< prev index next >

src/hotspot/share/opto/macroArrayCopy.cpp

Print this page

   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 

  25 #include "gc/shared/barrierSet.hpp"
  26 #include "gc/shared/tlab_globals.hpp"
  27 #include "opto/arraycopynode.hpp"
  28 #include "oops/objArrayKlass.hpp"
  29 #include "opto/convertnode.hpp"
  30 #include "opto/vectornode.hpp"
  31 #include "opto/graphKit.hpp"
  32 #include "opto/macro.hpp"
  33 #include "opto/runtime.hpp"
  34 #include "opto/castnode.hpp"
  35 #include "runtime/stubRoutines.hpp"
  36 #include "utilities/align.hpp"
  37 #include "utilities/powerOfTwo.hpp"
  38 
  39 void PhaseMacroExpand::insert_mem_bar(Node** ctrl, Node** mem, int opcode, Node* precedent) {
  40   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
  41   mb->init_req(TypeFunc::Control, *ctrl);
  42   mb->init_req(TypeFunc::Memory, *mem);
  43   transform_later(mb);
  44   *ctrl = new ProjNode(mb,TypeFunc::Control);

 121   }
 122 
 123   IfNode* iff = new IfNode(*ctrl, test, true_prob, COUNT_UNKNOWN);
 124   transform_later(iff);
 125 
 126   Node* if_slow = new IfTrueNode(iff);
 127   transform_later(if_slow);
 128 
 129   if (region != nullptr) {
 130     region->add_req(if_slow);
 131   }
 132 
 133   Node* if_fast = new IfFalseNode(iff);
 134   transform_later(if_fast);
 135 
 136   *ctrl = if_fast;
 137 
 138   return if_slow;
 139 }
 140 
 141 inline Node* PhaseMacroExpand::generate_slow_guard(Node** ctrl, Node* test, RegionNode* region) {
 142   return generate_guard(ctrl, test, region, PROB_UNLIKELY_MAG(3));
 143 }
 144 




 145 void PhaseMacroExpand::generate_negative_guard(Node** ctrl, Node* index, RegionNode* region) {
 146   if ((*ctrl)->is_top())
 147     return;                // already stopped
 148   if (_igvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 149     return;                // index is already adequately typed
 150   Node* cmp_lt = new CmpINode(index, intcon(0));
 151   transform_later(cmp_lt);
 152   Node* bol_lt = new BoolNode(cmp_lt, BoolTest::lt);
 153   transform_later(bol_lt);
 154   generate_guard(ctrl, bol_lt, region, PROB_MIN);
 155 }
 156 
 157 void PhaseMacroExpand::generate_limit_guard(Node** ctrl, Node* offset, Node* subseq_length, Node* array_length, RegionNode* region) {
 158   if ((*ctrl)->is_top())
 159     return;                // already stopped
 160   bool zero_offset = _igvn.type(offset) == TypeInt::ZERO;
 161   if (zero_offset && subseq_length->eqv_uncast(array_length))
 162     return;                // common case of whole-array copy
 163   Node* last = subseq_length;
 164   if (!zero_offset) {            // last += offset

 265 
 266   *ctrl = stub_block;
 267 }
 268 
 269 
 270 Node* PhaseMacroExpand::generate_nonpositive_guard(Node** ctrl, Node* index, bool never_negative) {
 271   if ((*ctrl)->is_top())  return nullptr;
 272 
 273   if (_igvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
 274     return nullptr;                // index is already adequately typed
 275   Node* cmp_le = new CmpINode(index, intcon(0));
 276   transform_later(cmp_le);
 277   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
 278   Node* bol_le = new BoolNode(cmp_le, le_or_eq);
 279   transform_later(bol_le);
 280   Node* is_notp = generate_guard(ctrl, bol_le, nullptr, PROB_MIN);
 281 
 282   return is_notp;
 283 }
 284 











































 285 void PhaseMacroExpand::finish_arraycopy_call(Node* call, Node** ctrl, MergeMemNode** mem, const TypePtr* adr_type) {
 286   transform_later(call);
 287 
 288   *ctrl = new ProjNode(call,TypeFunc::Control);
 289   transform_later(*ctrl);
 290   Node* newmem = new ProjNode(call, TypeFunc::Memory);
 291   transform_later(newmem);
 292 
 293   uint alias_idx = C->get_alias_index(adr_type);
 294   if (alias_idx != Compile::AliasIdxBot) {
 295     *mem = MergeMemNode::make(*mem);
 296     (*mem)->set_memory_at(alias_idx, newmem);
 297   } else {
 298     *mem = MergeMemNode::make(newmem);
 299   }
 300   transform_later(*mem);
 301 }
 302 
 303 address PhaseMacroExpand::basictype2arraycopy(BasicType t,
 304                                               Node* src_offset,

 359 //       }
 360 //     }
 361 //     // adjust params for remaining work:
 362 //     if (slowval != -1) {
 363 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
 364 //     }
 365 //   slow_region:
 366 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
 367 //     return  // via slow_call_path
 368 //
 369 // This routine is used from several intrinsics:  System.arraycopy,
 370 // Object.clone (the array subcase), and Arrays.copyOf[Range].
 371 //
 372 Node* PhaseMacroExpand::generate_arraycopy(ArrayCopyNode *ac, AllocateArrayNode* alloc,
 373                                            Node** ctrl, MergeMemNode* mem, Node** io,
 374                                            const TypePtr* adr_type,
 375                                            BasicType basic_elem_type,
 376                                            Node* src,  Node* src_offset,
 377                                            Node* dest, Node* dest_offset,
 378                                            Node* copy_length,

 379                                            bool disjoint_bases,
 380                                            bool length_never_negative,
 381                                            RegionNode* slow_region) {
 382   if (slow_region == nullptr) {
 383     slow_region = new RegionNode(1);
 384     transform_later(slow_region);
 385   }
 386 
 387   Node* original_dest = dest;
 388   bool  dest_needs_zeroing   = false;
 389   bool  acopy_to_uninitialized = false;


 390 
 391   // See if this is the initialization of a newly-allocated array.
 392   // If so, we will take responsibility here for initializing it to zero.
 393   // (Note:  Because tightly_coupled_allocation performs checks on the
 394   // out-edges of the dest, we need to avoid making derived pointers
 395   // from it until we have checked its uses.)
 396   if (ReduceBulkZeroing
 397       && !(UseTLAB && ZeroTLAB) // pointless if already zeroed
 398       && basic_elem_type != T_CONFLICT // avoid corner case
 399       && !src->eqv_uncast(dest)
 400       && alloc != nullptr
 401       && _igvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0) {
 402     assert(ac->is_alloc_tightly_coupled(), "sanity");
 403     // acopy to uninitialized tightly coupled allocations
 404     // needs zeroing outside the copy range
 405     // and the acopy itself will be to uninitialized memory
 406     acopy_to_uninitialized = true;
 407     if (alloc->maybe_set_complete(&_igvn)) {
 408       // "You break it, you buy it."
 409       InitializeNode* init = alloc->initialization();
 410       assert(init->is_complete(), "we just did this");
 411       init->set_complete_with_arraycopy();
 412       assert(dest->is_CheckCastPP(), "sanity");
 413       assert(dest->in(0)->in(0) == init, "dest pinned");
 414       adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
 415       // From this point on, every exit path is responsible for
 416       // initializing any non-copied parts of the object to zero.
 417       // Also, if this flag is set we make sure that arraycopy interacts properly
 418       // with G1, eliding pre-barriers. See CR 6627983.
 419       dest_needs_zeroing = true;


 420     } else {
 421       // dest_need_zeroing = false;
 422     }
 423   } else {
 424     // No zeroing elimination needed here.
 425     alloc                  = nullptr;
 426     acopy_to_uninitialized = false;
 427     //original_dest        = dest;
 428     //dest_needs_zeroing   = false;
 429   }
 430 
 431   uint alias_idx = C->get_alias_index(adr_type);
 432 
 433   // Results are placed here:
 434   enum { fast_path        = 1,  // normal void-returning assembly stub
 435          checked_path     = 2,  // special assembly stub with cleanup
 436          slow_call_path   = 3,  // something went wrong; call the VM
 437          zero_path        = 4,  // bypass when length of copy is zero
 438          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
 439          PATH_LIMIT       = 6

 469     checked_i_o     = *io;
 470     checked_mem     = mem->memory_at(alias_idx);
 471     checked_value   = cv;
 472     *ctrl = top();
 473   }
 474 
 475   Node* not_pos = generate_nonpositive_guard(ctrl, copy_length, length_never_negative);
 476   if (not_pos != nullptr) {
 477     Node* local_ctrl = not_pos, *local_io = *io;
 478     MergeMemNode* local_mem = MergeMemNode::make(mem);
 479     transform_later(local_mem);
 480 
 481     // (6) length must not be negative.
 482     if (!length_never_negative) {
 483       generate_negative_guard(&local_ctrl, copy_length, slow_region);
 484     }
 485 
 486     // copy_length is 0.
 487     if (dest_needs_zeroing) {
 488       assert(!local_ctrl->is_top(), "no ctrl?");
 489       Node* dest_length = alloc->in(AllocateNode::ALength);
 490       if (copy_length->eqv_uncast(dest_length)
 491           || _igvn.find_int_con(dest_length, 1) <= 0) {
 492         // There is no zeroing to do. No need for a secondary raw memory barrier.
 493       } else {
 494         // Clear the whole thing since there are no source elements to copy.
 495         generate_clear_array(local_ctrl, local_mem,
 496                              adr_type, dest, basic_elem_type,


 497                              intcon(0), nullptr,
 498                              alloc->in(AllocateNode::AllocSize));
 499         // Use a secondary InitializeNode as raw memory barrier.
 500         // Currently it is needed only on this path since other
 501         // paths have stub or runtime calls as raw memory barriers.
 502         MemBarNode* mb = MemBarNode::make(C, Op_Initialize,
 503                                           Compile::AliasIdxRaw,
 504                                           top());
 505         transform_later(mb);
 506         mb->set_req(TypeFunc::Control,local_ctrl);
 507         mb->set_req(TypeFunc::Memory, local_mem->memory_at(Compile::AliasIdxRaw));
 508         local_ctrl = transform_later(new ProjNode(mb, TypeFunc::Control));
 509         local_mem->set_memory_at(Compile::AliasIdxRaw, transform_later(new ProjNode(mb, TypeFunc::Memory)));
 510 
 511         InitializeNode* init = mb->as_Initialize();
 512         init->set_complete(&_igvn);  // (there is no corresponding AllocateNode)
 513       }
 514     }
 515 
 516     // Present the results of the fast call.
 517     result_region->init_req(zero_path, local_ctrl);
 518     result_i_o   ->init_req(zero_path, local_io);
 519     result_memory->init_req(zero_path, local_mem->memory_at(alias_idx));
 520   }
 521 
 522   if (!(*ctrl)->is_top() && dest_needs_zeroing) {
 523     // We have to initialize the *uncopied* part of the array to zero.
 524     // The copy destination is the slice dest[off..off+len].  The other slices
 525     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
 526     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
 527     Node* dest_length = alloc->in(AllocateNode::ALength);
 528     Node* dest_tail   = transform_later( new AddINode(dest_offset, copy_length));
 529 
 530     // If there is a head section that needs zeroing, do it now.
 531     if (_igvn.find_int_con(dest_offset, -1) != 0) {
 532       generate_clear_array(*ctrl, mem,
 533                            adr_type, dest, basic_elem_type,


 534                            intcon(0), dest_offset,
 535                            nullptr);
 536     }
 537 
 538     // Next, perform a dynamic check on the tail length.
 539     // It is often zero, and we can win big if we prove this.
 540     // There are two wins:  Avoid generating the ClearArray
 541     // with its attendant messy index arithmetic, and upgrade
 542     // the copy to a more hardware-friendly word size of 64 bits.
 543     Node* tail_ctl = nullptr;
 544     if (!(*ctrl)->is_top() && !dest_tail->eqv_uncast(dest_length)) {
 545       Node* cmp_lt   = transform_later( new CmpINode(dest_tail, dest_length) );
 546       Node* bol_lt   = transform_later( new BoolNode(cmp_lt, BoolTest::lt) );
 547       tail_ctl = generate_slow_guard(ctrl, bol_lt, nullptr);
 548       assert(tail_ctl != nullptr || !(*ctrl)->is_top(), "must be an outcome");
 549     }
 550 
 551     // At this point, let's assume there is no tail.
 552     if (!(*ctrl)->is_top() && alloc != nullptr && basic_elem_type != T_OBJECT) {
 553       // There is no tail.  Try an upgrade to a 64-bit copy.

 562                                          src, src_offset, dest, dest_offset,
 563                                          dest_size, acopy_to_uninitialized);
 564         if (didit) {
 565           // Present the results of the block-copying fast call.
 566           result_region->init_req(bcopy_path, local_ctrl);
 567           result_i_o   ->init_req(bcopy_path, local_io);
 568           result_memory->init_req(bcopy_path, local_mem->memory_at(alias_idx));
 569         }
 570       }
 571       if (didit) {
 572         *ctrl = top();     // no regular fast path
 573       }
 574     }
 575 
 576     // Clear the tail, if any.
 577     if (tail_ctl != nullptr) {
 578       Node* notail_ctl = (*ctrl)->is_top() ? nullptr : *ctrl;
 579       *ctrl = tail_ctl;
 580       if (notail_ctl == nullptr) {
 581         generate_clear_array(*ctrl, mem,
 582                              adr_type, dest, basic_elem_type,


 583                              dest_tail, nullptr,
 584                              dest_size);
 585       } else {
 586         // Make a local merge.
 587         Node* done_ctl = transform_later(new RegionNode(3));
 588         Node* done_mem = transform_later(new PhiNode(done_ctl, Type::MEMORY, adr_type));
 589         done_ctl->init_req(1, notail_ctl);
 590         done_mem->init_req(1, mem->memory_at(alias_idx));
 591         generate_clear_array(*ctrl, mem,
 592                              adr_type, dest, basic_elem_type,


 593                              dest_tail, nullptr,
 594                              dest_size);
 595         done_ctl->init_req(2, *ctrl);
 596         done_mem->init_req(2, mem->memory_at(alias_idx));
 597         *ctrl = done_ctl;
 598         mem->set_memory_at(alias_idx, done_mem);
 599       }
 600     }
 601   }
 602 
 603   BasicType copy_type = basic_elem_type;
 604   assert(basic_elem_type != T_ARRAY, "caller must fix this");
 605   if (!(*ctrl)->is_top() && copy_type == T_OBJECT) {
 606     // If src and dest have compatible element types, we can copy bits.
 607     // Types S[] and D[] are compatible if D is a supertype of S.
 608     //
 609     // If they are not, we will use checked_oop_disjoint_arraycopy,
 610     // which performs a fast optimistic per-oop check, and backs off
 611     // further to JVM_ArrayCopy on the first per-oop check that fails.
 612     // (Actually, we don't move raw bits only; the GC requires card marks.)

 750       Node* length_minus  = new SubINode(copy_length, slow_offset);
 751       transform_later(length_minus);
 752 
 753       // Tweak the node variables to adjust the code produced below:
 754       src_offset  = src_off_plus;
 755       dest_offset = dest_off_plus;
 756       copy_length = length_minus;
 757     }
 758   }
 759   *ctrl = slow_control;
 760   if (!(*ctrl)->is_top()) {
 761     Node* local_ctrl = *ctrl, *local_io = slow_i_o;
 762     MergeMemNode* local_mem = MergeMemNode::make(mem);
 763     transform_later(local_mem);
 764 
 765     // Generate the slow path, if needed.
 766     local_mem->set_memory_at(alias_idx, slow_mem);
 767 
 768     if (dest_needs_zeroing) {
 769       generate_clear_array(local_ctrl, local_mem,
 770                            adr_type, dest, basic_elem_type,


 771                            intcon(0), nullptr,
 772                            alloc->in(AllocateNode::AllocSize));
 773     }
 774 
 775     local_mem = generate_slow_arraycopy(ac,
 776                                         &local_ctrl, local_mem, &local_io,
 777                                         adr_type,
 778                                         src, src_offset, dest, dest_offset,
 779                                         copy_length, /*dest_uninitialized*/false);
 780 
 781     result_region->init_req(slow_call_path, local_ctrl);
 782     result_i_o   ->init_req(slow_call_path, local_io);
 783     result_memory->init_req(slow_call_path, local_mem->memory_at(alias_idx));
 784   } else {
 785     ShouldNotReachHere(); // no call to generate_slow_arraycopy:
 786                           // projections were not extracted
 787   }
 788 
 789   // Remove unused edges.
 790   for (uint i = 1; i < result_region->req(); i++) {

 812   // The next memory barrier is added to avoid it. If the arraycopy can be
 813   // optimized away (which it can, sometimes) then we can manually remove
 814   // the membar also.
 815   //
 816   // Do not let reads from the cloned object float above the arraycopy.
 817   if (alloc != nullptr && !alloc->initialization()->does_not_escape()) {
 818     // Do not let stores that initialize this object be reordered with
 819     // a subsequent store that would make this object accessible by
 820     // other threads.
 821     insert_mem_bar(ctrl, &out_mem, Op_MemBarStoreStore);
 822   } else {
 823     insert_mem_bar(ctrl, &out_mem, Op_MemBarCPUOrder);
 824   }
 825 
 826   if (is_partial_array_copy) {
 827     assert((*ctrl)->is_Proj(), "MemBar control projection");
 828     assert((*ctrl)->in(0)->isa_MemBar(), "MemBar node");
 829     (*ctrl)->in(0)->isa_MemBar()->set_trailing_partial_array_copy();
 830   }
 831 
 832   _igvn.replace_node(_callprojs.fallthrough_memproj, out_mem);
 833   if (_callprojs.fallthrough_ioproj != nullptr) {
 834     _igvn.replace_node(_callprojs.fallthrough_ioproj, *io);
 835   }
 836   _igvn.replace_node(_callprojs.fallthrough_catchproj, *ctrl);
 837 
 838 #ifdef ASSERT
 839   const TypeOopPtr* dest_t = _igvn.type(dest)->is_oopptr();
 840   if (dest_t->is_known_instance() && !is_partial_array_copy) {
 841     ArrayCopyNode* ac = nullptr;
 842     assert(ArrayCopyNode::may_modify(dest_t, (*ctrl)->in(0)->as_MemBar(), &_igvn, ac), "dependency on arraycopy lost");
 843     assert(ac == nullptr, "no arraycopy anymore");
 844   }
 845 #endif
 846 
 847   return out_mem;
 848 }
 849 
 850 // Helper for initialization of arrays, creating a ClearArray.
 851 // It writes zero bits in [start..end), within the body of an array object.
 852 // The memory effects are all chained onto the 'adr_type' alias category.
 853 //
 854 // Since the object is otherwise uninitialized, we are free
 855 // to put a little "slop" around the edges of the cleared area,
 856 // as long as it does not go back into the array's header,
 857 // or beyond the array end within the heap.
 858 //
 859 // The lower edge can be rounded down to the nearest jint and the
 860 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
 861 //
 862 // Arguments:
 863 //   adr_type           memory slice where writes are generated
 864 //   dest               oop of the destination array
 865 //   basic_elem_type    element type of the destination
 866 //   slice_idx          array index of first element to store
 867 //   slice_len          number of elements to store (or null)
 868 //   dest_size          total size in bytes of the array object
 869 //
 870 // Exactly one of slice_len or dest_size must be non-null.
 871 // If dest_size is non-null, zeroing extends to the end of the object.
 872 // If slice_len is non-null, the slice_idx value must be a constant.
 873 void PhaseMacroExpand::generate_clear_array(Node* ctrl, MergeMemNode* merge_mem,
 874                                             const TypePtr* adr_type,
 875                                             Node* dest,


 876                                             BasicType basic_elem_type,
 877                                             Node* slice_idx,
 878                                             Node* slice_len,
 879                                             Node* dest_size) {
 880   // one or the other but not both of slice_len and dest_size:
 881   assert((slice_len != nullptr? 1: 0) + (dest_size != nullptr? 1: 0) == 1, "");
 882   if (slice_len == nullptr)  slice_len = top();
 883   if (dest_size == nullptr)  dest_size = top();
 884 
 885   uint alias_idx = C->get_alias_index(adr_type);
 886 
 887   // operate on this memory slice:
 888   Node* mem = merge_mem->memory_at(alias_idx); // memory slice to operate on
 889 
 890   // scaling and rounding of indexes:
 891   int scale = exact_log2(type2aelembytes(basic_elem_type));
 892   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
 893   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
 894   int bump_bit  = (-1 << scale) & BytesPerInt;
 895 
 896   // determine constant starts and ends
 897   const intptr_t BIG_NEG = -128;
 898   assert(BIG_NEG + 2*abase < 0, "neg enough");
 899   intptr_t slice_idx_con = (intptr_t) _igvn.find_int_con(slice_idx, BIG_NEG);
 900   intptr_t slice_len_con = (intptr_t) _igvn.find_int_con(slice_len, BIG_NEG);
 901   if (slice_len_con == 0) {
 902     return;                     // nothing to do here
 903   }
 904   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
 905   intptr_t end_con   = _igvn.find_intptr_t_con(dest_size, -1);
 906   if (slice_idx_con >= 0 && slice_len_con >= 0) {
 907     assert(end_con < 0, "not two cons");
 908     end_con = align_up(abase + ((slice_idx_con + slice_len_con) << scale),
 909                        BytesPerLong);
 910   }
 911 
 912   if (start_con >= 0 && end_con >= 0) {
 913     // Constant start and end.  Simple.
 914     mem = ClearArrayNode::clear_memory(ctrl, mem, dest,
 915                                        start_con, end_con, &_igvn);
 916   } else if (start_con >= 0 && dest_size != top()) {
 917     // Constant start, pre-rounded end after the tail of the array.
 918     Node* end = dest_size;
 919     mem = ClearArrayNode::clear_memory(ctrl, mem, dest,
 920                                        start_con, end, &_igvn);
 921   } else if (start_con >= 0 && slice_len != top()) {
 922     // Constant start, non-constant end.  End needs rounding up.
 923     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
 924     intptr_t end_base  = abase + (slice_idx_con << scale);
 925     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
 926     Node*    end       = ConvI2X(slice_len);
 927     if (scale != 0)
 928       end = transform_later(new LShiftXNode(end, intcon(scale) ));
 929     end_base += end_round;
 930     end = transform_later(new AddXNode(end, MakeConX(end_base)) );
 931     end = transform_later(new AndXNode(end, MakeConX(~end_round)) );
 932     mem = ClearArrayNode::clear_memory(ctrl, mem, dest,
 933                                        start_con, end, &_igvn);
 934   } else if (start_con < 0 && dest_size != top()) {
 935     // Non-constant start, pre-rounded end after the tail of the array.
 936     // This is almost certainly a "round-to-end" operation.
 937     Node* start = slice_idx;
 938     start = ConvI2X(start);
 939     if (scale != 0)
 940       start = transform_later(new LShiftXNode( start, intcon(scale) ));
 941     start = transform_later(new AddXNode(start, MakeConX(abase)) );
 942     if ((bump_bit | clear_low) != 0) {
 943       int to_clear = (bump_bit | clear_low);
 944       // Align up mod 8, then store a jint zero unconditionally
 945       // just before the mod-8 boundary.
 946       if (((abase + bump_bit) & ~to_clear) - bump_bit
 947           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
 948         bump_bit = 0;
 949         assert((abase & to_clear) == 0, "array base must be long-aligned");
 950       } else {
 951         // Bump 'start' up to (or past) the next jint boundary:
 952         start = transform_later( new AddXNode(start, MakeConX(bump_bit)) );
 953         assert((abase & clear_low) == 0, "array base must be int-aligned");
 954       }
 955       // Round bumped 'start' down to jlong boundary in body of array.
 956       start = transform_later(new AndXNode(start, MakeConX(~to_clear)) );
 957       if (bump_bit != 0) {
 958         // Store a zero to the immediately preceding jint:
 959         Node* x1 = transform_later(new AddXNode(start, MakeConX(-bump_bit)) );
 960         Node* p1 = basic_plus_adr(dest, x1);
 961         mem = StoreNode::make(_igvn, ctrl, mem, p1, adr_type, intcon(0), T_INT, MemNode::unordered);






 962         mem = transform_later(mem);
 963       }
 964     }
 965     Node* end = dest_size; // pre-rounded
 966     mem = ClearArrayNode::clear_memory(ctrl, mem, dest,
 967                                        start, end, &_igvn);
 968   } else {
 969     // Non-constant start, unrounded non-constant end.
 970     // (Nobody zeroes a random midsection of an array using this routine.)
 971     ShouldNotReachHere();       // fix caller
 972   }
 973 
 974   // Done.
 975   merge_mem->set_memory_at(alias_idx, mem);
 976 }
 977 
 978 bool PhaseMacroExpand::generate_block_arraycopy(Node** ctrl, MergeMemNode** mem, Node* io,
 979                                                 const TypePtr* adr_type,
 980                                                 BasicType basic_elem_type,
 981                                                 AllocateNode* alloc,
 982                                                 Node* src,  Node* src_offset,
 983                                                 Node* dest, Node* dest_offset,
 984                                                 Node* dest_size, bool dest_uninitialized) {
 985   // See if there is an advantage from block transfer.
 986   int scale = exact_log2(type2aelembytes(basic_elem_type));

1062   const TypeFunc* call_type = OptoRuntime::slow_arraycopy_Type();
1063   CallNode* call = new CallStaticJavaNode(call_type, OptoRuntime::slow_arraycopy_Java(),
1064                                           "slow_arraycopy", TypePtr::BOTTOM);
1065 
1066   call->init_req(TypeFunc::Control, *ctrl);
1067   call->init_req(TypeFunc::I_O    , *io);
1068   call->init_req(TypeFunc::Memory , mem);
1069   call->init_req(TypeFunc::ReturnAdr, top());
1070   call->init_req(TypeFunc::FramePtr, top());
1071   call->init_req(TypeFunc::Parms+0, src);
1072   call->init_req(TypeFunc::Parms+1, src_offset);
1073   call->init_req(TypeFunc::Parms+2, dest);
1074   call->init_req(TypeFunc::Parms+3, dest_offset);
1075   call->init_req(TypeFunc::Parms+4, copy_length);
1076   call->copy_call_debug_info(&_igvn, ac);
1077 
1078   call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
1079   _igvn.replace_node(ac, call);
1080   transform_later(call);
1081 
1082   call->extract_projections(&_callprojs, false /*separate_io_proj*/, false /*do_asserts*/);
1083   *ctrl = _callprojs.fallthrough_catchproj->clone();
1084   transform_later(*ctrl);
1085 
1086   Node* m = _callprojs.fallthrough_memproj->clone();
1087   transform_later(m);
1088 
1089   uint alias_idx = C->get_alias_index(adr_type);
1090   MergeMemNode* out_mem;
1091   if (alias_idx != Compile::AliasIdxBot) {
1092     out_mem = MergeMemNode::make(mem);
1093     out_mem->set_memory_at(alias_idx, m);
1094   } else {
1095     out_mem = MergeMemNode::make(m);
1096   }
1097   transform_later(out_mem);
1098 
1099   // When src is negative and arraycopy is before an infinite loop,_callprojs.fallthrough_ioproj
1100   // could be null. Skip clone and update null fallthrough_ioproj.
1101   if (_callprojs.fallthrough_ioproj != nullptr) {
1102     *io = _callprojs.fallthrough_ioproj->clone();
1103     transform_later(*io);
1104   } else {
1105     *io = nullptr;
1106   }
1107 
1108   return out_mem;
1109 }
1110 
1111 // Helper function; generates code for cases requiring runtime checks.
1112 Node* PhaseMacroExpand::generate_checkcast_arraycopy(Node** ctrl, MergeMemNode** mem,
1113                                                      const TypePtr* adr_type,
1114                                                      Node* dest_elem_klass,
1115                                                      Node* src,  Node* src_offset,
1116                                                      Node* dest, Node* dest_offset,
1117                                                      Node* copy_length, bool dest_uninitialized) {
1118   if ((*ctrl)->is_top())  return nullptr;
1119 
1120   address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
1121   if (copyfunc_addr == nullptr) { // Stub was not generated, go slow path.
1122     return nullptr;

1214   if (exit_block) {
1215     exit_block->init_req(2, *ctrl);
1216 
1217     // Memory edge corresponding to stub_region.
1218     result_memory->init_req(2, *mem);
1219 
1220     uint alias_idx = C->get_alias_index(adr_type);
1221     if (alias_idx != Compile::AliasIdxBot) {
1222       *mem = MergeMemNode::make(*mem);
1223       (*mem)->set_memory_at(alias_idx, result_memory);
1224     } else {
1225       *mem = MergeMemNode::make(result_memory);
1226     }
1227     transform_later(*mem);
1228     *ctrl = exit_block;
1229     return true;
1230   }
1231   return false;
1232 }
1233 




































1234 #undef XTOP
1235 
1236 void PhaseMacroExpand::expand_arraycopy_node(ArrayCopyNode *ac) {
1237   Node* ctrl = ac->in(TypeFunc::Control);
1238   Node* io = ac->in(TypeFunc::I_O);
1239   Node* src = ac->in(ArrayCopyNode::Src);
1240   Node* src_offset = ac->in(ArrayCopyNode::SrcPos);
1241   Node* dest = ac->in(ArrayCopyNode::Dest);
1242   Node* dest_offset = ac->in(ArrayCopyNode::DestPos);
1243   Node* length = ac->in(ArrayCopyNode::Length);
1244   MergeMemNode* merge_mem = nullptr;
1245 
1246   if (ac->is_clonebasic()) {
1247     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1248     bs->clone_at_expansion(this, ac);
1249     return;
1250   } else if (ac->is_copyof() || ac->is_copyofrange() || ac->is_clone_oop_array()) {
1251     Node* mem = ac->in(TypeFunc::Memory);
1252     merge_mem = MergeMemNode::make(mem);
1253     transform_later(merge_mem);













1254 
1255     AllocateArrayNode* alloc = nullptr;

1256     if (ac->is_alloc_tightly_coupled()) {
1257       alloc = AllocateArrayNode::Ideal_array_allocation(dest);
1258       assert(alloc != nullptr, "expect alloc");

1259     }
1260 
1261     const TypePtr* adr_type = _igvn.type(dest)->is_oopptr()->add_offset(Type::OffsetBot);
1262     if (ac->_dest_type != TypeOopPtr::BOTTOM) {
1263       adr_type = ac->_dest_type->add_offset(Type::OffsetBot)->is_ptr();













1264     }



1265     generate_arraycopy(ac, alloc, &ctrl, merge_mem, &io,
1266                        adr_type, T_OBJECT,
1267                        src, src_offset, dest, dest_offset, length,

1268                        true, ac->has_negative_length_guard());
1269 
1270     return;
1271   }
1272 
1273   AllocateArrayNode* alloc = nullptr;
1274   if (ac->is_alloc_tightly_coupled()) {
1275     alloc = AllocateArrayNode::Ideal_array_allocation(dest);
1276     assert(alloc != nullptr, "expect alloc");
1277   }
1278 
1279   assert(ac->is_arraycopy() || ac->is_arraycopy_validated(), "should be an arraycopy");
1280 
1281   // Compile time checks.  If any of these checks cannot be verified at compile time,
1282   // we do not make a fast path for this call.  Instead, we let the call remain as it
1283   // is.  The checks we choose to mandate at compile time are:
1284   //
1285   // (1) src and dest are arrays.
1286   const Type* src_type = src->Value(&_igvn);
1287   const Type* dest_type = dest->Value(&_igvn);
1288   const TypeAryPtr* top_src = src_type->isa_aryptr();
1289   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
1290 
1291   BasicType src_elem = T_CONFLICT;
1292   BasicType dest_elem = T_CONFLICT;
1293 
1294   if (top_src != nullptr && top_src->elem() != Type::BOTTOM) {
1295     src_elem = top_src->elem()->array_element_basic_type();
1296   }
1297   if (top_dest != nullptr && top_dest->elem() != Type::BOTTOM) {
1298     dest_elem = top_dest->elem()->array_element_basic_type();
1299   }
1300   if (is_reference_type(src_elem, true)) src_elem = T_OBJECT;
1301   if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT;
1302 
1303   if (ac->is_arraycopy_validated() &&
1304       dest_elem != T_CONFLICT &&
1305       src_elem == T_CONFLICT) {
1306     src_elem = dest_elem;
1307   }
1308 
1309   if (src_elem == T_CONFLICT || dest_elem == T_CONFLICT) {
1310     // Conservatively insert a memory barrier on all memory slices.
1311     // Do not let writes into the source float below the arraycopy.
1312     {
1313       Node* mem = ac->in(TypeFunc::Memory);
1314       insert_mem_bar(&ctrl, &mem, Op_MemBarCPUOrder);
1315 
1316       merge_mem = MergeMemNode::make(mem);
1317       transform_later(merge_mem);
1318     }
1319 
1320     // Call StubRoutines::generic_arraycopy stub.
1321     Node* mem = generate_arraycopy(ac, nullptr, &ctrl, merge_mem, &io,
1322                                    TypeRawPtr::BOTTOM, T_CONFLICT,
1323                                    src, src_offset, dest, dest_offset, length,
1324                                    // If a  negative length guard was generated for the ArrayCopyNode,
1325                                    // the length of the array can never be negative.
1326                                    false, ac->has_negative_length_guard());

1327     return;
1328   }
1329 
1330   assert(!ac->is_arraycopy_validated() || (src_elem == dest_elem && dest_elem != T_VOID), "validated but different basic types");
1331 
1332   // (2) src and dest arrays must have elements of the same BasicType
1333   // Figure out the size and type of the elements we will be copying.
1334   if (src_elem != dest_elem || dest_elem == T_VOID) {







1335     // The component types are not the same or are not recognized.  Punt.
1336     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
1337     {
1338       Node* mem = ac->in(TypeFunc::Memory);
1339       merge_mem = generate_slow_arraycopy(ac, &ctrl, mem, &io, TypePtr::BOTTOM, src, src_offset, dest, dest_offset, length, false);
1340     }
1341 
1342     _igvn.replace_node(_callprojs.fallthrough_memproj, merge_mem);
1343     if (_callprojs.fallthrough_ioproj != nullptr) {
1344       _igvn.replace_node(_callprojs.fallthrough_ioproj, io);
1345     }
1346     _igvn.replace_node(_callprojs.fallthrough_catchproj, ctrl);
1347     return;
1348   }
1349 
1350   //---------------------------------------------------------------------------
1351   // We will make a fast path for this call to arraycopy.
1352 
1353   // We have the following tests left to perform:
1354   //
1355   // (3) src and dest must not be null.
1356   // (4) src_offset must not be negative.
1357   // (5) dest_offset must not be negative.
1358   // (6) length must not be negative.
1359   // (7) src_offset + length must not exceed length of src.
1360   // (8) dest_offset + length must not exceed length of dest.
1361   // (9) each element of an oop array must be assignable
1362 
1363   {
1364     Node* mem = ac->in(TypeFunc::Memory);
1365     merge_mem = MergeMemNode::make(mem);
1366     transform_later(merge_mem);

1367   }


1368 
1369   RegionNode* slow_region = new RegionNode(1);
1370   transform_later(slow_region);
1371 
1372   if (!ac->is_arraycopy_validated()) {
1373     // (3) operands must not be null
1374     // We currently perform our null checks with the null_check routine.
1375     // This means that the null exceptions will be reported in the caller
1376     // rather than (correctly) reported inside of the native arraycopy call.
1377     // This should be corrected, given time.  We do our null check with the
1378     // stack pointer restored.
1379     // null checks done library_call.cpp
1380 
1381     // (4) src_offset must not be negative.
1382     generate_negative_guard(&ctrl, src_offset, slow_region);
1383 
1384     // (5) dest_offset must not be negative.
1385     generate_negative_guard(&ctrl, dest_offset, slow_region);
1386 
1387     // (6) length must not be negative (moved to generate_arraycopy()).
1388     // generate_negative_guard(length, slow_region);
1389 
1390     // (7) src_offset + length must not exceed length of src.
1391     Node* alen = ac->in(ArrayCopyNode::SrcLen);
1392     assert(alen != nullptr, "need src len");
1393     generate_limit_guard(&ctrl,
1394                          src_offset, length,
1395                          alen,
1396                          slow_region);
1397 
1398     // (8) dest_offset + length must not exceed length of dest.
1399     alen = ac->in(ArrayCopyNode::DestLen);
1400     assert(alen != nullptr, "need dest len");
1401     generate_limit_guard(&ctrl,
1402                          dest_offset, length,
1403                          alen,
1404                          slow_region);
1405 
1406     // (9) each element of an oop array must be assignable
1407     // The generate_arraycopy subroutine checks this.















1408   }

1409   // This is where the memory effects are placed:
1410   const TypePtr* adr_type = nullptr;
1411   if (ac->_dest_type != TypeOopPtr::BOTTOM) {




1412     adr_type = ac->_dest_type->add_offset(Type::OffsetBot)->is_ptr();
1413   } else {
1414     adr_type = TypeAryPtr::get_array_body_type(dest_elem);
1415   }
1416 
1417   generate_arraycopy(ac, alloc, &ctrl, merge_mem, &io,
1418                      adr_type, dest_elem,
1419                      src, src_offset, dest, dest_offset, length,

1420                      // If a  negative length guard was generated for the ArrayCopyNode,
1421                      // the length of the array can never be negative.
1422                      false, ac->has_negative_length_guard(), slow_region);

1423 }

   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "ci/ciFlatArrayKlass.hpp"
  26 #include "gc/shared/barrierSet.hpp"
  27 #include "gc/shared/tlab_globals.hpp"
  28 #include "opto/arraycopynode.hpp"
  29 #include "oops/objArrayKlass.hpp"
  30 #include "opto/convertnode.hpp"
  31 #include "opto/vectornode.hpp"
  32 #include "opto/graphKit.hpp"
  33 #include "opto/macro.hpp"
  34 #include "opto/runtime.hpp"
  35 #include "opto/castnode.hpp"
  36 #include "runtime/stubRoutines.hpp"
  37 #include "utilities/align.hpp"
  38 #include "utilities/powerOfTwo.hpp"
  39 
  40 void PhaseMacroExpand::insert_mem_bar(Node** ctrl, Node** mem, int opcode, Node* precedent) {
  41   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
  42   mb->init_req(TypeFunc::Control, *ctrl);
  43   mb->init_req(TypeFunc::Memory, *mem);
  44   transform_later(mb);
  45   *ctrl = new ProjNode(mb,TypeFunc::Control);

 122   }
 123 
 124   IfNode* iff = new IfNode(*ctrl, test, true_prob, COUNT_UNKNOWN);
 125   transform_later(iff);
 126 
 127   Node* if_slow = new IfTrueNode(iff);
 128   transform_later(if_slow);
 129 
 130   if (region != nullptr) {
 131     region->add_req(if_slow);
 132   }
 133 
 134   Node* if_fast = new IfFalseNode(iff);
 135   transform_later(if_fast);
 136 
 137   *ctrl = if_fast;
 138 
 139   return if_slow;
 140 }
 141 
 142 Node* PhaseMacroExpand::generate_slow_guard(Node** ctrl, Node* test, RegionNode* region) {
 143   return generate_guard(ctrl, test, region, PROB_UNLIKELY_MAG(3));
 144 }
 145 
 146 inline Node* PhaseMacroExpand::generate_fair_guard(Node** ctrl, Node* test, RegionNode* region) {
 147   return generate_guard(ctrl, test, region, PROB_FAIR);
 148 }
 149 
 150 void PhaseMacroExpand::generate_negative_guard(Node** ctrl, Node* index, RegionNode* region) {
 151   if ((*ctrl)->is_top())
 152     return;                // already stopped
 153   if (_igvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 154     return;                // index is already adequately typed
 155   Node* cmp_lt = new CmpINode(index, intcon(0));
 156   transform_later(cmp_lt);
 157   Node* bol_lt = new BoolNode(cmp_lt, BoolTest::lt);
 158   transform_later(bol_lt);
 159   generate_guard(ctrl, bol_lt, region, PROB_MIN);
 160 }
 161 
 162 void PhaseMacroExpand::generate_limit_guard(Node** ctrl, Node* offset, Node* subseq_length, Node* array_length, RegionNode* region) {
 163   if ((*ctrl)->is_top())
 164     return;                // already stopped
 165   bool zero_offset = _igvn.type(offset) == TypeInt::ZERO;
 166   if (zero_offset && subseq_length->eqv_uncast(array_length))
 167     return;                // common case of whole-array copy
 168   Node* last = subseq_length;
 169   if (!zero_offset) {            // last += offset

 270 
 271   *ctrl = stub_block;
 272 }
 273 
 274 
 275 Node* PhaseMacroExpand::generate_nonpositive_guard(Node** ctrl, Node* index, bool never_negative) {
 276   if ((*ctrl)->is_top())  return nullptr;
 277 
 278   if (_igvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
 279     return nullptr;                // index is already adequately typed
 280   Node* cmp_le = new CmpINode(index, intcon(0));
 281   transform_later(cmp_le);
 282   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
 283   Node* bol_le = new BoolNode(cmp_le, le_or_eq);
 284   transform_later(bol_le);
 285   Node* is_notp = generate_guard(ctrl, bol_le, nullptr, PROB_MIN);
 286 
 287   return is_notp;
 288 }
 289 
 290 Node* PhaseMacroExpand::mark_word_test(Node** ctrl, Node* obj, MergeMemNode* mem, uintptr_t mask_val, RegionNode* region) {
 291   // Load markword and check if obj is locked
 292   Node* mark = make_load(nullptr, mem->memory_at(Compile::AliasIdxRaw), obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
 293   Node* locked_bit = MakeConX(markWord::unlocked_value);
 294   locked_bit = transform_later(new AndXNode(locked_bit, mark));
 295   Node* cmp = transform_later(new CmpXNode(locked_bit, MakeConX(0)));
 296   Node* is_unlocked = transform_later(new BoolNode(cmp, BoolTest::ne));
 297   IfNode* iff = transform_later(new IfNode(*ctrl, is_unlocked, PROB_MAX, COUNT_UNKNOWN))->as_If();
 298   Node* locked_region = transform_later(new RegionNode(3));
 299   Node* mark_phi = transform_later(new PhiNode(locked_region, TypeX_X));
 300 
 301   // Unlocked: Use bits from mark word
 302   locked_region->init_req(1, transform_later(new IfTrueNode(iff)));
 303   mark_phi->init_req(1, mark);
 304 
 305   // Locked: Load prototype header from klass
 306   *ctrl = transform_later(new IfFalseNode(iff));
 307   // Make loads control dependent to make sure they are only executed if array is locked
 308   Node* klass_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
 309   Node* klass = transform_later(LoadKlassNode::make(_igvn, C->immutable_memory(), klass_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT));
 310   Node* proto_adr = basic_plus_adr(klass, in_bytes(Klass::prototype_header_offset()));
 311   Node* proto = transform_later(LoadNode::make(_igvn, *ctrl, C->immutable_memory(), proto_adr, proto_adr->bottom_type()->is_ptr(), TypeX_X, TypeX_X->basic_type(), MemNode::unordered));
 312 
 313   locked_region->init_req(2, *ctrl);
 314   mark_phi->init_req(2, proto);
 315   *ctrl = locked_region;
 316 
 317   // Now check if mark word bits are set
 318   Node* mask = MakeConX(mask_val);
 319   Node* masked = transform_later(new AndXNode(mark_phi, mask));
 320   cmp = transform_later(new CmpXNode(masked, mask));
 321   Node* bol = transform_later(new BoolNode(cmp, BoolTest::eq));
 322   return generate_fair_guard(ctrl, bol, region);
 323 }
 324 
 325 Node* PhaseMacroExpand::generate_flat_array_guard(Node** ctrl, Node* array, MergeMemNode* mem, RegionNode* region) {
 326   return mark_word_test(ctrl, array, mem, markWord::flat_array_bit_in_place, region);
 327 }
 328 
 329 Node* PhaseMacroExpand::generate_null_free_array_guard(Node** ctrl, Node* array, MergeMemNode* mem, RegionNode* region) {
 330   return mark_word_test(ctrl, array, mem, markWord::null_free_array_bit_in_place, region);
 331 }
 332 
 333 void PhaseMacroExpand::finish_arraycopy_call(Node* call, Node** ctrl, MergeMemNode** mem, const TypePtr* adr_type) {
 334   transform_later(call);
 335 
 336   *ctrl = new ProjNode(call,TypeFunc::Control);
 337   transform_later(*ctrl);
 338   Node* newmem = new ProjNode(call, TypeFunc::Memory);
 339   transform_later(newmem);
 340 
 341   uint alias_idx = C->get_alias_index(adr_type);
 342   if (alias_idx != Compile::AliasIdxBot) {
 343     *mem = MergeMemNode::make(*mem);
 344     (*mem)->set_memory_at(alias_idx, newmem);
 345   } else {
 346     *mem = MergeMemNode::make(newmem);
 347   }
 348   transform_later(*mem);
 349 }
 350 
 351 address PhaseMacroExpand::basictype2arraycopy(BasicType t,
 352                                               Node* src_offset,

 407 //       }
 408 //     }
 409 //     // adjust params for remaining work:
 410 //     if (slowval != -1) {
 411 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
 412 //     }
 413 //   slow_region:
 414 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
 415 //     return  // via slow_call_path
 416 //
 417 // This routine is used from several intrinsics:  System.arraycopy,
 418 // Object.clone (the array subcase), and Arrays.copyOf[Range].
 419 //
 420 Node* PhaseMacroExpand::generate_arraycopy(ArrayCopyNode *ac, AllocateArrayNode* alloc,
 421                                            Node** ctrl, MergeMemNode* mem, Node** io,
 422                                            const TypePtr* adr_type,
 423                                            BasicType basic_elem_type,
 424                                            Node* src,  Node* src_offset,
 425                                            Node* dest, Node* dest_offset,
 426                                            Node* copy_length,
 427                                            Node* dest_length,
 428                                            bool disjoint_bases,
 429                                            bool length_never_negative,
 430                                            RegionNode* slow_region) {
 431   if (slow_region == nullptr) {
 432     slow_region = new RegionNode(1);
 433     transform_later(slow_region);
 434   }
 435 
 436   Node* original_dest = dest;
 437   bool  dest_needs_zeroing   = false;
 438   bool  acopy_to_uninitialized = false;
 439   Node* default_value = nullptr;
 440   Node* raw_default_value = nullptr;
 441 
 442   // See if this is the initialization of a newly-allocated array.
 443   // If so, we will take responsibility here for initializing it to zero.
 444   // (Note:  Because tightly_coupled_allocation performs checks on the
 445   // out-edges of the dest, we need to avoid making derived pointers
 446   // from it until we have checked its uses.)
 447   if (ReduceBulkZeroing
 448       && !(UseTLAB && ZeroTLAB) // pointless if already zeroed
 449       && basic_elem_type != T_CONFLICT // avoid corner case
 450       && !src->eqv_uncast(dest)
 451       && alloc != nullptr
 452       && _igvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0) {
 453     assert(ac->is_alloc_tightly_coupled(), "sanity");
 454     // acopy to uninitialized tightly coupled allocations
 455     // needs zeroing outside the copy range
 456     // and the acopy itself will be to uninitialized memory
 457     acopy_to_uninitialized = true;
 458     if (alloc->maybe_set_complete(&_igvn)) {
 459       // "You break it, you buy it."
 460       InitializeNode* init = alloc->initialization();
 461       assert(init->is_complete(), "we just did this");
 462       init->set_complete_with_arraycopy();
 463       assert(dest->is_CheckCastPP(), "sanity");
 464       assert(dest->in(0)->in(0) == init, "dest pinned");
 465       adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
 466       // From this point on, every exit path is responsible for
 467       // initializing any non-copied parts of the object to zero.
 468       // Also, if this flag is set we make sure that arraycopy interacts properly
 469       // with G1, eliding pre-barriers. See CR 6627983.
 470       dest_needs_zeroing = true;
 471       default_value = alloc->in(AllocateNode::DefaultValue);
 472       raw_default_value = alloc->in(AllocateNode::RawDefaultValue);
 473     } else {
 474       // dest_need_zeroing = false;
 475     }
 476   } else {
 477     // No zeroing elimination needed here.
 478     alloc                  = nullptr;
 479     acopy_to_uninitialized = false;
 480     //original_dest        = dest;
 481     //dest_needs_zeroing   = false;
 482   }
 483 
 484   uint alias_idx = C->get_alias_index(adr_type);
 485 
 486   // Results are placed here:
 487   enum { fast_path        = 1,  // normal void-returning assembly stub
 488          checked_path     = 2,  // special assembly stub with cleanup
 489          slow_call_path   = 3,  // something went wrong; call the VM
 490          zero_path        = 4,  // bypass when length of copy is zero
 491          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
 492          PATH_LIMIT       = 6

 522     checked_i_o     = *io;
 523     checked_mem     = mem->memory_at(alias_idx);
 524     checked_value   = cv;
 525     *ctrl = top();
 526   }
 527 
 528   Node* not_pos = generate_nonpositive_guard(ctrl, copy_length, length_never_negative);
 529   if (not_pos != nullptr) {
 530     Node* local_ctrl = not_pos, *local_io = *io;
 531     MergeMemNode* local_mem = MergeMemNode::make(mem);
 532     transform_later(local_mem);
 533 
 534     // (6) length must not be negative.
 535     if (!length_never_negative) {
 536       generate_negative_guard(&local_ctrl, copy_length, slow_region);
 537     }
 538 
 539     // copy_length is 0.
 540     if (dest_needs_zeroing) {
 541       assert(!local_ctrl->is_top(), "no ctrl?");

 542       if (copy_length->eqv_uncast(dest_length)
 543           || _igvn.find_int_con(dest_length, 1) <= 0) {
 544         // There is no zeroing to do. No need for a secondary raw memory barrier.
 545       } else {
 546         // Clear the whole thing since there are no source elements to copy.
 547         generate_clear_array(local_ctrl, local_mem,
 548                              adr_type, dest,
 549                              default_value, raw_default_value,
 550                              basic_elem_type,
 551                              intcon(0), nullptr,
 552                              alloc->in(AllocateNode::AllocSize));
 553         // Use a secondary InitializeNode as raw memory barrier.
 554         // Currently it is needed only on this path since other
 555         // paths have stub or runtime calls as raw memory barriers.
 556         MemBarNode* mb = MemBarNode::make(C, Op_Initialize,
 557                                           Compile::AliasIdxRaw,
 558                                           top());
 559         transform_later(mb);
 560         mb->set_req(TypeFunc::Control,local_ctrl);
 561         mb->set_req(TypeFunc::Memory, local_mem->memory_at(Compile::AliasIdxRaw));
 562         local_ctrl = transform_later(new ProjNode(mb, TypeFunc::Control));
 563         local_mem->set_memory_at(Compile::AliasIdxRaw, transform_later(new ProjNode(mb, TypeFunc::Memory)));
 564 
 565         InitializeNode* init = mb->as_Initialize();
 566         init->set_complete(&_igvn);  // (there is no corresponding AllocateNode)
 567       }
 568     }
 569 
 570     // Present the results of the fast call.
 571     result_region->init_req(zero_path, local_ctrl);
 572     result_i_o   ->init_req(zero_path, local_io);
 573     result_memory->init_req(zero_path, local_mem->memory_at(alias_idx));
 574   }
 575 
 576   if (!(*ctrl)->is_top() && dest_needs_zeroing) {
 577     // We have to initialize the *uncopied* part of the array to zero.
 578     // The copy destination is the slice dest[off..off+len].  The other slices
 579     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
 580     Node* dest_size   = alloc->in(AllocateNode::AllocSize);

 581     Node* dest_tail   = transform_later( new AddINode(dest_offset, copy_length));
 582 
 583     // If there is a head section that needs zeroing, do it now.
 584     if (_igvn.find_int_con(dest_offset, -1) != 0) {
 585       generate_clear_array(*ctrl, mem,
 586                            adr_type, dest,
 587                            default_value, raw_default_value,
 588                            basic_elem_type,
 589                            intcon(0), dest_offset,
 590                            nullptr);
 591     }
 592 
 593     // Next, perform a dynamic check on the tail length.
 594     // It is often zero, and we can win big if we prove this.
 595     // There are two wins:  Avoid generating the ClearArray
 596     // with its attendant messy index arithmetic, and upgrade
 597     // the copy to a more hardware-friendly word size of 64 bits.
 598     Node* tail_ctl = nullptr;
 599     if (!(*ctrl)->is_top() && !dest_tail->eqv_uncast(dest_length)) {
 600       Node* cmp_lt   = transform_later( new CmpINode(dest_tail, dest_length) );
 601       Node* bol_lt   = transform_later( new BoolNode(cmp_lt, BoolTest::lt) );
 602       tail_ctl = generate_slow_guard(ctrl, bol_lt, nullptr);
 603       assert(tail_ctl != nullptr || !(*ctrl)->is_top(), "must be an outcome");
 604     }
 605 
 606     // At this point, let's assume there is no tail.
 607     if (!(*ctrl)->is_top() && alloc != nullptr && basic_elem_type != T_OBJECT) {
 608       // There is no tail.  Try an upgrade to a 64-bit copy.

 617                                          src, src_offset, dest, dest_offset,
 618                                          dest_size, acopy_to_uninitialized);
 619         if (didit) {
 620           // Present the results of the block-copying fast call.
 621           result_region->init_req(bcopy_path, local_ctrl);
 622           result_i_o   ->init_req(bcopy_path, local_io);
 623           result_memory->init_req(bcopy_path, local_mem->memory_at(alias_idx));
 624         }
 625       }
 626       if (didit) {
 627         *ctrl = top();     // no regular fast path
 628       }
 629     }
 630 
 631     // Clear the tail, if any.
 632     if (tail_ctl != nullptr) {
 633       Node* notail_ctl = (*ctrl)->is_top() ? nullptr : *ctrl;
 634       *ctrl = tail_ctl;
 635       if (notail_ctl == nullptr) {
 636         generate_clear_array(*ctrl, mem,
 637                              adr_type, dest,
 638                              default_value, raw_default_value,
 639                              basic_elem_type,
 640                              dest_tail, nullptr,
 641                              dest_size);
 642       } else {
 643         // Make a local merge.
 644         Node* done_ctl = transform_later(new RegionNode(3));
 645         Node* done_mem = transform_later(new PhiNode(done_ctl, Type::MEMORY, adr_type));
 646         done_ctl->init_req(1, notail_ctl);
 647         done_mem->init_req(1, mem->memory_at(alias_idx));
 648         generate_clear_array(*ctrl, mem,
 649                              adr_type, dest,
 650                              default_value, raw_default_value,
 651                              basic_elem_type,
 652                              dest_tail, nullptr,
 653                              dest_size);
 654         done_ctl->init_req(2, *ctrl);
 655         done_mem->init_req(2, mem->memory_at(alias_idx));
 656         *ctrl = done_ctl;
 657         mem->set_memory_at(alias_idx, done_mem);
 658       }
 659     }
 660   }
 661 
 662   BasicType copy_type = basic_elem_type;
 663   assert(basic_elem_type != T_ARRAY, "caller must fix this");
 664   if (!(*ctrl)->is_top() && copy_type == T_OBJECT) {
 665     // If src and dest have compatible element types, we can copy bits.
 666     // Types S[] and D[] are compatible if D is a supertype of S.
 667     //
 668     // If they are not, we will use checked_oop_disjoint_arraycopy,
 669     // which performs a fast optimistic per-oop check, and backs off
 670     // further to JVM_ArrayCopy on the first per-oop check that fails.
 671     // (Actually, we don't move raw bits only; the GC requires card marks.)

 809       Node* length_minus  = new SubINode(copy_length, slow_offset);
 810       transform_later(length_minus);
 811 
 812       // Tweak the node variables to adjust the code produced below:
 813       src_offset  = src_off_plus;
 814       dest_offset = dest_off_plus;
 815       copy_length = length_minus;
 816     }
 817   }
 818   *ctrl = slow_control;
 819   if (!(*ctrl)->is_top()) {
 820     Node* local_ctrl = *ctrl, *local_io = slow_i_o;
 821     MergeMemNode* local_mem = MergeMemNode::make(mem);
 822     transform_later(local_mem);
 823 
 824     // Generate the slow path, if needed.
 825     local_mem->set_memory_at(alias_idx, slow_mem);
 826 
 827     if (dest_needs_zeroing) {
 828       generate_clear_array(local_ctrl, local_mem,
 829                            adr_type, dest,
 830                            default_value, raw_default_value,
 831                            basic_elem_type,
 832                            intcon(0), nullptr,
 833                            alloc->in(AllocateNode::AllocSize));
 834     }
 835 
 836     local_mem = generate_slow_arraycopy(ac,
 837                                         &local_ctrl, local_mem, &local_io,
 838                                         adr_type,
 839                                         src, src_offset, dest, dest_offset,
 840                                         copy_length, /*dest_uninitialized*/false);
 841 
 842     result_region->init_req(slow_call_path, local_ctrl);
 843     result_i_o   ->init_req(slow_call_path, local_io);
 844     result_memory->init_req(slow_call_path, local_mem->memory_at(alias_idx));
 845   } else {
 846     ShouldNotReachHere(); // no call to generate_slow_arraycopy:
 847                           // projections were not extracted
 848   }
 849 
 850   // Remove unused edges.
 851   for (uint i = 1; i < result_region->req(); i++) {

 873   // The next memory barrier is added to avoid it. If the arraycopy can be
 874   // optimized away (which it can, sometimes) then we can manually remove
 875   // the membar also.
 876   //
 877   // Do not let reads from the cloned object float above the arraycopy.
 878   if (alloc != nullptr && !alloc->initialization()->does_not_escape()) {
 879     // Do not let stores that initialize this object be reordered with
 880     // a subsequent store that would make this object accessible by
 881     // other threads.
 882     insert_mem_bar(ctrl, &out_mem, Op_MemBarStoreStore);
 883   } else {
 884     insert_mem_bar(ctrl, &out_mem, Op_MemBarCPUOrder);
 885   }
 886 
 887   if (is_partial_array_copy) {
 888     assert((*ctrl)->is_Proj(), "MemBar control projection");
 889     assert((*ctrl)->in(0)->isa_MemBar(), "MemBar node");
 890     (*ctrl)->in(0)->isa_MemBar()->set_trailing_partial_array_copy();
 891   }
 892 
 893   _igvn.replace_node(_callprojs->fallthrough_memproj, out_mem);
 894   if (_callprojs->fallthrough_ioproj != nullptr) {
 895     _igvn.replace_node(_callprojs->fallthrough_ioproj, *io);
 896   }
 897   _igvn.replace_node(_callprojs->fallthrough_catchproj, *ctrl);
 898 
 899 #ifdef ASSERT
 900   const TypeOopPtr* dest_t = _igvn.type(dest)->is_oopptr();
 901   if (dest_t->is_known_instance() && !is_partial_array_copy) {
 902     ArrayCopyNode* ac = nullptr;
 903     assert(ArrayCopyNode::may_modify(dest_t, (*ctrl)->in(0)->as_MemBar(), &_igvn, ac), "dependency on arraycopy lost");
 904     assert(ac == nullptr, "no arraycopy anymore");
 905   }
 906 #endif
 907 
 908   return out_mem;
 909 }
 910 
 911 // Helper for initialization of arrays, creating a ClearArray.
 912 // It writes zero bits in [start..end), within the body of an array object.
 913 // The memory effects are all chained onto the 'adr_type' alias category.
 914 //
 915 // Since the object is otherwise uninitialized, we are free
 916 // to put a little "slop" around the edges of the cleared area,
 917 // as long as it does not go back into the array's header,
 918 // or beyond the array end within the heap.
 919 //
 920 // The lower edge can be rounded down to the nearest jint and the
 921 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
 922 //
 923 // Arguments:
 924 //   adr_type           memory slice where writes are generated
 925 //   dest               oop of the destination array
 926 //   basic_elem_type    element type of the destination
 927 //   slice_idx          array index of first element to store
 928 //   slice_len          number of elements to store (or null)
 929 //   dest_size          total size in bytes of the array object
 930 //
 931 // Exactly one of slice_len or dest_size must be non-null.
 932 // If dest_size is non-null, zeroing extends to the end of the object.
 933 // If slice_len is non-null, the slice_idx value must be a constant.
 934 void PhaseMacroExpand::generate_clear_array(Node* ctrl, MergeMemNode* merge_mem,
 935                                             const TypePtr* adr_type,
 936                                             Node* dest,
 937                                             Node* val,
 938                                             Node* raw_val,
 939                                             BasicType basic_elem_type,
 940                                             Node* slice_idx,
 941                                             Node* slice_len,
 942                                             Node* dest_size) {
 943   // one or the other but not both of slice_len and dest_size:
 944   assert((slice_len != nullptr? 1: 0) + (dest_size != nullptr? 1: 0) == 1, "");
 945   if (slice_len == nullptr)  slice_len = top();
 946   if (dest_size == nullptr)  dest_size = top();
 947 
 948   uint alias_idx = C->get_alias_index(adr_type);
 949 
 950   // operate on this memory slice:
 951   Node* mem = merge_mem->memory_at(alias_idx); // memory slice to operate on
 952 
 953   // scaling and rounding of indexes:
 954   int scale = exact_log2(type2aelembytes(basic_elem_type));
 955   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
 956   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
 957   int bump_bit  = (-1 << scale) & BytesPerInt;
 958 
 959   // determine constant starts and ends
 960   const intptr_t BIG_NEG = -128;
 961   assert(BIG_NEG + 2*abase < 0, "neg enough");
 962   intptr_t slice_idx_con = (intptr_t) _igvn.find_int_con(slice_idx, BIG_NEG);
 963   intptr_t slice_len_con = (intptr_t) _igvn.find_int_con(slice_len, BIG_NEG);
 964   if (slice_len_con == 0) {
 965     return;                     // nothing to do here
 966   }
 967   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
 968   intptr_t end_con   = _igvn.find_intptr_t_con(dest_size, -1);
 969   if (slice_idx_con >= 0 && slice_len_con >= 0) {
 970     assert(end_con < 0, "not two cons");
 971     end_con = align_up(abase + ((slice_idx_con + slice_len_con) << scale),
 972                        BytesPerLong);
 973   }
 974 
 975   if (start_con >= 0 && end_con >= 0) {
 976     // Constant start and end.  Simple.
 977     mem = ClearArrayNode::clear_memory(ctrl, mem, dest, val, raw_val,
 978                                        start_con, end_con, &_igvn);
 979   } else if (start_con >= 0 && dest_size != top()) {
 980     // Constant start, pre-rounded end after the tail of the array.
 981     Node* end = dest_size;
 982     mem = ClearArrayNode::clear_memory(ctrl, mem, dest, val, raw_val,
 983                                        start_con, end, &_igvn);
 984   } else if (start_con >= 0 && slice_len != top()) {
 985     // Constant start, non-constant end.  End needs rounding up.
 986     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
 987     intptr_t end_base  = abase + (slice_idx_con << scale);
 988     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
 989     Node*    end       = ConvI2X(slice_len);
 990     if (scale != 0)
 991       end = transform_later(new LShiftXNode(end, intcon(scale) ));
 992     end_base += end_round;
 993     end = transform_later(new AddXNode(end, MakeConX(end_base)) );
 994     end = transform_later(new AndXNode(end, MakeConX(~end_round)) );
 995     mem = ClearArrayNode::clear_memory(ctrl, mem, dest, val, raw_val,
 996                                        start_con, end, &_igvn);
 997   } else if (start_con < 0 && dest_size != top()) {
 998     // Non-constant start, pre-rounded end after the tail of the array.
 999     // This is almost certainly a "round-to-end" operation.
1000     Node* start = slice_idx;
1001     start = ConvI2X(start);
1002     if (scale != 0)
1003       start = transform_later(new LShiftXNode( start, intcon(scale) ));
1004     start = transform_later(new AddXNode(start, MakeConX(abase)) );
1005     if ((bump_bit | clear_low) != 0) {
1006       int to_clear = (bump_bit | clear_low);
1007       // Align up mod 8, then store a jint zero unconditionally
1008       // just before the mod-8 boundary.
1009       if (((abase + bump_bit) & ~to_clear) - bump_bit
1010           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
1011         bump_bit = 0;
1012         assert((abase & to_clear) == 0, "array base must be long-aligned");
1013       } else {
1014         // Bump 'start' up to (or past) the next jint boundary:
1015         start = transform_later( new AddXNode(start, MakeConX(bump_bit)) );
1016         assert((abase & clear_low) == 0, "array base must be int-aligned");
1017       }
1018       // Round bumped 'start' down to jlong boundary in body of array.
1019       start = transform_later(new AndXNode(start, MakeConX(~to_clear)) );
1020       if (bump_bit != 0) {
1021         // Store a zero to the immediately preceding jint:
1022         Node* x1 = transform_later(new AddXNode(start, MakeConX(-bump_bit)) );
1023         Node* p1 = basic_plus_adr(dest, x1);
1024         if (val == nullptr) {
1025           assert(raw_val == nullptr, "val may not be null");
1026           mem = StoreNode::make(_igvn, ctrl, mem, p1, adr_type, intcon(0), T_INT, MemNode::unordered);
1027         } else {
1028           assert(_igvn.type(val)->isa_narrowoop(), "should be narrow oop");
1029           mem = new StoreNNode(ctrl, mem, p1, adr_type, val, MemNode::unordered);
1030         }
1031         mem = transform_later(mem);
1032       }
1033     }
1034     Node* end = dest_size; // pre-rounded
1035     mem = ClearArrayNode::clear_memory(ctrl, mem, dest, raw_val,
1036                                        start, end, &_igvn);
1037   } else {
1038     // Non-constant start, unrounded non-constant end.
1039     // (Nobody zeroes a random midsection of an array using this routine.)
1040     ShouldNotReachHere();       // fix caller
1041   }
1042 
1043   // Done.
1044   merge_mem->set_memory_at(alias_idx, mem);
1045 }
1046 
1047 bool PhaseMacroExpand::generate_block_arraycopy(Node** ctrl, MergeMemNode** mem, Node* io,
1048                                                 const TypePtr* adr_type,
1049                                                 BasicType basic_elem_type,
1050                                                 AllocateNode* alloc,
1051                                                 Node* src,  Node* src_offset,
1052                                                 Node* dest, Node* dest_offset,
1053                                                 Node* dest_size, bool dest_uninitialized) {
1054   // See if there is an advantage from block transfer.
1055   int scale = exact_log2(type2aelembytes(basic_elem_type));

1131   const TypeFunc* call_type = OptoRuntime::slow_arraycopy_Type();
1132   CallNode* call = new CallStaticJavaNode(call_type, OptoRuntime::slow_arraycopy_Java(),
1133                                           "slow_arraycopy", TypePtr::BOTTOM);
1134 
1135   call->init_req(TypeFunc::Control, *ctrl);
1136   call->init_req(TypeFunc::I_O    , *io);
1137   call->init_req(TypeFunc::Memory , mem);
1138   call->init_req(TypeFunc::ReturnAdr, top());
1139   call->init_req(TypeFunc::FramePtr, top());
1140   call->init_req(TypeFunc::Parms+0, src);
1141   call->init_req(TypeFunc::Parms+1, src_offset);
1142   call->init_req(TypeFunc::Parms+2, dest);
1143   call->init_req(TypeFunc::Parms+3, dest_offset);
1144   call->init_req(TypeFunc::Parms+4, copy_length);
1145   call->copy_call_debug_info(&_igvn, ac);
1146 
1147   call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
1148   _igvn.replace_node(ac, call);
1149   transform_later(call);
1150 
1151   _callprojs = call->extract_projections(false /*separate_io_proj*/, false /*do_asserts*/);
1152   *ctrl = _callprojs->fallthrough_catchproj->clone();
1153   transform_later(*ctrl);
1154 
1155   Node* m = _callprojs->fallthrough_memproj->clone();
1156   transform_later(m);
1157 
1158   uint alias_idx = C->get_alias_index(adr_type);
1159   MergeMemNode* out_mem;
1160   if (alias_idx != Compile::AliasIdxBot) {
1161     out_mem = MergeMemNode::make(mem);
1162     out_mem->set_memory_at(alias_idx, m);
1163   } else {
1164     out_mem = MergeMemNode::make(m);
1165   }
1166   transform_later(out_mem);
1167 
1168   // When src is negative and arraycopy is before an infinite loop,_callprojs.fallthrough_ioproj
1169   // could be nullptr. Skip clone and update nullptr fallthrough_ioproj.
1170   if (_callprojs->fallthrough_ioproj != nullptr) {
1171     *io = _callprojs->fallthrough_ioproj->clone();
1172     transform_later(*io);
1173   } else {
1174     *io = nullptr;
1175   }
1176 
1177   return out_mem;
1178 }
1179 
1180 // Helper function; generates code for cases requiring runtime checks.
1181 Node* PhaseMacroExpand::generate_checkcast_arraycopy(Node** ctrl, MergeMemNode** mem,
1182                                                      const TypePtr* adr_type,
1183                                                      Node* dest_elem_klass,
1184                                                      Node* src,  Node* src_offset,
1185                                                      Node* dest, Node* dest_offset,
1186                                                      Node* copy_length, bool dest_uninitialized) {
1187   if ((*ctrl)->is_top())  return nullptr;
1188 
1189   address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
1190   if (copyfunc_addr == nullptr) { // Stub was not generated, go slow path.
1191     return nullptr;

1283   if (exit_block) {
1284     exit_block->init_req(2, *ctrl);
1285 
1286     // Memory edge corresponding to stub_region.
1287     result_memory->init_req(2, *mem);
1288 
1289     uint alias_idx = C->get_alias_index(adr_type);
1290     if (alias_idx != Compile::AliasIdxBot) {
1291       *mem = MergeMemNode::make(*mem);
1292       (*mem)->set_memory_at(alias_idx, result_memory);
1293     } else {
1294       *mem = MergeMemNode::make(result_memory);
1295     }
1296     transform_later(*mem);
1297     *ctrl = exit_block;
1298     return true;
1299   }
1300   return false;
1301 }
1302 
1303 const TypePtr* PhaseMacroExpand::adjust_for_flat_array(const TypeAryPtr* top_dest, Node*& src_offset,
1304                                                        Node*& dest_offset, Node*& length, BasicType& dest_elem,
1305                                                        Node*& dest_length) {
1306 #ifdef ASSERT
1307   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1308   bool needs_barriers = top_dest->elem()->inline_klass()->contains_oops() &&
1309     bs->array_copy_requires_gc_barriers(dest_length != nullptr, T_OBJECT, false, false, BarrierSetC2::Optimization);
1310   assert(!needs_barriers || StressReflectiveCode, "Flat arracopy would require GC barriers");
1311 #endif
1312   int elem_size = top_dest->flat_elem_size();
1313   if (elem_size >= 8) {
1314     if (elem_size > 8) {
1315       // treat as array of long but scale length, src offset and dest offset
1316       assert((elem_size % 8) == 0, "not a power of 2?");
1317       int factor = elem_size / 8;
1318       length = transform_later(new MulINode(length, intcon(factor)));
1319       src_offset = transform_later(new MulINode(src_offset, intcon(factor)));
1320       dest_offset = transform_later(new MulINode(dest_offset, intcon(factor)));
1321       if (dest_length != nullptr) {
1322         dest_length = transform_later(new MulINode(dest_length, intcon(factor)));
1323       }
1324       elem_size = 8;
1325     }
1326     dest_elem = T_LONG;
1327   } else if (elem_size == 4) {
1328     dest_elem = T_INT;
1329   } else if (elem_size == 2) {
1330     dest_elem = T_CHAR;
1331   } else if (elem_size == 1) {
1332     dest_elem = T_BYTE;
1333   } else {
1334     ShouldNotReachHere();
1335   }
1336   return TypeRawPtr::BOTTOM;
1337 }
1338 
1339 #undef XTOP
1340 
1341 void PhaseMacroExpand::expand_arraycopy_node(ArrayCopyNode *ac) {
1342   Node* ctrl = ac->in(TypeFunc::Control);
1343   Node* io = ac->in(TypeFunc::I_O);
1344   Node* src = ac->in(ArrayCopyNode::Src);
1345   Node* src_offset = ac->in(ArrayCopyNode::SrcPos);
1346   Node* dest = ac->in(ArrayCopyNode::Dest);
1347   Node* dest_offset = ac->in(ArrayCopyNode::DestPos);
1348   Node* length = ac->in(ArrayCopyNode::Length);
1349   MergeMemNode* merge_mem = nullptr;
1350 
1351   if (ac->is_clonebasic()) {
1352     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1353     bs->clone_at_expansion(this, ac);
1354     return;
1355   } else if (ac->is_copyof() || ac->is_copyofrange() || ac->is_clone_oop_array()) {
1356     const Type* src_type = _igvn.type(src);
1357     const Type* dest_type = _igvn.type(dest);
1358     const TypeAryPtr* top_src = src_type->isa_aryptr();
1359     // Note: The destination could have type Object (i.e. non-array) when directly invoking the protected method
1360     //       Object::clone() with reflection on a declared Object that is an array at runtime. top_dest is then null.
1361     const TypeAryPtr* top_dest = dest_type->isa_aryptr();
1362     BasicType dest_elem = T_OBJECT;
1363     if (top_dest != nullptr && top_dest->elem() != Type::BOTTOM) {
1364       dest_elem = top_dest->elem()->array_element_basic_type();
1365     }
1366     if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT;
1367 
1368     if (top_src != nullptr && top_src->is_flat()) {
1369       // If src is flat, dest is guaranteed to be flat as well
1370       top_dest = top_src;
1371     }
1372 
1373     AllocateArrayNode* alloc = nullptr;
1374     Node* dest_length = nullptr;
1375     if (ac->is_alloc_tightly_coupled()) {
1376       alloc = AllocateArrayNode::Ideal_array_allocation(dest);
1377       assert(alloc != nullptr, "expect alloc");
1378       dest_length = alloc->in(AllocateNode::ALength);
1379     }
1380 
1381     Node* mem = ac->in(TypeFunc::Memory);
1382     const TypePtr* adr_type = nullptr;
1383     if (top_dest != nullptr && top_dest->is_flat()) {
1384       assert(dest_length != nullptr || StressReflectiveCode, "must be tightly coupled");
1385       // Copy to a flat array modifies multiple memory slices. Conservatively insert a barrier
1386       // on all slices to prevent writes into the source from floating below the arraycopy.
1387       insert_mem_bar(&ctrl, &mem, Op_MemBarCPUOrder);
1388       adr_type = adjust_for_flat_array(top_dest, src_offset, dest_offset, length, dest_elem, dest_length);
1389     } else {
1390       adr_type = dest_type->is_oopptr()->add_offset(Type::OffsetBot);
1391       if (ac->_dest_type != TypeOopPtr::BOTTOM) {
1392         adr_type = ac->_dest_type->add_offset(Type::OffsetBot)->is_ptr();
1393       }
1394       if (ac->_src_type != ac->_dest_type) {
1395         adr_type = TypeRawPtr::BOTTOM;
1396       }
1397     }
1398     merge_mem = MergeMemNode::make(mem);
1399     transform_later(merge_mem);
1400 
1401     generate_arraycopy(ac, alloc, &ctrl, merge_mem, &io,
1402                        adr_type, dest_elem,
1403                        src, src_offset, dest, dest_offset, length,
1404                        dest_length,
1405                        true, ac->has_negative_length_guard());
1406 
1407     return;
1408   }
1409 
1410   AllocateArrayNode* alloc = nullptr;
1411   if (ac->is_alloc_tightly_coupled()) {
1412     alloc = AllocateArrayNode::Ideal_array_allocation(dest);
1413     assert(alloc != nullptr, "expect alloc");
1414   }
1415 
1416   assert(ac->is_arraycopy() || ac->is_arraycopy_validated(), "should be an arraycopy");
1417 
1418   // Compile time checks.  If any of these checks cannot be verified at compile time,
1419   // we do not make a fast path for this call.  Instead, we let the call remain as it
1420   // is.  The checks we choose to mandate at compile time are:
1421   //
1422   // (1) src and dest are arrays.
1423   const Type* src_type = src->Value(&_igvn);
1424   const Type* dest_type = dest->Value(&_igvn);
1425   const TypeAryPtr* top_src = src_type->isa_aryptr();
1426   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
1427 
1428   BasicType src_elem = T_CONFLICT;
1429   BasicType dest_elem = T_CONFLICT;
1430 
1431   if (top_src != nullptr && top_src->elem() != Type::BOTTOM) {
1432     src_elem = top_src->elem()->array_element_basic_type();
1433   }
1434   if (top_dest != nullptr && top_dest->elem() != Type::BOTTOM) {
1435     dest_elem = top_dest->elem()->array_element_basic_type();
1436   }
1437   if (is_reference_type(src_elem, true)) src_elem = T_OBJECT;
1438   if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT;
1439 
1440   if (ac->is_arraycopy_validated() && dest_elem != T_CONFLICT && src_elem == T_CONFLICT) {


1441     src_elem = dest_elem;
1442   }
1443 
1444   if (src_elem == T_CONFLICT || dest_elem == T_CONFLICT) {
1445     // Conservatively insert a memory barrier on all memory slices.
1446     // Do not let writes into the source float below the arraycopy.
1447     {
1448       Node* mem = ac->in(TypeFunc::Memory);
1449       insert_mem_bar(&ctrl, &mem, Op_MemBarCPUOrder);
1450 
1451       merge_mem = MergeMemNode::make(mem);
1452       transform_later(merge_mem);
1453     }
1454 
1455     // Call StubRoutines::generic_arraycopy stub.
1456     generate_arraycopy(ac, nullptr, &ctrl, merge_mem, &io,
1457                        TypeRawPtr::BOTTOM, T_CONFLICT,
1458                        src, src_offset, dest, dest_offset, length,
1459                        nullptr,
1460                        // If a  negative length guard was generated for the ArrayCopyNode,
1461                        // the length of the array can never be negative.
1462                        false, ac->has_negative_length_guard());
1463     return;
1464   }
1465 
1466   assert(!ac->is_arraycopy_validated() || (src_elem == dest_elem && dest_elem != T_VOID), "validated but different basic types");
1467 
1468   // (2) src and dest arrays must have elements of the same BasicType
1469   // Figure out the size and type of the elements we will be copying.
1470   //
1471   // We have no stub to copy flat inline type arrays with oop
1472   // fields if we need to emit write barriers.
1473   //
1474   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1475   if (src_elem != dest_elem || top_src->is_flat() != top_dest->is_flat() || dest_elem == T_VOID ||
1476       (top_src->is_flat() && top_dest->elem()->inline_klass()->contains_oops() &&
1477        bs->array_copy_requires_gc_barriers(alloc != nullptr, T_OBJECT, false, false, BarrierSetC2::Optimization))) {
1478     // The component types are not the same or are not recognized.  Punt.
1479     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
1480     {
1481       Node* mem = ac->in(TypeFunc::Memory);
1482       merge_mem = generate_slow_arraycopy(ac, &ctrl, mem, &io, TypePtr::BOTTOM, src, src_offset, dest, dest_offset, length, false);
1483     }
1484 
1485     _igvn.replace_node(_callprojs->fallthrough_memproj, merge_mem);
1486     if (_callprojs->fallthrough_ioproj != nullptr) {
1487       _igvn.replace_node(_callprojs->fallthrough_ioproj, io);
1488     }
1489     _igvn.replace_node(_callprojs->fallthrough_catchproj, ctrl);
1490     return;
1491   }
1492 
1493   //---------------------------------------------------------------------------
1494   // We will make a fast path for this call to arraycopy.
1495 
1496   // We have the following tests left to perform:
1497   //
1498   // (3) src and dest must not be null.
1499   // (4) src_offset must not be negative.
1500   // (5) dest_offset must not be negative.
1501   // (6) length must not be negative.
1502   // (7) src_offset + length must not exceed length of src.
1503   // (8) dest_offset + length must not exceed length of dest.
1504   // (9) each element of an oop array must be assignable
1505 
1506   Node* mem = ac->in(TypeFunc::Memory);
1507   if (top_dest->is_flat()) {
1508     // Copy to a flat array modifies multiple memory slices. Conservatively insert a barrier
1509     // on all slices to prevent writes into the source from floating below the arraycopy.
1510     insert_mem_bar(&ctrl, &mem, Op_MemBarCPUOrder);
1511   }
1512   merge_mem = MergeMemNode::make(mem);
1513   transform_later(merge_mem);
1514 
1515   RegionNode* slow_region = new RegionNode(1);
1516   transform_later(slow_region);
1517 
1518   if (!ac->is_arraycopy_validated()) {
1519     // (3) operands must not be null
1520     // We currently perform our null checks with the null_check routine.
1521     // This means that the null exceptions will be reported in the caller
1522     // rather than (correctly) reported inside of the native arraycopy call.
1523     // This should be corrected, given time.  We do our null check with the
1524     // stack pointer restored.
1525     // null checks done library_call.cpp
1526 
1527     // (4) src_offset must not be negative.
1528     generate_negative_guard(&ctrl, src_offset, slow_region);
1529 
1530     // (5) dest_offset must not be negative.
1531     generate_negative_guard(&ctrl, dest_offset, slow_region);
1532 
1533     // (6) length must not be negative (moved to generate_arraycopy()).
1534     // generate_negative_guard(length, slow_region);
1535 
1536     // (7) src_offset + length must not exceed length of src.
1537     Node* alen = ac->in(ArrayCopyNode::SrcLen);
1538     assert(alen != nullptr, "need src len");
1539     generate_limit_guard(&ctrl,
1540                          src_offset, length,
1541                          alen,
1542                          slow_region);
1543 
1544     // (8) dest_offset + length must not exceed length of dest.
1545     alen = ac->in(ArrayCopyNode::DestLen);
1546     assert(alen != nullptr, "need dest len");
1547     generate_limit_guard(&ctrl,
1548                          dest_offset, length,
1549                          alen,
1550                          slow_region);
1551 
1552     // (9) each element of an oop array must be assignable
1553     // The generate_arraycopy subroutine checks this.
1554 
1555     // Handle inline type arrays
1556     if (!top_src->is_flat()) {
1557       if (UseArrayFlattening && !top_src->is_not_flat()) {
1558         // Src might be flat and dest might not be flat. Go to the slow path if src is flat.
1559         generate_flat_array_guard(&ctrl, src, merge_mem, slow_region);
1560       }
1561       if (EnableValhalla) {
1562         // No validation. The subtype check emitted at macro expansion time will not go to the slow
1563         // path but call checkcast_arraycopy which can not handle flat/null-free inline type arrays.
1564         generate_null_free_array_guard(&ctrl, dest, merge_mem, slow_region);
1565       }
1566     } else {
1567       assert(top_dest->is_flat(), "dest array must be flat");
1568     }
1569   }
1570 
1571   // This is where the memory effects are placed:
1572   const TypePtr* adr_type = nullptr;
1573   Node* dest_length = (alloc != nullptr) ? alloc->in(AllocateNode::ALength) : nullptr;
1574 
1575   if (top_dest->is_flat()) {
1576     adr_type = adjust_for_flat_array(top_dest, src_offset, dest_offset, length, dest_elem, dest_length);
1577   } else if (ac->_dest_type != TypeOopPtr::BOTTOM) {
1578     adr_type = ac->_dest_type->add_offset(Type::OffsetBot)->is_ptr();
1579   } else {
1580     adr_type = TypeAryPtr::get_array_body_type(dest_elem);
1581   }
1582 
1583   generate_arraycopy(ac, alloc, &ctrl, merge_mem, &io,
1584                      adr_type, dest_elem,
1585                      src, src_offset, dest, dest_offset, length,
1586                      dest_length,
1587                      // If a  negative length guard was generated for the ArrayCopyNode,
1588                      // the length of the array can never be negative.
1589                      false, ac->has_negative_length_guard(),
1590                      slow_region);
1591 }
< prev index next >