< prev index next >

src/hotspot/share/opto/parse1.cpp

Print this page

  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "interpreter/linkResolver.hpp"
  28 #include "memory/resourceArea.hpp"
  29 #include "oops/method.hpp"
  30 #include "opto/addnode.hpp"
  31 #include "opto/c2compiler.hpp"
  32 #include "opto/castnode.hpp"

  33 #include "opto/idealGraphPrinter.hpp"

  34 #include "opto/locknode.hpp"
  35 #include "opto/memnode.hpp"
  36 #include "opto/opaquenode.hpp"
  37 #include "opto/parse.hpp"
  38 #include "opto/rootnode.hpp"
  39 #include "opto/runtime.hpp"
  40 #include "opto/type.hpp"
  41 #include "runtime/handles.inline.hpp"
  42 #include "runtime/safepointMechanism.hpp"
  43 #include "runtime/sharedRuntime.hpp"
  44 #include "utilities/bitMap.inline.hpp"
  45 #include "utilities/copy.hpp"
  46 
  47 // Static array so we can figure out which bytecodes stop us from compiling
  48 // the most. Some of the non-static variables are needed in bytecodeInfo.cpp
  49 // and eventually should be encapsulated in a proper class (gri 8/18/98).
  50 
  51 #ifndef PRODUCT
  52 uint nodes_created             = 0;
  53 uint methods_parsed            = 0;

  85   }
  86   if (all_null_checks_found) {
  87     tty->print_cr("%u made implicit (%2u%%)", implicit_null_checks,
  88                   (100*implicit_null_checks)/all_null_checks_found);
  89   }
  90   if (SharedRuntime::_implicit_null_throws) {
  91     tty->print_cr("%u implicit null exceptions at runtime",
  92                   SharedRuntime::_implicit_null_throws);
  93   }
  94 
  95   if (PrintParseStatistics && BytecodeParseHistogram::initialized()) {
  96     BytecodeParseHistogram::print();
  97   }
  98 }
  99 #endif
 100 
 101 //------------------------------ON STACK REPLACEMENT---------------------------
 102 
 103 // Construct a node which can be used to get incoming state for
 104 // on stack replacement.
 105 Node *Parse::fetch_interpreter_state(int index,
 106                                      BasicType bt,
 107                                      Node *local_addrs,
 108                                      Node *local_addrs_base) {






 109   Node *mem = memory(Compile::AliasIdxRaw);
 110   Node *adr = basic_plus_adr( local_addrs_base, local_addrs, -index*wordSize );
 111   Node *ctl = control();
 112 
 113   // Very similar to LoadNode::make, except we handle un-aligned longs and
 114   // doubles on Sparc.  Intel can handle them just fine directly.
 115   Node *l = nullptr;
 116   switch (bt) {                // Signature is flattened
 117   case T_INT:     l = new LoadINode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInt::INT,        MemNode::unordered); break;
 118   case T_FLOAT:   l = new LoadFNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::FLOAT,         MemNode::unordered); break;
 119   case T_ADDRESS: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM,  MemNode::unordered); break;
 120   case T_OBJECT:  l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInstPtr::BOTTOM, MemNode::unordered); break;
 121   case T_LONG:
 122   case T_DOUBLE: {
 123     // Since arguments are in reverse order, the argument address 'adr'
 124     // refers to the back half of the long/double.  Recompute adr.
 125     adr = basic_plus_adr(local_addrs_base, local_addrs, -(index+1)*wordSize);
 126     if (Matcher::misaligned_doubles_ok) {
 127       l = (bt == T_DOUBLE)
 128         ? (Node*)new LoadDNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::DOUBLE, MemNode::unordered)

 130     } else {
 131       l = (bt == T_DOUBLE)
 132         ? (Node*)new LoadD_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered)
 133         : (Node*)new LoadL_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered);
 134     }
 135     break;
 136   }
 137   default: ShouldNotReachHere();
 138   }
 139   return _gvn.transform(l);
 140 }
 141 
 142 // Helper routine to prevent the interpreter from handing
 143 // unexpected typestate to an OSR method.
 144 // The Node l is a value newly dug out of the interpreter frame.
 145 // The type is the type predicted by ciTypeFlow.  Note that it is
 146 // not a general type, but can only come from Type::get_typeflow_type.
 147 // The safepoint is a map which will feed an uncommon trap.
 148 Node* Parse::check_interpreter_type(Node* l, const Type* type,
 149                                     SafePointNode* &bad_type_exit) {
 150 
 151   const TypeOopPtr* tp = type->isa_oopptr();
 152 
 153   // TypeFlow may assert null-ness if a type appears unloaded.
 154   if (type == TypePtr::NULL_PTR ||
 155       (tp != nullptr && !tp->is_loaded())) {
 156     // Value must be null, not a real oop.
 157     Node* chk = _gvn.transform( new CmpPNode(l, null()) );
 158     Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
 159     IfNode* iff = create_and_map_if(control(), tst, PROB_MAX, COUNT_UNKNOWN);
 160     set_control(_gvn.transform( new IfTrueNode(iff) ));
 161     Node* bad_type = _gvn.transform( new IfFalseNode(iff) );
 162     bad_type_exit->control()->add_req(bad_type);
 163     l = null();
 164   }
 165 
 166   // Typeflow can also cut off paths from the CFG, based on
 167   // types which appear unloaded, or call sites which appear unlinked.
 168   // When paths are cut off, values at later merge points can rise
 169   // toward more specific classes.  Make sure these specific classes
 170   // are still in effect.
 171   if (tp != nullptr && !tp->is_same_java_type_as(TypeInstPtr::BOTTOM)) {
 172     // TypeFlow asserted a specific object type.  Value must have that type.
 173     Node* bad_type_ctrl = nullptr;






 174     l = gen_checkcast(l, makecon(tp->as_klass_type()->cast_to_exactness(true)), &bad_type_ctrl);
 175     bad_type_exit->control()->add_req(bad_type_ctrl);
 176   }
 177 
 178   assert(_gvn.type(l)->higher_equal(type), "must constrain OSR typestate");
 179   return l;
 180 }
 181 
 182 // Helper routine which sets up elements of the initial parser map when
 183 // performing a parse for on stack replacement.  Add values into map.
 184 // The only parameter contains the address of a interpreter arguments.
 185 void Parse::load_interpreter_state(Node* osr_buf) {
 186   int index;
 187   int max_locals = jvms()->loc_size();
 188   int max_stack  = jvms()->stk_size();
 189 
 190 
 191   // Mismatch between method and jvms can occur since map briefly held
 192   // an OSR entry state (which takes up one RawPtr word).
 193   assert(max_locals == method()->max_locals(), "sanity");
 194   assert(max_stack  >= method()->max_stack(),  "sanity");
 195   assert((int)jvms()->endoff() == TypeFunc::Parms + max_locals + max_stack, "sanity");
 196   assert((int)jvms()->endoff() == (int)map()->req(), "sanity");
 197 
 198   // Find the start block.
 199   Block* osr_block = start_block();
 200   assert(osr_block->start() == osr_bci(), "sanity");
 201 
 202   // Set initial BCI.
 203   set_parse_bci(osr_block->start());
 204 
 205   // Set initial stack depth.
 206   set_sp(osr_block->start_sp());
 207 
 208   // Check bailouts.  We currently do not perform on stack replacement
 209   // of loops in catch blocks or loops which branch with a non-empty stack.
 210   if (sp() != 0) {
 211     C->record_method_not_compilable("OSR starts with non-empty stack");
 212     return;
 213   }
 214   // Do not OSR inside finally clauses:
 215   if (osr_block->has_trap_at(osr_block->start())) {
 216     assert(false, "OSR starts with an immediate trap");
 217     C->record_method_not_compilable("OSR starts with an immediate trap");
 218     return;
 219   }
 220 
 221   // Commute monitors from interpreter frame to compiler frame.
 222   assert(jvms()->monitor_depth() == 0, "should be no active locks at beginning of osr");
 223   int mcnt = osr_block->flow()->monitor_count();
 224   Node *monitors_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals+mcnt*2-1)*wordSize);
 225   for (index = 0; index < mcnt; index++) {
 226     // Make a BoxLockNode for the monitor.
 227     Node *box = _gvn.transform(new BoxLockNode(next_monitor()));
 228 
 229 
 230     // Displaced headers and locked objects are interleaved in the
 231     // temp OSR buffer.  We only copy the locked objects out here.
 232     // Fetch the locked object from the OSR temp buffer and copy to our fastlock node.
 233     Node *lock_object = fetch_interpreter_state(index*2, T_OBJECT, monitors_addr, osr_buf);
 234     // Try and copy the displaced header to the BoxNode
 235     Node *displaced_hdr = fetch_interpreter_state((index*2) + 1, T_ADDRESS, monitors_addr, osr_buf);
 236 
 237 
 238     store_to_memory(control(), box, displaced_hdr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered);
 239 
 240     // Build a bogus FastLockNode (no code will be generated) and push the
 241     // monitor into our debug info.
 242     const FastLockNode *flock = _gvn.transform(new FastLockNode( 0, lock_object, box ))->as_FastLock();
 243     map()->push_monitor(flock);
 244 
 245     // If the lock is our method synchronization lock, tuck it away in
 246     // _sync_lock for return and rethrow exit paths.
 247     if (index == 0 && method()->is_synchronized()) {
 248       _synch_lock = flock;
 249     }
 250   }
 251 
 252   // Use the raw liveness computation to make sure that unexpected
 253   // values don't propagate into the OSR frame.
 254   MethodLivenessResult live_locals = method()->liveness_at_bci(osr_bci());
 255   if (!live_locals.is_valid()) {
 256     // Degenerate or breakpointed method.

 284         if (C->log() != nullptr) {
 285           C->log()->elem("OSR_mismatch local_index='%d'",index);
 286         }
 287         set_local(index, null());
 288         // and ignore it for the loads
 289         continue;
 290       }
 291     }
 292 
 293     // Filter out TOP, HALF, and BOTTOM.  (Cf. ensure_phi.)
 294     if (type == Type::TOP || type == Type::HALF) {
 295       continue;
 296     }
 297     // If the type falls to bottom, then this must be a local that
 298     // is mixing ints and oops or some such.  Forcing it to top
 299     // makes it go dead.
 300     if (type == Type::BOTTOM) {
 301       continue;
 302     }
 303     // Construct code to access the appropriate local.
 304     BasicType bt = type->basic_type();
 305     if (type == TypePtr::NULL_PTR) {
 306       // Ptr types are mixed together with T_ADDRESS but null is
 307       // really for T_OBJECT types so correct it.
 308       bt = T_OBJECT;
 309     }
 310     Node *value = fetch_interpreter_state(index, bt, locals_addr, osr_buf);
 311     set_local(index, value);
 312   }
 313 
 314   // Extract the needed stack entries from the interpreter frame.
 315   for (index = 0; index < sp(); index++) {
 316     const Type *type = osr_block->stack_type_at(index);
 317     if (type != Type::TOP) {
 318       // Currently the compiler bails out when attempting to on stack replace
 319       // at a bci with a non-empty stack.  We should not reach here.
 320       ShouldNotReachHere();
 321     }
 322   }
 323 
 324   // End the OSR migration
 325   make_runtime_call(RC_LEAF, OptoRuntime::osr_end_Type(),
 326                     CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
 327                     "OSR_migration_end", TypeRawPtr::BOTTOM,
 328                     osr_buf);
 329 
 330   // Now that the interpreter state is loaded, make sure it will match

 493     log->elem("observe that='has_exception_handlers'");
 494   }
 495 
 496   assert(InlineTree::check_can_parse(method()) == nullptr, "Can not parse this method, cutout earlier");
 497   assert(method()->has_balanced_monitors(), "Can not parse unbalanced monitors, cutout earlier");
 498 
 499   // Always register dependence if JVMTI is enabled, because
 500   // either breakpoint setting or hotswapping of methods may
 501   // cause deoptimization.
 502   if (C->env()->jvmti_can_hotswap_or_post_breakpoint()) {
 503     C->dependencies()->assert_evol_method(method());
 504   }
 505 
 506   NOT_PRODUCT(methods_seen++);
 507 
 508   // Do some special top-level things.
 509   if (depth() == 1 && C->is_osr_compilation()) {
 510     _entry_bci = C->entry_bci();
 511     _flow = method()->get_osr_flow_analysis(osr_bci());
 512     if (_flow->failing()) {
 513       assert(false, "type flow analysis failed for OSR compilation");


 514       C->record_method_not_compilable(_flow->failure_reason());
 515 #ifndef PRODUCT
 516       if (PrintOpto && (Verbose || WizardMode)) {
 517         tty->print_cr("OSR @%d type flow bailout: %s", _entry_bci, _flow->failure_reason());
 518         if (Verbose) {
 519           method()->print();
 520           method()->print_codes();
 521           _flow->print();
 522         }
 523       }
 524 #endif
 525     }
 526     _tf = C->tf();     // the OSR entry type is different
 527   }
 528 
 529 #ifdef ASSERT
 530   if (depth() == 1) {
 531     assert(C->is_osr_compilation() == this->is_osr_parse(), "OSR in sync");
 532   } else {
 533     assert(!this->is_osr_parse(), "no recursive OSR");

 581     do_method_entry();
 582   }
 583 
 584   if (depth() == 1 && !failing()) {
 585     if (C->clinit_barrier_on_entry()) {
 586       // Add check to deoptimize the nmethod once the holder class is fully initialized
 587       clinit_deopt();
 588     }
 589 
 590     // Add check to deoptimize the nmethod if RTM state was changed
 591     rtm_deopt();
 592   }
 593 
 594   // Check for bailouts during method entry or RTM state check setup.
 595   if (failing()) {
 596     if (log)  log->done("parse");
 597     C->set_default_node_notes(caller_nn);
 598     return;
 599   }
 600 























 601   entry_map = map();  // capture any changes performed by method setup code
 602   assert(jvms()->endoff() == map()->req(), "map matches JVMS layout");
 603 
 604   // We begin parsing as if we have just encountered a jump to the
 605   // method entry.
 606   Block* entry_block = start_block();
 607   assert(entry_block->start() == (is_osr_parse() ? osr_bci() : 0), "");
 608   set_map_clone(entry_map);
 609   merge_common(entry_block, entry_block->next_path_num());
 610 
 611 #ifndef PRODUCT
 612   BytecodeParseHistogram *parse_histogram_obj = new (C->env()->arena()) BytecodeParseHistogram(this, C);
 613   set_parse_histogram( parse_histogram_obj );
 614 #endif
 615 
 616   // Parse all the basic blocks.
 617   do_all_blocks();
 618 
 619   // Check for bailouts during conversion to graph
 620   if (failing()) {

 766 void Parse::build_exits() {
 767   // make a clone of caller to prevent sharing of side-effects
 768   _exits.set_map(_exits.clone_map());
 769   _exits.clean_stack(_exits.sp());
 770   _exits.sync_jvms();
 771 
 772   RegionNode* region = new RegionNode(1);
 773   record_for_igvn(region);
 774   gvn().set_type_bottom(region);
 775   _exits.set_control(region);
 776 
 777   // Note:  iophi and memphi are not transformed until do_exits.
 778   Node* iophi  = new PhiNode(region, Type::ABIO);
 779   Node* memphi = new PhiNode(region, Type::MEMORY, TypePtr::BOTTOM);
 780   gvn().set_type_bottom(iophi);
 781   gvn().set_type_bottom(memphi);
 782   _exits.set_i_o(iophi);
 783   _exits.set_all_memory(memphi);
 784 
 785   // Add a return value to the exit state.  (Do not push it yet.)
 786   if (tf()->range()->cnt() > TypeFunc::Parms) {
 787     const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
 788     if (ret_type->isa_int()) {
 789       BasicType ret_bt = method()->return_type()->basic_type();
 790       if (ret_bt == T_BOOLEAN ||
 791           ret_bt == T_CHAR ||
 792           ret_bt == T_BYTE ||
 793           ret_bt == T_SHORT) {
 794         ret_type = TypeInt::INT;
 795       }
 796     }
 797 
 798     // Don't "bind" an unloaded return klass to the ret_phi. If the klass
 799     // becomes loaded during the subsequent parsing, the loaded and unloaded
 800     // types will not join when we transform and push in do_exits().
 801     const TypeOopPtr* ret_oop_type = ret_type->isa_oopptr();
 802     if (ret_oop_type && !ret_oop_type->is_loaded()) {
 803       ret_type = TypeOopPtr::BOTTOM;
 804     }
 805     int         ret_size = type2size[ret_type->basic_type()];
 806     Node*       ret_phi  = new PhiNode(region, ret_type);
 807     gvn().set_type_bottom(ret_phi);
 808     _exits.ensure_stack(ret_size);
 809     assert((int)(tf()->range()->cnt() - TypeFunc::Parms) == ret_size, "good tf range");
 810     assert(method()->return_type()->size() == ret_size, "tf agrees w/ method");
 811     _exits.set_argument(0, ret_phi);  // here is where the parser finds it
 812     // Note:  ret_phi is not yet pushed, until do_exits.
 813   }
 814 }
 815 
 816 
 817 //----------------------------build_start_state-------------------------------
 818 // Construct a state which contains only the incoming arguments from an
 819 // unknown caller.  The method & bci will be null & InvocationEntryBci.
 820 JVMState* Compile::build_start_state(StartNode* start, const TypeFunc* tf) {
 821   int        arg_size = tf->domain()->cnt();
 822   int        max_size = MAX2(arg_size, (int)tf->range()->cnt());
 823   JVMState*  jvms     = new (this) JVMState(max_size - TypeFunc::Parms);
 824   SafePointNode* map  = new SafePointNode(max_size, jvms);

 825   record_for_igvn(map);
 826   assert(arg_size == TypeFunc::Parms + (is_osr_compilation() ? 1 : method()->arg_size()), "correct arg_size");
 827   Node_Notes* old_nn = default_node_notes();
 828   if (old_nn != nullptr && has_method()) {
 829     Node_Notes* entry_nn = old_nn->clone(this);
 830     JVMState* entry_jvms = new(this) JVMState(method(), old_nn->jvms());
 831     entry_jvms->set_offsets(0);
 832     entry_jvms->set_bci(entry_bci());
 833     entry_nn->set_jvms(entry_jvms);
 834     set_default_node_notes(entry_nn);
 835   }
 836   uint i;
 837   for (i = 0; i < (uint)arg_size; i++) {
 838     Node* parm = initial_gvn()->transform(new ParmNode(start, i));

















 839     map->init_req(i, parm);
 840     // Record all these guys for later GVN.
 841     record_for_igvn(parm);



 842   }
 843   for (; i < map->req(); i++) {
 844     map->init_req(i, top());
 845   }
 846   assert(jvms->argoff() == TypeFunc::Parms, "parser gets arguments here");
 847   set_default_node_notes(old_nn);
 848   jvms->set_map(map);
 849   return jvms;
 850 }
 851 
 852 //-----------------------------make_node_notes---------------------------------
 853 Node_Notes* Parse::make_node_notes(Node_Notes* caller_nn) {
 854   if (caller_nn == nullptr)  return nullptr;
 855   Node_Notes* nn = caller_nn->clone(C);
 856   JVMState* caller_jvms = nn->jvms();
 857   JVMState* jvms = new (C) JVMState(method(), caller_jvms);
 858   jvms->set_offsets(0);
 859   jvms->set_bci(_entry_bci);
 860   nn->set_jvms(jvms);
 861   return nn;
 862 }
 863 
 864 
 865 //--------------------------return_values--------------------------------------
 866 void Compile::return_values(JVMState* jvms) {
 867   GraphKit kit(jvms);
 868   Node* ret = new ReturnNode(TypeFunc::Parms,
 869                              kit.control(),
 870                              kit.i_o(),
 871                              kit.reset_memory(),
 872                              kit.frameptr(),
 873                              kit.returnadr());
 874   // Add zero or 1 return values
 875   int ret_size = tf()->range()->cnt() - TypeFunc::Parms;
 876   if (ret_size > 0) {
 877     kit.inc_sp(-ret_size);  // pop the return value(s)
 878     kit.sync_jvms();
 879     ret->add_req(kit.argument(0));
 880     // Note:  The second dummy edge is not needed by a ReturnNode.






















 881   }
 882   // bind it to root
 883   root()->add_req(ret);
 884   record_for_igvn(ret);
 885   initial_gvn()->transform_no_reclaim(ret);
 886 }
 887 
 888 //------------------------rethrow_exceptions-----------------------------------
 889 // Bind all exception states in the list into a single RethrowNode.
 890 void Compile::rethrow_exceptions(JVMState* jvms) {
 891   GraphKit kit(jvms);
 892   if (!kit.has_exceptions())  return;  // nothing to generate
 893   // Load my combined exception state into the kit, with all phis transformed:
 894   SafePointNode* ex_map = kit.combine_and_pop_all_exception_states();
 895   Node* ex_oop = kit.use_exception_state(ex_map);
 896   RethrowNode* exit = new RethrowNode(kit.control(),
 897                                       kit.i_o(), kit.reset_memory(),
 898                                       kit.frameptr(), kit.returnadr(),
 899                                       // like a return but with exception input
 900                                       ex_oop);

 984   //    to complete, we force all writes to complete.
 985   //
 986   // 2. Experimental VM option is used to force the barrier if any field
 987   //    was written out in the constructor.
 988   //
 989   // 3. On processors which are not CPU_MULTI_COPY_ATOMIC (e.g. PPC64),
 990   //    support_IRIW_for_not_multiple_copy_atomic_cpu selects that
 991   //    MemBarVolatile is used before volatile load instead of after volatile
 992   //    store, so there's no barrier after the store.
 993   //    We want to guarantee the same behavior as on platforms with total store
 994   //    order, although this is not required by the Java memory model.
 995   //    In this case, we want to enforce visibility of volatile field
 996   //    initializations which are performed in constructors.
 997   //    So as with finals, we add a barrier here.
 998   //
 999   // "All bets are off" unless the first publication occurs after a
1000   // normal return from the constructor.  We do not attempt to detect
1001   // such unusual early publications.  But no barrier is needed on
1002   // exceptional returns, since they cannot publish normally.
1003   //
1004   if (method()->is_initializer() &&
1005        (wrote_final() ||
1006          (AlwaysSafeConstructors && wrote_fields()) ||
1007          (support_IRIW_for_not_multiple_copy_atomic_cpu && wrote_volatile()))) {
1008     _exits.insert_mem_bar(Op_MemBarRelease, alloc_with_final());
1009 
1010     // If Memory barrier is created for final fields write
1011     // and allocation node does not escape the initialize method,
1012     // then barrier introduced by allocation node can be removed.
1013     if (DoEscapeAnalysis && alloc_with_final()) {
1014       AllocateNode* alloc = AllocateNode::Ideal_allocation(alloc_with_final());
1015       alloc->compute_MemBar_redundancy(method());
1016     }
1017     if (PrintOpto && (Verbose || WizardMode)) {
1018       method()->print_name();
1019       tty->print_cr(" writes finals and needs a memory barrier");
1020     }
1021   }
1022 
1023   // Any method can write a @Stable field; insert memory barriers
1024   // after those also. Can't bind predecessor allocation node (if any)
1025   // with barrier because allocation doesn't always dominate
1026   // MemBarRelease.
1027   if (wrote_stable()) {
1028     _exits.insert_mem_bar(Op_MemBarRelease);
1029     if (PrintOpto && (Verbose || WizardMode)) {
1030       method()->print_name();
1031       tty->print_cr(" writes @Stable and needs a memory barrier");
1032     }
1033   }
1034 
1035   for (MergeMemStream mms(_exits.merged_memory()); mms.next_non_empty(); ) {
1036     // transform each slice of the original memphi:
1037     mms.set_memory(_gvn.transform(mms.memory()));
1038   }
1039   // Clean up input MergeMems created by transforming the slices
1040   _gvn.transform(_exits.merged_memory());
1041 
1042   if (tf()->range()->cnt() > TypeFunc::Parms) {
1043     const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
1044     Node*       ret_phi  = _gvn.transform( _exits.argument(0) );
1045     if (!_exits.control()->is_top() && _gvn.type(ret_phi)->empty()) {
1046       // If the type we set for the ret_phi in build_exits() is too optimistic and
1047       // the ret_phi is top now, there's an extremely small chance that it may be due to class
1048       // loading.  It could also be due to an error, so mark this method as not compilable because
1049       // otherwise this could lead to an infinite compile loop.
1050       // In any case, this code path is rarely (and never in my testing) reached.
1051 #ifdef ASSERT
1052       tty->print_cr("# Can't determine return type.");
1053       tty->print_cr("# exit control");
1054       _exits.control()->dump(2);
1055       tty->print_cr("# ret phi type");
1056       _gvn.type(ret_phi)->dump();
1057       tty->print_cr("# ret phi");
1058       ret_phi->dump(2);
1059 #endif // ASSERT
1060       assert(false, "Can't determine return type.");
1061       C->record_method_not_compilable("Can't determine return type.");
1062       return;
1063     }

1127 
1128 //-----------------------------create_entry_map-------------------------------
1129 // Initialize our parser map to contain the types at method entry.
1130 // For OSR, the map contains a single RawPtr parameter.
1131 // Initial monitor locking for sync. methods is performed by do_method_entry.
1132 SafePointNode* Parse::create_entry_map() {
1133   // Check for really stupid bail-out cases.
1134   uint len = TypeFunc::Parms + method()->max_locals() + method()->max_stack();
1135   if (len >= 32760) {
1136     // Bailout expected, this is a very rare edge case.
1137     C->record_method_not_compilable("too many local variables");
1138     return nullptr;
1139   }
1140 
1141   // clear current replaced nodes that are of no use from here on (map was cloned in build_exits).
1142   _caller->map()->delete_replaced_nodes();
1143 
1144   // If this is an inlined method, we may have to do a receiver null check.
1145   if (_caller->has_method() && is_normal_parse() && !method()->is_static()) {
1146     GraphKit kit(_caller);
1147     kit.null_check_receiver_before_call(method());

1148     _caller = kit.transfer_exceptions_into_jvms();





1149     if (kit.stopped()) {
1150       _exits.add_exception_states_from(_caller);
1151       _exits.set_jvms(_caller);
1152       return nullptr;
1153     }
1154   }
1155 
1156   assert(method() != nullptr, "parser must have a method");
1157 
1158   // Create an initial safepoint to hold JVM state during parsing
1159   JVMState* jvms = new (C) JVMState(method(), _caller->has_method() ? _caller : nullptr);
1160   set_map(new SafePointNode(len, jvms));
1161   jvms->set_map(map());
1162   record_for_igvn(map());
1163   assert(jvms->endoff() == len, "correct jvms sizing");
1164 
1165   SafePointNode* inmap = _caller->map();
1166   assert(inmap != nullptr, "must have inmap");
1167   // In case of null check on receiver above
1168   map()->transfer_replaced_nodes_from(inmap, _new_idx);
1169 
1170   uint i;
1171 
1172   // Pass thru the predefined input parameters.
1173   for (i = 0; i < TypeFunc::Parms; i++) {
1174     map()->init_req(i, inmap->in(i));
1175   }
1176 
1177   if (depth() == 1) {
1178     assert(map()->memory()->Opcode() == Op_Parm, "");
1179     // Insert the memory aliasing node
1180     set_all_memory(reset_memory());
1181   }
1182   assert(merged_memory(), "");
1183 
1184   // Now add the locals which are initially bound to arguments:
1185   uint arg_size = tf()->domain()->cnt();
1186   ensure_stack(arg_size - TypeFunc::Parms);  // OSR methods have funny args
1187   for (i = TypeFunc::Parms; i < arg_size; i++) {
1188     map()->init_req(i, inmap->argument(_caller, i - TypeFunc::Parms));
1189   }
1190 
1191   // Clear out the rest of the map (locals and stack)
1192   for (i = arg_size; i < len; i++) {
1193     map()->init_req(i, top());
1194   }
1195 
1196   SafePointNode* entry_map = stop();
1197   return entry_map;
1198 }
1199 
1200 //-----------------------------do_method_entry--------------------------------
1201 // Emit any code needed in the pseudo-block before BCI zero.
1202 // The main thing to do is lock the receiver of a synchronized method.
1203 void Parse::do_method_entry() {
1204   set_parse_bci(InvocationEntryBci); // Pseudo-BCP
1205   set_sp(0);                         // Java Stack Pointer

1239 
1240   // If the method is synchronized, we need to construct a lock node, attach
1241   // it to the Start node, and pin it there.
1242   if (method()->is_synchronized()) {
1243     // Insert a FastLockNode right after the Start which takes as arguments
1244     // the current thread pointer, the "this" pointer & the address of the
1245     // stack slot pair used for the lock.  The "this" pointer is a projection
1246     // off the start node, but the locking spot has to be constructed by
1247     // creating a ConLNode of 0, and boxing it with a BoxLockNode.  The BoxLockNode
1248     // becomes the second argument to the FastLockNode call.  The
1249     // FastLockNode becomes the new control parent to pin it to the start.
1250 
1251     // Setup Object Pointer
1252     Node *lock_obj = nullptr;
1253     if (method()->is_static()) {
1254       ciInstance* mirror = _method->holder()->java_mirror();
1255       const TypeInstPtr *t_lock = TypeInstPtr::make(mirror);
1256       lock_obj = makecon(t_lock);
1257     } else {                  // Else pass the "this" pointer,
1258       lock_obj = local(0);    // which is Parm0 from StartNode

1259     }
1260     // Clear out dead values from the debug info.
1261     kill_dead_locals();
1262     // Build the FastLockNode
1263     _synch_lock = shared_lock(lock_obj);
1264   }
1265 
1266   // Feed profiling data for parameters to the type system so it can
1267   // propagate it as speculative types
1268   record_profiled_parameters_for_speculation();
1269 }
1270 
1271 //------------------------------init_blocks------------------------------------
1272 // Initialize our parser map to contain the types/monitors at method entry.
1273 void Parse::init_blocks() {
1274   // Create the blocks.
1275   _block_count = flow()->block_count();
1276   _blocks = NEW_RESOURCE_ARRAY(Block, _block_count);
1277 
1278   // Initialize the structs.

1672 //--------------------handle_missing_successor---------------------------------
1673 void Parse::handle_missing_successor(int target_bci) {
1674 #ifndef PRODUCT
1675   Block* b = block();
1676   int trap_bci = b->flow()->has_trap()? b->flow()->trap_bci(): -1;
1677   tty->print_cr("### Missing successor at bci:%d for block #%d (trap_bci:%d)", target_bci, b->rpo(), trap_bci);
1678 #endif
1679   ShouldNotReachHere();
1680 }
1681 
1682 //--------------------------merge_common---------------------------------------
1683 void Parse::merge_common(Parse::Block* target, int pnum) {
1684   if (TraceOptoParse) {
1685     tty->print("Merging state at block #%d bci:%d", target->rpo(), target->start());
1686   }
1687 
1688   // Zap extra stack slots to top
1689   assert(sp() == target->start_sp(), "");
1690   clean_stack(sp());
1691 




































1692   if (!target->is_merged()) {   // No prior mapping at this bci
1693     if (TraceOptoParse) { tty->print(" with empty state");  }
1694 
1695     // If this path is dead, do not bother capturing it as a merge.
1696     // It is "as if" we had 1 fewer predecessors from the beginning.
1697     if (stopped()) {
1698       if (TraceOptoParse)  tty->print_cr(", but path is dead and doesn't count");
1699       return;
1700     }
1701 
1702     // Make a region if we know there are multiple or unpredictable inputs.
1703     // (Also, if this is a plain fall-through, we might see another region,
1704     // which must not be allowed into this block's map.)
1705     if (pnum > PhiNode::Input         // Known multiple inputs.
1706         || target->is_handler()       // These have unpredictable inputs.
1707         || target->is_loop_head()     // Known multiple inputs
1708         || control()->is_Region()) {  // We must hide this guy.
1709 
1710       int current_bci = bci();
1711       set_parse_bci(target->start()); // Set target bci

1726       record_for_igvn(r);
1727       // zap all inputs to null for debugging (done in Node(uint) constructor)
1728       // for (int j = 1; j < edges+1; j++) { r->init_req(j, nullptr); }
1729       r->init_req(pnum, control());
1730       set_control(r);
1731       target->copy_irreducible_status_to(r, jvms());
1732       set_parse_bci(current_bci); // Restore bci
1733     }
1734 
1735     // Convert the existing Parser mapping into a mapping at this bci.
1736     store_state_to(target);
1737     assert(target->is_merged(), "do not come here twice");
1738 
1739   } else {                      // Prior mapping at this bci
1740     if (TraceOptoParse) {  tty->print(" with previous state"); }
1741 #ifdef ASSERT
1742     if (target->is_SEL_head()) {
1743       target->mark_merged_backedge(block());
1744     }
1745 #endif

1746     // We must not manufacture more phis if the target is already parsed.
1747     bool nophi = target->is_parsed();
1748 
1749     SafePointNode* newin = map();// Hang on to incoming mapping
1750     Block* save_block = block(); // Hang on to incoming block;
1751     load_state_from(target);    // Get prior mapping
1752 
1753     assert(newin->jvms()->locoff() == jvms()->locoff(), "JVMS layouts agree");
1754     assert(newin->jvms()->stkoff() == jvms()->stkoff(), "JVMS layouts agree");
1755     assert(newin->jvms()->monoff() == jvms()->monoff(), "JVMS layouts agree");
1756     assert(newin->jvms()->endoff() == jvms()->endoff(), "JVMS layouts agree");
1757 
1758     // Iterate over my current mapping and the old mapping.
1759     // Where different, insert Phi functions.
1760     // Use any existing Phi functions.
1761     assert(control()->is_Region(), "must be merging to a region");
1762     RegionNode* r = control()->as_Region();
1763 
1764     // Compute where to merge into
1765     // Merge incoming control path
1766     r->init_req(pnum, newin->control());
1767 
1768     if (pnum == 1) {            // Last merge for this Region?
1769       if (!block()->flow()->is_irreducible_loop_secondary_entry()) {
1770         Node* result = _gvn.transform_no_reclaim(r);
1771         if (r != result && TraceOptoParse) {
1772           tty->print_cr("Block #%d replace %d with %d", block()->rpo(), r->_idx, result->_idx);
1773         }
1774       }
1775       record_for_igvn(r);
1776     }
1777 
1778     // Update all the non-control inputs to map:
1779     assert(TypeFunc::Parms == newin->jvms()->locoff(), "parser map should contain only youngest jvms");
1780     bool check_elide_phi = target->is_SEL_backedge(save_block);

1781     for (uint j = 1; j < newin->req(); j++) {
1782       Node* m = map()->in(j);   // Current state of target.
1783       Node* n = newin->in(j);   // Incoming change to target state.
1784       PhiNode* phi;
1785       if (m->is_Phi() && m->as_Phi()->region() == r)
1786         phi = m->as_Phi();
1787       else


1788         phi = nullptr;

1789       if (m != n) {             // Different; must merge
1790         switch (j) {
1791         // Frame pointer and Return Address never changes
1792         case TypeFunc::FramePtr:// Drop m, use the original value
1793         case TypeFunc::ReturnAdr:
1794           break;
1795         case TypeFunc::Memory:  // Merge inputs to the MergeMem node
1796           assert(phi == nullptr, "the merge contains phis, not vice versa");
1797           merge_memory_edges(n->as_MergeMem(), pnum, nophi);
1798           continue;
1799         default:                // All normal stuff
1800           if (phi == nullptr) {
1801             const JVMState* jvms = map()->jvms();
1802             if (EliminateNestedLocks &&
1803                 jvms->is_mon(j) && jvms->is_monitor_box(j)) {
1804               // BoxLock nodes are not commoning.
1805               // Use old BoxLock node as merged box.
1806               assert(newin->jvms()->is_monitor_box(j), "sanity");
1807               // This assert also tests that nodes are BoxLock.
1808               assert(BoxLockNode::same_slot(n, m), "sanity");
1809               C->gvn_replace_by(n, m);
1810             } else if (!check_elide_phi || !target->can_elide_SEL_phi(j)) {
1811               phi = ensure_phi(j, nophi);
1812             }
1813           }
1814           break;
1815         }
1816       }
1817       // At this point, n might be top if:
1818       //  - there is no phi (because TypeFlow detected a conflict), or
1819       //  - the corresponding control edges is top (a dead incoming path)
1820       // It is a bug if we create a phi which sees a garbage value on a live path.
1821 
1822       if (phi != nullptr) {























1823         assert(n != top() || r->in(pnum) == top(), "live value must not be garbage");
1824         assert(phi->region() == r, "");
1825         phi->set_req(pnum, n);  // Then add 'n' to the merge
1826         if (pnum == PhiNode::Input) {
1827           // Last merge for this Phi.
1828           // So far, Phis have had a reasonable type from ciTypeFlow.
1829           // Now _gvn will join that with the meet of current inputs.
1830           // BOTTOM is never permissible here, 'cause pessimistically
1831           // Phis of pointers cannot lose the basic pointer type.
1832           debug_only(const Type* bt1 = phi->bottom_type());
1833           assert(bt1 != Type::BOTTOM, "should not be building conflict phis");
1834           map()->set_req(j, _gvn.transform_no_reclaim(phi));
1835           debug_only(const Type* bt2 = phi->bottom_type());
1836           assert(bt2->higher_equal_speculative(bt1), "must be consistent with type-flow");
1837           record_for_igvn(phi);
1838         }
1839       }
1840     } // End of for all values to be merged
1841 
1842     if (pnum == PhiNode::Input &&
1843         !r->in(0)) {         // The occasional useless Region
1844       assert(control() == r, "");
1845       set_control(r->nonnull_req());
1846     }
1847 
1848     map()->merge_replaced_nodes_with(newin);
1849 
1850     // newin has been subsumed into the lazy merge, and is now dead.
1851     set_block(save_block);
1852 
1853     stop();                     // done with this guy, for now
1854   }
1855 
1856   if (TraceOptoParse) {
1857     tty->print_cr(" on path %d", pnum);
1858   }
1859 
1860   // Done with this parser state.
1861   assert(stopped(), "");
1862 }
1863 

1975 
1976   // Add new path to the region.
1977   uint pnum = r->req();
1978   r->add_req(nullptr);
1979 
1980   for (uint i = 1; i < map->req(); i++) {
1981     Node* n = map->in(i);
1982     if (i == TypeFunc::Memory) {
1983       // Ensure a phi on all currently known memories.
1984       for (MergeMemStream mms(n->as_MergeMem()); mms.next_non_empty(); ) {
1985         Node* phi = mms.memory();
1986         if (phi->is_Phi() && phi->as_Phi()->region() == r) {
1987           assert(phi->req() == pnum, "must be same size as region");
1988           phi->add_req(nullptr);
1989         }
1990       }
1991     } else {
1992       if (n->is_Phi() && n->as_Phi()->region() == r) {
1993         assert(n->req() == pnum, "must be same size as region");
1994         n->add_req(nullptr);


1995       }
1996     }
1997   }
1998 
1999   return pnum;
2000 }
2001 
2002 //------------------------------ensure_phi-------------------------------------
2003 // Turn the idx'th entry of the current map into a Phi
2004 PhiNode *Parse::ensure_phi(int idx, bool nocreate) {
2005   SafePointNode* map = this->map();
2006   Node* region = map->control();
2007   assert(region->is_Region(), "");
2008 
2009   Node* o = map->in(idx);
2010   assert(o != nullptr, "");
2011 
2012   if (o == top())  return nullptr; // TOP always merges into TOP
2013 
2014   if (o->is_Phi() && o->as_Phi()->region() == region) {
2015     return o->as_Phi();
2016   }




2017 
2018   // Now use a Phi here for merging
2019   assert(!nocreate, "Cannot build a phi for a block already parsed.");
2020   const JVMState* jvms = map->jvms();
2021   const Type* t = nullptr;
2022   if (jvms->is_loc(idx)) {
2023     t = block()->local_type_at(idx - jvms->locoff());
2024   } else if (jvms->is_stk(idx)) {
2025     t = block()->stack_type_at(idx - jvms->stkoff());
2026   } else if (jvms->is_mon(idx)) {
2027     assert(!jvms->is_monitor_box(idx), "no phis for boxes");
2028     t = TypeInstPtr::BOTTOM; // this is sufficient for a lock object
2029   } else if ((uint)idx < TypeFunc::Parms) {
2030     t = o->bottom_type();  // Type::RETURN_ADDRESS or such-like.
2031   } else {
2032     assert(false, "no type information for this phi");
2033   }
2034 
2035   // If the type falls to bottom, then this must be a local that
2036   // is mixing ints and oops or some such.  Forcing it to top
2037   // makes it go dead.
2038   if (t == Type::BOTTOM) {
2039     map->set_req(idx, top());
2040     return nullptr;
2041   }
2042 
2043   // Do not create phis for top either.
2044   // A top on a non-null control flow must be an unused even after the.phi.
2045   if (t == Type::TOP || t == Type::HALF) {
2046     map->set_req(idx, top());
2047     return nullptr;
2048   }
2049 
2050   PhiNode* phi = PhiNode::make(region, o, t);
2051   gvn().set_type(phi, t);
2052   if (C->do_escape_analysis()) record_for_igvn(phi);
2053   map->set_req(idx, phi);
2054   return phi;










2055 }
2056 
2057 //--------------------------ensure_memory_phi----------------------------------
2058 // Turn the idx'th slice of the current memory into a Phi
2059 PhiNode *Parse::ensure_memory_phi(int idx, bool nocreate) {
2060   MergeMemNode* mem = merged_memory();
2061   Node* region = control();
2062   assert(region->is_Region(), "");
2063 
2064   Node *o = (idx == Compile::AliasIdxBot)? mem->base_memory(): mem->memory_at(idx);
2065   assert(o != nullptr && o != top(), "");
2066 
2067   PhiNode* phi;
2068   if (o->is_Phi() && o->as_Phi()->region() == region) {
2069     phi = o->as_Phi();
2070     if (phi == mem->base_memory() && idx >= Compile::AliasIdxRaw) {
2071       // clone the shared base memory phi to make a new memory split
2072       assert(!nocreate, "Cannot build a phi for a block already parsed.");
2073       const Type* t = phi->bottom_type();
2074       const TypePtr* adr_type = C->get_adr_type(idx);

2202     Node* chk   = _gvn.transform( new CmpINode(opq, profile_state) );
2203     Node* tst   = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
2204     // Branch to failure if state was changed
2205     { BuildCutout unless(this, tst, PROB_ALWAYS);
2206       uncommon_trap(Deoptimization::Reason_rtm_state_change,
2207                     Deoptimization::Action_make_not_entrant);
2208     }
2209   }
2210 #endif
2211 }
2212 
2213 //------------------------------return_current---------------------------------
2214 // Append current _map to _exit_return
2215 void Parse::return_current(Node* value) {
2216   if (RegisterFinalizersAtInit &&
2217       method()->intrinsic_id() == vmIntrinsics::_Object_init) {
2218     call_register_finalizer();
2219   }
2220 
2221   // Do not set_parse_bci, so that return goo is credited to the return insn.
2222   set_bci(InvocationEntryBci);



2223   if (method()->is_synchronized() && GenerateSynchronizationCode) {
2224     shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
2225   }
2226   if (C->env()->dtrace_method_probes()) {
2227     make_dtrace_method_exit(method());
2228   }



































2229   SafePointNode* exit_return = _exits.map();
2230   exit_return->in( TypeFunc::Control  )->add_req( control() );
2231   exit_return->in( TypeFunc::I_O      )->add_req( i_o    () );
2232   Node *mem = exit_return->in( TypeFunc::Memory   );
2233   for (MergeMemStream mms(mem->as_MergeMem(), merged_memory()); mms.next_non_empty2(); ) {
2234     if (mms.is_empty()) {
2235       // get a copy of the base memory, and patch just this one input
2236       const TypePtr* adr_type = mms.adr_type(C);
2237       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
2238       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
2239       gvn().set_type_bottom(phi);
2240       phi->del_req(phi->req()-1);  // prepare to re-patch
2241       mms.set_memory(phi);
2242     }
2243     mms.memory()->add_req(mms.memory2());
2244   }
2245 
2246   // frame pointer is always same, already captured
2247   if (value != nullptr) {
2248     // If returning oops to an interface-return, there is a silent free
2249     // cast from oop to interface allowed by the Verifier.  Make it explicit
2250     // here.
2251     Node* phi = _exits.argument(0);
2252     phi->add_req(value);
2253   }
2254 
2255   if (_first_return) {
2256     _exits.map()->transfer_replaced_nodes_from(map(), _new_idx);
2257     _first_return = false;
2258   } else {
2259     _exits.map()->merge_replaced_nodes_with(map());
2260   }
2261 
2262   stop_and_kill_map();          // This CFG path dies here
2263 }
2264 
2265 
2266 //------------------------------add_safepoint----------------------------------
2267 void Parse::add_safepoint() {
2268   uint parms = TypeFunc::Parms+1;
2269 
2270   // Clear out dead values from the debug info.
2271   kill_dead_locals();
2272 
2273   // Clone the JVM State
2274   SafePointNode *sfpnt = new SafePointNode(parms, nullptr);

  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "interpreter/linkResolver.hpp"
  28 #include "memory/resourceArea.hpp"
  29 #include "oops/method.hpp"
  30 #include "opto/addnode.hpp"
  31 #include "opto/c2compiler.hpp"
  32 #include "opto/castnode.hpp"
  33 #include "opto/convertnode.hpp"
  34 #include "opto/idealGraphPrinter.hpp"
  35 #include "opto/inlinetypenode.hpp"
  36 #include "opto/locknode.hpp"
  37 #include "opto/memnode.hpp"
  38 #include "opto/opaquenode.hpp"
  39 #include "opto/parse.hpp"
  40 #include "opto/rootnode.hpp"
  41 #include "opto/runtime.hpp"
  42 #include "opto/type.hpp"
  43 #include "runtime/handles.inline.hpp"
  44 #include "runtime/safepointMechanism.hpp"
  45 #include "runtime/sharedRuntime.hpp"
  46 #include "utilities/bitMap.inline.hpp"
  47 #include "utilities/copy.hpp"
  48 
  49 // Static array so we can figure out which bytecodes stop us from compiling
  50 // the most. Some of the non-static variables are needed in bytecodeInfo.cpp
  51 // and eventually should be encapsulated in a proper class (gri 8/18/98).
  52 
  53 #ifndef PRODUCT
  54 uint nodes_created             = 0;
  55 uint methods_parsed            = 0;

  87   }
  88   if (all_null_checks_found) {
  89     tty->print_cr("%u made implicit (%2u%%)", implicit_null_checks,
  90                   (100*implicit_null_checks)/all_null_checks_found);
  91   }
  92   if (SharedRuntime::_implicit_null_throws) {
  93     tty->print_cr("%u implicit null exceptions at runtime",
  94                   SharedRuntime::_implicit_null_throws);
  95   }
  96 
  97   if (PrintParseStatistics && BytecodeParseHistogram::initialized()) {
  98     BytecodeParseHistogram::print();
  99   }
 100 }
 101 #endif
 102 
 103 //------------------------------ON STACK REPLACEMENT---------------------------
 104 
 105 // Construct a node which can be used to get incoming state for
 106 // on stack replacement.
 107 Node* Parse::fetch_interpreter_state(int index,
 108                                      const Type* type,
 109                                      Node* local_addrs,
 110                                      Node* local_addrs_base) {
 111   BasicType bt = type->basic_type();
 112   if (type == TypePtr::NULL_PTR) {
 113     // Ptr types are mixed together with T_ADDRESS but nullptr is
 114     // really for T_OBJECT types so correct it.
 115     bt = T_OBJECT;
 116   }
 117   Node *mem = memory(Compile::AliasIdxRaw);
 118   Node *adr = basic_plus_adr( local_addrs_base, local_addrs, -index*wordSize );
 119   Node *ctl = control();
 120 
 121   // Very similar to LoadNode::make, except we handle un-aligned longs and
 122   // doubles on Sparc.  Intel can handle them just fine directly.
 123   Node *l = nullptr;
 124   switch (bt) {                // Signature is flattened
 125   case T_INT:     l = new LoadINode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInt::INT,        MemNode::unordered); break;
 126   case T_FLOAT:   l = new LoadFNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::FLOAT,         MemNode::unordered); break;
 127   case T_ADDRESS: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM,  MemNode::unordered); break;
 128   case T_OBJECT:  l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInstPtr::BOTTOM, MemNode::unordered); break;
 129   case T_LONG:
 130   case T_DOUBLE: {
 131     // Since arguments are in reverse order, the argument address 'adr'
 132     // refers to the back half of the long/double.  Recompute adr.
 133     adr = basic_plus_adr(local_addrs_base, local_addrs, -(index+1)*wordSize);
 134     if (Matcher::misaligned_doubles_ok) {
 135       l = (bt == T_DOUBLE)
 136         ? (Node*)new LoadDNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::DOUBLE, MemNode::unordered)

 138     } else {
 139       l = (bt == T_DOUBLE)
 140         ? (Node*)new LoadD_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered)
 141         : (Node*)new LoadL_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered);
 142     }
 143     break;
 144   }
 145   default: ShouldNotReachHere();
 146   }
 147   return _gvn.transform(l);
 148 }
 149 
 150 // Helper routine to prevent the interpreter from handing
 151 // unexpected typestate to an OSR method.
 152 // The Node l is a value newly dug out of the interpreter frame.
 153 // The type is the type predicted by ciTypeFlow.  Note that it is
 154 // not a general type, but can only come from Type::get_typeflow_type.
 155 // The safepoint is a map which will feed an uncommon trap.
 156 Node* Parse::check_interpreter_type(Node* l, const Type* type,
 157                                     SafePointNode* &bad_type_exit) {

 158   const TypeOopPtr* tp = type->isa_oopptr();
 159 
 160   // TypeFlow may assert null-ness if a type appears unloaded.
 161   if (type == TypePtr::NULL_PTR ||
 162       (tp != nullptr && !tp->is_loaded())) {
 163     // Value must be null, not a real oop.
 164     Node* chk = _gvn.transform( new CmpPNode(l, null()) );
 165     Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
 166     IfNode* iff = create_and_map_if(control(), tst, PROB_MAX, COUNT_UNKNOWN);
 167     set_control(_gvn.transform( new IfTrueNode(iff) ));
 168     Node* bad_type = _gvn.transform( new IfFalseNode(iff) );
 169     bad_type_exit->control()->add_req(bad_type);
 170     l = null();
 171   }
 172 
 173   // Typeflow can also cut off paths from the CFG, based on
 174   // types which appear unloaded, or call sites which appear unlinked.
 175   // When paths are cut off, values at later merge points can rise
 176   // toward more specific classes.  Make sure these specific classes
 177   // are still in effect.
 178   if (tp != nullptr && !tp->is_same_java_type_as(TypeInstPtr::BOTTOM)) {
 179     // TypeFlow asserted a specific object type.  Value must have that type.
 180     Node* bad_type_ctrl = nullptr;
 181     if (tp->is_inlinetypeptr() && !tp->maybe_null()) {
 182       // Check inline types for null here to prevent checkcast from adding an
 183       // exception state before the bytecode entry (use 'bad_type_ctrl' instead).
 184       l = null_check_oop(l, &bad_type_ctrl);
 185       bad_type_exit->control()->add_req(bad_type_ctrl);
 186     }
 187     l = gen_checkcast(l, makecon(tp->as_klass_type()->cast_to_exactness(true)), &bad_type_ctrl);
 188     bad_type_exit->control()->add_req(bad_type_ctrl);
 189   }
 190 
 191   assert(_gvn.type(l)->higher_equal(type), "must constrain OSR typestate");
 192   return l;
 193 }
 194 
 195 // Helper routine which sets up elements of the initial parser map when
 196 // performing a parse for on stack replacement.  Add values into map.
 197 // The only parameter contains the address of a interpreter arguments.
 198 void Parse::load_interpreter_state(Node* osr_buf) {
 199   int index;
 200   int max_locals = jvms()->loc_size();
 201   int max_stack  = jvms()->stk_size();
 202 

 203   // Mismatch between method and jvms can occur since map briefly held
 204   // an OSR entry state (which takes up one RawPtr word).
 205   assert(max_locals == method()->max_locals(), "sanity");
 206   assert(max_stack  >= method()->max_stack(),  "sanity");
 207   assert((int)jvms()->endoff() == TypeFunc::Parms + max_locals + max_stack, "sanity");
 208   assert((int)jvms()->endoff() == (int)map()->req(), "sanity");
 209 
 210   // Find the start block.
 211   Block* osr_block = start_block();
 212   assert(osr_block->start() == osr_bci(), "sanity");
 213 
 214   // Set initial BCI.
 215   set_parse_bci(osr_block->start());
 216 
 217   // Set initial stack depth.
 218   set_sp(osr_block->start_sp());
 219 
 220   // Check bailouts.  We currently do not perform on stack replacement
 221   // of loops in catch blocks or loops which branch with a non-empty stack.
 222   if (sp() != 0) {
 223     C->record_method_not_compilable("OSR starts with non-empty stack");
 224     return;
 225   }
 226   // Do not OSR inside finally clauses:
 227   if (osr_block->has_trap_at(osr_block->start())) {
 228     assert(false, "OSR starts with an immediate trap");
 229     C->record_method_not_compilable("OSR starts with an immediate trap");
 230     return;
 231   }
 232 
 233   // Commute monitors from interpreter frame to compiler frame.
 234   assert(jvms()->monitor_depth() == 0, "should be no active locks at beginning of osr");
 235   int mcnt = osr_block->flow()->monitor_count();
 236   Node *monitors_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals+mcnt*2-1)*wordSize);
 237   for (index = 0; index < mcnt; index++) {
 238     // Make a BoxLockNode for the monitor.
 239     Node *box = _gvn.transform(new BoxLockNode(next_monitor()));
 240 

 241     // Displaced headers and locked objects are interleaved in the
 242     // temp OSR buffer.  We only copy the locked objects out here.
 243     // Fetch the locked object from the OSR temp buffer and copy to our fastlock node.
 244     Node* lock_object = fetch_interpreter_state(index*2, Type::get_const_basic_type(T_OBJECT), monitors_addr, osr_buf);
 245     // Try and copy the displaced header to the BoxNode
 246     Node* displaced_hdr = fetch_interpreter_state((index*2) + 1, Type::get_const_basic_type(T_ADDRESS), monitors_addr, osr_buf);

 247 
 248     store_to_memory(control(), box, displaced_hdr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered);
 249 
 250     // Build a bogus FastLockNode (no code will be generated) and push the
 251     // monitor into our debug info.
 252     const FastLockNode *flock = _gvn.transform(new FastLockNode( 0, lock_object, box ))->as_FastLock();
 253     map()->push_monitor(flock);
 254 
 255     // If the lock is our method synchronization lock, tuck it away in
 256     // _sync_lock for return and rethrow exit paths.
 257     if (index == 0 && method()->is_synchronized()) {
 258       _synch_lock = flock;
 259     }
 260   }
 261 
 262   // Use the raw liveness computation to make sure that unexpected
 263   // values don't propagate into the OSR frame.
 264   MethodLivenessResult live_locals = method()->liveness_at_bci(osr_bci());
 265   if (!live_locals.is_valid()) {
 266     // Degenerate or breakpointed method.

 294         if (C->log() != nullptr) {
 295           C->log()->elem("OSR_mismatch local_index='%d'",index);
 296         }
 297         set_local(index, null());
 298         // and ignore it for the loads
 299         continue;
 300       }
 301     }
 302 
 303     // Filter out TOP, HALF, and BOTTOM.  (Cf. ensure_phi.)
 304     if (type == Type::TOP || type == Type::HALF) {
 305       continue;
 306     }
 307     // If the type falls to bottom, then this must be a local that
 308     // is mixing ints and oops or some such.  Forcing it to top
 309     // makes it go dead.
 310     if (type == Type::BOTTOM) {
 311       continue;
 312     }
 313     // Construct code to access the appropriate local.
 314     Node* value = fetch_interpreter_state(index, type, locals_addr, osr_buf);






 315     set_local(index, value);
 316   }
 317 
 318   // Extract the needed stack entries from the interpreter frame.
 319   for (index = 0; index < sp(); index++) {
 320     const Type *type = osr_block->stack_type_at(index);
 321     if (type != Type::TOP) {
 322       // Currently the compiler bails out when attempting to on stack replace
 323       // at a bci with a non-empty stack.  We should not reach here.
 324       ShouldNotReachHere();
 325     }
 326   }
 327 
 328   // End the OSR migration
 329   make_runtime_call(RC_LEAF, OptoRuntime::osr_end_Type(),
 330                     CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
 331                     "OSR_migration_end", TypeRawPtr::BOTTOM,
 332                     osr_buf);
 333 
 334   // Now that the interpreter state is loaded, make sure it will match

 497     log->elem("observe that='has_exception_handlers'");
 498   }
 499 
 500   assert(InlineTree::check_can_parse(method()) == nullptr, "Can not parse this method, cutout earlier");
 501   assert(method()->has_balanced_monitors(), "Can not parse unbalanced monitors, cutout earlier");
 502 
 503   // Always register dependence if JVMTI is enabled, because
 504   // either breakpoint setting or hotswapping of methods may
 505   // cause deoptimization.
 506   if (C->env()->jvmti_can_hotswap_or_post_breakpoint()) {
 507     C->dependencies()->assert_evol_method(method());
 508   }
 509 
 510   NOT_PRODUCT(methods_seen++);
 511 
 512   // Do some special top-level things.
 513   if (depth() == 1 && C->is_osr_compilation()) {
 514     _entry_bci = C->entry_bci();
 515     _flow = method()->get_osr_flow_analysis(osr_bci());
 516     if (_flow->failing()) {
 517       // TODO Adding a trap due to an unloaded return type in ciTypeFlow::StateVector::do_invoke
 518       // can lead to this. Re-enable once 8284443 is fixed.
 519       // assert(false, "type flow analysis failed for OSR compilation");
 520       C->record_method_not_compilable(_flow->failure_reason());
 521 #ifndef PRODUCT
 522       if (PrintOpto && (Verbose || WizardMode)) {
 523         tty->print_cr("OSR @%d type flow bailout: %s", _entry_bci, _flow->failure_reason());
 524         if (Verbose) {
 525           method()->print();
 526           method()->print_codes();
 527           _flow->print();
 528         }
 529       }
 530 #endif
 531     }
 532     _tf = C->tf();     // the OSR entry type is different
 533   }
 534 
 535 #ifdef ASSERT
 536   if (depth() == 1) {
 537     assert(C->is_osr_compilation() == this->is_osr_parse(), "OSR in sync");
 538   } else {
 539     assert(!this->is_osr_parse(), "no recursive OSR");

 587     do_method_entry();
 588   }
 589 
 590   if (depth() == 1 && !failing()) {
 591     if (C->clinit_barrier_on_entry()) {
 592       // Add check to deoptimize the nmethod once the holder class is fully initialized
 593       clinit_deopt();
 594     }
 595 
 596     // Add check to deoptimize the nmethod if RTM state was changed
 597     rtm_deopt();
 598   }
 599 
 600   // Check for bailouts during method entry or RTM state check setup.
 601   if (failing()) {
 602     if (log)  log->done("parse");
 603     C->set_default_node_notes(caller_nn);
 604     return;
 605   }
 606 
 607   // Handle inline type arguments
 608   int arg_size = method()->arg_size();
 609   for (int i = 0; i < arg_size; i++) {
 610     Node* parm = local(i);
 611     const Type* t = _gvn.type(parm);
 612     if (t->is_inlinetypeptr()) {
 613       // Create InlineTypeNode from the oop and replace the parameter
 614       bool is_larval = (i == 0) && method()->is_object_constructor() && !method()->holder()->is_abstract() && !method()->holder()->is_java_lang_Object();
 615       Node* vt = InlineTypeNode::make_from_oop(this, parm, t->inline_klass(), !t->maybe_null(), is_larval);
 616       replace_in_map(parm, vt);
 617     } else if (UseTypeSpeculation && (i == (arg_size - 1)) && !is_osr_parse() && method()->has_vararg() &&
 618                t->isa_aryptr() != nullptr && !t->is_aryptr()->is_null_free() && !t->is_aryptr()->is_not_null_free()) {
 619       // Speculate on varargs Object array being not null-free (and therefore also not flat)
 620       const TypePtr* spec_type = t->speculative();
 621       spec_type = (spec_type != nullptr && spec_type->isa_aryptr() != nullptr) ? spec_type : t->is_aryptr();
 622       spec_type = spec_type->remove_speculative()->is_aryptr()->cast_to_not_null_free();
 623       spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::Offset::bottom, TypeOopPtr::InstanceBot, spec_type);
 624       Node* cast = _gvn.transform(new CheckCastPPNode(control(), parm, t->join_speculative(spec_type)));
 625       // TODO 8325106 Shouldn't we use replace_in_map here?
 626       set_local(i, cast);
 627     }
 628   }
 629 
 630   entry_map = map();  // capture any changes performed by method setup code
 631   assert(jvms()->endoff() == map()->req(), "map matches JVMS layout");
 632 
 633   // We begin parsing as if we have just encountered a jump to the
 634   // method entry.
 635   Block* entry_block = start_block();
 636   assert(entry_block->start() == (is_osr_parse() ? osr_bci() : 0), "");
 637   set_map_clone(entry_map);
 638   merge_common(entry_block, entry_block->next_path_num());
 639 
 640 #ifndef PRODUCT
 641   BytecodeParseHistogram *parse_histogram_obj = new (C->env()->arena()) BytecodeParseHistogram(this, C);
 642   set_parse_histogram( parse_histogram_obj );
 643 #endif
 644 
 645   // Parse all the basic blocks.
 646   do_all_blocks();
 647 
 648   // Check for bailouts during conversion to graph
 649   if (failing()) {

 795 void Parse::build_exits() {
 796   // make a clone of caller to prevent sharing of side-effects
 797   _exits.set_map(_exits.clone_map());
 798   _exits.clean_stack(_exits.sp());
 799   _exits.sync_jvms();
 800 
 801   RegionNode* region = new RegionNode(1);
 802   record_for_igvn(region);
 803   gvn().set_type_bottom(region);
 804   _exits.set_control(region);
 805 
 806   // Note:  iophi and memphi are not transformed until do_exits.
 807   Node* iophi  = new PhiNode(region, Type::ABIO);
 808   Node* memphi = new PhiNode(region, Type::MEMORY, TypePtr::BOTTOM);
 809   gvn().set_type_bottom(iophi);
 810   gvn().set_type_bottom(memphi);
 811   _exits.set_i_o(iophi);
 812   _exits.set_all_memory(memphi);
 813 
 814   // Add a return value to the exit state.  (Do not push it yet.)
 815   if (tf()->range_sig()->cnt() > TypeFunc::Parms) {
 816     const Type* ret_type = tf()->range_sig()->field_at(TypeFunc::Parms);
 817     if (ret_type->isa_int()) {
 818       BasicType ret_bt = method()->return_type()->basic_type();
 819       if (ret_bt == T_BOOLEAN ||
 820           ret_bt == T_CHAR ||
 821           ret_bt == T_BYTE ||
 822           ret_bt == T_SHORT) {
 823         ret_type = TypeInt::INT;
 824       }
 825     }
 826 
 827     // Don't "bind" an unloaded return klass to the ret_phi. If the klass
 828     // becomes loaded during the subsequent parsing, the loaded and unloaded
 829     // types will not join when we transform and push in do_exits().
 830     const TypeOopPtr* ret_oop_type = ret_type->isa_oopptr();
 831     if (ret_oop_type && !ret_oop_type->is_loaded()) {
 832       ret_type = TypeOopPtr::BOTTOM;
 833     }
 834     int         ret_size = type2size[ret_type->basic_type()];
 835     Node*       ret_phi  = new PhiNode(region, ret_type);
 836     gvn().set_type_bottom(ret_phi);
 837     _exits.ensure_stack(ret_size);
 838     assert((int)(tf()->range_sig()->cnt() - TypeFunc::Parms) == ret_size, "good tf range");
 839     assert(method()->return_type()->size() == ret_size, "tf agrees w/ method");
 840     _exits.set_argument(0, ret_phi);  // here is where the parser finds it
 841     // Note:  ret_phi is not yet pushed, until do_exits.
 842   }
 843 }
 844 

 845 //----------------------------build_start_state-------------------------------
 846 // Construct a state which contains only the incoming arguments from an
 847 // unknown caller.  The method & bci will be null & InvocationEntryBci.
 848 JVMState* Compile::build_start_state(StartNode* start, const TypeFunc* tf) {
 849   int        arg_size = tf->domain_sig()->cnt();
 850   int        max_size = MAX2(arg_size, (int)tf->range_cc()->cnt());
 851   JVMState*  jvms     = new (this) JVMState(max_size - TypeFunc::Parms);
 852   SafePointNode* map  = new SafePointNode(max_size, jvms);
 853   jvms->set_map(map);
 854   record_for_igvn(map);
 855   assert(arg_size == TypeFunc::Parms + (is_osr_compilation() ? 1 : method()->arg_size()), "correct arg_size");
 856   Node_Notes* old_nn = default_node_notes();
 857   if (old_nn != nullptr && has_method()) {
 858     Node_Notes* entry_nn = old_nn->clone(this);
 859     JVMState* entry_jvms = new(this) JVMState(method(), old_nn->jvms());
 860     entry_jvms->set_offsets(0);
 861     entry_jvms->set_bci(entry_bci());
 862     entry_nn->set_jvms(entry_jvms);
 863     set_default_node_notes(entry_nn);
 864   }
 865   PhaseGVN& gvn = *initial_gvn();
 866   uint i = 0;
 867   int arg_num = 0;
 868   for (uint j = 0; i < (uint)arg_size; i++) {
 869     const Type* t = tf->domain_sig()->field_at(i);
 870     Node* parm = nullptr;
 871     if (t->is_inlinetypeptr() && method()->is_scalarized_arg(arg_num)) {
 872       // Inline type arguments are not passed by reference: we get an argument per
 873       // field of the inline type. Build InlineTypeNodes from the inline type arguments.
 874       GraphKit kit(jvms, &gvn);
 875       kit.set_control(map->control());
 876       Node* old_mem = map->memory();
 877       // Use immutable memory for inline type loads and restore it below
 878       kit.set_all_memory(C->immutable_memory());
 879       parm = InlineTypeNode::make_from_multi(&kit, start, t->inline_klass(), j, /* in= */ true, /* null_free= */ !t->maybe_null());
 880       map->set_control(kit.control());
 881       map->set_memory(old_mem);
 882     } else {
 883       parm = gvn.transform(new ParmNode(start, j++));
 884     }
 885     map->init_req(i, parm);
 886     // Record all these guys for later GVN.
 887     record_for_igvn(parm);
 888     if (i >= TypeFunc::Parms && t != Type::HALF) {
 889       arg_num++;
 890     }
 891   }
 892   for (; i < map->req(); i++) {
 893     map->init_req(i, top());
 894   }
 895   assert(jvms->argoff() == TypeFunc::Parms, "parser gets arguments here");
 896   set_default_node_notes(old_nn);

 897   return jvms;
 898 }
 899 
 900 //-----------------------------make_node_notes---------------------------------
 901 Node_Notes* Parse::make_node_notes(Node_Notes* caller_nn) {
 902   if (caller_nn == nullptr)  return nullptr;
 903   Node_Notes* nn = caller_nn->clone(C);
 904   JVMState* caller_jvms = nn->jvms();
 905   JVMState* jvms = new (C) JVMState(method(), caller_jvms);
 906   jvms->set_offsets(0);
 907   jvms->set_bci(_entry_bci);
 908   nn->set_jvms(jvms);
 909   return nn;
 910 }
 911 
 912 
 913 //--------------------------return_values--------------------------------------
 914 void Compile::return_values(JVMState* jvms) {
 915   GraphKit kit(jvms);
 916   Node* ret = new ReturnNode(TypeFunc::Parms,
 917                              kit.control(),
 918                              kit.i_o(),
 919                              kit.reset_memory(),
 920                              kit.frameptr(),
 921                              kit.returnadr());
 922   // Add zero or 1 return values
 923   int ret_size = tf()->range_sig()->cnt() - TypeFunc::Parms;
 924   if (ret_size > 0) {
 925     kit.inc_sp(-ret_size);  // pop the return value(s)
 926     kit.sync_jvms();
 927     Node* res = kit.argument(0);
 928     if (tf()->returns_inline_type_as_fields()) {
 929       // Multiple return values (inline type fields): add as many edges
 930       // to the Return node as returned values.
 931       InlineTypeNode* vt = res->as_InlineType();
 932       ret->add_req_batch(nullptr, tf()->range_cc()->cnt() - TypeFunc::Parms);
 933       if (vt->is_allocated(&kit.gvn()) && !StressCallingConvention) {
 934         ret->init_req(TypeFunc::Parms, vt);
 935       } else {
 936         // Return the tagged klass pointer to signal scalarization to the caller
 937         Node* tagged_klass = vt->tagged_klass(kit.gvn());
 938         // Return null if the inline type is null (IsInit field is not set)
 939         Node* conv   = kit.gvn().transform(new ConvI2LNode(vt->get_is_init()));
 940         Node* shl    = kit.gvn().transform(new LShiftLNode(conv, kit.intcon(63)));
 941         Node* shr    = kit.gvn().transform(new RShiftLNode(shl, kit.intcon(63)));
 942         tagged_klass = kit.gvn().transform(new AndLNode(tagged_klass, shr));
 943         ret->init_req(TypeFunc::Parms, tagged_klass);
 944       }
 945       uint idx = TypeFunc::Parms + 1;
 946       vt->pass_fields(&kit, ret, idx, false, false);
 947     } else {
 948       ret->add_req(res);
 949       // Note:  The second dummy edge is not needed by a ReturnNode.
 950     }
 951   }
 952   // bind it to root
 953   root()->add_req(ret);
 954   record_for_igvn(ret);
 955   initial_gvn()->transform_no_reclaim(ret);
 956 }
 957 
 958 //------------------------rethrow_exceptions-----------------------------------
 959 // Bind all exception states in the list into a single RethrowNode.
 960 void Compile::rethrow_exceptions(JVMState* jvms) {
 961   GraphKit kit(jvms);
 962   if (!kit.has_exceptions())  return;  // nothing to generate
 963   // Load my combined exception state into the kit, with all phis transformed:
 964   SafePointNode* ex_map = kit.combine_and_pop_all_exception_states();
 965   Node* ex_oop = kit.use_exception_state(ex_map);
 966   RethrowNode* exit = new RethrowNode(kit.control(),
 967                                       kit.i_o(), kit.reset_memory(),
 968                                       kit.frameptr(), kit.returnadr(),
 969                                       // like a return but with exception input
 970                                       ex_oop);

1054   //    to complete, we force all writes to complete.
1055   //
1056   // 2. Experimental VM option is used to force the barrier if any field
1057   //    was written out in the constructor.
1058   //
1059   // 3. On processors which are not CPU_MULTI_COPY_ATOMIC (e.g. PPC64),
1060   //    support_IRIW_for_not_multiple_copy_atomic_cpu selects that
1061   //    MemBarVolatile is used before volatile load instead of after volatile
1062   //    store, so there's no barrier after the store.
1063   //    We want to guarantee the same behavior as on platforms with total store
1064   //    order, although this is not required by the Java memory model.
1065   //    In this case, we want to enforce visibility of volatile field
1066   //    initializations which are performed in constructors.
1067   //    So as with finals, we add a barrier here.
1068   //
1069   // "All bets are off" unless the first publication occurs after a
1070   // normal return from the constructor.  We do not attempt to detect
1071   // such unusual early publications.  But no barrier is needed on
1072   // exceptional returns, since they cannot publish normally.
1073   //
1074   if ((method()->is_object_constructor() || method()->is_class_initializer()) &&
1075        (wrote_final() ||
1076          (AlwaysSafeConstructors && wrote_fields()) ||
1077          (support_IRIW_for_not_multiple_copy_atomic_cpu && wrote_volatile()))) {
1078     _exits.insert_mem_bar(Op_MemBarRelease, alloc_with_final());
1079 
1080     // If Memory barrier is created for final fields write
1081     // and allocation node does not escape the initialize method,
1082     // then barrier introduced by allocation node can be removed.
1083     if (DoEscapeAnalysis && alloc_with_final()) {
1084       AllocateNode* alloc = AllocateNode::Ideal_allocation(alloc_with_final());
1085       alloc->compute_MemBar_redundancy(method());
1086     }
1087     if (PrintOpto && (Verbose || WizardMode)) {
1088       method()->print_name();
1089       tty->print_cr(" writes finals and needs a memory barrier");
1090     }
1091   }
1092 
1093   // Any method can write a @Stable field; insert memory barriers
1094   // after those also. Can't bind predecessor allocation node (if any)
1095   // with barrier because allocation doesn't always dominate
1096   // MemBarRelease.
1097   if (wrote_stable()) {
1098     _exits.insert_mem_bar(Op_MemBarRelease);
1099     if (PrintOpto && (Verbose || WizardMode)) {
1100       method()->print_name();
1101       tty->print_cr(" writes @Stable and needs a memory barrier");
1102     }
1103   }
1104 
1105   for (MergeMemStream mms(_exits.merged_memory()); mms.next_non_empty(); ) {
1106     // transform each slice of the original memphi:
1107     mms.set_memory(_gvn.transform(mms.memory()));
1108   }
1109   // Clean up input MergeMems created by transforming the slices
1110   _gvn.transform(_exits.merged_memory());
1111 
1112   if (tf()->range_sig()->cnt() > TypeFunc::Parms) {
1113     const Type* ret_type = tf()->range_sig()->field_at(TypeFunc::Parms);
1114     Node*       ret_phi  = _gvn.transform( _exits.argument(0) );
1115     if (!_exits.control()->is_top() && _gvn.type(ret_phi)->empty()) {
1116       // If the type we set for the ret_phi in build_exits() is too optimistic and
1117       // the ret_phi is top now, there's an extremely small chance that it may be due to class
1118       // loading.  It could also be due to an error, so mark this method as not compilable because
1119       // otherwise this could lead to an infinite compile loop.
1120       // In any case, this code path is rarely (and never in my testing) reached.
1121 #ifdef ASSERT
1122       tty->print_cr("# Can't determine return type.");
1123       tty->print_cr("# exit control");
1124       _exits.control()->dump(2);
1125       tty->print_cr("# ret phi type");
1126       _gvn.type(ret_phi)->dump();
1127       tty->print_cr("# ret phi");
1128       ret_phi->dump(2);
1129 #endif // ASSERT
1130       assert(false, "Can't determine return type.");
1131       C->record_method_not_compilable("Can't determine return type.");
1132       return;
1133     }

1197 
1198 //-----------------------------create_entry_map-------------------------------
1199 // Initialize our parser map to contain the types at method entry.
1200 // For OSR, the map contains a single RawPtr parameter.
1201 // Initial monitor locking for sync. methods is performed by do_method_entry.
1202 SafePointNode* Parse::create_entry_map() {
1203   // Check for really stupid bail-out cases.
1204   uint len = TypeFunc::Parms + method()->max_locals() + method()->max_stack();
1205   if (len >= 32760) {
1206     // Bailout expected, this is a very rare edge case.
1207     C->record_method_not_compilable("too many local variables");
1208     return nullptr;
1209   }
1210 
1211   // clear current replaced nodes that are of no use from here on (map was cloned in build_exits).
1212   _caller->map()->delete_replaced_nodes();
1213 
1214   // If this is an inlined method, we may have to do a receiver null check.
1215   if (_caller->has_method() && is_normal_parse() && !method()->is_static()) {
1216     GraphKit kit(_caller);
1217     Node* receiver = kit.argument(0);
1218     Node* null_free = kit.null_check_receiver_before_call(method());
1219     _caller = kit.transfer_exceptions_into_jvms();
1220     if (receiver->is_InlineType() && receiver->as_InlineType()->is_larval()) {
1221       // Replace the larval inline type receiver in the exit map as well to make sure that
1222       // we can find and update it in Parse::do_call when we are done with the initialization.
1223       _exits.map()->replace_edge(receiver, null_free);
1224     }
1225     if (kit.stopped()) {
1226       _exits.add_exception_states_from(_caller);
1227       _exits.set_jvms(_caller);
1228       return nullptr;
1229     }
1230   }
1231 
1232   assert(method() != nullptr, "parser must have a method");
1233 
1234   // Create an initial safepoint to hold JVM state during parsing
1235   JVMState* jvms = new (C) JVMState(method(), _caller->has_method() ? _caller : nullptr);
1236   set_map(new SafePointNode(len, jvms));
1237   jvms->set_map(map());
1238   record_for_igvn(map());
1239   assert(jvms->endoff() == len, "correct jvms sizing");
1240 
1241   SafePointNode* inmap = _caller->map();
1242   assert(inmap != nullptr, "must have inmap");
1243   // In case of null check on receiver above
1244   map()->transfer_replaced_nodes_from(inmap, _new_idx);
1245 
1246   uint i;
1247 
1248   // Pass thru the predefined input parameters.
1249   for (i = 0; i < TypeFunc::Parms; i++) {
1250     map()->init_req(i, inmap->in(i));
1251   }
1252 
1253   if (depth() == 1) {
1254     assert(map()->memory()->Opcode() == Op_Parm, "");
1255     // Insert the memory aliasing node
1256     set_all_memory(reset_memory());
1257   }
1258   assert(merged_memory(), "");
1259 
1260   // Now add the locals which are initially bound to arguments:
1261   uint arg_size = tf()->domain_sig()->cnt();
1262   ensure_stack(arg_size - TypeFunc::Parms);  // OSR methods have funny args
1263   for (i = TypeFunc::Parms; i < arg_size; i++) {
1264     map()->init_req(i, inmap->argument(_caller, i - TypeFunc::Parms));
1265   }
1266 
1267   // Clear out the rest of the map (locals and stack)
1268   for (i = arg_size; i < len; i++) {
1269     map()->init_req(i, top());
1270   }
1271 
1272   SafePointNode* entry_map = stop();
1273   return entry_map;
1274 }
1275 
1276 //-----------------------------do_method_entry--------------------------------
1277 // Emit any code needed in the pseudo-block before BCI zero.
1278 // The main thing to do is lock the receiver of a synchronized method.
1279 void Parse::do_method_entry() {
1280   set_parse_bci(InvocationEntryBci); // Pseudo-BCP
1281   set_sp(0);                         // Java Stack Pointer

1315 
1316   // If the method is synchronized, we need to construct a lock node, attach
1317   // it to the Start node, and pin it there.
1318   if (method()->is_synchronized()) {
1319     // Insert a FastLockNode right after the Start which takes as arguments
1320     // the current thread pointer, the "this" pointer & the address of the
1321     // stack slot pair used for the lock.  The "this" pointer is a projection
1322     // off the start node, but the locking spot has to be constructed by
1323     // creating a ConLNode of 0, and boxing it with a BoxLockNode.  The BoxLockNode
1324     // becomes the second argument to the FastLockNode call.  The
1325     // FastLockNode becomes the new control parent to pin it to the start.
1326 
1327     // Setup Object Pointer
1328     Node *lock_obj = nullptr;
1329     if (method()->is_static()) {
1330       ciInstance* mirror = _method->holder()->java_mirror();
1331       const TypeInstPtr *t_lock = TypeInstPtr::make(mirror);
1332       lock_obj = makecon(t_lock);
1333     } else {                  // Else pass the "this" pointer,
1334       lock_obj = local(0);    // which is Parm0 from StartNode
1335       assert(!_gvn.type(lock_obj)->make_oopptr()->can_be_inline_type(), "can't be an inline type");
1336     }
1337     // Clear out dead values from the debug info.
1338     kill_dead_locals();
1339     // Build the FastLockNode
1340     _synch_lock = shared_lock(lock_obj);
1341   }
1342 
1343   // Feed profiling data for parameters to the type system so it can
1344   // propagate it as speculative types
1345   record_profiled_parameters_for_speculation();
1346 }
1347 
1348 //------------------------------init_blocks------------------------------------
1349 // Initialize our parser map to contain the types/monitors at method entry.
1350 void Parse::init_blocks() {
1351   // Create the blocks.
1352   _block_count = flow()->block_count();
1353   _blocks = NEW_RESOURCE_ARRAY(Block, _block_count);
1354 
1355   // Initialize the structs.

1749 //--------------------handle_missing_successor---------------------------------
1750 void Parse::handle_missing_successor(int target_bci) {
1751 #ifndef PRODUCT
1752   Block* b = block();
1753   int trap_bci = b->flow()->has_trap()? b->flow()->trap_bci(): -1;
1754   tty->print_cr("### Missing successor at bci:%d for block #%d (trap_bci:%d)", target_bci, b->rpo(), trap_bci);
1755 #endif
1756   ShouldNotReachHere();
1757 }
1758 
1759 //--------------------------merge_common---------------------------------------
1760 void Parse::merge_common(Parse::Block* target, int pnum) {
1761   if (TraceOptoParse) {
1762     tty->print("Merging state at block #%d bci:%d", target->rpo(), target->start());
1763   }
1764 
1765   // Zap extra stack slots to top
1766   assert(sp() == target->start_sp(), "");
1767   clean_stack(sp());
1768 
1769   // Check for merge conflicts involving inline types
1770   JVMState* old_jvms = map()->jvms();
1771   int old_bci = bci();
1772   JVMState* tmp_jvms = old_jvms->clone_shallow(C);
1773   tmp_jvms->set_should_reexecute(true);
1774   tmp_jvms->bind_map(map());
1775   // Execution needs to restart a the next bytecode (entry of next
1776   // block)
1777   if (target->is_merged() ||
1778       pnum > PhiNode::Input ||
1779       target->is_handler() ||
1780       target->is_loop_head()) {
1781     set_parse_bci(target->start());
1782     for (uint j = TypeFunc::Parms; j < map()->req(); j++) {
1783       Node* n = map()->in(j);                 // Incoming change to target state.
1784       const Type* t = nullptr;
1785       if (tmp_jvms->is_loc(j)) {
1786         t = target->local_type_at(j - tmp_jvms->locoff());
1787       } else if (tmp_jvms->is_stk(j) && j < (uint)sp() + tmp_jvms->stkoff()) {
1788         t = target->stack_type_at(j - tmp_jvms->stkoff());
1789       }
1790       if (t != nullptr && t != Type::BOTTOM) {
1791         if (n->is_InlineType() && !t->is_inlinetypeptr()) {
1792           // Allocate inline type in src block to be able to merge it with oop in target block
1793           map()->set_req(j, n->as_InlineType()->buffer(this));
1794         } else if (!n->is_InlineType() && t->is_inlinetypeptr()) {
1795           // Scalarize null in src block to be able to merge it with inline type in target block
1796           assert(gvn().type(n)->is_zero_type(), "Should have been scalarized");
1797           map()->set_req(j, InlineTypeNode::make_null(gvn(), t->inline_klass()));
1798         }
1799       }
1800     }
1801   }
1802   old_jvms->bind_map(map());
1803   set_parse_bci(old_bci);
1804 
1805   if (!target->is_merged()) {   // No prior mapping at this bci
1806     if (TraceOptoParse) { tty->print(" with empty state");  }
1807 
1808     // If this path is dead, do not bother capturing it as a merge.
1809     // It is "as if" we had 1 fewer predecessors from the beginning.
1810     if (stopped()) {
1811       if (TraceOptoParse)  tty->print_cr(", but path is dead and doesn't count");
1812       return;
1813     }
1814 
1815     // Make a region if we know there are multiple or unpredictable inputs.
1816     // (Also, if this is a plain fall-through, we might see another region,
1817     // which must not be allowed into this block's map.)
1818     if (pnum > PhiNode::Input         // Known multiple inputs.
1819         || target->is_handler()       // These have unpredictable inputs.
1820         || target->is_loop_head()     // Known multiple inputs
1821         || control()->is_Region()) {  // We must hide this guy.
1822 
1823       int current_bci = bci();
1824       set_parse_bci(target->start()); // Set target bci

1839       record_for_igvn(r);
1840       // zap all inputs to null for debugging (done in Node(uint) constructor)
1841       // for (int j = 1; j < edges+1; j++) { r->init_req(j, nullptr); }
1842       r->init_req(pnum, control());
1843       set_control(r);
1844       target->copy_irreducible_status_to(r, jvms());
1845       set_parse_bci(current_bci); // Restore bci
1846     }
1847 
1848     // Convert the existing Parser mapping into a mapping at this bci.
1849     store_state_to(target);
1850     assert(target->is_merged(), "do not come here twice");
1851 
1852   } else {                      // Prior mapping at this bci
1853     if (TraceOptoParse) {  tty->print(" with previous state"); }
1854 #ifdef ASSERT
1855     if (target->is_SEL_head()) {
1856       target->mark_merged_backedge(block());
1857     }
1858 #endif
1859 
1860     // We must not manufacture more phis if the target is already parsed.
1861     bool nophi = target->is_parsed();
1862 
1863     SafePointNode* newin = map();// Hang on to incoming mapping
1864     Block* save_block = block(); // Hang on to incoming block;
1865     load_state_from(target);    // Get prior mapping
1866 
1867     assert(newin->jvms()->locoff() == jvms()->locoff(), "JVMS layouts agree");
1868     assert(newin->jvms()->stkoff() == jvms()->stkoff(), "JVMS layouts agree");
1869     assert(newin->jvms()->monoff() == jvms()->monoff(), "JVMS layouts agree");
1870     assert(newin->jvms()->endoff() == jvms()->endoff(), "JVMS layouts agree");
1871 
1872     // Iterate over my current mapping and the old mapping.
1873     // Where different, insert Phi functions.
1874     // Use any existing Phi functions.
1875     assert(control()->is_Region(), "must be merging to a region");
1876     RegionNode* r = control()->as_Region();
1877 
1878     // Compute where to merge into
1879     // Merge incoming control path
1880     r->init_req(pnum, newin->control());
1881 
1882     if (pnum == 1) {            // Last merge for this Region?
1883       if (!block()->flow()->is_irreducible_loop_secondary_entry()) {
1884         Node* result = _gvn.transform_no_reclaim(r);
1885         if (r != result && TraceOptoParse) {
1886           tty->print_cr("Block #%d replace %d with %d", block()->rpo(), r->_idx, result->_idx);
1887         }
1888       }
1889       record_for_igvn(r);
1890     }
1891 
1892     // Update all the non-control inputs to map:
1893     assert(TypeFunc::Parms == newin->jvms()->locoff(), "parser map should contain only youngest jvms");
1894     bool check_elide_phi = target->is_SEL_backedge(save_block);
1895     bool last_merge = (pnum == PhiNode::Input);
1896     for (uint j = 1; j < newin->req(); j++) {
1897       Node* m = map()->in(j);   // Current state of target.
1898       Node* n = newin->in(j);   // Incoming change to target state.
1899       PhiNode* phi;
1900       if (m->is_Phi() && m->as_Phi()->region() == r) {
1901         phi = m->as_Phi();
1902       } else if (m->is_InlineType() && m->as_InlineType()->has_phi_inputs(r)) {
1903         phi = m->as_InlineType()->get_oop()->as_Phi();
1904       } else {
1905         phi = nullptr;
1906       }
1907       if (m != n) {             // Different; must merge
1908         switch (j) {
1909         // Frame pointer and Return Address never changes
1910         case TypeFunc::FramePtr:// Drop m, use the original value
1911         case TypeFunc::ReturnAdr:
1912           break;
1913         case TypeFunc::Memory:  // Merge inputs to the MergeMem node
1914           assert(phi == nullptr, "the merge contains phis, not vice versa");
1915           merge_memory_edges(n->as_MergeMem(), pnum, nophi);
1916           continue;
1917         default:                // All normal stuff
1918           if (phi == nullptr) {
1919             const JVMState* jvms = map()->jvms();
1920             if (EliminateNestedLocks &&
1921                 jvms->is_mon(j) && jvms->is_monitor_box(j)) {
1922               // BoxLock nodes are not commoning.
1923               // Use old BoxLock node as merged box.
1924               assert(newin->jvms()->is_monitor_box(j), "sanity");
1925               // This assert also tests that nodes are BoxLock.
1926               assert(BoxLockNode::same_slot(n, m), "sanity");
1927               C->gvn_replace_by(n, m);
1928             } else if (!check_elide_phi || !target->can_elide_SEL_phi(j)) {
1929               phi = ensure_phi(j, nophi);
1930             }
1931           }
1932           break;
1933         }
1934       }
1935       // At this point, n might be top if:
1936       //  - there is no phi (because TypeFlow detected a conflict), or
1937       //  - the corresponding control edges is top (a dead incoming path)
1938       // It is a bug if we create a phi which sees a garbage value on a live path.
1939 
1940       // Merging two inline types?
1941       if (phi != nullptr && phi->bottom_type()->is_inlinetypeptr()) {
1942         // Reload current state because it may have been updated by ensure_phi
1943         m = map()->in(j);
1944         InlineTypeNode* vtm = m->as_InlineType(); // Current inline type
1945         InlineTypeNode* vtn = n->as_InlineType(); // Incoming inline type
1946         assert(vtm->get_oop() == phi, "Inline type should have Phi input");
1947         if (TraceOptoParse) {
1948 #ifdef ASSERT
1949           tty->print_cr("\nMerging inline types");
1950           tty->print_cr("Current:");
1951           vtm->dump(2);
1952           tty->print_cr("Incoming:");
1953           vtn->dump(2);
1954           tty->cr();
1955 #endif
1956         }
1957         // Do the merge
1958         vtm->merge_with(&_gvn, vtn, pnum, last_merge);
1959         if (last_merge) {
1960           map()->set_req(j, _gvn.transform_no_reclaim(vtm));
1961           record_for_igvn(vtm);
1962         }
1963       } else if (phi != nullptr) {
1964         assert(n != top() || r->in(pnum) == top(), "live value must not be garbage");
1965         assert(phi->region() == r, "");
1966         phi->set_req(pnum, n);  // Then add 'n' to the merge
1967         if (last_merge) {
1968           // Last merge for this Phi.
1969           // So far, Phis have had a reasonable type from ciTypeFlow.
1970           // Now _gvn will join that with the meet of current inputs.
1971           // BOTTOM is never permissible here, 'cause pessimistically
1972           // Phis of pointers cannot lose the basic pointer type.
1973           debug_only(const Type* bt1 = phi->bottom_type());
1974           assert(bt1 != Type::BOTTOM, "should not be building conflict phis");
1975           map()->set_req(j, _gvn.transform_no_reclaim(phi));
1976           debug_only(const Type* bt2 = phi->bottom_type());
1977           assert(bt2->higher_equal_speculative(bt1), "must be consistent with type-flow");
1978           record_for_igvn(phi);
1979         }
1980       }
1981     } // End of for all values to be merged
1982 
1983     if (last_merge && !r->in(0)) {         // The occasional useless Region

1984       assert(control() == r, "");
1985       set_control(r->nonnull_req());
1986     }
1987 
1988     map()->merge_replaced_nodes_with(newin);
1989 
1990     // newin has been subsumed into the lazy merge, and is now dead.
1991     set_block(save_block);
1992 
1993     stop();                     // done with this guy, for now
1994   }
1995 
1996   if (TraceOptoParse) {
1997     tty->print_cr(" on path %d", pnum);
1998   }
1999 
2000   // Done with this parser state.
2001   assert(stopped(), "");
2002 }
2003 

2115 
2116   // Add new path to the region.
2117   uint pnum = r->req();
2118   r->add_req(nullptr);
2119 
2120   for (uint i = 1; i < map->req(); i++) {
2121     Node* n = map->in(i);
2122     if (i == TypeFunc::Memory) {
2123       // Ensure a phi on all currently known memories.
2124       for (MergeMemStream mms(n->as_MergeMem()); mms.next_non_empty(); ) {
2125         Node* phi = mms.memory();
2126         if (phi->is_Phi() && phi->as_Phi()->region() == r) {
2127           assert(phi->req() == pnum, "must be same size as region");
2128           phi->add_req(nullptr);
2129         }
2130       }
2131     } else {
2132       if (n->is_Phi() && n->as_Phi()->region() == r) {
2133         assert(n->req() == pnum, "must be same size as region");
2134         n->add_req(nullptr);
2135       } else if (n->is_InlineType() && n->as_InlineType()->has_phi_inputs(r)) {
2136         n->as_InlineType()->add_new_path(r);
2137       }
2138     }
2139   }
2140 
2141   return pnum;
2142 }
2143 
2144 //------------------------------ensure_phi-------------------------------------
2145 // Turn the idx'th entry of the current map into a Phi
2146 PhiNode *Parse::ensure_phi(int idx, bool nocreate) {
2147   SafePointNode* map = this->map();
2148   Node* region = map->control();
2149   assert(region->is_Region(), "");
2150 
2151   Node* o = map->in(idx);
2152   assert(o != nullptr, "");
2153 
2154   if (o == top())  return nullptr; // TOP always merges into TOP
2155 
2156   if (o->is_Phi() && o->as_Phi()->region() == region) {
2157     return o->as_Phi();
2158   }
2159   InlineTypeNode* vt = o->isa_InlineType();
2160   if (vt != nullptr && vt->has_phi_inputs(region)) {
2161     return vt->get_oop()->as_Phi();
2162   }
2163 
2164   // Now use a Phi here for merging
2165   assert(!nocreate, "Cannot build a phi for a block already parsed.");
2166   const JVMState* jvms = map->jvms();
2167   const Type* t = nullptr;
2168   if (jvms->is_loc(idx)) {
2169     t = block()->local_type_at(idx - jvms->locoff());
2170   } else if (jvms->is_stk(idx)) {
2171     t = block()->stack_type_at(idx - jvms->stkoff());
2172   } else if (jvms->is_mon(idx)) {
2173     assert(!jvms->is_monitor_box(idx), "no phis for boxes");
2174     t = TypeInstPtr::BOTTOM; // this is sufficient for a lock object
2175   } else if ((uint)idx < TypeFunc::Parms) {
2176     t = o->bottom_type();  // Type::RETURN_ADDRESS or such-like.
2177   } else {
2178     assert(false, "no type information for this phi");
2179   }
2180 
2181   // If the type falls to bottom, then this must be a local that
2182   // is already dead or is mixing ints and oops or some such.
2183   // Forcing it to top makes it go dead.
2184   if (t == Type::BOTTOM) {
2185     map->set_req(idx, top());
2186     return nullptr;
2187   }
2188 
2189   // Do not create phis for top either.
2190   // A top on a non-null control flow must be an unused even after the.phi.
2191   if (t == Type::TOP || t == Type::HALF) {
2192     map->set_req(idx, top());
2193     return nullptr;
2194   }
2195 
2196   if (vt != nullptr && t->is_inlinetypeptr()) {
2197     // Inline types are merged by merging their field values.
2198     // Create a cloned InlineTypeNode with phi inputs that
2199     // represents the merged inline type and update the map.
2200     // TODO 8325106 Why can't we pass map here?
2201     vt = vt->clone_with_phis(&_gvn, region);
2202     map->set_req(idx, vt);
2203     return vt->get_oop()->as_Phi();
2204   } else {
2205     PhiNode* phi = PhiNode::make(region, o, t);
2206     gvn().set_type(phi, t);
2207     if (C->do_escape_analysis()) record_for_igvn(phi);
2208     map->set_req(idx, phi);
2209     return phi;
2210   }
2211 }
2212 
2213 //--------------------------ensure_memory_phi----------------------------------
2214 // Turn the idx'th slice of the current memory into a Phi
2215 PhiNode *Parse::ensure_memory_phi(int idx, bool nocreate) {
2216   MergeMemNode* mem = merged_memory();
2217   Node* region = control();
2218   assert(region->is_Region(), "");
2219 
2220   Node *o = (idx == Compile::AliasIdxBot)? mem->base_memory(): mem->memory_at(idx);
2221   assert(o != nullptr && o != top(), "");
2222 
2223   PhiNode* phi;
2224   if (o->is_Phi() && o->as_Phi()->region() == region) {
2225     phi = o->as_Phi();
2226     if (phi == mem->base_memory() && idx >= Compile::AliasIdxRaw) {
2227       // clone the shared base memory phi to make a new memory split
2228       assert(!nocreate, "Cannot build a phi for a block already parsed.");
2229       const Type* t = phi->bottom_type();
2230       const TypePtr* adr_type = C->get_adr_type(idx);

2358     Node* chk   = _gvn.transform( new CmpINode(opq, profile_state) );
2359     Node* tst   = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
2360     // Branch to failure if state was changed
2361     { BuildCutout unless(this, tst, PROB_ALWAYS);
2362       uncommon_trap(Deoptimization::Reason_rtm_state_change,
2363                     Deoptimization::Action_make_not_entrant);
2364     }
2365   }
2366 #endif
2367 }
2368 
2369 //------------------------------return_current---------------------------------
2370 // Append current _map to _exit_return
2371 void Parse::return_current(Node* value) {
2372   if (RegisterFinalizersAtInit &&
2373       method()->intrinsic_id() == vmIntrinsics::_Object_init) {
2374     call_register_finalizer();
2375   }
2376 
2377   // Do not set_parse_bci, so that return goo is credited to the return insn.
2378   // vreturn can trigger an allocation so vreturn can throw. Setting
2379   // the bci here breaks exception handling. Commenting this out
2380   // doesn't seem to break anything.
2381   //  set_bci(InvocationEntryBci);
2382   if (method()->is_synchronized() && GenerateSynchronizationCode) {
2383     shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
2384   }
2385   if (C->env()->dtrace_method_probes()) {
2386     make_dtrace_method_exit(method());
2387   }
2388   // frame pointer is always same, already captured
2389   if (value != nullptr) {
2390     Node* phi = _exits.argument(0);
2391     const Type* return_type = phi->bottom_type();
2392     const TypeInstPtr* tr = return_type->isa_instptr();
2393     assert(!value->is_InlineType() || !value->as_InlineType()->is_larval(), "returning a larval");
2394     if ((tf()->returns_inline_type_as_fields() || (_caller->has_method() && !Compile::current()->inlining_incrementally())) &&
2395         return_type->is_inlinetypeptr()) {
2396       // Inline type is returned as fields, make sure it is scalarized
2397       if (!value->is_InlineType()) {
2398         value = InlineTypeNode::make_from_oop(this, value, return_type->inline_klass(), false);
2399       }
2400       if (!_caller->has_method() || Compile::current()->inlining_incrementally()) {
2401         // Returning from root or an incrementally inlined method. Make sure all non-flat
2402         // fields are buffered and re-execute if allocation triggers deoptimization.
2403         PreserveReexecuteState preexecs(this);
2404         assert(tf()->returns_inline_type_as_fields(), "must be returned as fields");
2405         jvms()->set_should_reexecute(true);
2406         inc_sp(1);
2407         value = value->as_InlineType()->allocate_fields(this);
2408       }
2409     } else if (value->is_InlineType()) {
2410       // Inline type is returned as oop, make sure it is buffered and re-execute
2411       // if allocation triggers deoptimization.
2412       PreserveReexecuteState preexecs(this);
2413       jvms()->set_should_reexecute(true);
2414       inc_sp(1);
2415       value = value->as_InlineType()->buffer(this);
2416     }
2417     // ...else
2418     // If returning oops to an interface-return, there is a silent free
2419     // cast from oop to interface allowed by the Verifier. Make it explicit here.
2420     phi->add_req(value);
2421   }
2422 
2423   SafePointNode* exit_return = _exits.map();
2424   exit_return->in( TypeFunc::Control  )->add_req( control() );
2425   exit_return->in( TypeFunc::I_O      )->add_req( i_o    () );
2426   Node *mem = exit_return->in( TypeFunc::Memory   );
2427   for (MergeMemStream mms(mem->as_MergeMem(), merged_memory()); mms.next_non_empty2(); ) {
2428     if (mms.is_empty()) {
2429       // get a copy of the base memory, and patch just this one input
2430       const TypePtr* adr_type = mms.adr_type(C);
2431       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
2432       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
2433       gvn().set_type_bottom(phi);
2434       phi->del_req(phi->req()-1);  // prepare to re-patch
2435       mms.set_memory(phi);
2436     }
2437     mms.memory()->add_req(mms.memory2());
2438   }
2439 









2440   if (_first_return) {
2441     _exits.map()->transfer_replaced_nodes_from(map(), _new_idx);
2442     _first_return = false;
2443   } else {
2444     _exits.map()->merge_replaced_nodes_with(map());
2445   }
2446 
2447   stop_and_kill_map();          // This CFG path dies here
2448 }
2449 
2450 
2451 //------------------------------add_safepoint----------------------------------
2452 void Parse::add_safepoint() {
2453   uint parms = TypeFunc::Parms+1;
2454 
2455   // Clear out dead values from the debug info.
2456   kill_dead_locals();
2457 
2458   // Clone the JVM State
2459   SafePointNode *sfpnt = new SafePointNode(parms, nullptr);
< prev index next >