< prev index next >

src/hotspot/share/opto/matcher.cpp

Print this page

 149     Node* n = worklist.pop();
 150     if (visited.test_set(n->_idx)) {
 151       continue;
 152     }
 153     assert(C->node_arena()->contains(n), "dead node");
 154     assert(!n->is_Initialize() || n->as_Initialize()->number_of_projs(TypeFunc::Memory) == 1,
 155            "after matching, Initialize should have a single memory projection");
 156     for (uint j = 0; j < n->req(); j++) {
 157       Node* in = n->in(j);
 158       if (in != nullptr) {
 159         worklist.push(in);
 160       }
 161     }
 162     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 163       worklist.push(n->fast_out(j));
 164     }
 165   }
 166 }
 167 #endif
 168 













































 169 
 170 //---------------------------match---------------------------------------------
 171 void Matcher::match( ) {
 172   if( MaxLabelRootDepth < 100 ) { // Too small?
 173     assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum");
 174     MaxLabelRootDepth = 100;
 175   }
 176   // One-time initialization of some register masks.
 177   init_spill_mask( C->root()->in(1) );
 178   if (C->failing()) {
 179     return;
 180   }
 181   assert(_return_addr_mask.is_empty(),
 182          "return address mask must be empty initially");
 183   _return_addr_mask.insert(return_addr());
 184 #ifdef _LP64
 185   // Pointers take 2 slots in 64-bit land
 186   _return_addr_mask.insert(OptoReg::add(return_addr(), 1));
 187 #endif
 188 
 189   // Map a Java-signature return type into return register-value
 190   // machine registers for 0, 1 and 2 returned values.
 191   const TypeTuple *range = C->tf()->range();
 192   if( range->cnt() > TypeFunc::Parms ) { // If not a void function
 193     // Get ideal-register return type
 194     uint ireg = range->field_at(TypeFunc::Parms)->ideal_reg();
 195     // Get machine return register
 196     uint sop = C->start()->Opcode();
 197     OptoRegPair regs = return_value(ireg);
 198 
 199     // And mask for same
 200     _return_value_mask.assignFrom(RegMask(regs.first()));
 201     if( OptoReg::is_valid(regs.second()) )
 202       _return_value_mask.insert(regs.second());
 203   }
 204 
 205   // ---------------
 206   // Frame Layout
 207 
 208   // Need the method signature to determine the incoming argument types,
 209   // because the types determine which registers the incoming arguments are
 210   // in, and this affects the matched code.
 211   const TypeTuple *domain = C->tf()->domain();
 212   uint             argcnt = domain->cnt() - TypeFunc::Parms;
 213   BasicType *sig_bt        = NEW_RESOURCE_ARRAY( BasicType, argcnt );
 214   VMRegPair *vm_parm_regs  = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
 215   _parm_regs               = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
 216   _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
 217   uint i;
 218   for( i = 0; i<argcnt; i++ ) {
 219     sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
 220     new (_calling_convention_mask + i) RegMask(C->comp_arena());
 221   }
 222 
 223   // Pass array of ideal registers and length to USER code (from the AD file)
 224   // that will convert this to an array of register numbers.
 225   const StartNode *start = C->start();
 226   start->calling_convention( sig_bt, vm_parm_regs, argcnt );
 227 #ifdef ASSERT
 228   // Sanity check users' calling convention.  Real handy while trying to
 229   // get the initial port correct.
 230   { for (uint i = 0; i<argcnt; i++) {
 231       if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {

 462   // Initialize empty placeholder masks into the newly allocated arena
 463   for (int i = 0; i < NOF_STACK_MASKS; i++) {
 464     new (rms + i) RegMask(C->comp_arena());
 465   }
 466 
 467   int index = 0;
 468   for (int i = Op_RegN; i <= Op_RegVectMask; ++i) {
 469     idealreg2spillmask[i] = &rms[index++];
 470     idealreg2debugmask[i] = &rms[index++];
 471   }
 472   assert(index == NOF_STACK_MASKS, "wrong size");
 473 
 474   // At first, start with the empty mask
 475   C->FIRST_STACK_mask().clear();
 476 
 477   // Add in the incoming argument area
 478   OptoReg::Name init_in = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
 479   for (OptoReg::Name i = init_in; i < _in_arg_limit; i = OptoReg::add(i, 1)) {
 480     C->FIRST_STACK_mask().insert(i);
 481   }

 482   // Add in all bits past the outgoing argument area
 483   C->FIRST_STACK_mask().set_all_from(_out_arg_limit);
 484 
 485   // Make spill masks.  Registers for their class, plus FIRST_STACK_mask.
 486   RegMask aligned_stack_mask(C->FIRST_STACK_mask(), C->comp_arena());
 487   // Keep spill masks aligned.
 488   aligned_stack_mask.clear_to_pairs();
 489   assert(aligned_stack_mask.is_infinite_stack(), "should be infinite stack");
 490   RegMask scalable_stack_mask(aligned_stack_mask, C->comp_arena());
 491 
 492   idealreg2spillmask[Op_RegP]->assignFrom(*idealreg2regmask[Op_RegP]);
 493 #ifdef _LP64
 494   idealreg2spillmask[Op_RegN]->assignFrom(*idealreg2regmask[Op_RegN]);
 495   idealreg2spillmask[Op_RegN]->or_with(C->FIRST_STACK_mask());
 496   idealreg2spillmask[Op_RegP]->or_with(aligned_stack_mask);
 497 #else
 498    idealreg2spillmask[Op_RegP]->or_with(C->FIRST_STACK_mask());
 499 #endif
 500   idealreg2spillmask[Op_RegI]->assignFrom(*idealreg2regmask[Op_RegI]);
 501   idealreg2spillmask[Op_RegI]->or_with(C->FIRST_STACK_mask());

 682     _register_save_policy[reg] == 'E' ||
 683     _register_save_policy[reg] == 'A'; // Save-on-entry register?
 684 }
 685 
 686 //---------------------------Fixup_Save_On_Entry-------------------------------
 687 void Matcher::Fixup_Save_On_Entry( ) {
 688   init_first_stack_mask();
 689 
 690   Node *root = C->root();       // Short name for root
 691   // Count number of save-on-entry registers.
 692   uint soe_cnt = number_of_saved_registers();
 693   uint i;
 694 
 695   // Find the procedure Start Node
 696   StartNode *start = C->start();
 697   assert( start, "Expect a start node" );
 698 
 699   // Input RegMask array shared by all Returns.
 700   // The type for doubles and longs has a count of 2, but
 701   // there is only 1 returned value
 702   uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1);
 703   RegMask *ret_rms  = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 704   // Returns have 0 or 1 returned values depending on call signature.
 705   // Return register is specified by return_value in the AD file.
 706   if (ret_edge_cnt > TypeFunc::Parms) {
 707     ret_rms[TypeFunc::Parms + 0].assignFrom(_return_value_mask);
 708   }
 709 
 710   // Input RegMask array shared by all ForwardExceptions
 711   uint forw_exc_edge_cnt = TypeFunc::Parms;
 712   RegMask* forw_exc_rms  = init_input_masks( forw_exc_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 713 
 714   // Input RegMask array shared by all Rethrows.
 715   uint reth_edge_cnt = TypeFunc::Parms+1;
 716   RegMask *reth_rms  = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 717   // Rethrow takes exception oop only, but in the argument 0 slot.
 718   OptoReg::Name reg = find_receiver();
 719   if (reg >= 0) {
 720     reth_rms[TypeFunc::Parms].assignFrom(mreg2regmask[reg]);
 721 #ifdef _LP64
 722     // Need two slots for ptrs in 64-bit land
 723     reth_rms[TypeFunc::Parms].insert(OptoReg::add(OptoReg::Name(reg), 1));
 724 #endif
 725   }
 726 
 727   // Input RegMask array shared by all TailCalls

 760 
 761   // Input RegMask array shared by all Halts
 762   uint halt_edge_cnt = TypeFunc::Parms;
 763   RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 764 
 765   // Capture the return input masks into each exit flavor
 766   for( i=1; i < root->req(); i++ ) {
 767     MachReturnNode *exit = root->in(i)->as_MachReturn();
 768     switch( exit->ideal_Opcode() ) {
 769       case Op_Return   : exit->_in_rms = ret_rms;  break;
 770       case Op_Rethrow  : exit->_in_rms = reth_rms; break;
 771       case Op_TailCall : exit->_in_rms = tail_call_rms; break;
 772       case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
 773       case Op_ForwardException: exit->_in_rms = forw_exc_rms; break;
 774       case Op_Halt     : exit->_in_rms = halt_rms; break;
 775       default          : ShouldNotReachHere();
 776     }
 777   }
 778 
 779   // Next unused projection number from Start.
 780   int proj_cnt = C->tf()->domain()->cnt();
 781 
 782   // Do all the save-on-entry registers.  Make projections from Start for
 783   // them, and give them a use at the exit points.  To the allocator, they
 784   // look like incoming register arguments.
 785   for( i = 0; i < _last_Mach_Reg; i++ ) {
 786     if( is_save_on_entry(i) ) {
 787 
 788       // Add the save-on-entry to the mask array
 789       ret_rms      [      ret_edge_cnt].assignFrom(mreg2regmask[i]);
 790       reth_rms     [     reth_edge_cnt].assignFrom(mreg2regmask[i]);
 791       tail_call_rms[tail_call_edge_cnt].assignFrom(mreg2regmask[i]);
 792       tail_jump_rms[tail_jump_edge_cnt].assignFrom(mreg2regmask[i]);
 793       forw_exc_rms [ forw_exc_edge_cnt].assignFrom(mreg2regmask[i]);
 794       // Halts need the SOE registers, but only in the stack as debug info.
 795       // A just-prior uncommon-trap or deoptimization will use the SOE regs.
 796       halt_rms     [     halt_edge_cnt].assignFrom(*idealreg2spillmask[_register_save_type[i]]);
 797 
 798       Node *mproj;
 799 
 800       // Is this a RegF low half of a RegD?  Double up 2 adjacent RegF's

1040             m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
1041             if (C->failing())  return nullptr;
1042             if (m == nullptr) { Matcher::soft_match_failure(); return nullptr; }
1043             if (n->is_MemBar()) {
1044               m->as_MachMemBar()->set_adr_type(n->adr_type());
1045             }
1046           } else {                  // Nothing the matcher cares about
1047             if (n->is_Proj() && n->in(0) != nullptr && n->in(0)->is_Multi()) {       // Projections?
1048               if (n->in(0)->is_Initialize() && n->as_Proj()->_con == TypeFunc::Memory) {
1049                 // Initialize may have multiple NarrowMem projections. They would all match to identical raw mem MachProjs.
1050                 // We don't need multiple MachProjs. Create one if none already exist, otherwise use existing one.
1051                 m = n->in(0)->as_Initialize()->mem_mach_proj();
1052                 if (m == nullptr && has_new_node(n->in(0))) {
1053                   InitializeNode* new_init = new_node(n->in(0))->as_Initialize();
1054                   m = new_init->mem_mach_proj();
1055                 }
1056                 assert(m == nullptr || m->is_MachProj(), "no mem projection yet or a MachProj created during matching");
1057               }
1058               if (m == nullptr) {
1059                 // Convert to machine-dependent projection
1060                 m = n->in(0)->as_Multi()->match( n->as_Proj(), this );




1061                 NOT_PRODUCT(record_new2old(m, n);)
1062               }
1063               if (m->in(0) != nullptr) // m might be top
1064                 collect_null_checks(m, n);
1065             } else {                // Else just a regular 'ol guy
1066               m = n->clone();       // So just clone into new-space
1067               NOT_PRODUCT(record_new2old(m, n);)
1068               // Def-Use edges will be added incrementally as Uses
1069               // of this node are matched.
1070               assert(m->outcnt() == 0, "no Uses of this clone yet");
1071             }
1072           }
1073 
1074           set_new_node(n, m);       // Map old to new
1075           if (_old_node_note_array != nullptr) {
1076             Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
1077                                                   n->_idx);
1078             C->set_node_notes_at(m->_idx, nn);
1079           }
1080           DEBUG_ONLY(match_alias_type(C, n, m));

1176     return warped;
1177   }
1178   return OptoReg::as_OptoReg(reg);
1179 }
1180 
1181 
1182 //------------------------------match_sfpt-------------------------------------
1183 // Helper function to match call instructions.  Calls match special.
1184 // They match alone with no children.  Their children, the incoming
1185 // arguments, match normally.
1186 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
1187   MachSafePointNode *msfpt = nullptr;
1188   MachCallNode      *mcall = nullptr;
1189   uint               cnt;
1190   // Split out case for SafePoint vs Call
1191   CallNode *call;
1192   const TypeTuple *domain;
1193   ciMethod*        method = nullptr;
1194   if( sfpt->is_Call() ) {
1195     call = sfpt->as_Call();
1196     domain = call->tf()->domain();
1197     cnt = domain->cnt();
1198 
1199     // Match just the call, nothing else
1200     MachNode *m = match_tree(call);
1201     if (C->failing())  return nullptr;
1202     if( m == nullptr ) { Matcher::soft_match_failure(); return nullptr; }
1203 
1204     // Copy data from the Ideal SafePoint to the machine version
1205     mcall = m->as_MachCall();
1206 
1207     mcall->set_tf(                  call->tf());
1208     mcall->set_entry_point(         call->entry_point());
1209     mcall->set_cnt(                 call->cnt());
1210     mcall->set_guaranteed_safepoint(call->guaranteed_safepoint());
1211 
1212     if( mcall->is_MachCallJava() ) {
1213       MachCallJavaNode *mcall_java  = mcall->as_MachCallJava();
1214       const CallJavaNode *call_java =  call->as_CallJava();
1215       assert(call_java->validate_symbolic_info(), "inconsistent info");
1216       method = call_java->method();

1252   for (uint i = 0; i < cnt; i++) {
1253     ::new (msfpt->_in_rms + i) RegMask(C->comp_arena());
1254   }
1255 
1256   // Do all the pre-defined non-Empty register masks
1257   msfpt->_in_rms[TypeFunc::ReturnAdr].assignFrom(_return_addr_mask);
1258   msfpt->_in_rms[TypeFunc::FramePtr ].assignFrom(c_frame_ptr_mask);
1259 
1260   // Place first outgoing argument can possibly be put.
1261   OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
1262   assert( is_even(begin_out_arg_area), "" );
1263   // Compute max outgoing register number per call site.
1264   OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
1265   // Calls to C may hammer extra stack slots above and beyond any arguments.
1266   // These are usually backing store for register arguments for varargs.
1267   if( call != nullptr && call->is_CallRuntime() )
1268     out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
1269 
1270 
1271   // Do the normal argument list (parameters) register masks
1272   int argcnt = cnt - TypeFunc::Parms;



1273   if( argcnt > 0 ) {          // Skip it all if we have no args
1274     BasicType *sig_bt  = NEW_RESOURCE_ARRAY( BasicType, argcnt );
1275     VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
1276     int i;
1277     for( i = 0; i < argcnt; i++ ) {
1278       sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
1279     }
1280     // V-call to pick proper calling convention
1281     call->calling_convention( sig_bt, parm_regs, argcnt );
1282 
1283 #ifdef ASSERT
1284     // Sanity check users' calling convention.  Really handy during
1285     // the initial porting effort.  Fairly expensive otherwise.
1286     { for (int i = 0; i<argcnt; i++) {
1287       if( !parm_regs[i].first()->is_valid() &&
1288           !parm_regs[i].second()->is_valid() ) continue;
1289       VMReg reg1 = parm_regs[i].first();
1290       VMReg reg2 = parm_regs[i].second();
1291       for (int j = 0; j < i; j++) {
1292         if( !parm_regs[j].first()->is_valid() &&
1293             !parm_regs[j].second()->is_valid() ) continue;
1294         VMReg reg3 = parm_regs[j].first();
1295         VMReg reg4 = parm_regs[j].second();
1296         if( !reg1->is_valid() ) {
1297           assert( !reg2->is_valid(), "valid halvsies" );
1298         } else if( !reg3->is_valid() ) {
1299           assert( !reg4->is_valid(), "valid halvsies" );
1300         } else {
1301           assert( reg1 != reg2, "calling conv. must produce distinct regs");
1302           assert( reg1 != reg3, "calling conv. must produce distinct regs");
1303           assert( reg1 != reg4, "calling conv. must produce distinct regs");
1304           assert( reg2 != reg3, "calling conv. must produce distinct regs");
1305           assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
1306           assert( reg3 != reg4, "calling conv. must produce distinct regs");
1307         }
1308       }
1309     }
1310     }
1311 #endif
1312 
1313     // Visit each argument.  Compute its outgoing register mask.
1314     // Return results now can have 2 bits returned.
1315     // Compute max over all outgoing arguments both per call-site
1316     // and over the entire method.
1317     for( i = 0; i < argcnt; i++ ) {
1318       // Address of incoming argument mask to fill in
1319       RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms];
1320       VMReg first = parm_regs[i].first();
1321       VMReg second = parm_regs[i].second();
1322       if(!first->is_valid() &&
1323          !second->is_valid()) {
1324         continue;               // Avoid Halves
1325       }
1326       // Handle case where arguments are in vector registers.
1327       if(call->in(TypeFunc::Parms + i)->bottom_type()->isa_vect()) {
1328         OptoReg::Name reg_fst = OptoReg::as_OptoReg(first);
1329         OptoReg::Name reg_snd = OptoReg::as_OptoReg(second);
1330         assert (reg_fst <= reg_snd, "fst=%d snd=%d", reg_fst, reg_snd);
1331         for (OptoReg::Name r = reg_fst; r <= reg_snd; r++) {
1332           rm->insert(r);
1333         }
1334       }
1335       // Grab first register, adjust stack slots and insert in mask.
1336       OptoReg::Name reg1 = warp_outgoing_stk_arg(first, begin_out_arg_area, out_arg_limit_per_call );
1337       if (OptoReg::is_valid(reg1))
1338         rm->insert(reg1);

1339       // Grab second register (if any), adjust stack slots and insert in mask.
1340       OptoReg::Name reg2 = warp_outgoing_stk_arg(second, begin_out_arg_area, out_arg_limit_per_call );
1341       if (OptoReg::is_valid(reg2))
1342         rm->insert(reg2);

1343     } // End of for all arguments
1344   }
1345 
1346   // Compute the max stack slot killed by any call.  These will not be
1347   // available for debug info, and will be used to adjust FIRST_STACK_mask
1348   // after all call sites have been visited.
1349   if( _out_arg_limit < out_arg_limit_per_call)
1350     _out_arg_limit = out_arg_limit_per_call;
1351 
1352   if (mcall) {
1353     // Kill the outgoing argument area, including any non-argument holes and
1354     // any legacy C-killed slots.  Use Fat-Projections to do the killing.
1355     // Since the max-per-method covers the max-per-call-site and debug info
1356     // is excluded on the max-per-method basis, debug info cannot land in
1357     // this killed area.
1358     uint r_cnt = mcall->tf()->range()->cnt();
1359     MachProjNode* proj = new MachProjNode(mcall, r_cnt + 10000, RegMask::EMPTY, MachProjNode::fat_proj);
1360     for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++) {
1361       proj->_rout.insert(OptoReg::Name(i));
1362     }
1363     if (!proj->_rout.is_empty()) {
1364       push_projection(proj);
1365     }
1366   }
1367   // Transfer the safepoint information from the call to the mcall
1368   // Move the JVMState list
1369   msfpt->set_jvms(sfpt->jvms());
1370   for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
1371     jvms->set_map(sfpt);
1372   }
1373 
1374   // Debug inputs begin just after the last incoming parameter
1375   assert((mcall == nullptr) || (mcall->jvms() == nullptr) ||
1376          (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "");
1377 
1378   // Add additional edges.
1379   if (msfpt->mach_constant_base_node_input() != (uint)-1 && !msfpt->is_MachCallLeaf()) {
1380     // For these calls we can not add MachConstantBase in expand(), as the
1381     // ins are not complete then.
1382     msfpt->ins_req(msfpt->mach_constant_base_node_input(), C->mach_constant_base_node());
1383     if (msfpt->jvms() &&
1384         msfpt->mach_constant_base_node_input() <= msfpt->jvms()->debug_start() + msfpt->_jvmadj) {
1385       // We added an edge before jvms, so we must adapt the position of the ins.
1386       msfpt->jvms()->adapt_position(+1);
1387     }
1388   }
1389 
1390   // Registers killed by the call are set in the local scheduling pass
1391   // of Global Code Motion.
1392   return msfpt;
1393 }
1394 
1395 //---------------------------match_tree----------------------------------------
1396 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce.  Used as part

2045         set_shared(n);       // Flag as shared and
2046         if (n->is_DecodeNarrowPtr()) {
2047           // Oop field/array element loads must be shared but since
2048           // they are shared through a DecodeN they may appear to have
2049           // a single use so force sharing here.
2050           set_shared(n->in(1));
2051         }
2052         mstack.pop();        // remove node from stack
2053         continue;
2054       }
2055       nstate = Visit; // Not already visited; so visit now
2056     }
2057     if (nstate == Visit) {
2058       mstack.set_state(Post_Visit);
2059       set_visited(n);   // Flag as visited now
2060       bool mem_op = false;
2061       int mem_addr_idx = MemNode::Address;
2062       if (find_shared_visit(mstack, n, nop, mem_op, mem_addr_idx)) {
2063         continue;
2064       }
2065       for (int i = n->req() - 1; i >= 0; --i) { // For my children
2066         Node* m = n->in(i); // Get ith input
2067         if (m == nullptr) {
2068           continue;  // Ignore nulls
2069         }
2070         if (clone_node(n, m, mstack)) {
2071           continue;
2072         }
2073 
2074         // Clone addressing expressions as they are "free" in memory access instructions
2075         if (mem_op && i == mem_addr_idx && m->is_AddP() &&
2076             // When there are other uses besides address expressions
2077             // put it on stack and mark as shared.
2078             !is_visited(m)) {
2079           // Some inputs for address expression are not put on stack
2080           // to avoid marking them as shared and forcing them into register
2081           // if they are used only in address expressions.
2082           // But they should be marked as shared if there are other uses
2083           // besides address expressions.
2084 
2085           if (pd_clone_address_expressions(m->as_AddP(), mstack, address_visited)) {

2356     case Op_FmaHF:
2357     case Op_FmaVD:
2358     case Op_FmaVF:
2359     case Op_FmaVHF: {
2360       // Restructure into a binary tree for Matching.
2361       Node* pair = new BinaryNode(n->in(1), n->in(2));
2362       n->set_req(2, pair);
2363       n->set_req(1, n->in(3));
2364       n->del_req(3);
2365       break;
2366     }
2367     case Op_MulAddS2I: {
2368       Node* pair1 = new BinaryNode(n->in(1), n->in(2));
2369       Node* pair2 = new BinaryNode(n->in(3), n->in(4));
2370       n->set_req(1, pair1);
2371       n->set_req(2, pair2);
2372       n->del_req(4);
2373       n->del_req(3);
2374       break;
2375     }







2376     case Op_VectorCmpMasked:
2377     case Op_CopySignD:
2378     case Op_SignumVF:
2379     case Op_SignumVD:
2380     case Op_SignumF:
2381     case Op_SignumD: {
2382       Node* pair = new BinaryNode(n->in(2), n->in(3));
2383       n->set_req(2, pair);
2384       n->del_req(3);
2385       break;
2386     }
2387     case Op_VectorBlend:
2388     case Op_VectorInsert: {
2389       Node* pair = new BinaryNode(n->in(1), n->in(2));
2390       n->set_req(1, pair);
2391       n->set_req(2, n->in(3));
2392       n->del_req(3);
2393       break;
2394     }
2395     case Op_LoadVectorGatherMasked: // fall-through

2405       n->del_req(MemNode::ValueIn+2);
2406       pair = new BinaryNode(n->in(MemNode::ValueIn), n->in(MemNode::ValueIn+1));
2407       n->set_req(MemNode::ValueIn, pair);
2408       n->del_req(MemNode::ValueIn+1);
2409       break;
2410     }
2411     case Op_VectorMaskCmp: {
2412       n->set_req(1, new BinaryNode(n->in(1), n->in(2)));
2413       n->set_req(2, n->in(3));
2414       n->del_req(3);
2415       break;
2416     }
2417     case Op_PartialSubtypeCheck: {
2418       if (UseSecondarySupersTable && n->in(2)->is_Con()) {
2419         // PartialSubtypeCheck uses both constant and register operands for superclass input.
2420         n->set_req(2, new BinaryNode(n->in(2), n->in(2)));
2421         break;
2422       }
2423       break;
2424     }








2425     default:
2426       break;
2427   }
2428 }
2429 
2430 #ifndef PRODUCT
2431 void Matcher::record_new2old(Node* newn, Node* old) {
2432   _new2old_map.map(newn->_idx, old);
2433   if (!_reused.test_set(old->_igv_idx)) {
2434     // Reuse the Ideal-level IGV identifier so that the node can be tracked
2435     // across matching. If there are multiple machine nodes expanded from the
2436     // same Ideal node, only one will reuse its IGV identifier.
2437     newn->_igv_idx = old->_igv_idx;
2438   }
2439 }
2440 
2441 // machine-independent root to machine-dependent root
2442 void Matcher::dump_old2new_map() {
2443   _old2new_map.dump();
2444 }

 149     Node* n = worklist.pop();
 150     if (visited.test_set(n->_idx)) {
 151       continue;
 152     }
 153     assert(C->node_arena()->contains(n), "dead node");
 154     assert(!n->is_Initialize() || n->as_Initialize()->number_of_projs(TypeFunc::Memory) == 1,
 155            "after matching, Initialize should have a single memory projection");
 156     for (uint j = 0; j < n->req(); j++) {
 157       Node* in = n->in(j);
 158       if (in != nullptr) {
 159         worklist.push(in);
 160       }
 161     }
 162     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 163       worklist.push(n->fast_out(j));
 164     }
 165   }
 166 }
 167 #endif
 168 
 169 // Array of RegMask, one per returned values (inline type instances can
 170 // be returned as multiple return values, one per field)
 171 RegMask* Matcher::return_values_mask(const TypeFunc* tf) {
 172   const TypeTuple* range = tf->range_cc();
 173   uint cnt = range->cnt() - TypeFunc::Parms;
 174   if (cnt == 0) {
 175     return nullptr;
 176   }
 177   RegMask* mask = NEW_RESOURCE_ARRAY(RegMask, cnt);
 178   BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, cnt);
 179   VMRegPair* vm_parm_regs = NEW_RESOURCE_ARRAY(VMRegPair, cnt);
 180   for (uint i = 0; i < cnt; i++) {
 181     sig_bt[i] = range->field_at(i+TypeFunc::Parms)->basic_type();
 182     new (mask + i) RegMask();
 183   }
 184 
 185   int regs = SharedRuntime::java_return_convention(sig_bt, vm_parm_regs, cnt);
 186   if (regs <= 0) {
 187     // We ran out of registers to store the null marker for a nullable inline type return.
 188     // Since it is only set in the 'call_epilog', we can simply put it on the stack.
 189     assert(tf->returns_inline_type_as_fields(), "should have been tested during graph construction");
 190     // TODO 8284443 Can we teach the register allocator to reserve a stack slot instead?
 191     // mask[--cnt] = STACK_ONLY_mask does not work (test with -XX:+StressGCM)
 192     int slot = C->fixed_slots() - 2;
 193     if (C->needs_stack_repair()) {
 194       slot -= 2; // Account for stack increment value
 195     }
 196     mask[--cnt].clear();
 197     mask[cnt].insert(OptoReg::stack2reg(slot));
 198   }
 199   for (uint i = 0; i < cnt; i++) {
 200     mask[i].clear();
 201 
 202     OptoReg::Name reg1 = OptoReg::as_OptoReg(vm_parm_regs[i].first());
 203     if (OptoReg::is_valid(reg1)) {
 204       mask[i].insert(reg1);
 205     }
 206     OptoReg::Name reg2 = OptoReg::as_OptoReg(vm_parm_regs[i].second());
 207     if (OptoReg::is_valid(reg2)) {
 208       mask[i].insert(reg2);
 209     }
 210   }
 211 
 212   return mask;
 213 }
 214 
 215 //---------------------------match---------------------------------------------
 216 void Matcher::match( ) {
 217   if( MaxLabelRootDepth < 100 ) { // Too small?
 218     assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum");
 219     MaxLabelRootDepth = 100;
 220   }
 221   // One-time initialization of some register masks.
 222   init_spill_mask( C->root()->in(1) );
 223   if (C->failing()) {
 224     return;
 225   }
 226   assert(_return_addr_mask.is_empty(),
 227          "return address mask must be empty initially");
 228   _return_addr_mask.insert(return_addr());
 229 #ifdef _LP64
 230   // Pointers take 2 slots in 64-bit land
 231   _return_addr_mask.insert(OptoReg::add(return_addr(), 1));
 232 #endif
 233 
 234   // Map Java-signature return types into return register-value
 235   // machine registers.
 236   _return_values_mask = return_values_mask(C->tf());












 237 
 238   // ---------------
 239   // Frame Layout
 240 
 241   // Need the method signature to determine the incoming argument types,
 242   // because the types determine which registers the incoming arguments are
 243   // in, and this affects the matched code.
 244   const TypeTuple *domain = C->tf()->domain_cc();
 245   uint             argcnt = domain->cnt() - TypeFunc::Parms;
 246   BasicType *sig_bt        = NEW_RESOURCE_ARRAY( BasicType, argcnt );
 247   VMRegPair *vm_parm_regs  = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
 248   _parm_regs               = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
 249   _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
 250   uint i;
 251   for( i = 0; i<argcnt; i++ ) {
 252     sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
 253     new (_calling_convention_mask + i) RegMask(C->comp_arena());
 254   }
 255 
 256   // Pass array of ideal registers and length to USER code (from the AD file)
 257   // that will convert this to an array of register numbers.
 258   const StartNode *start = C->start();
 259   start->calling_convention( sig_bt, vm_parm_regs, argcnt );
 260 #ifdef ASSERT
 261   // Sanity check users' calling convention.  Real handy while trying to
 262   // get the initial port correct.
 263   { for (uint i = 0; i<argcnt; i++) {
 264       if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {

 495   // Initialize empty placeholder masks into the newly allocated arena
 496   for (int i = 0; i < NOF_STACK_MASKS; i++) {
 497     new (rms + i) RegMask(C->comp_arena());
 498   }
 499 
 500   int index = 0;
 501   for (int i = Op_RegN; i <= Op_RegVectMask; ++i) {
 502     idealreg2spillmask[i] = &rms[index++];
 503     idealreg2debugmask[i] = &rms[index++];
 504   }
 505   assert(index == NOF_STACK_MASKS, "wrong size");
 506 
 507   // At first, start with the empty mask
 508   C->FIRST_STACK_mask().clear();
 509 
 510   // Add in the incoming argument area
 511   OptoReg::Name init_in = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
 512   for (OptoReg::Name i = init_in; i < _in_arg_limit; i = OptoReg::add(i, 1)) {
 513     C->FIRST_STACK_mask().insert(i);
 514   }
 515 
 516   // Add in all bits past the outgoing argument area
 517   C->FIRST_STACK_mask().set_all_from(_out_arg_limit);
 518 
 519   // Make spill masks.  Registers for their class, plus FIRST_STACK_mask.
 520   RegMask aligned_stack_mask(C->FIRST_STACK_mask(), C->comp_arena());
 521   // Keep spill masks aligned.
 522   aligned_stack_mask.clear_to_pairs();
 523   assert(aligned_stack_mask.is_infinite_stack(), "should be infinite stack");
 524   RegMask scalable_stack_mask(aligned_stack_mask, C->comp_arena());
 525 
 526   idealreg2spillmask[Op_RegP]->assignFrom(*idealreg2regmask[Op_RegP]);
 527 #ifdef _LP64
 528   idealreg2spillmask[Op_RegN]->assignFrom(*idealreg2regmask[Op_RegN]);
 529   idealreg2spillmask[Op_RegN]->or_with(C->FIRST_STACK_mask());
 530   idealreg2spillmask[Op_RegP]->or_with(aligned_stack_mask);
 531 #else
 532    idealreg2spillmask[Op_RegP]->or_with(C->FIRST_STACK_mask());
 533 #endif
 534   idealreg2spillmask[Op_RegI]->assignFrom(*idealreg2regmask[Op_RegI]);
 535   idealreg2spillmask[Op_RegI]->or_with(C->FIRST_STACK_mask());

 716     _register_save_policy[reg] == 'E' ||
 717     _register_save_policy[reg] == 'A'; // Save-on-entry register?
 718 }
 719 
 720 //---------------------------Fixup_Save_On_Entry-------------------------------
 721 void Matcher::Fixup_Save_On_Entry( ) {
 722   init_first_stack_mask();
 723 
 724   Node *root = C->root();       // Short name for root
 725   // Count number of save-on-entry registers.
 726   uint soe_cnt = number_of_saved_registers();
 727   uint i;
 728 
 729   // Find the procedure Start Node
 730   StartNode *start = C->start();
 731   assert( start, "Expect a start node" );
 732 
 733   // Input RegMask array shared by all Returns.
 734   // The type for doubles and longs has a count of 2, but
 735   // there is only 1 returned value
 736   uint ret_edge_cnt = C->tf()->range_cc()->cnt();
 737   RegMask *ret_rms  = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 738   for (i = TypeFunc::Parms; i < ret_edge_cnt; i++) {
 739     ret_rms[i].assignFrom(_return_values_mask[i-TypeFunc::Parms]);


 740   }
 741 
 742   // Input RegMask array shared by all ForwardExceptions
 743   uint forw_exc_edge_cnt = TypeFunc::Parms;
 744   RegMask* forw_exc_rms  = init_input_masks( forw_exc_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 745 
 746   // Input RegMask array shared by all Rethrows.
 747   uint reth_edge_cnt = TypeFunc::Parms+1;
 748   RegMask *reth_rms  = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 749   // Rethrow takes exception oop only, but in the argument 0 slot.
 750   OptoReg::Name reg = find_receiver();
 751   if (reg >= 0) {
 752     reth_rms[TypeFunc::Parms].assignFrom(mreg2regmask[reg]);
 753 #ifdef _LP64
 754     // Need two slots for ptrs in 64-bit land
 755     reth_rms[TypeFunc::Parms].insert(OptoReg::add(OptoReg::Name(reg), 1));
 756 #endif
 757   }
 758 
 759   // Input RegMask array shared by all TailCalls

 792 
 793   // Input RegMask array shared by all Halts
 794   uint halt_edge_cnt = TypeFunc::Parms;
 795   RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 796 
 797   // Capture the return input masks into each exit flavor
 798   for( i=1; i < root->req(); i++ ) {
 799     MachReturnNode *exit = root->in(i)->as_MachReturn();
 800     switch( exit->ideal_Opcode() ) {
 801       case Op_Return   : exit->_in_rms = ret_rms;  break;
 802       case Op_Rethrow  : exit->_in_rms = reth_rms; break;
 803       case Op_TailCall : exit->_in_rms = tail_call_rms; break;
 804       case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
 805       case Op_ForwardException: exit->_in_rms = forw_exc_rms; break;
 806       case Op_Halt     : exit->_in_rms = halt_rms; break;
 807       default          : ShouldNotReachHere();
 808     }
 809   }
 810 
 811   // Next unused projection number from Start.
 812   int proj_cnt = C->tf()->domain_cc()->cnt();
 813 
 814   // Do all the save-on-entry registers.  Make projections from Start for
 815   // them, and give them a use at the exit points.  To the allocator, they
 816   // look like incoming register arguments.
 817   for( i = 0; i < _last_Mach_Reg; i++ ) {
 818     if( is_save_on_entry(i) ) {
 819 
 820       // Add the save-on-entry to the mask array
 821       ret_rms      [      ret_edge_cnt].assignFrom(mreg2regmask[i]);
 822       reth_rms     [     reth_edge_cnt].assignFrom(mreg2regmask[i]);
 823       tail_call_rms[tail_call_edge_cnt].assignFrom(mreg2regmask[i]);
 824       tail_jump_rms[tail_jump_edge_cnt].assignFrom(mreg2regmask[i]);
 825       forw_exc_rms [ forw_exc_edge_cnt].assignFrom(mreg2regmask[i]);
 826       // Halts need the SOE registers, but only in the stack as debug info.
 827       // A just-prior uncommon-trap or deoptimization will use the SOE regs.
 828       halt_rms     [     halt_edge_cnt].assignFrom(*idealreg2spillmask[_register_save_type[i]]);
 829 
 830       Node *mproj;
 831 
 832       // Is this a RegF low half of a RegD?  Double up 2 adjacent RegF's

1072             m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
1073             if (C->failing())  return nullptr;
1074             if (m == nullptr) { Matcher::soft_match_failure(); return nullptr; }
1075             if (n->is_MemBar()) {
1076               m->as_MachMemBar()->set_adr_type(n->adr_type());
1077             }
1078           } else {                  // Nothing the matcher cares about
1079             if (n->is_Proj() && n->in(0) != nullptr && n->in(0)->is_Multi()) {       // Projections?
1080               if (n->in(0)->is_Initialize() && n->as_Proj()->_con == TypeFunc::Memory) {
1081                 // Initialize may have multiple NarrowMem projections. They would all match to identical raw mem MachProjs.
1082                 // We don't need multiple MachProjs. Create one if none already exist, otherwise use existing one.
1083                 m = n->in(0)->as_Initialize()->mem_mach_proj();
1084                 if (m == nullptr && has_new_node(n->in(0))) {
1085                   InitializeNode* new_init = new_node(n->in(0))->as_Initialize();
1086                   m = new_init->mem_mach_proj();
1087                 }
1088                 assert(m == nullptr || m->is_MachProj(), "no mem projection yet or a MachProj created during matching");
1089               }
1090               if (m == nullptr) {
1091                 // Convert to machine-dependent projection
1092                 RegMask* mask = nullptr;
1093                 if (n->in(0)->is_Call() && n->in(0)->as_Call()->tf()->returns_inline_type_as_fields()) {
1094                   mask = return_values_mask(n->in(0)->as_Call()->tf());
1095                 }
1096                 m = n->in(0)->as_Multi()->match(n->as_Proj(), this, mask);
1097                 NOT_PRODUCT(record_new2old(m, n);)
1098               }
1099               if (m->in(0) != nullptr) // m might be top
1100                 collect_null_checks(m, n);
1101             } else {                // Else just a regular 'ol guy
1102               m = n->clone();       // So just clone into new-space
1103               NOT_PRODUCT(record_new2old(m, n);)
1104               // Def-Use edges will be added incrementally as Uses
1105               // of this node are matched.
1106               assert(m->outcnt() == 0, "no Uses of this clone yet");
1107             }
1108           }
1109 
1110           set_new_node(n, m);       // Map old to new
1111           if (_old_node_note_array != nullptr) {
1112             Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
1113                                                   n->_idx);
1114             C->set_node_notes_at(m->_idx, nn);
1115           }
1116           DEBUG_ONLY(match_alias_type(C, n, m));

1212     return warped;
1213   }
1214   return OptoReg::as_OptoReg(reg);
1215 }
1216 
1217 
1218 //------------------------------match_sfpt-------------------------------------
1219 // Helper function to match call instructions.  Calls match special.
1220 // They match alone with no children.  Their children, the incoming
1221 // arguments, match normally.
1222 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
1223   MachSafePointNode *msfpt = nullptr;
1224   MachCallNode      *mcall = nullptr;
1225   uint               cnt;
1226   // Split out case for SafePoint vs Call
1227   CallNode *call;
1228   const TypeTuple *domain;
1229   ciMethod*        method = nullptr;
1230   if( sfpt->is_Call() ) {
1231     call = sfpt->as_Call();
1232     domain = call->tf()->domain_cc();
1233     cnt = domain->cnt();
1234 
1235     // Match just the call, nothing else
1236     MachNode *m = match_tree(call);
1237     if (C->failing())  return nullptr;
1238     if( m == nullptr ) { Matcher::soft_match_failure(); return nullptr; }
1239 
1240     // Copy data from the Ideal SafePoint to the machine version
1241     mcall = m->as_MachCall();
1242 
1243     mcall->set_tf(                  call->tf());
1244     mcall->set_entry_point(         call->entry_point());
1245     mcall->set_cnt(                 call->cnt());
1246     mcall->set_guaranteed_safepoint(call->guaranteed_safepoint());
1247 
1248     if( mcall->is_MachCallJava() ) {
1249       MachCallJavaNode *mcall_java  = mcall->as_MachCallJava();
1250       const CallJavaNode *call_java =  call->as_CallJava();
1251       assert(call_java->validate_symbolic_info(), "inconsistent info");
1252       method = call_java->method();

1288   for (uint i = 0; i < cnt; i++) {
1289     ::new (msfpt->_in_rms + i) RegMask(C->comp_arena());
1290   }
1291 
1292   // Do all the pre-defined non-Empty register masks
1293   msfpt->_in_rms[TypeFunc::ReturnAdr].assignFrom(_return_addr_mask);
1294   msfpt->_in_rms[TypeFunc::FramePtr ].assignFrom(c_frame_ptr_mask);
1295 
1296   // Place first outgoing argument can possibly be put.
1297   OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
1298   assert( is_even(begin_out_arg_area), "" );
1299   // Compute max outgoing register number per call site.
1300   OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
1301   // Calls to C may hammer extra stack slots above and beyond any arguments.
1302   // These are usually backing store for register arguments for varargs.
1303   if( call != nullptr && call->is_CallRuntime() )
1304     out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
1305 
1306 
1307   // Do the normal argument list (parameters) register masks
1308   // Null entry point is a special cast where the target of the call
1309   // is in a register.
1310   int adj = (call != nullptr && call->entry_point() == nullptr) ? 1 : 0;
1311   int argcnt = cnt - TypeFunc::Parms - adj;
1312   if( argcnt > 0 ) {          // Skip it all if we have no args
1313     BasicType *sig_bt  = NEW_RESOURCE_ARRAY( BasicType, argcnt );
1314     VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
1315     int i;
1316     for( i = 0; i < argcnt; i++ ) {
1317       sig_bt[i] = domain->field_at(i+TypeFunc::Parms+adj)->basic_type();
1318     }
1319     // V-call to pick proper calling convention
1320     call->calling_convention( sig_bt, parm_regs, argcnt );
1321 
1322 #ifdef ASSERT
1323     // Sanity check users' calling convention.  Really handy during
1324     // the initial porting effort.  Fairly expensive otherwise.
1325     { for (int i = 0; i<argcnt; i++) {
1326       if( !parm_regs[i].first()->is_valid() &&
1327           !parm_regs[i].second()->is_valid() ) continue;
1328       VMReg reg1 = parm_regs[i].first();
1329       VMReg reg2 = parm_regs[i].second();
1330       for (int j = 0; j < i; j++) {
1331         if( !parm_regs[j].first()->is_valid() &&
1332             !parm_regs[j].second()->is_valid() ) continue;
1333         VMReg reg3 = parm_regs[j].first();
1334         VMReg reg4 = parm_regs[j].second();
1335         if( !reg1->is_valid() ) {
1336           assert( !reg2->is_valid(), "valid halvsies" );
1337         } else if( !reg3->is_valid() ) {
1338           assert( !reg4->is_valid(), "valid halvsies" );
1339         } else {
1340           assert( reg1 != reg2, "calling conv. must produce distinct regs");
1341           assert( reg1 != reg3, "calling conv. must produce distinct regs");
1342           assert( reg1 != reg4, "calling conv. must produce distinct regs");
1343           assert( reg2 != reg3, "calling conv. must produce distinct regs");
1344           assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
1345           assert( reg3 != reg4, "calling conv. must produce distinct regs");
1346         }
1347       }
1348     }
1349     }
1350 #endif
1351 
1352     // Visit each argument.  Compute its outgoing register mask.
1353     // Return results now can have 2 bits returned.
1354     // Compute max over all outgoing arguments both per call-site
1355     // and over the entire method.
1356     for( i = 0; i < argcnt; i++ ) {
1357       // Address of incoming argument mask to fill in
1358       RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms+adj];
1359       VMReg first = parm_regs[i].first();
1360       VMReg second = parm_regs[i].second();
1361       if(!first->is_valid() &&
1362          !second->is_valid()) {
1363         continue;               // Avoid Halves
1364       }
1365       // Handle case where arguments are in vector registers.
1366       if(call->in(TypeFunc::Parms + i)->bottom_type()->isa_vect()) {
1367         OptoReg::Name reg_fst = OptoReg::as_OptoReg(first);
1368         OptoReg::Name reg_snd = OptoReg::as_OptoReg(second);
1369         assert (reg_fst <= reg_snd, "fst=%d snd=%d", reg_fst, reg_snd);
1370         for (OptoReg::Name r = reg_fst; r <= reg_snd; r++) {
1371           rm->insert(r);
1372         }
1373       }
1374       // Grab first register, adjust stack slots and insert in mask.
1375       OptoReg::Name reg1 = warp_outgoing_stk_arg(first, begin_out_arg_area, out_arg_limit_per_call );
1376       if (OptoReg::is_valid(reg1)) {
1377         rm->insert( reg1 );
1378       }
1379       // Grab second register (if any), adjust stack slots and insert in mask.
1380       OptoReg::Name reg2 = warp_outgoing_stk_arg(second, begin_out_arg_area, out_arg_limit_per_call );
1381       if (OptoReg::is_valid(reg2)) {
1382         rm->insert( reg2 );
1383       }
1384     } // End of for all arguments
1385   }
1386 
1387   // Compute the max stack slot killed by any call.  These will not be
1388   // available for debug info, and will be used to adjust FIRST_STACK_mask
1389   // after all call sites have been visited.
1390   if( _out_arg_limit < out_arg_limit_per_call)
1391     _out_arg_limit = out_arg_limit_per_call;
1392 
1393   if (mcall) {
1394     // Kill the outgoing argument area, including any non-argument holes and
1395     // any legacy C-killed slots.  Use Fat-Projections to do the killing.
1396     // Since the max-per-method covers the max-per-call-site and debug info
1397     // is excluded on the max-per-method basis, debug info cannot land in
1398     // this killed area.
1399     uint r_cnt = mcall->tf()->range_sig()->cnt();
1400     MachProjNode *proj = new MachProjNode( mcall, r_cnt+10000, RegMask::EMPTY, MachProjNode::fat_proj );
1401     for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++) {
1402       proj->_rout.insert(OptoReg::Name(i));
1403     }
1404     if (!proj->_rout.is_empty()) {
1405       push_projection(proj);
1406     }
1407   }
1408   // Transfer the safepoint information from the call to the mcall
1409   // Move the JVMState list
1410   msfpt->set_jvms(sfpt->jvms());
1411   for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
1412     jvms->set_map(sfpt);
1413   }
1414 
1415   // Debug inputs begin just after the last incoming parameter
1416   assert((mcall == nullptr) || (mcall->jvms() == nullptr) ||
1417          (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain_cc()->cnt()), "");
1418 
1419   // Add additional edges.
1420   if (msfpt->mach_constant_base_node_input() != (uint)-1 && !msfpt->is_MachCallLeaf()) {
1421     // For these calls we can not add MachConstantBase in expand(), as the
1422     // ins are not complete then.
1423     msfpt->ins_req(msfpt->mach_constant_base_node_input(), C->mach_constant_base_node());
1424     if (msfpt->jvms() &&
1425         msfpt->mach_constant_base_node_input() <= msfpt->jvms()->debug_start() + msfpt->_jvmadj) {
1426       // We added an edge before jvms, so we must adapt the position of the ins.
1427       msfpt->jvms()->adapt_position(+1);
1428     }
1429   }
1430 
1431   // Registers killed by the call are set in the local scheduling pass
1432   // of Global Code Motion.
1433   return msfpt;
1434 }
1435 
1436 //---------------------------match_tree----------------------------------------
1437 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce.  Used as part

2086         set_shared(n);       // Flag as shared and
2087         if (n->is_DecodeNarrowPtr()) {
2088           // Oop field/array element loads must be shared but since
2089           // they are shared through a DecodeN they may appear to have
2090           // a single use so force sharing here.
2091           set_shared(n->in(1));
2092         }
2093         mstack.pop();        // remove node from stack
2094         continue;
2095       }
2096       nstate = Visit; // Not already visited; so visit now
2097     }
2098     if (nstate == Visit) {
2099       mstack.set_state(Post_Visit);
2100       set_visited(n);   // Flag as visited now
2101       bool mem_op = false;
2102       int mem_addr_idx = MemNode::Address;
2103       if (find_shared_visit(mstack, n, nop, mem_op, mem_addr_idx)) {
2104         continue;
2105       }
2106       for (int i = n->len() - 1; i >= 0; --i) { // For my children
2107         Node* m = n->in(i); // Get ith input
2108         if (m == nullptr) {
2109           continue;  // Ignore nulls
2110         }
2111         if (clone_node(n, m, mstack)) {
2112           continue;
2113         }
2114 
2115         // Clone addressing expressions as they are "free" in memory access instructions
2116         if (mem_op && i == mem_addr_idx && m->is_AddP() &&
2117             // When there are other uses besides address expressions
2118             // put it on stack and mark as shared.
2119             !is_visited(m)) {
2120           // Some inputs for address expression are not put on stack
2121           // to avoid marking them as shared and forcing them into register
2122           // if they are used only in address expressions.
2123           // But they should be marked as shared if there are other uses
2124           // besides address expressions.
2125 
2126           if (pd_clone_address_expressions(m->as_AddP(), mstack, address_visited)) {

2397     case Op_FmaHF:
2398     case Op_FmaVD:
2399     case Op_FmaVF:
2400     case Op_FmaVHF: {
2401       // Restructure into a binary tree for Matching.
2402       Node* pair = new BinaryNode(n->in(1), n->in(2));
2403       n->set_req(2, pair);
2404       n->set_req(1, n->in(3));
2405       n->del_req(3);
2406       break;
2407     }
2408     case Op_MulAddS2I: {
2409       Node* pair1 = new BinaryNode(n->in(1), n->in(2));
2410       Node* pair2 = new BinaryNode(n->in(3), n->in(4));
2411       n->set_req(1, pair1);
2412       n->set_req(2, pair2);
2413       n->del_req(4);
2414       n->del_req(3);
2415       break;
2416     }
2417     case Op_ClearArray: {
2418       Node* pair = new BinaryNode(n->in(2), n->in(3));
2419       n->set_req(2, pair);
2420       n->set_req(3, n->in(4));
2421       n->del_req(4);
2422       break;
2423     }
2424     case Op_VectorCmpMasked:
2425     case Op_CopySignD:
2426     case Op_SignumVF:
2427     case Op_SignumVD:
2428     case Op_SignumF:
2429     case Op_SignumD: {
2430       Node* pair = new BinaryNode(n->in(2), n->in(3));
2431       n->set_req(2, pair);
2432       n->del_req(3);
2433       break;
2434     }
2435     case Op_VectorBlend:
2436     case Op_VectorInsert: {
2437       Node* pair = new BinaryNode(n->in(1), n->in(2));
2438       n->set_req(1, pair);
2439       n->set_req(2, n->in(3));
2440       n->del_req(3);
2441       break;
2442     }
2443     case Op_LoadVectorGatherMasked: // fall-through

2453       n->del_req(MemNode::ValueIn+2);
2454       pair = new BinaryNode(n->in(MemNode::ValueIn), n->in(MemNode::ValueIn+1));
2455       n->set_req(MemNode::ValueIn, pair);
2456       n->del_req(MemNode::ValueIn+1);
2457       break;
2458     }
2459     case Op_VectorMaskCmp: {
2460       n->set_req(1, new BinaryNode(n->in(1), n->in(2)));
2461       n->set_req(2, n->in(3));
2462       n->del_req(3);
2463       break;
2464     }
2465     case Op_PartialSubtypeCheck: {
2466       if (UseSecondarySupersTable && n->in(2)->is_Con()) {
2467         // PartialSubtypeCheck uses both constant and register operands for superclass input.
2468         n->set_req(2, new BinaryNode(n->in(2), n->in(2)));
2469         break;
2470       }
2471       break;
2472     }
2473     case Op_StoreLSpecial: {
2474       if (n->req() > (MemNode::ValueIn + 1) && n->in(MemNode::ValueIn + 1) != nullptr) {
2475         Node* pair = new BinaryNode(n->in(MemNode::ValueIn), n->in(MemNode::ValueIn + 1));
2476         n->set_req(MemNode::ValueIn, pair);
2477         n->del_req(MemNode::ValueIn + 1);
2478       }
2479       break;
2480     }
2481     default:
2482       break;
2483   }
2484 }
2485 
2486 #ifndef PRODUCT
2487 void Matcher::record_new2old(Node* newn, Node* old) {
2488   _new2old_map.map(newn->_idx, old);
2489   if (!_reused.test_set(old->_igv_idx)) {
2490     // Reuse the Ideal-level IGV identifier so that the node can be tracked
2491     // across matching. If there are multiple machine nodes expanded from the
2492     // same Ideal node, only one will reuse its IGV identifier.
2493     newn->_igv_idx = old->_igv_idx;
2494   }
2495 }
2496 
2497 // machine-independent root to machine-dependent root
2498 void Matcher::dump_old2new_map() {
2499   _old2new_map.dump();
2500 }
< prev index next >