12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "compiler/compileLog.hpp"
26 #include "interpreter/linkResolver.hpp"
27 #include "memory/resourceArea.hpp"
28 #include "oops/method.hpp"
29 #include "opto/addnode.hpp"
30 #include "opto/c2compiler.hpp"
31 #include "opto/castnode.hpp"
32 #include "opto/idealGraphPrinter.hpp"
33 #include "opto/locknode.hpp"
34 #include "opto/memnode.hpp"
35 #include "opto/opaquenode.hpp"
36 #include "opto/parse.hpp"
37 #include "opto/rootnode.hpp"
38 #include "opto/runtime.hpp"
39 #include "opto/type.hpp"
40 #include "runtime/handles.inline.hpp"
41 #include "runtime/safepointMechanism.hpp"
42 #include "runtime/sharedRuntime.hpp"
43 #include "utilities/bitMap.inline.hpp"
44 #include "utilities/copy.hpp"
45
46 // Static array so we can figure out which bytecodes stop us from compiling
47 // the most. Some of the non-static variables are needed in bytecodeInfo.cpp
48 // and eventually should be encapsulated in a proper class (gri 8/18/98).
49
50 #ifndef PRODUCT
51 uint nodes_created = 0;
52 uint methods_parsed = 0;
53 uint methods_seen = 0;
54 uint blocks_parsed = 0;
55 uint blocks_seen = 0;
56
57 uint explicit_null_checks_inserted = 0;
58 uint explicit_null_checks_elided = 0;
59 uint all_null_checks_found = 0;
84 }
85 if (all_null_checks_found) {
86 tty->print_cr("%u made implicit (%2u%%)", implicit_null_checks,
87 (100*implicit_null_checks)/all_null_checks_found);
88 }
89 if (SharedRuntime::_implicit_null_throws) {
90 tty->print_cr("%u implicit null exceptions at runtime",
91 SharedRuntime::_implicit_null_throws);
92 }
93
94 if (PrintParseStatistics && BytecodeParseHistogram::initialized()) {
95 BytecodeParseHistogram::print();
96 }
97 }
98 #endif
99
100 //------------------------------ON STACK REPLACEMENT---------------------------
101
102 // Construct a node which can be used to get incoming state for
103 // on stack replacement.
104 Node *Parse::fetch_interpreter_state(int index,
105 BasicType bt,
106 Node *local_addrs,
107 Node *local_addrs_base) {
108 Node *mem = memory(Compile::AliasIdxRaw);
109 Node *adr = basic_plus_adr( local_addrs_base, local_addrs, -index*wordSize );
110 Node *ctl = control();
111
112 // Very similar to LoadNode::make, except we handle un-aligned longs and
113 // doubles on Sparc. Intel can handle them just fine directly.
114 Node *l = nullptr;
115 switch (bt) { // Signature is flattened
116 case T_INT: l = new LoadINode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInt::INT, MemNode::unordered); break;
117 case T_FLOAT: l = new LoadFNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::FLOAT, MemNode::unordered); break;
118 case T_ADDRESS: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, MemNode::unordered); break;
119 case T_OBJECT: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInstPtr::BOTTOM, MemNode::unordered); break;
120 case T_LONG:
121 case T_DOUBLE: {
122 // Since arguments are in reverse order, the argument address 'adr'
123 // refers to the back half of the long/double. Recompute adr.
124 adr = basic_plus_adr(local_addrs_base, local_addrs, -(index+1)*wordSize);
125 if (Matcher::misaligned_doubles_ok) {
126 l = (bt == T_DOUBLE)
127 ? (Node*)new LoadDNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::DOUBLE, MemNode::unordered)
128 : (Node*)new LoadLNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeLong::LONG, MemNode::unordered);
129 } else {
130 l = (bt == T_DOUBLE)
131 ? (Node*)new LoadD_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered)
132 : (Node*)new LoadL_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered);
133 }
134 break;
135 }
136 default: ShouldNotReachHere();
137 }
138 return _gvn.transform(l);
139 }
140
141 // Helper routine to prevent the interpreter from handing
142 // unexpected typestate to an OSR method.
143 // The Node l is a value newly dug out of the interpreter frame.
144 // The type is the type predicted by ciTypeFlow. Note that it is
145 // not a general type, but can only come from Type::get_typeflow_type.
146 // The safepoint is a map which will feed an uncommon trap.
147 Node* Parse::check_interpreter_type(Node* l, const Type* type,
148 SafePointNode* &bad_type_exit) {
149
150 const TypeOopPtr* tp = type->isa_oopptr();
151
152 // TypeFlow may assert null-ness if a type appears unloaded.
153 if (type == TypePtr::NULL_PTR ||
154 (tp != nullptr && !tp->is_loaded())) {
155 // Value must be null, not a real oop.
156 Node* chk = _gvn.transform( new CmpPNode(l, null()) );
157 Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
158 IfNode* iff = create_and_map_if(control(), tst, PROB_MAX, COUNT_UNKNOWN);
159 set_control(_gvn.transform( new IfTrueNode(iff) ));
160 Node* bad_type = _gvn.transform( new IfFalseNode(iff) );
161 bad_type_exit->control()->add_req(bad_type);
162 l = null();
163 }
164
165 // Typeflow can also cut off paths from the CFG, based on
166 // types which appear unloaded, or call sites which appear unlinked.
167 // When paths are cut off, values at later merge points can rise
168 // toward more specific classes. Make sure these specific classes
169 // are still in effect.
170 if (tp != nullptr && !tp->is_same_java_type_as(TypeInstPtr::BOTTOM)) {
171 // TypeFlow asserted a specific object type. Value must have that type.
172 Node* bad_type_ctrl = nullptr;
173 l = gen_checkcast(l, makecon(tp->as_klass_type()->cast_to_exactness(true)), &bad_type_ctrl);
174 bad_type_exit->control()->add_req(bad_type_ctrl);
175 }
176
177 assert(_gvn.type(l)->higher_equal(type), "must constrain OSR typestate");
178 return l;
179 }
180
181 // Helper routine which sets up elements of the initial parser map when
182 // performing a parse for on stack replacement. Add values into map.
183 // The only parameter contains the address of a interpreter arguments.
184 void Parse::load_interpreter_state(Node* osr_buf) {
185 int index;
186 int max_locals = jvms()->loc_size();
187 int max_stack = jvms()->stk_size();
188
189
190 // Mismatch between method and jvms can occur since map briefly held
191 // an OSR entry state (which takes up one RawPtr word).
192 assert(max_locals == method()->max_locals(), "sanity");
193 assert(max_stack >= method()->max_stack(), "sanity");
194 assert((int)jvms()->endoff() == TypeFunc::Parms + max_locals + max_stack, "sanity");
195 assert((int)jvms()->endoff() == (int)map()->req(), "sanity");
196
197 // Find the start block.
198 Block* osr_block = start_block();
199 assert(osr_block->start() == osr_bci(), "sanity");
200
201 // Set initial BCI.
202 set_parse_bci(osr_block->start());
203
204 // Set initial stack depth.
205 set_sp(osr_block->start_sp());
206
207 // Check bailouts. We currently do not perform on stack replacement
208 // of loops in catch blocks or loops which branch with a non-empty stack.
209 if (sp() != 0) {
224 for (index = 0; index < mcnt; index++) {
225 // Make a BoxLockNode for the monitor.
226 BoxLockNode* osr_box = new BoxLockNode(next_monitor());
227 // Check for bailout after new BoxLockNode
228 if (failing()) { return; }
229
230 // This OSR locking region is unbalanced because it does not have Lock node:
231 // locking was done in Interpreter.
232 // This is similar to Coarsened case when Lock node is eliminated
233 // and as result the region is marked as Unbalanced.
234
235 // Emulate Coarsened state transition from Regular to Unbalanced.
236 osr_box->set_coarsened();
237 osr_box->set_unbalanced();
238
239 Node* box = _gvn.transform(osr_box);
240
241 // Displaced headers and locked objects are interleaved in the
242 // temp OSR buffer. We only copy the locked objects out here.
243 // Fetch the locked object from the OSR temp buffer and copy to our fastlock node.
244 Node *lock_object = fetch_interpreter_state(index*2, T_OBJECT, monitors_addr, osr_buf);
245 // Try and copy the displaced header to the BoxNode
246 Node *displaced_hdr = fetch_interpreter_state((index*2) + 1, T_ADDRESS, monitors_addr, osr_buf);
247
248
249 store_to_memory(control(), box, displaced_hdr, T_ADDRESS, MemNode::unordered);
250
251 // Build a bogus FastLockNode (no code will be generated) and push the
252 // monitor into our debug info.
253 const FastLockNode *flock = _gvn.transform(new FastLockNode( nullptr, lock_object, box ))->as_FastLock();
254 map()->push_monitor(flock);
255
256 // If the lock is our method synchronization lock, tuck it away in
257 // _sync_lock for return and rethrow exit paths.
258 if (index == 0 && method()->is_synchronized()) {
259 _synch_lock = flock;
260 }
261 }
262
263 // Use the raw liveness computation to make sure that unexpected
264 // values don't propagate into the OSR frame.
265 MethodLivenessResult live_locals = method()->liveness_at_bci(osr_bci());
266 if (!live_locals.is_valid()) {
267 // Degenerate or breakpointed method.
295 if (C->log() != nullptr) {
296 C->log()->elem("OSR_mismatch local_index='%d'",index);
297 }
298 set_local(index, null());
299 // and ignore it for the loads
300 continue;
301 }
302 }
303
304 // Filter out TOP, HALF, and BOTTOM. (Cf. ensure_phi.)
305 if (type == Type::TOP || type == Type::HALF) {
306 continue;
307 }
308 // If the type falls to bottom, then this must be a local that
309 // is mixing ints and oops or some such. Forcing it to top
310 // makes it go dead.
311 if (type == Type::BOTTOM) {
312 continue;
313 }
314 // Construct code to access the appropriate local.
315 BasicType bt = type->basic_type();
316 if (type == TypePtr::NULL_PTR) {
317 // Ptr types are mixed together with T_ADDRESS but null is
318 // really for T_OBJECT types so correct it.
319 bt = T_OBJECT;
320 }
321 Node *value = fetch_interpreter_state(index, bt, locals_addr, osr_buf);
322 set_local(index, value);
323 }
324
325 // Extract the needed stack entries from the interpreter frame.
326 for (index = 0; index < sp(); index++) {
327 const Type *type = osr_block->stack_type_at(index);
328 if (type != Type::TOP) {
329 // Currently the compiler bails out when attempting to on stack replace
330 // at a bci with a non-empty stack. We should not reach here.
331 ShouldNotReachHere();
332 }
333 }
334
335 // End the OSR migration
336 make_runtime_call(RC_LEAF, OptoRuntime::osr_end_Type(),
337 CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
338 "OSR_migration_end", TypeRawPtr::BOTTOM,
339 osr_buf);
340
341 // Now that the interpreter state is loaded, make sure it will match
352 if (type->isa_oopptr() != nullptr) {
353 if (!live_oops.at(index)) {
354 // skip type check for dead oops
355 continue;
356 }
357 }
358 if (osr_block->flow()->local_type_at(index)->is_return_address()) {
359 // In our current system it's illegal for jsr addresses to be
360 // live into an OSR entry point because the compiler performs
361 // inlining of jsrs. ciTypeFlow has a bailout that detect this
362 // case and aborts the compile if addresses are live into an OSR
363 // entry point. Because of that we can assume that any address
364 // locals at the OSR entry point are dead. Method liveness
365 // isn't precise enough to figure out that they are dead in all
366 // cases so simply skip checking address locals all
367 // together. Any type check is guaranteed to fail since the
368 // interpreter type is the result of a load which might have any
369 // value and the expected type is a constant.
370 continue;
371 }
372 set_local(index, check_interpreter_type(l, type, bad_type_exit));
373 }
374
375 for (index = 0; index < sp(); index++) {
376 if (stopped()) break;
377 Node* l = stack(index);
378 if (l->is_top()) continue; // nothing here
379 const Type *type = osr_block->stack_type_at(index);
380 set_stack(index, check_interpreter_type(l, type, bad_type_exit));
381 }
382
383 if (bad_type_exit->control()->req() > 1) {
384 // Build an uncommon trap here, if any inputs can be unexpected.
385 bad_type_exit->set_control(_gvn.transform( bad_type_exit->control() ));
386 record_for_igvn(bad_type_exit->control());
387 SafePointNode* types_are_good = map();
388 set_map(bad_type_exit);
389 // The unexpected type happens because a new edge is active
390 // in the CFG, which typeflow had previously ignored.
391 // E.g., Object x = coldAtFirst() && notReached()? "str": new Integer(123).
392 // This x will be typed as Integer if notReached is not yet linked.
393 // It could also happen due to a problem in ciTypeFlow analysis.
394 uncommon_trap(Deoptimization::Reason_constraint,
395 Deoptimization::Action_reinterpret);
396 set_map(types_are_good);
397 }
398 }
399
400 //------------------------------Parse------------------------------------------
501 // either breakpoint setting or hotswapping of methods may
502 // cause deoptimization.
503 if (C->env()->jvmti_can_hotswap_or_post_breakpoint()) {
504 C->dependencies()->assert_evol_method(method());
505 }
506
507 NOT_PRODUCT(methods_seen++);
508
509 // Do some special top-level things.
510 if (depth() == 1 && C->is_osr_compilation()) {
511 _tf = C->tf(); // the OSR entry type is different
512 _entry_bci = C->entry_bci();
513 _flow = method()->get_osr_flow_analysis(osr_bci());
514 } else {
515 _tf = TypeFunc::make(method());
516 _entry_bci = InvocationEntryBci;
517 _flow = method()->get_flow_analysis();
518 }
519
520 if (_flow->failing()) {
521 assert(false, "type flow analysis failed during parsing");
522 C->record_method_not_compilable(_flow->failure_reason());
523 #ifndef PRODUCT
524 if (PrintOpto && (Verbose || WizardMode)) {
525 if (is_osr_parse()) {
526 tty->print_cr("OSR @%d type flow bailout: %s", _entry_bci, _flow->failure_reason());
527 } else {
528 tty->print_cr("type flow bailout: %s", _flow->failure_reason());
529 }
530 if (Verbose) {
531 method()->print();
532 method()->print_codes();
533 _flow->print();
534 }
535 }
536 #endif
537 }
538
539 #ifdef ASSERT
540 if (depth() == 1) {
541 assert(C->is_osr_compilation() == this->is_osr_parse(), "OSR in sync");
592 load_interpreter_state(osr_buf);
593 } else {
594 set_map(entry_map);
595 do_method_entry();
596 }
597
598 if (depth() == 1 && !failing()) {
599 if (C->clinit_barrier_on_entry()) {
600 // Add check to deoptimize the nmethod once the holder class is fully initialized
601 clinit_deopt();
602 }
603 }
604
605 // Check for bailouts during method entry.
606 if (failing()) {
607 if (log) log->done("parse");
608 C->set_default_node_notes(caller_nn);
609 return;
610 }
611
612 entry_map = map(); // capture any changes performed by method setup code
613 assert(jvms()->endoff() == map()->req(), "map matches JVMS layout");
614
615 // We begin parsing as if we have just encountered a jump to the
616 // method entry.
617 Block* entry_block = start_block();
618 assert(entry_block->start() == (is_osr_parse() ? osr_bci() : 0), "");
619 set_map_clone(entry_map);
620 merge_common(entry_block, entry_block->next_path_num());
621
622 #ifndef PRODUCT
623 BytecodeParseHistogram *parse_histogram_obj = new (C->env()->arena()) BytecodeParseHistogram(this, C);
624 set_parse_histogram( parse_histogram_obj );
625 #endif
626
627 // Parse all the basic blocks.
628 do_all_blocks();
629
630 // Check for bailouts during conversion to graph
631 if (failing()) {
777 void Parse::build_exits() {
778 // make a clone of caller to prevent sharing of side-effects
779 _exits.set_map(_exits.clone_map());
780 _exits.clean_stack(_exits.sp());
781 _exits.sync_jvms();
782
783 RegionNode* region = new RegionNode(1);
784 record_for_igvn(region);
785 gvn().set_type_bottom(region);
786 _exits.set_control(region);
787
788 // Note: iophi and memphi are not transformed until do_exits.
789 Node* iophi = new PhiNode(region, Type::ABIO);
790 Node* memphi = new PhiNode(region, Type::MEMORY, TypePtr::BOTTOM);
791 gvn().set_type_bottom(iophi);
792 gvn().set_type_bottom(memphi);
793 _exits.set_i_o(iophi);
794 _exits.set_all_memory(memphi);
795
796 // Add a return value to the exit state. (Do not push it yet.)
797 if (tf()->range()->cnt() > TypeFunc::Parms) {
798 const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
799 if (ret_type->isa_int()) {
800 BasicType ret_bt = method()->return_type()->basic_type();
801 if (ret_bt == T_BOOLEAN ||
802 ret_bt == T_CHAR ||
803 ret_bt == T_BYTE ||
804 ret_bt == T_SHORT) {
805 ret_type = TypeInt::INT;
806 }
807 }
808
809 // Don't "bind" an unloaded return klass to the ret_phi. If the klass
810 // becomes loaded during the subsequent parsing, the loaded and unloaded
811 // types will not join when we transform and push in do_exits().
812 const TypeOopPtr* ret_oop_type = ret_type->isa_oopptr();
813 if (ret_oop_type && !ret_oop_type->is_loaded()) {
814 ret_type = TypeOopPtr::BOTTOM;
815 }
816 int ret_size = type2size[ret_type->basic_type()];
817 Node* ret_phi = new PhiNode(region, ret_type);
818 gvn().set_type_bottom(ret_phi);
819 _exits.ensure_stack(ret_size);
820 assert((int)(tf()->range()->cnt() - TypeFunc::Parms) == ret_size, "good tf range");
821 assert(method()->return_type()->size() == ret_size, "tf agrees w/ method");
822 _exits.set_argument(0, ret_phi); // here is where the parser finds it
823 // Note: ret_phi is not yet pushed, until do_exits.
824 }
825 }
826
827
828 //----------------------------build_start_state-------------------------------
829 // Construct a state which contains only the incoming arguments from an
830 // unknown caller. The method & bci will be null & InvocationEntryBci.
831 JVMState* Compile::build_start_state(StartNode* start, const TypeFunc* tf) {
832 int arg_size = tf->domain()->cnt();
833 int max_size = MAX2(arg_size, (int)tf->range()->cnt());
834 JVMState* jvms = new (this) JVMState(max_size - TypeFunc::Parms);
835 SafePointNode* map = new SafePointNode(max_size, jvms);
836 record_for_igvn(map);
837 assert(arg_size == TypeFunc::Parms + (is_osr_compilation() ? 1 : method()->arg_size()), "correct arg_size");
838 Node_Notes* old_nn = default_node_notes();
839 if (old_nn != nullptr && has_method()) {
840 Node_Notes* entry_nn = old_nn->clone(this);
841 JVMState* entry_jvms = new(this) JVMState(method(), old_nn->jvms());
842 entry_jvms->set_offsets(0);
843 entry_jvms->set_bci(entry_bci());
844 entry_nn->set_jvms(entry_jvms);
845 set_default_node_notes(entry_nn);
846 }
847 uint i;
848 for (i = 0; i < (uint)arg_size; i++) {
849 Node* parm = initial_gvn()->transform(new ParmNode(start, i));
850 map->init_req(i, parm);
851 // Record all these guys for later GVN.
852 record_for_igvn(parm);
853 }
854 for (; i < map->req(); i++) {
855 map->init_req(i, top());
856 }
857 assert(jvms->argoff() == TypeFunc::Parms, "parser gets arguments here");
858 set_default_node_notes(old_nn);
859 jvms->set_map(map);
860 return jvms;
861 }
862
863 //-----------------------------make_node_notes---------------------------------
864 Node_Notes* Parse::make_node_notes(Node_Notes* caller_nn) {
865 if (caller_nn == nullptr) return nullptr;
866 Node_Notes* nn = caller_nn->clone(C);
867 JVMState* caller_jvms = nn->jvms();
868 JVMState* jvms = new (C) JVMState(method(), caller_jvms);
869 jvms->set_offsets(0);
870 jvms->set_bci(_entry_bci);
871 nn->set_jvms(jvms);
872 return nn;
873 }
874
875
876 //--------------------------return_values--------------------------------------
877 void Compile::return_values(JVMState* jvms) {
878 GraphKit kit(jvms);
879 Node* ret = new ReturnNode(TypeFunc::Parms,
880 kit.control(),
881 kit.i_o(),
882 kit.reset_memory(),
883 kit.frameptr(),
884 kit.returnadr());
885 // Add zero or 1 return values
886 int ret_size = tf()->range()->cnt() - TypeFunc::Parms;
887 if (ret_size > 0) {
888 kit.inc_sp(-ret_size); // pop the return value(s)
889 kit.sync_jvms();
890 ret->add_req(kit.argument(0));
891 // Note: The second dummy edge is not needed by a ReturnNode.
892 }
893 // bind it to root
894 root()->add_req(ret);
895 record_for_igvn(ret);
896 initial_gvn()->transform(ret);
897 }
898
899 //------------------------rethrow_exceptions-----------------------------------
900 // Bind all exception states in the list into a single RethrowNode.
901 void Compile::rethrow_exceptions(JVMState* jvms) {
902 GraphKit kit(jvms);
903 if (!kit.has_exceptions()) return; // nothing to generate
904 // Load my combined exception state into the kit, with all phis transformed:
905 SafePointNode* ex_map = kit.combine_and_pop_all_exception_states();
906 Node* ex_oop = kit.use_exception_state(ex_map);
907 RethrowNode* exit = new RethrowNode(kit.control(),
908 kit.i_o(), kit.reset_memory(),
909 kit.frameptr(), kit.returnadr(),
910 // like a return but with exception input
911 ex_oop);
995 // to complete, we force all writes to complete.
996 //
997 // 2. Experimental VM option is used to force the barrier if any field
998 // was written out in the constructor.
999 //
1000 // 3. On processors which are not CPU_MULTI_COPY_ATOMIC (e.g. PPC64),
1001 // support_IRIW_for_not_multiple_copy_atomic_cpu selects that
1002 // MemBarVolatile is used before volatile load instead of after volatile
1003 // store, so there's no barrier after the store.
1004 // We want to guarantee the same behavior as on platforms with total store
1005 // order, although this is not required by the Java memory model.
1006 // In this case, we want to enforce visibility of volatile field
1007 // initializations which are performed in constructors.
1008 // So as with finals, we add a barrier here.
1009 //
1010 // "All bets are off" unless the first publication occurs after a
1011 // normal return from the constructor. We do not attempt to detect
1012 // such unusual early publications. But no barrier is needed on
1013 // exceptional returns, since they cannot publish normally.
1014 //
1015 if (method()->is_object_initializer() &&
1016 (wrote_final() || wrote_stable() ||
1017 (AlwaysSafeConstructors && wrote_fields()) ||
1018 (support_IRIW_for_not_multiple_copy_atomic_cpu && wrote_volatile()))) {
1019 Node* recorded_alloc = alloc_with_final_or_stable();
1020 _exits.insert_mem_bar(UseStoreStoreForCtor ? Op_MemBarStoreStore : Op_MemBarRelease,
1021 recorded_alloc);
1022
1023 // If Memory barrier is created for final fields write
1024 // and allocation node does not escape the initialize method,
1025 // then barrier introduced by allocation node can be removed.
1026 if (DoEscapeAnalysis && (recorded_alloc != nullptr)) {
1027 AllocateNode* alloc = AllocateNode::Ideal_allocation(recorded_alloc);
1028 alloc->compute_MemBar_redundancy(method());
1029 }
1030 if (PrintOpto && (Verbose || WizardMode)) {
1031 method()->print_name();
1032 tty->print_cr(" writes finals/@Stable and needs a memory barrier");
1033 }
1034 }
1035
1036 for (MergeMemStream mms(_exits.merged_memory()); mms.next_non_empty(); ) {
1037 // transform each slice of the original memphi:
1038 mms.set_memory(_gvn.transform(mms.memory()));
1039 }
1040 // Clean up input MergeMems created by transforming the slices
1041 _gvn.transform(_exits.merged_memory());
1042
1043 if (tf()->range()->cnt() > TypeFunc::Parms) {
1044 const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
1045 Node* ret_phi = _gvn.transform( _exits.argument(0) );
1046 if (!_exits.control()->is_top() && _gvn.type(ret_phi)->empty()) {
1047 // If the type we set for the ret_phi in build_exits() is too optimistic and
1048 // the ret_phi is top now, there's an extremely small chance that it may be due to class
1049 // loading. It could also be due to an error, so mark this method as not compilable because
1050 // otherwise this could lead to an infinite compile loop.
1051 // In any case, this code path is rarely (and never in my testing) reached.
1052 C->record_method_not_compilable("Can't determine return type.");
1053 return;
1054 }
1055 if (ret_type->isa_int()) {
1056 BasicType ret_bt = method()->return_type()->basic_type();
1057 ret_phi = mask_int_value(ret_phi, ret_bt, &_gvn);
1058 }
1059 _exits.push_node(ret_type->basic_type(), ret_phi);
1060 }
1061
1062 // Note: Logic for creating and optimizing the ReturnNode is in Compile.
1063
1064 // Unlock along the exceptional paths.
1118
1119 //-----------------------------create_entry_map-------------------------------
1120 // Initialize our parser map to contain the types at method entry.
1121 // For OSR, the map contains a single RawPtr parameter.
1122 // Initial monitor locking for sync. methods is performed by do_method_entry.
1123 SafePointNode* Parse::create_entry_map() {
1124 // Check for really stupid bail-out cases.
1125 uint len = TypeFunc::Parms + method()->max_locals() + method()->max_stack();
1126 if (len >= 32760) {
1127 // Bailout expected, this is a very rare edge case.
1128 C->record_method_not_compilable("too many local variables");
1129 return nullptr;
1130 }
1131
1132 // clear current replaced nodes that are of no use from here on (map was cloned in build_exits).
1133 _caller->map()->delete_replaced_nodes();
1134
1135 // If this is an inlined method, we may have to do a receiver null check.
1136 if (_caller->has_method() && is_normal_parse() && !method()->is_static()) {
1137 GraphKit kit(_caller);
1138 kit.null_check_receiver_before_call(method());
1139 _caller = kit.transfer_exceptions_into_jvms();
1140 if (kit.stopped()) {
1141 _exits.add_exception_states_from(_caller);
1142 _exits.set_jvms(_caller);
1143 return nullptr;
1144 }
1145 }
1146
1147 assert(method() != nullptr, "parser must have a method");
1148
1149 // Create an initial safepoint to hold JVM state during parsing
1150 JVMState* jvms = new (C) JVMState(method(), _caller->has_method() ? _caller : nullptr);
1151 set_map(new SafePointNode(len, jvms));
1152
1153 // Capture receiver info for compiled lambda forms.
1154 if (method()->is_compiled_lambda_form()) {
1155 ciInstance* recv_info = _caller->compute_receiver_info(method());
1156 jvms->set_receiver_info(recv_info);
1157 }
1158
1159 jvms->set_map(map());
1163 SafePointNode* inmap = _caller->map();
1164 assert(inmap != nullptr, "must have inmap");
1165 // In case of null check on receiver above
1166 map()->transfer_replaced_nodes_from(inmap, _new_idx);
1167
1168 uint i;
1169
1170 // Pass thru the predefined input parameters.
1171 for (i = 0; i < TypeFunc::Parms; i++) {
1172 map()->init_req(i, inmap->in(i));
1173 }
1174
1175 if (depth() == 1) {
1176 assert(map()->memory()->Opcode() == Op_Parm, "");
1177 // Insert the memory aliasing node
1178 set_all_memory(reset_memory());
1179 }
1180 assert(merged_memory(), "");
1181
1182 // Now add the locals which are initially bound to arguments:
1183 uint arg_size = tf()->domain()->cnt();
1184 ensure_stack(arg_size - TypeFunc::Parms); // OSR methods have funny args
1185 for (i = TypeFunc::Parms; i < arg_size; i++) {
1186 map()->init_req(i, inmap->argument(_caller, i - TypeFunc::Parms));
1187 }
1188
1189 // Clear out the rest of the map (locals and stack)
1190 for (i = arg_size; i < len; i++) {
1191 map()->init_req(i, top());
1192 }
1193
1194 SafePointNode* entry_map = stop();
1195 return entry_map;
1196 }
1197
1198 //-----------------------------do_method_entry--------------------------------
1199 // Emit any code needed in the pseudo-block before BCI zero.
1200 // The main thing to do is lock the receiver of a synchronized method.
1201 void Parse::do_method_entry() {
1202 set_parse_bci(InvocationEntryBci); // Pseudo-BCP
1203 set_sp(0); // Java Stack Pointer
1204
1205 NOT_PRODUCT( count_compiled_calls(true/*at_method_entry*/, false/*is_inline*/); )
1206
1207 if (C->env()->dtrace_method_probes()) {
1208 make_dtrace_method_entry(method());
1209 }
1210
1211 #ifdef ASSERT
1212 // Narrow receiver type when it is too broad for the method being parsed.
1213 if (!method()->is_static()) {
1214 ciInstanceKlass* callee_holder = method()->holder();
1215 const Type* holder_type = TypeInstPtr::make(TypePtr::BotPTR, callee_holder, Type::trust_interfaces);
1216
1217 Node* receiver_obj = local(0);
1218 const TypeInstPtr* receiver_type = _gvn.type(receiver_obj)->isa_instptr();
1219
1220 if (receiver_type != nullptr && !receiver_type->higher_equal(holder_type)) {
1221 // Receiver should always be a subtype of callee holder.
1222 // But, since C2 type system doesn't properly track interfaces,
1223 // the invariant can't be expressed in the type system for default methods.
1224 // Example: for unrelated C <: I and D <: I, (C `meet` D) = Object </: I.
1225 assert(callee_holder->is_interface(), "missing subtype check");
1226
1237
1238 // If the method is synchronized, we need to construct a lock node, attach
1239 // it to the Start node, and pin it there.
1240 if (method()->is_synchronized()) {
1241 // Insert a FastLockNode right after the Start which takes as arguments
1242 // the current thread pointer, the "this" pointer & the address of the
1243 // stack slot pair used for the lock. The "this" pointer is a projection
1244 // off the start node, but the locking spot has to be constructed by
1245 // creating a ConLNode of 0, and boxing it with a BoxLockNode. The BoxLockNode
1246 // becomes the second argument to the FastLockNode call. The
1247 // FastLockNode becomes the new control parent to pin it to the start.
1248
1249 // Setup Object Pointer
1250 Node *lock_obj = nullptr;
1251 if (method()->is_static()) {
1252 ciInstance* mirror = _method->holder()->java_mirror();
1253 const TypeInstPtr *t_lock = TypeInstPtr::make(mirror);
1254 lock_obj = makecon(t_lock);
1255 } else { // Else pass the "this" pointer,
1256 lock_obj = local(0); // which is Parm0 from StartNode
1257 }
1258 // Clear out dead values from the debug info.
1259 kill_dead_locals();
1260 // Build the FastLockNode
1261 _synch_lock = shared_lock(lock_obj);
1262 // Check for bailout in shared_lock
1263 if (failing()) { return; }
1264 }
1265
1266 // Feed profiling data for parameters to the type system so it can
1267 // propagate it as speculative types
1268 record_profiled_parameters_for_speculation();
1269 }
1270
1271 //------------------------------init_blocks------------------------------------
1272 // Initialize our parser map to contain the types/monitors at method entry.
1273 void Parse::init_blocks() {
1274 // Create the blocks.
1275 _block_count = flow()->block_count();
1276 _blocks = NEW_RESOURCE_ARRAY(Block, _block_count);
1672 //--------------------handle_missing_successor---------------------------------
1673 void Parse::handle_missing_successor(int target_bci) {
1674 #ifndef PRODUCT
1675 Block* b = block();
1676 int trap_bci = b->flow()->has_trap()? b->flow()->trap_bci(): -1;
1677 tty->print_cr("### Missing successor at bci:%d for block #%d (trap_bci:%d)", target_bci, b->rpo(), trap_bci);
1678 #endif
1679 ShouldNotReachHere();
1680 }
1681
1682 //--------------------------merge_common---------------------------------------
1683 void Parse::merge_common(Parse::Block* target, int pnum) {
1684 if (TraceOptoParse) {
1685 tty->print("Merging state at block #%d bci:%d", target->rpo(), target->start());
1686 }
1687
1688 // Zap extra stack slots to top
1689 assert(sp() == target->start_sp(), "");
1690 clean_stack(sp());
1691
1692 if (!target->is_merged()) { // No prior mapping at this bci
1693 if (TraceOptoParse) { tty->print(" with empty state"); }
1694
1695 // If this path is dead, do not bother capturing it as a merge.
1696 // It is "as if" we had 1 fewer predecessors from the beginning.
1697 if (stopped()) {
1698 if (TraceOptoParse) tty->print_cr(", but path is dead and doesn't count");
1699 return;
1700 }
1701
1702 // Make a region if we know there are multiple or unpredictable inputs.
1703 // (Also, if this is a plain fall-through, we might see another region,
1704 // which must not be allowed into this block's map.)
1705 if (pnum > PhiNode::Input // Known multiple inputs.
1706 || target->is_handler() // These have unpredictable inputs.
1707 || target->is_loop_head() // Known multiple inputs
1708 || control()->is_Region()) { // We must hide this guy.
1709
1710 int current_bci = bci();
1711 set_parse_bci(target->start()); // Set target bci
1726 record_for_igvn(r);
1727 // zap all inputs to null for debugging (done in Node(uint) constructor)
1728 // for (int j = 1; j < edges+1; j++) { r->init_req(j, nullptr); }
1729 r->init_req(pnum, control());
1730 set_control(r);
1731 target->copy_irreducible_status_to(r, jvms());
1732 set_parse_bci(current_bci); // Restore bci
1733 }
1734
1735 // Convert the existing Parser mapping into a mapping at this bci.
1736 store_state_to(target);
1737 assert(target->is_merged(), "do not come here twice");
1738
1739 } else { // Prior mapping at this bci
1740 if (TraceOptoParse) { tty->print(" with previous state"); }
1741 #ifdef ASSERT
1742 if (target->is_SEL_head()) {
1743 target->mark_merged_backedge(block());
1744 }
1745 #endif
1746 // We must not manufacture more phis if the target is already parsed.
1747 bool nophi = target->is_parsed();
1748
1749 SafePointNode* newin = map();// Hang on to incoming mapping
1750 Block* save_block = block(); // Hang on to incoming block;
1751 load_state_from(target); // Get prior mapping
1752
1753 assert(newin->jvms()->locoff() == jvms()->locoff(), "JVMS layouts agree");
1754 assert(newin->jvms()->stkoff() == jvms()->stkoff(), "JVMS layouts agree");
1755 assert(newin->jvms()->monoff() == jvms()->monoff(), "JVMS layouts agree");
1756 assert(newin->jvms()->endoff() == jvms()->endoff(), "JVMS layouts agree");
1757
1758 // Iterate over my current mapping and the old mapping.
1759 // Where different, insert Phi functions.
1760 // Use any existing Phi functions.
1761 assert(control()->is_Region(), "must be merging to a region");
1762 RegionNode* r = control()->as_Region();
1763
1764 // Compute where to merge into
1765 // Merge incoming control path
1766 r->init_req(pnum, newin->control());
1767
1768 if (pnum == 1) { // Last merge for this Region?
1769 if (!block()->flow()->is_irreducible_loop_secondary_entry()) {
1770 Node* result = _gvn.transform(r);
1771 if (r != result && TraceOptoParse) {
1772 tty->print_cr("Block #%d replace %d with %d", block()->rpo(), r->_idx, result->_idx);
1773 }
1774 }
1775 record_for_igvn(r);
1776 }
1777
1778 // Update all the non-control inputs to map:
1779 assert(TypeFunc::Parms == newin->jvms()->locoff(), "parser map should contain only youngest jvms");
1780 bool check_elide_phi = target->is_SEL_backedge(save_block);
1781 for (uint j = 1; j < newin->req(); j++) {
1782 Node* m = map()->in(j); // Current state of target.
1783 Node* n = newin->in(j); // Incoming change to target state.
1784 PhiNode* phi;
1785 if (m->is_Phi() && m->as_Phi()->region() == r)
1786 phi = m->as_Phi();
1787 else
1788 phi = nullptr;
1789 if (m != n) { // Different; must merge
1790 switch (j) {
1791 // Frame pointer and Return Address never changes
1792 case TypeFunc::FramePtr:// Drop m, use the original value
1793 case TypeFunc::ReturnAdr:
1794 break;
1795 case TypeFunc::Memory: // Merge inputs to the MergeMem node
1796 assert(phi == nullptr, "the merge contains phis, not vice versa");
1797 merge_memory_edges(n->as_MergeMem(), pnum, nophi);
1798 continue;
1799 default: // All normal stuff
1800 if (phi == nullptr) {
1801 const JVMState* jvms = map()->jvms();
1802 if (EliminateNestedLocks &&
1803 jvms->is_mon(j) && jvms->is_monitor_box(j)) {
1804 // BoxLock nodes are not commoning when EliminateNestedLocks is on.
1805 // Use old BoxLock node as merged box.
1806 assert(newin->jvms()->is_monitor_box(j), "sanity");
1807 // This assert also tests that nodes are BoxLock.
1808 assert(BoxLockNode::same_slot(n, m), "sanity");
1815 // Incremental Inlining before EA and Macro nodes elimination.
1816 //
1817 // Incremental Inlining is executed after IGVN optimizations
1818 // during which BoxLock can be marked as Coarsened.
1819 old_box->set_coarsened(); // Verifies state
1820 old_box->set_unbalanced();
1821 }
1822 C->gvn_replace_by(n, m);
1823 } else if (!check_elide_phi || !target->can_elide_SEL_phi(j)) {
1824 phi = ensure_phi(j, nophi);
1825 }
1826 }
1827 break;
1828 }
1829 }
1830 // At this point, n might be top if:
1831 // - there is no phi (because TypeFlow detected a conflict), or
1832 // - the corresponding control edges is top (a dead incoming path)
1833 // It is a bug if we create a phi which sees a garbage value on a live path.
1834
1835 if (phi != nullptr) {
1836 assert(n != top() || r->in(pnum) == top(), "live value must not be garbage");
1837 assert(phi->region() == r, "");
1838 phi->set_req(pnum, n); // Then add 'n' to the merge
1839 if (pnum == PhiNode::Input) {
1840 // Last merge for this Phi.
1841 // So far, Phis have had a reasonable type from ciTypeFlow.
1842 // Now _gvn will join that with the meet of current inputs.
1843 // BOTTOM is never permissible here, 'cause pessimistically
1844 // Phis of pointers cannot lose the basic pointer type.
1845 DEBUG_ONLY(const Type* bt1 = phi->bottom_type());
1846 assert(bt1 != Type::BOTTOM, "should not be building conflict phis");
1847 map()->set_req(j, _gvn.transform(phi));
1848 DEBUG_ONLY(const Type* bt2 = phi->bottom_type());
1849 assert(bt2->higher_equal_speculative(bt1), "must be consistent with type-flow");
1850 record_for_igvn(phi);
1851 }
1852 }
1853 } // End of for all values to be merged
1854
1855 if (pnum == PhiNode::Input &&
1856 !r->in(0)) { // The occasional useless Region
1857 assert(control() == r, "");
1858 set_control(r->nonnull_req());
1859 }
1860
1861 map()->merge_replaced_nodes_with(newin);
1862
1863 // newin has been subsumed into the lazy merge, and is now dead.
1864 set_block(save_block);
1865
1866 stop(); // done with this guy, for now
1867 }
1868
1869 if (TraceOptoParse) {
1870 tty->print_cr(" on path %d", pnum);
1871 }
1872
1873 // Done with this parser state.
1874 assert(stopped(), "");
1875 }
1876
1988
1989 // Add new path to the region.
1990 uint pnum = r->req();
1991 r->add_req(nullptr);
1992
1993 for (uint i = 1; i < map->req(); i++) {
1994 Node* n = map->in(i);
1995 if (i == TypeFunc::Memory) {
1996 // Ensure a phi on all currently known memories.
1997 for (MergeMemStream mms(n->as_MergeMem()); mms.next_non_empty(); ) {
1998 Node* phi = mms.memory();
1999 if (phi->is_Phi() && phi->as_Phi()->region() == r) {
2000 assert(phi->req() == pnum, "must be same size as region");
2001 phi->add_req(nullptr);
2002 }
2003 }
2004 } else {
2005 if (n->is_Phi() && n->as_Phi()->region() == r) {
2006 assert(n->req() == pnum, "must be same size as region");
2007 n->add_req(nullptr);
2008 }
2009 }
2010 }
2011
2012 return pnum;
2013 }
2014
2015 //------------------------------ensure_phi-------------------------------------
2016 // Turn the idx'th entry of the current map into a Phi
2017 PhiNode *Parse::ensure_phi(int idx, bool nocreate) {
2018 SafePointNode* map = this->map();
2019 Node* region = map->control();
2020 assert(region->is_Region(), "");
2021
2022 Node* o = map->in(idx);
2023 assert(o != nullptr, "");
2024
2025 if (o == top()) return nullptr; // TOP always merges into TOP
2026
2027 if (o->is_Phi() && o->as_Phi()->region() == region) {
2028 return o->as_Phi();
2029 }
2030
2031 // Now use a Phi here for merging
2032 assert(!nocreate, "Cannot build a phi for a block already parsed.");
2033 const JVMState* jvms = map->jvms();
2034 const Type* t = nullptr;
2035 if (jvms->is_loc(idx)) {
2036 t = block()->local_type_at(idx - jvms->locoff());
2037 } else if (jvms->is_stk(idx)) {
2038 t = block()->stack_type_at(idx - jvms->stkoff());
2039 } else if (jvms->is_mon(idx)) {
2040 assert(!jvms->is_monitor_box(idx), "no phis for boxes");
2041 t = TypeInstPtr::BOTTOM; // this is sufficient for a lock object
2042 } else if ((uint)idx < TypeFunc::Parms) {
2043 t = o->bottom_type(); // Type::RETURN_ADDRESS or such-like.
2044 } else {
2045 assert(false, "no type information for this phi");
2046 }
2047
2048 // If the type falls to bottom, then this must be a local that
2049 // is mixing ints and oops or some such. Forcing it to top
2050 // makes it go dead.
2051 if (t == Type::BOTTOM) {
2052 map->set_req(idx, top());
2053 return nullptr;
2054 }
2055
2056 // Do not create phis for top either.
2057 // A top on a non-null control flow must be an unused even after the.phi.
2058 if (t == Type::TOP || t == Type::HALF) {
2059 map->set_req(idx, top());
2060 return nullptr;
2061 }
2062
2063 PhiNode* phi = PhiNode::make(region, o, t);
2064 gvn().set_type(phi, t);
2065 if (C->do_escape_analysis()) record_for_igvn(phi);
2066 map->set_req(idx, phi);
2067 return phi;
2068 }
2069
2070 //--------------------------ensure_memory_phi----------------------------------
2071 // Turn the idx'th slice of the current memory into a Phi
2072 PhiNode *Parse::ensure_memory_phi(int idx, bool nocreate) {
2073 MergeMemNode* mem = merged_memory();
2074 Node* region = control();
2075 assert(region->is_Region(), "");
2076
2077 Node *o = (idx == Compile::AliasIdxBot)? mem->base_memory(): mem->memory_at(idx);
2078 assert(o != nullptr && o != top(), "");
2079
2080 PhiNode* phi;
2081 if (o->is_Phi() && o->as_Phi()->region() == region) {
2082 phi = o->as_Phi();
2083 if (phi == mem->base_memory() && idx >= Compile::AliasIdxRaw) {
2084 // clone the shared base memory phi to make a new memory split
2085 assert(!nocreate, "Cannot build a phi for a block already parsed.");
2086 const Type* t = phi->bottom_type();
2087 const TypePtr* adr_type = C->get_adr_type(idx);
2177 // Add check to deoptimize once holder klass is fully initialized.
2178 void Parse::clinit_deopt() {
2179 assert(C->has_method(), "only for normal compilations");
2180 assert(depth() == 1, "only for main compiled method");
2181 assert(is_normal_parse(), "no barrier needed on osr entry");
2182 assert(!method()->holder()->is_not_initialized(), "initialization should have been started");
2183
2184 set_parse_bci(0);
2185
2186 Node* holder = makecon(TypeKlassPtr::make(method()->holder(), Type::trust_interfaces));
2187 guard_klass_being_initialized(holder);
2188 }
2189
2190 //------------------------------return_current---------------------------------
2191 // Append current _map to _exit_return
2192 void Parse::return_current(Node* value) {
2193 if (method()->intrinsic_id() == vmIntrinsics::_Object_init) {
2194 call_register_finalizer();
2195 }
2196
2197 // Do not set_parse_bci, so that return goo is credited to the return insn.
2198 set_bci(InvocationEntryBci);
2199 if (method()->is_synchronized()) {
2200 shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
2201 }
2202 if (C->env()->dtrace_method_probes()) {
2203 make_dtrace_method_exit(method());
2204 }
2205 SafePointNode* exit_return = _exits.map();
2206 exit_return->in( TypeFunc::Control )->add_req( control() );
2207 exit_return->in( TypeFunc::I_O )->add_req( i_o () );
2208 Node *mem = exit_return->in( TypeFunc::Memory );
2209 for (MergeMemStream mms(mem->as_MergeMem(), merged_memory()); mms.next_non_empty2(); ) {
2210 if (mms.is_empty()) {
2211 // get a copy of the base memory, and patch just this one input
2212 const TypePtr* adr_type = mms.adr_type(C);
2213 Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
2214 assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
2215 gvn().set_type_bottom(phi);
2216 phi->del_req(phi->req()-1); // prepare to re-patch
2217 mms.set_memory(phi);
2218 }
2219 mms.memory()->add_req(mms.memory2());
2220 }
2221
2222 // frame pointer is always same, already captured
2223 if (value != nullptr) {
2224 // If returning oops to an interface-return, there is a silent free
2225 // cast from oop to interface allowed by the Verifier. Make it explicit
2226 // here.
2227 Node* phi = _exits.argument(0);
2228 phi->add_req(value);
2229 }
2230
2231 if (_first_return) {
2232 _exits.map()->transfer_replaced_nodes_from(map(), _new_idx);
2233 _first_return = false;
2234 } else {
2235 _exits.map()->merge_replaced_nodes_with(map());
2236 }
2237
2238 stop_and_kill_map(); // This CFG path dies here
2239 }
2240
2241
2242 //------------------------------add_safepoint----------------------------------
2243 void Parse::add_safepoint() {
2244 uint parms = TypeFunc::Parms+1;
2245
2246 // Clear out dead values from the debug info.
2247 kill_dead_locals();
2248
2249 // Clone the JVM State
2250 SafePointNode *sfpnt = new SafePointNode(parms, nullptr);
|
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "compiler/compileLog.hpp"
26 #include "interpreter/linkResolver.hpp"
27 #include "memory/resourceArea.hpp"
28 #include "oops/method.hpp"
29 #include "opto/addnode.hpp"
30 #include "opto/c2compiler.hpp"
31 #include "opto/castnode.hpp"
32 #include "opto/convertnode.hpp"
33 #include "opto/idealGraphPrinter.hpp"
34 #include "opto/inlinetypenode.hpp"
35 #include "opto/locknode.hpp"
36 #include "opto/memnode.hpp"
37 #include "opto/opaquenode.hpp"
38 #include "opto/parse.hpp"
39 #include "opto/rootnode.hpp"
40 #include "opto/runtime.hpp"
41 #include "opto/type.hpp"
42 #include "runtime/arguments.hpp"
43 #include "runtime/handles.inline.hpp"
44 #include "runtime/safepointMechanism.hpp"
45 #include "runtime/sharedRuntime.hpp"
46 #include "utilities/bitMap.inline.hpp"
47 #include "utilities/copy.hpp"
48
49 // Static array so we can figure out which bytecodes stop us from compiling
50 // the most. Some of the non-static variables are needed in bytecodeInfo.cpp
51 // and eventually should be encapsulated in a proper class (gri 8/18/98).
52
53 #ifndef PRODUCT
54 uint nodes_created = 0;
55 uint methods_parsed = 0;
56 uint methods_seen = 0;
57 uint blocks_parsed = 0;
58 uint blocks_seen = 0;
59
60 uint explicit_null_checks_inserted = 0;
61 uint explicit_null_checks_elided = 0;
62 uint all_null_checks_found = 0;
87 }
88 if (all_null_checks_found) {
89 tty->print_cr("%u made implicit (%2u%%)", implicit_null_checks,
90 (100*implicit_null_checks)/all_null_checks_found);
91 }
92 if (SharedRuntime::_implicit_null_throws) {
93 tty->print_cr("%u implicit null exceptions at runtime",
94 SharedRuntime::_implicit_null_throws);
95 }
96
97 if (PrintParseStatistics && BytecodeParseHistogram::initialized()) {
98 BytecodeParseHistogram::print();
99 }
100 }
101 #endif
102
103 //------------------------------ON STACK REPLACEMENT---------------------------
104
105 // Construct a node which can be used to get incoming state for
106 // on stack replacement.
107 Node* Parse::fetch_interpreter_state(int index,
108 const Type* type,
109 Node* local_addrs,
110 Node* local_addrs_base) {
111 BasicType bt = type->basic_type();
112 if (type == TypePtr::NULL_PTR) {
113 // Ptr types are mixed together with T_ADDRESS but nullptr is
114 // really for T_OBJECT types so correct it.
115 bt = T_OBJECT;
116 }
117 Node *mem = memory(Compile::AliasIdxRaw);
118 Node *adr = basic_plus_adr( local_addrs_base, local_addrs, -index*wordSize );
119 Node *ctl = control();
120
121 // Very similar to LoadNode::make, except we handle un-aligned longs and
122 // doubles on Sparc. Intel can handle them just fine directly.
123 Node *l = nullptr;
124 switch (bt) { // Signature is flattened
125 case T_INT: l = new LoadINode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInt::INT, MemNode::unordered); break;
126 case T_FLOAT: l = new LoadFNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::FLOAT, MemNode::unordered); break;
127 case T_ADDRESS: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, MemNode::unordered); break;
128 case T_OBJECT: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInstPtr::BOTTOM, MemNode::unordered); break;
129 case T_LONG:
130 case T_DOUBLE: {
131 // Since arguments are in reverse order, the argument address 'adr'
132 // refers to the back half of the long/double. Recompute adr.
133 adr = basic_plus_adr(local_addrs_base, local_addrs, -(index+1)*wordSize);
134 if (Matcher::misaligned_doubles_ok) {
135 l = (bt == T_DOUBLE)
136 ? (Node*)new LoadDNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::DOUBLE, MemNode::unordered)
137 : (Node*)new LoadLNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeLong::LONG, MemNode::unordered);
138 } else {
139 l = (bt == T_DOUBLE)
140 ? (Node*)new LoadD_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered)
141 : (Node*)new LoadL_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered);
142 }
143 break;
144 }
145 default: ShouldNotReachHere();
146 }
147 return _gvn.transform(l);
148 }
149
150 // Helper routine to prevent the interpreter from handing
151 // unexpected typestate to an OSR method.
152 // The Node l is a value newly dug out of the interpreter frame.
153 // The type is the type predicted by ciTypeFlow. Note that it is
154 // not a general type, but can only come from Type::get_typeflow_type.
155 // The safepoint is a map which will feed an uncommon trap.
156 Node* Parse::check_interpreter_type(Node* l, const Type* type, const TypeKlassPtr* klass_type,
157 SafePointNode* &bad_type_exit, bool is_early_larval) {
158 const TypeOopPtr* tp = type->isa_oopptr();
159
160 // TypeFlow may assert null-ness if a type appears unloaded.
161 if (type == TypePtr::NULL_PTR ||
162 (tp != nullptr && !tp->is_loaded())) {
163 // Value must be null, not a real oop.
164 Node* chk = _gvn.transform( new CmpPNode(l, null()) );
165 Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
166 IfNode* iff = create_and_map_if(control(), tst, PROB_MAX, COUNT_UNKNOWN);
167 set_control(_gvn.transform( new IfTrueNode(iff) ));
168 Node* bad_type = _gvn.transform( new IfFalseNode(iff) );
169 bad_type_exit->control()->add_req(bad_type);
170 l = null();
171 }
172
173 // Typeflow can also cut off paths from the CFG, based on
174 // types which appear unloaded, or call sites which appear unlinked.
175 // When paths are cut off, values at later merge points can rise
176 // toward more specific classes. Make sure these specific classes
177 // are still in effect.
178 if (tp != nullptr && !tp->is_same_java_type_as(TypeInstPtr::BOTTOM)) {
179 // TypeFlow asserted a specific object type. Value must have that type.
180 Node* bad_type_ctrl = nullptr;
181 if (tp->is_inlinetypeptr() && !tp->maybe_null()) {
182 // Check inline types for null here to prevent checkcast from adding an
183 // exception state before the bytecode entry (use 'bad_type_ctrl' instead).
184 l = null_check_oop(l, &bad_type_ctrl);
185 bad_type_exit->control()->add_req(bad_type_ctrl);
186 }
187
188 l = gen_checkcast(l, makecon(klass_type), &bad_type_ctrl, false, is_early_larval);
189 bad_type_exit->control()->add_req(bad_type_ctrl);
190 }
191
192 assert(_gvn.type(l)->higher_equal(type), "must constrain OSR typestate");
193 return l;
194 }
195
196 // Helper routine which sets up elements of the initial parser map when
197 // performing a parse for on stack replacement. Add values into map.
198 // The only parameter contains the address of a interpreter arguments.
199 void Parse::load_interpreter_state(Node* osr_buf) {
200 int index;
201 int max_locals = jvms()->loc_size();
202 int max_stack = jvms()->stk_size();
203
204 // Mismatch between method and jvms can occur since map briefly held
205 // an OSR entry state (which takes up one RawPtr word).
206 assert(max_locals == method()->max_locals(), "sanity");
207 assert(max_stack >= method()->max_stack(), "sanity");
208 assert((int)jvms()->endoff() == TypeFunc::Parms + max_locals + max_stack, "sanity");
209 assert((int)jvms()->endoff() == (int)map()->req(), "sanity");
210
211 // Find the start block.
212 Block* osr_block = start_block();
213 assert(osr_block->start() == osr_bci(), "sanity");
214
215 // Set initial BCI.
216 set_parse_bci(osr_block->start());
217
218 // Set initial stack depth.
219 set_sp(osr_block->start_sp());
220
221 // Check bailouts. We currently do not perform on stack replacement
222 // of loops in catch blocks or loops which branch with a non-empty stack.
223 if (sp() != 0) {
238 for (index = 0; index < mcnt; index++) {
239 // Make a BoxLockNode for the monitor.
240 BoxLockNode* osr_box = new BoxLockNode(next_monitor());
241 // Check for bailout after new BoxLockNode
242 if (failing()) { return; }
243
244 // This OSR locking region is unbalanced because it does not have Lock node:
245 // locking was done in Interpreter.
246 // This is similar to Coarsened case when Lock node is eliminated
247 // and as result the region is marked as Unbalanced.
248
249 // Emulate Coarsened state transition from Regular to Unbalanced.
250 osr_box->set_coarsened();
251 osr_box->set_unbalanced();
252
253 Node* box = _gvn.transform(osr_box);
254
255 // Displaced headers and locked objects are interleaved in the
256 // temp OSR buffer. We only copy the locked objects out here.
257 // Fetch the locked object from the OSR temp buffer and copy to our fastlock node.
258 Node* lock_object = fetch_interpreter_state(index*2, Type::get_const_basic_type(T_OBJECT), monitors_addr, osr_buf);
259 // Try and copy the displaced header to the BoxNode
260 Node* displaced_hdr = fetch_interpreter_state((index*2) + 1, Type::get_const_basic_type(T_ADDRESS), monitors_addr, osr_buf);
261
262 store_to_memory(control(), box, displaced_hdr, T_ADDRESS, MemNode::unordered);
263
264 // Build a bogus FastLockNode (no code will be generated) and push the
265 // monitor into our debug info.
266 const FastLockNode *flock = _gvn.transform(new FastLockNode( nullptr, lock_object, box ))->as_FastLock();
267 map()->push_monitor(flock);
268
269 // If the lock is our method synchronization lock, tuck it away in
270 // _sync_lock for return and rethrow exit paths.
271 if (index == 0 && method()->is_synchronized()) {
272 _synch_lock = flock;
273 }
274 }
275
276 // Use the raw liveness computation to make sure that unexpected
277 // values don't propagate into the OSR frame.
278 MethodLivenessResult live_locals = method()->liveness_at_bci(osr_bci());
279 if (!live_locals.is_valid()) {
280 // Degenerate or breakpointed method.
308 if (C->log() != nullptr) {
309 C->log()->elem("OSR_mismatch local_index='%d'",index);
310 }
311 set_local(index, null());
312 // and ignore it for the loads
313 continue;
314 }
315 }
316
317 // Filter out TOP, HALF, and BOTTOM. (Cf. ensure_phi.)
318 if (type == Type::TOP || type == Type::HALF) {
319 continue;
320 }
321 // If the type falls to bottom, then this must be a local that
322 // is mixing ints and oops or some such. Forcing it to top
323 // makes it go dead.
324 if (type == Type::BOTTOM) {
325 continue;
326 }
327 // Construct code to access the appropriate local.
328 Node* value = fetch_interpreter_state(index, type, locals_addr, osr_buf);
329 set_local(index, value);
330 }
331
332 // Extract the needed stack entries from the interpreter frame.
333 for (index = 0; index < sp(); index++) {
334 const Type *type = osr_block->stack_type_at(index);
335 if (type != Type::TOP) {
336 // Currently the compiler bails out when attempting to on stack replace
337 // at a bci with a non-empty stack. We should not reach here.
338 ShouldNotReachHere();
339 }
340 }
341
342 // End the OSR migration
343 make_runtime_call(RC_LEAF, OptoRuntime::osr_end_Type(),
344 CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
345 "OSR_migration_end", TypeRawPtr::BOTTOM,
346 osr_buf);
347
348 // Now that the interpreter state is loaded, make sure it will match
359 if (type->isa_oopptr() != nullptr) {
360 if (!live_oops.at(index)) {
361 // skip type check for dead oops
362 continue;
363 }
364 }
365 if (osr_block->flow()->local_type_at(index)->is_return_address()) {
366 // In our current system it's illegal for jsr addresses to be
367 // live into an OSR entry point because the compiler performs
368 // inlining of jsrs. ciTypeFlow has a bailout that detect this
369 // case and aborts the compile if addresses are live into an OSR
370 // entry point. Because of that we can assume that any address
371 // locals at the OSR entry point are dead. Method liveness
372 // isn't precise enough to figure out that they are dead in all
373 // cases so simply skip checking address locals all
374 // together. Any type check is guaranteed to fail since the
375 // interpreter type is the result of a load which might have any
376 // value and the expected type is a constant.
377 continue;
378 }
379 const TypeKlassPtr* klass_type = nullptr;
380 if (type->isa_oopptr()) {
381 klass_type = TypeKlassPtr::make(osr_block->flow()->local_type_at(index)->unwrap()->as_klass(), Type::ignore_interfaces);
382 klass_type = klass_type->try_improve();
383 }
384 bool is_early_larval = osr_block->flow()->local_type_at(index)->is_early_larval();
385 set_local(index, check_interpreter_type(l, type, klass_type, bad_type_exit, is_early_larval));
386 }
387
388 for (index = 0; index < sp(); index++) {
389 if (stopped()) break;
390 Node* l = stack(index);
391 if (l->is_top()) continue; // nothing here
392 const Type* type = osr_block->stack_type_at(index);
393 const TypeKlassPtr* klass_type = nullptr;
394 if (type->isa_oopptr()) {
395 klass_type = TypeKlassPtr::make(osr_block->flow()->stack_type_at(index)->unwrap()->as_klass(), Type::ignore_interfaces);
396 klass_type = klass_type->try_improve();
397 }
398 bool is_early_larval = osr_block->flow()->stack_type_at(index)->is_early_larval();
399 set_stack(index, check_interpreter_type(l, type, klass_type, bad_type_exit, is_early_larval));
400 }
401
402 if (bad_type_exit->control()->req() > 1) {
403 // Build an uncommon trap here, if any inputs can be unexpected.
404 bad_type_exit->set_control(_gvn.transform( bad_type_exit->control() ));
405 record_for_igvn(bad_type_exit->control());
406 SafePointNode* types_are_good = map();
407 set_map(bad_type_exit);
408 // The unexpected type happens because a new edge is active
409 // in the CFG, which typeflow had previously ignored.
410 // E.g., Object x = coldAtFirst() && notReached()? "str": new Integer(123).
411 // This x will be typed as Integer if notReached is not yet linked.
412 // It could also happen due to a problem in ciTypeFlow analysis.
413 uncommon_trap(Deoptimization::Reason_constraint,
414 Deoptimization::Action_reinterpret);
415 set_map(types_are_good);
416 }
417 }
418
419 //------------------------------Parse------------------------------------------
520 // either breakpoint setting or hotswapping of methods may
521 // cause deoptimization.
522 if (C->env()->jvmti_can_hotswap_or_post_breakpoint()) {
523 C->dependencies()->assert_evol_method(method());
524 }
525
526 NOT_PRODUCT(methods_seen++);
527
528 // Do some special top-level things.
529 if (depth() == 1 && C->is_osr_compilation()) {
530 _tf = C->tf(); // the OSR entry type is different
531 _entry_bci = C->entry_bci();
532 _flow = method()->get_osr_flow_analysis(osr_bci());
533 } else {
534 _tf = TypeFunc::make(method());
535 _entry_bci = InvocationEntryBci;
536 _flow = method()->get_flow_analysis();
537 }
538
539 if (_flow->failing()) {
540 // TODO Adding a trap due to an unloaded return type in ciTypeFlow::StateVector::do_invoke
541 // can lead to this. Re-enable once 8284443 is fixed.
542 //assert(false, "type flow analysis failed during parsing");
543 C->record_method_not_compilable(_flow->failure_reason());
544 #ifndef PRODUCT
545 if (PrintOpto && (Verbose || WizardMode)) {
546 if (is_osr_parse()) {
547 tty->print_cr("OSR @%d type flow bailout: %s", _entry_bci, _flow->failure_reason());
548 } else {
549 tty->print_cr("type flow bailout: %s", _flow->failure_reason());
550 }
551 if (Verbose) {
552 method()->print();
553 method()->print_codes();
554 _flow->print();
555 }
556 }
557 #endif
558 }
559
560 #ifdef ASSERT
561 if (depth() == 1) {
562 assert(C->is_osr_compilation() == this->is_osr_parse(), "OSR in sync");
613 load_interpreter_state(osr_buf);
614 } else {
615 set_map(entry_map);
616 do_method_entry();
617 }
618
619 if (depth() == 1 && !failing()) {
620 if (C->clinit_barrier_on_entry()) {
621 // Add check to deoptimize the nmethod once the holder class is fully initialized
622 clinit_deopt();
623 }
624 }
625
626 // Check for bailouts during method entry.
627 if (failing()) {
628 if (log) log->done("parse");
629 C->set_default_node_notes(caller_nn);
630 return;
631 }
632
633 // Handle inline type arguments
634 int arg_size = method()->arg_size();
635 for (int i = 0; i < arg_size; i++) {
636 Node* parm = local(i);
637 const Type* t = _gvn.type(parm);
638 if (t->is_inlinetypeptr()) {
639 // If the parameter is a value object, try to scalarize it if we know that it is unrestricted (not early larval)
640 // Parameters are non-larval except the receiver of a constructor, which must be an early larval object.
641 if (!(method()->is_object_constructor() && i == 0)) {
642 // Create InlineTypeNode from the oop and replace the parameter
643 Node* vt = InlineTypeNode::make_from_oop(this, parm, t->inline_klass());
644 replace_in_map(parm, vt);
645 }
646 } else if (UseTypeSpeculation && (i == (arg_size - 1)) && !is_osr_parse() && method()->has_vararg() &&
647 t->isa_aryptr() != nullptr && !t->is_aryptr()->is_null_free() && !t->is_aryptr()->is_flat() &&
648 (!t->is_aryptr()->is_not_null_free() || !t->is_aryptr()->is_not_flat())) {
649 // Speculate on varargs Object array being not null-free and not flat
650 const TypePtr* spec_type = t->speculative();
651 spec_type = (spec_type != nullptr && spec_type->isa_aryptr() != nullptr) ? spec_type : t->is_aryptr();
652 spec_type = spec_type->remove_speculative()->is_aryptr()->cast_to_not_null_free()->cast_to_not_flat();
653 spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::Offset::bottom, TypeOopPtr::InstanceBot, spec_type);
654 Node* cast = _gvn.transform(new CheckCastPPNode(control(), parm, t->join_speculative(spec_type)));
655 replace_in_map(parm, cast);
656 }
657 }
658
659 entry_map = map(); // capture any changes performed by method setup code
660 assert(jvms()->endoff() == map()->req(), "map matches JVMS layout");
661
662 // We begin parsing as if we have just encountered a jump to the
663 // method entry.
664 Block* entry_block = start_block();
665 assert(entry_block->start() == (is_osr_parse() ? osr_bci() : 0), "");
666 set_map_clone(entry_map);
667 merge_common(entry_block, entry_block->next_path_num());
668
669 #ifndef PRODUCT
670 BytecodeParseHistogram *parse_histogram_obj = new (C->env()->arena()) BytecodeParseHistogram(this, C);
671 set_parse_histogram( parse_histogram_obj );
672 #endif
673
674 // Parse all the basic blocks.
675 do_all_blocks();
676
677 // Check for bailouts during conversion to graph
678 if (failing()) {
824 void Parse::build_exits() {
825 // make a clone of caller to prevent sharing of side-effects
826 _exits.set_map(_exits.clone_map());
827 _exits.clean_stack(_exits.sp());
828 _exits.sync_jvms();
829
830 RegionNode* region = new RegionNode(1);
831 record_for_igvn(region);
832 gvn().set_type_bottom(region);
833 _exits.set_control(region);
834
835 // Note: iophi and memphi are not transformed until do_exits.
836 Node* iophi = new PhiNode(region, Type::ABIO);
837 Node* memphi = new PhiNode(region, Type::MEMORY, TypePtr::BOTTOM);
838 gvn().set_type_bottom(iophi);
839 gvn().set_type_bottom(memphi);
840 _exits.set_i_o(iophi);
841 _exits.set_all_memory(memphi);
842
843 // Add a return value to the exit state. (Do not push it yet.)
844 if (tf()->range_sig()->cnt() > TypeFunc::Parms) {
845 const Type* ret_type = tf()->range_sig()->field_at(TypeFunc::Parms);
846 if (ret_type->isa_int()) {
847 BasicType ret_bt = method()->return_type()->basic_type();
848 if (ret_bt == T_BOOLEAN ||
849 ret_bt == T_CHAR ||
850 ret_bt == T_BYTE ||
851 ret_bt == T_SHORT) {
852 ret_type = TypeInt::INT;
853 }
854 }
855
856 // Don't "bind" an unloaded return klass to the ret_phi. If the klass
857 // becomes loaded during the subsequent parsing, the loaded and unloaded
858 // types will not join when we transform and push in do_exits().
859 const TypeOopPtr* ret_oop_type = ret_type->isa_oopptr();
860 if (ret_oop_type && !ret_oop_type->is_loaded()) {
861 ret_type = TypeOopPtr::BOTTOM;
862 }
863 int ret_size = type2size[ret_type->basic_type()];
864 Node* ret_phi = new PhiNode(region, ret_type);
865 gvn().set_type_bottom(ret_phi);
866 _exits.ensure_stack(ret_size);
867 assert((int)(tf()->range_sig()->cnt() - TypeFunc::Parms) == ret_size, "good tf range");
868 assert(method()->return_type()->size() == ret_size, "tf agrees w/ method");
869 _exits.set_argument(0, ret_phi); // here is where the parser finds it
870 // Note: ret_phi is not yet pushed, until do_exits.
871 }
872 }
873
874 //----------------------------build_start_state-------------------------------
875 // Construct a state which contains only the incoming arguments from an
876 // unknown caller. The method & bci will be null & InvocationEntryBci.
877 JVMState* Compile::build_start_state(StartNode* start, const TypeFunc* tf) {
878 int arg_size = tf->domain_sig()->cnt();
879 int max_size = MAX2(arg_size, (int)tf->range_cc()->cnt());
880 JVMState* jvms = new (this) JVMState(max_size - TypeFunc::Parms);
881 SafePointNode* map = new SafePointNode(max_size, jvms);
882 jvms->set_map(map);
883 record_for_igvn(map);
884 assert(arg_size == TypeFunc::Parms + (is_osr_compilation() ? 1 : method()->arg_size()), "correct arg_size");
885 Node_Notes* old_nn = default_node_notes();
886 if (old_nn != nullptr && has_method()) {
887 Node_Notes* entry_nn = old_nn->clone(this);
888 JVMState* entry_jvms = new(this) JVMState(method(), old_nn->jvms());
889 entry_jvms->set_offsets(0);
890 entry_jvms->set_bci(entry_bci());
891 entry_nn->set_jvms(entry_jvms);
892 set_default_node_notes(entry_nn);
893 }
894 PhaseGVN& gvn = *initial_gvn();
895 uint i = 0;
896 int arg_num = 0;
897 for (uint j = 0; i < (uint)arg_size; i++) {
898 const Type* t = tf->domain_sig()->field_at(i);
899 Node* parm = nullptr;
900 if (t->is_inlinetypeptr() && method()->is_scalarized_arg(arg_num)) {
901 // Inline type arguments are not passed by reference: we get an argument per
902 // field of the inline type. Build InlineTypeNodes from the inline type arguments.
903 GraphKit kit(jvms, &gvn);
904 kit.set_control(map->control());
905 Node* old_mem = map->memory();
906 // Use immutable memory for inline type loads and restore it below
907 kit.set_all_memory(C->immutable_memory());
908 parm = InlineTypeNode::make_from_multi(&kit, start, t->inline_klass(), j, /* in= */ true, /* null_free= */ !t->maybe_null());
909 map->set_control(kit.control());
910 map->set_memory(old_mem);
911 } else {
912 parm = gvn.transform(new ParmNode(start, j++));
913 }
914 map->init_req(i, parm);
915 // Record all these guys for later GVN.
916 record_for_igvn(parm);
917 if (i >= TypeFunc::Parms && t != Type::HALF) {
918 arg_num++;
919 }
920 }
921 for (; i < map->req(); i++) {
922 map->init_req(i, top());
923 }
924 assert(jvms->argoff() == TypeFunc::Parms, "parser gets arguments here");
925 set_default_node_notes(old_nn);
926 return jvms;
927 }
928
929 //-----------------------------make_node_notes---------------------------------
930 Node_Notes* Parse::make_node_notes(Node_Notes* caller_nn) {
931 if (caller_nn == nullptr) return nullptr;
932 Node_Notes* nn = caller_nn->clone(C);
933 JVMState* caller_jvms = nn->jvms();
934 JVMState* jvms = new (C) JVMState(method(), caller_jvms);
935 jvms->set_offsets(0);
936 jvms->set_bci(_entry_bci);
937 nn->set_jvms(jvms);
938 return nn;
939 }
940
941
942 //--------------------------return_values--------------------------------------
943 void Compile::return_values(JVMState* jvms) {
944 GraphKit kit(jvms);
945 Node* ret = new ReturnNode(TypeFunc::Parms,
946 kit.control(),
947 kit.i_o(),
948 kit.reset_memory(),
949 kit.frameptr(),
950 kit.returnadr());
951 // Add zero or 1 return values
952 int ret_size = tf()->range_sig()->cnt() - TypeFunc::Parms;
953 if (ret_size > 0) {
954 kit.inc_sp(-ret_size); // pop the return value(s)
955 kit.sync_jvms();
956 Node* res = kit.argument(0);
957 if (tf()->returns_inline_type_as_fields()) {
958 // Multiple return values (inline type fields): add as many edges
959 // to the Return node as returned values.
960 InlineTypeNode* vt = res->as_InlineType();
961 ret->add_req_batch(nullptr, tf()->range_cc()->cnt() - TypeFunc::Parms);
962 if (vt->is_allocated(&kit.gvn()) && !StressCallingConvention) {
963 ret->init_req(TypeFunc::Parms, vt);
964 } else {
965 // Return the tagged klass pointer to signal scalarization to the caller
966 Node* tagged_klass = vt->tagged_klass(kit.gvn());
967 // Return null if the inline type is null (null marker field is not set)
968 Node* conv = kit.gvn().transform(new ConvI2LNode(vt->get_null_marker()));
969 Node* shl = kit.gvn().transform(new LShiftLNode(conv, kit.intcon(63)));
970 Node* shr = kit.gvn().transform(new RShiftLNode(shl, kit.intcon(63)));
971 tagged_klass = kit.gvn().transform(new AndLNode(tagged_klass, shr));
972 ret->init_req(TypeFunc::Parms, tagged_klass);
973 }
974 uint idx = TypeFunc::Parms + 1;
975 vt->pass_fields(&kit, ret, idx, false, false);
976 } else {
977 ret->add_req(res);
978 // Note: The second dummy edge is not needed by a ReturnNode.
979 }
980 }
981 // bind it to root
982 root()->add_req(ret);
983 record_for_igvn(ret);
984 initial_gvn()->transform(ret);
985 }
986
987 //------------------------rethrow_exceptions-----------------------------------
988 // Bind all exception states in the list into a single RethrowNode.
989 void Compile::rethrow_exceptions(JVMState* jvms) {
990 GraphKit kit(jvms);
991 if (!kit.has_exceptions()) return; // nothing to generate
992 // Load my combined exception state into the kit, with all phis transformed:
993 SafePointNode* ex_map = kit.combine_and_pop_all_exception_states();
994 Node* ex_oop = kit.use_exception_state(ex_map);
995 RethrowNode* exit = new RethrowNode(kit.control(),
996 kit.i_o(), kit.reset_memory(),
997 kit.frameptr(), kit.returnadr(),
998 // like a return but with exception input
999 ex_oop);
1083 // to complete, we force all writes to complete.
1084 //
1085 // 2. Experimental VM option is used to force the barrier if any field
1086 // was written out in the constructor.
1087 //
1088 // 3. On processors which are not CPU_MULTI_COPY_ATOMIC (e.g. PPC64),
1089 // support_IRIW_for_not_multiple_copy_atomic_cpu selects that
1090 // MemBarVolatile is used before volatile load instead of after volatile
1091 // store, so there's no barrier after the store.
1092 // We want to guarantee the same behavior as on platforms with total store
1093 // order, although this is not required by the Java memory model.
1094 // In this case, we want to enforce visibility of volatile field
1095 // initializations which are performed in constructors.
1096 // So as with finals, we add a barrier here.
1097 //
1098 // "All bets are off" unless the first publication occurs after a
1099 // normal return from the constructor. We do not attempt to detect
1100 // such unusual early publications. But no barrier is needed on
1101 // exceptional returns, since they cannot publish normally.
1102 //
1103 if ((method()->is_object_constructor() || method()->is_class_initializer()) &&
1104 (wrote_final() || wrote_stable() ||
1105 (AlwaysSafeConstructors && wrote_fields()) ||
1106 (support_IRIW_for_not_multiple_copy_atomic_cpu && wrote_volatile()))) {
1107 Node* recorded_alloc = alloc_with_final_or_stable();
1108 _exits.insert_mem_bar(UseStoreStoreForCtor ? Op_MemBarStoreStore : Op_MemBarRelease,
1109 recorded_alloc);
1110
1111 // If Memory barrier is created for final fields write
1112 // and allocation node does not escape the initialize method,
1113 // then barrier introduced by allocation node can be removed.
1114 if (DoEscapeAnalysis && (recorded_alloc != nullptr)) {
1115 AllocateNode* alloc = AllocateNode::Ideal_allocation(recorded_alloc);
1116 alloc->compute_MemBar_redundancy(method());
1117 }
1118 if (PrintOpto && (Verbose || WizardMode)) {
1119 method()->print_name();
1120 tty->print_cr(" writes finals/@Stable and needs a memory barrier");
1121 }
1122 }
1123
1124 for (MergeMemStream mms(_exits.merged_memory()); mms.next_non_empty(); ) {
1125 // transform each slice of the original memphi:
1126 mms.set_memory(_gvn.transform(mms.memory()));
1127 }
1128 // Clean up input MergeMems created by transforming the slices
1129 _gvn.transform(_exits.merged_memory());
1130
1131 if (tf()->range_sig()->cnt() > TypeFunc::Parms) {
1132 const Type* ret_type = tf()->range_sig()->field_at(TypeFunc::Parms);
1133 Node* ret_phi = _gvn.transform( _exits.argument(0) );
1134 if (!_exits.control()->is_top() && _gvn.type(ret_phi)->empty()) {
1135 // If the type we set for the ret_phi in build_exits() is too optimistic and
1136 // the ret_phi is top now, there's an extremely small chance that it may be due to class
1137 // loading. It could also be due to an error, so mark this method as not compilable because
1138 // otherwise this could lead to an infinite compile loop.
1139 // In any case, this code path is rarely (and never in my testing) reached.
1140 C->record_method_not_compilable("Can't determine return type.");
1141 return;
1142 }
1143 if (ret_type->isa_int()) {
1144 BasicType ret_bt = method()->return_type()->basic_type();
1145 ret_phi = mask_int_value(ret_phi, ret_bt, &_gvn);
1146 }
1147 _exits.push_node(ret_type->basic_type(), ret_phi);
1148 }
1149
1150 // Note: Logic for creating and optimizing the ReturnNode is in Compile.
1151
1152 // Unlock along the exceptional paths.
1206
1207 //-----------------------------create_entry_map-------------------------------
1208 // Initialize our parser map to contain the types at method entry.
1209 // For OSR, the map contains a single RawPtr parameter.
1210 // Initial monitor locking for sync. methods is performed by do_method_entry.
1211 SafePointNode* Parse::create_entry_map() {
1212 // Check for really stupid bail-out cases.
1213 uint len = TypeFunc::Parms + method()->max_locals() + method()->max_stack();
1214 if (len >= 32760) {
1215 // Bailout expected, this is a very rare edge case.
1216 C->record_method_not_compilable("too many local variables");
1217 return nullptr;
1218 }
1219
1220 // clear current replaced nodes that are of no use from here on (map was cloned in build_exits).
1221 _caller->map()->delete_replaced_nodes();
1222
1223 // If this is an inlined method, we may have to do a receiver null check.
1224 if (_caller->has_method() && is_normal_parse() && !method()->is_static()) {
1225 GraphKit kit(_caller);
1226 Node* receiver = kit.argument(0);
1227 Node* null_free = kit.null_check_receiver_before_call(method());
1228 _caller = kit.transfer_exceptions_into_jvms();
1229
1230 if (kit.stopped()) {
1231 _exits.add_exception_states_from(_caller);
1232 _exits.set_jvms(_caller);
1233 return nullptr;
1234 }
1235 }
1236
1237 assert(method() != nullptr, "parser must have a method");
1238
1239 // Create an initial safepoint to hold JVM state during parsing
1240 JVMState* jvms = new (C) JVMState(method(), _caller->has_method() ? _caller : nullptr);
1241 set_map(new SafePointNode(len, jvms));
1242
1243 // Capture receiver info for compiled lambda forms.
1244 if (method()->is_compiled_lambda_form()) {
1245 ciInstance* recv_info = _caller->compute_receiver_info(method());
1246 jvms->set_receiver_info(recv_info);
1247 }
1248
1249 jvms->set_map(map());
1253 SafePointNode* inmap = _caller->map();
1254 assert(inmap != nullptr, "must have inmap");
1255 // In case of null check on receiver above
1256 map()->transfer_replaced_nodes_from(inmap, _new_idx);
1257
1258 uint i;
1259
1260 // Pass thru the predefined input parameters.
1261 for (i = 0; i < TypeFunc::Parms; i++) {
1262 map()->init_req(i, inmap->in(i));
1263 }
1264
1265 if (depth() == 1) {
1266 assert(map()->memory()->Opcode() == Op_Parm, "");
1267 // Insert the memory aliasing node
1268 set_all_memory(reset_memory());
1269 }
1270 assert(merged_memory(), "");
1271
1272 // Now add the locals which are initially bound to arguments:
1273 uint arg_size = tf()->domain_sig()->cnt();
1274 ensure_stack(arg_size - TypeFunc::Parms); // OSR methods have funny args
1275 for (i = TypeFunc::Parms; i < arg_size; i++) {
1276 map()->init_req(i, inmap->argument(_caller, i - TypeFunc::Parms));
1277 }
1278
1279 // Clear out the rest of the map (locals and stack)
1280 for (i = arg_size; i < len; i++) {
1281 map()->init_req(i, top());
1282 }
1283
1284 SafePointNode* entry_map = stop();
1285 return entry_map;
1286 }
1287
1288 //-----------------------------do_method_entry--------------------------------
1289 // Emit any code needed in the pseudo-block before BCI zero.
1290 // The main thing to do is lock the receiver of a synchronized method.
1291 void Parse::do_method_entry() {
1292 set_parse_bci(InvocationEntryBci); // Pseudo-BCP
1293 set_sp(0); // Java Stack Pointer
1294
1295 NOT_PRODUCT( count_compiled_calls(true/*at_method_entry*/, false/*is_inline*/); )
1296
1297 // Check if we need a membar at the beginning of the java.lang.Object
1298 // constructor to satisfy the memory model for strict fields.
1299 if (Arguments::is_valhalla_enabled() && method()->intrinsic_id() == vmIntrinsics::_Object_init) {
1300 Node* receiver_obj = local(0);
1301 const TypeInstPtr* receiver_type = _gvn.type(receiver_obj)->isa_instptr();
1302 // If there's no exact type, check if the declared type has no implementors and add a dependency
1303 const TypeKlassPtr* klass_ptr = receiver_type->as_klass_type(/* try_for_exact= */ true);
1304 ciType* klass = klass_ptr->klass_is_exact() ? klass_ptr->exact_klass() : nullptr;
1305 if (klass != nullptr && klass->is_instance_klass()) {
1306 // Exact receiver type, check if there is a strict field
1307 ciInstanceKlass* holder = klass->as_instance_klass();
1308 for (int i = 0; i < holder->nof_nonstatic_fields(); i++) {
1309 ciField* field = holder->nonstatic_field_at(i);
1310 if (field->is_strict()) {
1311 // Found a strict field, a membar is needed
1312 AllocateNode* alloc = AllocateNode::Ideal_allocation(receiver_obj);
1313 insert_mem_bar(UseStoreStoreForCtor ? Op_MemBarStoreStore : Op_MemBarRelease, receiver_obj);
1314 if (DoEscapeAnalysis && (alloc != nullptr)) {
1315 alloc->compute_MemBar_redundancy(method());
1316 }
1317 break;
1318 }
1319 }
1320 } else if (klass == nullptr) {
1321 // We can't statically determine the type of the receiver and therefore need
1322 // to put a membar here because it could have a strict field.
1323 insert_mem_bar(UseStoreStoreForCtor ? Op_MemBarStoreStore : Op_MemBarRelease);
1324 }
1325 }
1326
1327 if (C->env()->dtrace_method_probes()) {
1328 make_dtrace_method_entry(method());
1329 }
1330
1331 #ifdef ASSERT
1332 // Narrow receiver type when it is too broad for the method being parsed.
1333 if (!method()->is_static()) {
1334 ciInstanceKlass* callee_holder = method()->holder();
1335 const Type* holder_type = TypeInstPtr::make(TypePtr::BotPTR, callee_holder, Type::trust_interfaces);
1336
1337 Node* receiver_obj = local(0);
1338 const TypeInstPtr* receiver_type = _gvn.type(receiver_obj)->isa_instptr();
1339
1340 if (receiver_type != nullptr && !receiver_type->higher_equal(holder_type)) {
1341 // Receiver should always be a subtype of callee holder.
1342 // But, since C2 type system doesn't properly track interfaces,
1343 // the invariant can't be expressed in the type system for default methods.
1344 // Example: for unrelated C <: I and D <: I, (C `meet` D) = Object </: I.
1345 assert(callee_holder->is_interface(), "missing subtype check");
1346
1357
1358 // If the method is synchronized, we need to construct a lock node, attach
1359 // it to the Start node, and pin it there.
1360 if (method()->is_synchronized()) {
1361 // Insert a FastLockNode right after the Start which takes as arguments
1362 // the current thread pointer, the "this" pointer & the address of the
1363 // stack slot pair used for the lock. The "this" pointer is a projection
1364 // off the start node, but the locking spot has to be constructed by
1365 // creating a ConLNode of 0, and boxing it with a BoxLockNode. The BoxLockNode
1366 // becomes the second argument to the FastLockNode call. The
1367 // FastLockNode becomes the new control parent to pin it to the start.
1368
1369 // Setup Object Pointer
1370 Node *lock_obj = nullptr;
1371 if (method()->is_static()) {
1372 ciInstance* mirror = _method->holder()->java_mirror();
1373 const TypeInstPtr *t_lock = TypeInstPtr::make(mirror);
1374 lock_obj = makecon(t_lock);
1375 } else { // Else pass the "this" pointer,
1376 lock_obj = local(0); // which is Parm0 from StartNode
1377 assert(!_gvn.type(lock_obj)->make_oopptr()->can_be_inline_type(), "can't be an inline type");
1378 }
1379 // Clear out dead values from the debug info.
1380 kill_dead_locals();
1381 // Build the FastLockNode
1382 _synch_lock = shared_lock(lock_obj);
1383 // Check for bailout in shared_lock
1384 if (failing()) { return; }
1385 }
1386
1387 // Feed profiling data for parameters to the type system so it can
1388 // propagate it as speculative types
1389 record_profiled_parameters_for_speculation();
1390 }
1391
1392 //------------------------------init_blocks------------------------------------
1393 // Initialize our parser map to contain the types/monitors at method entry.
1394 void Parse::init_blocks() {
1395 // Create the blocks.
1396 _block_count = flow()->block_count();
1397 _blocks = NEW_RESOURCE_ARRAY(Block, _block_count);
1793 //--------------------handle_missing_successor---------------------------------
1794 void Parse::handle_missing_successor(int target_bci) {
1795 #ifndef PRODUCT
1796 Block* b = block();
1797 int trap_bci = b->flow()->has_trap()? b->flow()->trap_bci(): -1;
1798 tty->print_cr("### Missing successor at bci:%d for block #%d (trap_bci:%d)", target_bci, b->rpo(), trap_bci);
1799 #endif
1800 ShouldNotReachHere();
1801 }
1802
1803 //--------------------------merge_common---------------------------------------
1804 void Parse::merge_common(Parse::Block* target, int pnum) {
1805 if (TraceOptoParse) {
1806 tty->print("Merging state at block #%d bci:%d", target->rpo(), target->start());
1807 }
1808
1809 // Zap extra stack slots to top
1810 assert(sp() == target->start_sp(), "");
1811 clean_stack(sp());
1812
1813 // Check for merge conflicts involving inline types
1814 JVMState* old_jvms = map()->jvms();
1815 int old_bci = bci();
1816 JVMState* tmp_jvms = old_jvms->clone_shallow(C);
1817 tmp_jvms->set_should_reexecute(true);
1818 tmp_jvms->bind_map(map());
1819 // Execution needs to restart a the next bytecode (entry of next
1820 // block)
1821 if (target->is_merged() ||
1822 pnum > PhiNode::Input ||
1823 target->is_handler() ||
1824 target->is_loop_head()) {
1825 set_parse_bci(target->start());
1826 for (uint j = TypeFunc::Parms; j < map()->req(); j++) {
1827 Node* n = map()->in(j); // Incoming change to target state.
1828 const Type* t = nullptr;
1829 if (tmp_jvms->is_loc(j)) {
1830 t = target->local_type_at(j - tmp_jvms->locoff());
1831 } else if (tmp_jvms->is_stk(j) && j < (uint)sp() + tmp_jvms->stkoff()) {
1832 t = target->stack_type_at(j - tmp_jvms->stkoff());
1833 }
1834 if (t != nullptr && t != Type::BOTTOM) {
1835 // An object can appear in the JVMS as either an oop or an InlineTypeNode. If the merge is
1836 // an InlineTypeNode, we need all the merge inputs to be InlineTypeNodes. Else, if the
1837 // merge is an oop, each merge input needs to be either an oop or an buffered
1838 // InlineTypeNode.
1839 if (!t->is_inlinetypeptr()) {
1840 // The merge cannot be an InlineTypeNode, ensure the input is buffered if it is an
1841 // InlineTypeNode
1842 if (n->is_InlineType()) {
1843 map()->set_req(j, n->as_InlineType()->buffer(this));
1844 }
1845 } else {
1846 // Since the merge is a value object, it can either be an oop or an InlineTypeNode
1847 if (!target->is_merged()) {
1848 // This is the first processed input of the merge. If it is an InlineTypeNode, the
1849 // merge will be an InlineTypeNode. Else, try to scalarize so the merge can be
1850 // scalarized as well. However, we cannot blindly scalarize an inline type oop here
1851 // since it may be larval
1852 if (!n->is_InlineType() && gvn().type(n)->is_zero_type()) {
1853 // Null constant implies that this is not a larval object
1854 map()->set_req(j, InlineTypeNode::make_null(gvn(), t->inline_klass()));
1855 }
1856 } else {
1857 Node* phi = target->start_map()->in(j);
1858 if (phi->is_InlineType()) {
1859 // Larval oops cannot be merged with non-larval ones, and since the merge point is
1860 // non-larval, n must be non-larval as well. As a result, we can scalarize n to merge
1861 // into phi
1862 if (!n->is_InlineType()) {
1863 map()->set_req(j, InlineTypeNode::make_from_oop(this, n, t->inline_klass()));
1864 }
1865 } else {
1866 // The merge is an oop phi, ensure the input is buffered if it is an InlineTypeNode
1867 if (n->is_InlineType()) {
1868 map()->set_req(j, n->as_InlineType()->buffer(this));
1869 }
1870 }
1871 }
1872 }
1873 }
1874 }
1875 }
1876 old_jvms->bind_map(map());
1877 set_parse_bci(old_bci);
1878
1879 if (!target->is_merged()) { // No prior mapping at this bci
1880 if (TraceOptoParse) { tty->print(" with empty state"); }
1881
1882 // If this path is dead, do not bother capturing it as a merge.
1883 // It is "as if" we had 1 fewer predecessors from the beginning.
1884 if (stopped()) {
1885 if (TraceOptoParse) tty->print_cr(", but path is dead and doesn't count");
1886 return;
1887 }
1888
1889 // Make a region if we know there are multiple or unpredictable inputs.
1890 // (Also, if this is a plain fall-through, we might see another region,
1891 // which must not be allowed into this block's map.)
1892 if (pnum > PhiNode::Input // Known multiple inputs.
1893 || target->is_handler() // These have unpredictable inputs.
1894 || target->is_loop_head() // Known multiple inputs
1895 || control()->is_Region()) { // We must hide this guy.
1896
1897 int current_bci = bci();
1898 set_parse_bci(target->start()); // Set target bci
1913 record_for_igvn(r);
1914 // zap all inputs to null for debugging (done in Node(uint) constructor)
1915 // for (int j = 1; j < edges+1; j++) { r->init_req(j, nullptr); }
1916 r->init_req(pnum, control());
1917 set_control(r);
1918 target->copy_irreducible_status_to(r, jvms());
1919 set_parse_bci(current_bci); // Restore bci
1920 }
1921
1922 // Convert the existing Parser mapping into a mapping at this bci.
1923 store_state_to(target);
1924 assert(target->is_merged(), "do not come here twice");
1925
1926 } else { // Prior mapping at this bci
1927 if (TraceOptoParse) { tty->print(" with previous state"); }
1928 #ifdef ASSERT
1929 if (target->is_SEL_head()) {
1930 target->mark_merged_backedge(block());
1931 }
1932 #endif
1933
1934 // We must not manufacture more phis if the target is already parsed.
1935 bool nophi = target->is_parsed();
1936
1937 SafePointNode* newin = map();// Hang on to incoming mapping
1938 Block* save_block = block(); // Hang on to incoming block;
1939 load_state_from(target); // Get prior mapping
1940
1941 assert(newin->jvms()->locoff() == jvms()->locoff(), "JVMS layouts agree");
1942 assert(newin->jvms()->stkoff() == jvms()->stkoff(), "JVMS layouts agree");
1943 assert(newin->jvms()->monoff() == jvms()->monoff(), "JVMS layouts agree");
1944 assert(newin->jvms()->endoff() == jvms()->endoff(), "JVMS layouts agree");
1945
1946 // Iterate over my current mapping and the old mapping.
1947 // Where different, insert Phi functions.
1948 // Use any existing Phi functions.
1949 assert(control()->is_Region(), "must be merging to a region");
1950 RegionNode* r = control()->as_Region();
1951
1952 // Compute where to merge into
1953 // Merge incoming control path
1954 r->init_req(pnum, newin->control());
1955
1956 if (pnum == 1) { // Last merge for this Region?
1957 if (!block()->flow()->is_irreducible_loop_secondary_entry()) {
1958 Node* result = _gvn.transform(r);
1959 if (r != result && TraceOptoParse) {
1960 tty->print_cr("Block #%d replace %d with %d", block()->rpo(), r->_idx, result->_idx);
1961 }
1962 }
1963 record_for_igvn(r);
1964 }
1965
1966 // Update all the non-control inputs to map:
1967 assert(TypeFunc::Parms == newin->jvms()->locoff(), "parser map should contain only youngest jvms");
1968 bool check_elide_phi = target->is_SEL_backedge(save_block);
1969 bool last_merge = (pnum == PhiNode::Input);
1970 for (uint j = 1; j < newin->req(); j++) {
1971 Node* m = map()->in(j); // Current state of target.
1972 Node* n = newin->in(j); // Incoming change to target state.
1973 Node* phi;
1974 if (m->is_Phi() && m->as_Phi()->region() == r) {
1975 phi = m;
1976 } else if (m->is_InlineType() && m->as_InlineType()->has_phi_inputs(r)) {
1977 phi = m;
1978 } else {
1979 phi = nullptr;
1980 }
1981 if (m != n) { // Different; must merge
1982 switch (j) {
1983 // Frame pointer and Return Address never changes
1984 case TypeFunc::FramePtr:// Drop m, use the original value
1985 case TypeFunc::ReturnAdr:
1986 break;
1987 case TypeFunc::Memory: // Merge inputs to the MergeMem node
1988 assert(phi == nullptr, "the merge contains phis, not vice versa");
1989 merge_memory_edges(n->as_MergeMem(), pnum, nophi);
1990 continue;
1991 default: // All normal stuff
1992 if (phi == nullptr) {
1993 const JVMState* jvms = map()->jvms();
1994 if (EliminateNestedLocks &&
1995 jvms->is_mon(j) && jvms->is_monitor_box(j)) {
1996 // BoxLock nodes are not commoning when EliminateNestedLocks is on.
1997 // Use old BoxLock node as merged box.
1998 assert(newin->jvms()->is_monitor_box(j), "sanity");
1999 // This assert also tests that nodes are BoxLock.
2000 assert(BoxLockNode::same_slot(n, m), "sanity");
2007 // Incremental Inlining before EA and Macro nodes elimination.
2008 //
2009 // Incremental Inlining is executed after IGVN optimizations
2010 // during which BoxLock can be marked as Coarsened.
2011 old_box->set_coarsened(); // Verifies state
2012 old_box->set_unbalanced();
2013 }
2014 C->gvn_replace_by(n, m);
2015 } else if (!check_elide_phi || !target->can_elide_SEL_phi(j)) {
2016 phi = ensure_phi(j, nophi);
2017 }
2018 }
2019 break;
2020 }
2021 }
2022 // At this point, n might be top if:
2023 // - there is no phi (because TypeFlow detected a conflict), or
2024 // - the corresponding control edges is top (a dead incoming path)
2025 // It is a bug if we create a phi which sees a garbage value on a live path.
2026
2027 // Merging two inline types?
2028 if (phi != nullptr && phi->is_InlineType()) {
2029 // Reload current state because it may have been updated by ensure_phi
2030 assert(phi == map()->in(j), "unexpected value in map");
2031 assert(phi->as_InlineType()->has_phi_inputs(r), "");
2032 InlineTypeNode* vtm = phi->as_InlineType(); // Current inline type
2033 InlineTypeNode* vtn = n->as_InlineType(); // Incoming inline type
2034 assert(vtm == phi, "Inline type should have Phi input");
2035
2036 #ifdef ASSERT
2037 if (TraceOptoParse) {
2038 tty->print_cr("\nMerging inline types");
2039 tty->print_cr("Current:");
2040 vtm->dump(2);
2041 tty->print_cr("Incoming:");
2042 vtn->dump(2);
2043 tty->cr();
2044 }
2045 #endif
2046 // Do the merge
2047 vtm->merge_with(&_gvn, vtn, pnum, last_merge);
2048 if (last_merge) {
2049 map()->set_req(j, _gvn.transform(vtm));
2050 record_for_igvn(vtm);
2051 }
2052 } else if (phi != nullptr) {
2053 assert(n != top() || r->in(pnum) == top(), "live value must not be garbage");
2054 assert(phi->as_Phi()->region() == r, "");
2055 phi->set_req(pnum, n); // Then add 'n' to the merge
2056 if (last_merge) {
2057 // Last merge for this Phi.
2058 // So far, Phis have had a reasonable type from ciTypeFlow.
2059 // Now _gvn will join that with the meet of current inputs.
2060 // BOTTOM is never permissible here, 'cause pessimistically
2061 // Phis of pointers cannot lose the basic pointer type.
2062 DEBUG_ONLY(const Type* bt1 = phi->bottom_type());
2063 assert(bt1 != Type::BOTTOM, "should not be building conflict phis");
2064 map()->set_req(j, _gvn.transform(phi));
2065 DEBUG_ONLY(const Type* bt2 = phi->bottom_type());
2066 assert(bt2->higher_equal_speculative(bt1), "must be consistent with type-flow");
2067 record_for_igvn(phi);
2068 }
2069 }
2070 } // End of for all values to be merged
2071
2072 if (last_merge && !r->in(0)) { // The occasional useless Region
2073 assert(control() == r, "");
2074 set_control(r->nonnull_req());
2075 }
2076
2077 map()->merge_replaced_nodes_with(newin);
2078
2079 // newin has been subsumed into the lazy merge, and is now dead.
2080 set_block(save_block);
2081
2082 stop(); // done with this guy, for now
2083 }
2084
2085 if (TraceOptoParse) {
2086 tty->print_cr(" on path %d", pnum);
2087 }
2088
2089 // Done with this parser state.
2090 assert(stopped(), "");
2091 }
2092
2204
2205 // Add new path to the region.
2206 uint pnum = r->req();
2207 r->add_req(nullptr);
2208
2209 for (uint i = 1; i < map->req(); i++) {
2210 Node* n = map->in(i);
2211 if (i == TypeFunc::Memory) {
2212 // Ensure a phi on all currently known memories.
2213 for (MergeMemStream mms(n->as_MergeMem()); mms.next_non_empty(); ) {
2214 Node* phi = mms.memory();
2215 if (phi->is_Phi() && phi->as_Phi()->region() == r) {
2216 assert(phi->req() == pnum, "must be same size as region");
2217 phi->add_req(nullptr);
2218 }
2219 }
2220 } else {
2221 if (n->is_Phi() && n->as_Phi()->region() == r) {
2222 assert(n->req() == pnum, "must be same size as region");
2223 n->add_req(nullptr);
2224 } else if (n->is_InlineType() && n->as_InlineType()->has_phi_inputs(r)) {
2225 n->as_InlineType()->add_new_path(r);
2226 }
2227 }
2228 }
2229
2230 return pnum;
2231 }
2232
2233 //------------------------------ensure_phi-------------------------------------
2234 // Turn the idx'th entry of the current map into a Phi
2235 Node* Parse::ensure_phi(int idx, bool nocreate) {
2236 SafePointNode* map = this->map();
2237 Node* region = map->control();
2238 assert(region->is_Region(), "");
2239
2240 Node* o = map->in(idx);
2241 assert(o != nullptr, "");
2242
2243 if (o == top()) return nullptr; // TOP always merges into TOP
2244
2245 if (o->is_Phi() && o->as_Phi()->region() == region) {
2246 return o->as_Phi();
2247 }
2248 InlineTypeNode* vt = o->isa_InlineType();
2249 if (vt != nullptr && vt->has_phi_inputs(region)) {
2250 return vt;
2251 }
2252
2253 // Now use a Phi here for merging
2254 assert(!nocreate, "Cannot build a phi for a block already parsed.");
2255 const JVMState* jvms = map->jvms();
2256 const Type* t = nullptr;
2257 if (jvms->is_loc(idx)) {
2258 t = block()->local_type_at(idx - jvms->locoff());
2259 } else if (jvms->is_stk(idx)) {
2260 t = block()->stack_type_at(idx - jvms->stkoff());
2261 } else if (jvms->is_mon(idx)) {
2262 assert(!jvms->is_monitor_box(idx), "no phis for boxes");
2263 t = TypeInstPtr::BOTTOM; // this is sufficient for a lock object
2264 } else if ((uint)idx < TypeFunc::Parms) {
2265 t = o->bottom_type(); // Type::RETURN_ADDRESS or such-like.
2266 } else {
2267 assert(false, "no type information for this phi");
2268 }
2269
2270 // If the type falls to bottom, then this must be a local that
2271 // is already dead or is mixing ints and oops or some such.
2272 // Forcing it to top makes it go dead.
2273 if (t == Type::BOTTOM) {
2274 map->set_req(idx, top());
2275 return nullptr;
2276 }
2277
2278 // Do not create phis for top either.
2279 // A top on a non-null control flow must be an unused even after the.phi.
2280 if (t == Type::TOP || t == Type::HALF) {
2281 map->set_req(idx, top());
2282 return nullptr;
2283 }
2284
2285 if (vt != nullptr && t->is_inlinetypeptr()) {
2286 // Inline types are merged by merging their field values.
2287 // Create a cloned InlineTypeNode with phi inputs that
2288 // represents the merged inline type and update the map.
2289 vt = vt->clone_with_phis(&_gvn, region);
2290 map->set_req(idx, vt);
2291 return vt;
2292 } else {
2293 PhiNode* phi = PhiNode::make(region, o, t);
2294 gvn().set_type(phi, t);
2295 if (C->do_escape_analysis()) record_for_igvn(phi);
2296 map->set_req(idx, phi);
2297 return phi;
2298 }
2299 }
2300
2301 //--------------------------ensure_memory_phi----------------------------------
2302 // Turn the idx'th slice of the current memory into a Phi
2303 PhiNode *Parse::ensure_memory_phi(int idx, bool nocreate) {
2304 MergeMemNode* mem = merged_memory();
2305 Node* region = control();
2306 assert(region->is_Region(), "");
2307
2308 Node *o = (idx == Compile::AliasIdxBot)? mem->base_memory(): mem->memory_at(idx);
2309 assert(o != nullptr && o != top(), "");
2310
2311 PhiNode* phi;
2312 if (o->is_Phi() && o->as_Phi()->region() == region) {
2313 phi = o->as_Phi();
2314 if (phi == mem->base_memory() && idx >= Compile::AliasIdxRaw) {
2315 // clone the shared base memory phi to make a new memory split
2316 assert(!nocreate, "Cannot build a phi for a block already parsed.");
2317 const Type* t = phi->bottom_type();
2318 const TypePtr* adr_type = C->get_adr_type(idx);
2408 // Add check to deoptimize once holder klass is fully initialized.
2409 void Parse::clinit_deopt() {
2410 assert(C->has_method(), "only for normal compilations");
2411 assert(depth() == 1, "only for main compiled method");
2412 assert(is_normal_parse(), "no barrier needed on osr entry");
2413 assert(!method()->holder()->is_not_initialized(), "initialization should have been started");
2414
2415 set_parse_bci(0);
2416
2417 Node* holder = makecon(TypeKlassPtr::make(method()->holder(), Type::trust_interfaces));
2418 guard_klass_being_initialized(holder);
2419 }
2420
2421 //------------------------------return_current---------------------------------
2422 // Append current _map to _exit_return
2423 void Parse::return_current(Node* value) {
2424 if (method()->intrinsic_id() == vmIntrinsics::_Object_init) {
2425 call_register_finalizer();
2426 }
2427
2428 // frame pointer is always same, already captured
2429 if (value != nullptr) {
2430 Node* phi = _exits.argument(0);
2431 const Type* return_type = phi->bottom_type();
2432 const TypeInstPtr* tr = return_type->isa_instptr();
2433 if ((tf()->returns_inline_type_as_fields() || (_caller->has_method() && !Compile::current()->inlining_incrementally())) &&
2434 return_type->is_inlinetypeptr()) {
2435 // Inline type is returned as fields, make sure it is scalarized
2436 if (!value->is_InlineType()) {
2437 value = InlineTypeNode::make_from_oop(this, value, return_type->inline_klass());
2438 }
2439 if (!_caller->has_method() || Compile::current()->inlining_incrementally()) {
2440 // Returning from root or an incrementally inlined method. Make sure all non-flat
2441 // fields are buffered and re-execute if allocation triggers deoptimization.
2442 PreserveReexecuteState preexecs(this);
2443 assert(tf()->returns_inline_type_as_fields(), "must be returned as fields");
2444 jvms()->set_should_reexecute(true);
2445 inc_sp(1);
2446 value = value->as_InlineType()->allocate_fields(this);
2447 }
2448 } else if (value->is_InlineType()) {
2449 // Inline type is returned as oop, make sure it is buffered and re-execute
2450 // if allocation triggers deoptimization.
2451 PreserveReexecuteState preexecs(this);
2452 jvms()->set_should_reexecute(true);
2453 inc_sp(1);
2454 value = value->as_InlineType()->buffer(this);
2455 }
2456 // ...else
2457 // If returning oops to an interface-return, there is a silent free
2458 // cast from oop to interface allowed by the Verifier. Make it explicit here.
2459 phi->add_req(value);
2460 }
2461
2462 // Do not set_parse_bci, so that return goo is credited to the return insn.
2463 set_bci(InvocationEntryBci);
2464 if (method()->is_synchronized()) {
2465 shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
2466 }
2467 if (C->env()->dtrace_method_probes()) {
2468 make_dtrace_method_exit(method());
2469 }
2470
2471 SafePointNode* exit_return = _exits.map();
2472 exit_return->in( TypeFunc::Control )->add_req( control() );
2473 exit_return->in( TypeFunc::I_O )->add_req( i_o () );
2474 Node *mem = exit_return->in( TypeFunc::Memory );
2475 for (MergeMemStream mms(mem->as_MergeMem(), merged_memory()); mms.next_non_empty2(); ) {
2476 if (mms.is_empty()) {
2477 // get a copy of the base memory, and patch just this one input
2478 const TypePtr* adr_type = mms.adr_type(C);
2479 Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
2480 assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
2481 gvn().set_type_bottom(phi);
2482 phi->del_req(phi->req()-1); // prepare to re-patch
2483 mms.set_memory(phi);
2484 }
2485 mms.memory()->add_req(mms.memory2());
2486 }
2487
2488 if (_first_return) {
2489 _exits.map()->transfer_replaced_nodes_from(map(), _new_idx);
2490 _first_return = false;
2491 } else {
2492 _exits.map()->merge_replaced_nodes_with(map());
2493 }
2494
2495 stop_and_kill_map(); // This CFG path dies here
2496 }
2497
2498
2499 //------------------------------add_safepoint----------------------------------
2500 void Parse::add_safepoint() {
2501 uint parms = TypeFunc::Parms+1;
2502
2503 // Clear out dead values from the debug info.
2504 kill_dead_locals();
2505
2506 // Clone the JVM State
2507 SafePointNode *sfpnt = new SafePointNode(parms, nullptr);
|