13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "precompiled.hpp"
26 #include "compiler/compileLog.hpp"
27 #include "interpreter/linkResolver.hpp"
28 #include "memory/resourceArea.hpp"
29 #include "oops/method.hpp"
30 #include "opto/addnode.hpp"
31 #include "opto/c2compiler.hpp"
32 #include "opto/castnode.hpp"
33 #include "opto/idealGraphPrinter.hpp"
34 #include "opto/locknode.hpp"
35 #include "opto/memnode.hpp"
36 #include "opto/opaquenode.hpp"
37 #include "opto/parse.hpp"
38 #include "opto/rootnode.hpp"
39 #include "opto/runtime.hpp"
40 #include "opto/type.hpp"
41 #include "runtime/handles.inline.hpp"
42 #include "runtime/safepointMechanism.hpp"
43 #include "runtime/sharedRuntime.hpp"
44 #include "utilities/bitMap.inline.hpp"
45 #include "utilities/copy.hpp"
46
47 // Static array so we can figure out which bytecodes stop us from compiling
48 // the most. Some of the non-static variables are needed in bytecodeInfo.cpp
49 // and eventually should be encapsulated in a proper class (gri 8/18/98).
50
51 #ifndef PRODUCT
52 int nodes_created = 0;
53 int methods_parsed = 0;
85 }
86 if (all_null_checks_found) {
87 tty->print_cr("%d made implicit (%2d%%)", implicit_null_checks,
88 (100*implicit_null_checks)/all_null_checks_found);
89 }
90 if (SharedRuntime::_implicit_null_throws) {
91 tty->print_cr("%d implicit null exceptions at runtime",
92 SharedRuntime::_implicit_null_throws);
93 }
94
95 if (PrintParseStatistics && BytecodeParseHistogram::initialized()) {
96 BytecodeParseHistogram::print();
97 }
98 }
99 #endif
100
101 //------------------------------ON STACK REPLACEMENT---------------------------
102
103 // Construct a node which can be used to get incoming state for
104 // on stack replacement.
105 Node *Parse::fetch_interpreter_state(int index,
106 BasicType bt,
107 Node *local_addrs,
108 Node *local_addrs_base) {
109 Node *mem = memory(Compile::AliasIdxRaw);
110 Node *adr = basic_plus_adr( local_addrs_base, local_addrs, -index*wordSize );
111 Node *ctl = control();
112
113 // Very similar to LoadNode::make, except we handle un-aligned longs and
114 // doubles on Sparc. Intel can handle them just fine directly.
115 Node *l = NULL;
116 switch (bt) { // Signature is flattened
117 case T_INT: l = new LoadINode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInt::INT, MemNode::unordered); break;
118 case T_FLOAT: l = new LoadFNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::FLOAT, MemNode::unordered); break;
119 case T_ADDRESS: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, MemNode::unordered); break;
120 case T_OBJECT: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInstPtr::BOTTOM, MemNode::unordered); break;
121 case T_LONG:
122 case T_DOUBLE: {
123 // Since arguments are in reverse order, the argument address 'adr'
124 // refers to the back half of the long/double. Recompute adr.
125 adr = basic_plus_adr(local_addrs_base, local_addrs, -(index+1)*wordSize);
126 if (Matcher::misaligned_doubles_ok) {
127 l = (bt == T_DOUBLE)
128 ? (Node*)new LoadDNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::DOUBLE, MemNode::unordered)
129 : (Node*)new LoadLNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeLong::LONG, MemNode::unordered);
130 } else {
131 l = (bt == T_DOUBLE)
132 ? (Node*)new LoadD_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered)
133 : (Node*)new LoadL_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered);
134 }
135 break;
136 }
137 default: ShouldNotReachHere();
138 }
139 return _gvn.transform(l);
140 }
141
142 // Helper routine to prevent the interpreter from handing
143 // unexpected typestate to an OSR method.
144 // The Node l is a value newly dug out of the interpreter frame.
145 // The type is the type predicted by ciTypeFlow. Note that it is
146 // not a general type, but can only come from Type::get_typeflow_type.
147 // The safepoint is a map which will feed an uncommon trap.
148 Node* Parse::check_interpreter_type(Node* l, const Type* type,
149 SafePointNode* &bad_type_exit) {
150
151 const TypeOopPtr* tp = type->isa_oopptr();
152
153 // TypeFlow may assert null-ness if a type appears unloaded.
154 if (type == TypePtr::NULL_PTR ||
155 (tp != NULL && !tp->klass()->is_loaded())) {
156 // Value must be null, not a real oop.
157 Node* chk = _gvn.transform( new CmpPNode(l, null()) );
158 Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
159 IfNode* iff = create_and_map_if(control(), tst, PROB_MAX, COUNT_UNKNOWN);
160 set_control(_gvn.transform( new IfTrueNode(iff) ));
161 Node* bad_type = _gvn.transform( new IfFalseNode(iff) );
162 bad_type_exit->control()->add_req(bad_type);
163 l = null();
164 }
165
166 // Typeflow can also cut off paths from the CFG, based on
167 // types which appear unloaded, or call sites which appear unlinked.
168 // When paths are cut off, values at later merge points can rise
169 // toward more specific classes. Make sure these specific classes
170 // are still in effect.
171 if (tp != NULL && tp->klass() != C->env()->Object_klass()) {
172 // TypeFlow asserted a specific object type. Value must have that type.
173 Node* bad_type_ctrl = NULL;
174 l = gen_checkcast(l, makecon(TypeKlassPtr::make(tp->klass())), &bad_type_ctrl);
175 bad_type_exit->control()->add_req(bad_type_ctrl);
176 }
177
178 BasicType bt_l = _gvn.type(l)->basic_type();
179 BasicType bt_t = type->basic_type();
180 assert(_gvn.type(l)->higher_equal(type), "must constrain OSR typestate");
181 return l;
182 }
183
184 // Helper routine which sets up elements of the initial parser map when
185 // performing a parse for on stack replacement. Add values into map.
186 // The only parameter contains the address of a interpreter arguments.
187 void Parse::load_interpreter_state(Node* osr_buf) {
188 int index;
189 int max_locals = jvms()->loc_size();
190 int max_stack = jvms()->stk_size();
191
192
193 // Mismatch between method and jvms can occur since map briefly held
194 // an OSR entry state (which takes up one RawPtr word).
195 assert(max_locals == method()->max_locals(), "sanity");
196 assert(max_stack >= method()->max_stack(), "sanity");
197 assert((int)jvms()->endoff() == TypeFunc::Parms + max_locals + max_stack, "sanity");
198 assert((int)jvms()->endoff() == (int)map()->req(), "sanity");
199
200 // Find the start block.
201 Block* osr_block = start_block();
202 assert(osr_block->start() == osr_bci(), "sanity");
203
204 // Set initial BCI.
205 set_parse_bci(osr_block->start());
206
207 // Set initial stack depth.
208 set_sp(osr_block->start_sp());
209
210 // Check bailouts. We currently do not perform on stack replacement
211 // of loops in catch blocks or loops which branch with a non-empty stack.
212 if (sp() != 0) {
213 C->record_method_not_compilable("OSR starts with non-empty stack");
214 return;
215 }
216 // Do not OSR inside finally clauses:
217 if (osr_block->has_trap_at(osr_block->start())) {
218 C->record_method_not_compilable("OSR starts with an immediate trap");
219 return;
220 }
221
222 // Commute monitors from interpreter frame to compiler frame.
223 assert(jvms()->monitor_depth() == 0, "should be no active locks at beginning of osr");
224 int mcnt = osr_block->flow()->monitor_count();
225 Node *monitors_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals+mcnt*2-1)*wordSize);
226 for (index = 0; index < mcnt; index++) {
227 // Make a BoxLockNode for the monitor.
228 Node *box = _gvn.transform(new BoxLockNode(next_monitor()));
229
230
231 // Displaced headers and locked objects are interleaved in the
232 // temp OSR buffer. We only copy the locked objects out here.
233 // Fetch the locked object from the OSR temp buffer and copy to our fastlock node.
234 Node *lock_object = fetch_interpreter_state(index*2, T_OBJECT, monitors_addr, osr_buf);
235 // Try and copy the displaced header to the BoxNode
236 Node *displaced_hdr = fetch_interpreter_state((index*2) + 1, T_ADDRESS, monitors_addr, osr_buf);
237
238
239 store_to_memory(control(), box, displaced_hdr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered);
240
241 // Build a bogus FastLockNode (no code will be generated) and push the
242 // monitor into our debug info.
243 const FastLockNode *flock = _gvn.transform(new FastLockNode( 0, lock_object, box ))->as_FastLock();
244 map()->push_monitor(flock);
245
246 // If the lock is our method synchronization lock, tuck it away in
247 // _sync_lock for return and rethrow exit paths.
248 if (index == 0 && method()->is_synchronized()) {
249 _synch_lock = flock;
250 }
251 }
252
253 // Use the raw liveness computation to make sure that unexpected
254 // values don't propagate into the OSR frame.
255 MethodLivenessResult live_locals = method()->liveness_at_bci(osr_bci());
256 if (!live_locals.is_valid()) {
257 // Degenerate or breakpointed method.
284 if (C->log() != NULL) {
285 C->log()->elem("OSR_mismatch local_index='%d'",index);
286 }
287 set_local(index, null());
288 // and ignore it for the loads
289 continue;
290 }
291 }
292
293 // Filter out TOP, HALF, and BOTTOM. (Cf. ensure_phi.)
294 if (type == Type::TOP || type == Type::HALF) {
295 continue;
296 }
297 // If the type falls to bottom, then this must be a local that
298 // is mixing ints and oops or some such. Forcing it to top
299 // makes it go dead.
300 if (type == Type::BOTTOM) {
301 continue;
302 }
303 // Construct code to access the appropriate local.
304 BasicType bt = type->basic_type();
305 if (type == TypePtr::NULL_PTR) {
306 // Ptr types are mixed together with T_ADDRESS but NULL is
307 // really for T_OBJECT types so correct it.
308 bt = T_OBJECT;
309 }
310 Node *value = fetch_interpreter_state(index, bt, locals_addr, osr_buf);
311 set_local(index, value);
312 }
313
314 // Extract the needed stack entries from the interpreter frame.
315 for (index = 0; index < sp(); index++) {
316 const Type *type = osr_block->stack_type_at(index);
317 if (type != Type::TOP) {
318 // Currently the compiler bails out when attempting to on stack replace
319 // at a bci with a non-empty stack. We should not reach here.
320 ShouldNotReachHere();
321 }
322 }
323
324 // End the OSR migration
325 make_runtime_call(RC_LEAF, OptoRuntime::osr_end_Type(),
326 CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
327 "OSR_migration_end", TypeRawPtr::BOTTOM,
328 osr_buf);
329
330 // Now that the interpreter state is loaded, make sure it will match
578 }
579 }
580
581 if (depth() == 1 && !failing()) {
582 if (C->clinit_barrier_on_entry()) {
583 // Add check to deoptimize the nmethod once the holder class is fully initialized
584 clinit_deopt();
585 }
586
587 // Add check to deoptimize the nmethod if RTM state was changed
588 rtm_deopt();
589 }
590
591 // Check for bailouts during method entry or RTM state check setup.
592 if (failing()) {
593 if (log) log->done("parse");
594 C->set_default_node_notes(caller_nn);
595 return;
596 }
597
598 entry_map = map(); // capture any changes performed by method setup code
599 assert(jvms()->endoff() == map()->req(), "map matches JVMS layout");
600
601 // We begin parsing as if we have just encountered a jump to the
602 // method entry.
603 Block* entry_block = start_block();
604 assert(entry_block->start() == (is_osr_parse() ? osr_bci() : 0), "");
605 set_map_clone(entry_map);
606 merge_common(entry_block, entry_block->next_path_num());
607
608 #ifndef PRODUCT
609 BytecodeParseHistogram *parse_histogram_obj = new (C->env()->arena()) BytecodeParseHistogram(this, C);
610 set_parse_histogram( parse_histogram_obj );
611 #endif
612
613 // Parse all the basic blocks.
614 do_all_blocks();
615
616 C->set_default_node_notes(caller_nn);
617
760 void Parse::build_exits() {
761 // make a clone of caller to prevent sharing of side-effects
762 _exits.set_map(_exits.clone_map());
763 _exits.clean_stack(_exits.sp());
764 _exits.sync_jvms();
765
766 RegionNode* region = new RegionNode(1);
767 record_for_igvn(region);
768 gvn().set_type_bottom(region);
769 _exits.set_control(region);
770
771 // Note: iophi and memphi are not transformed until do_exits.
772 Node* iophi = new PhiNode(region, Type::ABIO);
773 Node* memphi = new PhiNode(region, Type::MEMORY, TypePtr::BOTTOM);
774 gvn().set_type_bottom(iophi);
775 gvn().set_type_bottom(memphi);
776 _exits.set_i_o(iophi);
777 _exits.set_all_memory(memphi);
778
779 // Add a return value to the exit state. (Do not push it yet.)
780 if (tf()->range()->cnt() > TypeFunc::Parms) {
781 const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
782 if (ret_type->isa_int()) {
783 BasicType ret_bt = method()->return_type()->basic_type();
784 if (ret_bt == T_BOOLEAN ||
785 ret_bt == T_CHAR ||
786 ret_bt == T_BYTE ||
787 ret_bt == T_SHORT) {
788 ret_type = TypeInt::INT;
789 }
790 }
791
792 // Don't "bind" an unloaded return klass to the ret_phi. If the klass
793 // becomes loaded during the subsequent parsing, the loaded and unloaded
794 // types will not join when we transform and push in do_exits().
795 const TypeOopPtr* ret_oop_type = ret_type->isa_oopptr();
796 if (ret_oop_type && !ret_oop_type->klass()->is_loaded()) {
797 ret_type = TypeOopPtr::BOTTOM;
798 }
799 int ret_size = type2size[ret_type->basic_type()];
800 Node* ret_phi = new PhiNode(region, ret_type);
801 gvn().set_type_bottom(ret_phi);
802 _exits.ensure_stack(ret_size);
803 assert((int)(tf()->range()->cnt() - TypeFunc::Parms) == ret_size, "good tf range");
804 assert(method()->return_type()->size() == ret_size, "tf agrees w/ method");
805 _exits.set_argument(0, ret_phi); // here is where the parser finds it
806 // Note: ret_phi is not yet pushed, until do_exits.
807 }
808 }
809
810
811 //----------------------------build_start_state-------------------------------
812 // Construct a state which contains only the incoming arguments from an
813 // unknown caller. The method & bci will be NULL & InvocationEntryBci.
814 JVMState* Compile::build_start_state(StartNode* start, const TypeFunc* tf) {
815 int arg_size = tf->domain()->cnt();
816 int max_size = MAX2(arg_size, (int)tf->range()->cnt());
817 JVMState* jvms = new (this) JVMState(max_size - TypeFunc::Parms);
818 SafePointNode* map = new SafePointNode(max_size, jvms);
819 record_for_igvn(map);
820 assert(arg_size == TypeFunc::Parms + (is_osr_compilation() ? 1 : method()->arg_size()), "correct arg_size");
821 Node_Notes* old_nn = default_node_notes();
822 if (old_nn != NULL && has_method()) {
823 Node_Notes* entry_nn = old_nn->clone(this);
824 JVMState* entry_jvms = new(this) JVMState(method(), old_nn->jvms());
825 entry_jvms->set_offsets(0);
826 entry_jvms->set_bci(entry_bci());
827 entry_nn->set_jvms(entry_jvms);
828 set_default_node_notes(entry_nn);
829 }
830 uint i;
831 for (i = 0; i < (uint)arg_size; i++) {
832 Node* parm = initial_gvn()->transform(new ParmNode(start, i));
833 map->init_req(i, parm);
834 // Record all these guys for later GVN.
835 record_for_igvn(parm);
836 }
837 for (; i < map->req(); i++) {
838 map->init_req(i, top());
839 }
840 assert(jvms->argoff() == TypeFunc::Parms, "parser gets arguments here");
841 set_default_node_notes(old_nn);
842 jvms->set_map(map);
843 return jvms;
844 }
845
846 //-----------------------------make_node_notes---------------------------------
847 Node_Notes* Parse::make_node_notes(Node_Notes* caller_nn) {
848 if (caller_nn == NULL) return NULL;
849 Node_Notes* nn = caller_nn->clone(C);
850 JVMState* caller_jvms = nn->jvms();
851 JVMState* jvms = new (C) JVMState(method(), caller_jvms);
852 jvms->set_offsets(0);
853 jvms->set_bci(_entry_bci);
854 nn->set_jvms(jvms);
855 return nn;
856 }
857
858
859 //--------------------------return_values--------------------------------------
860 void Compile::return_values(JVMState* jvms) {
861 GraphKit kit(jvms);
862 Node* ret = new ReturnNode(TypeFunc::Parms,
863 kit.control(),
864 kit.i_o(),
865 kit.reset_memory(),
866 kit.frameptr(),
867 kit.returnadr());
868 // Add zero or 1 return values
869 int ret_size = tf()->range()->cnt() - TypeFunc::Parms;
870 if (ret_size > 0) {
871 kit.inc_sp(-ret_size); // pop the return value(s)
872 kit.sync_jvms();
873 ret->add_req(kit.argument(0));
874 // Note: The second dummy edge is not needed by a ReturnNode.
875 }
876 // bind it to root
877 root()->add_req(ret);
878 record_for_igvn(ret);
879 initial_gvn()->transform_no_reclaim(ret);
880 }
881
882 //------------------------rethrow_exceptions-----------------------------------
883 // Bind all exception states in the list into a single RethrowNode.
884 void Compile::rethrow_exceptions(JVMState* jvms) {
885 GraphKit kit(jvms);
886 if (!kit.has_exceptions()) return; // nothing to generate
887 // Load my combined exception state into the kit, with all phis transformed:
888 SafePointNode* ex_map = kit.combine_and_pop_all_exception_states();
889 Node* ex_oop = kit.use_exception_state(ex_map);
890 RethrowNode* exit = new RethrowNode(kit.control(),
891 kit.i_o(), kit.reset_memory(),
892 kit.frameptr(), kit.returnadr(),
893 // like a return but with exception input
894 ex_oop);
978 // to complete, we force all writes to complete.
979 //
980 // 2. Experimental VM option is used to force the barrier if any field
981 // was written out in the constructor.
982 //
983 // 3. On processors which are not CPU_MULTI_COPY_ATOMIC (e.g. PPC64),
984 // support_IRIW_for_not_multiple_copy_atomic_cpu selects that
985 // MemBarVolatile is used before volatile load instead of after volatile
986 // store, so there's no barrier after the store.
987 // We want to guarantee the same behavior as on platforms with total store
988 // order, although this is not required by the Java memory model.
989 // In this case, we want to enforce visibility of volatile field
990 // initializations which are performed in constructors.
991 // So as with finals, we add a barrier here.
992 //
993 // "All bets are off" unless the first publication occurs after a
994 // normal return from the constructor. We do not attempt to detect
995 // such unusual early publications. But no barrier is needed on
996 // exceptional returns, since they cannot publish normally.
997 //
998 if (method()->is_initializer() &&
999 (wrote_final() ||
1000 (AlwaysSafeConstructors && wrote_fields()) ||
1001 (support_IRIW_for_not_multiple_copy_atomic_cpu && wrote_volatile()))) {
1002 _exits.insert_mem_bar(Op_MemBarRelease, alloc_with_final());
1003
1004 // If Memory barrier is created for final fields write
1005 // and allocation node does not escape the initialize method,
1006 // then barrier introduced by allocation node can be removed.
1007 if (DoEscapeAnalysis && alloc_with_final()) {
1008 AllocateNode *alloc = AllocateNode::Ideal_allocation(alloc_with_final(), &_gvn);
1009 alloc->compute_MemBar_redundancy(method());
1010 }
1011 if (PrintOpto && (Verbose || WizardMode)) {
1012 method()->print_name();
1013 tty->print_cr(" writes finals and needs a memory barrier");
1014 }
1015 }
1016
1017 // Any method can write a @Stable field; insert memory barriers
1018 // after those also. Can't bind predecessor allocation node (if any)
1019 // with barrier because allocation doesn't always dominate
1020 // MemBarRelease.
1021 if (wrote_stable()) {
1022 _exits.insert_mem_bar(Op_MemBarRelease);
1023 if (PrintOpto && (Verbose || WizardMode)) {
1024 method()->print_name();
1025 tty->print_cr(" writes @Stable and needs a memory barrier");
1026 }
1027 }
1028
1029 for (MergeMemStream mms(_exits.merged_memory()); mms.next_non_empty(); ) {
1030 // transform each slice of the original memphi:
1031 mms.set_memory(_gvn.transform(mms.memory()));
1032 }
1033 // Clean up input MergeMems created by transforming the slices
1034 _gvn.transform(_exits.merged_memory());
1035
1036 if (tf()->range()->cnt() > TypeFunc::Parms) {
1037 const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
1038 Node* ret_phi = _gvn.transform( _exits.argument(0) );
1039 if (!_exits.control()->is_top() && _gvn.type(ret_phi)->empty()) {
1040 // If the type we set for the ret_phi in build_exits() is too optimistic and
1041 // the ret_phi is top now, there's an extremely small chance that it may be due to class
1042 // loading. It could also be due to an error, so mark this method as not compilable because
1043 // otherwise this could lead to an infinite compile loop.
1044 // In any case, this code path is rarely (and never in my testing) reached.
1045 C->record_method_not_compilable("Can't determine return type.");
1046 return;
1047 }
1048 if (ret_type->isa_int()) {
1049 BasicType ret_bt = method()->return_type()->basic_type();
1050 ret_phi = mask_int_value(ret_phi, ret_bt, &_gvn);
1051 }
1052 _exits.push_node(ret_type->basic_type(), ret_phi);
1053 }
1054
1055 // Note: Logic for creating and optimizing the ReturnNode is in Compile.
1056
1057 // Unlock along the exceptional paths.
1110 }
1111
1112 //-----------------------------create_entry_map-------------------------------
1113 // Initialize our parser map to contain the types at method entry.
1114 // For OSR, the map contains a single RawPtr parameter.
1115 // Initial monitor locking for sync. methods is performed by do_method_entry.
1116 SafePointNode* Parse::create_entry_map() {
1117 // Check for really stupid bail-out cases.
1118 uint len = TypeFunc::Parms + method()->max_locals() + method()->max_stack();
1119 if (len >= 32760) {
1120 C->record_method_not_compilable("too many local variables");
1121 return NULL;
1122 }
1123
1124 // clear current replaced nodes that are of no use from here on (map was cloned in build_exits).
1125 _caller->map()->delete_replaced_nodes();
1126
1127 // If this is an inlined method, we may have to do a receiver null check.
1128 if (_caller->has_method() && is_normal_parse() && !method()->is_static()) {
1129 GraphKit kit(_caller);
1130 kit.null_check_receiver_before_call(method());
1131 _caller = kit.transfer_exceptions_into_jvms();
1132 if (kit.stopped()) {
1133 _exits.add_exception_states_from(_caller);
1134 _exits.set_jvms(_caller);
1135 return NULL;
1136 }
1137 }
1138
1139 assert(method() != NULL, "parser must have a method");
1140
1141 // Create an initial safepoint to hold JVM state during parsing
1142 JVMState* jvms = new (C) JVMState(method(), _caller->has_method() ? _caller : NULL);
1143 set_map(new SafePointNode(len, jvms));
1144 jvms->set_map(map());
1145 record_for_igvn(map());
1146 assert(jvms->endoff() == len, "correct jvms sizing");
1147
1148 SafePointNode* inmap = _caller->map();
1149 assert(inmap != NULL, "must have inmap");
1150 // In case of null check on receiver above
1151 map()->transfer_replaced_nodes_from(inmap, _new_idx);
1152
1153 uint i;
1154
1155 // Pass thru the predefined input parameters.
1156 for (i = 0; i < TypeFunc::Parms; i++) {
1157 map()->init_req(i, inmap->in(i));
1158 }
1159
1160 if (depth() == 1) {
1161 assert(map()->memory()->Opcode() == Op_Parm, "");
1162 // Insert the memory aliasing node
1163 set_all_memory(reset_memory());
1164 }
1165 assert(merged_memory(), "");
1166
1167 // Now add the locals which are initially bound to arguments:
1168 uint arg_size = tf()->domain()->cnt();
1169 ensure_stack(arg_size - TypeFunc::Parms); // OSR methods have funny args
1170 for (i = TypeFunc::Parms; i < arg_size; i++) {
1171 map()->init_req(i, inmap->argument(_caller, i - TypeFunc::Parms));
1172 }
1173
1174 // Clear out the rest of the map (locals and stack)
1175 for (i = arg_size; i < len; i++) {
1176 map()->init_req(i, top());
1177 }
1178
1179 SafePointNode* entry_map = stop();
1180 return entry_map;
1181 }
1182
1183 //-----------------------------do_method_entry--------------------------------
1184 // Emit any code needed in the pseudo-block before BCI zero.
1185 // The main thing to do is lock the receiver of a synchronized method.
1186 void Parse::do_method_entry() {
1187 set_parse_bci(InvocationEntryBci); // Pseudo-BCP
1188 set_sp(0); // Java Stack Pointer
1222
1223 // If the method is synchronized, we need to construct a lock node, attach
1224 // it to the Start node, and pin it there.
1225 if (method()->is_synchronized()) {
1226 // Insert a FastLockNode right after the Start which takes as arguments
1227 // the current thread pointer, the "this" pointer & the address of the
1228 // stack slot pair used for the lock. The "this" pointer is a projection
1229 // off the start node, but the locking spot has to be constructed by
1230 // creating a ConLNode of 0, and boxing it with a BoxLockNode. The BoxLockNode
1231 // becomes the second argument to the FastLockNode call. The
1232 // FastLockNode becomes the new control parent to pin it to the start.
1233
1234 // Setup Object Pointer
1235 Node *lock_obj = NULL;
1236 if (method()->is_static()) {
1237 ciInstance* mirror = _method->holder()->java_mirror();
1238 const TypeInstPtr *t_lock = TypeInstPtr::make(mirror);
1239 lock_obj = makecon(t_lock);
1240 } else { // Else pass the "this" pointer,
1241 lock_obj = local(0); // which is Parm0 from StartNode
1242 }
1243 // Clear out dead values from the debug info.
1244 kill_dead_locals();
1245 // Build the FastLockNode
1246 _synch_lock = shared_lock(lock_obj);
1247 }
1248
1249 // Feed profiling data for parameters to the type system so it can
1250 // propagate it as speculative types
1251 record_profiled_parameters_for_speculation();
1252 }
1253
1254 //------------------------------init_blocks------------------------------------
1255 // Initialize our parser map to contain the types/monitors at method entry.
1256 void Parse::init_blocks() {
1257 // Create the blocks.
1258 _block_count = flow()->block_count();
1259 _blocks = NEW_RESOURCE_ARRAY(Block, _block_count);
1260
1261 // Initialize the structs.
1633 //--------------------handle_missing_successor---------------------------------
1634 void Parse::handle_missing_successor(int target_bci) {
1635 #ifndef PRODUCT
1636 Block* b = block();
1637 int trap_bci = b->flow()->has_trap()? b->flow()->trap_bci(): -1;
1638 tty->print_cr("### Missing successor at bci:%d for block #%d (trap_bci:%d)", target_bci, b->rpo(), trap_bci);
1639 #endif
1640 ShouldNotReachHere();
1641 }
1642
1643 //--------------------------merge_common---------------------------------------
1644 void Parse::merge_common(Parse::Block* target, int pnum) {
1645 if (TraceOptoParse) {
1646 tty->print("Merging state at block #%d bci:%d", target->rpo(), target->start());
1647 }
1648
1649 // Zap extra stack slots to top
1650 assert(sp() == target->start_sp(), "");
1651 clean_stack(sp());
1652
1653 if (!target->is_merged()) { // No prior mapping at this bci
1654 if (TraceOptoParse) { tty->print(" with empty state"); }
1655
1656 // If this path is dead, do not bother capturing it as a merge.
1657 // It is "as if" we had 1 fewer predecessors from the beginning.
1658 if (stopped()) {
1659 if (TraceOptoParse) tty->print_cr(", but path is dead and doesn't count");
1660 return;
1661 }
1662
1663 // Make a region if we know there are multiple or unpredictable inputs.
1664 // (Also, if this is a plain fall-through, we might see another region,
1665 // which must not be allowed into this block's map.)
1666 if (pnum > PhiNode::Input // Known multiple inputs.
1667 || target->is_handler() // These have unpredictable inputs.
1668 || target->is_loop_head() // Known multiple inputs
1669 || control()->is_Region()) { // We must hide this guy.
1670
1671 int current_bci = bci();
1672 set_parse_bci(target->start()); // Set target bci
1686 gvn().set_type(r, Type::CONTROL);
1687 record_for_igvn(r);
1688 // zap all inputs to NULL for debugging (done in Node(uint) constructor)
1689 // for (int j = 1; j < edges+1; j++) { r->init_req(j, NULL); }
1690 r->init_req(pnum, control());
1691 set_control(r);
1692 set_parse_bci(current_bci); // Restore bci
1693 }
1694
1695 // Convert the existing Parser mapping into a mapping at this bci.
1696 store_state_to(target);
1697 assert(target->is_merged(), "do not come here twice");
1698
1699 } else { // Prior mapping at this bci
1700 if (TraceOptoParse) { tty->print(" with previous state"); }
1701 #ifdef ASSERT
1702 if (target->is_SEL_head()) {
1703 target->mark_merged_backedge(block());
1704 }
1705 #endif
1706 // We must not manufacture more phis if the target is already parsed.
1707 bool nophi = target->is_parsed();
1708
1709 SafePointNode* newin = map();// Hang on to incoming mapping
1710 Block* save_block = block(); // Hang on to incoming block;
1711 load_state_from(target); // Get prior mapping
1712
1713 assert(newin->jvms()->locoff() == jvms()->locoff(), "JVMS layouts agree");
1714 assert(newin->jvms()->stkoff() == jvms()->stkoff(), "JVMS layouts agree");
1715 assert(newin->jvms()->monoff() == jvms()->monoff(), "JVMS layouts agree");
1716 assert(newin->jvms()->endoff() == jvms()->endoff(), "JVMS layouts agree");
1717
1718 // Iterate over my current mapping and the old mapping.
1719 // Where different, insert Phi functions.
1720 // Use any existing Phi functions.
1721 assert(control()->is_Region(), "must be merging to a region");
1722 RegionNode* r = control()->as_Region();
1723
1724 // Compute where to merge into
1725 // Merge incoming control path
1726 r->init_req(pnum, newin->control());
1727
1728 if (pnum == 1) { // Last merge for this Region?
1729 if (!block()->flow()->is_irreducible_entry()) {
1730 Node* result = _gvn.transform_no_reclaim(r);
1731 if (r != result && TraceOptoParse) {
1732 tty->print_cr("Block #%d replace %d with %d", block()->rpo(), r->_idx, result->_idx);
1733 }
1734 }
1735 record_for_igvn(r);
1736 }
1737
1738 // Update all the non-control inputs to map:
1739 assert(TypeFunc::Parms == newin->jvms()->locoff(), "parser map should contain only youngest jvms");
1740 bool check_elide_phi = target->is_SEL_backedge(save_block);
1741 for (uint j = 1; j < newin->req(); j++) {
1742 Node* m = map()->in(j); // Current state of target.
1743 Node* n = newin->in(j); // Incoming change to target state.
1744 PhiNode* phi;
1745 if (m->is_Phi() && m->as_Phi()->region() == r)
1746 phi = m->as_Phi();
1747 else
1748 phi = NULL;
1749 if (m != n) { // Different; must merge
1750 switch (j) {
1751 // Frame pointer and Return Address never changes
1752 case TypeFunc::FramePtr:// Drop m, use the original value
1753 case TypeFunc::ReturnAdr:
1754 break;
1755 case TypeFunc::Memory: // Merge inputs to the MergeMem node
1756 assert(phi == NULL, "the merge contains phis, not vice versa");
1757 merge_memory_edges(n->as_MergeMem(), pnum, nophi);
1758 continue;
1759 default: // All normal stuff
1760 if (phi == NULL) {
1761 const JVMState* jvms = map()->jvms();
1762 if (EliminateNestedLocks &&
1763 jvms->is_mon(j) && jvms->is_monitor_box(j)) {
1764 // BoxLock nodes are not commoning.
1765 // Use old BoxLock node as merged box.
1766 assert(newin->jvms()->is_monitor_box(j), "sanity");
1767 // This assert also tests that nodes are BoxLock.
1768 assert(BoxLockNode::same_slot(n, m), "sanity");
1769 C->gvn_replace_by(n, m);
1770 } else if (!check_elide_phi || !target->can_elide_SEL_phi(j)) {
1771 phi = ensure_phi(j, nophi);
1772 }
1773 }
1774 break;
1775 }
1776 }
1777 // At this point, n might be top if:
1778 // - there is no phi (because TypeFlow detected a conflict), or
1779 // - the corresponding control edges is top (a dead incoming path)
1780 // It is a bug if we create a phi which sees a garbage value on a live path.
1781
1782 if (phi != NULL) {
1783 assert(n != top() || r->in(pnum) == top(), "live value must not be garbage");
1784 assert(phi->region() == r, "");
1785 phi->set_req(pnum, n); // Then add 'n' to the merge
1786 if (pnum == PhiNode::Input) {
1787 // Last merge for this Phi.
1788 // So far, Phis have had a reasonable type from ciTypeFlow.
1789 // Now _gvn will join that with the meet of current inputs.
1790 // BOTTOM is never permissible here, 'cause pessimistically
1791 // Phis of pointers cannot lose the basic pointer type.
1792 debug_only(const Type* bt1 = phi->bottom_type());
1793 assert(bt1 != Type::BOTTOM, "should not be building conflict phis");
1794 map()->set_req(j, _gvn.transform_no_reclaim(phi));
1795 debug_only(const Type* bt2 = phi->bottom_type());
1796 assert(bt2->higher_equal_speculative(bt1), "must be consistent with type-flow");
1797 record_for_igvn(phi);
1798 }
1799 }
1800 } // End of for all values to be merged
1801
1802 if (pnum == PhiNode::Input &&
1803 !r->in(0)) { // The occasional useless Region
1804 assert(control() == r, "");
1805 set_control(r->nonnull_req());
1806 }
1807
1808 map()->merge_replaced_nodes_with(newin);
1809
1810 // newin has been subsumed into the lazy merge, and is now dead.
1811 set_block(save_block);
1812
1813 stop(); // done with this guy, for now
1814 }
1815
1816 if (TraceOptoParse) {
1817 tty->print_cr(" on path %d", pnum);
1818 }
1819
1820 // Done with this parser state.
1821 assert(stopped(), "");
1822 }
1823
1935
1936 // Add new path to the region.
1937 uint pnum = r->req();
1938 r->add_req(NULL);
1939
1940 for (uint i = 1; i < map->req(); i++) {
1941 Node* n = map->in(i);
1942 if (i == TypeFunc::Memory) {
1943 // Ensure a phi on all currently known memories.
1944 for (MergeMemStream mms(n->as_MergeMem()); mms.next_non_empty(); ) {
1945 Node* phi = mms.memory();
1946 if (phi->is_Phi() && phi->as_Phi()->region() == r) {
1947 assert(phi->req() == pnum, "must be same size as region");
1948 phi->add_req(NULL);
1949 }
1950 }
1951 } else {
1952 if (n->is_Phi() && n->as_Phi()->region() == r) {
1953 assert(n->req() == pnum, "must be same size as region");
1954 n->add_req(NULL);
1955 }
1956 }
1957 }
1958
1959 return pnum;
1960 }
1961
1962 //------------------------------ensure_phi-------------------------------------
1963 // Turn the idx'th entry of the current map into a Phi
1964 PhiNode *Parse::ensure_phi(int idx, bool nocreate) {
1965 SafePointNode* map = this->map();
1966 Node* region = map->control();
1967 assert(region->is_Region(), "");
1968
1969 Node* o = map->in(idx);
1970 assert(o != NULL, "");
1971
1972 if (o == top()) return NULL; // TOP always merges into TOP
1973
1974 if (o->is_Phi() && o->as_Phi()->region() == region) {
1975 return o->as_Phi();
1976 }
1977
1978 // Now use a Phi here for merging
1979 assert(!nocreate, "Cannot build a phi for a block already parsed.");
1980 const JVMState* jvms = map->jvms();
1981 const Type* t = NULL;
1982 if (jvms->is_loc(idx)) {
1983 t = block()->local_type_at(idx - jvms->locoff());
1984 } else if (jvms->is_stk(idx)) {
1985 t = block()->stack_type_at(idx - jvms->stkoff());
1986 } else if (jvms->is_mon(idx)) {
1987 assert(!jvms->is_monitor_box(idx), "no phis for boxes");
1988 t = TypeInstPtr::BOTTOM; // this is sufficient for a lock object
1989 } else if ((uint)idx < TypeFunc::Parms) {
1990 t = o->bottom_type(); // Type::RETURN_ADDRESS or such-like.
1991 } else {
1992 assert(false, "no type information for this phi");
1993 }
1994
1995 // If the type falls to bottom, then this must be a local that
1996 // is mixing ints and oops or some such. Forcing it to top
1997 // makes it go dead.
1998 if (t == Type::BOTTOM) {
1999 map->set_req(idx, top());
2000 return NULL;
2001 }
2002
2003 // Do not create phis for top either.
2004 // A top on a non-null control flow must be an unused even after the.phi.
2005 if (t == Type::TOP || t == Type::HALF) {
2006 map->set_req(idx, top());
2007 return NULL;
2008 }
2009
2010 PhiNode* phi = PhiNode::make(region, o, t);
2011 gvn().set_type(phi, t);
2012 if (C->do_escape_analysis()) record_for_igvn(phi);
2013 map->set_req(idx, phi);
2014 return phi;
2015 }
2016
2017 //--------------------------ensure_memory_phi----------------------------------
2018 // Turn the idx'th slice of the current memory into a Phi
2019 PhiNode *Parse::ensure_memory_phi(int idx, bool nocreate) {
2020 MergeMemNode* mem = merged_memory();
2021 Node* region = control();
2022 assert(region->is_Region(), "");
2023
2024 Node *o = (idx == Compile::AliasIdxBot)? mem->base_memory(): mem->memory_at(idx);
2025 assert(o != NULL && o != top(), "");
2026
2027 PhiNode* phi;
2028 if (o->is_Phi() && o->as_Phi()->region() == region) {
2029 phi = o->as_Phi();
2030 if (phi == mem->base_memory() && idx >= Compile::AliasIdxRaw) {
2031 // clone the shared base memory phi to make a new memory split
2032 assert(!nocreate, "Cannot build a phi for a block already parsed.");
2033 const Type* t = phi->bottom_type();
2034 const TypePtr* adr_type = C->get_adr_type(idx);
2187 Node* cnt = make_load(control(), cnt_adr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
2188 Node* decr = _gvn.transform(new SubINode(cnt, makecon(TypeInt::ONE)));
2189 store_to_memory(control(), cnt_adr, decr, T_INT, adr_type, MemNode::unordered);
2190 Node *chk = _gvn.transform(new CmpINode(decr, makecon(TypeInt::ZERO)));
2191 Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::gt));
2192 { BuildCutout unless(this, tst, PROB_ALWAYS);
2193 uncommon_trap(Deoptimization::Reason_tenured,
2194 Deoptimization::Action_make_not_entrant);
2195 }
2196 }
2197
2198 //------------------------------return_current---------------------------------
2199 // Append current _map to _exit_return
2200 void Parse::return_current(Node* value) {
2201 if (RegisterFinalizersAtInit &&
2202 method()->intrinsic_id() == vmIntrinsics::_Object_init) {
2203 call_register_finalizer();
2204 }
2205
2206 // Do not set_parse_bci, so that return goo is credited to the return insn.
2207 set_bci(InvocationEntryBci);
2208 if (method()->is_synchronized() && GenerateSynchronizationCode) {
2209 shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
2210 }
2211 if (C->env()->dtrace_method_probes()) {
2212 make_dtrace_method_exit(method());
2213 }
2214 SafePointNode* exit_return = _exits.map();
2215 exit_return->in( TypeFunc::Control )->add_req( control() );
2216 exit_return->in( TypeFunc::I_O )->add_req( i_o () );
2217 Node *mem = exit_return->in( TypeFunc::Memory );
2218 for (MergeMemStream mms(mem->as_MergeMem(), merged_memory()); mms.next_non_empty2(); ) {
2219 if (mms.is_empty()) {
2220 // get a copy of the base memory, and patch just this one input
2221 const TypePtr* adr_type = mms.adr_type(C);
2222 Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
2223 assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
2224 gvn().set_type_bottom(phi);
2225 phi->del_req(phi->req()-1); // prepare to re-patch
2226 mms.set_memory(phi);
2227 }
2228 mms.memory()->add_req(mms.memory2());
2229 }
2230
2231 // frame pointer is always same, already captured
2232 if (value != NULL) {
2233 // If returning oops to an interface-return, there is a silent free
2234 // cast from oop to interface allowed by the Verifier. Make it explicit
2235 // here.
2236 Node* phi = _exits.argument(0);
2237 const TypeInstPtr *tr = phi->bottom_type()->isa_instptr();
2238 if (tr && tr->klass()->is_loaded() &&
2239 tr->klass()->is_interface()) {
2240 const TypeInstPtr *tp = value->bottom_type()->isa_instptr();
2241 if (tp && tp->klass()->is_loaded() &&
2242 !tp->klass()->is_interface()) {
2243 // sharpen the type eagerly; this eases certain assert checking
2244 if (tp->higher_equal(TypeInstPtr::NOTNULL))
2245 tr = tr->join_speculative(TypeInstPtr::NOTNULL)->is_instptr();
2246 value = _gvn.transform(new CheckCastPPNode(0, value, tr));
2247 }
2248 } else {
2249 // Also handle returns of oop-arrays to an arrays-of-interface return
2250 const TypeInstPtr* phi_tip;
2251 const TypeInstPtr* val_tip;
2252 Type::get_arrays_base_elements(phi->bottom_type(), value->bottom_type(), &phi_tip, &val_tip);
2253 if (phi_tip != NULL && phi_tip->is_loaded() && phi_tip->klass()->is_interface() &&
2254 val_tip != NULL && val_tip->is_loaded() && !val_tip->klass()->is_interface()) {
2255 value = _gvn.transform(new CheckCastPPNode(0, value, phi->bottom_type()));
2256 }
2257 }
2258 phi->add_req(value);
2259 }
2260
2261 if (_first_return) {
2262 _exits.map()->transfer_replaced_nodes_from(map(), _new_idx);
2263 _first_return = false;
2264 } else {
2265 _exits.map()->merge_replaced_nodes_with(map());
2266 }
2267
2268 stop_and_kill_map(); // This CFG path dies here
2269 }
2270
2271
2272 //------------------------------add_safepoint----------------------------------
2273 void Parse::add_safepoint() {
2274 uint parms = TypeFunc::Parms+1;
2275
2276 // Clear out dead values from the debug info.
2277 kill_dead_locals();
2278
2279 // Clone the JVM State
2280 SafePointNode *sfpnt = new SafePointNode(parms, NULL);
|
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "precompiled.hpp"
26 #include "compiler/compileLog.hpp"
27 #include "interpreter/linkResolver.hpp"
28 #include "memory/resourceArea.hpp"
29 #include "oops/method.hpp"
30 #include "opto/addnode.hpp"
31 #include "opto/c2compiler.hpp"
32 #include "opto/castnode.hpp"
33 #include "opto/convertnode.hpp"
34 #include "opto/idealGraphPrinter.hpp"
35 #include "opto/inlinetypenode.hpp"
36 #include "opto/locknode.hpp"
37 #include "opto/memnode.hpp"
38 #include "opto/opaquenode.hpp"
39 #include "opto/parse.hpp"
40 #include "opto/rootnode.hpp"
41 #include "opto/runtime.hpp"
42 #include "opto/type.hpp"
43 #include "runtime/handles.inline.hpp"
44 #include "runtime/safepointMechanism.hpp"
45 #include "runtime/sharedRuntime.hpp"
46 #include "utilities/bitMap.inline.hpp"
47 #include "utilities/copy.hpp"
48
49 // Static array so we can figure out which bytecodes stop us from compiling
50 // the most. Some of the non-static variables are needed in bytecodeInfo.cpp
51 // and eventually should be encapsulated in a proper class (gri 8/18/98).
52
53 #ifndef PRODUCT
54 int nodes_created = 0;
55 int methods_parsed = 0;
87 }
88 if (all_null_checks_found) {
89 tty->print_cr("%d made implicit (%2d%%)", implicit_null_checks,
90 (100*implicit_null_checks)/all_null_checks_found);
91 }
92 if (SharedRuntime::_implicit_null_throws) {
93 tty->print_cr("%d implicit null exceptions at runtime",
94 SharedRuntime::_implicit_null_throws);
95 }
96
97 if (PrintParseStatistics && BytecodeParseHistogram::initialized()) {
98 BytecodeParseHistogram::print();
99 }
100 }
101 #endif
102
103 //------------------------------ON STACK REPLACEMENT---------------------------
104
105 // Construct a node which can be used to get incoming state for
106 // on stack replacement.
107 Node* Parse::fetch_interpreter_state(int index,
108 const Type* type,
109 Node* local_addrs,
110 Node* local_addrs_base) {
111 BasicType bt = type->basic_type();
112 if (type == TypePtr::NULL_PTR) {
113 // Ptr types are mixed together with T_ADDRESS but NULL is
114 // really for T_OBJECT types so correct it.
115 bt = T_OBJECT;
116 }
117 Node *mem = memory(Compile::AliasIdxRaw);
118 Node *adr = basic_plus_adr( local_addrs_base, local_addrs, -index*wordSize );
119 Node *ctl = control();
120
121 // Very similar to LoadNode::make, except we handle un-aligned longs and
122 // doubles on Sparc. Intel can handle them just fine directly.
123 Node *l = NULL;
124 switch (bt) { // Signature is flattened
125 case T_INT: l = new LoadINode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInt::INT, MemNode::unordered); break;
126 case T_FLOAT: l = new LoadFNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::FLOAT, MemNode::unordered); break;
127 case T_ADDRESS: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, MemNode::unordered); break;
128 case T_PRIMITIVE_OBJECT:
129 case T_OBJECT: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInstPtr::BOTTOM, MemNode::unordered); break;
130 case T_LONG:
131 case T_DOUBLE: {
132 // Since arguments are in reverse order, the argument address 'adr'
133 // refers to the back half of the long/double. Recompute adr.
134 adr = basic_plus_adr(local_addrs_base, local_addrs, -(index+1)*wordSize);
135 if (Matcher::misaligned_doubles_ok) {
136 l = (bt == T_DOUBLE)
137 ? (Node*)new LoadDNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::DOUBLE, MemNode::unordered)
138 : (Node*)new LoadLNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeLong::LONG, MemNode::unordered);
139 } else {
140 l = (bt == T_DOUBLE)
141 ? (Node*)new LoadD_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered)
142 : (Node*)new LoadL_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered);
143 }
144 break;
145 }
146 default: ShouldNotReachHere();
147 }
148 return _gvn.transform(l);
149 }
150
151 // Helper routine to prevent the interpreter from handing
152 // unexpected typestate to an OSR method.
153 // The Node l is a value newly dug out of the interpreter frame.
154 // The type is the type predicted by ciTypeFlow. Note that it is
155 // not a general type, but can only come from Type::get_typeflow_type.
156 // The safepoint is a map which will feed an uncommon trap.
157 Node* Parse::check_interpreter_type(Node* l, const Type* type,
158 SafePointNode* &bad_type_exit) {
159 if (type->isa_inlinetype() != NULL) {
160 // The interpreter passes inline types as oops
161 type = TypeOopPtr::make_from_klass(type->inline_klass());
162 type = type->join_speculative(TypePtr::NOTNULL)->is_oopptr();
163 }
164 const TypeOopPtr* tp = type->isa_oopptr();
165
166 // TypeFlow may assert null-ness if a type appears unloaded.
167 if (type == TypePtr::NULL_PTR ||
168 (tp != NULL && !tp->klass()->is_loaded())) {
169 // Value must be null, not a real oop.
170 Node* chk = _gvn.transform( new CmpPNode(l, null()) );
171 Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
172 IfNode* iff = create_and_map_if(control(), tst, PROB_MAX, COUNT_UNKNOWN);
173 set_control(_gvn.transform( new IfTrueNode(iff) ));
174 Node* bad_type = _gvn.transform( new IfFalseNode(iff) );
175 bad_type_exit->control()->add_req(bad_type);
176 l = null();
177 }
178
179 // Typeflow can also cut off paths from the CFG, based on
180 // types which appear unloaded, or call sites which appear unlinked.
181 // When paths are cut off, values at later merge points can rise
182 // toward more specific classes. Make sure these specific classes
183 // are still in effect.
184 if (tp != NULL && tp->klass() != C->env()->Object_klass()) {
185 // TypeFlow asserted a specific object type. Value must have that type.
186 Node* bad_type_ctrl = NULL;
187 if (tp->is_inlinetypeptr() && !tp->maybe_null()) {
188 // Check inline types for null here to prevent checkcast from adding an
189 // exception state before the bytecode entry (use 'bad_type_ctrl' instead).
190 l = null_check_oop(l, &bad_type_ctrl);
191 bad_type_exit->control()->add_req(bad_type_ctrl);
192 }
193 l = gen_checkcast(l, makecon(TypeKlassPtr::make(tp->klass())), &bad_type_ctrl);
194 bad_type_exit->control()->add_req(bad_type_ctrl);
195 }
196 assert(_gvn.type(l)->higher_equal(type), "must constrain OSR typestate");
197 return l;
198 }
199
200 // Helper routine which sets up elements of the initial parser map when
201 // performing a parse for on stack replacement. Add values into map.
202 // The only parameter contains the address of a interpreter arguments.
203 void Parse::load_interpreter_state(Node* osr_buf) {
204 int index;
205 int max_locals = jvms()->loc_size();
206 int max_stack = jvms()->stk_size();
207
208 // Mismatch between method and jvms can occur since map briefly held
209 // an OSR entry state (which takes up one RawPtr word).
210 assert(max_locals == method()->max_locals(), "sanity");
211 assert(max_stack >= method()->max_stack(), "sanity");
212 assert((int)jvms()->endoff() == TypeFunc::Parms + max_locals + max_stack, "sanity");
213 assert((int)jvms()->endoff() == (int)map()->req(), "sanity");
214
215 // Find the start block.
216 Block* osr_block = start_block();
217 assert(osr_block->start() == osr_bci(), "sanity");
218
219 // Set initial BCI.
220 set_parse_bci(osr_block->start());
221
222 // Set initial stack depth.
223 set_sp(osr_block->start_sp());
224
225 // Check bailouts. We currently do not perform on stack replacement
226 // of loops in catch blocks or loops which branch with a non-empty stack.
227 if (sp() != 0) {
228 C->record_method_not_compilable("OSR starts with non-empty stack");
229 return;
230 }
231 // Do not OSR inside finally clauses:
232 if (osr_block->has_trap_at(osr_block->start())) {
233 C->record_method_not_compilable("OSR starts with an immediate trap");
234 return;
235 }
236
237 // Commute monitors from interpreter frame to compiler frame.
238 assert(jvms()->monitor_depth() == 0, "should be no active locks at beginning of osr");
239 int mcnt = osr_block->flow()->monitor_count();
240 Node *monitors_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals+mcnt*2-1)*wordSize);
241 for (index = 0; index < mcnt; index++) {
242 // Make a BoxLockNode for the monitor.
243 Node *box = _gvn.transform(new BoxLockNode(next_monitor()));
244
245 // Displaced headers and locked objects are interleaved in the
246 // temp OSR buffer. We only copy the locked objects out here.
247 // Fetch the locked object from the OSR temp buffer and copy to our fastlock node.
248 Node* lock_object = fetch_interpreter_state(index*2, Type::get_const_basic_type(T_OBJECT), monitors_addr, osr_buf);
249 // Try and copy the displaced header to the BoxNode
250 Node* displaced_hdr = fetch_interpreter_state((index*2) + 1, Type::get_const_basic_type(T_ADDRESS), monitors_addr, osr_buf);
251
252 store_to_memory(control(), box, displaced_hdr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered);
253
254 // Build a bogus FastLockNode (no code will be generated) and push the
255 // monitor into our debug info.
256 const FastLockNode *flock = _gvn.transform(new FastLockNode( 0, lock_object, box ))->as_FastLock();
257 map()->push_monitor(flock);
258
259 // If the lock is our method synchronization lock, tuck it away in
260 // _sync_lock for return and rethrow exit paths.
261 if (index == 0 && method()->is_synchronized()) {
262 _synch_lock = flock;
263 }
264 }
265
266 // Use the raw liveness computation to make sure that unexpected
267 // values don't propagate into the OSR frame.
268 MethodLivenessResult live_locals = method()->liveness_at_bci(osr_bci());
269 if (!live_locals.is_valid()) {
270 // Degenerate or breakpointed method.
297 if (C->log() != NULL) {
298 C->log()->elem("OSR_mismatch local_index='%d'",index);
299 }
300 set_local(index, null());
301 // and ignore it for the loads
302 continue;
303 }
304 }
305
306 // Filter out TOP, HALF, and BOTTOM. (Cf. ensure_phi.)
307 if (type == Type::TOP || type == Type::HALF) {
308 continue;
309 }
310 // If the type falls to bottom, then this must be a local that
311 // is mixing ints and oops or some such. Forcing it to top
312 // makes it go dead.
313 if (type == Type::BOTTOM) {
314 continue;
315 }
316 // Construct code to access the appropriate local.
317 Node* value = fetch_interpreter_state(index, type, locals_addr, osr_buf);
318 set_local(index, value);
319 }
320
321 // Extract the needed stack entries from the interpreter frame.
322 for (index = 0; index < sp(); index++) {
323 const Type *type = osr_block->stack_type_at(index);
324 if (type != Type::TOP) {
325 // Currently the compiler bails out when attempting to on stack replace
326 // at a bci with a non-empty stack. We should not reach here.
327 ShouldNotReachHere();
328 }
329 }
330
331 // End the OSR migration
332 make_runtime_call(RC_LEAF, OptoRuntime::osr_end_Type(),
333 CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
334 "OSR_migration_end", TypeRawPtr::BOTTOM,
335 osr_buf);
336
337 // Now that the interpreter state is loaded, make sure it will match
585 }
586 }
587
588 if (depth() == 1 && !failing()) {
589 if (C->clinit_barrier_on_entry()) {
590 // Add check to deoptimize the nmethod once the holder class is fully initialized
591 clinit_deopt();
592 }
593
594 // Add check to deoptimize the nmethod if RTM state was changed
595 rtm_deopt();
596 }
597
598 // Check for bailouts during method entry or RTM state check setup.
599 if (failing()) {
600 if (log) log->done("parse");
601 C->set_default_node_notes(caller_nn);
602 return;
603 }
604
605 // Handle inline type arguments
606 int arg_size = method()->arg_size();
607 for (int i = 0; i < arg_size; i++) {
608 Node* parm = local(i);
609 const Type* t = _gvn.type(parm);
610 if (t->is_inlinetypeptr()) {
611 // Create InlineTypeNode from the oop and replace the parameter
612 Node* vt = InlineTypeNode::make_from_oop(this, parm, t->inline_klass(), !t->maybe_null());
613 set_local(i, vt);
614 } else if (UseTypeSpeculation && (i == (arg_size - 1)) && !is_osr_parse() &&
615 method()->has_vararg() && t->isa_aryptr() != NULL && !t->is_aryptr()->is_not_null_free()) {
616 // Speculate on varargs Object array being not null-free (and therefore also not flattened)
617 const TypePtr* spec_type = t->speculative();
618 spec_type = (spec_type != NULL && spec_type->isa_aryptr() != NULL) ? spec_type : t->is_aryptr();
619 spec_type = spec_type->remove_speculative()->is_aryptr()->cast_to_not_null_free();
620 spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::Offset::bottom, TypeOopPtr::InstanceBot, spec_type);
621 Node* cast = _gvn.transform(new CheckCastPPNode(control(), parm, t->join_speculative(spec_type)));
622 set_local(i, cast);
623 }
624 }
625
626 entry_map = map(); // capture any changes performed by method setup code
627 assert(jvms()->endoff() == map()->req(), "map matches JVMS layout");
628
629 // We begin parsing as if we have just encountered a jump to the
630 // method entry.
631 Block* entry_block = start_block();
632 assert(entry_block->start() == (is_osr_parse() ? osr_bci() : 0), "");
633 set_map_clone(entry_map);
634 merge_common(entry_block, entry_block->next_path_num());
635
636 #ifndef PRODUCT
637 BytecodeParseHistogram *parse_histogram_obj = new (C->env()->arena()) BytecodeParseHistogram(this, C);
638 set_parse_histogram( parse_histogram_obj );
639 #endif
640
641 // Parse all the basic blocks.
642 do_all_blocks();
643
644 C->set_default_node_notes(caller_nn);
645
788 void Parse::build_exits() {
789 // make a clone of caller to prevent sharing of side-effects
790 _exits.set_map(_exits.clone_map());
791 _exits.clean_stack(_exits.sp());
792 _exits.sync_jvms();
793
794 RegionNode* region = new RegionNode(1);
795 record_for_igvn(region);
796 gvn().set_type_bottom(region);
797 _exits.set_control(region);
798
799 // Note: iophi and memphi are not transformed until do_exits.
800 Node* iophi = new PhiNode(region, Type::ABIO);
801 Node* memphi = new PhiNode(region, Type::MEMORY, TypePtr::BOTTOM);
802 gvn().set_type_bottom(iophi);
803 gvn().set_type_bottom(memphi);
804 _exits.set_i_o(iophi);
805 _exits.set_all_memory(memphi);
806
807 // Add a return value to the exit state. (Do not push it yet.)
808 if (tf()->range_sig()->cnt() > TypeFunc::Parms) {
809 const Type* ret_type = tf()->range_sig()->field_at(TypeFunc::Parms);
810 if (ret_type->isa_int()) {
811 BasicType ret_bt = method()->return_type()->basic_type();
812 if (ret_bt == T_BOOLEAN ||
813 ret_bt == T_CHAR ||
814 ret_bt == T_BYTE ||
815 ret_bt == T_SHORT) {
816 ret_type = TypeInt::INT;
817 }
818 }
819
820 // Don't "bind" an unloaded return klass to the ret_phi. If the klass
821 // becomes loaded during the subsequent parsing, the loaded and unloaded
822 // types will not join when we transform and push in do_exits().
823 const TypeOopPtr* ret_oop_type = ret_type->isa_oopptr();
824 if (ret_oop_type && !ret_oop_type->klass()->is_loaded()) {
825 ret_type = TypeOopPtr::BOTTOM;
826 }
827 // Scalarize inline type when returning as fields or inlining non-incrementally
828 if ((tf()->returns_inline_type_as_fields() || (_caller->has_method() && !Compile::current()->inlining_incrementally())) &&
829 ret_type->is_inlinetypeptr()) {
830 ret_type = TypeInlineType::make(ret_type->inline_klass());
831 }
832 int ret_size = type2size[ret_type->basic_type()];
833 Node* ret_phi = new PhiNode(region, ret_type);
834 gvn().set_type_bottom(ret_phi);
835 _exits.ensure_stack(ret_size);
836 assert((int)(tf()->range_sig()->cnt() - TypeFunc::Parms) == ret_size, "good tf range");
837 assert(method()->return_type()->size() == ret_size, "tf agrees w/ method");
838 _exits.set_argument(0, ret_phi); // here is where the parser finds it
839 // Note: ret_phi is not yet pushed, until do_exits.
840 }
841 }
842
843 //----------------------------build_start_state-------------------------------
844 // Construct a state which contains only the incoming arguments from an
845 // unknown caller. The method & bci will be NULL & InvocationEntryBci.
846 JVMState* Compile::build_start_state(StartNode* start, const TypeFunc* tf) {
847 int arg_size = tf->domain_sig()->cnt();
848 int max_size = MAX2(arg_size, (int)tf->range_cc()->cnt());
849 JVMState* jvms = new (this) JVMState(max_size - TypeFunc::Parms);
850 SafePointNode* map = new SafePointNode(max_size, jvms);
851 jvms->set_map(map);
852 record_for_igvn(map);
853 assert(arg_size == TypeFunc::Parms + (is_osr_compilation() ? 1 : method()->arg_size()), "correct arg_size");
854 Node_Notes* old_nn = default_node_notes();
855 if (old_nn != NULL && has_method()) {
856 Node_Notes* entry_nn = old_nn->clone(this);
857 JVMState* entry_jvms = new(this) JVMState(method(), old_nn->jvms());
858 entry_jvms->set_offsets(0);
859 entry_jvms->set_bci(entry_bci());
860 entry_nn->set_jvms(entry_jvms);
861 set_default_node_notes(entry_nn);
862 }
863 PhaseGVN& gvn = *initial_gvn();
864 uint i = 0;
865 int arg_num = 0;
866 for (uint j = 0; i < (uint)arg_size; i++) {
867 const Type* t = tf->domain_sig()->field_at(i);
868 Node* parm = NULL;
869 if (t->is_inlinetypeptr() && method()->is_scalarized_arg(arg_num)) {
870 // Inline type arguments are not passed by reference: we get an argument per
871 // field of the inline type. Build InlineTypeNodes from the inline type arguments.
872 GraphKit kit(jvms, &gvn);
873 kit.set_control(map->control());
874 Node* old_mem = map->memory();
875 // Use immutable memory for inline type loads and restore it below
876 kit.set_all_memory(C->immutable_memory());
877 parm = InlineTypeNode::make_from_multi(&kit, start, t->inline_klass(), j, /* in= */ true, /* null_free= */ !t->maybe_null());
878 map->set_control(kit.control());
879 map->set_memory(old_mem);
880 } else {
881 parm = gvn.transform(new ParmNode(start, j++));
882 }
883 map->init_req(i, parm);
884 // Record all these guys for later GVN.
885 record_for_igvn(parm);
886 if (i >= TypeFunc::Parms && t != Type::HALF) {
887 arg_num++;
888 }
889 }
890 for (; i < map->req(); i++) {
891 map->init_req(i, top());
892 }
893 assert(jvms->argoff() == TypeFunc::Parms, "parser gets arguments here");
894 set_default_node_notes(old_nn);
895 return jvms;
896 }
897
898 //-----------------------------make_node_notes---------------------------------
899 Node_Notes* Parse::make_node_notes(Node_Notes* caller_nn) {
900 if (caller_nn == NULL) return NULL;
901 Node_Notes* nn = caller_nn->clone(C);
902 JVMState* caller_jvms = nn->jvms();
903 JVMState* jvms = new (C) JVMState(method(), caller_jvms);
904 jvms->set_offsets(0);
905 jvms->set_bci(_entry_bci);
906 nn->set_jvms(jvms);
907 return nn;
908 }
909
910
911 //--------------------------return_values--------------------------------------
912 void Compile::return_values(JVMState* jvms) {
913 GraphKit kit(jvms);
914 Node* ret = new ReturnNode(TypeFunc::Parms,
915 kit.control(),
916 kit.i_o(),
917 kit.reset_memory(),
918 kit.frameptr(),
919 kit.returnadr());
920 // Add zero or 1 return values
921 int ret_size = tf()->range_sig()->cnt() - TypeFunc::Parms;
922 if (ret_size > 0) {
923 kit.inc_sp(-ret_size); // pop the return value(s)
924 kit.sync_jvms();
925 Node* res = kit.argument(0);
926 if (tf()->returns_inline_type_as_fields()) {
927 // Multiple return values (inline type fields): add as many edges
928 // to the Return node as returned values.
929 InlineTypeBaseNode* vt = res->as_InlineTypeBase();
930 ret->add_req_batch(NULL, tf()->range_cc()->cnt() - TypeFunc::Parms);
931 if (vt->is_allocated(&kit.gvn()) && !StressInlineTypeReturnedAsFields) {
932 ret->init_req(TypeFunc::Parms, vt->get_oop());
933 } else {
934 // Return the tagged klass pointer to signal scalarization to the caller
935 Node* tagged_klass = vt->tagged_klass(kit.gvn());
936 if (!method()->signature()->returns_null_free_inline_type()) {
937 // Return null if the inline type is null (IsInit field is not set)
938 Node* conv = kit.gvn().transform(new ConvI2LNode(vt->get_is_init()));
939 Node* shl = kit.gvn().transform(new LShiftLNode(conv, kit.intcon(63)));
940 Node* shr = kit.gvn().transform(new RShiftLNode(shl, kit.intcon(63)));
941 tagged_klass = kit.gvn().transform(new AndLNode(tagged_klass, shr));
942 }
943 ret->init_req(TypeFunc::Parms, tagged_klass);
944 }
945 uint idx = TypeFunc::Parms + 1;
946 vt->pass_fields(&kit, ret, idx, false, method()->signature()->returns_null_free_inline_type());
947 } else {
948 if (res->is_InlineType()) {
949 assert(res->as_InlineType()->is_allocated(&kit.gvn()), "must be allocated");
950 res = res->as_InlineType()->get_oop();
951 }
952 ret->add_req(res);
953 // Note: The second dummy edge is not needed by a ReturnNode.
954 }
955 }
956 // bind it to root
957 root()->add_req(ret);
958 record_for_igvn(ret);
959 initial_gvn()->transform_no_reclaim(ret);
960 }
961
962 //------------------------rethrow_exceptions-----------------------------------
963 // Bind all exception states in the list into a single RethrowNode.
964 void Compile::rethrow_exceptions(JVMState* jvms) {
965 GraphKit kit(jvms);
966 if (!kit.has_exceptions()) return; // nothing to generate
967 // Load my combined exception state into the kit, with all phis transformed:
968 SafePointNode* ex_map = kit.combine_and_pop_all_exception_states();
969 Node* ex_oop = kit.use_exception_state(ex_map);
970 RethrowNode* exit = new RethrowNode(kit.control(),
971 kit.i_o(), kit.reset_memory(),
972 kit.frameptr(), kit.returnadr(),
973 // like a return but with exception input
974 ex_oop);
1058 // to complete, we force all writes to complete.
1059 //
1060 // 2. Experimental VM option is used to force the barrier if any field
1061 // was written out in the constructor.
1062 //
1063 // 3. On processors which are not CPU_MULTI_COPY_ATOMIC (e.g. PPC64),
1064 // support_IRIW_for_not_multiple_copy_atomic_cpu selects that
1065 // MemBarVolatile is used before volatile load instead of after volatile
1066 // store, so there's no barrier after the store.
1067 // We want to guarantee the same behavior as on platforms with total store
1068 // order, although this is not required by the Java memory model.
1069 // In this case, we want to enforce visibility of volatile field
1070 // initializations which are performed in constructors.
1071 // So as with finals, we add a barrier here.
1072 //
1073 // "All bets are off" unless the first publication occurs after a
1074 // normal return from the constructor. We do not attempt to detect
1075 // such unusual early publications. But no barrier is needed on
1076 // exceptional returns, since they cannot publish normally.
1077 //
1078 if (method()->is_object_constructor_or_class_initializer() &&
1079 (wrote_final() ||
1080 (AlwaysSafeConstructors && wrote_fields()) ||
1081 (support_IRIW_for_not_multiple_copy_atomic_cpu && wrote_volatile()))) {
1082 _exits.insert_mem_bar(Op_MemBarRelease, alloc_with_final());
1083
1084 // If Memory barrier is created for final fields write
1085 // and allocation node does not escape the initialize method,
1086 // then barrier introduced by allocation node can be removed.
1087 if (DoEscapeAnalysis && alloc_with_final()) {
1088 AllocateNode *alloc = AllocateNode::Ideal_allocation(alloc_with_final(), &_gvn);
1089 alloc->compute_MemBar_redundancy(method());
1090 }
1091 if (PrintOpto && (Verbose || WizardMode)) {
1092 method()->print_name();
1093 tty->print_cr(" writes finals and needs a memory barrier");
1094 }
1095 }
1096
1097 // Any method can write a @Stable field; insert memory barriers
1098 // after those also. Can't bind predecessor allocation node (if any)
1099 // with barrier because allocation doesn't always dominate
1100 // MemBarRelease.
1101 if (wrote_stable()) {
1102 _exits.insert_mem_bar(Op_MemBarRelease);
1103 if (PrintOpto && (Verbose || WizardMode)) {
1104 method()->print_name();
1105 tty->print_cr(" writes @Stable and needs a memory barrier");
1106 }
1107 }
1108
1109 for (MergeMemStream mms(_exits.merged_memory()); mms.next_non_empty(); ) {
1110 // transform each slice of the original memphi:
1111 mms.set_memory(_gvn.transform(mms.memory()));
1112 }
1113 // Clean up input MergeMems created by transforming the slices
1114 _gvn.transform(_exits.merged_memory());
1115
1116 if (tf()->range_sig()->cnt() > TypeFunc::Parms) {
1117 const Type* ret_type = tf()->range_sig()->field_at(TypeFunc::Parms);
1118 Node* ret_phi = _gvn.transform( _exits.argument(0) );
1119 if (!_exits.control()->is_top() && _gvn.type(ret_phi)->empty()) {
1120 // If the type we set for the ret_phi in build_exits() is too optimistic and
1121 // the ret_phi is top now, there's an extremely small chance that it may be due to class
1122 // loading. It could also be due to an error, so mark this method as not compilable because
1123 // otherwise this could lead to an infinite compile loop.
1124 // In any case, this code path is rarely (and never in my testing) reached.
1125 C->record_method_not_compilable("Can't determine return type.");
1126 return;
1127 }
1128 if (ret_type->isa_int()) {
1129 BasicType ret_bt = method()->return_type()->basic_type();
1130 ret_phi = mask_int_value(ret_phi, ret_bt, &_gvn);
1131 }
1132 _exits.push_node(ret_type->basic_type(), ret_phi);
1133 }
1134
1135 // Note: Logic for creating and optimizing the ReturnNode is in Compile.
1136
1137 // Unlock along the exceptional paths.
1190 }
1191
1192 //-----------------------------create_entry_map-------------------------------
1193 // Initialize our parser map to contain the types at method entry.
1194 // For OSR, the map contains a single RawPtr parameter.
1195 // Initial monitor locking for sync. methods is performed by do_method_entry.
1196 SafePointNode* Parse::create_entry_map() {
1197 // Check for really stupid bail-out cases.
1198 uint len = TypeFunc::Parms + method()->max_locals() + method()->max_stack();
1199 if (len >= 32760) {
1200 C->record_method_not_compilable("too many local variables");
1201 return NULL;
1202 }
1203
1204 // clear current replaced nodes that are of no use from here on (map was cloned in build_exits).
1205 _caller->map()->delete_replaced_nodes();
1206
1207 // If this is an inlined method, we may have to do a receiver null check.
1208 if (_caller->has_method() && is_normal_parse() && !method()->is_static()) {
1209 GraphKit kit(_caller);
1210 kit.null_check_receiver_before_call(method(), false);
1211 _caller = kit.transfer_exceptions_into_jvms();
1212 if (kit.stopped()) {
1213 _exits.add_exception_states_from(_caller);
1214 _exits.set_jvms(_caller);
1215 return NULL;
1216 }
1217 }
1218
1219 assert(method() != NULL, "parser must have a method");
1220
1221 // Create an initial safepoint to hold JVM state during parsing
1222 JVMState* jvms = new (C) JVMState(method(), _caller->has_method() ? _caller : NULL);
1223 set_map(new SafePointNode(len, jvms));
1224 jvms->set_map(map());
1225 record_for_igvn(map());
1226 assert(jvms->endoff() == len, "correct jvms sizing");
1227
1228 SafePointNode* inmap = _caller->map();
1229 assert(inmap != NULL, "must have inmap");
1230 // In case of null check on receiver above
1231 map()->transfer_replaced_nodes_from(inmap, _new_idx);
1232
1233 uint i;
1234
1235 // Pass thru the predefined input parameters.
1236 for (i = 0; i < TypeFunc::Parms; i++) {
1237 map()->init_req(i, inmap->in(i));
1238 }
1239
1240 if (depth() == 1) {
1241 assert(map()->memory()->Opcode() == Op_Parm, "");
1242 // Insert the memory aliasing node
1243 set_all_memory(reset_memory());
1244 }
1245 assert(merged_memory(), "");
1246
1247 // Now add the locals which are initially bound to arguments:
1248 uint arg_size = tf()->domain_sig()->cnt();
1249 ensure_stack(arg_size - TypeFunc::Parms); // OSR methods have funny args
1250 for (i = TypeFunc::Parms; i < arg_size; i++) {
1251 map()->init_req(i, inmap->argument(_caller, i - TypeFunc::Parms));
1252 }
1253
1254 // Clear out the rest of the map (locals and stack)
1255 for (i = arg_size; i < len; i++) {
1256 map()->init_req(i, top());
1257 }
1258
1259 SafePointNode* entry_map = stop();
1260 return entry_map;
1261 }
1262
1263 //-----------------------------do_method_entry--------------------------------
1264 // Emit any code needed in the pseudo-block before BCI zero.
1265 // The main thing to do is lock the receiver of a synchronized method.
1266 void Parse::do_method_entry() {
1267 set_parse_bci(InvocationEntryBci); // Pseudo-BCP
1268 set_sp(0); // Java Stack Pointer
1302
1303 // If the method is synchronized, we need to construct a lock node, attach
1304 // it to the Start node, and pin it there.
1305 if (method()->is_synchronized()) {
1306 // Insert a FastLockNode right after the Start which takes as arguments
1307 // the current thread pointer, the "this" pointer & the address of the
1308 // stack slot pair used for the lock. The "this" pointer is a projection
1309 // off the start node, but the locking spot has to be constructed by
1310 // creating a ConLNode of 0, and boxing it with a BoxLockNode. The BoxLockNode
1311 // becomes the second argument to the FastLockNode call. The
1312 // FastLockNode becomes the new control parent to pin it to the start.
1313
1314 // Setup Object Pointer
1315 Node *lock_obj = NULL;
1316 if (method()->is_static()) {
1317 ciInstance* mirror = _method->holder()->java_mirror();
1318 const TypeInstPtr *t_lock = TypeInstPtr::make(mirror);
1319 lock_obj = makecon(t_lock);
1320 } else { // Else pass the "this" pointer,
1321 lock_obj = local(0); // which is Parm0 from StartNode
1322 assert(!_gvn.type(lock_obj)->make_oopptr()->can_be_inline_type(), "can't be an inline type");
1323 }
1324 // Clear out dead values from the debug info.
1325 kill_dead_locals();
1326 // Build the FastLockNode
1327 _synch_lock = shared_lock(lock_obj);
1328 }
1329
1330 // Feed profiling data for parameters to the type system so it can
1331 // propagate it as speculative types
1332 record_profiled_parameters_for_speculation();
1333 }
1334
1335 //------------------------------init_blocks------------------------------------
1336 // Initialize our parser map to contain the types/monitors at method entry.
1337 void Parse::init_blocks() {
1338 // Create the blocks.
1339 _block_count = flow()->block_count();
1340 _blocks = NEW_RESOURCE_ARRAY(Block, _block_count);
1341
1342 // Initialize the structs.
1714 //--------------------handle_missing_successor---------------------------------
1715 void Parse::handle_missing_successor(int target_bci) {
1716 #ifndef PRODUCT
1717 Block* b = block();
1718 int trap_bci = b->flow()->has_trap()? b->flow()->trap_bci(): -1;
1719 tty->print_cr("### Missing successor at bci:%d for block #%d (trap_bci:%d)", target_bci, b->rpo(), trap_bci);
1720 #endif
1721 ShouldNotReachHere();
1722 }
1723
1724 //--------------------------merge_common---------------------------------------
1725 void Parse::merge_common(Parse::Block* target, int pnum) {
1726 if (TraceOptoParse) {
1727 tty->print("Merging state at block #%d bci:%d", target->rpo(), target->start());
1728 }
1729
1730 // Zap extra stack slots to top
1731 assert(sp() == target->start_sp(), "");
1732 clean_stack(sp());
1733
1734 // Check for merge conflicts involving inline types
1735 JVMState* old_jvms = map()->jvms();
1736 int old_bci = bci();
1737 JVMState* tmp_jvms = old_jvms->clone_shallow(C);
1738 tmp_jvms->set_should_reexecute(true);
1739 tmp_jvms->bind_map(map());
1740 // Execution needs to restart a the next bytecode (entry of next
1741 // block)
1742 if (target->is_merged() ||
1743 pnum > PhiNode::Input ||
1744 target->is_handler() ||
1745 target->is_loop_head()) {
1746 set_parse_bci(target->start());
1747 for (uint j = TypeFunc::Parms; j < map()->req(); j++) {
1748 Node* n = map()->in(j); // Incoming change to target state.
1749 const Type* t = NULL;
1750 if (tmp_jvms->is_loc(j)) {
1751 t = target->local_type_at(j - tmp_jvms->locoff());
1752 } else if (tmp_jvms->is_stk(j) && j < (uint)sp() + tmp_jvms->stkoff()) {
1753 t = target->stack_type_at(j - tmp_jvms->stkoff());
1754 }
1755 if (t != NULL && t != Type::BOTTOM) {
1756 if (n->is_InlineType() && (!t->isa_inlinetype() && !t->is_inlinetypeptr())) {
1757 // TODO Currently, the implementation relies on the assumption that InlineTypePtrNodes
1758 // are always buffered. We therefore need to allocate here.
1759 // Allocate inline type in src block to be able to merge it with oop in target block
1760 map()->set_req(j, n->as_InlineType()->buffer(this));
1761 } else if (!n->is_InlineTypeBase() && t->is_inlinetypeptr()) {
1762 // Scalarize null in src block to be able to merge it with inline type in target block
1763 assert(gvn().type(n)->is_zero_type(), "Should have been scalarized");
1764 map()->set_req(j, InlineTypePtrNode::make_null(gvn(), t->inline_klass()));
1765 }
1766 }
1767 }
1768 }
1769 old_jvms->bind_map(map());
1770 set_parse_bci(old_bci);
1771
1772 if (!target->is_merged()) { // No prior mapping at this bci
1773 if (TraceOptoParse) { tty->print(" with empty state"); }
1774
1775 // If this path is dead, do not bother capturing it as a merge.
1776 // It is "as if" we had 1 fewer predecessors from the beginning.
1777 if (stopped()) {
1778 if (TraceOptoParse) tty->print_cr(", but path is dead and doesn't count");
1779 return;
1780 }
1781
1782 // Make a region if we know there are multiple or unpredictable inputs.
1783 // (Also, if this is a plain fall-through, we might see another region,
1784 // which must not be allowed into this block's map.)
1785 if (pnum > PhiNode::Input // Known multiple inputs.
1786 || target->is_handler() // These have unpredictable inputs.
1787 || target->is_loop_head() // Known multiple inputs
1788 || control()->is_Region()) { // We must hide this guy.
1789
1790 int current_bci = bci();
1791 set_parse_bci(target->start()); // Set target bci
1805 gvn().set_type(r, Type::CONTROL);
1806 record_for_igvn(r);
1807 // zap all inputs to NULL for debugging (done in Node(uint) constructor)
1808 // for (int j = 1; j < edges+1; j++) { r->init_req(j, NULL); }
1809 r->init_req(pnum, control());
1810 set_control(r);
1811 set_parse_bci(current_bci); // Restore bci
1812 }
1813
1814 // Convert the existing Parser mapping into a mapping at this bci.
1815 store_state_to(target);
1816 assert(target->is_merged(), "do not come here twice");
1817
1818 } else { // Prior mapping at this bci
1819 if (TraceOptoParse) { tty->print(" with previous state"); }
1820 #ifdef ASSERT
1821 if (target->is_SEL_head()) {
1822 target->mark_merged_backedge(block());
1823 }
1824 #endif
1825
1826 // We must not manufacture more phis if the target is already parsed.
1827 bool nophi = target->is_parsed();
1828
1829 SafePointNode* newin = map();// Hang on to incoming mapping
1830 Block* save_block = block(); // Hang on to incoming block;
1831 load_state_from(target); // Get prior mapping
1832
1833 assert(newin->jvms()->locoff() == jvms()->locoff(), "JVMS layouts agree");
1834 assert(newin->jvms()->stkoff() == jvms()->stkoff(), "JVMS layouts agree");
1835 assert(newin->jvms()->monoff() == jvms()->monoff(), "JVMS layouts agree");
1836 assert(newin->jvms()->endoff() == jvms()->endoff(), "JVMS layouts agree");
1837
1838 // Iterate over my current mapping and the old mapping.
1839 // Where different, insert Phi functions.
1840 // Use any existing Phi functions.
1841 assert(control()->is_Region(), "must be merging to a region");
1842 RegionNode* r = control()->as_Region();
1843
1844 // Compute where to merge into
1845 // Merge incoming control path
1846 r->init_req(pnum, newin->control());
1847
1848 if (pnum == 1) { // Last merge for this Region?
1849 if (!block()->flow()->is_irreducible_entry()) {
1850 Node* result = _gvn.transform_no_reclaim(r);
1851 if (r != result && TraceOptoParse) {
1852 tty->print_cr("Block #%d replace %d with %d", block()->rpo(), r->_idx, result->_idx);
1853 }
1854 }
1855 record_for_igvn(r);
1856 }
1857
1858 // Update all the non-control inputs to map:
1859 assert(TypeFunc::Parms == newin->jvms()->locoff(), "parser map should contain only youngest jvms");
1860 bool check_elide_phi = target->is_SEL_backedge(save_block);
1861 bool last_merge = (pnum == PhiNode::Input);
1862 for (uint j = 1; j < newin->req(); j++) {
1863 Node* m = map()->in(j); // Current state of target.
1864 Node* n = newin->in(j); // Incoming change to target state.
1865 PhiNode* phi;
1866 if (m->is_Phi() && m->as_Phi()->region() == r) {
1867 phi = m->as_Phi();
1868 } else if (m->is_InlineTypeBase() && m->as_InlineTypeBase()->has_phi_inputs(r)) {
1869 phi = m->as_InlineTypeBase()->get_oop()->as_Phi();
1870 } else {
1871 phi = NULL;
1872 }
1873 if (m != n) { // Different; must merge
1874 switch (j) {
1875 // Frame pointer and Return Address never changes
1876 case TypeFunc::FramePtr:// Drop m, use the original value
1877 case TypeFunc::ReturnAdr:
1878 break;
1879 case TypeFunc::Memory: // Merge inputs to the MergeMem node
1880 assert(phi == NULL, "the merge contains phis, not vice versa");
1881 merge_memory_edges(n->as_MergeMem(), pnum, nophi);
1882 continue;
1883 default: // All normal stuff
1884 if (phi == NULL) {
1885 const JVMState* jvms = map()->jvms();
1886 if (EliminateNestedLocks &&
1887 jvms->is_mon(j) && jvms->is_monitor_box(j)) {
1888 // BoxLock nodes are not commoning.
1889 // Use old BoxLock node as merged box.
1890 assert(newin->jvms()->is_monitor_box(j), "sanity");
1891 // This assert also tests that nodes are BoxLock.
1892 assert(BoxLockNode::same_slot(n, m), "sanity");
1893 C->gvn_replace_by(n, m);
1894 } else if (!check_elide_phi || !target->can_elide_SEL_phi(j)) {
1895 phi = ensure_phi(j, nophi);
1896 }
1897 }
1898 break;
1899 }
1900 }
1901 // At this point, n might be top if:
1902 // - there is no phi (because TypeFlow detected a conflict), or
1903 // - the corresponding control edges is top (a dead incoming path)
1904 // It is a bug if we create a phi which sees a garbage value on a live path.
1905
1906 // Merging two inline types?
1907 if (phi != NULL && phi->bottom_type()->is_inlinetypeptr()) {
1908 // Reload current state because it may have been updated by ensure_phi
1909 m = map()->in(j);
1910 InlineTypeBaseNode* vtm = m->as_InlineTypeBase(); // Current inline type
1911 InlineTypeBaseNode* vtn = n->as_InlineTypeBase(); // Incoming inline type
1912 assert(vtm->get_oop() == phi, "Inline type should have Phi input");
1913 if (TraceOptoParse) {
1914 #ifdef ASSERT
1915 tty->print_cr("\nMerging inline types");
1916 tty->print_cr("Current:");
1917 vtm->dump(2);
1918 tty->print_cr("Incoming:");
1919 vtn->dump(2);
1920 tty->cr();
1921 #endif
1922 }
1923 // Do the merge
1924 vtm->merge_with(&_gvn, vtn, pnum, last_merge);
1925 if (vtm->is_InlineTypePtr() && vtn->is_InlineType()) {
1926 // TODO 8284443 Remove this
1927 Node* newVal = InlineTypeNode::make_uninitialized(gvn(), vtm->bottom_type()->inline_klass());
1928 for (uint i = 1; i < vtm->req(); ++i) {
1929 newVal->set_req(i, vtm->in(i));
1930 }
1931 _gvn.set_type(newVal, vtm->bottom_type());
1932 vtm->replace_by(newVal);
1933 vtm = newVal->as_InlineTypeBase();
1934 }
1935 if (last_merge) {
1936 map()->set_req(j, _gvn.transform_no_reclaim(vtm));
1937 record_for_igvn(vtm);
1938 }
1939 } else if (phi != NULL) {
1940 assert(n != top() || r->in(pnum) == top(), "live value must not be garbage");
1941 assert(phi->region() == r, "");
1942 phi->set_req(pnum, n); // Then add 'n' to the merge
1943 if (last_merge) {
1944 // Last merge for this Phi.
1945 // So far, Phis have had a reasonable type from ciTypeFlow.
1946 // Now _gvn will join that with the meet of current inputs.
1947 // BOTTOM is never permissible here, 'cause pessimistically
1948 // Phis of pointers cannot lose the basic pointer type.
1949 debug_only(const Type* bt1 = phi->bottom_type());
1950 assert(bt1 != Type::BOTTOM, "should not be building conflict phis");
1951 map()->set_req(j, _gvn.transform_no_reclaim(phi));
1952 debug_only(const Type* bt2 = phi->bottom_type());
1953 assert(bt2->higher_equal_speculative(bt1), "must be consistent with type-flow");
1954 record_for_igvn(phi);
1955 }
1956 }
1957 } // End of for all values to be merged
1958
1959 if (last_merge && !r->in(0)) { // The occasional useless Region
1960 assert(control() == r, "");
1961 set_control(r->nonnull_req());
1962 }
1963
1964 map()->merge_replaced_nodes_with(newin);
1965
1966 // newin has been subsumed into the lazy merge, and is now dead.
1967 set_block(save_block);
1968
1969 stop(); // done with this guy, for now
1970 }
1971
1972 if (TraceOptoParse) {
1973 tty->print_cr(" on path %d", pnum);
1974 }
1975
1976 // Done with this parser state.
1977 assert(stopped(), "");
1978 }
1979
2091
2092 // Add new path to the region.
2093 uint pnum = r->req();
2094 r->add_req(NULL);
2095
2096 for (uint i = 1; i < map->req(); i++) {
2097 Node* n = map->in(i);
2098 if (i == TypeFunc::Memory) {
2099 // Ensure a phi on all currently known memories.
2100 for (MergeMemStream mms(n->as_MergeMem()); mms.next_non_empty(); ) {
2101 Node* phi = mms.memory();
2102 if (phi->is_Phi() && phi->as_Phi()->region() == r) {
2103 assert(phi->req() == pnum, "must be same size as region");
2104 phi->add_req(NULL);
2105 }
2106 }
2107 } else {
2108 if (n->is_Phi() && n->as_Phi()->region() == r) {
2109 assert(n->req() == pnum, "must be same size as region");
2110 n->add_req(NULL);
2111 } else if (n->is_InlineTypeBase() && n->as_InlineTypeBase()->has_phi_inputs(r)) {
2112 n->as_InlineTypeBase()->add_new_path(r);
2113 }
2114 }
2115 }
2116
2117 return pnum;
2118 }
2119
2120 //------------------------------ensure_phi-------------------------------------
2121 // Turn the idx'th entry of the current map into a Phi
2122 PhiNode *Parse::ensure_phi(int idx, bool nocreate) {
2123 SafePointNode* map = this->map();
2124 Node* region = map->control();
2125 assert(region->is_Region(), "");
2126
2127 Node* o = map->in(idx);
2128 assert(o != NULL, "");
2129
2130 if (o == top()) return NULL; // TOP always merges into TOP
2131
2132 if (o->is_Phi() && o->as_Phi()->region() == region) {
2133 return o->as_Phi();
2134 }
2135 InlineTypeBaseNode* vt = o->isa_InlineTypeBase();
2136 if (vt != NULL && vt->has_phi_inputs(region)) {
2137 return vt->get_oop()->as_Phi();
2138 }
2139
2140 // Now use a Phi here for merging
2141 assert(!nocreate, "Cannot build a phi for a block already parsed.");
2142 const JVMState* jvms = map->jvms();
2143 const Type* t = NULL;
2144 if (jvms->is_loc(idx)) {
2145 t = block()->local_type_at(idx - jvms->locoff());
2146 } else if (jvms->is_stk(idx)) {
2147 t = block()->stack_type_at(idx - jvms->stkoff());
2148 } else if (jvms->is_mon(idx)) {
2149 assert(!jvms->is_monitor_box(idx), "no phis for boxes");
2150 t = TypeInstPtr::BOTTOM; // this is sufficient for a lock object
2151 } else if ((uint)idx < TypeFunc::Parms) {
2152 t = o->bottom_type(); // Type::RETURN_ADDRESS or such-like.
2153 } else {
2154 assert(false, "no type information for this phi");
2155 }
2156
2157 // If the type falls to bottom, then this must be a local that
2158 // is already dead or is mixing ints and oops or some such.
2159 // Forcing it to top makes it go dead.
2160 if (t == Type::BOTTOM) {
2161 map->set_req(idx, top());
2162 return NULL;
2163 }
2164
2165 // Do not create phis for top either.
2166 // A top on a non-null control flow must be an unused even after the.phi.
2167 if (t == Type::TOP || t == Type::HALF) {
2168 map->set_req(idx, top());
2169 return NULL;
2170 }
2171
2172 if (vt != NULL && (t->is_inlinetypeptr() || t->isa_inlinetype())) {
2173 // Inline types are merged by merging their field values.
2174 // Create a cloned InlineTypeNode with phi inputs that
2175 // represents the merged inline type and update the map.
2176 vt = vt->clone_with_phis(&_gvn, region);
2177 map->set_req(idx, vt);
2178 return vt->get_oop()->as_Phi();
2179 } else {
2180 PhiNode* phi = PhiNode::make(region, o, t);
2181 gvn().set_type(phi, t);
2182 if (C->do_escape_analysis()) record_for_igvn(phi);
2183 map->set_req(idx, phi);
2184 return phi;
2185 }
2186 }
2187
2188 //--------------------------ensure_memory_phi----------------------------------
2189 // Turn the idx'th slice of the current memory into a Phi
2190 PhiNode *Parse::ensure_memory_phi(int idx, bool nocreate) {
2191 MergeMemNode* mem = merged_memory();
2192 Node* region = control();
2193 assert(region->is_Region(), "");
2194
2195 Node *o = (idx == Compile::AliasIdxBot)? mem->base_memory(): mem->memory_at(idx);
2196 assert(o != NULL && o != top(), "");
2197
2198 PhiNode* phi;
2199 if (o->is_Phi() && o->as_Phi()->region() == region) {
2200 phi = o->as_Phi();
2201 if (phi == mem->base_memory() && idx >= Compile::AliasIdxRaw) {
2202 // clone the shared base memory phi to make a new memory split
2203 assert(!nocreate, "Cannot build a phi for a block already parsed.");
2204 const Type* t = phi->bottom_type();
2205 const TypePtr* adr_type = C->get_adr_type(idx);
2358 Node* cnt = make_load(control(), cnt_adr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
2359 Node* decr = _gvn.transform(new SubINode(cnt, makecon(TypeInt::ONE)));
2360 store_to_memory(control(), cnt_adr, decr, T_INT, adr_type, MemNode::unordered);
2361 Node *chk = _gvn.transform(new CmpINode(decr, makecon(TypeInt::ZERO)));
2362 Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::gt));
2363 { BuildCutout unless(this, tst, PROB_ALWAYS);
2364 uncommon_trap(Deoptimization::Reason_tenured,
2365 Deoptimization::Action_make_not_entrant);
2366 }
2367 }
2368
2369 //------------------------------return_current---------------------------------
2370 // Append current _map to _exit_return
2371 void Parse::return_current(Node* value) {
2372 if (RegisterFinalizersAtInit &&
2373 method()->intrinsic_id() == vmIntrinsics::_Object_init) {
2374 call_register_finalizer();
2375 }
2376
2377 // Do not set_parse_bci, so that return goo is credited to the return insn.
2378 // vreturn can trigger an allocation so vreturn can throw. Setting
2379 // the bci here breaks exception handling. Commenting this out
2380 // doesn't seem to break anything.
2381 // set_bci(InvocationEntryBci);
2382 if (method()->is_synchronized() && GenerateSynchronizationCode) {
2383 shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
2384 }
2385 if (C->env()->dtrace_method_probes()) {
2386 make_dtrace_method_exit(method());
2387 }
2388 // frame pointer is always same, already captured
2389 if (value != NULL) {
2390 Node* phi = _exits.argument(0);
2391 const Type* return_type = phi->bottom_type();
2392 const TypeOopPtr* tr = return_type->isa_oopptr();
2393 // The return_type is set in Parse::build_exits().
2394 if (return_type->isa_inlinetype()) {
2395 // Inline type is returned as fields, make sure it is scalarized
2396 if (!value->is_InlineType()) {
2397 value = InlineTypeNode::make_from_oop(this, value, return_type->inline_klass(), method()->signature()->returns_null_free_inline_type());
2398 }
2399 if (!_caller->has_method() || Compile::current()->inlining_incrementally()) {
2400 // Returning from root or an incrementally inlined method. Make sure all non-flattened
2401 // fields are buffered and re-execute if allocation triggers deoptimization.
2402 PreserveReexecuteState preexecs(this);
2403 assert(tf()->returns_inline_type_as_fields(), "must be returned as fields");
2404 jvms()->set_should_reexecute(true);
2405 inc_sp(1);
2406 value = value->as_InlineTypeBase()->allocate_fields(this);
2407 }
2408 } else if (value->is_InlineType()) {
2409 // Inline type is returned as oop, make sure it is buffered and re-execute
2410 // if allocation triggers deoptimization.
2411 PreserveReexecuteState preexecs(this);
2412 jvms()->set_should_reexecute(true);
2413 inc_sp(1);
2414 value = value->as_InlineType()->buffer(this);
2415 } else if (tr && tr->isa_instptr() && tr->klass()->is_loaded() && tr->klass()->is_interface()) {
2416 // If returning oops to an interface-return, there is a silent free
2417 // cast from oop to interface allowed by the Verifier. Make it explicit here.
2418 const TypeInstPtr* tp = value->bottom_type()->isa_instptr();
2419 if (tp && tp->klass()->is_loaded() && !tp->klass()->is_interface()) {
2420 // sharpen the type eagerly; this eases certain assert checking
2421 if (tp->higher_equal(TypeInstPtr::NOTNULL)) {
2422 tr = tr->join_speculative(TypeInstPtr::NOTNULL)->is_instptr();
2423 }
2424 value = _gvn.transform(new CheckCastPPNode(0, value, tr));
2425 }
2426 } else {
2427 // Handle returns of oop-arrays to an arrays-of-interface return
2428 const TypeInstPtr* phi_tip;
2429 const TypeInstPtr* val_tip;
2430 Type::get_arrays_base_elements(return_type, value->bottom_type(), &phi_tip, &val_tip);
2431 if (phi_tip != NULL && phi_tip->is_loaded() && phi_tip->klass()->is_interface() &&
2432 val_tip != NULL && val_tip->is_loaded() && !val_tip->klass()->is_interface()) {
2433 value = _gvn.transform(new CheckCastPPNode(0, value, return_type));
2434 }
2435 }
2436 phi->add_req(value);
2437 }
2438
2439 SafePointNode* exit_return = _exits.map();
2440 exit_return->in( TypeFunc::Control )->add_req( control() );
2441 exit_return->in( TypeFunc::I_O )->add_req( i_o () );
2442 Node *mem = exit_return->in( TypeFunc::Memory );
2443 for (MergeMemStream mms(mem->as_MergeMem(), merged_memory()); mms.next_non_empty2(); ) {
2444 if (mms.is_empty()) {
2445 // get a copy of the base memory, and patch just this one input
2446 const TypePtr* adr_type = mms.adr_type(C);
2447 Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
2448 assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
2449 gvn().set_type_bottom(phi);
2450 phi->del_req(phi->req()-1); // prepare to re-patch
2451 mms.set_memory(phi);
2452 }
2453 mms.memory()->add_req(mms.memory2());
2454 }
2455
2456 if (_first_return) {
2457 _exits.map()->transfer_replaced_nodes_from(map(), _new_idx);
2458 _first_return = false;
2459 } else {
2460 _exits.map()->merge_replaced_nodes_with(map());
2461 }
2462
2463 stop_and_kill_map(); // This CFG path dies here
2464 }
2465
2466
2467 //------------------------------add_safepoint----------------------------------
2468 void Parse::add_safepoint() {
2469 uint parms = TypeFunc::Parms+1;
2470
2471 // Clear out dead values from the debug info.
2472 kill_dead_locals();
2473
2474 // Clone the JVM State
2475 SafePointNode *sfpnt = new SafePointNode(parms, NULL);
|