_result, LIR_Opr not_equal_result, LIR_Opr result,
3374                                                  CodeEmitInfo* info) {
3375   LIR_Opr tmp1 = LIR_OprFact::illegalOpr;
3376   LIR_Opr tmp2 = LIR_OprFact::illegalOpr;
3377   LIR_Opr left_klass_op = LIR_OprFact::illegalOpr;
3378   LIR_Opr right_klass_op = LIR_OprFact::illegalOpr;
3379 
3380   ciKlass* left_klass  = left_val ->as_loaded_klass_or_null();
3381   ciKlass* right_klass = right_val->as_loaded_klass_or_null();
3382 
3383   if ((left_klass == nullptr || right_klass == nullptr) ||// The klass is still unloaded, or came from a Phi node.
3384       !left_klass->is_inlinetype() || !right_klass->is_inlinetype()) {
3385     init_temps_for_substitutability_check(tmp1, tmp2);
3386   }
3387 
3388   if (left_klass != nullptr && left_klass->is_inlinetype() && left_klass == right_klass) {
3389     // No need to load klass -- the operands are statically known to be the same inline klass.
3390   } else {
3391     BasicType t_klass = UseCompressedOops ? T_INT : T_METADATA;
3392     left_klass_op = new_register(t_klass);
3393     right_klass_op = new_register(t_klass);
3394   }
3395 
3396   CodeStub* slow_path = new SubstitutabilityCheckStub(left.result(), right.result(), info);
3397   __ substitutability_check(result, left.result(), right.result(), equal_result, not_equal_result,
3398                             tmp1, tmp2,
3399                             left_klass, right_klass, left_klass_op, right_klass_op, info, slow_path);
3400 }
3401 
3402 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
3403   assert(x->number_of_arguments() == 0, "wrong type");
3404   // Enforce computation of _reserved_argument_area_size which is required on some platforms.
3405   BasicTypeList signature;
3406   CallingConvention* cc = frame_map()->c_calling_convention(&signature);
3407   LIR_Opr reg = result_register_for(x->type());
3408   __ call_runtime_leaf(routine, getThreadTemp(),
3409                        reg, new LIR_OprList());
3410   LIR_Opr result = rlock_result(x);
3411   __ move(reg, result);
3412 }
3413 
3414 
3415 
3416 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
3417   switch (x->id()) {
3418   case vmIntrinsics::_intBitsToFloat      :
3419   case vmIntrinsics::_doubleToRawLongBits :

3654   if (x->recv() != nullptr || x->nb_profiled_args() > 0) {
3655     profile_parameters_at_call(x);
3656   }
3657 
3658   if (x->recv() != nullptr) {
3659     LIRItem value(x->recv(), this);
3660     value.load_item();
3661     recv = new_register(T_OBJECT);
3662     __ move(value.result(), recv);
3663   }
3664   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3665 }
3666 
3667 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3668   int bci = x->bci_of_invoke();
3669   ciMethodData* md = x->method()->method_data_or_null();
3670   assert(md != nullptr, "Sanity");
3671   ciProfileData* data = md->bci_to_data(bci);
3672   if (data != nullptr) {
3673     assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3674     ciSingleTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3675     LIR_Opr mdp = LIR_OprFact::illegalOpr;
3676 
3677     bool ignored_will_link;
3678     ciSignature* signature_at_call = nullptr;
3679     x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3680 
3681     // The offset within the MDO of the entry to update may be too large
3682     // to be used in load/store instructions on some platforms. So have
3683     // profile_type() compute the address of the profile in a register.
3684     ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3685         ret->type(), x->ret(), mdp,
3686         !x->needs_null_check(),
3687         signature_at_call->return_type()->as_klass(),
3688         x->callee()->signature()->return_type()->as_klass());
3689     if (exact != nullptr) {
3690       md->set_return_type(bci, exact);
3691     }
3692   }
3693 }
3694 
3695 bool LIRGenerator::profile_inline_klass(ciMethodData* md, ciProfileData* data, Value value, int flag) {
3696   ciKlass* klass = value->as_loaded_klass_or_null();
3697   if (klass != nullptr) {
3698     if (klass->is_inlinetype()) {
3699       profile_flags(md, data, flag, lir_cond_always);
3700     } else if (klass->can_be_inline_klass()) {
3701       return false;
3702     }
3703   } else {
3704     return false;
3705   }
3706   return true;
3707 }
3708 
3709 
3710 void LIRGenerator::do_ProfileACmpTypes(ProfileACmpTypes* x) {
3711   ciMethod* method = x->method();
3712   assert(method != nullptr, "method should be set if branch is profiled");
3713   ciMethodData* md = method->method_data_or_null();
3714   assert(md != nullptr, "Sanity");
3715   ciProfileData* data = md->bci_to_data(x->bci());
3716   assert(data != nullptr, "must have profiling data");
3717   assert(data->is_ACmpData(), "need BranchData for two-way branches");
3718   ciACmpData* acmp = (ciACmpData*)data;
3719   LIR_Opr mdp = LIR_OprFact::illegalOpr;
3720   profile_type(md, md->byte_offset_of_slot(acmp, ACmpData::left_offset()), 0,
3721                acmp->left()->type(), x->left(), mdp, !x->left_maybe_null(), nullptr, nullptr);
3722   int flags_offset = md->byte_offset_of_slot(data, DataLayout::flags_offset());
3723   if (!profile_inline_klass(md, acmp, x->left(), ACmpData::left_inline_type_byte_constant())) {
3724     LIR_Opr mdp = new_register(T_METADATA);
3725     __ metadata2reg(md->constant_encoding(), mdp);
3726     LIRItem value(x->left(), this);
3727     value.load_item();
3728     __ profile_inline_type(new LIR_Address(mdp, flags_offset, T_INT), value.result(), ACmpData::left_inline_type_byte_constant(), new_register(T_INT), !x->left_maybe_null());
3729   }
3730   profile_type(md, md->byte_offset_of_slot(acmp, ACmpData::left_offset()),
3731                in_bytes(ACmpData::right_offset()) - in_bytes(ACmpData::left_offset()),
3732                acmp->right()->type(), x->right(), mdp, !x->right_maybe_null(), nullptr, nullptr);
3733   if (!profile_inline_klass(md, acmp, x->right(), ACmpData::right_inline_type_byte_constant())) {
3734     LIR_Opr mdp = new_register(T_METADATA);
3735     __ metadata2reg(md->constant_encoding(), mdp);
3736     LIRItem value(x->right(), this);
3737     value.load_item();
3738     __ profile_inline_type(new LIR_Address(mdp, flags_offset, T_INT), value.result(), ACmpData::right_inline_type_byte_constant(), new_register(T_INT), !x->left_maybe_null());
3739   }
3740 }
3741 
3742 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3743   // We can safely ignore accessors here, since c2 will inline them anyway,
3744   // accessors are also always mature.
3745   if (!x->inlinee()->is_accessor()) {
3746     CodeEmitInfo* info = state_for(x, x->state(), true);
3747     // Notify the runtime very infrequently only to take care of counter overflows
3748     int freq_log = Tier23InlineeNotifyFreqLog;
3749     double scale;
3750     if (_method->has_option_value(CompileCommandEnum::CompileThresholdScaling, scale)) {
3751       freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3752     }
3753     increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true);
3754   }
3755 }
3756 
3757 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) {
3758   if (compilation()->is_profiling()) {
3759 #if defined(X86) && !defined(_LP64)
3760     // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
3761     LIR_Opr left_copy = new_register(left->type());
< prev index next >