167 Unique_Node_List worklist;
168 VectorSet visited;
169 worklist.push(xroot);
170 while (worklist.size() > 0) {
171 Node* n = worklist.pop();
172 visited.set(n->_idx);
173 assert(C->node_arena()->contains(n), "dead node");
174 for (uint j = 0; j < n->req(); j++) {
175 Node* in = n->in(j);
176 if (in != nullptr) {
177 assert(C->node_arena()->contains(in), "dead node");
178 if (!visited.test(in->_idx)) {
179 worklist.push(in);
180 }
181 }
182 }
183 }
184 }
185 #endif
186
187
188 //---------------------------match---------------------------------------------
189 void Matcher::match( ) {
190 if( MaxLabelRootDepth < 100 ) { // Too small?
191 assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum");
192 MaxLabelRootDepth = 100;
193 }
194 // One-time initialization of some register masks.
195 init_spill_mask( C->root()->in(1) );
196 _return_addr_mask = return_addr();
197 #ifdef _LP64
198 // Pointers take 2 slots in 64-bit land
199 _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
200 #endif
201
202 // Map a Java-signature return type into return register-value
203 // machine registers for 0, 1 and 2 returned values.
204 const TypeTuple *range = C->tf()->range();
205 if( range->cnt() > TypeFunc::Parms ) { // If not a void function
206 // Get ideal-register return type
207 uint ireg = range->field_at(TypeFunc::Parms)->ideal_reg();
208 // Get machine return register
209 uint sop = C->start()->Opcode();
210 OptoRegPair regs = return_value(ireg);
211
212 // And mask for same
213 _return_value_mask = RegMask(regs.first());
214 if( OptoReg::is_valid(regs.second()) )
215 _return_value_mask.Insert(regs.second());
216 }
217
218 // ---------------
219 // Frame Layout
220
221 // Need the method signature to determine the incoming argument types,
222 // because the types determine which registers the incoming arguments are
223 // in, and this affects the matched code.
224 const TypeTuple *domain = C->tf()->domain();
225 uint argcnt = domain->cnt() - TypeFunc::Parms;
226 BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, argcnt );
227 VMRegPair *vm_parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
228 _parm_regs = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
229 _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
230 uint i;
231 for( i = 0; i<argcnt; i++ ) {
232 sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
233 }
234
235 // Pass array of ideal registers and length to USER code (from the AD file)
236 // that will convert this to an array of register numbers.
237 const StartNode *start = C->start();
238 start->calling_convention( sig_bt, vm_parm_regs, argcnt );
239 #ifdef ASSERT
240 // Sanity check users' calling convention. Real handy while trying to
241 // get the initial port correct.
242 { for (uint i = 0; i<argcnt; i++) {
243 if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
244 assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );
518 idealreg2mhdebugmask[Op_VecS] = &rms[31];
519 idealreg2mhdebugmask[Op_VecD] = &rms[32];
520 idealreg2mhdebugmask[Op_VecX] = &rms[33];
521 idealreg2mhdebugmask[Op_VecY] = &rms[34];
522 idealreg2mhdebugmask[Op_VecZ] = &rms[35];
523
524 idealreg2spillmask [Op_RegVectMask] = &rms[36];
525 idealreg2debugmask [Op_RegVectMask] = &rms[37];
526 idealreg2mhdebugmask[Op_RegVectMask] = &rms[38];
527
528 OptoReg::Name i;
529
530 // At first, start with the empty mask
531 C->FIRST_STACK_mask().Clear();
532
533 // Add in the incoming argument area
534 OptoReg::Name init_in = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
535 for (i = init_in; i < _in_arg_limit; i = OptoReg::add(i,1)) {
536 C->FIRST_STACK_mask().Insert(i);
537 }
538 // Add in all bits past the outgoing argument area
539 guarantee(RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1)),
540 "must be able to represent all call arguments in reg mask");
541 OptoReg::Name init = _out_arg_limit;
542 for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1)) {
543 C->FIRST_STACK_mask().Insert(i);
544 }
545 // Finally, set the "infinite stack" bit.
546 C->FIRST_STACK_mask().set_AllStack();
547
548 // Make spill masks. Registers for their class, plus FIRST_STACK_mask.
549 RegMask aligned_stack_mask = C->FIRST_STACK_mask();
550 // Keep spill masks aligned.
551 aligned_stack_mask.clear_to_pairs();
552 assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
553 RegMask scalable_stack_mask = aligned_stack_mask;
554
555 *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
556 #ifdef _LP64
557 *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN];
776 _register_save_policy[reg] == 'E' ||
777 _register_save_policy[reg] == 'A'; // Save-on-entry register?
778 }
779
780 //---------------------------Fixup_Save_On_Entry-------------------------------
781 void Matcher::Fixup_Save_On_Entry( ) {
782 init_first_stack_mask();
783
784 Node *root = C->root(); // Short name for root
785 // Count number of save-on-entry registers.
786 uint soe_cnt = number_of_saved_registers();
787 uint i;
788
789 // Find the procedure Start Node
790 StartNode *start = C->start();
791 assert( start, "Expect a start node" );
792
793 // Input RegMask array shared by all Returns.
794 // The type for doubles and longs has a count of 2, but
795 // there is only 1 returned value
796 uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1);
797 RegMask *ret_rms = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
798 // Returns have 0 or 1 returned values depending on call signature.
799 // Return register is specified by return_value in the AD file.
800 if (ret_edge_cnt > TypeFunc::Parms)
801 ret_rms[TypeFunc::Parms+0] = _return_value_mask;
802
803 // Input RegMask array shared by all Rethrows.
804 uint reth_edge_cnt = TypeFunc::Parms+1;
805 RegMask *reth_rms = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
806 // Rethrow takes exception oop only, but in the argument 0 slot.
807 OptoReg::Name reg = find_receiver();
808 if (reg >= 0) {
809 reth_rms[TypeFunc::Parms] = mreg2regmask[reg];
810 #ifdef _LP64
811 // Need two slots for ptrs in 64-bit land
812 reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(reg), 1));
813 #endif
814 }
815
816 // Input RegMask array shared by all TailCalls
817 uint tail_call_edge_cnt = TypeFunc::Parms+2;
818 RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
819
820 // Input RegMask array shared by all TailJumps
821 uint tail_jump_edge_cnt = TypeFunc::Parms+2;
848 }
849
850 // Input RegMask array shared by all Halts
851 uint halt_edge_cnt = TypeFunc::Parms;
852 RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
853
854 // Capture the return input masks into each exit flavor
855 for( i=1; i < root->req(); i++ ) {
856 MachReturnNode *exit = root->in(i)->as_MachReturn();
857 switch( exit->ideal_Opcode() ) {
858 case Op_Return : exit->_in_rms = ret_rms; break;
859 case Op_Rethrow : exit->_in_rms = reth_rms; break;
860 case Op_TailCall : exit->_in_rms = tail_call_rms; break;
861 case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
862 case Op_Halt : exit->_in_rms = halt_rms; break;
863 default : ShouldNotReachHere();
864 }
865 }
866
867 // Next unused projection number from Start.
868 int proj_cnt = C->tf()->domain()->cnt();
869
870 // Do all the save-on-entry registers. Make projections from Start for
871 // them, and give them a use at the exit points. To the allocator, they
872 // look like incoming register arguments.
873 for( i = 0; i < _last_Mach_Reg; i++ ) {
874 if( is_save_on_entry(i) ) {
875
876 // Add the save-on-entry to the mask array
877 ret_rms [ ret_edge_cnt] = mreg2regmask[i];
878 reth_rms [ reth_edge_cnt] = mreg2regmask[i];
879 tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
880 tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
881 // Halts need the SOE registers, but only in the stack as debug info.
882 // A just-prior uncommon-trap or deoptimization will use the SOE regs.
883 halt_rms [ halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
884
885 Node *mproj;
886
887 // Is this a RegF low half of a RegD? Double up 2 adjacent RegF's
888 // into a single RegD.
1121 Node *oldn = n;
1122 // Old-space or new-space check
1123 if (!C->node_arena()->contains(n)) {
1124 // Old space!
1125 Node* m;
1126 if (has_new_node(n)) { // Not yet Label/Reduced
1127 m = new_node(n);
1128 } else {
1129 if (!is_dontcare(n)) { // Matcher can match this guy
1130 // Calls match special. They match alone with no children.
1131 // Their children, the incoming arguments, match normally.
1132 m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
1133 if (C->failing()) return nullptr;
1134 if (m == nullptr) { Matcher::soft_match_failure(); return nullptr; }
1135 if (n->is_MemBar()) {
1136 m->as_MachMemBar()->set_adr_type(n->adr_type());
1137 }
1138 } else { // Nothing the matcher cares about
1139 if (n->is_Proj() && n->in(0) != nullptr && n->in(0)->is_Multi()) { // Projections?
1140 // Convert to machine-dependent projection
1141 m = n->in(0)->as_Multi()->match( n->as_Proj(), this );
1142 NOT_PRODUCT(record_new2old(m, n);)
1143 if (m->in(0) != nullptr) // m might be top
1144 collect_null_checks(m, n);
1145 } else { // Else just a regular 'ol guy
1146 m = n->clone(); // So just clone into new-space
1147 NOT_PRODUCT(record_new2old(m, n);)
1148 // Def-Use edges will be added incrementally as Uses
1149 // of this node are matched.
1150 assert(m->outcnt() == 0, "no Uses of this clone yet");
1151 }
1152 }
1153
1154 set_new_node(n, m); // Map old to new
1155 if (_old_node_note_array != nullptr) {
1156 Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
1157 n->_idx);
1158 C->set_node_notes_at(m->_idx, nn);
1159 }
1160 debug_only(match_alias_type(C, n, m));
1161 }
1261 }
1262 return OptoReg::as_OptoReg(reg);
1263 }
1264
1265
1266 //------------------------------match_sfpt-------------------------------------
1267 // Helper function to match call instructions. Calls match special.
1268 // They match alone with no children. Their children, the incoming
1269 // arguments, match normally.
1270 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
1271 MachSafePointNode *msfpt = nullptr;
1272 MachCallNode *mcall = nullptr;
1273 uint cnt;
1274 // Split out case for SafePoint vs Call
1275 CallNode *call;
1276 const TypeTuple *domain;
1277 ciMethod* method = nullptr;
1278 bool is_method_handle_invoke = false; // for special kill effects
1279 if( sfpt->is_Call() ) {
1280 call = sfpt->as_Call();
1281 domain = call->tf()->domain();
1282 cnt = domain->cnt();
1283
1284 // Match just the call, nothing else
1285 MachNode *m = match_tree(call);
1286 if (C->failing()) return nullptr;
1287 if( m == nullptr ) { Matcher::soft_match_failure(); return nullptr; }
1288
1289 // Copy data from the Ideal SafePoint to the machine version
1290 mcall = m->as_MachCall();
1291
1292 mcall->set_tf( call->tf());
1293 mcall->set_entry_point( call->entry_point());
1294 mcall->set_cnt( call->cnt());
1295 mcall->set_guaranteed_safepoint(call->guaranteed_safepoint());
1296
1297 if( mcall->is_MachCallJava() ) {
1298 MachCallJavaNode *mcall_java = mcall->as_MachCallJava();
1299 const CallJavaNode *call_java = call->as_CallJava();
1300 assert(call_java->validate_symbolic_info(), "inconsistent info");
1301 method = call_java->method();
1340 msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
1341 // Empty them all.
1342 for (uint i = 0; i < cnt; i++) ::new (&(msfpt->_in_rms[i])) RegMask();
1343
1344 // Do all the pre-defined non-Empty register masks
1345 msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
1346 msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
1347
1348 // Place first outgoing argument can possibly be put.
1349 OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
1350 assert( is_even(begin_out_arg_area), "" );
1351 // Compute max outgoing register number per call site.
1352 OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
1353 // Calls to C may hammer extra stack slots above and beyond any arguments.
1354 // These are usually backing store for register arguments for varargs.
1355 if( call != nullptr && call->is_CallRuntime() )
1356 out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
1357
1358
1359 // Do the normal argument list (parameters) register masks
1360 int argcnt = cnt - TypeFunc::Parms;
1361 if( argcnt > 0 ) { // Skip it all if we have no args
1362 BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, argcnt );
1363 VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
1364 int i;
1365 for( i = 0; i < argcnt; i++ ) {
1366 sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
1367 }
1368 // V-call to pick proper calling convention
1369 call->calling_convention( sig_bt, parm_regs, argcnt );
1370
1371 #ifdef ASSERT
1372 // Sanity check users' calling convention. Really handy during
1373 // the initial porting effort. Fairly expensive otherwise.
1374 { for (int i = 0; i<argcnt; i++) {
1375 if( !parm_regs[i].first()->is_valid() &&
1376 !parm_regs[i].second()->is_valid() ) continue;
1377 VMReg reg1 = parm_regs[i].first();
1378 VMReg reg2 = parm_regs[i].second();
1379 for (int j = 0; j < i; j++) {
1380 if( !parm_regs[j].first()->is_valid() &&
1381 !parm_regs[j].second()->is_valid() ) continue;
1382 VMReg reg3 = parm_regs[j].first();
1383 VMReg reg4 = parm_regs[j].second();
1384 if( !reg1->is_valid() ) {
1385 assert( !reg2->is_valid(), "valid halvsies" );
1386 } else if( !reg3->is_valid() ) {
1387 assert( !reg4->is_valid(), "valid halvsies" );
1388 } else {
1389 assert( reg1 != reg2, "calling conv. must produce distinct regs");
1390 assert( reg1 != reg3, "calling conv. must produce distinct regs");
1391 assert( reg1 != reg4, "calling conv. must produce distinct regs");
1392 assert( reg2 != reg3, "calling conv. must produce distinct regs");
1393 assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
1394 assert( reg3 != reg4, "calling conv. must produce distinct regs");
1395 }
1396 }
1397 }
1398 }
1399 #endif
1400
1401 // Visit each argument. Compute its outgoing register mask.
1402 // Return results now can have 2 bits returned.
1403 // Compute max over all outgoing arguments both per call-site
1404 // and over the entire method.
1405 for( i = 0; i < argcnt; i++ ) {
1406 // Address of incoming argument mask to fill in
1407 RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms];
1408 VMReg first = parm_regs[i].first();
1409 VMReg second = parm_regs[i].second();
1410 if(!first->is_valid() &&
1411 !second->is_valid()) {
1412 continue; // Avoid Halves
1413 }
1414 // Handle case where arguments are in vector registers.
1415 if(call->in(TypeFunc::Parms + i)->bottom_type()->isa_vect()) {
1416 OptoReg::Name reg_fst = OptoReg::as_OptoReg(first);
1417 OptoReg::Name reg_snd = OptoReg::as_OptoReg(second);
1418 assert (reg_fst <= reg_snd, "fst=%d snd=%d", reg_fst, reg_snd);
1419 for (OptoReg::Name r = reg_fst; r <= reg_snd; r++) {
1420 rm->Insert(r);
1421 }
1422 }
1423 // Grab first register, adjust stack slots and insert in mask.
1424 OptoReg::Name reg1 = warp_outgoing_stk_arg(first, begin_out_arg_area, out_arg_limit_per_call );
1425 if (OptoReg::is_valid(reg1))
1426 rm->Insert( reg1 );
1427 // Grab second register (if any), adjust stack slots and insert in mask.
1428 OptoReg::Name reg2 = warp_outgoing_stk_arg(second, begin_out_arg_area, out_arg_limit_per_call );
1429 if (OptoReg::is_valid(reg2))
1430 rm->Insert( reg2 );
1431 } // End of for all arguments
1432 }
1433
1434 // Compute the max stack slot killed by any call. These will not be
1435 // available for debug info, and will be used to adjust FIRST_STACK_mask
1436 // after all call sites have been visited.
1437 if( _out_arg_limit < out_arg_limit_per_call)
1438 _out_arg_limit = out_arg_limit_per_call;
1439
1440 if (mcall) {
1441 // Kill the outgoing argument area, including any non-argument holes and
1442 // any legacy C-killed slots. Use Fat-Projections to do the killing.
1443 // Since the max-per-method covers the max-per-call-site and debug info
1444 // is excluded on the max-per-method basis, debug info cannot land in
1445 // this killed area.
1446 uint r_cnt = mcall->tf()->range()->cnt();
1447 MachProjNode *proj = new MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
1448 if (!RegMask::can_represent_arg(OptoReg::Name(out_arg_limit_per_call-1))) {
1449 // Bailout. We do not have space to represent all arguments.
1450 C->record_method_not_compilable("unsupported outgoing calling sequence");
1451 } else {
1452 for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
1453 proj->_rout.Insert(OptoReg::Name(i));
1454 }
1455 if (proj->_rout.is_NotEmpty()) {
1456 push_projection(proj);
1457 }
1458 }
1459 // Transfer the safepoint information from the call to the mcall
1460 // Move the JVMState list
1461 msfpt->set_jvms(sfpt->jvms());
1462 for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
1463 jvms->set_map(sfpt);
1464 }
1465
1466 // Debug inputs begin just after the last incoming parameter
1467 assert((mcall == nullptr) || (mcall->jvms() == nullptr) ||
1468 (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "");
1469
1470 // Add additional edges.
1471 if (msfpt->mach_constant_base_node_input() != (uint)-1 && !msfpt->is_MachCallLeaf()) {
1472 // For these calls we can not add MachConstantBase in expand(), as the
1473 // ins are not complete then.
1474 msfpt->ins_req(msfpt->mach_constant_base_node_input(), C->mach_constant_base_node());
1475 if (msfpt->jvms() &&
1476 msfpt->mach_constant_base_node_input() <= msfpt->jvms()->debug_start() + msfpt->_jvmadj) {
1477 // We added an edge before jvms, so we must adapt the position of the ins.
1478 msfpt->jvms()->adapt_position(+1);
1479 }
1480 }
1481
1482 // Registers killed by the call are set in the local scheduling pass
1483 // of Global Code Motion.
1484 return msfpt;
1485 }
1486
1487 //---------------------------match_tree----------------------------------------
1488 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce. Used as part
2132 set_shared(n); // Flag as shared and
2133 if (n->is_DecodeNarrowPtr()) {
2134 // Oop field/array element loads must be shared but since
2135 // they are shared through a DecodeN they may appear to have
2136 // a single use so force sharing here.
2137 set_shared(n->in(1));
2138 }
2139 mstack.pop(); // remove node from stack
2140 continue;
2141 }
2142 nstate = Visit; // Not already visited; so visit now
2143 }
2144 if (nstate == Visit) {
2145 mstack.set_state(Post_Visit);
2146 set_visited(n); // Flag as visited now
2147 bool mem_op = false;
2148 int mem_addr_idx = MemNode::Address;
2149 if (find_shared_visit(mstack, n, nop, mem_op, mem_addr_idx)) {
2150 continue;
2151 }
2152 for (int i = n->req() - 1; i >= 0; --i) { // For my children
2153 Node* m = n->in(i); // Get ith input
2154 if (m == nullptr) {
2155 continue; // Ignore nulls
2156 }
2157 if (clone_node(n, m, mstack)) {
2158 continue;
2159 }
2160
2161 // Clone addressing expressions as they are "free" in memory access instructions
2162 if (mem_op && i == mem_addr_idx && m->is_AddP() &&
2163 // When there are other uses besides address expressions
2164 // put it on stack and mark as shared.
2165 !is_visited(m)) {
2166 // Some inputs for address expression are not put on stack
2167 // to avoid marking them as shared and forcing them into register
2168 // if they are used only in address expressions.
2169 // But they should be marked as shared if there are other uses
2170 // besides address expressions.
2171
2172 if (pd_clone_address_expressions(m->as_AddP(), mstack, address_visited)) {
2452 case Op_FmaD:
2453 case Op_FmaF:
2454 case Op_FmaVD:
2455 case Op_FmaVF: {
2456 // Restructure into a binary tree for Matching.
2457 Node* pair = new BinaryNode(n->in(1), n->in(2));
2458 n->set_req(2, pair);
2459 n->set_req(1, n->in(3));
2460 n->del_req(3);
2461 break;
2462 }
2463 case Op_MulAddS2I: {
2464 Node* pair1 = new BinaryNode(n->in(1), n->in(2));
2465 Node* pair2 = new BinaryNode(n->in(3), n->in(4));
2466 n->set_req(1, pair1);
2467 n->set_req(2, pair2);
2468 n->del_req(4);
2469 n->del_req(3);
2470 break;
2471 }
2472 case Op_VectorCmpMasked:
2473 case Op_CopySignD:
2474 case Op_SignumVF:
2475 case Op_SignumVD:
2476 case Op_SignumF:
2477 case Op_SignumD: {
2478 Node* pair = new BinaryNode(n->in(2), n->in(3));
2479 n->set_req(2, pair);
2480 n->del_req(3);
2481 break;
2482 }
2483 case Op_VectorBlend:
2484 case Op_VectorInsert: {
2485 Node* pair = new BinaryNode(n->in(1), n->in(2));
2486 n->set_req(1, pair);
2487 n->set_req(2, n->in(3));
2488 n->del_req(3);
2489 break;
2490 }
2491 case Op_LoadVectorGatherMasked:
|
167 Unique_Node_List worklist;
168 VectorSet visited;
169 worklist.push(xroot);
170 while (worklist.size() > 0) {
171 Node* n = worklist.pop();
172 visited.set(n->_idx);
173 assert(C->node_arena()->contains(n), "dead node");
174 for (uint j = 0; j < n->req(); j++) {
175 Node* in = n->in(j);
176 if (in != nullptr) {
177 assert(C->node_arena()->contains(in), "dead node");
178 if (!visited.test(in->_idx)) {
179 worklist.push(in);
180 }
181 }
182 }
183 }
184 }
185 #endif
186
187 // Array of RegMask, one per returned values (inline type instances can
188 // be returned as multiple return values, one per field)
189 RegMask* Matcher::return_values_mask(const TypeFunc* tf) {
190 const TypeTuple* range = tf->range_cc();
191 uint cnt = range->cnt() - TypeFunc::Parms;
192 if (cnt == 0) {
193 return nullptr;
194 }
195 RegMask* mask = NEW_RESOURCE_ARRAY(RegMask, cnt);
196 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, cnt);
197 VMRegPair* vm_parm_regs = NEW_RESOURCE_ARRAY(VMRegPair, cnt);
198 for (uint i = 0; i < cnt; i++) {
199 sig_bt[i] = range->field_at(i+TypeFunc::Parms)->basic_type();
200 }
201
202 int regs = SharedRuntime::java_return_convention(sig_bt, vm_parm_regs, cnt);
203 if (regs <= 0) {
204 // We ran out of registers to store the IsInit information for a nullable inline type return.
205 // Since it is only set in the 'call_epilog', we can simply put it on the stack.
206 assert(tf->returns_inline_type_as_fields(), "should have been tested during graph construction");
207 // TODO 8284443 Can we teach the register allocator to reserve a stack slot instead?
208 // mask[--cnt] = STACK_ONLY_mask does not work (test with -XX:+StressGCM)
209 int slot = C->fixed_slots() - 2;
210 if (C->needs_stack_repair()) {
211 slot -= 2; // Account for stack increment value
212 }
213 mask[--cnt].Clear();
214 mask[cnt].Insert(OptoReg::stack2reg(slot));
215 }
216 for (uint i = 0; i < cnt; i++) {
217 mask[i].Clear();
218
219 OptoReg::Name reg1 = OptoReg::as_OptoReg(vm_parm_regs[i].first());
220 if (OptoReg::is_valid(reg1)) {
221 mask[i].Insert(reg1);
222 }
223 OptoReg::Name reg2 = OptoReg::as_OptoReg(vm_parm_regs[i].second());
224 if (OptoReg::is_valid(reg2)) {
225 mask[i].Insert(reg2);
226 }
227 }
228
229 return mask;
230 }
231
232 //---------------------------match---------------------------------------------
233 void Matcher::match( ) {
234 if( MaxLabelRootDepth < 100 ) { // Too small?
235 assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum");
236 MaxLabelRootDepth = 100;
237 }
238 // One-time initialization of some register masks.
239 init_spill_mask( C->root()->in(1) );
240 _return_addr_mask = return_addr();
241 #ifdef _LP64
242 // Pointers take 2 slots in 64-bit land
243 _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
244 #endif
245
246 // Map Java-signature return types into return register-value
247 // machine registers.
248 _return_values_mask = return_values_mask(C->tf());
249
250 // ---------------
251 // Frame Layout
252
253 // Need the method signature to determine the incoming argument types,
254 // because the types determine which registers the incoming arguments are
255 // in, and this affects the matched code.
256 const TypeTuple *domain = C->tf()->domain_cc();
257 uint argcnt = domain->cnt() - TypeFunc::Parms;
258 BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, argcnt );
259 VMRegPair *vm_parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
260 _parm_regs = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
261 _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
262 uint i;
263 for( i = 0; i<argcnt; i++ ) {
264 sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
265 }
266
267 // Pass array of ideal registers and length to USER code (from the AD file)
268 // that will convert this to an array of register numbers.
269 const StartNode *start = C->start();
270 start->calling_convention( sig_bt, vm_parm_regs, argcnt );
271 #ifdef ASSERT
272 // Sanity check users' calling convention. Real handy while trying to
273 // get the initial port correct.
274 { for (uint i = 0; i<argcnt; i++) {
275 if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
276 assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );
550 idealreg2mhdebugmask[Op_VecS] = &rms[31];
551 idealreg2mhdebugmask[Op_VecD] = &rms[32];
552 idealreg2mhdebugmask[Op_VecX] = &rms[33];
553 idealreg2mhdebugmask[Op_VecY] = &rms[34];
554 idealreg2mhdebugmask[Op_VecZ] = &rms[35];
555
556 idealreg2spillmask [Op_RegVectMask] = &rms[36];
557 idealreg2debugmask [Op_RegVectMask] = &rms[37];
558 idealreg2mhdebugmask[Op_RegVectMask] = &rms[38];
559
560 OptoReg::Name i;
561
562 // At first, start with the empty mask
563 C->FIRST_STACK_mask().Clear();
564
565 // Add in the incoming argument area
566 OptoReg::Name init_in = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
567 for (i = init_in; i < _in_arg_limit; i = OptoReg::add(i,1)) {
568 C->FIRST_STACK_mask().Insert(i);
569 }
570
571 // Add in all bits past the outgoing argument area
572 guarantee(RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1)),
573 "must be able to represent all call arguments in reg mask");
574 OptoReg::Name init = _out_arg_limit;
575 for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1)) {
576 C->FIRST_STACK_mask().Insert(i);
577 }
578 // Finally, set the "infinite stack" bit.
579 C->FIRST_STACK_mask().set_AllStack();
580
581 // Make spill masks. Registers for their class, plus FIRST_STACK_mask.
582 RegMask aligned_stack_mask = C->FIRST_STACK_mask();
583 // Keep spill masks aligned.
584 aligned_stack_mask.clear_to_pairs();
585 assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
586 RegMask scalable_stack_mask = aligned_stack_mask;
587
588 *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
589 #ifdef _LP64
590 *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN];
809 _register_save_policy[reg] == 'E' ||
810 _register_save_policy[reg] == 'A'; // Save-on-entry register?
811 }
812
813 //---------------------------Fixup_Save_On_Entry-------------------------------
814 void Matcher::Fixup_Save_On_Entry( ) {
815 init_first_stack_mask();
816
817 Node *root = C->root(); // Short name for root
818 // Count number of save-on-entry registers.
819 uint soe_cnt = number_of_saved_registers();
820 uint i;
821
822 // Find the procedure Start Node
823 StartNode *start = C->start();
824 assert( start, "Expect a start node" );
825
826 // Input RegMask array shared by all Returns.
827 // The type for doubles and longs has a count of 2, but
828 // there is only 1 returned value
829 uint ret_edge_cnt = C->tf()->range_cc()->cnt();
830 RegMask *ret_rms = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
831 for (i = TypeFunc::Parms; i < ret_edge_cnt; i++) {
832 ret_rms[i] = _return_values_mask[i-TypeFunc::Parms];
833 }
834
835 // Input RegMask array shared by all Rethrows.
836 uint reth_edge_cnt = TypeFunc::Parms+1;
837 RegMask *reth_rms = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
838 // Rethrow takes exception oop only, but in the argument 0 slot.
839 OptoReg::Name reg = find_receiver();
840 if (reg >= 0) {
841 reth_rms[TypeFunc::Parms] = mreg2regmask[reg];
842 #ifdef _LP64
843 // Need two slots for ptrs in 64-bit land
844 reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(reg), 1));
845 #endif
846 }
847
848 // Input RegMask array shared by all TailCalls
849 uint tail_call_edge_cnt = TypeFunc::Parms+2;
850 RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
851
852 // Input RegMask array shared by all TailJumps
853 uint tail_jump_edge_cnt = TypeFunc::Parms+2;
880 }
881
882 // Input RegMask array shared by all Halts
883 uint halt_edge_cnt = TypeFunc::Parms;
884 RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
885
886 // Capture the return input masks into each exit flavor
887 for( i=1; i < root->req(); i++ ) {
888 MachReturnNode *exit = root->in(i)->as_MachReturn();
889 switch( exit->ideal_Opcode() ) {
890 case Op_Return : exit->_in_rms = ret_rms; break;
891 case Op_Rethrow : exit->_in_rms = reth_rms; break;
892 case Op_TailCall : exit->_in_rms = tail_call_rms; break;
893 case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
894 case Op_Halt : exit->_in_rms = halt_rms; break;
895 default : ShouldNotReachHere();
896 }
897 }
898
899 // Next unused projection number from Start.
900 int proj_cnt = C->tf()->domain_cc()->cnt();
901
902 // Do all the save-on-entry registers. Make projections from Start for
903 // them, and give them a use at the exit points. To the allocator, they
904 // look like incoming register arguments.
905 for( i = 0; i < _last_Mach_Reg; i++ ) {
906 if( is_save_on_entry(i) ) {
907
908 // Add the save-on-entry to the mask array
909 ret_rms [ ret_edge_cnt] = mreg2regmask[i];
910 reth_rms [ reth_edge_cnt] = mreg2regmask[i];
911 tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
912 tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
913 // Halts need the SOE registers, but only in the stack as debug info.
914 // A just-prior uncommon-trap or deoptimization will use the SOE regs.
915 halt_rms [ halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
916
917 Node *mproj;
918
919 // Is this a RegF low half of a RegD? Double up 2 adjacent RegF's
920 // into a single RegD.
1153 Node *oldn = n;
1154 // Old-space or new-space check
1155 if (!C->node_arena()->contains(n)) {
1156 // Old space!
1157 Node* m;
1158 if (has_new_node(n)) { // Not yet Label/Reduced
1159 m = new_node(n);
1160 } else {
1161 if (!is_dontcare(n)) { // Matcher can match this guy
1162 // Calls match special. They match alone with no children.
1163 // Their children, the incoming arguments, match normally.
1164 m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
1165 if (C->failing()) return nullptr;
1166 if (m == nullptr) { Matcher::soft_match_failure(); return nullptr; }
1167 if (n->is_MemBar()) {
1168 m->as_MachMemBar()->set_adr_type(n->adr_type());
1169 }
1170 } else { // Nothing the matcher cares about
1171 if (n->is_Proj() && n->in(0) != nullptr && n->in(0)->is_Multi()) { // Projections?
1172 // Convert to machine-dependent projection
1173 RegMask* mask = nullptr;
1174 if (n->in(0)->is_Call() && n->in(0)->as_Call()->tf()->returns_inline_type_as_fields()) {
1175 mask = return_values_mask(n->in(0)->as_Call()->tf());
1176 }
1177 m = n->in(0)->as_Multi()->match(n->as_Proj(), this, mask);
1178 NOT_PRODUCT(record_new2old(m, n);)
1179 if (m->in(0) != nullptr) // m might be top
1180 collect_null_checks(m, n);
1181 } else { // Else just a regular 'ol guy
1182 m = n->clone(); // So just clone into new-space
1183 NOT_PRODUCT(record_new2old(m, n);)
1184 // Def-Use edges will be added incrementally as Uses
1185 // of this node are matched.
1186 assert(m->outcnt() == 0, "no Uses of this clone yet");
1187 }
1188 }
1189
1190 set_new_node(n, m); // Map old to new
1191 if (_old_node_note_array != nullptr) {
1192 Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
1193 n->_idx);
1194 C->set_node_notes_at(m->_idx, nn);
1195 }
1196 debug_only(match_alias_type(C, n, m));
1197 }
1297 }
1298 return OptoReg::as_OptoReg(reg);
1299 }
1300
1301
1302 //------------------------------match_sfpt-------------------------------------
1303 // Helper function to match call instructions. Calls match special.
1304 // They match alone with no children. Their children, the incoming
1305 // arguments, match normally.
1306 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
1307 MachSafePointNode *msfpt = nullptr;
1308 MachCallNode *mcall = nullptr;
1309 uint cnt;
1310 // Split out case for SafePoint vs Call
1311 CallNode *call;
1312 const TypeTuple *domain;
1313 ciMethod* method = nullptr;
1314 bool is_method_handle_invoke = false; // for special kill effects
1315 if( sfpt->is_Call() ) {
1316 call = sfpt->as_Call();
1317 domain = call->tf()->domain_cc();
1318 cnt = domain->cnt();
1319
1320 // Match just the call, nothing else
1321 MachNode *m = match_tree(call);
1322 if (C->failing()) return nullptr;
1323 if( m == nullptr ) { Matcher::soft_match_failure(); return nullptr; }
1324
1325 // Copy data from the Ideal SafePoint to the machine version
1326 mcall = m->as_MachCall();
1327
1328 mcall->set_tf( call->tf());
1329 mcall->set_entry_point( call->entry_point());
1330 mcall->set_cnt( call->cnt());
1331 mcall->set_guaranteed_safepoint(call->guaranteed_safepoint());
1332
1333 if( mcall->is_MachCallJava() ) {
1334 MachCallJavaNode *mcall_java = mcall->as_MachCallJava();
1335 const CallJavaNode *call_java = call->as_CallJava();
1336 assert(call_java->validate_symbolic_info(), "inconsistent info");
1337 method = call_java->method();
1376 msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
1377 // Empty them all.
1378 for (uint i = 0; i < cnt; i++) ::new (&(msfpt->_in_rms[i])) RegMask();
1379
1380 // Do all the pre-defined non-Empty register masks
1381 msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
1382 msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
1383
1384 // Place first outgoing argument can possibly be put.
1385 OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
1386 assert( is_even(begin_out_arg_area), "" );
1387 // Compute max outgoing register number per call site.
1388 OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
1389 // Calls to C may hammer extra stack slots above and beyond any arguments.
1390 // These are usually backing store for register arguments for varargs.
1391 if( call != nullptr && call->is_CallRuntime() )
1392 out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
1393
1394
1395 // Do the normal argument list (parameters) register masks
1396 // Null entry point is a special cast where the target of the call
1397 // is in a register.
1398 int adj = (call != nullptr && call->entry_point() == nullptr) ? 1 : 0;
1399 int argcnt = cnt - TypeFunc::Parms - adj;
1400 if( argcnt > 0 ) { // Skip it all if we have no args
1401 BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, argcnt );
1402 VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
1403 int i;
1404 for( i = 0; i < argcnt; i++ ) {
1405 sig_bt[i] = domain->field_at(i+TypeFunc::Parms+adj)->basic_type();
1406 }
1407 // V-call to pick proper calling convention
1408 call->calling_convention( sig_bt, parm_regs, argcnt );
1409
1410 #ifdef ASSERT
1411 // Sanity check users' calling convention. Really handy during
1412 // the initial porting effort. Fairly expensive otherwise.
1413 { for (int i = 0; i<argcnt; i++) {
1414 if( !parm_regs[i].first()->is_valid() &&
1415 !parm_regs[i].second()->is_valid() ) continue;
1416 VMReg reg1 = parm_regs[i].first();
1417 VMReg reg2 = parm_regs[i].second();
1418 for (int j = 0; j < i; j++) {
1419 if( !parm_regs[j].first()->is_valid() &&
1420 !parm_regs[j].second()->is_valid() ) continue;
1421 VMReg reg3 = parm_regs[j].first();
1422 VMReg reg4 = parm_regs[j].second();
1423 if( !reg1->is_valid() ) {
1424 assert( !reg2->is_valid(), "valid halvsies" );
1425 } else if( !reg3->is_valid() ) {
1426 assert( !reg4->is_valid(), "valid halvsies" );
1427 } else {
1428 assert( reg1 != reg2, "calling conv. must produce distinct regs");
1429 assert( reg1 != reg3, "calling conv. must produce distinct regs");
1430 assert( reg1 != reg4, "calling conv. must produce distinct regs");
1431 assert( reg2 != reg3, "calling conv. must produce distinct regs");
1432 assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
1433 assert( reg3 != reg4, "calling conv. must produce distinct regs");
1434 }
1435 }
1436 }
1437 }
1438 #endif
1439
1440 // Visit each argument. Compute its outgoing register mask.
1441 // Return results now can have 2 bits returned.
1442 // Compute max over all outgoing arguments both per call-site
1443 // and over the entire method.
1444 for( i = 0; i < argcnt; i++ ) {
1445 // Address of incoming argument mask to fill in
1446 RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms+adj];
1447 VMReg first = parm_regs[i].first();
1448 VMReg second = parm_regs[i].second();
1449 if(!first->is_valid() &&
1450 !second->is_valid()) {
1451 continue; // Avoid Halves
1452 }
1453 // Handle case where arguments are in vector registers.
1454 if(call->in(TypeFunc::Parms + i)->bottom_type()->isa_vect()) {
1455 OptoReg::Name reg_fst = OptoReg::as_OptoReg(first);
1456 OptoReg::Name reg_snd = OptoReg::as_OptoReg(second);
1457 assert (reg_fst <= reg_snd, "fst=%d snd=%d", reg_fst, reg_snd);
1458 for (OptoReg::Name r = reg_fst; r <= reg_snd; r++) {
1459 rm->Insert(r);
1460 }
1461 }
1462 // Grab first register, adjust stack slots and insert in mask.
1463 OptoReg::Name reg1 = warp_outgoing_stk_arg(first, begin_out_arg_area, out_arg_limit_per_call );
1464 if (OptoReg::is_valid(reg1)) {
1465 rm->Insert( reg1 );
1466 }
1467 // Grab second register (if any), adjust stack slots and insert in mask.
1468 OptoReg::Name reg2 = warp_outgoing_stk_arg(second, begin_out_arg_area, out_arg_limit_per_call );
1469 if (OptoReg::is_valid(reg2)) {
1470 rm->Insert( reg2 );
1471 }
1472 } // End of for all arguments
1473 }
1474
1475 // Compute the max stack slot killed by any call. These will not be
1476 // available for debug info, and will be used to adjust FIRST_STACK_mask
1477 // after all call sites have been visited.
1478 if( _out_arg_limit < out_arg_limit_per_call)
1479 _out_arg_limit = out_arg_limit_per_call;
1480
1481 if (mcall) {
1482 // Kill the outgoing argument area, including any non-argument holes and
1483 // any legacy C-killed slots. Use Fat-Projections to do the killing.
1484 // Since the max-per-method covers the max-per-call-site and debug info
1485 // is excluded on the max-per-method basis, debug info cannot land in
1486 // this killed area.
1487 uint r_cnt = mcall->tf()->range_sig()->cnt();
1488 MachProjNode *proj = new MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
1489 if (!RegMask::can_represent_arg(OptoReg::Name(out_arg_limit_per_call-1))) {
1490 // Bailout. We do not have space to represent all arguments.
1491 C->record_method_not_compilable("unsupported outgoing calling sequence");
1492 } else {
1493 for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
1494 proj->_rout.Insert(OptoReg::Name(i));
1495 }
1496 if (proj->_rout.is_NotEmpty()) {
1497 push_projection(proj);
1498 }
1499 }
1500 // Transfer the safepoint information from the call to the mcall
1501 // Move the JVMState list
1502 msfpt->set_jvms(sfpt->jvms());
1503 for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
1504 jvms->set_map(sfpt);
1505 }
1506
1507 // Debug inputs begin just after the last incoming parameter
1508 assert((mcall == nullptr) || (mcall->jvms() == nullptr) ||
1509 (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain_cc()->cnt()), "");
1510
1511 // Add additional edges.
1512 if (msfpt->mach_constant_base_node_input() != (uint)-1 && !msfpt->is_MachCallLeaf()) {
1513 // For these calls we can not add MachConstantBase in expand(), as the
1514 // ins are not complete then.
1515 msfpt->ins_req(msfpt->mach_constant_base_node_input(), C->mach_constant_base_node());
1516 if (msfpt->jvms() &&
1517 msfpt->mach_constant_base_node_input() <= msfpt->jvms()->debug_start() + msfpt->_jvmadj) {
1518 // We added an edge before jvms, so we must adapt the position of the ins.
1519 msfpt->jvms()->adapt_position(+1);
1520 }
1521 }
1522
1523 // Registers killed by the call are set in the local scheduling pass
1524 // of Global Code Motion.
1525 return msfpt;
1526 }
1527
1528 //---------------------------match_tree----------------------------------------
1529 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce. Used as part
2173 set_shared(n); // Flag as shared and
2174 if (n->is_DecodeNarrowPtr()) {
2175 // Oop field/array element loads must be shared but since
2176 // they are shared through a DecodeN they may appear to have
2177 // a single use so force sharing here.
2178 set_shared(n->in(1));
2179 }
2180 mstack.pop(); // remove node from stack
2181 continue;
2182 }
2183 nstate = Visit; // Not already visited; so visit now
2184 }
2185 if (nstate == Visit) {
2186 mstack.set_state(Post_Visit);
2187 set_visited(n); // Flag as visited now
2188 bool mem_op = false;
2189 int mem_addr_idx = MemNode::Address;
2190 if (find_shared_visit(mstack, n, nop, mem_op, mem_addr_idx)) {
2191 continue;
2192 }
2193 for (int i = n->len() - 1; i >= 0; --i) { // For my children
2194 Node* m = n->in(i); // Get ith input
2195 if (m == nullptr) {
2196 continue; // Ignore nulls
2197 }
2198 if (clone_node(n, m, mstack)) {
2199 continue;
2200 }
2201
2202 // Clone addressing expressions as they are "free" in memory access instructions
2203 if (mem_op && i == mem_addr_idx && m->is_AddP() &&
2204 // When there are other uses besides address expressions
2205 // put it on stack and mark as shared.
2206 !is_visited(m)) {
2207 // Some inputs for address expression are not put on stack
2208 // to avoid marking them as shared and forcing them into register
2209 // if they are used only in address expressions.
2210 // But they should be marked as shared if there are other uses
2211 // besides address expressions.
2212
2213 if (pd_clone_address_expressions(m->as_AddP(), mstack, address_visited)) {
2493 case Op_FmaD:
2494 case Op_FmaF:
2495 case Op_FmaVD:
2496 case Op_FmaVF: {
2497 // Restructure into a binary tree for Matching.
2498 Node* pair = new BinaryNode(n->in(1), n->in(2));
2499 n->set_req(2, pair);
2500 n->set_req(1, n->in(3));
2501 n->del_req(3);
2502 break;
2503 }
2504 case Op_MulAddS2I: {
2505 Node* pair1 = new BinaryNode(n->in(1), n->in(2));
2506 Node* pair2 = new BinaryNode(n->in(3), n->in(4));
2507 n->set_req(1, pair1);
2508 n->set_req(2, pair2);
2509 n->del_req(4);
2510 n->del_req(3);
2511 break;
2512 }
2513 case Op_ClearArray: {
2514 Node* pair = new BinaryNode(n->in(2), n->in(3));
2515 n->set_req(2, pair);
2516 n->set_req(3, n->in(4));
2517 n->del_req(4);
2518 break;
2519 }
2520 case Op_VectorCmpMasked:
2521 case Op_CopySignD:
2522 case Op_SignumVF:
2523 case Op_SignumVD:
2524 case Op_SignumF:
2525 case Op_SignumD: {
2526 Node* pair = new BinaryNode(n->in(2), n->in(3));
2527 n->set_req(2, pair);
2528 n->del_req(3);
2529 break;
2530 }
2531 case Op_VectorBlend:
2532 case Op_VectorInsert: {
2533 Node* pair = new BinaryNode(n->in(1), n->in(2));
2534 n->set_req(1, pair);
2535 n->set_req(2, n->in(3));
2536 n->del_req(3);
2537 break;
2538 }
2539 case Op_LoadVectorGatherMasked:
|