< prev index next >

src/hotspot/share/opto/parse1.cpp

Print this page

  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "interpreter/linkResolver.hpp"
  28 #include "memory/resourceArea.hpp"
  29 #include "oops/method.hpp"
  30 #include "opto/addnode.hpp"
  31 #include "opto/c2compiler.hpp"
  32 #include "opto/castnode.hpp"

  33 #include "opto/idealGraphPrinter.hpp"

  34 #include "opto/locknode.hpp"
  35 #include "opto/memnode.hpp"
  36 #include "opto/opaquenode.hpp"
  37 #include "opto/parse.hpp"
  38 #include "opto/rootnode.hpp"
  39 #include "opto/runtime.hpp"
  40 #include "opto/type.hpp"
  41 #include "runtime/handles.inline.hpp"
  42 #include "runtime/safepointMechanism.hpp"
  43 #include "runtime/sharedRuntime.hpp"
  44 #include "utilities/bitMap.inline.hpp"
  45 #include "utilities/copy.hpp"
  46 
  47 // Static array so we can figure out which bytecodes stop us from compiling
  48 // the most. Some of the non-static variables are needed in bytecodeInfo.cpp
  49 // and eventually should be encapsulated in a proper class (gri 8/18/98).
  50 
  51 #ifndef PRODUCT
  52 uint nodes_created             = 0;
  53 uint methods_parsed            = 0;

  85   }
  86   if (all_null_checks_found) {
  87     tty->print_cr("%u made implicit (%2u%%)", implicit_null_checks,
  88                   (100*implicit_null_checks)/all_null_checks_found);
  89   }
  90   if (SharedRuntime::_implicit_null_throws) {
  91     tty->print_cr("%u implicit null exceptions at runtime",
  92                   SharedRuntime::_implicit_null_throws);
  93   }
  94 
  95   if (PrintParseStatistics && BytecodeParseHistogram::initialized()) {
  96     BytecodeParseHistogram::print();
  97   }
  98 }
  99 #endif
 100 
 101 //------------------------------ON STACK REPLACEMENT---------------------------
 102 
 103 // Construct a node which can be used to get incoming state for
 104 // on stack replacement.
 105 Node *Parse::fetch_interpreter_state(int index,
 106                                      BasicType bt,
 107                                      Node *local_addrs,
 108                                      Node *local_addrs_base) {






 109   Node *mem = memory(Compile::AliasIdxRaw);
 110   Node *adr = basic_plus_adr( local_addrs_base, local_addrs, -index*wordSize );
 111   Node *ctl = control();
 112 
 113   // Very similar to LoadNode::make, except we handle un-aligned longs and
 114   // doubles on Sparc.  Intel can handle them just fine directly.
 115   Node *l = nullptr;
 116   switch (bt) {                // Signature is flattened
 117   case T_INT:     l = new LoadINode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInt::INT,        MemNode::unordered); break;
 118   case T_FLOAT:   l = new LoadFNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::FLOAT,         MemNode::unordered); break;
 119   case T_ADDRESS: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM,  MemNode::unordered); break;
 120   case T_OBJECT:  l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInstPtr::BOTTOM, MemNode::unordered); break;
 121   case T_LONG:
 122   case T_DOUBLE: {
 123     // Since arguments are in reverse order, the argument address 'adr'
 124     // refers to the back half of the long/double.  Recompute adr.
 125     adr = basic_plus_adr(local_addrs_base, local_addrs, -(index+1)*wordSize);
 126     if (Matcher::misaligned_doubles_ok) {
 127       l = (bt == T_DOUBLE)
 128         ? (Node*)new LoadDNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::DOUBLE, MemNode::unordered)

 130     } else {
 131       l = (bt == T_DOUBLE)
 132         ? (Node*)new LoadD_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered)
 133         : (Node*)new LoadL_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered);
 134     }
 135     break;
 136   }
 137   default: ShouldNotReachHere();
 138   }
 139   return _gvn.transform(l);
 140 }
 141 
 142 // Helper routine to prevent the interpreter from handing
 143 // unexpected typestate to an OSR method.
 144 // The Node l is a value newly dug out of the interpreter frame.
 145 // The type is the type predicted by ciTypeFlow.  Note that it is
 146 // not a general type, but can only come from Type::get_typeflow_type.
 147 // The safepoint is a map which will feed an uncommon trap.
 148 Node* Parse::check_interpreter_type(Node* l, const Type* type,
 149                                     SafePointNode* &bad_type_exit) {
 150 
 151   const TypeOopPtr* tp = type->isa_oopptr();
 152 
 153   // TypeFlow may assert null-ness if a type appears unloaded.
 154   if (type == TypePtr::NULL_PTR ||
 155       (tp != nullptr && !tp->is_loaded())) {
 156     // Value must be null, not a real oop.
 157     Node* chk = _gvn.transform( new CmpPNode(l, null()) );
 158     Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
 159     IfNode* iff = create_and_map_if(control(), tst, PROB_MAX, COUNT_UNKNOWN);
 160     set_control(_gvn.transform( new IfTrueNode(iff) ));
 161     Node* bad_type = _gvn.transform( new IfFalseNode(iff) );
 162     bad_type_exit->control()->add_req(bad_type);
 163     l = null();
 164   }
 165 
 166   // Typeflow can also cut off paths from the CFG, based on
 167   // types which appear unloaded, or call sites which appear unlinked.
 168   // When paths are cut off, values at later merge points can rise
 169   // toward more specific classes.  Make sure these specific classes
 170   // are still in effect.
 171   if (tp != nullptr && !tp->is_same_java_type_as(TypeInstPtr::BOTTOM)) {
 172     // TypeFlow asserted a specific object type.  Value must have that type.
 173     Node* bad_type_ctrl = nullptr;






 174     l = gen_checkcast(l, makecon(tp->as_klass_type()->cast_to_exactness(true)), &bad_type_ctrl);
 175     bad_type_exit->control()->add_req(bad_type_ctrl);
 176   }
 177 
 178   assert(_gvn.type(l)->higher_equal(type), "must constrain OSR typestate");
 179   return l;
 180 }
 181 
 182 // Helper routine which sets up elements of the initial parser map when
 183 // performing a parse for on stack replacement.  Add values into map.
 184 // The only parameter contains the address of a interpreter arguments.
 185 void Parse::load_interpreter_state(Node* osr_buf) {
 186   int index;
 187   int max_locals = jvms()->loc_size();
 188   int max_stack  = jvms()->stk_size();
 189 
 190 
 191   // Mismatch between method and jvms can occur since map briefly held
 192   // an OSR entry state (which takes up one RawPtr word).
 193   assert(max_locals == method()->max_locals(), "sanity");
 194   assert(max_stack  >= method()->max_stack(),  "sanity");
 195   assert((int)jvms()->endoff() == TypeFunc::Parms + max_locals + max_stack, "sanity");
 196   assert((int)jvms()->endoff() == (int)map()->req(), "sanity");
 197 
 198   // Find the start block.
 199   Block* osr_block = start_block();
 200   assert(osr_block->start() == osr_bci(), "sanity");
 201 
 202   // Set initial BCI.
 203   set_parse_bci(osr_block->start());
 204 
 205   // Set initial stack depth.
 206   set_sp(osr_block->start_sp());
 207 
 208   // Check bailouts.  We currently do not perform on stack replacement
 209   // of loops in catch blocks or loops which branch with a non-empty stack.
 210   if (sp() != 0) {

 225   for (index = 0; index < mcnt; index++) {
 226     // Make a BoxLockNode for the monitor.
 227     BoxLockNode* osr_box = new BoxLockNode(next_monitor());
 228     // Check for bailout after new BoxLockNode
 229     if (failing()) { return; }
 230 
 231     // This OSR locking region is unbalanced because it does not have Lock node:
 232     // locking was done in Interpreter.
 233     // This is similar to Coarsened case when Lock node is eliminated
 234     // and as result the region is marked as Unbalanced.
 235 
 236     // Emulate Coarsened state transition from Regular to Unbalanced.
 237     osr_box->set_coarsened();
 238     osr_box->set_unbalanced();
 239 
 240     Node* box = _gvn.transform(osr_box);
 241 
 242     // Displaced headers and locked objects are interleaved in the
 243     // temp OSR buffer.  We only copy the locked objects out here.
 244     // Fetch the locked object from the OSR temp buffer and copy to our fastlock node.
 245     Node *lock_object = fetch_interpreter_state(index*2, T_OBJECT, monitors_addr, osr_buf);
 246     // Try and copy the displaced header to the BoxNode
 247     Node *displaced_hdr = fetch_interpreter_state((index*2) + 1, T_ADDRESS, monitors_addr, osr_buf);
 248 
 249 
 250     store_to_memory(control(), box, displaced_hdr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered);
 251 
 252     // Build a bogus FastLockNode (no code will be generated) and push the
 253     // monitor into our debug info.
 254     const FastLockNode *flock = _gvn.transform(new FastLockNode( nullptr, lock_object, box ))->as_FastLock();
 255     map()->push_monitor(flock);
 256 
 257     // If the lock is our method synchronization lock, tuck it away in
 258     // _sync_lock for return and rethrow exit paths.
 259     if (index == 0 && method()->is_synchronized()) {
 260       _synch_lock = flock;
 261     }
 262   }
 263 
 264   // Use the raw liveness computation to make sure that unexpected
 265   // values don't propagate into the OSR frame.
 266   MethodLivenessResult live_locals = method()->liveness_at_bci(osr_bci());
 267   if (!live_locals.is_valid()) {
 268     // Degenerate or breakpointed method.

 296         if (C->log() != nullptr) {
 297           C->log()->elem("OSR_mismatch local_index='%d'",index);
 298         }
 299         set_local(index, null());
 300         // and ignore it for the loads
 301         continue;
 302       }
 303     }
 304 
 305     // Filter out TOP, HALF, and BOTTOM.  (Cf. ensure_phi.)
 306     if (type == Type::TOP || type == Type::HALF) {
 307       continue;
 308     }
 309     // If the type falls to bottom, then this must be a local that
 310     // is mixing ints and oops or some such.  Forcing it to top
 311     // makes it go dead.
 312     if (type == Type::BOTTOM) {
 313       continue;
 314     }
 315     // Construct code to access the appropriate local.
 316     BasicType bt = type->basic_type();
 317     if (type == TypePtr::NULL_PTR) {
 318       // Ptr types are mixed together with T_ADDRESS but null is
 319       // really for T_OBJECT types so correct it.
 320       bt = T_OBJECT;
 321     }
 322     Node *value = fetch_interpreter_state(index, bt, locals_addr, osr_buf);
 323     set_local(index, value);
 324   }
 325 
 326   // Extract the needed stack entries from the interpreter frame.
 327   for (index = 0; index < sp(); index++) {
 328     const Type *type = osr_block->stack_type_at(index);
 329     if (type != Type::TOP) {
 330       // Currently the compiler bails out when attempting to on stack replace
 331       // at a bci with a non-empty stack.  We should not reach here.
 332       ShouldNotReachHere();
 333     }
 334   }
 335 
 336   // End the OSR migration
 337   make_runtime_call(RC_LEAF, OptoRuntime::osr_end_Type(),
 338                     CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
 339                     "OSR_migration_end", TypeRawPtr::BOTTOM,
 340                     osr_buf);
 341 
 342   // Now that the interpreter state is loaded, make sure it will match

 502   // either breakpoint setting or hotswapping of methods may
 503   // cause deoptimization.
 504   if (C->env()->jvmti_can_hotswap_or_post_breakpoint()) {
 505     C->dependencies()->assert_evol_method(method());
 506   }
 507 
 508   NOT_PRODUCT(methods_seen++);
 509 
 510   // Do some special top-level things.
 511   if (depth() == 1 && C->is_osr_compilation()) {
 512     _tf = C->tf();     // the OSR entry type is different
 513     _entry_bci = C->entry_bci();
 514     _flow = method()->get_osr_flow_analysis(osr_bci());
 515   } else {
 516     _tf = TypeFunc::make(method());
 517     _entry_bci = InvocationEntryBci;
 518     _flow = method()->get_flow_analysis();
 519   }
 520 
 521   if (_flow->failing()) {
 522     assert(false, "type flow analysis failed during parsing");


 523     C->record_method_not_compilable(_flow->failure_reason());
 524 #ifndef PRODUCT
 525       if (PrintOpto && (Verbose || WizardMode)) {
 526         if (is_osr_parse()) {
 527           tty->print_cr("OSR @%d type flow bailout: %s", _entry_bci, _flow->failure_reason());
 528         } else {
 529           tty->print_cr("type flow bailout: %s", _flow->failure_reason());
 530         }
 531         if (Verbose) {
 532           method()->print();
 533           method()->print_codes();
 534           _flow->print();
 535         }
 536       }
 537 #endif
 538   }
 539 
 540 #ifdef ASSERT
 541   if (depth() == 1) {
 542     assert(C->is_osr_compilation() == this->is_osr_parse(), "OSR in sync");

 593     load_interpreter_state(osr_buf);
 594   } else {
 595     set_map(entry_map);
 596     do_method_entry();
 597   }
 598 
 599   if (depth() == 1 && !failing()) {
 600     if (C->clinit_barrier_on_entry()) {
 601       // Add check to deoptimize the nmethod once the holder class is fully initialized
 602       clinit_deopt();
 603     }
 604   }
 605 
 606   // Check for bailouts during method entry.
 607   if (failing()) {
 608     if (log)  log->done("parse");
 609     C->set_default_node_notes(caller_nn);
 610     return;
 611   }
 612 






















 613   entry_map = map();  // capture any changes performed by method setup code
 614   assert(jvms()->endoff() == map()->req(), "map matches JVMS layout");
 615 
 616   // We begin parsing as if we have just encountered a jump to the
 617   // method entry.
 618   Block* entry_block = start_block();
 619   assert(entry_block->start() == (is_osr_parse() ? osr_bci() : 0), "");
 620   set_map_clone(entry_map);
 621   merge_common(entry_block, entry_block->next_path_num());
 622 
 623 #ifndef PRODUCT
 624   BytecodeParseHistogram *parse_histogram_obj = new (C->env()->arena()) BytecodeParseHistogram(this, C);
 625   set_parse_histogram( parse_histogram_obj );
 626 #endif
 627 
 628   // Parse all the basic blocks.
 629   do_all_blocks();
 630 
 631   // Check for bailouts during conversion to graph
 632   if (failing()) {

 778 void Parse::build_exits() {
 779   // make a clone of caller to prevent sharing of side-effects
 780   _exits.set_map(_exits.clone_map());
 781   _exits.clean_stack(_exits.sp());
 782   _exits.sync_jvms();
 783 
 784   RegionNode* region = new RegionNode(1);
 785   record_for_igvn(region);
 786   gvn().set_type_bottom(region);
 787   _exits.set_control(region);
 788 
 789   // Note:  iophi and memphi are not transformed until do_exits.
 790   Node* iophi  = new PhiNode(region, Type::ABIO);
 791   Node* memphi = new PhiNode(region, Type::MEMORY, TypePtr::BOTTOM);
 792   gvn().set_type_bottom(iophi);
 793   gvn().set_type_bottom(memphi);
 794   _exits.set_i_o(iophi);
 795   _exits.set_all_memory(memphi);
 796 
 797   // Add a return value to the exit state.  (Do not push it yet.)
 798   if (tf()->range()->cnt() > TypeFunc::Parms) {
 799     const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
 800     if (ret_type->isa_int()) {
 801       BasicType ret_bt = method()->return_type()->basic_type();
 802       if (ret_bt == T_BOOLEAN ||
 803           ret_bt == T_CHAR ||
 804           ret_bt == T_BYTE ||
 805           ret_bt == T_SHORT) {
 806         ret_type = TypeInt::INT;
 807       }
 808     }
 809 
 810     // Don't "bind" an unloaded return klass to the ret_phi. If the klass
 811     // becomes loaded during the subsequent parsing, the loaded and unloaded
 812     // types will not join when we transform and push in do_exits().
 813     const TypeOopPtr* ret_oop_type = ret_type->isa_oopptr();
 814     if (ret_oop_type && !ret_oop_type->is_loaded()) {
 815       ret_type = TypeOopPtr::BOTTOM;
 816     }
 817     int         ret_size = type2size[ret_type->basic_type()];
 818     Node*       ret_phi  = new PhiNode(region, ret_type);
 819     gvn().set_type_bottom(ret_phi);
 820     _exits.ensure_stack(ret_size);
 821     assert((int)(tf()->range()->cnt() - TypeFunc::Parms) == ret_size, "good tf range");
 822     assert(method()->return_type()->size() == ret_size, "tf agrees w/ method");
 823     _exits.set_argument(0, ret_phi);  // here is where the parser finds it
 824     // Note:  ret_phi is not yet pushed, until do_exits.
 825   }
 826 }
 827 
 828 
 829 //----------------------------build_start_state-------------------------------
 830 // Construct a state which contains only the incoming arguments from an
 831 // unknown caller.  The method & bci will be null & InvocationEntryBci.
 832 JVMState* Compile::build_start_state(StartNode* start, const TypeFunc* tf) {
 833   int        arg_size = tf->domain()->cnt();
 834   int        max_size = MAX2(arg_size, (int)tf->range()->cnt());
 835   JVMState*  jvms     = new (this) JVMState(max_size - TypeFunc::Parms);
 836   SafePointNode* map  = new SafePointNode(max_size, jvms);

 837   record_for_igvn(map);
 838   assert(arg_size == TypeFunc::Parms + (is_osr_compilation() ? 1 : method()->arg_size()), "correct arg_size");
 839   Node_Notes* old_nn = default_node_notes();
 840   if (old_nn != nullptr && has_method()) {
 841     Node_Notes* entry_nn = old_nn->clone(this);
 842     JVMState* entry_jvms = new(this) JVMState(method(), old_nn->jvms());
 843     entry_jvms->set_offsets(0);
 844     entry_jvms->set_bci(entry_bci());
 845     entry_nn->set_jvms(entry_jvms);
 846     set_default_node_notes(entry_nn);
 847   }
 848   uint i;
 849   for (i = 0; i < (uint)arg_size; i++) {
 850     Node* parm = initial_gvn()->transform(new ParmNode(start, i));

















 851     map->init_req(i, parm);
 852     // Record all these guys for later GVN.
 853     record_for_igvn(parm);



 854   }
 855   for (; i < map->req(); i++) {
 856     map->init_req(i, top());
 857   }
 858   assert(jvms->argoff() == TypeFunc::Parms, "parser gets arguments here");
 859   set_default_node_notes(old_nn);
 860   jvms->set_map(map);
 861   return jvms;
 862 }
 863 
 864 //-----------------------------make_node_notes---------------------------------
 865 Node_Notes* Parse::make_node_notes(Node_Notes* caller_nn) {
 866   if (caller_nn == nullptr)  return nullptr;
 867   Node_Notes* nn = caller_nn->clone(C);
 868   JVMState* caller_jvms = nn->jvms();
 869   JVMState* jvms = new (C) JVMState(method(), caller_jvms);
 870   jvms->set_offsets(0);
 871   jvms->set_bci(_entry_bci);
 872   nn->set_jvms(jvms);
 873   return nn;
 874 }
 875 
 876 
 877 //--------------------------return_values--------------------------------------
 878 void Compile::return_values(JVMState* jvms) {
 879   GraphKit kit(jvms);
 880   Node* ret = new ReturnNode(TypeFunc::Parms,
 881                              kit.control(),
 882                              kit.i_o(),
 883                              kit.reset_memory(),
 884                              kit.frameptr(),
 885                              kit.returnadr());
 886   // Add zero or 1 return values
 887   int ret_size = tf()->range()->cnt() - TypeFunc::Parms;
 888   if (ret_size > 0) {
 889     kit.inc_sp(-ret_size);  // pop the return value(s)
 890     kit.sync_jvms();
 891     ret->add_req(kit.argument(0));
 892     // Note:  The second dummy edge is not needed by a ReturnNode.






















 893   }
 894   // bind it to root
 895   root()->add_req(ret);
 896   record_for_igvn(ret);
 897   initial_gvn()->transform(ret);
 898 }
 899 
 900 //------------------------rethrow_exceptions-----------------------------------
 901 // Bind all exception states in the list into a single RethrowNode.
 902 void Compile::rethrow_exceptions(JVMState* jvms) {
 903   GraphKit kit(jvms);
 904   if (!kit.has_exceptions())  return;  // nothing to generate
 905   // Load my combined exception state into the kit, with all phis transformed:
 906   SafePointNode* ex_map = kit.combine_and_pop_all_exception_states();
 907   Node* ex_oop = kit.use_exception_state(ex_map);
 908   RethrowNode* exit = new RethrowNode(kit.control(),
 909                                       kit.i_o(), kit.reset_memory(),
 910                                       kit.frameptr(), kit.returnadr(),
 911                                       // like a return but with exception input
 912                                       ex_oop);

 996   //    to complete, we force all writes to complete.
 997   //
 998   // 2. Experimental VM option is used to force the barrier if any field
 999   //    was written out in the constructor.
1000   //
1001   // 3. On processors which are not CPU_MULTI_COPY_ATOMIC (e.g. PPC64),
1002   //    support_IRIW_for_not_multiple_copy_atomic_cpu selects that
1003   //    MemBarVolatile is used before volatile load instead of after volatile
1004   //    store, so there's no barrier after the store.
1005   //    We want to guarantee the same behavior as on platforms with total store
1006   //    order, although this is not required by the Java memory model.
1007   //    In this case, we want to enforce visibility of volatile field
1008   //    initializations which are performed in constructors.
1009   //    So as with finals, we add a barrier here.
1010   //
1011   // "All bets are off" unless the first publication occurs after a
1012   // normal return from the constructor.  We do not attempt to detect
1013   // such unusual early publications.  But no barrier is needed on
1014   // exceptional returns, since they cannot publish normally.
1015   //
1016   if (method()->is_object_initializer() &&
1017        (wrote_final() || wrote_stable() ||
1018          (AlwaysSafeConstructors && wrote_fields()) ||
1019          (support_IRIW_for_not_multiple_copy_atomic_cpu && wrote_volatile()))) {
1020     Node* recorded_alloc = alloc_with_final_or_stable();
1021     _exits.insert_mem_bar(UseStoreStoreForCtor ? Op_MemBarStoreStore : Op_MemBarRelease,
1022                           recorded_alloc);
1023 
1024     // If Memory barrier is created for final fields write
1025     // and allocation node does not escape the initialize method,
1026     // then barrier introduced by allocation node can be removed.
1027     if (DoEscapeAnalysis && (recorded_alloc != nullptr)) {
1028       AllocateNode* alloc = AllocateNode::Ideal_allocation(recorded_alloc);
1029       alloc->compute_MemBar_redundancy(method());
1030     }
1031     if (PrintOpto && (Verbose || WizardMode)) {
1032       method()->print_name();
1033       tty->print_cr(" writes finals/@Stable and needs a memory barrier");
1034     }
1035   }
1036 
1037   for (MergeMemStream mms(_exits.merged_memory()); mms.next_non_empty(); ) {
1038     // transform each slice of the original memphi:
1039     mms.set_memory(_gvn.transform(mms.memory()));
1040   }
1041   // Clean up input MergeMems created by transforming the slices
1042   _gvn.transform(_exits.merged_memory());
1043 
1044   if (tf()->range()->cnt() > TypeFunc::Parms) {
1045     const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
1046     Node*       ret_phi  = _gvn.transform( _exits.argument(0) );
1047     if (!_exits.control()->is_top() && _gvn.type(ret_phi)->empty()) {
1048       // If the type we set for the ret_phi in build_exits() is too optimistic and
1049       // the ret_phi is top now, there's an extremely small chance that it may be due to class
1050       // loading.  It could also be due to an error, so mark this method as not compilable because
1051       // otherwise this could lead to an infinite compile loop.
1052       // In any case, this code path is rarely (and never in my testing) reached.
1053       C->record_method_not_compilable("Can't determine return type.");
1054       return;
1055     }
1056     if (ret_type->isa_int()) {
1057       BasicType ret_bt = method()->return_type()->basic_type();
1058       ret_phi = mask_int_value(ret_phi, ret_bt, &_gvn);
1059     }
1060     _exits.push_node(ret_type->basic_type(), ret_phi);
1061   }
1062 
1063   // Note:  Logic for creating and optimizing the ReturnNode is in Compile.
1064 
1065   // Unlock along the exceptional paths.

1119 
1120 //-----------------------------create_entry_map-------------------------------
1121 // Initialize our parser map to contain the types at method entry.
1122 // For OSR, the map contains a single RawPtr parameter.
1123 // Initial monitor locking for sync. methods is performed by do_method_entry.
1124 SafePointNode* Parse::create_entry_map() {
1125   // Check for really stupid bail-out cases.
1126   uint len = TypeFunc::Parms + method()->max_locals() + method()->max_stack();
1127   if (len >= 32760) {
1128     // Bailout expected, this is a very rare edge case.
1129     C->record_method_not_compilable("too many local variables");
1130     return nullptr;
1131   }
1132 
1133   // clear current replaced nodes that are of no use from here on (map was cloned in build_exits).
1134   _caller->map()->delete_replaced_nodes();
1135 
1136   // If this is an inlined method, we may have to do a receiver null check.
1137   if (_caller->has_method() && is_normal_parse() && !method()->is_static()) {
1138     GraphKit kit(_caller);
1139     kit.null_check_receiver_before_call(method());

1140     _caller = kit.transfer_exceptions_into_jvms();





1141     if (kit.stopped()) {
1142       _exits.add_exception_states_from(_caller);
1143       _exits.set_jvms(_caller);
1144       return nullptr;
1145     }
1146   }
1147 
1148   assert(method() != nullptr, "parser must have a method");
1149 
1150   // Create an initial safepoint to hold JVM state during parsing
1151   JVMState* jvms = new (C) JVMState(method(), _caller->has_method() ? _caller : nullptr);
1152   set_map(new SafePointNode(len, jvms));
1153   jvms->set_map(map());
1154   record_for_igvn(map());
1155   assert(jvms->endoff() == len, "correct jvms sizing");
1156 
1157   SafePointNode* inmap = _caller->map();
1158   assert(inmap != nullptr, "must have inmap");
1159   // In case of null check on receiver above
1160   map()->transfer_replaced_nodes_from(inmap, _new_idx);
1161 
1162   uint i;
1163 
1164   // Pass thru the predefined input parameters.
1165   for (i = 0; i < TypeFunc::Parms; i++) {
1166     map()->init_req(i, inmap->in(i));
1167   }
1168 
1169   if (depth() == 1) {
1170     assert(map()->memory()->Opcode() == Op_Parm, "");
1171     // Insert the memory aliasing node
1172     set_all_memory(reset_memory());
1173   }
1174   assert(merged_memory(), "");
1175 
1176   // Now add the locals which are initially bound to arguments:
1177   uint arg_size = tf()->domain()->cnt();
1178   ensure_stack(arg_size - TypeFunc::Parms);  // OSR methods have funny args
1179   for (i = TypeFunc::Parms; i < arg_size; i++) {
1180     map()->init_req(i, inmap->argument(_caller, i - TypeFunc::Parms));
1181   }
1182 
1183   // Clear out the rest of the map (locals and stack)
1184   for (i = arg_size; i < len; i++) {
1185     map()->init_req(i, top());
1186   }
1187 
1188   SafePointNode* entry_map = stop();
1189   return entry_map;
1190 }
1191 
1192 //-----------------------------do_method_entry--------------------------------
1193 // Emit any code needed in the pseudo-block before BCI zero.
1194 // The main thing to do is lock the receiver of a synchronized method.
1195 void Parse::do_method_entry() {
1196   set_parse_bci(InvocationEntryBci); // Pseudo-BCP
1197   set_sp(0);                         // Java Stack Pointer

1231 
1232   // If the method is synchronized, we need to construct a lock node, attach
1233   // it to the Start node, and pin it there.
1234   if (method()->is_synchronized()) {
1235     // Insert a FastLockNode right after the Start which takes as arguments
1236     // the current thread pointer, the "this" pointer & the address of the
1237     // stack slot pair used for the lock.  The "this" pointer is a projection
1238     // off the start node, but the locking spot has to be constructed by
1239     // creating a ConLNode of 0, and boxing it with a BoxLockNode.  The BoxLockNode
1240     // becomes the second argument to the FastLockNode call.  The
1241     // FastLockNode becomes the new control parent to pin it to the start.
1242 
1243     // Setup Object Pointer
1244     Node *lock_obj = nullptr;
1245     if (method()->is_static()) {
1246       ciInstance* mirror = _method->holder()->java_mirror();
1247       const TypeInstPtr *t_lock = TypeInstPtr::make(mirror);
1248       lock_obj = makecon(t_lock);
1249     } else {                  // Else pass the "this" pointer,
1250       lock_obj = local(0);    // which is Parm0 from StartNode

1251     }
1252     // Clear out dead values from the debug info.
1253     kill_dead_locals();
1254     // Build the FastLockNode
1255     _synch_lock = shared_lock(lock_obj);
1256     // Check for bailout in shared_lock
1257     if (failing()) { return; }
1258   }
1259 
1260   // Feed profiling data for parameters to the type system so it can
1261   // propagate it as speculative types
1262   record_profiled_parameters_for_speculation();
1263 }
1264 
1265 //------------------------------init_blocks------------------------------------
1266 // Initialize our parser map to contain the types/monitors at method entry.
1267 void Parse::init_blocks() {
1268   // Create the blocks.
1269   _block_count = flow()->block_count();
1270   _blocks = NEW_RESOURCE_ARRAY(Block, _block_count);

1666 //--------------------handle_missing_successor---------------------------------
1667 void Parse::handle_missing_successor(int target_bci) {
1668 #ifndef PRODUCT
1669   Block* b = block();
1670   int trap_bci = b->flow()->has_trap()? b->flow()->trap_bci(): -1;
1671   tty->print_cr("### Missing successor at bci:%d for block #%d (trap_bci:%d)", target_bci, b->rpo(), trap_bci);
1672 #endif
1673   ShouldNotReachHere();
1674 }
1675 
1676 //--------------------------merge_common---------------------------------------
1677 void Parse::merge_common(Parse::Block* target, int pnum) {
1678   if (TraceOptoParse) {
1679     tty->print("Merging state at block #%d bci:%d", target->rpo(), target->start());
1680   }
1681 
1682   // Zap extra stack slots to top
1683   assert(sp() == target->start_sp(), "");
1684   clean_stack(sp());
1685 




































1686   if (!target->is_merged()) {   // No prior mapping at this bci
1687     if (TraceOptoParse) { tty->print(" with empty state");  }
1688 
1689     // If this path is dead, do not bother capturing it as a merge.
1690     // It is "as if" we had 1 fewer predecessors from the beginning.
1691     if (stopped()) {
1692       if (TraceOptoParse)  tty->print_cr(", but path is dead and doesn't count");
1693       return;
1694     }
1695 
1696     // Make a region if we know there are multiple or unpredictable inputs.
1697     // (Also, if this is a plain fall-through, we might see another region,
1698     // which must not be allowed into this block's map.)
1699     if (pnum > PhiNode::Input         // Known multiple inputs.
1700         || target->is_handler()       // These have unpredictable inputs.
1701         || target->is_loop_head()     // Known multiple inputs
1702         || control()->is_Region()) {  // We must hide this guy.
1703 
1704       int current_bci = bci();
1705       set_parse_bci(target->start()); // Set target bci

1720       record_for_igvn(r);
1721       // zap all inputs to null for debugging (done in Node(uint) constructor)
1722       // for (int j = 1; j < edges+1; j++) { r->init_req(j, nullptr); }
1723       r->init_req(pnum, control());
1724       set_control(r);
1725       target->copy_irreducible_status_to(r, jvms());
1726       set_parse_bci(current_bci); // Restore bci
1727     }
1728 
1729     // Convert the existing Parser mapping into a mapping at this bci.
1730     store_state_to(target);
1731     assert(target->is_merged(), "do not come here twice");
1732 
1733   } else {                      // Prior mapping at this bci
1734     if (TraceOptoParse) {  tty->print(" with previous state"); }
1735 #ifdef ASSERT
1736     if (target->is_SEL_head()) {
1737       target->mark_merged_backedge(block());
1738     }
1739 #endif

1740     // We must not manufacture more phis if the target is already parsed.
1741     bool nophi = target->is_parsed();
1742 
1743     SafePointNode* newin = map();// Hang on to incoming mapping
1744     Block* save_block = block(); // Hang on to incoming block;
1745     load_state_from(target);    // Get prior mapping
1746 
1747     assert(newin->jvms()->locoff() == jvms()->locoff(), "JVMS layouts agree");
1748     assert(newin->jvms()->stkoff() == jvms()->stkoff(), "JVMS layouts agree");
1749     assert(newin->jvms()->monoff() == jvms()->monoff(), "JVMS layouts agree");
1750     assert(newin->jvms()->endoff() == jvms()->endoff(), "JVMS layouts agree");
1751 
1752     // Iterate over my current mapping and the old mapping.
1753     // Where different, insert Phi functions.
1754     // Use any existing Phi functions.
1755     assert(control()->is_Region(), "must be merging to a region");
1756     RegionNode* r = control()->as_Region();
1757 
1758     // Compute where to merge into
1759     // Merge incoming control path
1760     r->init_req(pnum, newin->control());
1761 
1762     if (pnum == 1) {            // Last merge for this Region?
1763       if (!block()->flow()->is_irreducible_loop_secondary_entry()) {
1764         Node* result = _gvn.transform(r);
1765         if (r != result && TraceOptoParse) {
1766           tty->print_cr("Block #%d replace %d with %d", block()->rpo(), r->_idx, result->_idx);
1767         }
1768       }
1769       record_for_igvn(r);
1770     }
1771 
1772     // Update all the non-control inputs to map:
1773     assert(TypeFunc::Parms == newin->jvms()->locoff(), "parser map should contain only youngest jvms");
1774     bool check_elide_phi = target->is_SEL_backedge(save_block);

1775     for (uint j = 1; j < newin->req(); j++) {
1776       Node* m = map()->in(j);   // Current state of target.
1777       Node* n = newin->in(j);   // Incoming change to target state.
1778       PhiNode* phi;
1779       if (m->is_Phi() && m->as_Phi()->region() == r)
1780         phi = m->as_Phi();
1781       else


1782         phi = nullptr;

1783       if (m != n) {             // Different; must merge
1784         switch (j) {
1785         // Frame pointer and Return Address never changes
1786         case TypeFunc::FramePtr:// Drop m, use the original value
1787         case TypeFunc::ReturnAdr:
1788           break;
1789         case TypeFunc::Memory:  // Merge inputs to the MergeMem node
1790           assert(phi == nullptr, "the merge contains phis, not vice versa");
1791           merge_memory_edges(n->as_MergeMem(), pnum, nophi);
1792           continue;
1793         default:                // All normal stuff
1794           if (phi == nullptr) {
1795             const JVMState* jvms = map()->jvms();
1796             if (EliminateNestedLocks &&
1797                 jvms->is_mon(j) && jvms->is_monitor_box(j)) {
1798               // BoxLock nodes are not commoning when EliminateNestedLocks is on.
1799               // Use old BoxLock node as merged box.
1800               assert(newin->jvms()->is_monitor_box(j), "sanity");
1801               // This assert also tests that nodes are BoxLock.
1802               assert(BoxLockNode::same_slot(n, m), "sanity");

1809                 // Incremental Inlining before EA and Macro nodes elimination.
1810                 //
1811                 // Incremental Inlining is executed after IGVN optimizations
1812                 // during which BoxLock can be marked as Coarsened.
1813                 old_box->set_coarsened(); // Verifies state
1814                 old_box->set_unbalanced();
1815               }
1816               C->gvn_replace_by(n, m);
1817             } else if (!check_elide_phi || !target->can_elide_SEL_phi(j)) {
1818               phi = ensure_phi(j, nophi);
1819             }
1820           }
1821           break;
1822         }
1823       }
1824       // At this point, n might be top if:
1825       //  - there is no phi (because TypeFlow detected a conflict), or
1826       //  - the corresponding control edges is top (a dead incoming path)
1827       // It is a bug if we create a phi which sees a garbage value on a live path.
1828 
1829       if (phi != nullptr) {























1830         assert(n != top() || r->in(pnum) == top(), "live value must not be garbage");
1831         assert(phi->region() == r, "");
1832         phi->set_req(pnum, n);  // Then add 'n' to the merge
1833         if (pnum == PhiNode::Input) {
1834           // Last merge for this Phi.
1835           // So far, Phis have had a reasonable type from ciTypeFlow.
1836           // Now _gvn will join that with the meet of current inputs.
1837           // BOTTOM is never permissible here, 'cause pessimistically
1838           // Phis of pointers cannot lose the basic pointer type.
1839           debug_only(const Type* bt1 = phi->bottom_type());
1840           assert(bt1 != Type::BOTTOM, "should not be building conflict phis");
1841           map()->set_req(j, _gvn.transform(phi));
1842           debug_only(const Type* bt2 = phi->bottom_type());
1843           assert(bt2->higher_equal_speculative(bt1), "must be consistent with type-flow");
1844           record_for_igvn(phi);
1845         }
1846       }
1847     } // End of for all values to be merged
1848 
1849     if (pnum == PhiNode::Input &&
1850         !r->in(0)) {         // The occasional useless Region
1851       assert(control() == r, "");
1852       set_control(r->nonnull_req());
1853     }
1854 
1855     map()->merge_replaced_nodes_with(newin);
1856 
1857     // newin has been subsumed into the lazy merge, and is now dead.
1858     set_block(save_block);
1859 
1860     stop();                     // done with this guy, for now
1861   }
1862 
1863   if (TraceOptoParse) {
1864     tty->print_cr(" on path %d", pnum);
1865   }
1866 
1867   // Done with this parser state.
1868   assert(stopped(), "");
1869 }
1870 

1982 
1983   // Add new path to the region.
1984   uint pnum = r->req();
1985   r->add_req(nullptr);
1986 
1987   for (uint i = 1; i < map->req(); i++) {
1988     Node* n = map->in(i);
1989     if (i == TypeFunc::Memory) {
1990       // Ensure a phi on all currently known memories.
1991       for (MergeMemStream mms(n->as_MergeMem()); mms.next_non_empty(); ) {
1992         Node* phi = mms.memory();
1993         if (phi->is_Phi() && phi->as_Phi()->region() == r) {
1994           assert(phi->req() == pnum, "must be same size as region");
1995           phi->add_req(nullptr);
1996         }
1997       }
1998     } else {
1999       if (n->is_Phi() && n->as_Phi()->region() == r) {
2000         assert(n->req() == pnum, "must be same size as region");
2001         n->add_req(nullptr);


2002       }
2003     }
2004   }
2005 
2006   return pnum;
2007 }
2008 
2009 //------------------------------ensure_phi-------------------------------------
2010 // Turn the idx'th entry of the current map into a Phi
2011 PhiNode *Parse::ensure_phi(int idx, bool nocreate) {
2012   SafePointNode* map = this->map();
2013   Node* region = map->control();
2014   assert(region->is_Region(), "");
2015 
2016   Node* o = map->in(idx);
2017   assert(o != nullptr, "");
2018 
2019   if (o == top())  return nullptr; // TOP always merges into TOP
2020 
2021   if (o->is_Phi() && o->as_Phi()->region() == region) {
2022     return o->as_Phi();
2023   }




2024 
2025   // Now use a Phi here for merging
2026   assert(!nocreate, "Cannot build a phi for a block already parsed.");
2027   const JVMState* jvms = map->jvms();
2028   const Type* t = nullptr;
2029   if (jvms->is_loc(idx)) {
2030     t = block()->local_type_at(idx - jvms->locoff());
2031   } else if (jvms->is_stk(idx)) {
2032     t = block()->stack_type_at(idx - jvms->stkoff());
2033   } else if (jvms->is_mon(idx)) {
2034     assert(!jvms->is_monitor_box(idx), "no phis for boxes");
2035     t = TypeInstPtr::BOTTOM; // this is sufficient for a lock object
2036   } else if ((uint)idx < TypeFunc::Parms) {
2037     t = o->bottom_type();  // Type::RETURN_ADDRESS or such-like.
2038   } else {
2039     assert(false, "no type information for this phi");
2040   }
2041 
2042   // If the type falls to bottom, then this must be a local that
2043   // is mixing ints and oops or some such.  Forcing it to top
2044   // makes it go dead.
2045   if (t == Type::BOTTOM) {
2046     map->set_req(idx, top());
2047     return nullptr;
2048   }
2049 
2050   // Do not create phis for top either.
2051   // A top on a non-null control flow must be an unused even after the.phi.
2052   if (t == Type::TOP || t == Type::HALF) {
2053     map->set_req(idx, top());
2054     return nullptr;
2055   }
2056 
2057   PhiNode* phi = PhiNode::make(region, o, t);
2058   gvn().set_type(phi, t);
2059   if (C->do_escape_analysis()) record_for_igvn(phi);
2060   map->set_req(idx, phi);
2061   return phi;









2062 }
2063 
2064 //--------------------------ensure_memory_phi----------------------------------
2065 // Turn the idx'th slice of the current memory into a Phi
2066 PhiNode *Parse::ensure_memory_phi(int idx, bool nocreate) {
2067   MergeMemNode* mem = merged_memory();
2068   Node* region = control();
2069   assert(region->is_Region(), "");
2070 
2071   Node *o = (idx == Compile::AliasIdxBot)? mem->base_memory(): mem->memory_at(idx);
2072   assert(o != nullptr && o != top(), "");
2073 
2074   PhiNode* phi;
2075   if (o->is_Phi() && o->as_Phi()->region() == region) {
2076     phi = o->as_Phi();
2077     if (phi == mem->base_memory() && idx >= Compile::AliasIdxRaw) {
2078       // clone the shared base memory phi to make a new memory split
2079       assert(!nocreate, "Cannot build a phi for a block already parsed.");
2080       const Type* t = phi->bottom_type();
2081       const TypePtr* adr_type = C->get_adr_type(idx);

2171 // Add check to deoptimize once holder klass is fully initialized.
2172 void Parse::clinit_deopt() {
2173   assert(C->has_method(), "only for normal compilations");
2174   assert(depth() == 1, "only for main compiled method");
2175   assert(is_normal_parse(), "no barrier needed on osr entry");
2176   assert(!method()->holder()->is_not_initialized(), "initialization should have been started");
2177 
2178   set_parse_bci(0);
2179 
2180   Node* holder = makecon(TypeKlassPtr::make(method()->holder(), Type::trust_interfaces));
2181   guard_klass_being_initialized(holder);
2182 }
2183 
2184 //------------------------------return_current---------------------------------
2185 // Append current _map to _exit_return
2186 void Parse::return_current(Node* value) {
2187   if (method()->intrinsic_id() == vmIntrinsics::_Object_init) {
2188     call_register_finalizer();
2189   }
2190 



































2191   // Do not set_parse_bci, so that return goo is credited to the return insn.
2192   set_bci(InvocationEntryBci);
2193   if (method()->is_synchronized() && GenerateSynchronizationCode) {
2194     shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
2195   }
2196   if (C->env()->dtrace_method_probes()) {
2197     make_dtrace_method_exit(method());
2198   }

2199   SafePointNode* exit_return = _exits.map();
2200   exit_return->in( TypeFunc::Control  )->add_req( control() );
2201   exit_return->in( TypeFunc::I_O      )->add_req( i_o    () );
2202   Node *mem = exit_return->in( TypeFunc::Memory   );
2203   for (MergeMemStream mms(mem->as_MergeMem(), merged_memory()); mms.next_non_empty2(); ) {
2204     if (mms.is_empty()) {
2205       // get a copy of the base memory, and patch just this one input
2206       const TypePtr* adr_type = mms.adr_type(C);
2207       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
2208       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
2209       gvn().set_type_bottom(phi);
2210       phi->del_req(phi->req()-1);  // prepare to re-patch
2211       mms.set_memory(phi);
2212     }
2213     mms.memory()->add_req(mms.memory2());
2214   }
2215 
2216   // frame pointer is always same, already captured
2217   if (value != nullptr) {
2218     // If returning oops to an interface-return, there is a silent free
2219     // cast from oop to interface allowed by the Verifier.  Make it explicit
2220     // here.
2221     Node* phi = _exits.argument(0);
2222     phi->add_req(value);
2223   }
2224 
2225   if (_first_return) {
2226     _exits.map()->transfer_replaced_nodes_from(map(), _new_idx);
2227     _first_return = false;
2228   } else {
2229     _exits.map()->merge_replaced_nodes_with(map());
2230   }
2231 
2232   stop_and_kill_map();          // This CFG path dies here
2233 }
2234 
2235 
2236 //------------------------------add_safepoint----------------------------------
2237 void Parse::add_safepoint() {
2238   uint parms = TypeFunc::Parms+1;
2239 
2240   // Clear out dead values from the debug info.
2241   kill_dead_locals();
2242 
2243   // Clone the JVM State
2244   SafePointNode *sfpnt = new SafePointNode(parms, nullptr);

  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "interpreter/linkResolver.hpp"
  28 #include "memory/resourceArea.hpp"
  29 #include "oops/method.hpp"
  30 #include "opto/addnode.hpp"
  31 #include "opto/c2compiler.hpp"
  32 #include "opto/castnode.hpp"
  33 #include "opto/convertnode.hpp"
  34 #include "opto/idealGraphPrinter.hpp"
  35 #include "opto/inlinetypenode.hpp"
  36 #include "opto/locknode.hpp"
  37 #include "opto/memnode.hpp"
  38 #include "opto/opaquenode.hpp"
  39 #include "opto/parse.hpp"
  40 #include "opto/rootnode.hpp"
  41 #include "opto/runtime.hpp"
  42 #include "opto/type.hpp"
  43 #include "runtime/handles.inline.hpp"
  44 #include "runtime/safepointMechanism.hpp"
  45 #include "runtime/sharedRuntime.hpp"
  46 #include "utilities/bitMap.inline.hpp"
  47 #include "utilities/copy.hpp"
  48 
  49 // Static array so we can figure out which bytecodes stop us from compiling
  50 // the most. Some of the non-static variables are needed in bytecodeInfo.cpp
  51 // and eventually should be encapsulated in a proper class (gri 8/18/98).
  52 
  53 #ifndef PRODUCT
  54 uint nodes_created             = 0;
  55 uint methods_parsed            = 0;

  87   }
  88   if (all_null_checks_found) {
  89     tty->print_cr("%u made implicit (%2u%%)", implicit_null_checks,
  90                   (100*implicit_null_checks)/all_null_checks_found);
  91   }
  92   if (SharedRuntime::_implicit_null_throws) {
  93     tty->print_cr("%u implicit null exceptions at runtime",
  94                   SharedRuntime::_implicit_null_throws);
  95   }
  96 
  97   if (PrintParseStatistics && BytecodeParseHistogram::initialized()) {
  98     BytecodeParseHistogram::print();
  99   }
 100 }
 101 #endif
 102 
 103 //------------------------------ON STACK REPLACEMENT---------------------------
 104 
 105 // Construct a node which can be used to get incoming state for
 106 // on stack replacement.
 107 Node* Parse::fetch_interpreter_state(int index,
 108                                      const Type* type,
 109                                      Node* local_addrs,
 110                                      Node* local_addrs_base) {
 111   BasicType bt = type->basic_type();
 112   if (type == TypePtr::NULL_PTR) {
 113     // Ptr types are mixed together with T_ADDRESS but nullptr is
 114     // really for T_OBJECT types so correct it.
 115     bt = T_OBJECT;
 116   }
 117   Node *mem = memory(Compile::AliasIdxRaw);
 118   Node *adr = basic_plus_adr( local_addrs_base, local_addrs, -index*wordSize );
 119   Node *ctl = control();
 120 
 121   // Very similar to LoadNode::make, except we handle un-aligned longs and
 122   // doubles on Sparc.  Intel can handle them just fine directly.
 123   Node *l = nullptr;
 124   switch (bt) {                // Signature is flattened
 125   case T_INT:     l = new LoadINode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInt::INT,        MemNode::unordered); break;
 126   case T_FLOAT:   l = new LoadFNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::FLOAT,         MemNode::unordered); break;
 127   case T_ADDRESS: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM,  MemNode::unordered); break;
 128   case T_OBJECT:  l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInstPtr::BOTTOM, MemNode::unordered); break;
 129   case T_LONG:
 130   case T_DOUBLE: {
 131     // Since arguments are in reverse order, the argument address 'adr'
 132     // refers to the back half of the long/double.  Recompute adr.
 133     adr = basic_plus_adr(local_addrs_base, local_addrs, -(index+1)*wordSize);
 134     if (Matcher::misaligned_doubles_ok) {
 135       l = (bt == T_DOUBLE)
 136         ? (Node*)new LoadDNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::DOUBLE, MemNode::unordered)

 138     } else {
 139       l = (bt == T_DOUBLE)
 140         ? (Node*)new LoadD_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered)
 141         : (Node*)new LoadL_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered);
 142     }
 143     break;
 144   }
 145   default: ShouldNotReachHere();
 146   }
 147   return _gvn.transform(l);
 148 }
 149 
 150 // Helper routine to prevent the interpreter from handing
 151 // unexpected typestate to an OSR method.
 152 // The Node l is a value newly dug out of the interpreter frame.
 153 // The type is the type predicted by ciTypeFlow.  Note that it is
 154 // not a general type, but can only come from Type::get_typeflow_type.
 155 // The safepoint is a map which will feed an uncommon trap.
 156 Node* Parse::check_interpreter_type(Node* l, const Type* type,
 157                                     SafePointNode* &bad_type_exit) {

 158   const TypeOopPtr* tp = type->isa_oopptr();
 159 
 160   // TypeFlow may assert null-ness if a type appears unloaded.
 161   if (type == TypePtr::NULL_PTR ||
 162       (tp != nullptr && !tp->is_loaded())) {
 163     // Value must be null, not a real oop.
 164     Node* chk = _gvn.transform( new CmpPNode(l, null()) );
 165     Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
 166     IfNode* iff = create_and_map_if(control(), tst, PROB_MAX, COUNT_UNKNOWN);
 167     set_control(_gvn.transform( new IfTrueNode(iff) ));
 168     Node* bad_type = _gvn.transform( new IfFalseNode(iff) );
 169     bad_type_exit->control()->add_req(bad_type);
 170     l = null();
 171   }
 172 
 173   // Typeflow can also cut off paths from the CFG, based on
 174   // types which appear unloaded, or call sites which appear unlinked.
 175   // When paths are cut off, values at later merge points can rise
 176   // toward more specific classes.  Make sure these specific classes
 177   // are still in effect.
 178   if (tp != nullptr && !tp->is_same_java_type_as(TypeInstPtr::BOTTOM)) {
 179     // TypeFlow asserted a specific object type.  Value must have that type.
 180     Node* bad_type_ctrl = nullptr;
 181     if (tp->is_inlinetypeptr() && !tp->maybe_null()) {
 182       // Check inline types for null here to prevent checkcast from adding an
 183       // exception state before the bytecode entry (use 'bad_type_ctrl' instead).
 184       l = null_check_oop(l, &bad_type_ctrl);
 185       bad_type_exit->control()->add_req(bad_type_ctrl);
 186     }
 187     l = gen_checkcast(l, makecon(tp->as_klass_type()->cast_to_exactness(true)), &bad_type_ctrl);
 188     bad_type_exit->control()->add_req(bad_type_ctrl);
 189   }
 190 
 191   assert(_gvn.type(l)->higher_equal(type), "must constrain OSR typestate");
 192   return l;
 193 }
 194 
 195 // Helper routine which sets up elements of the initial parser map when
 196 // performing a parse for on stack replacement.  Add values into map.
 197 // The only parameter contains the address of a interpreter arguments.
 198 void Parse::load_interpreter_state(Node* osr_buf) {
 199   int index;
 200   int max_locals = jvms()->loc_size();
 201   int max_stack  = jvms()->stk_size();
 202 

 203   // Mismatch between method and jvms can occur since map briefly held
 204   // an OSR entry state (which takes up one RawPtr word).
 205   assert(max_locals == method()->max_locals(), "sanity");
 206   assert(max_stack  >= method()->max_stack(),  "sanity");
 207   assert((int)jvms()->endoff() == TypeFunc::Parms + max_locals + max_stack, "sanity");
 208   assert((int)jvms()->endoff() == (int)map()->req(), "sanity");
 209 
 210   // Find the start block.
 211   Block* osr_block = start_block();
 212   assert(osr_block->start() == osr_bci(), "sanity");
 213 
 214   // Set initial BCI.
 215   set_parse_bci(osr_block->start());
 216 
 217   // Set initial stack depth.
 218   set_sp(osr_block->start_sp());
 219 
 220   // Check bailouts.  We currently do not perform on stack replacement
 221   // of loops in catch blocks or loops which branch with a non-empty stack.
 222   if (sp() != 0) {

 237   for (index = 0; index < mcnt; index++) {
 238     // Make a BoxLockNode for the monitor.
 239     BoxLockNode* osr_box = new BoxLockNode(next_monitor());
 240     // Check for bailout after new BoxLockNode
 241     if (failing()) { return; }
 242 
 243     // This OSR locking region is unbalanced because it does not have Lock node:
 244     // locking was done in Interpreter.
 245     // This is similar to Coarsened case when Lock node is eliminated
 246     // and as result the region is marked as Unbalanced.
 247 
 248     // Emulate Coarsened state transition from Regular to Unbalanced.
 249     osr_box->set_coarsened();
 250     osr_box->set_unbalanced();
 251 
 252     Node* box = _gvn.transform(osr_box);
 253 
 254     // Displaced headers and locked objects are interleaved in the
 255     // temp OSR buffer.  We only copy the locked objects out here.
 256     // Fetch the locked object from the OSR temp buffer and copy to our fastlock node.
 257     Node* lock_object = fetch_interpreter_state(index*2, Type::get_const_basic_type(T_OBJECT), monitors_addr, osr_buf);
 258     // Try and copy the displaced header to the BoxNode
 259     Node* displaced_hdr = fetch_interpreter_state((index*2) + 1, Type::get_const_basic_type(T_ADDRESS), monitors_addr, osr_buf);

 260 
 261     store_to_memory(control(), box, displaced_hdr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered);
 262 
 263     // Build a bogus FastLockNode (no code will be generated) and push the
 264     // monitor into our debug info.
 265     const FastLockNode *flock = _gvn.transform(new FastLockNode( nullptr, lock_object, box ))->as_FastLock();
 266     map()->push_monitor(flock);
 267 
 268     // If the lock is our method synchronization lock, tuck it away in
 269     // _sync_lock for return and rethrow exit paths.
 270     if (index == 0 && method()->is_synchronized()) {
 271       _synch_lock = flock;
 272     }
 273   }
 274 
 275   // Use the raw liveness computation to make sure that unexpected
 276   // values don't propagate into the OSR frame.
 277   MethodLivenessResult live_locals = method()->liveness_at_bci(osr_bci());
 278   if (!live_locals.is_valid()) {
 279     // Degenerate or breakpointed method.

 307         if (C->log() != nullptr) {
 308           C->log()->elem("OSR_mismatch local_index='%d'",index);
 309         }
 310         set_local(index, null());
 311         // and ignore it for the loads
 312         continue;
 313       }
 314     }
 315 
 316     // Filter out TOP, HALF, and BOTTOM.  (Cf. ensure_phi.)
 317     if (type == Type::TOP || type == Type::HALF) {
 318       continue;
 319     }
 320     // If the type falls to bottom, then this must be a local that
 321     // is mixing ints and oops or some such.  Forcing it to top
 322     // makes it go dead.
 323     if (type == Type::BOTTOM) {
 324       continue;
 325     }
 326     // Construct code to access the appropriate local.
 327     Node* value = fetch_interpreter_state(index, type, locals_addr, osr_buf);






 328     set_local(index, value);
 329   }
 330 
 331   // Extract the needed stack entries from the interpreter frame.
 332   for (index = 0; index < sp(); index++) {
 333     const Type *type = osr_block->stack_type_at(index);
 334     if (type != Type::TOP) {
 335       // Currently the compiler bails out when attempting to on stack replace
 336       // at a bci with a non-empty stack.  We should not reach here.
 337       ShouldNotReachHere();
 338     }
 339   }
 340 
 341   // End the OSR migration
 342   make_runtime_call(RC_LEAF, OptoRuntime::osr_end_Type(),
 343                     CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
 344                     "OSR_migration_end", TypeRawPtr::BOTTOM,
 345                     osr_buf);
 346 
 347   // Now that the interpreter state is loaded, make sure it will match

 507   // either breakpoint setting or hotswapping of methods may
 508   // cause deoptimization.
 509   if (C->env()->jvmti_can_hotswap_or_post_breakpoint()) {
 510     C->dependencies()->assert_evol_method(method());
 511   }
 512 
 513   NOT_PRODUCT(methods_seen++);
 514 
 515   // Do some special top-level things.
 516   if (depth() == 1 && C->is_osr_compilation()) {
 517     _tf = C->tf();     // the OSR entry type is different
 518     _entry_bci = C->entry_bci();
 519     _flow = method()->get_osr_flow_analysis(osr_bci());
 520   } else {
 521     _tf = TypeFunc::make(method());
 522     _entry_bci = InvocationEntryBci;
 523     _flow = method()->get_flow_analysis();
 524   }
 525 
 526   if (_flow->failing()) {
 527     // TODO Adding a trap due to an unloaded return type in ciTypeFlow::StateVector::do_invoke
 528     // can lead to this. Re-enable once 8284443 is fixed.
 529     //assert(false, "type flow analysis failed during parsing");
 530     C->record_method_not_compilable(_flow->failure_reason());
 531 #ifndef PRODUCT
 532       if (PrintOpto && (Verbose || WizardMode)) {
 533         if (is_osr_parse()) {
 534           tty->print_cr("OSR @%d type flow bailout: %s", _entry_bci, _flow->failure_reason());
 535         } else {
 536           tty->print_cr("type flow bailout: %s", _flow->failure_reason());
 537         }
 538         if (Verbose) {
 539           method()->print();
 540           method()->print_codes();
 541           _flow->print();
 542         }
 543       }
 544 #endif
 545   }
 546 
 547 #ifdef ASSERT
 548   if (depth() == 1) {
 549     assert(C->is_osr_compilation() == this->is_osr_parse(), "OSR in sync");

 600     load_interpreter_state(osr_buf);
 601   } else {
 602     set_map(entry_map);
 603     do_method_entry();
 604   }
 605 
 606   if (depth() == 1 && !failing()) {
 607     if (C->clinit_barrier_on_entry()) {
 608       // Add check to deoptimize the nmethod once the holder class is fully initialized
 609       clinit_deopt();
 610     }
 611   }
 612 
 613   // Check for bailouts during method entry.
 614   if (failing()) {
 615     if (log)  log->done("parse");
 616     C->set_default_node_notes(caller_nn);
 617     return;
 618   }
 619 
 620   // Handle inline type arguments
 621   int arg_size = method()->arg_size();
 622   for (int i = 0; i < arg_size; i++) {
 623     Node* parm = local(i);
 624     const Type* t = _gvn.type(parm);
 625     if (t->is_inlinetypeptr()) {
 626       // Create InlineTypeNode from the oop and replace the parameter
 627       bool is_larval = (i == 0) && method()->is_object_constructor() && !method()->holder()->is_java_lang_Object();
 628       Node* vt = InlineTypeNode::make_from_oop(this, parm, t->inline_klass(), !t->maybe_null(), is_larval);
 629       replace_in_map(parm, vt);
 630     } else if (UseTypeSpeculation && (i == (arg_size - 1)) && !is_osr_parse() && method()->has_vararg() &&
 631                t->isa_aryptr() != nullptr && !t->is_aryptr()->is_null_free() && !t->is_aryptr()->is_not_null_free()) {
 632       // Speculate on varargs Object array being not null-free (and therefore also not flat)
 633       const TypePtr* spec_type = t->speculative();
 634       spec_type = (spec_type != nullptr && spec_type->isa_aryptr() != nullptr) ? spec_type : t->is_aryptr();
 635       spec_type = spec_type->remove_speculative()->is_aryptr()->cast_to_not_null_free();
 636       spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::Offset::bottom, TypeOopPtr::InstanceBot, spec_type);
 637       Node* cast = _gvn.transform(new CheckCastPPNode(control(), parm, t->join_speculative(spec_type)));
 638       replace_in_map(parm, cast);
 639     }
 640   }
 641 
 642   entry_map = map();  // capture any changes performed by method setup code
 643   assert(jvms()->endoff() == map()->req(), "map matches JVMS layout");
 644 
 645   // We begin parsing as if we have just encountered a jump to the
 646   // method entry.
 647   Block* entry_block = start_block();
 648   assert(entry_block->start() == (is_osr_parse() ? osr_bci() : 0), "");
 649   set_map_clone(entry_map);
 650   merge_common(entry_block, entry_block->next_path_num());
 651 
 652 #ifndef PRODUCT
 653   BytecodeParseHistogram *parse_histogram_obj = new (C->env()->arena()) BytecodeParseHistogram(this, C);
 654   set_parse_histogram( parse_histogram_obj );
 655 #endif
 656 
 657   // Parse all the basic blocks.
 658   do_all_blocks();
 659 
 660   // Check for bailouts during conversion to graph
 661   if (failing()) {

 807 void Parse::build_exits() {
 808   // make a clone of caller to prevent sharing of side-effects
 809   _exits.set_map(_exits.clone_map());
 810   _exits.clean_stack(_exits.sp());
 811   _exits.sync_jvms();
 812 
 813   RegionNode* region = new RegionNode(1);
 814   record_for_igvn(region);
 815   gvn().set_type_bottom(region);
 816   _exits.set_control(region);
 817 
 818   // Note:  iophi and memphi are not transformed until do_exits.
 819   Node* iophi  = new PhiNode(region, Type::ABIO);
 820   Node* memphi = new PhiNode(region, Type::MEMORY, TypePtr::BOTTOM);
 821   gvn().set_type_bottom(iophi);
 822   gvn().set_type_bottom(memphi);
 823   _exits.set_i_o(iophi);
 824   _exits.set_all_memory(memphi);
 825 
 826   // Add a return value to the exit state.  (Do not push it yet.)
 827   if (tf()->range_sig()->cnt() > TypeFunc::Parms) {
 828     const Type* ret_type = tf()->range_sig()->field_at(TypeFunc::Parms);
 829     if (ret_type->isa_int()) {
 830       BasicType ret_bt = method()->return_type()->basic_type();
 831       if (ret_bt == T_BOOLEAN ||
 832           ret_bt == T_CHAR ||
 833           ret_bt == T_BYTE ||
 834           ret_bt == T_SHORT) {
 835         ret_type = TypeInt::INT;
 836       }
 837     }
 838 
 839     // Don't "bind" an unloaded return klass to the ret_phi. If the klass
 840     // becomes loaded during the subsequent parsing, the loaded and unloaded
 841     // types will not join when we transform and push in do_exits().
 842     const TypeOopPtr* ret_oop_type = ret_type->isa_oopptr();
 843     if (ret_oop_type && !ret_oop_type->is_loaded()) {
 844       ret_type = TypeOopPtr::BOTTOM;
 845     }
 846     int         ret_size = type2size[ret_type->basic_type()];
 847     Node*       ret_phi  = new PhiNode(region, ret_type);
 848     gvn().set_type_bottom(ret_phi);
 849     _exits.ensure_stack(ret_size);
 850     assert((int)(tf()->range_sig()->cnt() - TypeFunc::Parms) == ret_size, "good tf range");
 851     assert(method()->return_type()->size() == ret_size, "tf agrees w/ method");
 852     _exits.set_argument(0, ret_phi);  // here is where the parser finds it
 853     // Note:  ret_phi is not yet pushed, until do_exits.
 854   }
 855 }
 856 

 857 //----------------------------build_start_state-------------------------------
 858 // Construct a state which contains only the incoming arguments from an
 859 // unknown caller.  The method & bci will be null & InvocationEntryBci.
 860 JVMState* Compile::build_start_state(StartNode* start, const TypeFunc* tf) {
 861   int        arg_size = tf->domain_sig()->cnt();
 862   int        max_size = MAX2(arg_size, (int)tf->range_cc()->cnt());
 863   JVMState*  jvms     = new (this) JVMState(max_size - TypeFunc::Parms);
 864   SafePointNode* map  = new SafePointNode(max_size, jvms);
 865   jvms->set_map(map);
 866   record_for_igvn(map);
 867   assert(arg_size == TypeFunc::Parms + (is_osr_compilation() ? 1 : method()->arg_size()), "correct arg_size");
 868   Node_Notes* old_nn = default_node_notes();
 869   if (old_nn != nullptr && has_method()) {
 870     Node_Notes* entry_nn = old_nn->clone(this);
 871     JVMState* entry_jvms = new(this) JVMState(method(), old_nn->jvms());
 872     entry_jvms->set_offsets(0);
 873     entry_jvms->set_bci(entry_bci());
 874     entry_nn->set_jvms(entry_jvms);
 875     set_default_node_notes(entry_nn);
 876   }
 877   PhaseGVN& gvn = *initial_gvn();
 878   uint i = 0;
 879   int arg_num = 0;
 880   for (uint j = 0; i < (uint)arg_size; i++) {
 881     const Type* t = tf->domain_sig()->field_at(i);
 882     Node* parm = nullptr;
 883     if (t->is_inlinetypeptr() && method()->is_scalarized_arg(arg_num)) {
 884       // Inline type arguments are not passed by reference: we get an argument per
 885       // field of the inline type. Build InlineTypeNodes from the inline type arguments.
 886       GraphKit kit(jvms, &gvn);
 887       kit.set_control(map->control());
 888       Node* old_mem = map->memory();
 889       // Use immutable memory for inline type loads and restore it below
 890       kit.set_all_memory(C->immutable_memory());
 891       parm = InlineTypeNode::make_from_multi(&kit, start, t->inline_klass(), j, /* in= */ true, /* null_free= */ !t->maybe_null());
 892       map->set_control(kit.control());
 893       map->set_memory(old_mem);
 894     } else {
 895       parm = gvn.transform(new ParmNode(start, j++));
 896     }
 897     map->init_req(i, parm);
 898     // Record all these guys for later GVN.
 899     record_for_igvn(parm);
 900     if (i >= TypeFunc::Parms && t != Type::HALF) {
 901       arg_num++;
 902     }
 903   }
 904   for (; i < map->req(); i++) {
 905     map->init_req(i, top());
 906   }
 907   assert(jvms->argoff() == TypeFunc::Parms, "parser gets arguments here");
 908   set_default_node_notes(old_nn);

 909   return jvms;
 910 }
 911 
 912 //-----------------------------make_node_notes---------------------------------
 913 Node_Notes* Parse::make_node_notes(Node_Notes* caller_nn) {
 914   if (caller_nn == nullptr)  return nullptr;
 915   Node_Notes* nn = caller_nn->clone(C);
 916   JVMState* caller_jvms = nn->jvms();
 917   JVMState* jvms = new (C) JVMState(method(), caller_jvms);
 918   jvms->set_offsets(0);
 919   jvms->set_bci(_entry_bci);
 920   nn->set_jvms(jvms);
 921   return nn;
 922 }
 923 
 924 
 925 //--------------------------return_values--------------------------------------
 926 void Compile::return_values(JVMState* jvms) {
 927   GraphKit kit(jvms);
 928   Node* ret = new ReturnNode(TypeFunc::Parms,
 929                              kit.control(),
 930                              kit.i_o(),
 931                              kit.reset_memory(),
 932                              kit.frameptr(),
 933                              kit.returnadr());
 934   // Add zero or 1 return values
 935   int ret_size = tf()->range_sig()->cnt() - TypeFunc::Parms;
 936   if (ret_size > 0) {
 937     kit.inc_sp(-ret_size);  // pop the return value(s)
 938     kit.sync_jvms();
 939     Node* res = kit.argument(0);
 940     if (tf()->returns_inline_type_as_fields()) {
 941       // Multiple return values (inline type fields): add as many edges
 942       // to the Return node as returned values.
 943       InlineTypeNode* vt = res->as_InlineType();
 944       ret->add_req_batch(nullptr, tf()->range_cc()->cnt() - TypeFunc::Parms);
 945       if (vt->is_allocated(&kit.gvn()) && !StressCallingConvention) {
 946         ret->init_req(TypeFunc::Parms, vt);
 947       } else {
 948         // Return the tagged klass pointer to signal scalarization to the caller
 949         Node* tagged_klass = vt->tagged_klass(kit.gvn());
 950         // Return null if the inline type is null (IsInit field is not set)
 951         Node* conv   = kit.gvn().transform(new ConvI2LNode(vt->get_is_init()));
 952         Node* shl    = kit.gvn().transform(new LShiftLNode(conv, kit.intcon(63)));
 953         Node* shr    = kit.gvn().transform(new RShiftLNode(shl, kit.intcon(63)));
 954         tagged_klass = kit.gvn().transform(new AndLNode(tagged_klass, shr));
 955         ret->init_req(TypeFunc::Parms, tagged_klass);
 956       }
 957       uint idx = TypeFunc::Parms + 1;
 958       vt->pass_fields(&kit, ret, idx, false, false);
 959     } else {
 960       ret->add_req(res);
 961       // Note:  The second dummy edge is not needed by a ReturnNode.
 962     }
 963   }
 964   // bind it to root
 965   root()->add_req(ret);
 966   record_for_igvn(ret);
 967   initial_gvn()->transform(ret);
 968 }
 969 
 970 //------------------------rethrow_exceptions-----------------------------------
 971 // Bind all exception states in the list into a single RethrowNode.
 972 void Compile::rethrow_exceptions(JVMState* jvms) {
 973   GraphKit kit(jvms);
 974   if (!kit.has_exceptions())  return;  // nothing to generate
 975   // Load my combined exception state into the kit, with all phis transformed:
 976   SafePointNode* ex_map = kit.combine_and_pop_all_exception_states();
 977   Node* ex_oop = kit.use_exception_state(ex_map);
 978   RethrowNode* exit = new RethrowNode(kit.control(),
 979                                       kit.i_o(), kit.reset_memory(),
 980                                       kit.frameptr(), kit.returnadr(),
 981                                       // like a return but with exception input
 982                                       ex_oop);

1066   //    to complete, we force all writes to complete.
1067   //
1068   // 2. Experimental VM option is used to force the barrier if any field
1069   //    was written out in the constructor.
1070   //
1071   // 3. On processors which are not CPU_MULTI_COPY_ATOMIC (e.g. PPC64),
1072   //    support_IRIW_for_not_multiple_copy_atomic_cpu selects that
1073   //    MemBarVolatile is used before volatile load instead of after volatile
1074   //    store, so there's no barrier after the store.
1075   //    We want to guarantee the same behavior as on platforms with total store
1076   //    order, although this is not required by the Java memory model.
1077   //    In this case, we want to enforce visibility of volatile field
1078   //    initializations which are performed in constructors.
1079   //    So as with finals, we add a barrier here.
1080   //
1081   // "All bets are off" unless the first publication occurs after a
1082   // normal return from the constructor.  We do not attempt to detect
1083   // such unusual early publications.  But no barrier is needed on
1084   // exceptional returns, since they cannot publish normally.
1085   //
1086   if ((method()->is_object_constructor() || method()->is_class_initializer()) &&
1087        (wrote_final() || wrote_stable() ||
1088          (AlwaysSafeConstructors && wrote_fields()) ||
1089          (support_IRIW_for_not_multiple_copy_atomic_cpu && wrote_volatile()))) {
1090     Node* recorded_alloc = alloc_with_final_or_stable();
1091     _exits.insert_mem_bar(UseStoreStoreForCtor ? Op_MemBarStoreStore : Op_MemBarRelease,
1092                           recorded_alloc);
1093 
1094     // If Memory barrier is created for final fields write
1095     // and allocation node does not escape the initialize method,
1096     // then barrier introduced by allocation node can be removed.
1097     if (DoEscapeAnalysis && (recorded_alloc != nullptr)) {
1098       AllocateNode* alloc = AllocateNode::Ideal_allocation(recorded_alloc);
1099       alloc->compute_MemBar_redundancy(method());
1100     }
1101     if (PrintOpto && (Verbose || WizardMode)) {
1102       method()->print_name();
1103       tty->print_cr(" writes finals/@Stable and needs a memory barrier");
1104     }
1105   }
1106 
1107   for (MergeMemStream mms(_exits.merged_memory()); mms.next_non_empty(); ) {
1108     // transform each slice of the original memphi:
1109     mms.set_memory(_gvn.transform(mms.memory()));
1110   }
1111   // Clean up input MergeMems created by transforming the slices
1112   _gvn.transform(_exits.merged_memory());
1113 
1114   if (tf()->range_sig()->cnt() > TypeFunc::Parms) {
1115     const Type* ret_type = tf()->range_sig()->field_at(TypeFunc::Parms);
1116     Node*       ret_phi  = _gvn.transform( _exits.argument(0) );
1117     if (!_exits.control()->is_top() && _gvn.type(ret_phi)->empty()) {
1118       // If the type we set for the ret_phi in build_exits() is too optimistic and
1119       // the ret_phi is top now, there's an extremely small chance that it may be due to class
1120       // loading.  It could also be due to an error, so mark this method as not compilable because
1121       // otherwise this could lead to an infinite compile loop.
1122       // In any case, this code path is rarely (and never in my testing) reached.
1123       C->record_method_not_compilable("Can't determine return type.");
1124       return;
1125     }
1126     if (ret_type->isa_int()) {
1127       BasicType ret_bt = method()->return_type()->basic_type();
1128       ret_phi = mask_int_value(ret_phi, ret_bt, &_gvn);
1129     }
1130     _exits.push_node(ret_type->basic_type(), ret_phi);
1131   }
1132 
1133   // Note:  Logic for creating and optimizing the ReturnNode is in Compile.
1134 
1135   // Unlock along the exceptional paths.

1189 
1190 //-----------------------------create_entry_map-------------------------------
1191 // Initialize our parser map to contain the types at method entry.
1192 // For OSR, the map contains a single RawPtr parameter.
1193 // Initial monitor locking for sync. methods is performed by do_method_entry.
1194 SafePointNode* Parse::create_entry_map() {
1195   // Check for really stupid bail-out cases.
1196   uint len = TypeFunc::Parms + method()->max_locals() + method()->max_stack();
1197   if (len >= 32760) {
1198     // Bailout expected, this is a very rare edge case.
1199     C->record_method_not_compilable("too many local variables");
1200     return nullptr;
1201   }
1202 
1203   // clear current replaced nodes that are of no use from here on (map was cloned in build_exits).
1204   _caller->map()->delete_replaced_nodes();
1205 
1206   // If this is an inlined method, we may have to do a receiver null check.
1207   if (_caller->has_method() && is_normal_parse() && !method()->is_static()) {
1208     GraphKit kit(_caller);
1209     Node* receiver = kit.argument(0);
1210     Node* null_free = kit.null_check_receiver_before_call(method());
1211     _caller = kit.transfer_exceptions_into_jvms();
1212     if (receiver->is_InlineType() && receiver->as_InlineType()->is_larval()) {
1213       // Replace the larval inline type receiver in the exit map as well to make sure that
1214       // we can find and update it in Parse::do_call when we are done with the initialization.
1215       _exits.map()->replace_edge(receiver, null_free);
1216     }
1217     if (kit.stopped()) {
1218       _exits.add_exception_states_from(_caller);
1219       _exits.set_jvms(_caller);
1220       return nullptr;
1221     }
1222   }
1223 
1224   assert(method() != nullptr, "parser must have a method");
1225 
1226   // Create an initial safepoint to hold JVM state during parsing
1227   JVMState* jvms = new (C) JVMState(method(), _caller->has_method() ? _caller : nullptr);
1228   set_map(new SafePointNode(len, jvms));
1229   jvms->set_map(map());
1230   record_for_igvn(map());
1231   assert(jvms->endoff() == len, "correct jvms sizing");
1232 
1233   SafePointNode* inmap = _caller->map();
1234   assert(inmap != nullptr, "must have inmap");
1235   // In case of null check on receiver above
1236   map()->transfer_replaced_nodes_from(inmap, _new_idx);
1237 
1238   uint i;
1239 
1240   // Pass thru the predefined input parameters.
1241   for (i = 0; i < TypeFunc::Parms; i++) {
1242     map()->init_req(i, inmap->in(i));
1243   }
1244 
1245   if (depth() == 1) {
1246     assert(map()->memory()->Opcode() == Op_Parm, "");
1247     // Insert the memory aliasing node
1248     set_all_memory(reset_memory());
1249   }
1250   assert(merged_memory(), "");
1251 
1252   // Now add the locals which are initially bound to arguments:
1253   uint arg_size = tf()->domain_sig()->cnt();
1254   ensure_stack(arg_size - TypeFunc::Parms);  // OSR methods have funny args
1255   for (i = TypeFunc::Parms; i < arg_size; i++) {
1256     map()->init_req(i, inmap->argument(_caller, i - TypeFunc::Parms));
1257   }
1258 
1259   // Clear out the rest of the map (locals and stack)
1260   for (i = arg_size; i < len; i++) {
1261     map()->init_req(i, top());
1262   }
1263 
1264   SafePointNode* entry_map = stop();
1265   return entry_map;
1266 }
1267 
1268 //-----------------------------do_method_entry--------------------------------
1269 // Emit any code needed in the pseudo-block before BCI zero.
1270 // The main thing to do is lock the receiver of a synchronized method.
1271 void Parse::do_method_entry() {
1272   set_parse_bci(InvocationEntryBci); // Pseudo-BCP
1273   set_sp(0);                         // Java Stack Pointer

1307 
1308   // If the method is synchronized, we need to construct a lock node, attach
1309   // it to the Start node, and pin it there.
1310   if (method()->is_synchronized()) {
1311     // Insert a FastLockNode right after the Start which takes as arguments
1312     // the current thread pointer, the "this" pointer & the address of the
1313     // stack slot pair used for the lock.  The "this" pointer is a projection
1314     // off the start node, but the locking spot has to be constructed by
1315     // creating a ConLNode of 0, and boxing it with a BoxLockNode.  The BoxLockNode
1316     // becomes the second argument to the FastLockNode call.  The
1317     // FastLockNode becomes the new control parent to pin it to the start.
1318 
1319     // Setup Object Pointer
1320     Node *lock_obj = nullptr;
1321     if (method()->is_static()) {
1322       ciInstance* mirror = _method->holder()->java_mirror();
1323       const TypeInstPtr *t_lock = TypeInstPtr::make(mirror);
1324       lock_obj = makecon(t_lock);
1325     } else {                  // Else pass the "this" pointer,
1326       lock_obj = local(0);    // which is Parm0 from StartNode
1327       assert(!_gvn.type(lock_obj)->make_oopptr()->can_be_inline_type(), "can't be an inline type");
1328     }
1329     // Clear out dead values from the debug info.
1330     kill_dead_locals();
1331     // Build the FastLockNode
1332     _synch_lock = shared_lock(lock_obj);
1333     // Check for bailout in shared_lock
1334     if (failing()) { return; }
1335   }
1336 
1337   // Feed profiling data for parameters to the type system so it can
1338   // propagate it as speculative types
1339   record_profiled_parameters_for_speculation();
1340 }
1341 
1342 //------------------------------init_blocks------------------------------------
1343 // Initialize our parser map to contain the types/monitors at method entry.
1344 void Parse::init_blocks() {
1345   // Create the blocks.
1346   _block_count = flow()->block_count();
1347   _blocks = NEW_RESOURCE_ARRAY(Block, _block_count);

1743 //--------------------handle_missing_successor---------------------------------
1744 void Parse::handle_missing_successor(int target_bci) {
1745 #ifndef PRODUCT
1746   Block* b = block();
1747   int trap_bci = b->flow()->has_trap()? b->flow()->trap_bci(): -1;
1748   tty->print_cr("### Missing successor at bci:%d for block #%d (trap_bci:%d)", target_bci, b->rpo(), trap_bci);
1749 #endif
1750   ShouldNotReachHere();
1751 }
1752 
1753 //--------------------------merge_common---------------------------------------
1754 void Parse::merge_common(Parse::Block* target, int pnum) {
1755   if (TraceOptoParse) {
1756     tty->print("Merging state at block #%d bci:%d", target->rpo(), target->start());
1757   }
1758 
1759   // Zap extra stack slots to top
1760   assert(sp() == target->start_sp(), "");
1761   clean_stack(sp());
1762 
1763   // Check for merge conflicts involving inline types
1764   JVMState* old_jvms = map()->jvms();
1765   int old_bci = bci();
1766   JVMState* tmp_jvms = old_jvms->clone_shallow(C);
1767   tmp_jvms->set_should_reexecute(true);
1768   tmp_jvms->bind_map(map());
1769   // Execution needs to restart a the next bytecode (entry of next
1770   // block)
1771   if (target->is_merged() ||
1772       pnum > PhiNode::Input ||
1773       target->is_handler() ||
1774       target->is_loop_head()) {
1775     set_parse_bci(target->start());
1776     for (uint j = TypeFunc::Parms; j < map()->req(); j++) {
1777       Node* n = map()->in(j);                 // Incoming change to target state.
1778       const Type* t = nullptr;
1779       if (tmp_jvms->is_loc(j)) {
1780         t = target->local_type_at(j - tmp_jvms->locoff());
1781       } else if (tmp_jvms->is_stk(j) && j < (uint)sp() + tmp_jvms->stkoff()) {
1782         t = target->stack_type_at(j - tmp_jvms->stkoff());
1783       }
1784       if (t != nullptr && t != Type::BOTTOM) {
1785         if (n->is_InlineType() && !t->is_inlinetypeptr()) {
1786           // Allocate inline type in src block to be able to merge it with oop in target block
1787           map()->set_req(j, n->as_InlineType()->buffer(this));
1788         } else if (!n->is_InlineType() && t->is_inlinetypeptr()) {
1789           // Scalarize null in src block to be able to merge it with inline type in target block
1790           assert(gvn().type(n)->is_zero_type(), "Should have been scalarized");
1791           map()->set_req(j, InlineTypeNode::make_null(gvn(), t->inline_klass()));
1792         }
1793       }
1794     }
1795   }
1796   old_jvms->bind_map(map());
1797   set_parse_bci(old_bci);
1798 
1799   if (!target->is_merged()) {   // No prior mapping at this bci
1800     if (TraceOptoParse) { tty->print(" with empty state");  }
1801 
1802     // If this path is dead, do not bother capturing it as a merge.
1803     // It is "as if" we had 1 fewer predecessors from the beginning.
1804     if (stopped()) {
1805       if (TraceOptoParse)  tty->print_cr(", but path is dead and doesn't count");
1806       return;
1807     }
1808 
1809     // Make a region if we know there are multiple or unpredictable inputs.
1810     // (Also, if this is a plain fall-through, we might see another region,
1811     // which must not be allowed into this block's map.)
1812     if (pnum > PhiNode::Input         // Known multiple inputs.
1813         || target->is_handler()       // These have unpredictable inputs.
1814         || target->is_loop_head()     // Known multiple inputs
1815         || control()->is_Region()) {  // We must hide this guy.
1816 
1817       int current_bci = bci();
1818       set_parse_bci(target->start()); // Set target bci

1833       record_for_igvn(r);
1834       // zap all inputs to null for debugging (done in Node(uint) constructor)
1835       // for (int j = 1; j < edges+1; j++) { r->init_req(j, nullptr); }
1836       r->init_req(pnum, control());
1837       set_control(r);
1838       target->copy_irreducible_status_to(r, jvms());
1839       set_parse_bci(current_bci); // Restore bci
1840     }
1841 
1842     // Convert the existing Parser mapping into a mapping at this bci.
1843     store_state_to(target);
1844     assert(target->is_merged(), "do not come here twice");
1845 
1846   } else {                      // Prior mapping at this bci
1847     if (TraceOptoParse) {  tty->print(" with previous state"); }
1848 #ifdef ASSERT
1849     if (target->is_SEL_head()) {
1850       target->mark_merged_backedge(block());
1851     }
1852 #endif
1853 
1854     // We must not manufacture more phis if the target is already parsed.
1855     bool nophi = target->is_parsed();
1856 
1857     SafePointNode* newin = map();// Hang on to incoming mapping
1858     Block* save_block = block(); // Hang on to incoming block;
1859     load_state_from(target);    // Get prior mapping
1860 
1861     assert(newin->jvms()->locoff() == jvms()->locoff(), "JVMS layouts agree");
1862     assert(newin->jvms()->stkoff() == jvms()->stkoff(), "JVMS layouts agree");
1863     assert(newin->jvms()->monoff() == jvms()->monoff(), "JVMS layouts agree");
1864     assert(newin->jvms()->endoff() == jvms()->endoff(), "JVMS layouts agree");
1865 
1866     // Iterate over my current mapping and the old mapping.
1867     // Where different, insert Phi functions.
1868     // Use any existing Phi functions.
1869     assert(control()->is_Region(), "must be merging to a region");
1870     RegionNode* r = control()->as_Region();
1871 
1872     // Compute where to merge into
1873     // Merge incoming control path
1874     r->init_req(pnum, newin->control());
1875 
1876     if (pnum == 1) {            // Last merge for this Region?
1877       if (!block()->flow()->is_irreducible_loop_secondary_entry()) {
1878         Node* result = _gvn.transform(r);
1879         if (r != result && TraceOptoParse) {
1880           tty->print_cr("Block #%d replace %d with %d", block()->rpo(), r->_idx, result->_idx);
1881         }
1882       }
1883       record_for_igvn(r);
1884     }
1885 
1886     // Update all the non-control inputs to map:
1887     assert(TypeFunc::Parms == newin->jvms()->locoff(), "parser map should contain only youngest jvms");
1888     bool check_elide_phi = target->is_SEL_backedge(save_block);
1889     bool last_merge = (pnum == PhiNode::Input);
1890     for (uint j = 1; j < newin->req(); j++) {
1891       Node* m = map()->in(j);   // Current state of target.
1892       Node* n = newin->in(j);   // Incoming change to target state.
1893       PhiNode* phi;
1894       if (m->is_Phi() && m->as_Phi()->region() == r) {
1895         phi = m->as_Phi();
1896       } else if (m->is_InlineType() && m->as_InlineType()->has_phi_inputs(r)) {
1897         phi = m->as_InlineType()->get_oop()->as_Phi();
1898       } else {
1899         phi = nullptr;
1900       }
1901       if (m != n) {             // Different; must merge
1902         switch (j) {
1903         // Frame pointer and Return Address never changes
1904         case TypeFunc::FramePtr:// Drop m, use the original value
1905         case TypeFunc::ReturnAdr:
1906           break;
1907         case TypeFunc::Memory:  // Merge inputs to the MergeMem node
1908           assert(phi == nullptr, "the merge contains phis, not vice versa");
1909           merge_memory_edges(n->as_MergeMem(), pnum, nophi);
1910           continue;
1911         default:                // All normal stuff
1912           if (phi == nullptr) {
1913             const JVMState* jvms = map()->jvms();
1914             if (EliminateNestedLocks &&
1915                 jvms->is_mon(j) && jvms->is_monitor_box(j)) {
1916               // BoxLock nodes are not commoning when EliminateNestedLocks is on.
1917               // Use old BoxLock node as merged box.
1918               assert(newin->jvms()->is_monitor_box(j), "sanity");
1919               // This assert also tests that nodes are BoxLock.
1920               assert(BoxLockNode::same_slot(n, m), "sanity");

1927                 // Incremental Inlining before EA and Macro nodes elimination.
1928                 //
1929                 // Incremental Inlining is executed after IGVN optimizations
1930                 // during which BoxLock can be marked as Coarsened.
1931                 old_box->set_coarsened(); // Verifies state
1932                 old_box->set_unbalanced();
1933               }
1934               C->gvn_replace_by(n, m);
1935             } else if (!check_elide_phi || !target->can_elide_SEL_phi(j)) {
1936               phi = ensure_phi(j, nophi);
1937             }
1938           }
1939           break;
1940         }
1941       }
1942       // At this point, n might be top if:
1943       //  - there is no phi (because TypeFlow detected a conflict), or
1944       //  - the corresponding control edges is top (a dead incoming path)
1945       // It is a bug if we create a phi which sees a garbage value on a live path.
1946 
1947       // Merging two inline types?
1948       if (phi != nullptr && phi->bottom_type()->is_inlinetypeptr()) {
1949         // Reload current state because it may have been updated by ensure_phi
1950         m = map()->in(j);
1951         InlineTypeNode* vtm = m->as_InlineType(); // Current inline type
1952         InlineTypeNode* vtn = n->as_InlineType(); // Incoming inline type
1953         assert(vtm->get_oop() == phi, "Inline type should have Phi input");
1954         if (TraceOptoParse) {
1955 #ifdef ASSERT
1956           tty->print_cr("\nMerging inline types");
1957           tty->print_cr("Current:");
1958           vtm->dump(2);
1959           tty->print_cr("Incoming:");
1960           vtn->dump(2);
1961           tty->cr();
1962 #endif
1963         }
1964         // Do the merge
1965         vtm->merge_with(&_gvn, vtn, pnum, last_merge);
1966         if (last_merge) {
1967           map()->set_req(j, _gvn.transform(vtm));
1968           record_for_igvn(vtm);
1969         }
1970       } else if (phi != nullptr) {
1971         assert(n != top() || r->in(pnum) == top(), "live value must not be garbage");
1972         assert(phi->region() == r, "");
1973         phi->set_req(pnum, n);  // Then add 'n' to the merge
1974         if (last_merge) {
1975           // Last merge for this Phi.
1976           // So far, Phis have had a reasonable type from ciTypeFlow.
1977           // Now _gvn will join that with the meet of current inputs.
1978           // BOTTOM is never permissible here, 'cause pessimistically
1979           // Phis of pointers cannot lose the basic pointer type.
1980           debug_only(const Type* bt1 = phi->bottom_type());
1981           assert(bt1 != Type::BOTTOM, "should not be building conflict phis");
1982           map()->set_req(j, _gvn.transform(phi));
1983           debug_only(const Type* bt2 = phi->bottom_type());
1984           assert(bt2->higher_equal_speculative(bt1), "must be consistent with type-flow");
1985           record_for_igvn(phi);
1986         }
1987       }
1988     } // End of for all values to be merged
1989 
1990     if (last_merge && !r->in(0)) {         // The occasional useless Region

1991       assert(control() == r, "");
1992       set_control(r->nonnull_req());
1993     }
1994 
1995     map()->merge_replaced_nodes_with(newin);
1996 
1997     // newin has been subsumed into the lazy merge, and is now dead.
1998     set_block(save_block);
1999 
2000     stop();                     // done with this guy, for now
2001   }
2002 
2003   if (TraceOptoParse) {
2004     tty->print_cr(" on path %d", pnum);
2005   }
2006 
2007   // Done with this parser state.
2008   assert(stopped(), "");
2009 }
2010 

2122 
2123   // Add new path to the region.
2124   uint pnum = r->req();
2125   r->add_req(nullptr);
2126 
2127   for (uint i = 1; i < map->req(); i++) {
2128     Node* n = map->in(i);
2129     if (i == TypeFunc::Memory) {
2130       // Ensure a phi on all currently known memories.
2131       for (MergeMemStream mms(n->as_MergeMem()); mms.next_non_empty(); ) {
2132         Node* phi = mms.memory();
2133         if (phi->is_Phi() && phi->as_Phi()->region() == r) {
2134           assert(phi->req() == pnum, "must be same size as region");
2135           phi->add_req(nullptr);
2136         }
2137       }
2138     } else {
2139       if (n->is_Phi() && n->as_Phi()->region() == r) {
2140         assert(n->req() == pnum, "must be same size as region");
2141         n->add_req(nullptr);
2142       } else if (n->is_InlineType() && n->as_InlineType()->has_phi_inputs(r)) {
2143         n->as_InlineType()->add_new_path(r);
2144       }
2145     }
2146   }
2147 
2148   return pnum;
2149 }
2150 
2151 //------------------------------ensure_phi-------------------------------------
2152 // Turn the idx'th entry of the current map into a Phi
2153 PhiNode *Parse::ensure_phi(int idx, bool nocreate) {
2154   SafePointNode* map = this->map();
2155   Node* region = map->control();
2156   assert(region->is_Region(), "");
2157 
2158   Node* o = map->in(idx);
2159   assert(o != nullptr, "");
2160 
2161   if (o == top())  return nullptr; // TOP always merges into TOP
2162 
2163   if (o->is_Phi() && o->as_Phi()->region() == region) {
2164     return o->as_Phi();
2165   }
2166   InlineTypeNode* vt = o->isa_InlineType();
2167   if (vt != nullptr && vt->has_phi_inputs(region)) {
2168     return vt->get_oop()->as_Phi();
2169   }
2170 
2171   // Now use a Phi here for merging
2172   assert(!nocreate, "Cannot build a phi for a block already parsed.");
2173   const JVMState* jvms = map->jvms();
2174   const Type* t = nullptr;
2175   if (jvms->is_loc(idx)) {
2176     t = block()->local_type_at(idx - jvms->locoff());
2177   } else if (jvms->is_stk(idx)) {
2178     t = block()->stack_type_at(idx - jvms->stkoff());
2179   } else if (jvms->is_mon(idx)) {
2180     assert(!jvms->is_monitor_box(idx), "no phis for boxes");
2181     t = TypeInstPtr::BOTTOM; // this is sufficient for a lock object
2182   } else if ((uint)idx < TypeFunc::Parms) {
2183     t = o->bottom_type();  // Type::RETURN_ADDRESS or such-like.
2184   } else {
2185     assert(false, "no type information for this phi");
2186   }
2187 
2188   // If the type falls to bottom, then this must be a local that
2189   // is already dead or is mixing ints and oops or some such.
2190   // Forcing it to top makes it go dead.
2191   if (t == Type::BOTTOM) {
2192     map->set_req(idx, top());
2193     return nullptr;
2194   }
2195 
2196   // Do not create phis for top either.
2197   // A top on a non-null control flow must be an unused even after the.phi.
2198   if (t == Type::TOP || t == Type::HALF) {
2199     map->set_req(idx, top());
2200     return nullptr;
2201   }
2202 
2203   if (vt != nullptr && t->is_inlinetypeptr()) {
2204     // Inline types are merged by merging their field values.
2205     // Create a cloned InlineTypeNode with phi inputs that
2206     // represents the merged inline type and update the map.
2207     vt = vt->clone_with_phis(&_gvn, region);
2208     map->set_req(idx, vt);
2209     return vt->get_oop()->as_Phi();
2210   } else {
2211     PhiNode* phi = PhiNode::make(region, o, t);
2212     gvn().set_type(phi, t);
2213     if (C->do_escape_analysis()) record_for_igvn(phi);
2214     map->set_req(idx, phi);
2215     return phi;
2216   }
2217 }
2218 
2219 //--------------------------ensure_memory_phi----------------------------------
2220 // Turn the idx'th slice of the current memory into a Phi
2221 PhiNode *Parse::ensure_memory_phi(int idx, bool nocreate) {
2222   MergeMemNode* mem = merged_memory();
2223   Node* region = control();
2224   assert(region->is_Region(), "");
2225 
2226   Node *o = (idx == Compile::AliasIdxBot)? mem->base_memory(): mem->memory_at(idx);
2227   assert(o != nullptr && o != top(), "");
2228 
2229   PhiNode* phi;
2230   if (o->is_Phi() && o->as_Phi()->region() == region) {
2231     phi = o->as_Phi();
2232     if (phi == mem->base_memory() && idx >= Compile::AliasIdxRaw) {
2233       // clone the shared base memory phi to make a new memory split
2234       assert(!nocreate, "Cannot build a phi for a block already parsed.");
2235       const Type* t = phi->bottom_type();
2236       const TypePtr* adr_type = C->get_adr_type(idx);

2326 // Add check to deoptimize once holder klass is fully initialized.
2327 void Parse::clinit_deopt() {
2328   assert(C->has_method(), "only for normal compilations");
2329   assert(depth() == 1, "only for main compiled method");
2330   assert(is_normal_parse(), "no barrier needed on osr entry");
2331   assert(!method()->holder()->is_not_initialized(), "initialization should have been started");
2332 
2333   set_parse_bci(0);
2334 
2335   Node* holder = makecon(TypeKlassPtr::make(method()->holder(), Type::trust_interfaces));
2336   guard_klass_being_initialized(holder);
2337 }
2338 
2339 //------------------------------return_current---------------------------------
2340 // Append current _map to _exit_return
2341 void Parse::return_current(Node* value) {
2342   if (method()->intrinsic_id() == vmIntrinsics::_Object_init) {
2343     call_register_finalizer();
2344   }
2345 
2346   // frame pointer is always same, already captured
2347   if (value != nullptr) {
2348     Node* phi = _exits.argument(0);
2349     const Type* return_type = phi->bottom_type();
2350     const TypeInstPtr* tr = return_type->isa_instptr();
2351     assert(!value->is_InlineType() || !value->as_InlineType()->is_larval(), "returning a larval");
2352     if ((tf()->returns_inline_type_as_fields() || (_caller->has_method() && !Compile::current()->inlining_incrementally())) &&
2353         return_type->is_inlinetypeptr()) {
2354       // Inline type is returned as fields, make sure it is scalarized
2355       if (!value->is_InlineType()) {
2356         value = InlineTypeNode::make_from_oop(this, value, return_type->inline_klass(), false);
2357       }
2358       if (!_caller->has_method() || Compile::current()->inlining_incrementally()) {
2359         // Returning from root or an incrementally inlined method. Make sure all non-flat
2360         // fields are buffered and re-execute if allocation triggers deoptimization.
2361         PreserveReexecuteState preexecs(this);
2362         assert(tf()->returns_inline_type_as_fields(), "must be returned as fields");
2363         jvms()->set_should_reexecute(true);
2364         inc_sp(1);
2365         value = value->as_InlineType()->allocate_fields(this);
2366       }
2367     } else if (value->is_InlineType()) {
2368       // Inline type is returned as oop, make sure it is buffered and re-execute
2369       // if allocation triggers deoptimization.
2370       PreserveReexecuteState preexecs(this);
2371       jvms()->set_should_reexecute(true);
2372       inc_sp(1);
2373       value = value->as_InlineType()->buffer(this);
2374     }
2375     // ...else
2376     // If returning oops to an interface-return, there is a silent free
2377     // cast from oop to interface allowed by the Verifier. Make it explicit here.
2378     phi->add_req(value);
2379   }
2380 
2381   // Do not set_parse_bci, so that return goo is credited to the return insn.
2382   set_bci(InvocationEntryBci);
2383   if (method()->is_synchronized() && GenerateSynchronizationCode) {
2384     shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
2385   }
2386   if (C->env()->dtrace_method_probes()) {
2387     make_dtrace_method_exit(method());
2388   }
2389 
2390   SafePointNode* exit_return = _exits.map();
2391   exit_return->in( TypeFunc::Control  )->add_req( control() );
2392   exit_return->in( TypeFunc::I_O      )->add_req( i_o    () );
2393   Node *mem = exit_return->in( TypeFunc::Memory   );
2394   for (MergeMemStream mms(mem->as_MergeMem(), merged_memory()); mms.next_non_empty2(); ) {
2395     if (mms.is_empty()) {
2396       // get a copy of the base memory, and patch just this one input
2397       const TypePtr* adr_type = mms.adr_type(C);
2398       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
2399       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
2400       gvn().set_type_bottom(phi);
2401       phi->del_req(phi->req()-1);  // prepare to re-patch
2402       mms.set_memory(phi);
2403     }
2404     mms.memory()->add_req(mms.memory2());
2405   }
2406 









2407   if (_first_return) {
2408     _exits.map()->transfer_replaced_nodes_from(map(), _new_idx);
2409     _first_return = false;
2410   } else {
2411     _exits.map()->merge_replaced_nodes_with(map());
2412   }
2413 
2414   stop_and_kill_map();          // This CFG path dies here
2415 }
2416 
2417 
2418 //------------------------------add_safepoint----------------------------------
2419 void Parse::add_safepoint() {
2420   uint parms = TypeFunc::Parms+1;
2421 
2422   // Clear out dead values from the debug info.
2423   kill_dead_locals();
2424 
2425   // Clone the JVM State
2426   SafePointNode *sfpnt = new SafePointNode(parms, nullptr);
< prev index next >