< prev index next >

src/hotspot/share/opto/matcher.cpp

Print this page

 149     Node* n = worklist.pop();
 150     if (visited.test_set(n->_idx)) {
 151       continue;
 152     }
 153     assert(C->node_arena()->contains(n), "dead node");
 154     assert(!n->is_Initialize() || n->as_Initialize()->number_of_projs(TypeFunc::Memory) == 1,
 155            "after matching, Initialize should have a single memory projection");
 156     for (uint j = 0; j < n->req(); j++) {
 157       Node* in = n->in(j);
 158       if (in != nullptr) {
 159         worklist.push(in);
 160       }
 161     }
 162     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 163       worklist.push(n->fast_out(j));
 164     }
 165   }
 166 }
 167 #endif
 168 













































 169 
 170 //---------------------------match---------------------------------------------
 171 void Matcher::match( ) {
 172   if( MaxLabelRootDepth < 100 ) { // Too small?
 173     assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum");
 174     MaxLabelRootDepth = 100;
 175   }
 176   // One-time initialization of some register masks.
 177   init_spill_mask( C->root()->in(1) );
 178   if (C->failing()) {
 179     return;
 180   }
 181   assert(_return_addr_mask.is_empty(),
 182          "return address mask must be empty initially");
 183   _return_addr_mask.insert(return_addr());
 184 #ifdef _LP64
 185   // Pointers take 2 slots in 64-bit land
 186   _return_addr_mask.insert(OptoReg::add(return_addr(), 1));
 187 #endif
 188 
 189   // Map a Java-signature return type into return register-value
 190   // machine registers for 0, 1 and 2 returned values.
 191   const TypeTuple *range = C->tf()->range();
 192   if( range->cnt() > TypeFunc::Parms ) { // If not a void function
 193     // Get ideal-register return type
 194     uint ireg = range->field_at(TypeFunc::Parms)->ideal_reg();
 195     // Get machine return register
 196     uint sop = C->start()->Opcode();
 197     OptoRegPair regs = return_value(ireg);
 198 
 199     // And mask for same
 200     _return_value_mask.assignFrom(RegMask(regs.first()));
 201     if( OptoReg::is_valid(regs.second()) )
 202       _return_value_mask.insert(regs.second());
 203   }
 204 
 205   // ---------------
 206   // Frame Layout
 207 
 208   // Need the method signature to determine the incoming argument types,
 209   // because the types determine which registers the incoming arguments are
 210   // in, and this affects the matched code.
 211   const TypeTuple *domain = C->tf()->domain();
 212   uint             argcnt = domain->cnt() - TypeFunc::Parms;
 213   BasicType *sig_bt        = NEW_RESOURCE_ARRAY( BasicType, argcnt );
 214   VMRegPair *vm_parm_regs  = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
 215   _parm_regs               = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
 216   _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
 217   uint i;
 218   for( i = 0; i<argcnt; i++ ) {
 219     sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
 220     new (_calling_convention_mask + i) RegMask(C->comp_arena());
 221   }
 222 
 223   // Pass array of ideal registers and length to USER code (from the AD file)
 224   // that will convert this to an array of register numbers.
 225   const StartNode *start = C->start();
 226   start->calling_convention( sig_bt, vm_parm_regs, argcnt );
 227 #ifdef ASSERT
 228   // Sanity check users' calling convention.  Real handy while trying to
 229   // get the initial port correct.
 230   { for (uint i = 0; i<argcnt; i++) {
 231       if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {

 463   // Initialize empty placeholder masks into the newly allocated arena
 464   for (int i = 0; i < NOF_STACK_MASKS; i++) {
 465     new (rms + i) RegMask(C->comp_arena());
 466   }
 467 
 468   int index = 0;
 469   for (int i = Op_RegN; i <= Op_RegVectMask; ++i) {
 470     idealreg2spillmask[i] = &rms[index++];
 471     idealreg2debugmask[i] = &rms[index++];
 472   }
 473   assert(index == NOF_STACK_MASKS, "wrong size");
 474 
 475   // At first, start with the empty mask
 476   C->FIRST_STACK_mask().clear();
 477 
 478   // Add in the incoming argument area
 479   OptoReg::Name init_in = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
 480   for (OptoReg::Name i = init_in; i < _in_arg_limit; i = OptoReg::add(i, 1)) {
 481     C->FIRST_STACK_mask().insert(i);
 482   }

 483   // Add in all bits past the outgoing argument area
 484   C->FIRST_STACK_mask().set_all_from(_out_arg_limit);
 485 
 486   // Make spill masks.  Registers for their class, plus FIRST_STACK_mask.
 487   RegMask aligned_stack_mask(C->FIRST_STACK_mask(), C->comp_arena());
 488   // Keep spill masks aligned.
 489   aligned_stack_mask.clear_to_pairs();
 490   assert(aligned_stack_mask.is_infinite_stack(), "should be infinite stack");
 491   RegMask scalable_stack_mask(aligned_stack_mask, C->comp_arena());
 492 
 493   idealreg2spillmask[Op_RegP]->assignFrom(*idealreg2regmask[Op_RegP]);
 494 #ifdef _LP64
 495   idealreg2spillmask[Op_RegN]->assignFrom(*idealreg2regmask[Op_RegN]);
 496   idealreg2spillmask[Op_RegN]->or_with(C->FIRST_STACK_mask());
 497   idealreg2spillmask[Op_RegP]->or_with(aligned_stack_mask);
 498 #else
 499    idealreg2spillmask[Op_RegP]->or_with(C->FIRST_STACK_mask());
 500 #endif
 501   idealreg2spillmask[Op_RegI]->assignFrom(*idealreg2regmask[Op_RegI]);
 502   idealreg2spillmask[Op_RegI]->or_with(C->FIRST_STACK_mask());

 683     _register_save_policy[reg] == 'E' ||
 684     _register_save_policy[reg] == 'A'; // Save-on-entry register?
 685 }
 686 
 687 //---------------------------Fixup_Save_On_Entry-------------------------------
 688 void Matcher::Fixup_Save_On_Entry( ) {
 689   init_first_stack_mask();
 690 
 691   Node *root = C->root();       // Short name for root
 692   // Count number of save-on-entry registers.
 693   uint soe_cnt = number_of_saved_registers();
 694   uint i;
 695 
 696   // Find the procedure Start Node
 697   StartNode *start = C->start();
 698   assert( start, "Expect a start node" );
 699 
 700   // Input RegMask array shared by all Returns.
 701   // The type for doubles and longs has a count of 2, but
 702   // there is only 1 returned value
 703   uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1);
 704   RegMask *ret_rms  = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 705   // Returns have 0 or 1 returned values depending on call signature.
 706   // Return register is specified by return_value in the AD file.
 707   if (ret_edge_cnt > TypeFunc::Parms) {
 708     ret_rms[TypeFunc::Parms + 0].assignFrom(_return_value_mask);
 709   }
 710 
 711   // Input RegMask array shared by all ForwardExceptions
 712   uint forw_exc_edge_cnt = TypeFunc::Parms;
 713   RegMask* forw_exc_rms  = init_input_masks( forw_exc_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 714 
 715   // Input RegMask array shared by all Rethrows.
 716   uint reth_edge_cnt = TypeFunc::Parms+1;
 717   RegMask *reth_rms  = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 718   // Rethrow takes exception oop only, but in the argument 0 slot.
 719   OptoReg::Name reg = find_receiver();
 720   if (reg >= 0) {
 721     reth_rms[TypeFunc::Parms].assignFrom(mreg2regmask[reg]);
 722 #ifdef _LP64
 723     // Need two slots for ptrs in 64-bit land
 724     reth_rms[TypeFunc::Parms].insert(OptoReg::add(OptoReg::Name(reg), 1));
 725 #endif
 726   }
 727 
 728   // Input RegMask array shared by all TailCalls

 761 
 762   // Input RegMask array shared by all Halts
 763   uint halt_edge_cnt = TypeFunc::Parms;
 764   RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 765 
 766   // Capture the return input masks into each exit flavor
 767   for( i=1; i < root->req(); i++ ) {
 768     MachReturnNode *exit = root->in(i)->as_MachReturn();
 769     switch( exit->ideal_Opcode() ) {
 770       case Op_Return   : exit->_in_rms = ret_rms;  break;
 771       case Op_Rethrow  : exit->_in_rms = reth_rms; break;
 772       case Op_TailCall : exit->_in_rms = tail_call_rms; break;
 773       case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
 774       case Op_ForwardException: exit->_in_rms = forw_exc_rms; break;
 775       case Op_Halt     : exit->_in_rms = halt_rms; break;
 776       default          : ShouldNotReachHere();
 777     }
 778   }
 779 
 780   // Next unused projection number from Start.
 781   int proj_cnt = C->tf()->domain()->cnt();
 782 
 783   // Do all the save-on-entry registers.  Make projections from Start for
 784   // them, and give them a use at the exit points.  To the allocator, they
 785   // look like incoming register arguments.
 786   for( i = 0; i < _last_Mach_Reg; i++ ) {
 787     if( is_save_on_entry(i) ) {
 788 
 789       // Add the save-on-entry to the mask array
 790       ret_rms      [      ret_edge_cnt].assignFrom(mreg2regmask[i]);
 791       reth_rms     [     reth_edge_cnt].assignFrom(mreg2regmask[i]);
 792       tail_call_rms[tail_call_edge_cnt].assignFrom(mreg2regmask[i]);
 793       tail_jump_rms[tail_jump_edge_cnt].assignFrom(mreg2regmask[i]);
 794       forw_exc_rms [ forw_exc_edge_cnt].assignFrom(mreg2regmask[i]);
 795       // Halts need the SOE registers, but only in the stack as debug info.
 796       // A just-prior uncommon-trap or deoptimization will use the SOE regs.
 797       halt_rms     [     halt_edge_cnt].assignFrom(*idealreg2spillmask[_register_save_type[i]]);
 798 
 799       Node *mproj;
 800 
 801       // Is this a RegF low half of a RegD?  Double up 2 adjacent RegF's

1041             m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
1042             if (C->failing())  return nullptr;
1043             if (m == nullptr) { Matcher::soft_match_failure(); return nullptr; }
1044             if (n->is_MemBar()) {
1045               m->as_MachMemBar()->set_adr_type(n->adr_type());
1046             }
1047           } else {                  // Nothing the matcher cares about
1048             if (n->is_Proj() && n->in(0) != nullptr && n->in(0)->is_Multi()) {       // Projections?
1049               if (n->in(0)->is_Initialize() && n->as_Proj()->_con == TypeFunc::Memory) {
1050                 // Initialize may have multiple NarrowMem projections. They would all match to identical raw mem MachProjs.
1051                 // We don't need multiple MachProjs. Create one if none already exist, otherwise use existing one.
1052                 m = n->in(0)->as_Initialize()->mem_mach_proj();
1053                 if (m == nullptr && has_new_node(n->in(0))) {
1054                   InitializeNode* new_init = new_node(n->in(0))->as_Initialize();
1055                   m = new_init->mem_mach_proj();
1056                 }
1057                 assert(m == nullptr || m->is_MachProj(), "no mem projection yet or a MachProj created during matching");
1058               }
1059               if (m == nullptr) {
1060                 // Convert to machine-dependent projection
1061                 m = n->in(0)->as_Multi()->match( n->as_Proj(), this );




1062                 NOT_PRODUCT(record_new2old(m, n);)
1063               }
1064               if (m->in(0) != nullptr) // m might be top
1065                 collect_null_checks(m, n);
1066             } else {                // Else just a regular 'ol guy
1067               m = n->clone();       // So just clone into new-space
1068               NOT_PRODUCT(record_new2old(m, n);)
1069               // Def-Use edges will be added incrementally as Uses
1070               // of this node are matched.
1071               assert(m->outcnt() == 0, "no Uses of this clone yet");
1072             }
1073           }
1074 
1075           set_new_node(n, m);       // Map old to new
1076           if (_old_node_note_array != nullptr) {
1077             Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
1078                                                   n->_idx);
1079             C->set_node_notes_at(m->_idx, nn);
1080           }
1081           DEBUG_ONLY(match_alias_type(C, n, m));

1177     return warped;
1178   }
1179   return OptoReg::as_OptoReg(reg);
1180 }
1181 
1182 
1183 //------------------------------match_sfpt-------------------------------------
1184 // Helper function to match call instructions.  Calls match special.
1185 // They match alone with no children.  Their children, the incoming
1186 // arguments, match normally.
1187 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
1188   MachSafePointNode *msfpt = nullptr;
1189   MachCallNode      *mcall = nullptr;
1190   uint               cnt;
1191   // Split out case for SafePoint vs Call
1192   CallNode *call;
1193   const TypeTuple *domain;
1194   ciMethod*        method = nullptr;
1195   if( sfpt->is_Call() ) {
1196     call = sfpt->as_Call();
1197     domain = call->tf()->domain();
1198     cnt = domain->cnt();
1199 
1200     // Match just the call, nothing else
1201     MachNode *m = match_tree(call);
1202     if (C->failing())  return nullptr;
1203     if( m == nullptr ) { Matcher::soft_match_failure(); return nullptr; }
1204 
1205     // Copy data from the Ideal SafePoint to the machine version
1206     mcall = m->as_MachCall();
1207 
1208     mcall->set_tf(                  call->tf());
1209     mcall->set_entry_point(         call->entry_point());
1210     mcall->set_cnt(                 call->cnt());
1211     mcall->set_guaranteed_safepoint(call->guaranteed_safepoint());
1212 
1213     if( mcall->is_MachCallJava() ) {
1214       MachCallJavaNode *mcall_java  = mcall->as_MachCallJava();
1215       const CallJavaNode *call_java =  call->as_CallJava();
1216       assert(call_java->validate_symbolic_info(), "inconsistent info");
1217       method = call_java->method();

1253   for (uint i = 0; i < cnt; i++) {
1254     ::new (msfpt->_in_rms + i) RegMask(C->comp_arena());
1255   }
1256 
1257   // Do all the pre-defined non-Empty register masks
1258   msfpt->_in_rms[TypeFunc::ReturnAdr].assignFrom(_return_addr_mask);
1259   msfpt->_in_rms[TypeFunc::FramePtr ].assignFrom(c_frame_ptr_mask);
1260 
1261   // Place first outgoing argument can possibly be put.
1262   OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
1263   assert( is_even(begin_out_arg_area), "" );
1264   // Compute max outgoing register number per call site.
1265   OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
1266   // Calls to C may hammer extra stack slots above and beyond any arguments.
1267   // These are usually backing store for register arguments for varargs.
1268   if( call != nullptr && call->is_CallRuntime() )
1269     out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
1270 
1271 
1272   // Do the normal argument list (parameters) register masks
1273   int argcnt = cnt - TypeFunc::Parms;



1274   if( argcnt > 0 ) {          // Skip it all if we have no args
1275     BasicType *sig_bt  = NEW_RESOURCE_ARRAY( BasicType, argcnt );
1276     VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
1277     int i;
1278     for( i = 0; i < argcnt; i++ ) {
1279       sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
1280     }
1281     // V-call to pick proper calling convention
1282     call->calling_convention( sig_bt, parm_regs, argcnt );
1283 
1284 #ifdef ASSERT
1285     // Sanity check users' calling convention.  Really handy during
1286     // the initial porting effort.  Fairly expensive otherwise.
1287     { for (int i = 0; i<argcnt; i++) {
1288       if( !parm_regs[i].first()->is_valid() &&
1289           !parm_regs[i].second()->is_valid() ) continue;
1290       VMReg reg1 = parm_regs[i].first();
1291       VMReg reg2 = parm_regs[i].second();
1292       for (int j = 0; j < i; j++) {
1293         if( !parm_regs[j].first()->is_valid() &&
1294             !parm_regs[j].second()->is_valid() ) continue;
1295         VMReg reg3 = parm_regs[j].first();
1296         VMReg reg4 = parm_regs[j].second();
1297         if( !reg1->is_valid() ) {
1298           assert( !reg2->is_valid(), "valid halvsies" );
1299         } else if( !reg3->is_valid() ) {
1300           assert( !reg4->is_valid(), "valid halvsies" );
1301         } else {
1302           assert( reg1 != reg2, "calling conv. must produce distinct regs");
1303           assert( reg1 != reg3, "calling conv. must produce distinct regs");
1304           assert( reg1 != reg4, "calling conv. must produce distinct regs");
1305           assert( reg2 != reg3, "calling conv. must produce distinct regs");
1306           assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
1307           assert( reg3 != reg4, "calling conv. must produce distinct regs");
1308         }
1309       }
1310     }
1311     }
1312 #endif
1313 
1314     // Visit each argument.  Compute its outgoing register mask.
1315     // Return results now can have 2 bits returned.
1316     // Compute max over all outgoing arguments both per call-site
1317     // and over the entire method.
1318     for( i = 0; i < argcnt; i++ ) {
1319       // Address of incoming argument mask to fill in
1320       RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms];
1321       VMReg first = parm_regs[i].first();
1322       VMReg second = parm_regs[i].second();
1323       if(!first->is_valid() &&
1324          !second->is_valid()) {
1325         continue;               // Avoid Halves
1326       }
1327       // Handle case where arguments are in vector registers.
1328       if(call->in(TypeFunc::Parms + i)->bottom_type()->isa_vect()) {
1329         OptoReg::Name reg_fst = OptoReg::as_OptoReg(first);
1330         OptoReg::Name reg_snd = OptoReg::as_OptoReg(second);
1331         assert (reg_fst <= reg_snd, "fst=%d snd=%d", reg_fst, reg_snd);
1332         for (OptoReg::Name r = reg_fst; r <= reg_snd; r++) {
1333           rm->insert(r);
1334         }
1335       }
1336       // Grab first register, adjust stack slots and insert in mask.
1337       OptoReg::Name reg1 = warp_outgoing_stk_arg(first, begin_out_arg_area, out_arg_limit_per_call );
1338       if (OptoReg::is_valid(reg1))
1339         rm->insert(reg1);

1340       // Grab second register (if any), adjust stack slots and insert in mask.
1341       OptoReg::Name reg2 = warp_outgoing_stk_arg(second, begin_out_arg_area, out_arg_limit_per_call );
1342       if (OptoReg::is_valid(reg2))
1343         rm->insert(reg2);

1344     } // End of for all arguments
1345   }
1346 
1347   // Compute the max stack slot killed by any call.  These will not be
1348   // available for debug info, and will be used to adjust FIRST_STACK_mask
1349   // after all call sites have been visited.
1350   if( _out_arg_limit < out_arg_limit_per_call)
1351     _out_arg_limit = out_arg_limit_per_call;
1352 
1353   if (mcall) {
1354     // Kill the outgoing argument area, including any non-argument holes and
1355     // any legacy C-killed slots.  Use Fat-Projections to do the killing.
1356     // Since the max-per-method covers the max-per-call-site and debug info
1357     // is excluded on the max-per-method basis, debug info cannot land in
1358     // this killed area.
1359     uint r_cnt = mcall->tf()->range()->cnt();
1360     MachProjNode* proj = new MachProjNode(mcall, r_cnt + 10000, RegMask::EMPTY, MachProjNode::fat_proj);
1361     for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++) {
1362       proj->_rout.insert(OptoReg::Name(i));
1363     }
1364     if (!proj->_rout.is_empty()) {
1365       push_projection(proj);
1366     }
1367   }
1368   // Transfer the safepoint information from the call to the mcall
1369   // Move the JVMState list
1370   msfpt->set_jvms(sfpt->jvms());
1371   for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
1372     jvms->set_map(sfpt);
1373   }
1374 
1375   // Debug inputs begin just after the last incoming parameter
1376   assert((mcall == nullptr) || (mcall->jvms() == nullptr) ||
1377          (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "");
1378 
1379   // Add additional edges.
1380   if (msfpt->mach_constant_base_node_input() != (uint)-1 && !msfpt->is_MachCallLeaf()) {
1381     // For these calls we can not add MachConstantBase in expand(), as the
1382     // ins are not complete then.
1383     msfpt->ins_req(msfpt->mach_constant_base_node_input(), C->mach_constant_base_node());
1384     if (msfpt->jvms() &&
1385         msfpt->mach_constant_base_node_input() <= msfpt->jvms()->debug_start() + msfpt->_jvmadj) {
1386       // We added an edge before jvms, so we must adapt the position of the ins.
1387       msfpt->jvms()->adapt_position(+1);
1388     }
1389   }
1390 
1391   // Registers killed by the call are set in the local scheduling pass
1392   // of Global Code Motion.
1393   return msfpt;
1394 }
1395 
1396 //---------------------------match_tree----------------------------------------
1397 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce.  Used as part

2046         set_shared(n);       // Flag as shared and
2047         if (n->is_DecodeNarrowPtr()) {
2048           // Oop field/array element loads must be shared but since
2049           // they are shared through a DecodeN they may appear to have
2050           // a single use so force sharing here.
2051           set_shared(n->in(1));
2052         }
2053         mstack.pop();        // remove node from stack
2054         continue;
2055       }
2056       nstate = Visit; // Not already visited; so visit now
2057     }
2058     if (nstate == Visit) {
2059       mstack.set_state(Post_Visit);
2060       set_visited(n);   // Flag as visited now
2061       bool mem_op = false;
2062       int mem_addr_idx = MemNode::Address;
2063       if (find_shared_visit(mstack, n, nop, mem_op, mem_addr_idx)) {
2064         continue;
2065       }
2066       for (int i = n->req() - 1; i >= 0; --i) { // For my children
2067         Node* m = n->in(i); // Get ith input
2068         if (m == nullptr) {
2069           continue;  // Ignore nulls
2070         }
2071         if (clone_node(n, m, mstack)) {
2072           continue;
2073         }
2074 
2075         // Clone addressing expressions as they are "free" in memory access instructions
2076         if (mem_op && i == mem_addr_idx && m->is_AddP() &&
2077             // When there are other uses besides address expressions
2078             // put it on stack and mark as shared.
2079             !is_visited(m)) {
2080           // Some inputs for address expression are not put on stack
2081           // to avoid marking them as shared and forcing them into register
2082           // if they are used only in address expressions.
2083           // But they should be marked as shared if there are other uses
2084           // besides address expressions.
2085 
2086           if (pd_clone_address_expressions(m->as_AddP(), mstack, address_visited)) {

2357     case Op_FmaHF:
2358     case Op_FmaVD:
2359     case Op_FmaVF:
2360     case Op_FmaVHF: {
2361       // Restructure into a binary tree for Matching.
2362       Node* pair = new BinaryNode(n->in(1), n->in(2));
2363       n->set_req(2, pair);
2364       n->set_req(1, n->in(3));
2365       n->del_req(3);
2366       break;
2367     }
2368     case Op_MulAddS2I: {
2369       Node* pair1 = new BinaryNode(n->in(1), n->in(2));
2370       Node* pair2 = new BinaryNode(n->in(3), n->in(4));
2371       n->set_req(1, pair1);
2372       n->set_req(2, pair2);
2373       n->del_req(4);
2374       n->del_req(3);
2375       break;
2376     }







2377     case Op_VectorCmpMasked:
2378     case Op_CopySignD:
2379     case Op_SignumVF:
2380     case Op_SignumVD:
2381     case Op_SignumF:
2382     case Op_SignumD: {
2383       Node* pair = new BinaryNode(n->in(2), n->in(3));
2384       n->set_req(2, pair);
2385       n->del_req(3);
2386       break;
2387     }
2388     case Op_VectorBlend:
2389     case Op_VectorInsert: {
2390       Node* pair = new BinaryNode(n->in(1), n->in(2));
2391       n->set_req(1, pair);
2392       n->set_req(2, n->in(3));
2393       n->del_req(3);
2394       break;
2395     }
2396     case Op_LoadVectorGatherMasked: // fall-through

2406       n->del_req(MemNode::ValueIn+2);
2407       pair = new BinaryNode(n->in(MemNode::ValueIn), n->in(MemNode::ValueIn+1));
2408       n->set_req(MemNode::ValueIn, pair);
2409       n->del_req(MemNode::ValueIn+1);
2410       break;
2411     }
2412     case Op_VectorMaskCmp: {
2413       n->set_req(1, new BinaryNode(n->in(1), n->in(2)));
2414       n->set_req(2, n->in(3));
2415       n->del_req(3);
2416       break;
2417     }
2418     case Op_PartialSubtypeCheck: {
2419       if (UseSecondarySupersTable && n->in(2)->is_Con()) {
2420         // PartialSubtypeCheck uses both constant and register operands for superclass input.
2421         n->set_req(2, new BinaryNode(n->in(2), n->in(2)));
2422         break;
2423       }
2424       break;
2425     }








2426     default:
2427       break;
2428   }
2429 }
2430 
2431 #ifndef PRODUCT
2432 void Matcher::record_new2old(Node* newn, Node* old) {
2433   _new2old_map.map(newn->_idx, old);
2434   if (!_reused.test_set(old->_igv_idx)) {
2435     // Reuse the Ideal-level IGV identifier so that the node can be tracked
2436     // across matching. If there are multiple machine nodes expanded from the
2437     // same Ideal node, only one will reuse its IGV identifier.
2438     newn->_igv_idx = old->_igv_idx;
2439   }
2440 }
2441 
2442 // machine-independent root to machine-dependent root
2443 void Matcher::dump_old2new_map() {
2444   _old2new_map.dump();
2445 }

 149     Node* n = worklist.pop();
 150     if (visited.test_set(n->_idx)) {
 151       continue;
 152     }
 153     assert(C->node_arena()->contains(n), "dead node");
 154     assert(!n->is_Initialize() || n->as_Initialize()->number_of_projs(TypeFunc::Memory) == 1,
 155            "after matching, Initialize should have a single memory projection");
 156     for (uint j = 0; j < n->req(); j++) {
 157       Node* in = n->in(j);
 158       if (in != nullptr) {
 159         worklist.push(in);
 160       }
 161     }
 162     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 163       worklist.push(n->fast_out(j));
 164     }
 165   }
 166 }
 167 #endif
 168 
 169 // Array of RegMask, one per returned values (inline type instances can
 170 // be returned as multiple return values, one per field)
 171 RegMask* Matcher::return_values_mask(const TypeFunc* tf) {
 172   const TypeTuple* range = tf->range_cc();
 173   uint cnt = range->cnt() - TypeFunc::Parms;
 174   if (cnt == 0) {
 175     return nullptr;
 176   }
 177   RegMask* mask = NEW_RESOURCE_ARRAY(RegMask, cnt);
 178   BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, cnt);
 179   VMRegPair* vm_parm_regs = NEW_RESOURCE_ARRAY(VMRegPair, cnt);
 180   for (uint i = 0; i < cnt; i++) {
 181     sig_bt[i] = range->field_at(i+TypeFunc::Parms)->basic_type();
 182     new (mask + i) RegMask();
 183   }
 184 
 185   int regs = SharedRuntime::java_return_convention(sig_bt, vm_parm_regs, cnt);
 186   if (regs <= 0) {
 187     // We ran out of registers to store the null marker for a nullable inline type return.
 188     // Since it is only set in the 'call_epilog', we can simply put it on the stack.
 189     assert(tf->returns_inline_type_as_fields(), "should have been tested during graph construction");
 190     // TODO 8284443 Can we teach the register allocator to reserve a stack slot instead?
 191     // mask[--cnt] = STACK_ONLY_mask does not work (test with -XX:+StressGCM)
 192     int slot = C->fixed_slots() - 2;
 193     if (C->needs_stack_repair()) {
 194       slot -= 2; // Account for stack increment value
 195     }
 196     mask[--cnt].clear();
 197     mask[cnt].insert(OptoReg::stack2reg(slot));
 198   }
 199   for (uint i = 0; i < cnt; i++) {
 200     mask[i].clear();
 201 
 202     OptoReg::Name reg1 = OptoReg::as_OptoReg(vm_parm_regs[i].first());
 203     if (OptoReg::is_valid(reg1)) {
 204       mask[i].insert(reg1);
 205     }
 206     OptoReg::Name reg2 = OptoReg::as_OptoReg(vm_parm_regs[i].second());
 207     if (OptoReg::is_valid(reg2)) {
 208       mask[i].insert(reg2);
 209     }
 210   }
 211 
 212   return mask;
 213 }
 214 
 215 //---------------------------match---------------------------------------------
 216 void Matcher::match( ) {
 217   if( MaxLabelRootDepth < 100 ) { // Too small?
 218     assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum");
 219     MaxLabelRootDepth = 100;
 220   }
 221   // One-time initialization of some register masks.
 222   init_spill_mask( C->root()->in(1) );
 223   if (C->failing()) {
 224     return;
 225   }
 226   assert(_return_addr_mask.is_empty(),
 227          "return address mask must be empty initially");
 228   _return_addr_mask.insert(return_addr());
 229 #ifdef _LP64
 230   // Pointers take 2 slots in 64-bit land
 231   _return_addr_mask.insert(OptoReg::add(return_addr(), 1));
 232 #endif
 233 
 234   // Map Java-signature return types into return register-value
 235   // machine registers.
 236   _return_values_mask = return_values_mask(C->tf());












 237 
 238   // ---------------
 239   // Frame Layout
 240 
 241   // Need the method signature to determine the incoming argument types,
 242   // because the types determine which registers the incoming arguments are
 243   // in, and this affects the matched code.
 244   const TypeTuple *domain = C->tf()->domain_cc();
 245   uint             argcnt = domain->cnt() - TypeFunc::Parms;
 246   BasicType *sig_bt        = NEW_RESOURCE_ARRAY( BasicType, argcnt );
 247   VMRegPair *vm_parm_regs  = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
 248   _parm_regs               = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
 249   _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
 250   uint i;
 251   for( i = 0; i<argcnt; i++ ) {
 252     sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
 253     new (_calling_convention_mask + i) RegMask(C->comp_arena());
 254   }
 255 
 256   // Pass array of ideal registers and length to USER code (from the AD file)
 257   // that will convert this to an array of register numbers.
 258   const StartNode *start = C->start();
 259   start->calling_convention( sig_bt, vm_parm_regs, argcnt );
 260 #ifdef ASSERT
 261   // Sanity check users' calling convention.  Real handy while trying to
 262   // get the initial port correct.
 263   { for (uint i = 0; i<argcnt; i++) {
 264       if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {

 496   // Initialize empty placeholder masks into the newly allocated arena
 497   for (int i = 0; i < NOF_STACK_MASKS; i++) {
 498     new (rms + i) RegMask(C->comp_arena());
 499   }
 500 
 501   int index = 0;
 502   for (int i = Op_RegN; i <= Op_RegVectMask; ++i) {
 503     idealreg2spillmask[i] = &rms[index++];
 504     idealreg2debugmask[i] = &rms[index++];
 505   }
 506   assert(index == NOF_STACK_MASKS, "wrong size");
 507 
 508   // At first, start with the empty mask
 509   C->FIRST_STACK_mask().clear();
 510 
 511   // Add in the incoming argument area
 512   OptoReg::Name init_in = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
 513   for (OptoReg::Name i = init_in; i < _in_arg_limit; i = OptoReg::add(i, 1)) {
 514     C->FIRST_STACK_mask().insert(i);
 515   }
 516 
 517   // Add in all bits past the outgoing argument area
 518   C->FIRST_STACK_mask().set_all_from(_out_arg_limit);
 519 
 520   // Make spill masks.  Registers for their class, plus FIRST_STACK_mask.
 521   RegMask aligned_stack_mask(C->FIRST_STACK_mask(), C->comp_arena());
 522   // Keep spill masks aligned.
 523   aligned_stack_mask.clear_to_pairs();
 524   assert(aligned_stack_mask.is_infinite_stack(), "should be infinite stack");
 525   RegMask scalable_stack_mask(aligned_stack_mask, C->comp_arena());
 526 
 527   idealreg2spillmask[Op_RegP]->assignFrom(*idealreg2regmask[Op_RegP]);
 528 #ifdef _LP64
 529   idealreg2spillmask[Op_RegN]->assignFrom(*idealreg2regmask[Op_RegN]);
 530   idealreg2spillmask[Op_RegN]->or_with(C->FIRST_STACK_mask());
 531   idealreg2spillmask[Op_RegP]->or_with(aligned_stack_mask);
 532 #else
 533    idealreg2spillmask[Op_RegP]->or_with(C->FIRST_STACK_mask());
 534 #endif
 535   idealreg2spillmask[Op_RegI]->assignFrom(*idealreg2regmask[Op_RegI]);
 536   idealreg2spillmask[Op_RegI]->or_with(C->FIRST_STACK_mask());

 717     _register_save_policy[reg] == 'E' ||
 718     _register_save_policy[reg] == 'A'; // Save-on-entry register?
 719 }
 720 
 721 //---------------------------Fixup_Save_On_Entry-------------------------------
 722 void Matcher::Fixup_Save_On_Entry( ) {
 723   init_first_stack_mask();
 724 
 725   Node *root = C->root();       // Short name for root
 726   // Count number of save-on-entry registers.
 727   uint soe_cnt = number_of_saved_registers();
 728   uint i;
 729 
 730   // Find the procedure Start Node
 731   StartNode *start = C->start();
 732   assert( start, "Expect a start node" );
 733 
 734   // Input RegMask array shared by all Returns.
 735   // The type for doubles and longs has a count of 2, but
 736   // there is only 1 returned value
 737   uint ret_edge_cnt = C->tf()->range_cc()->cnt();
 738   RegMask *ret_rms  = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 739   for (i = TypeFunc::Parms; i < ret_edge_cnt; i++) {
 740     ret_rms[i].assignFrom(_return_values_mask[i-TypeFunc::Parms]);


 741   }
 742 
 743   // Input RegMask array shared by all ForwardExceptions
 744   uint forw_exc_edge_cnt = TypeFunc::Parms;
 745   RegMask* forw_exc_rms  = init_input_masks( forw_exc_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 746 
 747   // Input RegMask array shared by all Rethrows.
 748   uint reth_edge_cnt = TypeFunc::Parms+1;
 749   RegMask *reth_rms  = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 750   // Rethrow takes exception oop only, but in the argument 0 slot.
 751   OptoReg::Name reg = find_receiver();
 752   if (reg >= 0) {
 753     reth_rms[TypeFunc::Parms].assignFrom(mreg2regmask[reg]);
 754 #ifdef _LP64
 755     // Need two slots for ptrs in 64-bit land
 756     reth_rms[TypeFunc::Parms].insert(OptoReg::add(OptoReg::Name(reg), 1));
 757 #endif
 758   }
 759 
 760   // Input RegMask array shared by all TailCalls

 793 
 794   // Input RegMask array shared by all Halts
 795   uint halt_edge_cnt = TypeFunc::Parms;
 796   RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 797 
 798   // Capture the return input masks into each exit flavor
 799   for( i=1; i < root->req(); i++ ) {
 800     MachReturnNode *exit = root->in(i)->as_MachReturn();
 801     switch( exit->ideal_Opcode() ) {
 802       case Op_Return   : exit->_in_rms = ret_rms;  break;
 803       case Op_Rethrow  : exit->_in_rms = reth_rms; break;
 804       case Op_TailCall : exit->_in_rms = tail_call_rms; break;
 805       case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
 806       case Op_ForwardException: exit->_in_rms = forw_exc_rms; break;
 807       case Op_Halt     : exit->_in_rms = halt_rms; break;
 808       default          : ShouldNotReachHere();
 809     }
 810   }
 811 
 812   // Next unused projection number from Start.
 813   int proj_cnt = C->tf()->domain_cc()->cnt();
 814 
 815   // Do all the save-on-entry registers.  Make projections from Start for
 816   // them, and give them a use at the exit points.  To the allocator, they
 817   // look like incoming register arguments.
 818   for( i = 0; i < _last_Mach_Reg; i++ ) {
 819     if( is_save_on_entry(i) ) {
 820 
 821       // Add the save-on-entry to the mask array
 822       ret_rms      [      ret_edge_cnt].assignFrom(mreg2regmask[i]);
 823       reth_rms     [     reth_edge_cnt].assignFrom(mreg2regmask[i]);
 824       tail_call_rms[tail_call_edge_cnt].assignFrom(mreg2regmask[i]);
 825       tail_jump_rms[tail_jump_edge_cnt].assignFrom(mreg2regmask[i]);
 826       forw_exc_rms [ forw_exc_edge_cnt].assignFrom(mreg2regmask[i]);
 827       // Halts need the SOE registers, but only in the stack as debug info.
 828       // A just-prior uncommon-trap or deoptimization will use the SOE regs.
 829       halt_rms     [     halt_edge_cnt].assignFrom(*idealreg2spillmask[_register_save_type[i]]);
 830 
 831       Node *mproj;
 832 
 833       // Is this a RegF low half of a RegD?  Double up 2 adjacent RegF's

1073             m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
1074             if (C->failing())  return nullptr;
1075             if (m == nullptr) { Matcher::soft_match_failure(); return nullptr; }
1076             if (n->is_MemBar()) {
1077               m->as_MachMemBar()->set_adr_type(n->adr_type());
1078             }
1079           } else {                  // Nothing the matcher cares about
1080             if (n->is_Proj() && n->in(0) != nullptr && n->in(0)->is_Multi()) {       // Projections?
1081               if (n->in(0)->is_Initialize() && n->as_Proj()->_con == TypeFunc::Memory) {
1082                 // Initialize may have multiple NarrowMem projections. They would all match to identical raw mem MachProjs.
1083                 // We don't need multiple MachProjs. Create one if none already exist, otherwise use existing one.
1084                 m = n->in(0)->as_Initialize()->mem_mach_proj();
1085                 if (m == nullptr && has_new_node(n->in(0))) {
1086                   InitializeNode* new_init = new_node(n->in(0))->as_Initialize();
1087                   m = new_init->mem_mach_proj();
1088                 }
1089                 assert(m == nullptr || m->is_MachProj(), "no mem projection yet or a MachProj created during matching");
1090               }
1091               if (m == nullptr) {
1092                 // Convert to machine-dependent projection
1093                 RegMask* mask = nullptr;
1094                 if (n->in(0)->is_Call() && n->in(0)->as_Call()->tf()->returns_inline_type_as_fields()) {
1095                   mask = return_values_mask(n->in(0)->as_Call()->tf());
1096                 }
1097                 m = n->in(0)->as_Multi()->match(n->as_Proj(), this, mask);
1098                 NOT_PRODUCT(record_new2old(m, n);)
1099               }
1100               if (m->in(0) != nullptr) // m might be top
1101                 collect_null_checks(m, n);
1102             } else {                // Else just a regular 'ol guy
1103               m = n->clone();       // So just clone into new-space
1104               NOT_PRODUCT(record_new2old(m, n);)
1105               // Def-Use edges will be added incrementally as Uses
1106               // of this node are matched.
1107               assert(m->outcnt() == 0, "no Uses of this clone yet");
1108             }
1109           }
1110 
1111           set_new_node(n, m);       // Map old to new
1112           if (_old_node_note_array != nullptr) {
1113             Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
1114                                                   n->_idx);
1115             C->set_node_notes_at(m->_idx, nn);
1116           }
1117           DEBUG_ONLY(match_alias_type(C, n, m));

1213     return warped;
1214   }
1215   return OptoReg::as_OptoReg(reg);
1216 }
1217 
1218 
1219 //------------------------------match_sfpt-------------------------------------
1220 // Helper function to match call instructions.  Calls match special.
1221 // They match alone with no children.  Their children, the incoming
1222 // arguments, match normally.
1223 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
1224   MachSafePointNode *msfpt = nullptr;
1225   MachCallNode      *mcall = nullptr;
1226   uint               cnt;
1227   // Split out case for SafePoint vs Call
1228   CallNode *call;
1229   const TypeTuple *domain;
1230   ciMethod*        method = nullptr;
1231   if( sfpt->is_Call() ) {
1232     call = sfpt->as_Call();
1233     domain = call->tf()->domain_cc();
1234     cnt = domain->cnt();
1235 
1236     // Match just the call, nothing else
1237     MachNode *m = match_tree(call);
1238     if (C->failing())  return nullptr;
1239     if( m == nullptr ) { Matcher::soft_match_failure(); return nullptr; }
1240 
1241     // Copy data from the Ideal SafePoint to the machine version
1242     mcall = m->as_MachCall();
1243 
1244     mcall->set_tf(                  call->tf());
1245     mcall->set_entry_point(         call->entry_point());
1246     mcall->set_cnt(                 call->cnt());
1247     mcall->set_guaranteed_safepoint(call->guaranteed_safepoint());
1248 
1249     if( mcall->is_MachCallJava() ) {
1250       MachCallJavaNode *mcall_java  = mcall->as_MachCallJava();
1251       const CallJavaNode *call_java =  call->as_CallJava();
1252       assert(call_java->validate_symbolic_info(), "inconsistent info");
1253       method = call_java->method();

1289   for (uint i = 0; i < cnt; i++) {
1290     ::new (msfpt->_in_rms + i) RegMask(C->comp_arena());
1291   }
1292 
1293   // Do all the pre-defined non-Empty register masks
1294   msfpt->_in_rms[TypeFunc::ReturnAdr].assignFrom(_return_addr_mask);
1295   msfpt->_in_rms[TypeFunc::FramePtr ].assignFrom(c_frame_ptr_mask);
1296 
1297   // Place first outgoing argument can possibly be put.
1298   OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
1299   assert( is_even(begin_out_arg_area), "" );
1300   // Compute max outgoing register number per call site.
1301   OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
1302   // Calls to C may hammer extra stack slots above and beyond any arguments.
1303   // These are usually backing store for register arguments for varargs.
1304   if( call != nullptr && call->is_CallRuntime() )
1305     out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
1306 
1307 
1308   // Do the normal argument list (parameters) register masks
1309   // Null entry point is a special cast where the target of the call
1310   // is in a register.
1311   int adj = (call != nullptr && call->entry_point() == nullptr) ? 1 : 0;
1312   int argcnt = cnt - TypeFunc::Parms - adj;
1313   if( argcnt > 0 ) {          // Skip it all if we have no args
1314     BasicType *sig_bt  = NEW_RESOURCE_ARRAY( BasicType, argcnt );
1315     VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
1316     int i;
1317     for( i = 0; i < argcnt; i++ ) {
1318       sig_bt[i] = domain->field_at(i+TypeFunc::Parms+adj)->basic_type();
1319     }
1320     // V-call to pick proper calling convention
1321     call->calling_convention( sig_bt, parm_regs, argcnt );
1322 
1323 #ifdef ASSERT
1324     // Sanity check users' calling convention.  Really handy during
1325     // the initial porting effort.  Fairly expensive otherwise.
1326     { for (int i = 0; i<argcnt; i++) {
1327       if( !parm_regs[i].first()->is_valid() &&
1328           !parm_regs[i].second()->is_valid() ) continue;
1329       VMReg reg1 = parm_regs[i].first();
1330       VMReg reg2 = parm_regs[i].second();
1331       for (int j = 0; j < i; j++) {
1332         if( !parm_regs[j].first()->is_valid() &&
1333             !parm_regs[j].second()->is_valid() ) continue;
1334         VMReg reg3 = parm_regs[j].first();
1335         VMReg reg4 = parm_regs[j].second();
1336         if( !reg1->is_valid() ) {
1337           assert( !reg2->is_valid(), "valid halvsies" );
1338         } else if( !reg3->is_valid() ) {
1339           assert( !reg4->is_valid(), "valid halvsies" );
1340         } else {
1341           assert( reg1 != reg2, "calling conv. must produce distinct regs");
1342           assert( reg1 != reg3, "calling conv. must produce distinct regs");
1343           assert( reg1 != reg4, "calling conv. must produce distinct regs");
1344           assert( reg2 != reg3, "calling conv. must produce distinct regs");
1345           assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
1346           assert( reg3 != reg4, "calling conv. must produce distinct regs");
1347         }
1348       }
1349     }
1350     }
1351 #endif
1352 
1353     // Visit each argument.  Compute its outgoing register mask.
1354     // Return results now can have 2 bits returned.
1355     // Compute max over all outgoing arguments both per call-site
1356     // and over the entire method.
1357     for( i = 0; i < argcnt; i++ ) {
1358       // Address of incoming argument mask to fill in
1359       RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms+adj];
1360       VMReg first = parm_regs[i].first();
1361       VMReg second = parm_regs[i].second();
1362       if(!first->is_valid() &&
1363          !second->is_valid()) {
1364         continue;               // Avoid Halves
1365       }
1366       // Handle case where arguments are in vector registers.
1367       if(call->in(TypeFunc::Parms + i)->bottom_type()->isa_vect()) {
1368         OptoReg::Name reg_fst = OptoReg::as_OptoReg(first);
1369         OptoReg::Name reg_snd = OptoReg::as_OptoReg(second);
1370         assert (reg_fst <= reg_snd, "fst=%d snd=%d", reg_fst, reg_snd);
1371         for (OptoReg::Name r = reg_fst; r <= reg_snd; r++) {
1372           rm->insert(r);
1373         }
1374       }
1375       // Grab first register, adjust stack slots and insert in mask.
1376       OptoReg::Name reg1 = warp_outgoing_stk_arg(first, begin_out_arg_area, out_arg_limit_per_call );
1377       if (OptoReg::is_valid(reg1)) {
1378         rm->insert( reg1 );
1379       }
1380       // Grab second register (if any), adjust stack slots and insert in mask.
1381       OptoReg::Name reg2 = warp_outgoing_stk_arg(second, begin_out_arg_area, out_arg_limit_per_call );
1382       if (OptoReg::is_valid(reg2)) {
1383         rm->insert( reg2 );
1384       }
1385     } // End of for all arguments
1386   }
1387 
1388   // Compute the max stack slot killed by any call.  These will not be
1389   // available for debug info, and will be used to adjust FIRST_STACK_mask
1390   // after all call sites have been visited.
1391   if( _out_arg_limit < out_arg_limit_per_call)
1392     _out_arg_limit = out_arg_limit_per_call;
1393 
1394   if (mcall) {
1395     // Kill the outgoing argument area, including any non-argument holes and
1396     // any legacy C-killed slots.  Use Fat-Projections to do the killing.
1397     // Since the max-per-method covers the max-per-call-site and debug info
1398     // is excluded on the max-per-method basis, debug info cannot land in
1399     // this killed area.
1400     uint r_cnt = mcall->tf()->range_sig()->cnt();
1401     MachProjNode *proj = new MachProjNode( mcall, r_cnt+10000, RegMask::EMPTY, MachProjNode::fat_proj );
1402     for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++) {
1403       proj->_rout.insert(OptoReg::Name(i));
1404     }
1405     if (!proj->_rout.is_empty()) {
1406       push_projection(proj);
1407     }
1408   }
1409   // Transfer the safepoint information from the call to the mcall
1410   // Move the JVMState list
1411   msfpt->set_jvms(sfpt->jvms());
1412   for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
1413     jvms->set_map(sfpt);
1414   }
1415 
1416   // Debug inputs begin just after the last incoming parameter
1417   assert((mcall == nullptr) || (mcall->jvms() == nullptr) ||
1418          (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain_cc()->cnt()), "");
1419 
1420   // Add additional edges.
1421   if (msfpt->mach_constant_base_node_input() != (uint)-1 && !msfpt->is_MachCallLeaf()) {
1422     // For these calls we can not add MachConstantBase in expand(), as the
1423     // ins are not complete then.
1424     msfpt->ins_req(msfpt->mach_constant_base_node_input(), C->mach_constant_base_node());
1425     if (msfpt->jvms() &&
1426         msfpt->mach_constant_base_node_input() <= msfpt->jvms()->debug_start() + msfpt->_jvmadj) {
1427       // We added an edge before jvms, so we must adapt the position of the ins.
1428       msfpt->jvms()->adapt_position(+1);
1429     }
1430   }
1431 
1432   // Registers killed by the call are set in the local scheduling pass
1433   // of Global Code Motion.
1434   return msfpt;
1435 }
1436 
1437 //---------------------------match_tree----------------------------------------
1438 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce.  Used as part

2087         set_shared(n);       // Flag as shared and
2088         if (n->is_DecodeNarrowPtr()) {
2089           // Oop field/array element loads must be shared but since
2090           // they are shared through a DecodeN they may appear to have
2091           // a single use so force sharing here.
2092           set_shared(n->in(1));
2093         }
2094         mstack.pop();        // remove node from stack
2095         continue;
2096       }
2097       nstate = Visit; // Not already visited; so visit now
2098     }
2099     if (nstate == Visit) {
2100       mstack.set_state(Post_Visit);
2101       set_visited(n);   // Flag as visited now
2102       bool mem_op = false;
2103       int mem_addr_idx = MemNode::Address;
2104       if (find_shared_visit(mstack, n, nop, mem_op, mem_addr_idx)) {
2105         continue;
2106       }
2107       for (int i = n->len() - 1; i >= 0; --i) { // For my children
2108         Node* m = n->in(i); // Get ith input
2109         if (m == nullptr) {
2110           continue;  // Ignore nulls
2111         }
2112         if (clone_node(n, m, mstack)) {
2113           continue;
2114         }
2115 
2116         // Clone addressing expressions as they are "free" in memory access instructions
2117         if (mem_op && i == mem_addr_idx && m->is_AddP() &&
2118             // When there are other uses besides address expressions
2119             // put it on stack and mark as shared.
2120             !is_visited(m)) {
2121           // Some inputs for address expression are not put on stack
2122           // to avoid marking them as shared and forcing them into register
2123           // if they are used only in address expressions.
2124           // But they should be marked as shared if there are other uses
2125           // besides address expressions.
2126 
2127           if (pd_clone_address_expressions(m->as_AddP(), mstack, address_visited)) {

2398     case Op_FmaHF:
2399     case Op_FmaVD:
2400     case Op_FmaVF:
2401     case Op_FmaVHF: {
2402       // Restructure into a binary tree for Matching.
2403       Node* pair = new BinaryNode(n->in(1), n->in(2));
2404       n->set_req(2, pair);
2405       n->set_req(1, n->in(3));
2406       n->del_req(3);
2407       break;
2408     }
2409     case Op_MulAddS2I: {
2410       Node* pair1 = new BinaryNode(n->in(1), n->in(2));
2411       Node* pair2 = new BinaryNode(n->in(3), n->in(4));
2412       n->set_req(1, pair1);
2413       n->set_req(2, pair2);
2414       n->del_req(4);
2415       n->del_req(3);
2416       break;
2417     }
2418     case Op_ClearArray: {
2419       Node* pair = new BinaryNode(n->in(2), n->in(3));
2420       n->set_req(2, pair);
2421       n->set_req(3, n->in(4));
2422       n->del_req(4);
2423       break;
2424     }
2425     case Op_VectorCmpMasked:
2426     case Op_CopySignD:
2427     case Op_SignumVF:
2428     case Op_SignumVD:
2429     case Op_SignumF:
2430     case Op_SignumD: {
2431       Node* pair = new BinaryNode(n->in(2), n->in(3));
2432       n->set_req(2, pair);
2433       n->del_req(3);
2434       break;
2435     }
2436     case Op_VectorBlend:
2437     case Op_VectorInsert: {
2438       Node* pair = new BinaryNode(n->in(1), n->in(2));
2439       n->set_req(1, pair);
2440       n->set_req(2, n->in(3));
2441       n->del_req(3);
2442       break;
2443     }
2444     case Op_LoadVectorGatherMasked: // fall-through

2454       n->del_req(MemNode::ValueIn+2);
2455       pair = new BinaryNode(n->in(MemNode::ValueIn), n->in(MemNode::ValueIn+1));
2456       n->set_req(MemNode::ValueIn, pair);
2457       n->del_req(MemNode::ValueIn+1);
2458       break;
2459     }
2460     case Op_VectorMaskCmp: {
2461       n->set_req(1, new BinaryNode(n->in(1), n->in(2)));
2462       n->set_req(2, n->in(3));
2463       n->del_req(3);
2464       break;
2465     }
2466     case Op_PartialSubtypeCheck: {
2467       if (UseSecondarySupersTable && n->in(2)->is_Con()) {
2468         // PartialSubtypeCheck uses both constant and register operands for superclass input.
2469         n->set_req(2, new BinaryNode(n->in(2), n->in(2)));
2470         break;
2471       }
2472       break;
2473     }
2474     case Op_StoreLSpecial: {
2475       if (n->req() > (MemNode::ValueIn + 1) && n->in(MemNode::ValueIn + 1) != nullptr) {
2476         Node* pair = new BinaryNode(n->in(MemNode::ValueIn), n->in(MemNode::ValueIn + 1));
2477         n->set_req(MemNode::ValueIn, pair);
2478         n->del_req(MemNode::ValueIn + 1);
2479       }
2480       break;
2481     }
2482     default:
2483       break;
2484   }
2485 }
2486 
2487 #ifndef PRODUCT
2488 void Matcher::record_new2old(Node* newn, Node* old) {
2489   _new2old_map.map(newn->_idx, old);
2490   if (!_reused.test_set(old->_igv_idx)) {
2491     // Reuse the Ideal-level IGV identifier so that the node can be tracked
2492     // across matching. If there are multiple machine nodes expanded from the
2493     // same Ideal node, only one will reuse its IGV identifier.
2494     newn->_igv_idx = old->_igv_idx;
2495   }
2496 }
2497 
2498 // machine-independent root to machine-dependent root
2499 void Matcher::dump_old2new_map() {
2500   _old2new_map.dump();
2501 }
< prev index next >