< prev index next >

src/hotspot/share/opto/parse1.cpp

Print this page

  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "interpreter/linkResolver.hpp"
  28 #include "memory/resourceArea.hpp"
  29 #include "oops/method.hpp"
  30 #include "opto/addnode.hpp"
  31 #include "opto/c2compiler.hpp"
  32 #include "opto/castnode.hpp"

  33 #include "opto/idealGraphPrinter.hpp"

  34 #include "opto/locknode.hpp"
  35 #include "opto/memnode.hpp"
  36 #include "opto/opaquenode.hpp"
  37 #include "opto/parse.hpp"
  38 #include "opto/rootnode.hpp"
  39 #include "opto/runtime.hpp"
  40 #include "opto/type.hpp"
  41 #include "runtime/handles.inline.hpp"
  42 #include "runtime/safepointMechanism.hpp"
  43 #include "runtime/sharedRuntime.hpp"
  44 #include "utilities/bitMap.inline.hpp"
  45 #include "utilities/copy.hpp"
  46 
  47 // Static array so we can figure out which bytecodes stop us from compiling
  48 // the most. Some of the non-static variables are needed in bytecodeInfo.cpp
  49 // and eventually should be encapsulated in a proper class (gri 8/18/98).
  50 
  51 #ifndef PRODUCT
  52 uint nodes_created             = 0;
  53 uint methods_parsed            = 0;

  85   }
  86   if (all_null_checks_found) {
  87     tty->print_cr("%u made implicit (%2u%%)", implicit_null_checks,
  88                   (100*implicit_null_checks)/all_null_checks_found);
  89   }
  90   if (SharedRuntime::_implicit_null_throws) {
  91     tty->print_cr("%u implicit null exceptions at runtime",
  92                   SharedRuntime::_implicit_null_throws);
  93   }
  94 
  95   if (PrintParseStatistics && BytecodeParseHistogram::initialized()) {
  96     BytecodeParseHistogram::print();
  97   }
  98 }
  99 #endif
 100 
 101 //------------------------------ON STACK REPLACEMENT---------------------------
 102 
 103 // Construct a node which can be used to get incoming state for
 104 // on stack replacement.
 105 Node *Parse::fetch_interpreter_state(int index,
 106                                      BasicType bt,
 107                                      Node *local_addrs,
 108                                      Node *local_addrs_base) {






 109   Node *mem = memory(Compile::AliasIdxRaw);
 110   Node *adr = basic_plus_adr( local_addrs_base, local_addrs, -index*wordSize );
 111   Node *ctl = control();
 112 
 113   // Very similar to LoadNode::make, except we handle un-aligned longs and
 114   // doubles on Sparc.  Intel can handle them just fine directly.
 115   Node *l = nullptr;
 116   switch (bt) {                // Signature is flattened
 117   case T_INT:     l = new LoadINode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInt::INT,        MemNode::unordered); break;
 118   case T_FLOAT:   l = new LoadFNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::FLOAT,         MemNode::unordered); break;
 119   case T_ADDRESS: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM,  MemNode::unordered); break;
 120   case T_OBJECT:  l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInstPtr::BOTTOM, MemNode::unordered); break;
 121   case T_LONG:
 122   case T_DOUBLE: {
 123     // Since arguments are in reverse order, the argument address 'adr'
 124     // refers to the back half of the long/double.  Recompute adr.
 125     adr = basic_plus_adr(local_addrs_base, local_addrs, -(index+1)*wordSize);
 126     if (Matcher::misaligned_doubles_ok) {
 127       l = (bt == T_DOUBLE)
 128         ? (Node*)new LoadDNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::DOUBLE, MemNode::unordered)

 130     } else {
 131       l = (bt == T_DOUBLE)
 132         ? (Node*)new LoadD_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered)
 133         : (Node*)new LoadL_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered);
 134     }
 135     break;
 136   }
 137   default: ShouldNotReachHere();
 138   }
 139   return _gvn.transform(l);
 140 }
 141 
 142 // Helper routine to prevent the interpreter from handing
 143 // unexpected typestate to an OSR method.
 144 // The Node l is a value newly dug out of the interpreter frame.
 145 // The type is the type predicted by ciTypeFlow.  Note that it is
 146 // not a general type, but can only come from Type::get_typeflow_type.
 147 // The safepoint is a map which will feed an uncommon trap.
 148 Node* Parse::check_interpreter_type(Node* l, const Type* type,
 149                                     SafePointNode* &bad_type_exit) {
 150 
 151   const TypeOopPtr* tp = type->isa_oopptr();
 152 
 153   // TypeFlow may assert null-ness if a type appears unloaded.
 154   if (type == TypePtr::NULL_PTR ||
 155       (tp != nullptr && !tp->is_loaded())) {
 156     // Value must be null, not a real oop.
 157     Node* chk = _gvn.transform( new CmpPNode(l, null()) );
 158     Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
 159     IfNode* iff = create_and_map_if(control(), tst, PROB_MAX, COUNT_UNKNOWN);
 160     set_control(_gvn.transform( new IfTrueNode(iff) ));
 161     Node* bad_type = _gvn.transform( new IfFalseNode(iff) );
 162     bad_type_exit->control()->add_req(bad_type);
 163     l = null();
 164   }
 165 
 166   // Typeflow can also cut off paths from the CFG, based on
 167   // types which appear unloaded, or call sites which appear unlinked.
 168   // When paths are cut off, values at later merge points can rise
 169   // toward more specific classes.  Make sure these specific classes
 170   // are still in effect.
 171   if (tp != nullptr && !tp->is_same_java_type_as(TypeInstPtr::BOTTOM)) {
 172     // TypeFlow asserted a specific object type.  Value must have that type.
 173     Node* bad_type_ctrl = nullptr;







 174     l = gen_checkcast(l, makecon(tp->as_klass_type()->cast_to_exactness(true)), &bad_type_ctrl);
 175     bad_type_exit->control()->add_req(bad_type_ctrl);
 176   }
 177 
 178   assert(_gvn.type(l)->higher_equal(type), "must constrain OSR typestate");
 179   return l;
 180 }
 181 
 182 // Helper routine which sets up elements of the initial parser map when
 183 // performing a parse for on stack replacement.  Add values into map.
 184 // The only parameter contains the address of a interpreter arguments.
 185 void Parse::load_interpreter_state(Node* osr_buf) {
 186   int index;
 187   int max_locals = jvms()->loc_size();
 188   int max_stack  = jvms()->stk_size();
 189 
 190 
 191   // Mismatch between method and jvms can occur since map briefly held
 192   // an OSR entry state (which takes up one RawPtr word).
 193   assert(max_locals == method()->max_locals(), "sanity");
 194   assert(max_stack  >= method()->max_stack(),  "sanity");
 195   assert((int)jvms()->endoff() == TypeFunc::Parms + max_locals + max_stack, "sanity");
 196   assert((int)jvms()->endoff() == (int)map()->req(), "sanity");
 197 
 198   // Find the start block.
 199   Block* osr_block = start_block();
 200   assert(osr_block->start() == osr_bci(), "sanity");
 201 
 202   // Set initial BCI.
 203   set_parse_bci(osr_block->start());
 204 
 205   // Set initial stack depth.
 206   set_sp(osr_block->start_sp());
 207 
 208   // Check bailouts.  We currently do not perform on stack replacement
 209   // of loops in catch blocks or loops which branch with a non-empty stack.
 210   if (sp() != 0) {

 212     return;
 213   }
 214   // Do not OSR inside finally clauses:
 215   if (osr_block->has_trap_at(osr_block->start())) {
 216     assert(false, "OSR starts with an immediate trap");
 217     C->record_method_not_compilable("OSR starts with an immediate trap");
 218     return;
 219   }
 220 
 221   // Commute monitors from interpreter frame to compiler frame.
 222   assert(jvms()->monitor_depth() == 0, "should be no active locks at beginning of osr");
 223   int mcnt = osr_block->flow()->monitor_count();
 224   Node *monitors_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals+mcnt*2-1)*wordSize);
 225   for (index = 0; index < mcnt; index++) {
 226     // Make a BoxLockNode for the monitor.
 227     Node *box = new BoxLockNode(next_monitor());
 228     // Check for bailout after new BoxLockNode
 229     if (failing()) { return; }
 230     box = _gvn.transform(box);
 231 
 232 
 233     // Displaced headers and locked objects are interleaved in the
 234     // temp OSR buffer.  We only copy the locked objects out here.
 235     // Fetch the locked object from the OSR temp buffer and copy to our fastlock node.
 236     Node *lock_object = fetch_interpreter_state(index*2, T_OBJECT, monitors_addr, osr_buf);
 237     // Try and copy the displaced header to the BoxNode
 238     Node *displaced_hdr = fetch_interpreter_state((index*2) + 1, T_ADDRESS, monitors_addr, osr_buf);
 239 
 240 
 241     store_to_memory(control(), box, displaced_hdr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered);
 242 
 243     // Build a bogus FastLockNode (no code will be generated) and push the
 244     // monitor into our debug info.
 245     const FastLockNode *flock = _gvn.transform(new FastLockNode( 0, lock_object, box ))->as_FastLock();
 246     map()->push_monitor(flock);
 247 
 248     // If the lock is our method synchronization lock, tuck it away in
 249     // _sync_lock for return and rethrow exit paths.
 250     if (index == 0 && method()->is_synchronized()) {
 251       _synch_lock = flock;
 252     }
 253   }
 254 
 255   // Use the raw liveness computation to make sure that unexpected
 256   // values don't propagate into the OSR frame.
 257   MethodLivenessResult live_locals = method()->liveness_at_bci(osr_bci());
 258   if (!live_locals.is_valid()) {
 259     // Degenerate or breakpointed method.

 287         if (C->log() != nullptr) {
 288           C->log()->elem("OSR_mismatch local_index='%d'",index);
 289         }
 290         set_local(index, null());
 291         // and ignore it for the loads
 292         continue;
 293       }
 294     }
 295 
 296     // Filter out TOP, HALF, and BOTTOM.  (Cf. ensure_phi.)
 297     if (type == Type::TOP || type == Type::HALF) {
 298       continue;
 299     }
 300     // If the type falls to bottom, then this must be a local that
 301     // is mixing ints and oops or some such.  Forcing it to top
 302     // makes it go dead.
 303     if (type == Type::BOTTOM) {
 304       continue;
 305     }
 306     // Construct code to access the appropriate local.
 307     BasicType bt = type->basic_type();
 308     if (type == TypePtr::NULL_PTR) {
 309       // Ptr types are mixed together with T_ADDRESS but null is
 310       // really for T_OBJECT types so correct it.
 311       bt = T_OBJECT;
 312     }
 313     Node *value = fetch_interpreter_state(index, bt, locals_addr, osr_buf);
 314     set_local(index, value);
 315   }
 316 
 317   // Extract the needed stack entries from the interpreter frame.
 318   for (index = 0; index < sp(); index++) {
 319     const Type *type = osr_block->stack_type_at(index);
 320     if (type != Type::TOP) {
 321       // Currently the compiler bails out when attempting to on stack replace
 322       // at a bci with a non-empty stack.  We should not reach here.
 323       ShouldNotReachHere();
 324     }
 325   }
 326 
 327   // End the OSR migration
 328   make_runtime_call(RC_LEAF, OptoRuntime::osr_end_Type(),
 329                     CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
 330                     "OSR_migration_end", TypeRawPtr::BOTTOM,
 331                     osr_buf);
 332 
 333   // Now that the interpreter state is loaded, make sure it will match

 489   // either breakpoint setting or hotswapping of methods may
 490   // cause deoptimization.
 491   if (C->env()->jvmti_can_hotswap_or_post_breakpoint()) {
 492     C->dependencies()->assert_evol_method(method());
 493   }
 494 
 495   NOT_PRODUCT(methods_seen++);
 496 
 497   // Do some special top-level things.
 498   if (depth() == 1 && C->is_osr_compilation()) {
 499     _tf = C->tf();     // the OSR entry type is different
 500     _entry_bci = C->entry_bci();
 501     _flow = method()->get_osr_flow_analysis(osr_bci());
 502   } else {
 503     _tf = TypeFunc::make(method());
 504     _entry_bci = InvocationEntryBci;
 505     _flow = method()->get_flow_analysis();
 506   }
 507 
 508   if (_flow->failing()) {
 509     assert(false, "type flow analysis failed during parsing");


 510     C->record_method_not_compilable(_flow->failure_reason());
 511 #ifndef PRODUCT
 512       if (PrintOpto && (Verbose || WizardMode)) {
 513         if (is_osr_parse()) {
 514           tty->print_cr("OSR @%d type flow bailout: %s", _entry_bci, _flow->failure_reason());
 515         } else {
 516           tty->print_cr("type flow bailout: %s", _flow->failure_reason());
 517         }
 518         if (Verbose) {
 519           method()->print();
 520           method()->print_codes();
 521           _flow->print();
 522         }
 523       }
 524 #endif
 525   }
 526 
 527 #ifdef ASSERT
 528   if (depth() == 1) {
 529     assert(C->is_osr_compilation() == this->is_osr_parse(), "OSR in sync");

 583     do_method_entry();
 584   }
 585 
 586   if (depth() == 1 && !failing()) {
 587     if (C->clinit_barrier_on_entry()) {
 588       // Add check to deoptimize the nmethod once the holder class is fully initialized
 589       clinit_deopt();
 590     }
 591 
 592     // Add check to deoptimize the nmethod if RTM state was changed
 593     rtm_deopt();
 594   }
 595 
 596   // Check for bailouts during method entry or RTM state check setup.
 597   if (failing()) {
 598     if (log)  log->done("parse");
 599     C->set_default_node_notes(caller_nn);
 600     return;
 601   }
 602 























 603   entry_map = map();  // capture any changes performed by method setup code
 604   assert(jvms()->endoff() == map()->req(), "map matches JVMS layout");
 605 
 606   // We begin parsing as if we have just encountered a jump to the
 607   // method entry.
 608   Block* entry_block = start_block();
 609   assert(entry_block->start() == (is_osr_parse() ? osr_bci() : 0), "");
 610   set_map_clone(entry_map);
 611   merge_common(entry_block, entry_block->next_path_num());
 612 
 613 #ifndef PRODUCT
 614   BytecodeParseHistogram *parse_histogram_obj = new (C->env()->arena()) BytecodeParseHistogram(this, C);
 615   set_parse_histogram( parse_histogram_obj );
 616 #endif
 617 
 618   // Parse all the basic blocks.
 619   do_all_blocks();
 620 
 621   // Check for bailouts during conversion to graph
 622   if (failing()) {

 768 void Parse::build_exits() {
 769   // make a clone of caller to prevent sharing of side-effects
 770   _exits.set_map(_exits.clone_map());
 771   _exits.clean_stack(_exits.sp());
 772   _exits.sync_jvms();
 773 
 774   RegionNode* region = new RegionNode(1);
 775   record_for_igvn(region);
 776   gvn().set_type_bottom(region);
 777   _exits.set_control(region);
 778 
 779   // Note:  iophi and memphi are not transformed until do_exits.
 780   Node* iophi  = new PhiNode(region, Type::ABIO);
 781   Node* memphi = new PhiNode(region, Type::MEMORY, TypePtr::BOTTOM);
 782   gvn().set_type_bottom(iophi);
 783   gvn().set_type_bottom(memphi);
 784   _exits.set_i_o(iophi);
 785   _exits.set_all_memory(memphi);
 786 
 787   // Add a return value to the exit state.  (Do not push it yet.)
 788   if (tf()->range()->cnt() > TypeFunc::Parms) {
 789     const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
 790     if (ret_type->isa_int()) {
 791       BasicType ret_bt = method()->return_type()->basic_type();
 792       if (ret_bt == T_BOOLEAN ||
 793           ret_bt == T_CHAR ||
 794           ret_bt == T_BYTE ||
 795           ret_bt == T_SHORT) {
 796         ret_type = TypeInt::INT;
 797       }
 798     }
 799 
 800     // Don't "bind" an unloaded return klass to the ret_phi. If the klass
 801     // becomes loaded during the subsequent parsing, the loaded and unloaded
 802     // types will not join when we transform and push in do_exits().
 803     const TypeOopPtr* ret_oop_type = ret_type->isa_oopptr();
 804     if (ret_oop_type && !ret_oop_type->is_loaded()) {
 805       ret_type = TypeOopPtr::BOTTOM;
 806     }
 807     int         ret_size = type2size[ret_type->basic_type()];
 808     Node*       ret_phi  = new PhiNode(region, ret_type);
 809     gvn().set_type_bottom(ret_phi);
 810     _exits.ensure_stack(ret_size);
 811     assert((int)(tf()->range()->cnt() - TypeFunc::Parms) == ret_size, "good tf range");
 812     assert(method()->return_type()->size() == ret_size, "tf agrees w/ method");
 813     _exits.set_argument(0, ret_phi);  // here is where the parser finds it
 814     // Note:  ret_phi is not yet pushed, until do_exits.
 815   }
 816 }
 817 
 818 
 819 //----------------------------build_start_state-------------------------------
 820 // Construct a state which contains only the incoming arguments from an
 821 // unknown caller.  The method & bci will be null & InvocationEntryBci.
 822 JVMState* Compile::build_start_state(StartNode* start, const TypeFunc* tf) {
 823   int        arg_size = tf->domain()->cnt();
 824   int        max_size = MAX2(arg_size, (int)tf->range()->cnt());
 825   JVMState*  jvms     = new (this) JVMState(max_size - TypeFunc::Parms);
 826   SafePointNode* map  = new SafePointNode(max_size, jvms);

 827   record_for_igvn(map);
 828   assert(arg_size == TypeFunc::Parms + (is_osr_compilation() ? 1 : method()->arg_size()), "correct arg_size");
 829   Node_Notes* old_nn = default_node_notes();
 830   if (old_nn != nullptr && has_method()) {
 831     Node_Notes* entry_nn = old_nn->clone(this);
 832     JVMState* entry_jvms = new(this) JVMState(method(), old_nn->jvms());
 833     entry_jvms->set_offsets(0);
 834     entry_jvms->set_bci(entry_bci());
 835     entry_nn->set_jvms(entry_jvms);
 836     set_default_node_notes(entry_nn);
 837   }
 838   uint i;
 839   for (i = 0; i < (uint)arg_size; i++) {
 840     Node* parm = initial_gvn()->transform(new ParmNode(start, i));

















 841     map->init_req(i, parm);
 842     // Record all these guys for later GVN.
 843     record_for_igvn(parm);



 844   }
 845   for (; i < map->req(); i++) {
 846     map->init_req(i, top());
 847   }
 848   assert(jvms->argoff() == TypeFunc::Parms, "parser gets arguments here");
 849   set_default_node_notes(old_nn);
 850   jvms->set_map(map);
 851   return jvms;
 852 }
 853 
 854 //-----------------------------make_node_notes---------------------------------
 855 Node_Notes* Parse::make_node_notes(Node_Notes* caller_nn) {
 856   if (caller_nn == nullptr)  return nullptr;
 857   Node_Notes* nn = caller_nn->clone(C);
 858   JVMState* caller_jvms = nn->jvms();
 859   JVMState* jvms = new (C) JVMState(method(), caller_jvms);
 860   jvms->set_offsets(0);
 861   jvms->set_bci(_entry_bci);
 862   nn->set_jvms(jvms);
 863   return nn;
 864 }
 865 
 866 
 867 //--------------------------return_values--------------------------------------
 868 void Compile::return_values(JVMState* jvms) {
 869   GraphKit kit(jvms);
 870   Node* ret = new ReturnNode(TypeFunc::Parms,
 871                              kit.control(),
 872                              kit.i_o(),
 873                              kit.reset_memory(),
 874                              kit.frameptr(),
 875                              kit.returnadr());
 876   // Add zero or 1 return values
 877   int ret_size = tf()->range()->cnt() - TypeFunc::Parms;
 878   if (ret_size > 0) {
 879     kit.inc_sp(-ret_size);  // pop the return value(s)
 880     kit.sync_jvms();
 881     ret->add_req(kit.argument(0));
 882     // Note:  The second dummy edge is not needed by a ReturnNode.






















 883   }
 884   // bind it to root
 885   root()->add_req(ret);
 886   record_for_igvn(ret);
 887   initial_gvn()->transform(ret);
 888 }
 889 
 890 //------------------------rethrow_exceptions-----------------------------------
 891 // Bind all exception states in the list into a single RethrowNode.
 892 void Compile::rethrow_exceptions(JVMState* jvms) {
 893   GraphKit kit(jvms);
 894   if (!kit.has_exceptions())  return;  // nothing to generate
 895   // Load my combined exception state into the kit, with all phis transformed:
 896   SafePointNode* ex_map = kit.combine_and_pop_all_exception_states();
 897   Node* ex_oop = kit.use_exception_state(ex_map);
 898   RethrowNode* exit = new RethrowNode(kit.control(),
 899                                       kit.i_o(), kit.reset_memory(),
 900                                       kit.frameptr(), kit.returnadr(),
 901                                       // like a return but with exception input
 902                                       ex_oop);

 986   //    to complete, we force all writes to complete.
 987   //
 988   // 2. Experimental VM option is used to force the barrier if any field
 989   //    was written out in the constructor.
 990   //
 991   // 3. On processors which are not CPU_MULTI_COPY_ATOMIC (e.g. PPC64),
 992   //    support_IRIW_for_not_multiple_copy_atomic_cpu selects that
 993   //    MemBarVolatile is used before volatile load instead of after volatile
 994   //    store, so there's no barrier after the store.
 995   //    We want to guarantee the same behavior as on platforms with total store
 996   //    order, although this is not required by the Java memory model.
 997   //    In this case, we want to enforce visibility of volatile field
 998   //    initializations which are performed in constructors.
 999   //    So as with finals, we add a barrier here.
1000   //
1001   // "All bets are off" unless the first publication occurs after a
1002   // normal return from the constructor.  We do not attempt to detect
1003   // such unusual early publications.  But no barrier is needed on
1004   // exceptional returns, since they cannot publish normally.
1005   //
1006   if (method()->is_initializer() &&
1007        (wrote_final() ||
1008          (AlwaysSafeConstructors && wrote_fields()) ||
1009          (support_IRIW_for_not_multiple_copy_atomic_cpu && wrote_volatile()))) {
1010     _exits.insert_mem_bar(Op_MemBarRelease, alloc_with_final());
1011 
1012     // If Memory barrier is created for final fields write
1013     // and allocation node does not escape the initialize method,
1014     // then barrier introduced by allocation node can be removed.
1015     if (DoEscapeAnalysis && alloc_with_final()) {
1016       AllocateNode* alloc = AllocateNode::Ideal_allocation(alloc_with_final());
1017       alloc->compute_MemBar_redundancy(method());
1018     }
1019     if (PrintOpto && (Verbose || WizardMode)) {
1020       method()->print_name();
1021       tty->print_cr(" writes finals and needs a memory barrier");
1022     }
1023   }
1024 
1025   // Any method can write a @Stable field; insert memory barriers
1026   // after those also. Can't bind predecessor allocation node (if any)
1027   // with barrier because allocation doesn't always dominate
1028   // MemBarRelease.
1029   if (wrote_stable()) {
1030     _exits.insert_mem_bar(Op_MemBarRelease);
1031     if (PrintOpto && (Verbose || WizardMode)) {
1032       method()->print_name();
1033       tty->print_cr(" writes @Stable and needs a memory barrier");
1034     }
1035   }
1036 
1037   for (MergeMemStream mms(_exits.merged_memory()); mms.next_non_empty(); ) {
1038     // transform each slice of the original memphi:
1039     mms.set_memory(_gvn.transform(mms.memory()));
1040   }
1041   // Clean up input MergeMems created by transforming the slices
1042   _gvn.transform(_exits.merged_memory());
1043 
1044   if (tf()->range()->cnt() > TypeFunc::Parms) {
1045     const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
1046     Node*       ret_phi  = _gvn.transform( _exits.argument(0) );
1047     if (!_exits.control()->is_top() && _gvn.type(ret_phi)->empty()) {
1048       // If the type we set for the ret_phi in build_exits() is too optimistic and
1049       // the ret_phi is top now, there's an extremely small chance that it may be due to class
1050       // loading.  It could also be due to an error, so mark this method as not compilable because
1051       // otherwise this could lead to an infinite compile loop.
1052       // In any case, this code path is rarely (and never in my testing) reached.
1053 #ifdef ASSERT
1054       tty->print_cr("# Can't determine return type.");
1055       tty->print_cr("# exit control");
1056       _exits.control()->dump(2);
1057       tty->print_cr("# ret phi type");
1058       _gvn.type(ret_phi)->dump();
1059       tty->print_cr("# ret phi");
1060       ret_phi->dump(2);
1061 #endif // ASSERT
1062       assert(false, "Can't determine return type.");
1063       C->record_method_not_compilable("Can't determine return type.");
1064       return;
1065     }

1129 
1130 //-----------------------------create_entry_map-------------------------------
1131 // Initialize our parser map to contain the types at method entry.
1132 // For OSR, the map contains a single RawPtr parameter.
1133 // Initial monitor locking for sync. methods is performed by do_method_entry.
1134 SafePointNode* Parse::create_entry_map() {
1135   // Check for really stupid bail-out cases.
1136   uint len = TypeFunc::Parms + method()->max_locals() + method()->max_stack();
1137   if (len >= 32760) {
1138     // Bailout expected, this is a very rare edge case.
1139     C->record_method_not_compilable("too many local variables");
1140     return nullptr;
1141   }
1142 
1143   // clear current replaced nodes that are of no use from here on (map was cloned in build_exits).
1144   _caller->map()->delete_replaced_nodes();
1145 
1146   // If this is an inlined method, we may have to do a receiver null check.
1147   if (_caller->has_method() && is_normal_parse() && !method()->is_static()) {
1148     GraphKit kit(_caller);
1149     kit.null_check_receiver_before_call(method());

1150     _caller = kit.transfer_exceptions_into_jvms();





1151     if (kit.stopped()) {
1152       _exits.add_exception_states_from(_caller);
1153       _exits.set_jvms(_caller);
1154       return nullptr;
1155     }
1156   }
1157 
1158   assert(method() != nullptr, "parser must have a method");
1159 
1160   // Create an initial safepoint to hold JVM state during parsing
1161   JVMState* jvms = new (C) JVMState(method(), _caller->has_method() ? _caller : nullptr);
1162   set_map(new SafePointNode(len, jvms));
1163   jvms->set_map(map());
1164   record_for_igvn(map());
1165   assert(jvms->endoff() == len, "correct jvms sizing");
1166 
1167   SafePointNode* inmap = _caller->map();
1168   assert(inmap != nullptr, "must have inmap");
1169   // In case of null check on receiver above
1170   map()->transfer_replaced_nodes_from(inmap, _new_idx);
1171 
1172   uint i;
1173 
1174   // Pass thru the predefined input parameters.
1175   for (i = 0; i < TypeFunc::Parms; i++) {
1176     map()->init_req(i, inmap->in(i));
1177   }
1178 
1179   if (depth() == 1) {
1180     assert(map()->memory()->Opcode() == Op_Parm, "");
1181     // Insert the memory aliasing node
1182     set_all_memory(reset_memory());
1183   }
1184   assert(merged_memory(), "");
1185 
1186   // Now add the locals which are initially bound to arguments:
1187   uint arg_size = tf()->domain()->cnt();
1188   ensure_stack(arg_size - TypeFunc::Parms);  // OSR methods have funny args
1189   for (i = TypeFunc::Parms; i < arg_size; i++) {
1190     map()->init_req(i, inmap->argument(_caller, i - TypeFunc::Parms));
1191   }
1192 
1193   // Clear out the rest of the map (locals and stack)
1194   for (i = arg_size; i < len; i++) {
1195     map()->init_req(i, top());
1196   }
1197 
1198   SafePointNode* entry_map = stop();
1199   return entry_map;
1200 }
1201 
1202 //-----------------------------do_method_entry--------------------------------
1203 // Emit any code needed in the pseudo-block before BCI zero.
1204 // The main thing to do is lock the receiver of a synchronized method.
1205 void Parse::do_method_entry() {
1206   set_parse_bci(InvocationEntryBci); // Pseudo-BCP
1207   set_sp(0);                         // Java Stack Pointer

1241 
1242   // If the method is synchronized, we need to construct a lock node, attach
1243   // it to the Start node, and pin it there.
1244   if (method()->is_synchronized()) {
1245     // Insert a FastLockNode right after the Start which takes as arguments
1246     // the current thread pointer, the "this" pointer & the address of the
1247     // stack slot pair used for the lock.  The "this" pointer is a projection
1248     // off the start node, but the locking spot has to be constructed by
1249     // creating a ConLNode of 0, and boxing it with a BoxLockNode.  The BoxLockNode
1250     // becomes the second argument to the FastLockNode call.  The
1251     // FastLockNode becomes the new control parent to pin it to the start.
1252 
1253     // Setup Object Pointer
1254     Node *lock_obj = nullptr;
1255     if (method()->is_static()) {
1256       ciInstance* mirror = _method->holder()->java_mirror();
1257       const TypeInstPtr *t_lock = TypeInstPtr::make(mirror);
1258       lock_obj = makecon(t_lock);
1259     } else {                  // Else pass the "this" pointer,
1260       lock_obj = local(0);    // which is Parm0 from StartNode

1261     }
1262     // Clear out dead values from the debug info.
1263     kill_dead_locals();
1264     // Build the FastLockNode
1265     _synch_lock = shared_lock(lock_obj);
1266     // Check for bailout in shared_lock
1267     if (failing()) { return; }
1268   }
1269 
1270   // Feed profiling data for parameters to the type system so it can
1271   // propagate it as speculative types
1272   record_profiled_parameters_for_speculation();
1273 }
1274 
1275 //------------------------------init_blocks------------------------------------
1276 // Initialize our parser map to contain the types/monitors at method entry.
1277 void Parse::init_blocks() {
1278   // Create the blocks.
1279   _block_count = flow()->block_count();
1280   _blocks = NEW_RESOURCE_ARRAY(Block, _block_count);

1676 //--------------------handle_missing_successor---------------------------------
1677 void Parse::handle_missing_successor(int target_bci) {
1678 #ifndef PRODUCT
1679   Block* b = block();
1680   int trap_bci = b->flow()->has_trap()? b->flow()->trap_bci(): -1;
1681   tty->print_cr("### Missing successor at bci:%d for block #%d (trap_bci:%d)", target_bci, b->rpo(), trap_bci);
1682 #endif
1683   ShouldNotReachHere();
1684 }
1685 
1686 //--------------------------merge_common---------------------------------------
1687 void Parse::merge_common(Parse::Block* target, int pnum) {
1688   if (TraceOptoParse) {
1689     tty->print("Merging state at block #%d bci:%d", target->rpo(), target->start());
1690   }
1691 
1692   // Zap extra stack slots to top
1693   assert(sp() == target->start_sp(), "");
1694   clean_stack(sp());
1695 




































1696   if (!target->is_merged()) {   // No prior mapping at this bci
1697     if (TraceOptoParse) { tty->print(" with empty state");  }
1698 
1699     // If this path is dead, do not bother capturing it as a merge.
1700     // It is "as if" we had 1 fewer predecessors from the beginning.
1701     if (stopped()) {
1702       if (TraceOptoParse)  tty->print_cr(", but path is dead and doesn't count");
1703       return;
1704     }
1705 
1706     // Make a region if we know there are multiple or unpredictable inputs.
1707     // (Also, if this is a plain fall-through, we might see another region,
1708     // which must not be allowed into this block's map.)
1709     if (pnum > PhiNode::Input         // Known multiple inputs.
1710         || target->is_handler()       // These have unpredictable inputs.
1711         || target->is_loop_head()     // Known multiple inputs
1712         || control()->is_Region()) {  // We must hide this guy.
1713 
1714       int current_bci = bci();
1715       set_parse_bci(target->start()); // Set target bci

1730       record_for_igvn(r);
1731       // zap all inputs to null for debugging (done in Node(uint) constructor)
1732       // for (int j = 1; j < edges+1; j++) { r->init_req(j, nullptr); }
1733       r->init_req(pnum, control());
1734       set_control(r);
1735       target->copy_irreducible_status_to(r, jvms());
1736       set_parse_bci(current_bci); // Restore bci
1737     }
1738 
1739     // Convert the existing Parser mapping into a mapping at this bci.
1740     store_state_to(target);
1741     assert(target->is_merged(), "do not come here twice");
1742 
1743   } else {                      // Prior mapping at this bci
1744     if (TraceOptoParse) {  tty->print(" with previous state"); }
1745 #ifdef ASSERT
1746     if (target->is_SEL_head()) {
1747       target->mark_merged_backedge(block());
1748     }
1749 #endif

1750     // We must not manufacture more phis if the target is already parsed.
1751     bool nophi = target->is_parsed();
1752 
1753     SafePointNode* newin = map();// Hang on to incoming mapping
1754     Block* save_block = block(); // Hang on to incoming block;
1755     load_state_from(target);    // Get prior mapping
1756 
1757     assert(newin->jvms()->locoff() == jvms()->locoff(), "JVMS layouts agree");
1758     assert(newin->jvms()->stkoff() == jvms()->stkoff(), "JVMS layouts agree");
1759     assert(newin->jvms()->monoff() == jvms()->monoff(), "JVMS layouts agree");
1760     assert(newin->jvms()->endoff() == jvms()->endoff(), "JVMS layouts agree");
1761 
1762     // Iterate over my current mapping and the old mapping.
1763     // Where different, insert Phi functions.
1764     // Use any existing Phi functions.
1765     assert(control()->is_Region(), "must be merging to a region");
1766     RegionNode* r = control()->as_Region();
1767 
1768     // Compute where to merge into
1769     // Merge incoming control path
1770     r->init_req(pnum, newin->control());
1771 
1772     if (pnum == 1) {            // Last merge for this Region?
1773       if (!block()->flow()->is_irreducible_loop_secondary_entry()) {
1774         Node* result = _gvn.transform(r);
1775         if (r != result && TraceOptoParse) {
1776           tty->print_cr("Block #%d replace %d with %d", block()->rpo(), r->_idx, result->_idx);
1777         }
1778       }
1779       record_for_igvn(r);
1780     }
1781 
1782     // Update all the non-control inputs to map:
1783     assert(TypeFunc::Parms == newin->jvms()->locoff(), "parser map should contain only youngest jvms");
1784     bool check_elide_phi = target->is_SEL_backedge(save_block);

1785     for (uint j = 1; j < newin->req(); j++) {
1786       Node* m = map()->in(j);   // Current state of target.
1787       Node* n = newin->in(j);   // Incoming change to target state.
1788       PhiNode* phi;
1789       if (m->is_Phi() && m->as_Phi()->region() == r)
1790         phi = m->as_Phi();
1791       else


1792         phi = nullptr;

1793       if (m != n) {             // Different; must merge
1794         switch (j) {
1795         // Frame pointer and Return Address never changes
1796         case TypeFunc::FramePtr:// Drop m, use the original value
1797         case TypeFunc::ReturnAdr:
1798           break;
1799         case TypeFunc::Memory:  // Merge inputs to the MergeMem node
1800           assert(phi == nullptr, "the merge contains phis, not vice versa");
1801           merge_memory_edges(n->as_MergeMem(), pnum, nophi);
1802           continue;
1803         default:                // All normal stuff
1804           if (phi == nullptr) {
1805             const JVMState* jvms = map()->jvms();
1806             if (EliminateNestedLocks &&
1807                 jvms->is_mon(j) && jvms->is_monitor_box(j)) {
1808               // BoxLock nodes are not commoning.
1809               // Use old BoxLock node as merged box.
1810               assert(newin->jvms()->is_monitor_box(j), "sanity");
1811               // This assert also tests that nodes are BoxLock.
1812               assert(BoxLockNode::same_slot(n, m), "sanity");
1813               C->gvn_replace_by(n, m);
1814             } else if (!check_elide_phi || !target->can_elide_SEL_phi(j)) {
1815               phi = ensure_phi(j, nophi);
1816             }
1817           }
1818           break;
1819         }
1820       }
1821       // At this point, n might be top if:
1822       //  - there is no phi (because TypeFlow detected a conflict), or
1823       //  - the corresponding control edges is top (a dead incoming path)
1824       // It is a bug if we create a phi which sees a garbage value on a live path.
1825 
1826       if (phi != nullptr) {























1827         assert(n != top() || r->in(pnum) == top(), "live value must not be garbage");
1828         assert(phi->region() == r, "");
1829         phi->set_req(pnum, n);  // Then add 'n' to the merge
1830         if (pnum == PhiNode::Input) {
1831           // Last merge for this Phi.
1832           // So far, Phis have had a reasonable type from ciTypeFlow.
1833           // Now _gvn will join that with the meet of current inputs.
1834           // BOTTOM is never permissible here, 'cause pessimistically
1835           // Phis of pointers cannot lose the basic pointer type.
1836           debug_only(const Type* bt1 = phi->bottom_type());
1837           assert(bt1 != Type::BOTTOM, "should not be building conflict phis");
1838           map()->set_req(j, _gvn.transform(phi));
1839           debug_only(const Type* bt2 = phi->bottom_type());
1840           assert(bt2->higher_equal_speculative(bt1), "must be consistent with type-flow");
1841           record_for_igvn(phi);
1842         }
1843       }
1844     } // End of for all values to be merged
1845 
1846     if (pnum == PhiNode::Input &&
1847         !r->in(0)) {         // The occasional useless Region
1848       assert(control() == r, "");
1849       set_control(r->nonnull_req());
1850     }
1851 
1852     map()->merge_replaced_nodes_with(newin);
1853 
1854     // newin has been subsumed into the lazy merge, and is now dead.
1855     set_block(save_block);
1856 
1857     stop();                     // done with this guy, for now
1858   }
1859 
1860   if (TraceOptoParse) {
1861     tty->print_cr(" on path %d", pnum);
1862   }
1863 
1864   // Done with this parser state.
1865   assert(stopped(), "");
1866 }
1867 

1979 
1980   // Add new path to the region.
1981   uint pnum = r->req();
1982   r->add_req(nullptr);
1983 
1984   for (uint i = 1; i < map->req(); i++) {
1985     Node* n = map->in(i);
1986     if (i == TypeFunc::Memory) {
1987       // Ensure a phi on all currently known memories.
1988       for (MergeMemStream mms(n->as_MergeMem()); mms.next_non_empty(); ) {
1989         Node* phi = mms.memory();
1990         if (phi->is_Phi() && phi->as_Phi()->region() == r) {
1991           assert(phi->req() == pnum, "must be same size as region");
1992           phi->add_req(nullptr);
1993         }
1994       }
1995     } else {
1996       if (n->is_Phi() && n->as_Phi()->region() == r) {
1997         assert(n->req() == pnum, "must be same size as region");
1998         n->add_req(nullptr);


1999       }
2000     }
2001   }
2002 
2003   return pnum;
2004 }
2005 
2006 //------------------------------ensure_phi-------------------------------------
2007 // Turn the idx'th entry of the current map into a Phi
2008 PhiNode *Parse::ensure_phi(int idx, bool nocreate) {
2009   SafePointNode* map = this->map();
2010   Node* region = map->control();
2011   assert(region->is_Region(), "");
2012 
2013   Node* o = map->in(idx);
2014   assert(o != nullptr, "");
2015 
2016   if (o == top())  return nullptr; // TOP always merges into TOP
2017 
2018   if (o->is_Phi() && o->as_Phi()->region() == region) {
2019     return o->as_Phi();
2020   }




2021 
2022   // Now use a Phi here for merging
2023   assert(!nocreate, "Cannot build a phi for a block already parsed.");
2024   const JVMState* jvms = map->jvms();
2025   const Type* t = nullptr;
2026   if (jvms->is_loc(idx)) {
2027     t = block()->local_type_at(idx - jvms->locoff());
2028   } else if (jvms->is_stk(idx)) {
2029     t = block()->stack_type_at(idx - jvms->stkoff());
2030   } else if (jvms->is_mon(idx)) {
2031     assert(!jvms->is_monitor_box(idx), "no phis for boxes");
2032     t = TypeInstPtr::BOTTOM; // this is sufficient for a lock object
2033   } else if ((uint)idx < TypeFunc::Parms) {
2034     t = o->bottom_type();  // Type::RETURN_ADDRESS or such-like.
2035   } else {
2036     assert(false, "no type information for this phi");
2037   }
2038 
2039   // If the type falls to bottom, then this must be a local that
2040   // is mixing ints and oops or some such.  Forcing it to top
2041   // makes it go dead.
2042   if (t == Type::BOTTOM) {
2043     map->set_req(idx, top());
2044     return nullptr;
2045   }
2046 
2047   // Do not create phis for top either.
2048   // A top on a non-null control flow must be an unused even after the.phi.
2049   if (t == Type::TOP || t == Type::HALF) {
2050     map->set_req(idx, top());
2051     return nullptr;
2052   }
2053 
2054   PhiNode* phi = PhiNode::make(region, o, t);
2055   gvn().set_type(phi, t);
2056   if (C->do_escape_analysis()) record_for_igvn(phi);
2057   map->set_req(idx, phi);
2058   return phi;










2059 }
2060 
2061 //--------------------------ensure_memory_phi----------------------------------
2062 // Turn the idx'th slice of the current memory into a Phi
2063 PhiNode *Parse::ensure_memory_phi(int idx, bool nocreate) {
2064   MergeMemNode* mem = merged_memory();
2065   Node* region = control();
2066   assert(region->is_Region(), "");
2067 
2068   Node *o = (idx == Compile::AliasIdxBot)? mem->base_memory(): mem->memory_at(idx);
2069   assert(o != nullptr && o != top(), "");
2070 
2071   PhiNode* phi;
2072   if (o->is_Phi() && o->as_Phi()->region() == region) {
2073     phi = o->as_Phi();
2074     if (phi == mem->base_memory() && idx >= Compile::AliasIdxRaw) {
2075       // clone the shared base memory phi to make a new memory split
2076       assert(!nocreate, "Cannot build a phi for a block already parsed.");
2077       const Type* t = phi->bottom_type();
2078       const TypePtr* adr_type = C->get_adr_type(idx);

2206     Node* chk   = _gvn.transform( new CmpINode(opq, profile_state) );
2207     Node* tst   = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
2208     // Branch to failure if state was changed
2209     { BuildCutout unless(this, tst, PROB_ALWAYS);
2210       uncommon_trap(Deoptimization::Reason_rtm_state_change,
2211                     Deoptimization::Action_make_not_entrant);
2212     }
2213   }
2214 #endif
2215 }
2216 
2217 //------------------------------return_current---------------------------------
2218 // Append current _map to _exit_return
2219 void Parse::return_current(Node* value) {
2220   if (RegisterFinalizersAtInit &&
2221       method()->intrinsic_id() == vmIntrinsics::_Object_init) {
2222     call_register_finalizer();
2223   }
2224 
2225   // Do not set_parse_bci, so that return goo is credited to the return insn.
2226   set_bci(InvocationEntryBci);



2227   if (method()->is_synchronized() && GenerateSynchronizationCode) {
2228     shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
2229   }
2230   if (C->env()->dtrace_method_probes()) {
2231     make_dtrace_method_exit(method());
2232   }



































2233   SafePointNode* exit_return = _exits.map();
2234   exit_return->in( TypeFunc::Control  )->add_req( control() );
2235   exit_return->in( TypeFunc::I_O      )->add_req( i_o    () );
2236   Node *mem = exit_return->in( TypeFunc::Memory   );
2237   for (MergeMemStream mms(mem->as_MergeMem(), merged_memory()); mms.next_non_empty2(); ) {
2238     if (mms.is_empty()) {
2239       // get a copy of the base memory, and patch just this one input
2240       const TypePtr* adr_type = mms.adr_type(C);
2241       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
2242       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
2243       gvn().set_type_bottom(phi);
2244       phi->del_req(phi->req()-1);  // prepare to re-patch
2245       mms.set_memory(phi);
2246     }
2247     mms.memory()->add_req(mms.memory2());
2248   }
2249 
2250   // frame pointer is always same, already captured
2251   if (value != nullptr) {
2252     // If returning oops to an interface-return, there is a silent free
2253     // cast from oop to interface allowed by the Verifier.  Make it explicit
2254     // here.
2255     Node* phi = _exits.argument(0);
2256     phi->add_req(value);
2257   }
2258 
2259   if (_first_return) {
2260     _exits.map()->transfer_replaced_nodes_from(map(), _new_idx);
2261     _first_return = false;
2262   } else {
2263     _exits.map()->merge_replaced_nodes_with(map());
2264   }
2265 
2266   stop_and_kill_map();          // This CFG path dies here
2267 }
2268 
2269 
2270 //------------------------------add_safepoint----------------------------------
2271 void Parse::add_safepoint() {
2272   uint parms = TypeFunc::Parms+1;
2273 
2274   // Clear out dead values from the debug info.
2275   kill_dead_locals();
2276 
2277   // Clone the JVM State
2278   SafePointNode *sfpnt = new SafePointNode(parms, nullptr);

  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "interpreter/linkResolver.hpp"
  28 #include "memory/resourceArea.hpp"
  29 #include "oops/method.hpp"
  30 #include "opto/addnode.hpp"
  31 #include "opto/c2compiler.hpp"
  32 #include "opto/castnode.hpp"
  33 #include "opto/convertnode.hpp"
  34 #include "opto/idealGraphPrinter.hpp"
  35 #include "opto/inlinetypenode.hpp"
  36 #include "opto/locknode.hpp"
  37 #include "opto/memnode.hpp"
  38 #include "opto/opaquenode.hpp"
  39 #include "opto/parse.hpp"
  40 #include "opto/rootnode.hpp"
  41 #include "opto/runtime.hpp"
  42 #include "opto/type.hpp"
  43 #include "runtime/handles.inline.hpp"
  44 #include "runtime/safepointMechanism.hpp"
  45 #include "runtime/sharedRuntime.hpp"
  46 #include "utilities/bitMap.inline.hpp"
  47 #include "utilities/copy.hpp"
  48 
  49 // Static array so we can figure out which bytecodes stop us from compiling
  50 // the most. Some of the non-static variables are needed in bytecodeInfo.cpp
  51 // and eventually should be encapsulated in a proper class (gri 8/18/98).
  52 
  53 #ifndef PRODUCT
  54 uint nodes_created             = 0;
  55 uint methods_parsed            = 0;

  87   }
  88   if (all_null_checks_found) {
  89     tty->print_cr("%u made implicit (%2u%%)", implicit_null_checks,
  90                   (100*implicit_null_checks)/all_null_checks_found);
  91   }
  92   if (SharedRuntime::_implicit_null_throws) {
  93     tty->print_cr("%u implicit null exceptions at runtime",
  94                   SharedRuntime::_implicit_null_throws);
  95   }
  96 
  97   if (PrintParseStatistics && BytecodeParseHistogram::initialized()) {
  98     BytecodeParseHistogram::print();
  99   }
 100 }
 101 #endif
 102 
 103 //------------------------------ON STACK REPLACEMENT---------------------------
 104 
 105 // Construct a node which can be used to get incoming state for
 106 // on stack replacement.
 107 Node* Parse::fetch_interpreter_state(int index,
 108                                      const Type* type,
 109                                      Node* local_addrs,
 110                                      Node* local_addrs_base) {
 111   BasicType bt = type->basic_type();
 112   if (type == TypePtr::NULL_PTR) {
 113     // Ptr types are mixed together with T_ADDRESS but nullptr is
 114     // really for T_OBJECT types so correct it.
 115     bt = T_OBJECT;
 116   }
 117   Node *mem = memory(Compile::AliasIdxRaw);
 118   Node *adr = basic_plus_adr( local_addrs_base, local_addrs, -index*wordSize );
 119   Node *ctl = control();
 120 
 121   // Very similar to LoadNode::make, except we handle un-aligned longs and
 122   // doubles on Sparc.  Intel can handle them just fine directly.
 123   Node *l = nullptr;
 124   switch (bt) {                // Signature is flattened
 125   case T_INT:     l = new LoadINode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInt::INT,        MemNode::unordered); break;
 126   case T_FLOAT:   l = new LoadFNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::FLOAT,         MemNode::unordered); break;
 127   case T_ADDRESS: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM,  MemNode::unordered); break;
 128   case T_OBJECT:  l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInstPtr::BOTTOM, MemNode::unordered); break;
 129   case T_LONG:
 130   case T_DOUBLE: {
 131     // Since arguments are in reverse order, the argument address 'adr'
 132     // refers to the back half of the long/double.  Recompute adr.
 133     adr = basic_plus_adr(local_addrs_base, local_addrs, -(index+1)*wordSize);
 134     if (Matcher::misaligned_doubles_ok) {
 135       l = (bt == T_DOUBLE)
 136         ? (Node*)new LoadDNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::DOUBLE, MemNode::unordered)

 138     } else {
 139       l = (bt == T_DOUBLE)
 140         ? (Node*)new LoadD_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered)
 141         : (Node*)new LoadL_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered);
 142     }
 143     break;
 144   }
 145   default: ShouldNotReachHere();
 146   }
 147   return _gvn.transform(l);
 148 }
 149 
 150 // Helper routine to prevent the interpreter from handing
 151 // unexpected typestate to an OSR method.
 152 // The Node l is a value newly dug out of the interpreter frame.
 153 // The type is the type predicted by ciTypeFlow.  Note that it is
 154 // not a general type, but can only come from Type::get_typeflow_type.
 155 // The safepoint is a map which will feed an uncommon trap.
 156 Node* Parse::check_interpreter_type(Node* l, const Type* type,
 157                                     SafePointNode* &bad_type_exit) {

 158   const TypeOopPtr* tp = type->isa_oopptr();
 159 
 160   // TypeFlow may assert null-ness if a type appears unloaded.
 161   if (type == TypePtr::NULL_PTR ||
 162       (tp != nullptr && !tp->is_loaded())) {
 163     // Value must be null, not a real oop.
 164     Node* chk = _gvn.transform( new CmpPNode(l, null()) );
 165     Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
 166     IfNode* iff = create_and_map_if(control(), tst, PROB_MAX, COUNT_UNKNOWN);
 167     set_control(_gvn.transform( new IfTrueNode(iff) ));
 168     Node* bad_type = _gvn.transform( new IfFalseNode(iff) );
 169     bad_type_exit->control()->add_req(bad_type);
 170     l = null();
 171   }
 172 
 173   // Typeflow can also cut off paths from the CFG, based on
 174   // types which appear unloaded, or call sites which appear unlinked.
 175   // When paths are cut off, values at later merge points can rise
 176   // toward more specific classes.  Make sure these specific classes
 177   // are still in effect.
 178   if (tp != nullptr && !tp->is_same_java_type_as(TypeInstPtr::BOTTOM)) {
 179     // TypeFlow asserted a specific object type.  Value must have that type.
 180     Node* bad_type_ctrl = nullptr;
 181     if (tp->is_inlinetypeptr() && !tp->maybe_null()) {
 182       // TODO 8325106 Dead code?
 183       // Check inline types for null here to prevent checkcast from adding an
 184       // exception state before the bytecode entry (use 'bad_type_ctrl' instead).
 185       l = null_check_oop(l, &bad_type_ctrl);
 186       bad_type_exit->control()->add_req(bad_type_ctrl);
 187     }
 188     l = gen_checkcast(l, makecon(tp->as_klass_type()->cast_to_exactness(true)), &bad_type_ctrl);
 189     bad_type_exit->control()->add_req(bad_type_ctrl);
 190   }
 191 
 192   assert(_gvn.type(l)->higher_equal(type), "must constrain OSR typestate");
 193   return l;
 194 }
 195 
 196 // Helper routine which sets up elements of the initial parser map when
 197 // performing a parse for on stack replacement.  Add values into map.
 198 // The only parameter contains the address of a interpreter arguments.
 199 void Parse::load_interpreter_state(Node* osr_buf) {
 200   int index;
 201   int max_locals = jvms()->loc_size();
 202   int max_stack  = jvms()->stk_size();
 203 

 204   // Mismatch between method and jvms can occur since map briefly held
 205   // an OSR entry state (which takes up one RawPtr word).
 206   assert(max_locals == method()->max_locals(), "sanity");
 207   assert(max_stack  >= method()->max_stack(),  "sanity");
 208   assert((int)jvms()->endoff() == TypeFunc::Parms + max_locals + max_stack, "sanity");
 209   assert((int)jvms()->endoff() == (int)map()->req(), "sanity");
 210 
 211   // Find the start block.
 212   Block* osr_block = start_block();
 213   assert(osr_block->start() == osr_bci(), "sanity");
 214 
 215   // Set initial BCI.
 216   set_parse_bci(osr_block->start());
 217 
 218   // Set initial stack depth.
 219   set_sp(osr_block->start_sp());
 220 
 221   // Check bailouts.  We currently do not perform on stack replacement
 222   // of loops in catch blocks or loops which branch with a non-empty stack.
 223   if (sp() != 0) {

 225     return;
 226   }
 227   // Do not OSR inside finally clauses:
 228   if (osr_block->has_trap_at(osr_block->start())) {
 229     assert(false, "OSR starts with an immediate trap");
 230     C->record_method_not_compilable("OSR starts with an immediate trap");
 231     return;
 232   }
 233 
 234   // Commute monitors from interpreter frame to compiler frame.
 235   assert(jvms()->monitor_depth() == 0, "should be no active locks at beginning of osr");
 236   int mcnt = osr_block->flow()->monitor_count();
 237   Node *monitors_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals+mcnt*2-1)*wordSize);
 238   for (index = 0; index < mcnt; index++) {
 239     // Make a BoxLockNode for the monitor.
 240     Node *box = new BoxLockNode(next_monitor());
 241     // Check for bailout after new BoxLockNode
 242     if (failing()) { return; }
 243     box = _gvn.transform(box);
 244 

 245     // Displaced headers and locked objects are interleaved in the
 246     // temp OSR buffer.  We only copy the locked objects out here.
 247     // Fetch the locked object from the OSR temp buffer and copy to our fastlock node.
 248     Node* lock_object = fetch_interpreter_state(index*2, Type::get_const_basic_type(T_OBJECT), monitors_addr, osr_buf);
 249     // Try and copy the displaced header to the BoxNode
 250     Node* displaced_hdr = fetch_interpreter_state((index*2) + 1, Type::get_const_basic_type(T_ADDRESS), monitors_addr, osr_buf);

 251 
 252     store_to_memory(control(), box, displaced_hdr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered);
 253 
 254     // Build a bogus FastLockNode (no code will be generated) and push the
 255     // monitor into our debug info.
 256     const FastLockNode *flock = _gvn.transform(new FastLockNode( 0, lock_object, box ))->as_FastLock();
 257     map()->push_monitor(flock);
 258 
 259     // If the lock is our method synchronization lock, tuck it away in
 260     // _sync_lock for return and rethrow exit paths.
 261     if (index == 0 && method()->is_synchronized()) {
 262       _synch_lock = flock;
 263     }
 264   }
 265 
 266   // Use the raw liveness computation to make sure that unexpected
 267   // values don't propagate into the OSR frame.
 268   MethodLivenessResult live_locals = method()->liveness_at_bci(osr_bci());
 269   if (!live_locals.is_valid()) {
 270     // Degenerate or breakpointed method.

 298         if (C->log() != nullptr) {
 299           C->log()->elem("OSR_mismatch local_index='%d'",index);
 300         }
 301         set_local(index, null());
 302         // and ignore it for the loads
 303         continue;
 304       }
 305     }
 306 
 307     // Filter out TOP, HALF, and BOTTOM.  (Cf. ensure_phi.)
 308     if (type == Type::TOP || type == Type::HALF) {
 309       continue;
 310     }
 311     // If the type falls to bottom, then this must be a local that
 312     // is mixing ints and oops or some such.  Forcing it to top
 313     // makes it go dead.
 314     if (type == Type::BOTTOM) {
 315       continue;
 316     }
 317     // Construct code to access the appropriate local.
 318     Node* value = fetch_interpreter_state(index, type, locals_addr, osr_buf);






 319     set_local(index, value);
 320   }
 321 
 322   // Extract the needed stack entries from the interpreter frame.
 323   for (index = 0; index < sp(); index++) {
 324     const Type *type = osr_block->stack_type_at(index);
 325     if (type != Type::TOP) {
 326       // Currently the compiler bails out when attempting to on stack replace
 327       // at a bci with a non-empty stack.  We should not reach here.
 328       ShouldNotReachHere();
 329     }
 330   }
 331 
 332   // End the OSR migration
 333   make_runtime_call(RC_LEAF, OptoRuntime::osr_end_Type(),
 334                     CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
 335                     "OSR_migration_end", TypeRawPtr::BOTTOM,
 336                     osr_buf);
 337 
 338   // Now that the interpreter state is loaded, make sure it will match

 494   // either breakpoint setting or hotswapping of methods may
 495   // cause deoptimization.
 496   if (C->env()->jvmti_can_hotswap_or_post_breakpoint()) {
 497     C->dependencies()->assert_evol_method(method());
 498   }
 499 
 500   NOT_PRODUCT(methods_seen++);
 501 
 502   // Do some special top-level things.
 503   if (depth() == 1 && C->is_osr_compilation()) {
 504     _tf = C->tf();     // the OSR entry type is different
 505     _entry_bci = C->entry_bci();
 506     _flow = method()->get_osr_flow_analysis(osr_bci());
 507   } else {
 508     _tf = TypeFunc::make(method());
 509     _entry_bci = InvocationEntryBci;
 510     _flow = method()->get_flow_analysis();
 511   }
 512 
 513   if (_flow->failing()) {
 514     // TODO Adding a trap due to an unloaded return type in ciTypeFlow::StateVector::do_invoke
 515     // can lead to this. Re-enable once 8284443 is fixed.
 516     //assert(false, "type flow analysis failed during parsing");
 517     C->record_method_not_compilable(_flow->failure_reason());
 518 #ifndef PRODUCT
 519       if (PrintOpto && (Verbose || WizardMode)) {
 520         if (is_osr_parse()) {
 521           tty->print_cr("OSR @%d type flow bailout: %s", _entry_bci, _flow->failure_reason());
 522         } else {
 523           tty->print_cr("type flow bailout: %s", _flow->failure_reason());
 524         }
 525         if (Verbose) {
 526           method()->print();
 527           method()->print_codes();
 528           _flow->print();
 529         }
 530       }
 531 #endif
 532   }
 533 
 534 #ifdef ASSERT
 535   if (depth() == 1) {
 536     assert(C->is_osr_compilation() == this->is_osr_parse(), "OSR in sync");

 590     do_method_entry();
 591   }
 592 
 593   if (depth() == 1 && !failing()) {
 594     if (C->clinit_barrier_on_entry()) {
 595       // Add check to deoptimize the nmethod once the holder class is fully initialized
 596       clinit_deopt();
 597     }
 598 
 599     // Add check to deoptimize the nmethod if RTM state was changed
 600     rtm_deopt();
 601   }
 602 
 603   // Check for bailouts during method entry or RTM state check setup.
 604   if (failing()) {
 605     if (log)  log->done("parse");
 606     C->set_default_node_notes(caller_nn);
 607     return;
 608   }
 609 
 610   // Handle inline type arguments
 611   int arg_size = method()->arg_size();
 612   for (int i = 0; i < arg_size; i++) {
 613     Node* parm = local(i);
 614     const Type* t = _gvn.type(parm);
 615     if (t->is_inlinetypeptr()) {
 616       // Create InlineTypeNode from the oop and replace the parameter
 617       bool is_larval = (i == 0) && method()->is_object_constructor() && !method()->holder()->is_abstract() && !method()->holder()->is_java_lang_Object();
 618       Node* vt = InlineTypeNode::make_from_oop(this, parm, t->inline_klass(), !t->maybe_null(), is_larval);
 619       replace_in_map(parm, vt);
 620     } else if (UseTypeSpeculation && (i == (arg_size - 1)) && !is_osr_parse() && method()->has_vararg() &&
 621                t->isa_aryptr() != nullptr && !t->is_aryptr()->is_null_free() && !t->is_aryptr()->is_not_null_free()) {
 622       // Speculate on varargs Object array being not null-free (and therefore also not flat)
 623       const TypePtr* spec_type = t->speculative();
 624       spec_type = (spec_type != nullptr && spec_type->isa_aryptr() != nullptr) ? spec_type : t->is_aryptr();
 625       spec_type = spec_type->remove_speculative()->is_aryptr()->cast_to_not_null_free();
 626       spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::Offset::bottom, TypeOopPtr::InstanceBot, spec_type);
 627       Node* cast = _gvn.transform(new CheckCastPPNode(control(), parm, t->join_speculative(spec_type)));
 628       // TODO 8325106 Shouldn't we use replace_in_map here?
 629       set_local(i, cast);
 630     }
 631   }
 632 
 633   entry_map = map();  // capture any changes performed by method setup code
 634   assert(jvms()->endoff() == map()->req(), "map matches JVMS layout");
 635 
 636   // We begin parsing as if we have just encountered a jump to the
 637   // method entry.
 638   Block* entry_block = start_block();
 639   assert(entry_block->start() == (is_osr_parse() ? osr_bci() : 0), "");
 640   set_map_clone(entry_map);
 641   merge_common(entry_block, entry_block->next_path_num());
 642 
 643 #ifndef PRODUCT
 644   BytecodeParseHistogram *parse_histogram_obj = new (C->env()->arena()) BytecodeParseHistogram(this, C);
 645   set_parse_histogram( parse_histogram_obj );
 646 #endif
 647 
 648   // Parse all the basic blocks.
 649   do_all_blocks();
 650 
 651   // Check for bailouts during conversion to graph
 652   if (failing()) {

 798 void Parse::build_exits() {
 799   // make a clone of caller to prevent sharing of side-effects
 800   _exits.set_map(_exits.clone_map());
 801   _exits.clean_stack(_exits.sp());
 802   _exits.sync_jvms();
 803 
 804   RegionNode* region = new RegionNode(1);
 805   record_for_igvn(region);
 806   gvn().set_type_bottom(region);
 807   _exits.set_control(region);
 808 
 809   // Note:  iophi and memphi are not transformed until do_exits.
 810   Node* iophi  = new PhiNode(region, Type::ABIO);
 811   Node* memphi = new PhiNode(region, Type::MEMORY, TypePtr::BOTTOM);
 812   gvn().set_type_bottom(iophi);
 813   gvn().set_type_bottom(memphi);
 814   _exits.set_i_o(iophi);
 815   _exits.set_all_memory(memphi);
 816 
 817   // Add a return value to the exit state.  (Do not push it yet.)
 818   if (tf()->range_sig()->cnt() > TypeFunc::Parms) {
 819     const Type* ret_type = tf()->range_sig()->field_at(TypeFunc::Parms);
 820     if (ret_type->isa_int()) {
 821       BasicType ret_bt = method()->return_type()->basic_type();
 822       if (ret_bt == T_BOOLEAN ||
 823           ret_bt == T_CHAR ||
 824           ret_bt == T_BYTE ||
 825           ret_bt == T_SHORT) {
 826         ret_type = TypeInt::INT;
 827       }
 828     }
 829 
 830     // Don't "bind" an unloaded return klass to the ret_phi. If the klass
 831     // becomes loaded during the subsequent parsing, the loaded and unloaded
 832     // types will not join when we transform and push in do_exits().
 833     const TypeOopPtr* ret_oop_type = ret_type->isa_oopptr();
 834     if (ret_oop_type && !ret_oop_type->is_loaded()) {
 835       ret_type = TypeOopPtr::BOTTOM;
 836     }
 837     int         ret_size = type2size[ret_type->basic_type()];
 838     Node*       ret_phi  = new PhiNode(region, ret_type);
 839     gvn().set_type_bottom(ret_phi);
 840     _exits.ensure_stack(ret_size);
 841     assert((int)(tf()->range_sig()->cnt() - TypeFunc::Parms) == ret_size, "good tf range");
 842     assert(method()->return_type()->size() == ret_size, "tf agrees w/ method");
 843     _exits.set_argument(0, ret_phi);  // here is where the parser finds it
 844     // Note:  ret_phi is not yet pushed, until do_exits.
 845   }
 846 }
 847 

 848 //----------------------------build_start_state-------------------------------
 849 // Construct a state which contains only the incoming arguments from an
 850 // unknown caller.  The method & bci will be null & InvocationEntryBci.
 851 JVMState* Compile::build_start_state(StartNode* start, const TypeFunc* tf) {
 852   int        arg_size = tf->domain_sig()->cnt();
 853   int        max_size = MAX2(arg_size, (int)tf->range_cc()->cnt());
 854   JVMState*  jvms     = new (this) JVMState(max_size - TypeFunc::Parms);
 855   SafePointNode* map  = new SafePointNode(max_size, jvms);
 856   jvms->set_map(map);
 857   record_for_igvn(map);
 858   assert(arg_size == TypeFunc::Parms + (is_osr_compilation() ? 1 : method()->arg_size()), "correct arg_size");
 859   Node_Notes* old_nn = default_node_notes();
 860   if (old_nn != nullptr && has_method()) {
 861     Node_Notes* entry_nn = old_nn->clone(this);
 862     JVMState* entry_jvms = new(this) JVMState(method(), old_nn->jvms());
 863     entry_jvms->set_offsets(0);
 864     entry_jvms->set_bci(entry_bci());
 865     entry_nn->set_jvms(entry_jvms);
 866     set_default_node_notes(entry_nn);
 867   }
 868   PhaseGVN& gvn = *initial_gvn();
 869   uint i = 0;
 870   int arg_num = 0;
 871   for (uint j = 0; i < (uint)arg_size; i++) {
 872     const Type* t = tf->domain_sig()->field_at(i);
 873     Node* parm = nullptr;
 874     if (t->is_inlinetypeptr() && method()->is_scalarized_arg(arg_num)) {
 875       // Inline type arguments are not passed by reference: we get an argument per
 876       // field of the inline type. Build InlineTypeNodes from the inline type arguments.
 877       GraphKit kit(jvms, &gvn);
 878       kit.set_control(map->control());
 879       Node* old_mem = map->memory();
 880       // Use immutable memory for inline type loads and restore it below
 881       kit.set_all_memory(C->immutable_memory());
 882       parm = InlineTypeNode::make_from_multi(&kit, start, t->inline_klass(), j, /* in= */ true, /* null_free= */ !t->maybe_null());
 883       map->set_control(kit.control());
 884       map->set_memory(old_mem);
 885     } else {
 886       parm = gvn.transform(new ParmNode(start, j++));
 887     }
 888     map->init_req(i, parm);
 889     // Record all these guys for later GVN.
 890     record_for_igvn(parm);
 891     if (i >= TypeFunc::Parms && t != Type::HALF) {
 892       arg_num++;
 893     }
 894   }
 895   for (; i < map->req(); i++) {
 896     map->init_req(i, top());
 897   }
 898   assert(jvms->argoff() == TypeFunc::Parms, "parser gets arguments here");
 899   set_default_node_notes(old_nn);

 900   return jvms;
 901 }
 902 
 903 //-----------------------------make_node_notes---------------------------------
 904 Node_Notes* Parse::make_node_notes(Node_Notes* caller_nn) {
 905   if (caller_nn == nullptr)  return nullptr;
 906   Node_Notes* nn = caller_nn->clone(C);
 907   JVMState* caller_jvms = nn->jvms();
 908   JVMState* jvms = new (C) JVMState(method(), caller_jvms);
 909   jvms->set_offsets(0);
 910   jvms->set_bci(_entry_bci);
 911   nn->set_jvms(jvms);
 912   return nn;
 913 }
 914 
 915 
 916 //--------------------------return_values--------------------------------------
 917 void Compile::return_values(JVMState* jvms) {
 918   GraphKit kit(jvms);
 919   Node* ret = new ReturnNode(TypeFunc::Parms,
 920                              kit.control(),
 921                              kit.i_o(),
 922                              kit.reset_memory(),
 923                              kit.frameptr(),
 924                              kit.returnadr());
 925   // Add zero or 1 return values
 926   int ret_size = tf()->range_sig()->cnt() - TypeFunc::Parms;
 927   if (ret_size > 0) {
 928     kit.inc_sp(-ret_size);  // pop the return value(s)
 929     kit.sync_jvms();
 930     Node* res = kit.argument(0);
 931     if (tf()->returns_inline_type_as_fields()) {
 932       // Multiple return values (inline type fields): add as many edges
 933       // to the Return node as returned values.
 934       InlineTypeNode* vt = res->as_InlineType();
 935       ret->add_req_batch(nullptr, tf()->range_cc()->cnt() - TypeFunc::Parms);
 936       if (vt->is_allocated(&kit.gvn()) && !StressCallingConvention) {
 937         ret->init_req(TypeFunc::Parms, vt);
 938       } else {
 939         // Return the tagged klass pointer to signal scalarization to the caller
 940         Node* tagged_klass = vt->tagged_klass(kit.gvn());
 941         // Return null if the inline type is null (IsInit field is not set)
 942         Node* conv   = kit.gvn().transform(new ConvI2LNode(vt->get_is_init()));
 943         Node* shl    = kit.gvn().transform(new LShiftLNode(conv, kit.intcon(63)));
 944         Node* shr    = kit.gvn().transform(new RShiftLNode(shl, kit.intcon(63)));
 945         tagged_klass = kit.gvn().transform(new AndLNode(tagged_klass, shr));
 946         ret->init_req(TypeFunc::Parms, tagged_klass);
 947       }
 948       uint idx = TypeFunc::Parms + 1;
 949       vt->pass_fields(&kit, ret, idx, false, false);
 950     } else {
 951       ret->add_req(res);
 952       // Note:  The second dummy edge is not needed by a ReturnNode.
 953     }
 954   }
 955   // bind it to root
 956   root()->add_req(ret);
 957   record_for_igvn(ret);
 958   initial_gvn()->transform(ret);
 959 }
 960 
 961 //------------------------rethrow_exceptions-----------------------------------
 962 // Bind all exception states in the list into a single RethrowNode.
 963 void Compile::rethrow_exceptions(JVMState* jvms) {
 964   GraphKit kit(jvms);
 965   if (!kit.has_exceptions())  return;  // nothing to generate
 966   // Load my combined exception state into the kit, with all phis transformed:
 967   SafePointNode* ex_map = kit.combine_and_pop_all_exception_states();
 968   Node* ex_oop = kit.use_exception_state(ex_map);
 969   RethrowNode* exit = new RethrowNode(kit.control(),
 970                                       kit.i_o(), kit.reset_memory(),
 971                                       kit.frameptr(), kit.returnadr(),
 972                                       // like a return but with exception input
 973                                       ex_oop);

1057   //    to complete, we force all writes to complete.
1058   //
1059   // 2. Experimental VM option is used to force the barrier if any field
1060   //    was written out in the constructor.
1061   //
1062   // 3. On processors which are not CPU_MULTI_COPY_ATOMIC (e.g. PPC64),
1063   //    support_IRIW_for_not_multiple_copy_atomic_cpu selects that
1064   //    MemBarVolatile is used before volatile load instead of after volatile
1065   //    store, so there's no barrier after the store.
1066   //    We want to guarantee the same behavior as on platforms with total store
1067   //    order, although this is not required by the Java memory model.
1068   //    In this case, we want to enforce visibility of volatile field
1069   //    initializations which are performed in constructors.
1070   //    So as with finals, we add a barrier here.
1071   //
1072   // "All bets are off" unless the first publication occurs after a
1073   // normal return from the constructor.  We do not attempt to detect
1074   // such unusual early publications.  But no barrier is needed on
1075   // exceptional returns, since they cannot publish normally.
1076   //
1077   if ((method()->is_object_constructor() || method()->is_class_initializer()) &&
1078        (wrote_final() ||
1079          (AlwaysSafeConstructors && wrote_fields()) ||
1080          (support_IRIW_for_not_multiple_copy_atomic_cpu && wrote_volatile()))) {
1081     _exits.insert_mem_bar(Op_MemBarRelease, alloc_with_final());
1082 
1083     // If Memory barrier is created for final fields write
1084     // and allocation node does not escape the initialize method,
1085     // then barrier introduced by allocation node can be removed.
1086     if (DoEscapeAnalysis && alloc_with_final()) {
1087       AllocateNode* alloc = AllocateNode::Ideal_allocation(alloc_with_final());
1088       alloc->compute_MemBar_redundancy(method());
1089     }
1090     if (PrintOpto && (Verbose || WizardMode)) {
1091       method()->print_name();
1092       tty->print_cr(" writes finals and needs a memory barrier");
1093     }
1094   }
1095 
1096   // Any method can write a @Stable field; insert memory barriers
1097   // after those also. Can't bind predecessor allocation node (if any)
1098   // with barrier because allocation doesn't always dominate
1099   // MemBarRelease.
1100   if (wrote_stable()) {
1101     _exits.insert_mem_bar(Op_MemBarRelease);
1102     if (PrintOpto && (Verbose || WizardMode)) {
1103       method()->print_name();
1104       tty->print_cr(" writes @Stable and needs a memory barrier");
1105     }
1106   }
1107 
1108   for (MergeMemStream mms(_exits.merged_memory()); mms.next_non_empty(); ) {
1109     // transform each slice of the original memphi:
1110     mms.set_memory(_gvn.transform(mms.memory()));
1111   }
1112   // Clean up input MergeMems created by transforming the slices
1113   _gvn.transform(_exits.merged_memory());
1114 
1115   if (tf()->range_sig()->cnt() > TypeFunc::Parms) {
1116     const Type* ret_type = tf()->range_sig()->field_at(TypeFunc::Parms);
1117     Node*       ret_phi  = _gvn.transform( _exits.argument(0) );
1118     if (!_exits.control()->is_top() && _gvn.type(ret_phi)->empty()) {
1119       // If the type we set for the ret_phi in build_exits() is too optimistic and
1120       // the ret_phi is top now, there's an extremely small chance that it may be due to class
1121       // loading.  It could also be due to an error, so mark this method as not compilable because
1122       // otherwise this could lead to an infinite compile loop.
1123       // In any case, this code path is rarely (and never in my testing) reached.
1124 #ifdef ASSERT
1125       tty->print_cr("# Can't determine return type.");
1126       tty->print_cr("# exit control");
1127       _exits.control()->dump(2);
1128       tty->print_cr("# ret phi type");
1129       _gvn.type(ret_phi)->dump();
1130       tty->print_cr("# ret phi");
1131       ret_phi->dump(2);
1132 #endif // ASSERT
1133       assert(false, "Can't determine return type.");
1134       C->record_method_not_compilable("Can't determine return type.");
1135       return;
1136     }

1200 
1201 //-----------------------------create_entry_map-------------------------------
1202 // Initialize our parser map to contain the types at method entry.
1203 // For OSR, the map contains a single RawPtr parameter.
1204 // Initial monitor locking for sync. methods is performed by do_method_entry.
1205 SafePointNode* Parse::create_entry_map() {
1206   // Check for really stupid bail-out cases.
1207   uint len = TypeFunc::Parms + method()->max_locals() + method()->max_stack();
1208   if (len >= 32760) {
1209     // Bailout expected, this is a very rare edge case.
1210     C->record_method_not_compilable("too many local variables");
1211     return nullptr;
1212   }
1213 
1214   // clear current replaced nodes that are of no use from here on (map was cloned in build_exits).
1215   _caller->map()->delete_replaced_nodes();
1216 
1217   // If this is an inlined method, we may have to do a receiver null check.
1218   if (_caller->has_method() && is_normal_parse() && !method()->is_static()) {
1219     GraphKit kit(_caller);
1220     Node* receiver = kit.argument(0);
1221     Node* null_free = kit.null_check_receiver_before_call(method());
1222     _caller = kit.transfer_exceptions_into_jvms();
1223     if (receiver->is_InlineType() && receiver->as_InlineType()->is_larval()) {
1224       // Replace the larval inline type receiver in the exit map as well to make sure that
1225       // we can find and update it in Parse::do_call when we are done with the initialization.
1226       _exits.map()->replace_edge(receiver, null_free);
1227     }
1228     if (kit.stopped()) {
1229       _exits.add_exception_states_from(_caller);
1230       _exits.set_jvms(_caller);
1231       return nullptr;
1232     }
1233   }
1234 
1235   assert(method() != nullptr, "parser must have a method");
1236 
1237   // Create an initial safepoint to hold JVM state during parsing
1238   JVMState* jvms = new (C) JVMState(method(), _caller->has_method() ? _caller : nullptr);
1239   set_map(new SafePointNode(len, jvms));
1240   jvms->set_map(map());
1241   record_for_igvn(map());
1242   assert(jvms->endoff() == len, "correct jvms sizing");
1243 
1244   SafePointNode* inmap = _caller->map();
1245   assert(inmap != nullptr, "must have inmap");
1246   // In case of null check on receiver above
1247   map()->transfer_replaced_nodes_from(inmap, _new_idx);
1248 
1249   uint i;
1250 
1251   // Pass thru the predefined input parameters.
1252   for (i = 0; i < TypeFunc::Parms; i++) {
1253     map()->init_req(i, inmap->in(i));
1254   }
1255 
1256   if (depth() == 1) {
1257     assert(map()->memory()->Opcode() == Op_Parm, "");
1258     // Insert the memory aliasing node
1259     set_all_memory(reset_memory());
1260   }
1261   assert(merged_memory(), "");
1262 
1263   // Now add the locals which are initially bound to arguments:
1264   uint arg_size = tf()->domain_sig()->cnt();
1265   ensure_stack(arg_size - TypeFunc::Parms);  // OSR methods have funny args
1266   for (i = TypeFunc::Parms; i < arg_size; i++) {
1267     map()->init_req(i, inmap->argument(_caller, i - TypeFunc::Parms));
1268   }
1269 
1270   // Clear out the rest of the map (locals and stack)
1271   for (i = arg_size; i < len; i++) {
1272     map()->init_req(i, top());
1273   }
1274 
1275   SafePointNode* entry_map = stop();
1276   return entry_map;
1277 }
1278 
1279 //-----------------------------do_method_entry--------------------------------
1280 // Emit any code needed in the pseudo-block before BCI zero.
1281 // The main thing to do is lock the receiver of a synchronized method.
1282 void Parse::do_method_entry() {
1283   set_parse_bci(InvocationEntryBci); // Pseudo-BCP
1284   set_sp(0);                         // Java Stack Pointer

1318 
1319   // If the method is synchronized, we need to construct a lock node, attach
1320   // it to the Start node, and pin it there.
1321   if (method()->is_synchronized()) {
1322     // Insert a FastLockNode right after the Start which takes as arguments
1323     // the current thread pointer, the "this" pointer & the address of the
1324     // stack slot pair used for the lock.  The "this" pointer is a projection
1325     // off the start node, but the locking spot has to be constructed by
1326     // creating a ConLNode of 0, and boxing it with a BoxLockNode.  The BoxLockNode
1327     // becomes the second argument to the FastLockNode call.  The
1328     // FastLockNode becomes the new control parent to pin it to the start.
1329 
1330     // Setup Object Pointer
1331     Node *lock_obj = nullptr;
1332     if (method()->is_static()) {
1333       ciInstance* mirror = _method->holder()->java_mirror();
1334       const TypeInstPtr *t_lock = TypeInstPtr::make(mirror);
1335       lock_obj = makecon(t_lock);
1336     } else {                  // Else pass the "this" pointer,
1337       lock_obj = local(0);    // which is Parm0 from StartNode
1338       assert(!_gvn.type(lock_obj)->make_oopptr()->can_be_inline_type(), "can't be an inline type");
1339     }
1340     // Clear out dead values from the debug info.
1341     kill_dead_locals();
1342     // Build the FastLockNode
1343     _synch_lock = shared_lock(lock_obj);
1344     // Check for bailout in shared_lock
1345     if (failing()) { return; }
1346   }
1347 
1348   // Feed profiling data for parameters to the type system so it can
1349   // propagate it as speculative types
1350   record_profiled_parameters_for_speculation();
1351 }
1352 
1353 //------------------------------init_blocks------------------------------------
1354 // Initialize our parser map to contain the types/monitors at method entry.
1355 void Parse::init_blocks() {
1356   // Create the blocks.
1357   _block_count = flow()->block_count();
1358   _blocks = NEW_RESOURCE_ARRAY(Block, _block_count);

1754 //--------------------handle_missing_successor---------------------------------
1755 void Parse::handle_missing_successor(int target_bci) {
1756 #ifndef PRODUCT
1757   Block* b = block();
1758   int trap_bci = b->flow()->has_trap()? b->flow()->trap_bci(): -1;
1759   tty->print_cr("### Missing successor at bci:%d for block #%d (trap_bci:%d)", target_bci, b->rpo(), trap_bci);
1760 #endif
1761   ShouldNotReachHere();
1762 }
1763 
1764 //--------------------------merge_common---------------------------------------
1765 void Parse::merge_common(Parse::Block* target, int pnum) {
1766   if (TraceOptoParse) {
1767     tty->print("Merging state at block #%d bci:%d", target->rpo(), target->start());
1768   }
1769 
1770   // Zap extra stack slots to top
1771   assert(sp() == target->start_sp(), "");
1772   clean_stack(sp());
1773 
1774   // Check for merge conflicts involving inline types
1775   JVMState* old_jvms = map()->jvms();
1776   int old_bci = bci();
1777   JVMState* tmp_jvms = old_jvms->clone_shallow(C);
1778   tmp_jvms->set_should_reexecute(true);
1779   tmp_jvms->bind_map(map());
1780   // Execution needs to restart a the next bytecode (entry of next
1781   // block)
1782   if (target->is_merged() ||
1783       pnum > PhiNode::Input ||
1784       target->is_handler() ||
1785       target->is_loop_head()) {
1786     set_parse_bci(target->start());
1787     for (uint j = TypeFunc::Parms; j < map()->req(); j++) {
1788       Node* n = map()->in(j);                 // Incoming change to target state.
1789       const Type* t = nullptr;
1790       if (tmp_jvms->is_loc(j)) {
1791         t = target->local_type_at(j - tmp_jvms->locoff());
1792       } else if (tmp_jvms->is_stk(j) && j < (uint)sp() + tmp_jvms->stkoff()) {
1793         t = target->stack_type_at(j - tmp_jvms->stkoff());
1794       }
1795       if (t != nullptr && t != Type::BOTTOM) {
1796         if (n->is_InlineType() && !t->is_inlinetypeptr()) {
1797           // Allocate inline type in src block to be able to merge it with oop in target block
1798           map()->set_req(j, n->as_InlineType()->buffer(this));
1799         } else if (!n->is_InlineType() && t->is_inlinetypeptr()) {
1800           // Scalarize null in src block to be able to merge it with inline type in target block
1801           assert(gvn().type(n)->is_zero_type(), "Should have been scalarized");
1802           map()->set_req(j, InlineTypeNode::make_null(gvn(), t->inline_klass()));
1803         }
1804       }
1805     }
1806   }
1807   old_jvms->bind_map(map());
1808   set_parse_bci(old_bci);
1809 
1810   if (!target->is_merged()) {   // No prior mapping at this bci
1811     if (TraceOptoParse) { tty->print(" with empty state");  }
1812 
1813     // If this path is dead, do not bother capturing it as a merge.
1814     // It is "as if" we had 1 fewer predecessors from the beginning.
1815     if (stopped()) {
1816       if (TraceOptoParse)  tty->print_cr(", but path is dead and doesn't count");
1817       return;
1818     }
1819 
1820     // Make a region if we know there are multiple or unpredictable inputs.
1821     // (Also, if this is a plain fall-through, we might see another region,
1822     // which must not be allowed into this block's map.)
1823     if (pnum > PhiNode::Input         // Known multiple inputs.
1824         || target->is_handler()       // These have unpredictable inputs.
1825         || target->is_loop_head()     // Known multiple inputs
1826         || control()->is_Region()) {  // We must hide this guy.
1827 
1828       int current_bci = bci();
1829       set_parse_bci(target->start()); // Set target bci

1844       record_for_igvn(r);
1845       // zap all inputs to null for debugging (done in Node(uint) constructor)
1846       // for (int j = 1; j < edges+1; j++) { r->init_req(j, nullptr); }
1847       r->init_req(pnum, control());
1848       set_control(r);
1849       target->copy_irreducible_status_to(r, jvms());
1850       set_parse_bci(current_bci); // Restore bci
1851     }
1852 
1853     // Convert the existing Parser mapping into a mapping at this bci.
1854     store_state_to(target);
1855     assert(target->is_merged(), "do not come here twice");
1856 
1857   } else {                      // Prior mapping at this bci
1858     if (TraceOptoParse) {  tty->print(" with previous state"); }
1859 #ifdef ASSERT
1860     if (target->is_SEL_head()) {
1861       target->mark_merged_backedge(block());
1862     }
1863 #endif
1864 
1865     // We must not manufacture more phis if the target is already parsed.
1866     bool nophi = target->is_parsed();
1867 
1868     SafePointNode* newin = map();// Hang on to incoming mapping
1869     Block* save_block = block(); // Hang on to incoming block;
1870     load_state_from(target);    // Get prior mapping
1871 
1872     assert(newin->jvms()->locoff() == jvms()->locoff(), "JVMS layouts agree");
1873     assert(newin->jvms()->stkoff() == jvms()->stkoff(), "JVMS layouts agree");
1874     assert(newin->jvms()->monoff() == jvms()->monoff(), "JVMS layouts agree");
1875     assert(newin->jvms()->endoff() == jvms()->endoff(), "JVMS layouts agree");
1876 
1877     // Iterate over my current mapping and the old mapping.
1878     // Where different, insert Phi functions.
1879     // Use any existing Phi functions.
1880     assert(control()->is_Region(), "must be merging to a region");
1881     RegionNode* r = control()->as_Region();
1882 
1883     // Compute where to merge into
1884     // Merge incoming control path
1885     r->init_req(pnum, newin->control());
1886 
1887     if (pnum == 1) {            // Last merge for this Region?
1888       if (!block()->flow()->is_irreducible_loop_secondary_entry()) {
1889         Node* result = _gvn.transform(r);
1890         if (r != result && TraceOptoParse) {
1891           tty->print_cr("Block #%d replace %d with %d", block()->rpo(), r->_idx, result->_idx);
1892         }
1893       }
1894       record_for_igvn(r);
1895     }
1896 
1897     // Update all the non-control inputs to map:
1898     assert(TypeFunc::Parms == newin->jvms()->locoff(), "parser map should contain only youngest jvms");
1899     bool check_elide_phi = target->is_SEL_backedge(save_block);
1900     bool last_merge = (pnum == PhiNode::Input);
1901     for (uint j = 1; j < newin->req(); j++) {
1902       Node* m = map()->in(j);   // Current state of target.
1903       Node* n = newin->in(j);   // Incoming change to target state.
1904       PhiNode* phi;
1905       if (m->is_Phi() && m->as_Phi()->region() == r) {
1906         phi = m->as_Phi();
1907       } else if (m->is_InlineType() && m->as_InlineType()->has_phi_inputs(r)) {
1908         phi = m->as_InlineType()->get_oop()->as_Phi();
1909       } else {
1910         phi = nullptr;
1911       }
1912       if (m != n) {             // Different; must merge
1913         switch (j) {
1914         // Frame pointer and Return Address never changes
1915         case TypeFunc::FramePtr:// Drop m, use the original value
1916         case TypeFunc::ReturnAdr:
1917           break;
1918         case TypeFunc::Memory:  // Merge inputs to the MergeMem node
1919           assert(phi == nullptr, "the merge contains phis, not vice versa");
1920           merge_memory_edges(n->as_MergeMem(), pnum, nophi);
1921           continue;
1922         default:                // All normal stuff
1923           if (phi == nullptr) {
1924             const JVMState* jvms = map()->jvms();
1925             if (EliminateNestedLocks &&
1926                 jvms->is_mon(j) && jvms->is_monitor_box(j)) {
1927               // BoxLock nodes are not commoning.
1928               // Use old BoxLock node as merged box.
1929               assert(newin->jvms()->is_monitor_box(j), "sanity");
1930               // This assert also tests that nodes are BoxLock.
1931               assert(BoxLockNode::same_slot(n, m), "sanity");
1932               C->gvn_replace_by(n, m);
1933             } else if (!check_elide_phi || !target->can_elide_SEL_phi(j)) {
1934               phi = ensure_phi(j, nophi);
1935             }
1936           }
1937           break;
1938         }
1939       }
1940       // At this point, n might be top if:
1941       //  - there is no phi (because TypeFlow detected a conflict), or
1942       //  - the corresponding control edges is top (a dead incoming path)
1943       // It is a bug if we create a phi which sees a garbage value on a live path.
1944 
1945       // Merging two inline types?
1946       if (phi != nullptr && phi->bottom_type()->is_inlinetypeptr()) {
1947         // Reload current state because it may have been updated by ensure_phi
1948         m = map()->in(j);
1949         InlineTypeNode* vtm = m->as_InlineType(); // Current inline type
1950         InlineTypeNode* vtn = n->as_InlineType(); // Incoming inline type
1951         assert(vtm->get_oop() == phi, "Inline type should have Phi input");
1952         if (TraceOptoParse) {
1953 #ifdef ASSERT
1954           tty->print_cr("\nMerging inline types");
1955           tty->print_cr("Current:");
1956           vtm->dump(2);
1957           tty->print_cr("Incoming:");
1958           vtn->dump(2);
1959           tty->cr();
1960 #endif
1961         }
1962         // Do the merge
1963         vtm->merge_with(&_gvn, vtn, pnum, last_merge);
1964         if (last_merge) {
1965           map()->set_req(j, _gvn.transform(vtm));
1966           record_for_igvn(vtm);
1967         }
1968       } else if (phi != nullptr) {
1969         assert(n != top() || r->in(pnum) == top(), "live value must not be garbage");
1970         assert(phi->region() == r, "");
1971         phi->set_req(pnum, n);  // Then add 'n' to the merge
1972         if (last_merge) {
1973           // Last merge for this Phi.
1974           // So far, Phis have had a reasonable type from ciTypeFlow.
1975           // Now _gvn will join that with the meet of current inputs.
1976           // BOTTOM is never permissible here, 'cause pessimistically
1977           // Phis of pointers cannot lose the basic pointer type.
1978           debug_only(const Type* bt1 = phi->bottom_type());
1979           assert(bt1 != Type::BOTTOM, "should not be building conflict phis");
1980           map()->set_req(j, _gvn.transform(phi));
1981           debug_only(const Type* bt2 = phi->bottom_type());
1982           assert(bt2->higher_equal_speculative(bt1), "must be consistent with type-flow");
1983           record_for_igvn(phi);
1984         }
1985       }
1986     } // End of for all values to be merged
1987 
1988     if (last_merge && !r->in(0)) {         // The occasional useless Region

1989       assert(control() == r, "");
1990       set_control(r->nonnull_req());
1991     }
1992 
1993     map()->merge_replaced_nodes_with(newin);
1994 
1995     // newin has been subsumed into the lazy merge, and is now dead.
1996     set_block(save_block);
1997 
1998     stop();                     // done with this guy, for now
1999   }
2000 
2001   if (TraceOptoParse) {
2002     tty->print_cr(" on path %d", pnum);
2003   }
2004 
2005   // Done with this parser state.
2006   assert(stopped(), "");
2007 }
2008 

2120 
2121   // Add new path to the region.
2122   uint pnum = r->req();
2123   r->add_req(nullptr);
2124 
2125   for (uint i = 1; i < map->req(); i++) {
2126     Node* n = map->in(i);
2127     if (i == TypeFunc::Memory) {
2128       // Ensure a phi on all currently known memories.
2129       for (MergeMemStream mms(n->as_MergeMem()); mms.next_non_empty(); ) {
2130         Node* phi = mms.memory();
2131         if (phi->is_Phi() && phi->as_Phi()->region() == r) {
2132           assert(phi->req() == pnum, "must be same size as region");
2133           phi->add_req(nullptr);
2134         }
2135       }
2136     } else {
2137       if (n->is_Phi() && n->as_Phi()->region() == r) {
2138         assert(n->req() == pnum, "must be same size as region");
2139         n->add_req(nullptr);
2140       } else if (n->is_InlineType() && n->as_InlineType()->has_phi_inputs(r)) {
2141         n->as_InlineType()->add_new_path(r);
2142       }
2143     }
2144   }
2145 
2146   return pnum;
2147 }
2148 
2149 //------------------------------ensure_phi-------------------------------------
2150 // Turn the idx'th entry of the current map into a Phi
2151 PhiNode *Parse::ensure_phi(int idx, bool nocreate) {
2152   SafePointNode* map = this->map();
2153   Node* region = map->control();
2154   assert(region->is_Region(), "");
2155 
2156   Node* o = map->in(idx);
2157   assert(o != nullptr, "");
2158 
2159   if (o == top())  return nullptr; // TOP always merges into TOP
2160 
2161   if (o->is_Phi() && o->as_Phi()->region() == region) {
2162     return o->as_Phi();
2163   }
2164   InlineTypeNode* vt = o->isa_InlineType();
2165   if (vt != nullptr && vt->has_phi_inputs(region)) {
2166     return vt->get_oop()->as_Phi();
2167   }
2168 
2169   // Now use a Phi here for merging
2170   assert(!nocreate, "Cannot build a phi for a block already parsed.");
2171   const JVMState* jvms = map->jvms();
2172   const Type* t = nullptr;
2173   if (jvms->is_loc(idx)) {
2174     t = block()->local_type_at(idx - jvms->locoff());
2175   } else if (jvms->is_stk(idx)) {
2176     t = block()->stack_type_at(idx - jvms->stkoff());
2177   } else if (jvms->is_mon(idx)) {
2178     assert(!jvms->is_monitor_box(idx), "no phis for boxes");
2179     t = TypeInstPtr::BOTTOM; // this is sufficient for a lock object
2180   } else if ((uint)idx < TypeFunc::Parms) {
2181     t = o->bottom_type();  // Type::RETURN_ADDRESS or such-like.
2182   } else {
2183     assert(false, "no type information for this phi");
2184   }
2185 
2186   // If the type falls to bottom, then this must be a local that
2187   // is already dead or is mixing ints and oops or some such.
2188   // Forcing it to top makes it go dead.
2189   if (t == Type::BOTTOM) {
2190     map->set_req(idx, top());
2191     return nullptr;
2192   }
2193 
2194   // Do not create phis for top either.
2195   // A top on a non-null control flow must be an unused even after the.phi.
2196   if (t == Type::TOP || t == Type::HALF) {
2197     map->set_req(idx, top());
2198     return nullptr;
2199   }
2200 
2201   if (vt != nullptr && t->is_inlinetypeptr()) {
2202     // Inline types are merged by merging their field values.
2203     // Create a cloned InlineTypeNode with phi inputs that
2204     // represents the merged inline type and update the map.
2205     // TODO 8325106 Why can't we pass map here?
2206     vt = vt->clone_with_phis(&_gvn, region);
2207     map->set_req(idx, vt);
2208     return vt->get_oop()->as_Phi();
2209   } else {
2210     PhiNode* phi = PhiNode::make(region, o, t);
2211     gvn().set_type(phi, t);
2212     if (C->do_escape_analysis()) record_for_igvn(phi);
2213     map->set_req(idx, phi);
2214     return phi;
2215   }
2216 }
2217 
2218 //--------------------------ensure_memory_phi----------------------------------
2219 // Turn the idx'th slice of the current memory into a Phi
2220 PhiNode *Parse::ensure_memory_phi(int idx, bool nocreate) {
2221   MergeMemNode* mem = merged_memory();
2222   Node* region = control();
2223   assert(region->is_Region(), "");
2224 
2225   Node *o = (idx == Compile::AliasIdxBot)? mem->base_memory(): mem->memory_at(idx);
2226   assert(o != nullptr && o != top(), "");
2227 
2228   PhiNode* phi;
2229   if (o->is_Phi() && o->as_Phi()->region() == region) {
2230     phi = o->as_Phi();
2231     if (phi == mem->base_memory() && idx >= Compile::AliasIdxRaw) {
2232       // clone the shared base memory phi to make a new memory split
2233       assert(!nocreate, "Cannot build a phi for a block already parsed.");
2234       const Type* t = phi->bottom_type();
2235       const TypePtr* adr_type = C->get_adr_type(idx);

2363     Node* chk   = _gvn.transform( new CmpINode(opq, profile_state) );
2364     Node* tst   = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
2365     // Branch to failure if state was changed
2366     { BuildCutout unless(this, tst, PROB_ALWAYS);
2367       uncommon_trap(Deoptimization::Reason_rtm_state_change,
2368                     Deoptimization::Action_make_not_entrant);
2369     }
2370   }
2371 #endif
2372 }
2373 
2374 //------------------------------return_current---------------------------------
2375 // Append current _map to _exit_return
2376 void Parse::return_current(Node* value) {
2377   if (RegisterFinalizersAtInit &&
2378       method()->intrinsic_id() == vmIntrinsics::_Object_init) {
2379     call_register_finalizer();
2380   }
2381 
2382   // Do not set_parse_bci, so that return goo is credited to the return insn.
2383   // vreturn can trigger an allocation so vreturn can throw. Setting
2384   // the bci here breaks exception handling. Commenting this out
2385   // doesn't seem to break anything.
2386   //  set_bci(InvocationEntryBci);
2387   if (method()->is_synchronized() && GenerateSynchronizationCode) {
2388     shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
2389   }
2390   if (C->env()->dtrace_method_probes()) {
2391     make_dtrace_method_exit(method());
2392   }
2393   // frame pointer is always same, already captured
2394   if (value != nullptr) {
2395     Node* phi = _exits.argument(0);
2396     const Type* return_type = phi->bottom_type();
2397     const TypeInstPtr* tr = return_type->isa_instptr();
2398     assert(!value->is_InlineType() || !value->as_InlineType()->is_larval(), "returning a larval");
2399     if ((tf()->returns_inline_type_as_fields() || (_caller->has_method() && !Compile::current()->inlining_incrementally())) &&
2400         return_type->is_inlinetypeptr()) {
2401       // Inline type is returned as fields, make sure it is scalarized
2402       if (!value->is_InlineType()) {
2403         value = InlineTypeNode::make_from_oop(this, value, return_type->inline_klass(), false);
2404       }
2405       if (!_caller->has_method() || Compile::current()->inlining_incrementally()) {
2406         // Returning from root or an incrementally inlined method. Make sure all non-flat
2407         // fields are buffered and re-execute if allocation triggers deoptimization.
2408         PreserveReexecuteState preexecs(this);
2409         assert(tf()->returns_inline_type_as_fields(), "must be returned as fields");
2410         jvms()->set_should_reexecute(true);
2411         inc_sp(1);
2412         value = value->as_InlineType()->allocate_fields(this);
2413       }
2414     } else if (value->is_InlineType()) {
2415       // Inline type is returned as oop, make sure it is buffered and re-execute
2416       // if allocation triggers deoptimization.
2417       PreserveReexecuteState preexecs(this);
2418       jvms()->set_should_reexecute(true);
2419       inc_sp(1);
2420       value = value->as_InlineType()->buffer(this);
2421     }
2422     // ...else
2423     // If returning oops to an interface-return, there is a silent free
2424     // cast from oop to interface allowed by the Verifier. Make it explicit here.
2425     phi->add_req(value);
2426   }
2427 
2428   SafePointNode* exit_return = _exits.map();
2429   exit_return->in( TypeFunc::Control  )->add_req( control() );
2430   exit_return->in( TypeFunc::I_O      )->add_req( i_o    () );
2431   Node *mem = exit_return->in( TypeFunc::Memory   );
2432   for (MergeMemStream mms(mem->as_MergeMem(), merged_memory()); mms.next_non_empty2(); ) {
2433     if (mms.is_empty()) {
2434       // get a copy of the base memory, and patch just this one input
2435       const TypePtr* adr_type = mms.adr_type(C);
2436       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
2437       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
2438       gvn().set_type_bottom(phi);
2439       phi->del_req(phi->req()-1);  // prepare to re-patch
2440       mms.set_memory(phi);
2441     }
2442     mms.memory()->add_req(mms.memory2());
2443   }
2444 









2445   if (_first_return) {
2446     _exits.map()->transfer_replaced_nodes_from(map(), _new_idx);
2447     _first_return = false;
2448   } else {
2449     _exits.map()->merge_replaced_nodes_with(map());
2450   }
2451 
2452   stop_and_kill_map();          // This CFG path dies here
2453 }
2454 
2455 
2456 //------------------------------add_safepoint----------------------------------
2457 void Parse::add_safepoint() {
2458   uint parms = TypeFunc::Parms+1;
2459 
2460   // Clear out dead values from the debug info.
2461   kill_dead_locals();
2462 
2463   // Clone the JVM State
2464   SafePointNode *sfpnt = new SafePointNode(parms, nullptr);
< prev index next >