< prev index next >

src/hotspot/share/opto/matcher.cpp

Print this page

 168   Unique_Node_List worklist;
 169   VectorSet visited;
 170   worklist.push(xroot);
 171   while (worklist.size() > 0) {
 172     Node* n = worklist.pop();
 173     visited.set(n->_idx);
 174     assert(C->node_arena()->contains(n), "dead node");
 175     for (uint j = 0; j < n->req(); j++) {
 176       Node* in = n->in(j);
 177       if (in != nullptr) {
 178         assert(C->node_arena()->contains(in), "dead node");
 179         if (!visited.test(in->_idx)) {
 180           worklist.push(in);
 181         }
 182       }
 183     }
 184   }
 185 }
 186 #endif
 187 












































 188 
 189 //---------------------------match---------------------------------------------
 190 void Matcher::match( ) {
 191   if( MaxLabelRootDepth < 100 ) { // Too small?
 192     assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum");
 193     MaxLabelRootDepth = 100;
 194   }
 195   // One-time initialization of some register masks.
 196   init_spill_mask( C->root()->in(1) );
 197   if (C->failing()) {
 198     return;
 199   }
 200   _return_addr_mask = return_addr();
 201 #ifdef _LP64
 202   // Pointers take 2 slots in 64-bit land
 203   _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
 204 #endif
 205 
 206   // Map a Java-signature return type into return register-value
 207   // machine registers for 0, 1 and 2 returned values.
 208   const TypeTuple *range = C->tf()->range();
 209   if( range->cnt() > TypeFunc::Parms ) { // If not a void function
 210     // Get ideal-register return type
 211     uint ireg = range->field_at(TypeFunc::Parms)->ideal_reg();
 212     // Get machine return register
 213     uint sop = C->start()->Opcode();
 214     OptoRegPair regs = return_value(ireg);
 215 
 216     // And mask for same
 217     _return_value_mask = RegMask(regs.first());
 218     if( OptoReg::is_valid(regs.second()) )
 219       _return_value_mask.Insert(regs.second());
 220   }
 221 
 222   // ---------------
 223   // Frame Layout
 224 
 225   // Need the method signature to determine the incoming argument types,
 226   // because the types determine which registers the incoming arguments are
 227   // in, and this affects the matched code.
 228   const TypeTuple *domain = C->tf()->domain();
 229   uint             argcnt = domain->cnt() - TypeFunc::Parms;
 230   BasicType *sig_bt        = NEW_RESOURCE_ARRAY( BasicType, argcnt );
 231   VMRegPair *vm_parm_regs  = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
 232   _parm_regs               = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
 233   _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
 234   uint i;
 235   for( i = 0; i<argcnt; i++ ) {
 236     sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
 237   }
 238 
 239   // Pass array of ideal registers and length to USER code (from the AD file)
 240   // that will convert this to an array of register numbers.
 241   const StartNode *start = C->start();
 242   start->calling_convention( sig_bt, vm_parm_regs, argcnt );
 243 #ifdef ASSERT
 244   // Sanity check users' calling convention.  Real handy while trying to
 245   // get the initial port correct.
 246   { for (uint i = 0; i<argcnt; i++) {
 247       if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
 248         assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );

 531   idealreg2mhdebugmask[Op_VecS] = &rms[31];
 532   idealreg2mhdebugmask[Op_VecD] = &rms[32];
 533   idealreg2mhdebugmask[Op_VecX] = &rms[33];
 534   idealreg2mhdebugmask[Op_VecY] = &rms[34];
 535   idealreg2mhdebugmask[Op_VecZ] = &rms[35];
 536 
 537   idealreg2spillmask  [Op_RegVectMask] = &rms[36];
 538   idealreg2debugmask  [Op_RegVectMask] = &rms[37];
 539   idealreg2mhdebugmask[Op_RegVectMask] = &rms[38];
 540 
 541   OptoReg::Name i;
 542 
 543   // At first, start with the empty mask
 544   C->FIRST_STACK_mask().Clear();
 545 
 546   // Add in the incoming argument area
 547   OptoReg::Name init_in = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
 548   for (i = init_in; i < _in_arg_limit; i = OptoReg::add(i,1)) {
 549     C->FIRST_STACK_mask().Insert(i);
 550   }

 551   // Add in all bits past the outgoing argument area
 552   guarantee(RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1)),
 553             "must be able to represent all call arguments in reg mask");
 554   OptoReg::Name init = _out_arg_limit;
 555   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1)) {
 556     C->FIRST_STACK_mask().Insert(i);
 557   }
 558   // Finally, set the "infinite stack" bit.
 559   C->FIRST_STACK_mask().set_AllStack();
 560 
 561   // Make spill masks.  Registers for their class, plus FIRST_STACK_mask.
 562   RegMask aligned_stack_mask = C->FIRST_STACK_mask();
 563   // Keep spill masks aligned.
 564   aligned_stack_mask.clear_to_pairs();
 565   assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
 566   RegMask scalable_stack_mask = aligned_stack_mask;
 567 
 568   *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
 569 #ifdef _LP64
 570   *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN];

 789     _register_save_policy[reg] == 'E' ||
 790     _register_save_policy[reg] == 'A'; // Save-on-entry register?
 791 }
 792 
 793 //---------------------------Fixup_Save_On_Entry-------------------------------
 794 void Matcher::Fixup_Save_On_Entry( ) {
 795   init_first_stack_mask();
 796 
 797   Node *root = C->root();       // Short name for root
 798   // Count number of save-on-entry registers.
 799   uint soe_cnt = number_of_saved_registers();
 800   uint i;
 801 
 802   // Find the procedure Start Node
 803   StartNode *start = C->start();
 804   assert( start, "Expect a start node" );
 805 
 806   // Input RegMask array shared by all Returns.
 807   // The type for doubles and longs has a count of 2, but
 808   // there is only 1 returned value
 809   uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1);
 810   RegMask *ret_rms  = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 811   // Returns have 0 or 1 returned values depending on call signature.
 812   // Return register is specified by return_value in the AD file.
 813   if (ret_edge_cnt > TypeFunc::Parms)
 814     ret_rms[TypeFunc::Parms+0] = _return_value_mask;
 815 
 816   // Input RegMask array shared by all ForwardExceptions
 817   uint forw_exc_edge_cnt = TypeFunc::Parms;
 818   RegMask* forw_exc_rms  = init_input_masks( forw_exc_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 819 
 820   // Input RegMask array shared by all Rethrows.
 821   uint reth_edge_cnt = TypeFunc::Parms+1;
 822   RegMask *reth_rms  = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 823   // Rethrow takes exception oop only, but in the argument 0 slot.
 824   OptoReg::Name reg = find_receiver();
 825   if (reg >= 0) {
 826     reth_rms[TypeFunc::Parms] = mreg2regmask[reg];
 827 #ifdef _LP64
 828     // Need two slots for ptrs in 64-bit land
 829     reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(reg), 1));
 830 #endif
 831   }
 832 
 833   // Input RegMask array shared by all TailCalls
 834   uint tail_call_edge_cnt = TypeFunc::Parms+2;

 866 
 867   // Input RegMask array shared by all Halts
 868   uint halt_edge_cnt = TypeFunc::Parms;
 869   RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 870 
 871   // Capture the return input masks into each exit flavor
 872   for( i=1; i < root->req(); i++ ) {
 873     MachReturnNode *exit = root->in(i)->as_MachReturn();
 874     switch( exit->ideal_Opcode() ) {
 875       case Op_Return   : exit->_in_rms = ret_rms;  break;
 876       case Op_Rethrow  : exit->_in_rms = reth_rms; break;
 877       case Op_TailCall : exit->_in_rms = tail_call_rms; break;
 878       case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
 879       case Op_ForwardException: exit->_in_rms = forw_exc_rms; break;
 880       case Op_Halt     : exit->_in_rms = halt_rms; break;
 881       default          : ShouldNotReachHere();
 882     }
 883   }
 884 
 885   // Next unused projection number from Start.
 886   int proj_cnt = C->tf()->domain()->cnt();
 887 
 888   // Do all the save-on-entry registers.  Make projections from Start for
 889   // them, and give them a use at the exit points.  To the allocator, they
 890   // look like incoming register arguments.
 891   for( i = 0; i < _last_Mach_Reg; i++ ) {
 892     if( is_save_on_entry(i) ) {
 893 
 894       // Add the save-on-entry to the mask array
 895       ret_rms      [      ret_edge_cnt] = mreg2regmask[i];
 896       reth_rms     [     reth_edge_cnt] = mreg2regmask[i];
 897       tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
 898       tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
 899       forw_exc_rms [ forw_exc_edge_cnt] = mreg2regmask[i];
 900       // Halts need the SOE registers, but only in the stack as debug info.
 901       // A just-prior uncommon-trap or deoptimization will use the SOE regs.
 902       halt_rms     [     halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
 903 
 904       Node *mproj;
 905 
 906       // Is this a RegF low half of a RegD?  Double up 2 adjacent RegF's

1147       Node *oldn = n;
1148       // Old-space or new-space check
1149       if (!C->node_arena()->contains(n)) {
1150         // Old space!
1151         Node* m;
1152         if (has_new_node(n)) {  // Not yet Label/Reduced
1153           m = new_node(n);
1154         } else {
1155           if (!is_dontcare(n)) { // Matcher can match this guy
1156             // Calls match special.  They match alone with no children.
1157             // Their children, the incoming arguments, match normally.
1158             m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
1159             if (C->failing())  return nullptr;
1160             if (m == nullptr) { Matcher::soft_match_failure(); return nullptr; }
1161             if (n->is_MemBar()) {
1162               m->as_MachMemBar()->set_adr_type(n->adr_type());
1163             }
1164           } else {                  // Nothing the matcher cares about
1165             if (n->is_Proj() && n->in(0) != nullptr && n->in(0)->is_Multi()) {       // Projections?
1166               // Convert to machine-dependent projection
1167               m = n->in(0)->as_Multi()->match( n->as_Proj(), this );




1168               NOT_PRODUCT(record_new2old(m, n);)
1169               if (m->in(0) != nullptr) // m might be top
1170                 collect_null_checks(m, n);
1171             } else {                // Else just a regular 'ol guy
1172               m = n->clone();       // So just clone into new-space
1173               NOT_PRODUCT(record_new2old(m, n);)
1174               // Def-Use edges will be added incrementally as Uses
1175               // of this node are matched.
1176               assert(m->outcnt() == 0, "no Uses of this clone yet");
1177             }
1178           }
1179 
1180           set_new_node(n, m);       // Map old to new
1181           if (_old_node_note_array != nullptr) {
1182             Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
1183                                                   n->_idx);
1184             C->set_node_notes_at(m->_idx, nn);
1185           }
1186           debug_only(match_alias_type(C, n, m));
1187         }

1287   }
1288   return OptoReg::as_OptoReg(reg);
1289 }
1290 
1291 
1292 //------------------------------match_sfpt-------------------------------------
1293 // Helper function to match call instructions.  Calls match special.
1294 // They match alone with no children.  Their children, the incoming
1295 // arguments, match normally.
1296 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
1297   MachSafePointNode *msfpt = nullptr;
1298   MachCallNode      *mcall = nullptr;
1299   uint               cnt;
1300   // Split out case for SafePoint vs Call
1301   CallNode *call;
1302   const TypeTuple *domain;
1303   ciMethod*        method = nullptr;
1304   bool             is_method_handle_invoke = false;  // for special kill effects
1305   if( sfpt->is_Call() ) {
1306     call = sfpt->as_Call();
1307     domain = call->tf()->domain();
1308     cnt = domain->cnt();
1309 
1310     // Match just the call, nothing else
1311     MachNode *m = match_tree(call);
1312     if (C->failing())  return nullptr;
1313     if( m == nullptr ) { Matcher::soft_match_failure(); return nullptr; }
1314 
1315     // Copy data from the Ideal SafePoint to the machine version
1316     mcall = m->as_MachCall();
1317 
1318     mcall->set_tf(                  call->tf());
1319     mcall->set_entry_point(         call->entry_point());
1320     mcall->set_cnt(                 call->cnt());
1321     mcall->set_guaranteed_safepoint(call->guaranteed_safepoint());
1322 
1323     if( mcall->is_MachCallJava() ) {
1324       MachCallJavaNode *mcall_java  = mcall->as_MachCallJava();
1325       const CallJavaNode *call_java =  call->as_CallJava();
1326       assert(call_java->validate_symbolic_info(), "inconsistent info");
1327       method = call_java->method();

1366   msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
1367   // Empty them all.
1368   for (uint i = 0; i < cnt; i++) ::new (&(msfpt->_in_rms[i])) RegMask();
1369 
1370   // Do all the pre-defined non-Empty register masks
1371   msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
1372   msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
1373 
1374   // Place first outgoing argument can possibly be put.
1375   OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
1376   assert( is_even(begin_out_arg_area), "" );
1377   // Compute max outgoing register number per call site.
1378   OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
1379   // Calls to C may hammer extra stack slots above and beyond any arguments.
1380   // These are usually backing store for register arguments for varargs.
1381   if( call != nullptr && call->is_CallRuntime() )
1382     out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
1383 
1384 
1385   // Do the normal argument list (parameters) register masks
1386   int argcnt = cnt - TypeFunc::Parms;



1387   if( argcnt > 0 ) {          // Skip it all if we have no args
1388     BasicType *sig_bt  = NEW_RESOURCE_ARRAY( BasicType, argcnt );
1389     VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
1390     int i;
1391     for( i = 0; i < argcnt; i++ ) {
1392       sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
1393     }
1394     // V-call to pick proper calling convention
1395     call->calling_convention( sig_bt, parm_regs, argcnt );
1396 
1397 #ifdef ASSERT
1398     // Sanity check users' calling convention.  Really handy during
1399     // the initial porting effort.  Fairly expensive otherwise.
1400     { for (int i = 0; i<argcnt; i++) {
1401       if( !parm_regs[i].first()->is_valid() &&
1402           !parm_regs[i].second()->is_valid() ) continue;
1403       VMReg reg1 = parm_regs[i].first();
1404       VMReg reg2 = parm_regs[i].second();
1405       for (int j = 0; j < i; j++) {
1406         if( !parm_regs[j].first()->is_valid() &&
1407             !parm_regs[j].second()->is_valid() ) continue;
1408         VMReg reg3 = parm_regs[j].first();
1409         VMReg reg4 = parm_regs[j].second();
1410         if( !reg1->is_valid() ) {
1411           assert( !reg2->is_valid(), "valid halvsies" );
1412         } else if( !reg3->is_valid() ) {
1413           assert( !reg4->is_valid(), "valid halvsies" );
1414         } else {
1415           assert( reg1 != reg2, "calling conv. must produce distinct regs");
1416           assert( reg1 != reg3, "calling conv. must produce distinct regs");
1417           assert( reg1 != reg4, "calling conv. must produce distinct regs");
1418           assert( reg2 != reg3, "calling conv. must produce distinct regs");
1419           assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
1420           assert( reg3 != reg4, "calling conv. must produce distinct regs");
1421         }
1422       }
1423     }
1424     }
1425 #endif
1426 
1427     // Visit each argument.  Compute its outgoing register mask.
1428     // Return results now can have 2 bits returned.
1429     // Compute max over all outgoing arguments both per call-site
1430     // and over the entire method.
1431     for( i = 0; i < argcnt; i++ ) {
1432       // Address of incoming argument mask to fill in
1433       RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms];
1434       VMReg first = parm_regs[i].first();
1435       VMReg second = parm_regs[i].second();
1436       if(!first->is_valid() &&
1437          !second->is_valid()) {
1438         continue;               // Avoid Halves
1439       }
1440       // Handle case where arguments are in vector registers.
1441       if(call->in(TypeFunc::Parms + i)->bottom_type()->isa_vect()) {
1442         OptoReg::Name reg_fst = OptoReg::as_OptoReg(first);
1443         OptoReg::Name reg_snd = OptoReg::as_OptoReg(second);
1444         assert (reg_fst <= reg_snd, "fst=%d snd=%d", reg_fst, reg_snd);
1445         for (OptoReg::Name r = reg_fst; r <= reg_snd; r++) {
1446           rm->Insert(r);
1447         }
1448       }
1449       // Grab first register, adjust stack slots and insert in mask.
1450       OptoReg::Name reg1 = warp_outgoing_stk_arg(first, begin_out_arg_area, out_arg_limit_per_call );
1451       if (C->failing()) {
1452         return nullptr;
1453       }
1454       if (OptoReg::is_valid(reg1))
1455         rm->Insert( reg1 );

1456       // Grab second register (if any), adjust stack slots and insert in mask.
1457       OptoReg::Name reg2 = warp_outgoing_stk_arg(second, begin_out_arg_area, out_arg_limit_per_call );
1458       if (C->failing()) {
1459         return nullptr;
1460       }
1461       if (OptoReg::is_valid(reg2))
1462         rm->Insert( reg2 );

1463     } // End of for all arguments
1464   }
1465 
1466   // Compute the max stack slot killed by any call.  These will not be
1467   // available for debug info, and will be used to adjust FIRST_STACK_mask
1468   // after all call sites have been visited.
1469   if( _out_arg_limit < out_arg_limit_per_call)
1470     _out_arg_limit = out_arg_limit_per_call;
1471 
1472   if (mcall) {
1473     // Kill the outgoing argument area, including any non-argument holes and
1474     // any legacy C-killed slots.  Use Fat-Projections to do the killing.
1475     // Since the max-per-method covers the max-per-call-site and debug info
1476     // is excluded on the max-per-method basis, debug info cannot land in
1477     // this killed area.
1478     uint r_cnt = mcall->tf()->range()->cnt();
1479     MachProjNode *proj = new MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
1480     if (!RegMask::can_represent_arg(OptoReg::Name(out_arg_limit_per_call-1))) {
1481       // Bailout. We do not have space to represent all arguments.
1482       C->record_method_not_compilable("unsupported outgoing calling sequence");
1483     } else {
1484       for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
1485         proj->_rout.Insert(OptoReg::Name(i));
1486     }
1487     if (proj->_rout.is_NotEmpty()) {
1488       push_projection(proj);
1489     }
1490   }
1491   // Transfer the safepoint information from the call to the mcall
1492   // Move the JVMState list
1493   msfpt->set_jvms(sfpt->jvms());
1494   for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
1495     jvms->set_map(sfpt);
1496   }
1497 
1498   // Debug inputs begin just after the last incoming parameter
1499   assert((mcall == nullptr) || (mcall->jvms() == nullptr) ||
1500          (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "");
1501 
1502   // Add additional edges.
1503   if (msfpt->mach_constant_base_node_input() != (uint)-1 && !msfpt->is_MachCallLeaf()) {
1504     // For these calls we can not add MachConstantBase in expand(), as the
1505     // ins are not complete then.
1506     msfpt->ins_req(msfpt->mach_constant_base_node_input(), C->mach_constant_base_node());
1507     if (msfpt->jvms() &&
1508         msfpt->mach_constant_base_node_input() <= msfpt->jvms()->debug_start() + msfpt->_jvmadj) {
1509       // We added an edge before jvms, so we must adapt the position of the ins.
1510       msfpt->jvms()->adapt_position(+1);
1511     }
1512   }
1513 
1514   // Registers killed by the call are set in the local scheduling pass
1515   // of Global Code Motion.
1516   return msfpt;
1517 }
1518 
1519 //---------------------------match_tree----------------------------------------
1520 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce.  Used as part

2168         set_shared(n);       // Flag as shared and
2169         if (n->is_DecodeNarrowPtr()) {
2170           // Oop field/array element loads must be shared but since
2171           // they are shared through a DecodeN they may appear to have
2172           // a single use so force sharing here.
2173           set_shared(n->in(1));
2174         }
2175         mstack.pop();        // remove node from stack
2176         continue;
2177       }
2178       nstate = Visit; // Not already visited; so visit now
2179     }
2180     if (nstate == Visit) {
2181       mstack.set_state(Post_Visit);
2182       set_visited(n);   // Flag as visited now
2183       bool mem_op = false;
2184       int mem_addr_idx = MemNode::Address;
2185       if (find_shared_visit(mstack, n, nop, mem_op, mem_addr_idx)) {
2186         continue;
2187       }
2188       for (int i = n->req() - 1; i >= 0; --i) { // For my children
2189         Node* m = n->in(i); // Get ith input
2190         if (m == nullptr) {
2191           continue;  // Ignore nulls
2192         }
2193         if (clone_node(n, m, mstack)) {
2194           continue;
2195         }
2196 
2197         // Clone addressing expressions as they are "free" in memory access instructions
2198         if (mem_op && i == mem_addr_idx && m->is_AddP() &&
2199             // When there are other uses besides address expressions
2200             // put it on stack and mark as shared.
2201             !is_visited(m)) {
2202           // Some inputs for address expression are not put on stack
2203           // to avoid marking them as shared and forcing them into register
2204           // if they are used only in address expressions.
2205           // But they should be marked as shared if there are other uses
2206           // besides address expressions.
2207 
2208           if (pd_clone_address_expressions(m->as_AddP(), mstack, address_visited)) {

2474     }
2475     case Op_FmaD:
2476     case Op_FmaF:
2477     case Op_FmaVD:
2478     case Op_FmaVF: {
2479       // Restructure into a binary tree for Matching.
2480       Node* pair = new BinaryNode(n->in(1), n->in(2));
2481       n->set_req(2, pair);
2482       n->set_req(1, n->in(3));
2483       n->del_req(3);
2484       break;
2485     }
2486     case Op_MulAddS2I: {
2487       Node* pair1 = new BinaryNode(n->in(1), n->in(2));
2488       Node* pair2 = new BinaryNode(n->in(3), n->in(4));
2489       n->set_req(1, pair1);
2490       n->set_req(2, pair2);
2491       n->del_req(4);
2492       n->del_req(3);
2493       break;







2494     }
2495     case Op_VectorCmpMasked:
2496     case Op_CopySignD:
2497     case Op_SignumVF:
2498     case Op_SignumVD:
2499     case Op_SignumF:
2500     case Op_SignumD: {
2501       Node* pair = new BinaryNode(n->in(2), n->in(3));
2502       n->set_req(2, pair);
2503       n->del_req(3);
2504       break;
2505     }
2506     case Op_VectorBlend:
2507     case Op_VectorInsert: {
2508       Node* pair = new BinaryNode(n->in(1), n->in(2));
2509       n->set_req(1, pair);
2510       n->set_req(2, n->in(3));
2511       n->del_req(3);
2512       break;
2513     }

 168   Unique_Node_List worklist;
 169   VectorSet visited;
 170   worklist.push(xroot);
 171   while (worklist.size() > 0) {
 172     Node* n = worklist.pop();
 173     visited.set(n->_idx);
 174     assert(C->node_arena()->contains(n), "dead node");
 175     for (uint j = 0; j < n->req(); j++) {
 176       Node* in = n->in(j);
 177       if (in != nullptr) {
 178         assert(C->node_arena()->contains(in), "dead node");
 179         if (!visited.test(in->_idx)) {
 180           worklist.push(in);
 181         }
 182       }
 183     }
 184   }
 185 }
 186 #endif
 187 
 188 // Array of RegMask, one per returned values (inline type instances can
 189 // be returned as multiple return values, one per field)
 190 RegMask* Matcher::return_values_mask(const TypeFunc* tf) {
 191   const TypeTuple* range = tf->range_cc();
 192   uint cnt = range->cnt() - TypeFunc::Parms;
 193   if (cnt == 0) {
 194     return nullptr;
 195   }
 196   RegMask* mask = NEW_RESOURCE_ARRAY(RegMask, cnt);
 197   BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, cnt);
 198   VMRegPair* vm_parm_regs = NEW_RESOURCE_ARRAY(VMRegPair, cnt);
 199   for (uint i = 0; i < cnt; i++) {
 200     sig_bt[i] = range->field_at(i+TypeFunc::Parms)->basic_type();
 201   }
 202 
 203   int regs = SharedRuntime::java_return_convention(sig_bt, vm_parm_regs, cnt);
 204   if (regs <= 0) {
 205     // We ran out of registers to store the IsInit information for a nullable inline type return.
 206     // Since it is only set in the 'call_epilog', we can simply put it on the stack.
 207     assert(tf->returns_inline_type_as_fields(), "should have been tested during graph construction");
 208     // TODO 8284443 Can we teach the register allocator to reserve a stack slot instead?
 209     // mask[--cnt] = STACK_ONLY_mask does not work (test with -XX:+StressGCM)
 210     int slot = C->fixed_slots() - 2;
 211     if (C->needs_stack_repair()) {
 212       slot -= 2; // Account for stack increment value
 213     }
 214     mask[--cnt].Clear();
 215     mask[cnt].Insert(OptoReg::stack2reg(slot));
 216   }
 217   for (uint i = 0; i < cnt; i++) {
 218     mask[i].Clear();
 219 
 220     OptoReg::Name reg1 = OptoReg::as_OptoReg(vm_parm_regs[i].first());
 221     if (OptoReg::is_valid(reg1)) {
 222       mask[i].Insert(reg1);
 223     }
 224     OptoReg::Name reg2 = OptoReg::as_OptoReg(vm_parm_regs[i].second());
 225     if (OptoReg::is_valid(reg2)) {
 226       mask[i].Insert(reg2);
 227     }
 228   }
 229 
 230   return mask;
 231 }
 232 
 233 //---------------------------match---------------------------------------------
 234 void Matcher::match( ) {
 235   if( MaxLabelRootDepth < 100 ) { // Too small?
 236     assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum");
 237     MaxLabelRootDepth = 100;
 238   }
 239   // One-time initialization of some register masks.
 240   init_spill_mask( C->root()->in(1) );
 241   if (C->failing()) {
 242     return;
 243   }
 244   _return_addr_mask = return_addr();
 245 #ifdef _LP64
 246   // Pointers take 2 slots in 64-bit land
 247   _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
 248 #endif
 249 
 250   // Map Java-signature return types into return register-value
 251   // machine registers.
 252   _return_values_mask = return_values_mask(C->tf());












 253 
 254   // ---------------
 255   // Frame Layout
 256 
 257   // Need the method signature to determine the incoming argument types,
 258   // because the types determine which registers the incoming arguments are
 259   // in, and this affects the matched code.
 260   const TypeTuple *domain = C->tf()->domain_cc();
 261   uint             argcnt = domain->cnt() - TypeFunc::Parms;
 262   BasicType *sig_bt        = NEW_RESOURCE_ARRAY( BasicType, argcnt );
 263   VMRegPair *vm_parm_regs  = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
 264   _parm_regs               = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
 265   _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
 266   uint i;
 267   for( i = 0; i<argcnt; i++ ) {
 268     sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
 269   }
 270 
 271   // Pass array of ideal registers and length to USER code (from the AD file)
 272   // that will convert this to an array of register numbers.
 273   const StartNode *start = C->start();
 274   start->calling_convention( sig_bt, vm_parm_regs, argcnt );
 275 #ifdef ASSERT
 276   // Sanity check users' calling convention.  Real handy while trying to
 277   // get the initial port correct.
 278   { for (uint i = 0; i<argcnt; i++) {
 279       if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
 280         assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );

 563   idealreg2mhdebugmask[Op_VecS] = &rms[31];
 564   idealreg2mhdebugmask[Op_VecD] = &rms[32];
 565   idealreg2mhdebugmask[Op_VecX] = &rms[33];
 566   idealreg2mhdebugmask[Op_VecY] = &rms[34];
 567   idealreg2mhdebugmask[Op_VecZ] = &rms[35];
 568 
 569   idealreg2spillmask  [Op_RegVectMask] = &rms[36];
 570   idealreg2debugmask  [Op_RegVectMask] = &rms[37];
 571   idealreg2mhdebugmask[Op_RegVectMask] = &rms[38];
 572 
 573   OptoReg::Name i;
 574 
 575   // At first, start with the empty mask
 576   C->FIRST_STACK_mask().Clear();
 577 
 578   // Add in the incoming argument area
 579   OptoReg::Name init_in = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
 580   for (i = init_in; i < _in_arg_limit; i = OptoReg::add(i,1)) {
 581     C->FIRST_STACK_mask().Insert(i);
 582   }
 583 
 584   // Add in all bits past the outgoing argument area
 585   guarantee(RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1)),
 586             "must be able to represent all call arguments in reg mask");
 587   OptoReg::Name init = _out_arg_limit;
 588   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1)) {
 589     C->FIRST_STACK_mask().Insert(i);
 590   }
 591   // Finally, set the "infinite stack" bit.
 592   C->FIRST_STACK_mask().set_AllStack();
 593 
 594   // Make spill masks.  Registers for their class, plus FIRST_STACK_mask.
 595   RegMask aligned_stack_mask = C->FIRST_STACK_mask();
 596   // Keep spill masks aligned.
 597   aligned_stack_mask.clear_to_pairs();
 598   assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
 599   RegMask scalable_stack_mask = aligned_stack_mask;
 600 
 601   *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
 602 #ifdef _LP64
 603   *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN];

 822     _register_save_policy[reg] == 'E' ||
 823     _register_save_policy[reg] == 'A'; // Save-on-entry register?
 824 }
 825 
 826 //---------------------------Fixup_Save_On_Entry-------------------------------
 827 void Matcher::Fixup_Save_On_Entry( ) {
 828   init_first_stack_mask();
 829 
 830   Node *root = C->root();       // Short name for root
 831   // Count number of save-on-entry registers.
 832   uint soe_cnt = number_of_saved_registers();
 833   uint i;
 834 
 835   // Find the procedure Start Node
 836   StartNode *start = C->start();
 837   assert( start, "Expect a start node" );
 838 
 839   // Input RegMask array shared by all Returns.
 840   // The type for doubles and longs has a count of 2, but
 841   // there is only 1 returned value
 842   uint ret_edge_cnt = C->tf()->range_cc()->cnt();
 843   RegMask *ret_rms  = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 844   for (i = TypeFunc::Parms; i < ret_edge_cnt; i++) {
 845     ret_rms[i] = _return_values_mask[i-TypeFunc::Parms];
 846   }

 847 
 848   // Input RegMask array shared by all ForwardExceptions
 849   uint forw_exc_edge_cnt = TypeFunc::Parms;
 850   RegMask* forw_exc_rms  = init_input_masks( forw_exc_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 851 
 852   // Input RegMask array shared by all Rethrows.
 853   uint reth_edge_cnt = TypeFunc::Parms+1;
 854   RegMask *reth_rms  = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 855   // Rethrow takes exception oop only, but in the argument 0 slot.
 856   OptoReg::Name reg = find_receiver();
 857   if (reg >= 0) {
 858     reth_rms[TypeFunc::Parms] = mreg2regmask[reg];
 859 #ifdef _LP64
 860     // Need two slots for ptrs in 64-bit land
 861     reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(reg), 1));
 862 #endif
 863   }
 864 
 865   // Input RegMask array shared by all TailCalls
 866   uint tail_call_edge_cnt = TypeFunc::Parms+2;

 898 
 899   // Input RegMask array shared by all Halts
 900   uint halt_edge_cnt = TypeFunc::Parms;
 901   RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 902 
 903   // Capture the return input masks into each exit flavor
 904   for( i=1; i < root->req(); i++ ) {
 905     MachReturnNode *exit = root->in(i)->as_MachReturn();
 906     switch( exit->ideal_Opcode() ) {
 907       case Op_Return   : exit->_in_rms = ret_rms;  break;
 908       case Op_Rethrow  : exit->_in_rms = reth_rms; break;
 909       case Op_TailCall : exit->_in_rms = tail_call_rms; break;
 910       case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
 911       case Op_ForwardException: exit->_in_rms = forw_exc_rms; break;
 912       case Op_Halt     : exit->_in_rms = halt_rms; break;
 913       default          : ShouldNotReachHere();
 914     }
 915   }
 916 
 917   // Next unused projection number from Start.
 918   int proj_cnt = C->tf()->domain_cc()->cnt();
 919 
 920   // Do all the save-on-entry registers.  Make projections from Start for
 921   // them, and give them a use at the exit points.  To the allocator, they
 922   // look like incoming register arguments.
 923   for( i = 0; i < _last_Mach_Reg; i++ ) {
 924     if( is_save_on_entry(i) ) {
 925 
 926       // Add the save-on-entry to the mask array
 927       ret_rms      [      ret_edge_cnt] = mreg2regmask[i];
 928       reth_rms     [     reth_edge_cnt] = mreg2regmask[i];
 929       tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
 930       tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
 931       forw_exc_rms [ forw_exc_edge_cnt] = mreg2regmask[i];
 932       // Halts need the SOE registers, but only in the stack as debug info.
 933       // A just-prior uncommon-trap or deoptimization will use the SOE regs.
 934       halt_rms     [     halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
 935 
 936       Node *mproj;
 937 
 938       // Is this a RegF low half of a RegD?  Double up 2 adjacent RegF's

1179       Node *oldn = n;
1180       // Old-space or new-space check
1181       if (!C->node_arena()->contains(n)) {
1182         // Old space!
1183         Node* m;
1184         if (has_new_node(n)) {  // Not yet Label/Reduced
1185           m = new_node(n);
1186         } else {
1187           if (!is_dontcare(n)) { // Matcher can match this guy
1188             // Calls match special.  They match alone with no children.
1189             // Their children, the incoming arguments, match normally.
1190             m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
1191             if (C->failing())  return nullptr;
1192             if (m == nullptr) { Matcher::soft_match_failure(); return nullptr; }
1193             if (n->is_MemBar()) {
1194               m->as_MachMemBar()->set_adr_type(n->adr_type());
1195             }
1196           } else {                  // Nothing the matcher cares about
1197             if (n->is_Proj() && n->in(0) != nullptr && n->in(0)->is_Multi()) {       // Projections?
1198               // Convert to machine-dependent projection
1199               RegMask* mask = nullptr;
1200               if (n->in(0)->is_Call() && n->in(0)->as_Call()->tf()->returns_inline_type_as_fields()) {
1201                 mask = return_values_mask(n->in(0)->as_Call()->tf());
1202               }
1203               m = n->in(0)->as_Multi()->match(n->as_Proj(), this, mask);
1204               NOT_PRODUCT(record_new2old(m, n);)
1205               if (m->in(0) != nullptr) // m might be top
1206                 collect_null_checks(m, n);
1207             } else {                // Else just a regular 'ol guy
1208               m = n->clone();       // So just clone into new-space
1209               NOT_PRODUCT(record_new2old(m, n);)
1210               // Def-Use edges will be added incrementally as Uses
1211               // of this node are matched.
1212               assert(m->outcnt() == 0, "no Uses of this clone yet");
1213             }
1214           }
1215 
1216           set_new_node(n, m);       // Map old to new
1217           if (_old_node_note_array != nullptr) {
1218             Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
1219                                                   n->_idx);
1220             C->set_node_notes_at(m->_idx, nn);
1221           }
1222           debug_only(match_alias_type(C, n, m));
1223         }

1323   }
1324   return OptoReg::as_OptoReg(reg);
1325 }
1326 
1327 
1328 //------------------------------match_sfpt-------------------------------------
1329 // Helper function to match call instructions.  Calls match special.
1330 // They match alone with no children.  Their children, the incoming
1331 // arguments, match normally.
1332 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
1333   MachSafePointNode *msfpt = nullptr;
1334   MachCallNode      *mcall = nullptr;
1335   uint               cnt;
1336   // Split out case for SafePoint vs Call
1337   CallNode *call;
1338   const TypeTuple *domain;
1339   ciMethod*        method = nullptr;
1340   bool             is_method_handle_invoke = false;  // for special kill effects
1341   if( sfpt->is_Call() ) {
1342     call = sfpt->as_Call();
1343     domain = call->tf()->domain_cc();
1344     cnt = domain->cnt();
1345 
1346     // Match just the call, nothing else
1347     MachNode *m = match_tree(call);
1348     if (C->failing())  return nullptr;
1349     if( m == nullptr ) { Matcher::soft_match_failure(); return nullptr; }
1350 
1351     // Copy data from the Ideal SafePoint to the machine version
1352     mcall = m->as_MachCall();
1353 
1354     mcall->set_tf(                  call->tf());
1355     mcall->set_entry_point(         call->entry_point());
1356     mcall->set_cnt(                 call->cnt());
1357     mcall->set_guaranteed_safepoint(call->guaranteed_safepoint());
1358 
1359     if( mcall->is_MachCallJava() ) {
1360       MachCallJavaNode *mcall_java  = mcall->as_MachCallJava();
1361       const CallJavaNode *call_java =  call->as_CallJava();
1362       assert(call_java->validate_symbolic_info(), "inconsistent info");
1363       method = call_java->method();

1402   msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
1403   // Empty them all.
1404   for (uint i = 0; i < cnt; i++) ::new (&(msfpt->_in_rms[i])) RegMask();
1405 
1406   // Do all the pre-defined non-Empty register masks
1407   msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
1408   msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
1409 
1410   // Place first outgoing argument can possibly be put.
1411   OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
1412   assert( is_even(begin_out_arg_area), "" );
1413   // Compute max outgoing register number per call site.
1414   OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
1415   // Calls to C may hammer extra stack slots above and beyond any arguments.
1416   // These are usually backing store for register arguments for varargs.
1417   if( call != nullptr && call->is_CallRuntime() )
1418     out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
1419 
1420 
1421   // Do the normal argument list (parameters) register masks
1422   // Null entry point is a special cast where the target of the call
1423   // is in a register.
1424   int adj = (call != nullptr && call->entry_point() == nullptr) ? 1 : 0;
1425   int argcnt = cnt - TypeFunc::Parms - adj;
1426   if( argcnt > 0 ) {          // Skip it all if we have no args
1427     BasicType *sig_bt  = NEW_RESOURCE_ARRAY( BasicType, argcnt );
1428     VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
1429     int i;
1430     for( i = 0; i < argcnt; i++ ) {
1431       sig_bt[i] = domain->field_at(i+TypeFunc::Parms+adj)->basic_type();
1432     }
1433     // V-call to pick proper calling convention
1434     call->calling_convention( sig_bt, parm_regs, argcnt );
1435 
1436 #ifdef ASSERT
1437     // Sanity check users' calling convention.  Really handy during
1438     // the initial porting effort.  Fairly expensive otherwise.
1439     { for (int i = 0; i<argcnt; i++) {
1440       if( !parm_regs[i].first()->is_valid() &&
1441           !parm_regs[i].second()->is_valid() ) continue;
1442       VMReg reg1 = parm_regs[i].first();
1443       VMReg reg2 = parm_regs[i].second();
1444       for (int j = 0; j < i; j++) {
1445         if( !parm_regs[j].first()->is_valid() &&
1446             !parm_regs[j].second()->is_valid() ) continue;
1447         VMReg reg3 = parm_regs[j].first();
1448         VMReg reg4 = parm_regs[j].second();
1449         if( !reg1->is_valid() ) {
1450           assert( !reg2->is_valid(), "valid halvsies" );
1451         } else if( !reg3->is_valid() ) {
1452           assert( !reg4->is_valid(), "valid halvsies" );
1453         } else {
1454           assert( reg1 != reg2, "calling conv. must produce distinct regs");
1455           assert( reg1 != reg3, "calling conv. must produce distinct regs");
1456           assert( reg1 != reg4, "calling conv. must produce distinct regs");
1457           assert( reg2 != reg3, "calling conv. must produce distinct regs");
1458           assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
1459           assert( reg3 != reg4, "calling conv. must produce distinct regs");
1460         }
1461       }
1462     }
1463     }
1464 #endif
1465 
1466     // Visit each argument.  Compute its outgoing register mask.
1467     // Return results now can have 2 bits returned.
1468     // Compute max over all outgoing arguments both per call-site
1469     // and over the entire method.
1470     for( i = 0; i < argcnt; i++ ) {
1471       // Address of incoming argument mask to fill in
1472       RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms+adj];
1473       VMReg first = parm_regs[i].first();
1474       VMReg second = parm_regs[i].second();
1475       if(!first->is_valid() &&
1476          !second->is_valid()) {
1477         continue;               // Avoid Halves
1478       }
1479       // Handle case where arguments are in vector registers.
1480       if(call->in(TypeFunc::Parms + i)->bottom_type()->isa_vect()) {
1481         OptoReg::Name reg_fst = OptoReg::as_OptoReg(first);
1482         OptoReg::Name reg_snd = OptoReg::as_OptoReg(second);
1483         assert (reg_fst <= reg_snd, "fst=%d snd=%d", reg_fst, reg_snd);
1484         for (OptoReg::Name r = reg_fst; r <= reg_snd; r++) {
1485           rm->Insert(r);
1486         }
1487       }
1488       // Grab first register, adjust stack slots and insert in mask.
1489       OptoReg::Name reg1 = warp_outgoing_stk_arg(first, begin_out_arg_area, out_arg_limit_per_call );
1490       if (C->failing()) {
1491         return nullptr;
1492       }
1493       if (OptoReg::is_valid(reg1)) {
1494         rm->Insert( reg1 );
1495       }
1496       // Grab second register (if any), adjust stack slots and insert in mask.
1497       OptoReg::Name reg2 = warp_outgoing_stk_arg(second, begin_out_arg_area, out_arg_limit_per_call );
1498       if (C->failing()) {
1499         return nullptr;
1500       }
1501       if (OptoReg::is_valid(reg2)) {
1502         rm->Insert( reg2 );
1503       }
1504     } // End of for all arguments
1505   }
1506 
1507   // Compute the max stack slot killed by any call.  These will not be
1508   // available for debug info, and will be used to adjust FIRST_STACK_mask
1509   // after all call sites have been visited.
1510   if( _out_arg_limit < out_arg_limit_per_call)
1511     _out_arg_limit = out_arg_limit_per_call;
1512 
1513   if (mcall) {
1514     // Kill the outgoing argument area, including any non-argument holes and
1515     // any legacy C-killed slots.  Use Fat-Projections to do the killing.
1516     // Since the max-per-method covers the max-per-call-site and debug info
1517     // is excluded on the max-per-method basis, debug info cannot land in
1518     // this killed area.
1519     uint r_cnt = mcall->tf()->range_sig()->cnt();
1520     MachProjNode *proj = new MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
1521     if (!RegMask::can_represent_arg(OptoReg::Name(out_arg_limit_per_call-1))) {
1522       // Bailout. We do not have space to represent all arguments.
1523       C->record_method_not_compilable("unsupported outgoing calling sequence");
1524     } else {
1525       for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
1526         proj->_rout.Insert(OptoReg::Name(i));
1527     }
1528     if (proj->_rout.is_NotEmpty()) {
1529       push_projection(proj);
1530     }
1531   }
1532   // Transfer the safepoint information from the call to the mcall
1533   // Move the JVMState list
1534   msfpt->set_jvms(sfpt->jvms());
1535   for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
1536     jvms->set_map(sfpt);
1537   }
1538 
1539   // Debug inputs begin just after the last incoming parameter
1540   assert((mcall == nullptr) || (mcall->jvms() == nullptr) ||
1541          (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain_cc()->cnt()), "");
1542 
1543   // Add additional edges.
1544   if (msfpt->mach_constant_base_node_input() != (uint)-1 && !msfpt->is_MachCallLeaf()) {
1545     // For these calls we can not add MachConstantBase in expand(), as the
1546     // ins are not complete then.
1547     msfpt->ins_req(msfpt->mach_constant_base_node_input(), C->mach_constant_base_node());
1548     if (msfpt->jvms() &&
1549         msfpt->mach_constant_base_node_input() <= msfpt->jvms()->debug_start() + msfpt->_jvmadj) {
1550       // We added an edge before jvms, so we must adapt the position of the ins.
1551       msfpt->jvms()->adapt_position(+1);
1552     }
1553   }
1554 
1555   // Registers killed by the call are set in the local scheduling pass
1556   // of Global Code Motion.
1557   return msfpt;
1558 }
1559 
1560 //---------------------------match_tree----------------------------------------
1561 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce.  Used as part

2209         set_shared(n);       // Flag as shared and
2210         if (n->is_DecodeNarrowPtr()) {
2211           // Oop field/array element loads must be shared but since
2212           // they are shared through a DecodeN they may appear to have
2213           // a single use so force sharing here.
2214           set_shared(n->in(1));
2215         }
2216         mstack.pop();        // remove node from stack
2217         continue;
2218       }
2219       nstate = Visit; // Not already visited; so visit now
2220     }
2221     if (nstate == Visit) {
2222       mstack.set_state(Post_Visit);
2223       set_visited(n);   // Flag as visited now
2224       bool mem_op = false;
2225       int mem_addr_idx = MemNode::Address;
2226       if (find_shared_visit(mstack, n, nop, mem_op, mem_addr_idx)) {
2227         continue;
2228       }
2229       for (int i = n->len() - 1; i >= 0; --i) { // For my children
2230         Node* m = n->in(i); // Get ith input
2231         if (m == nullptr) {
2232           continue;  // Ignore nulls
2233         }
2234         if (clone_node(n, m, mstack)) {
2235           continue;
2236         }
2237 
2238         // Clone addressing expressions as they are "free" in memory access instructions
2239         if (mem_op && i == mem_addr_idx && m->is_AddP() &&
2240             // When there are other uses besides address expressions
2241             // put it on stack and mark as shared.
2242             !is_visited(m)) {
2243           // Some inputs for address expression are not put on stack
2244           // to avoid marking them as shared and forcing them into register
2245           // if they are used only in address expressions.
2246           // But they should be marked as shared if there are other uses
2247           // besides address expressions.
2248 
2249           if (pd_clone_address_expressions(m->as_AddP(), mstack, address_visited)) {

2515     }
2516     case Op_FmaD:
2517     case Op_FmaF:
2518     case Op_FmaVD:
2519     case Op_FmaVF: {
2520       // Restructure into a binary tree for Matching.
2521       Node* pair = new BinaryNode(n->in(1), n->in(2));
2522       n->set_req(2, pair);
2523       n->set_req(1, n->in(3));
2524       n->del_req(3);
2525       break;
2526     }
2527     case Op_MulAddS2I: {
2528       Node* pair1 = new BinaryNode(n->in(1), n->in(2));
2529       Node* pair2 = new BinaryNode(n->in(3), n->in(4));
2530       n->set_req(1, pair1);
2531       n->set_req(2, pair2);
2532       n->del_req(4);
2533       n->del_req(3);
2534       break;
2535     }
2536     case Op_ClearArray: {
2537       Node* pair = new BinaryNode(n->in(2), n->in(3));
2538       n->set_req(2, pair);
2539       n->set_req(3, n->in(4));
2540       n->del_req(4);
2541       break;
2542     }
2543     case Op_VectorCmpMasked:
2544     case Op_CopySignD:
2545     case Op_SignumVF:
2546     case Op_SignumVD:
2547     case Op_SignumF:
2548     case Op_SignumD: {
2549       Node* pair = new BinaryNode(n->in(2), n->in(3));
2550       n->set_req(2, pair);
2551       n->del_req(3);
2552       break;
2553     }
2554     case Op_VectorBlend:
2555     case Op_VectorInsert: {
2556       Node* pair = new BinaryNode(n->in(1), n->in(2));
2557       n->set_req(1, pair);
2558       n->set_req(2, n->in(3));
2559       n->del_req(3);
2560       break;
2561     }
< prev index next >