< prev index next >

src/hotspot/share/opto/parse2.cpp

Print this page

   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciMethodData.hpp"

  27 #include "classfile/vmSymbols.hpp"
  28 #include "compiler/compileLog.hpp"
  29 #include "interpreter/linkResolver.hpp"
  30 #include "jvm_io.h"
  31 #include "memory/resourceArea.hpp"
  32 #include "memory/universe.hpp"
  33 #include "oops/oop.inline.hpp"
  34 #include "opto/addnode.hpp"
  35 #include "opto/castnode.hpp"
  36 #include "opto/convertnode.hpp"
  37 #include "opto/divnode.hpp"
  38 #include "opto/idealGraphPrinter.hpp"


  39 #include "opto/matcher.hpp"
  40 #include "opto/memnode.hpp"
  41 #include "opto/mulnode.hpp"
  42 #include "opto/opaquenode.hpp"
  43 #include "opto/parse.hpp"
  44 #include "opto/runtime.hpp"
  45 #include "runtime/deoptimization.hpp"
  46 #include "runtime/sharedRuntime.hpp"
  47 
  48 #ifndef PRODUCT
  49 extern uint explicit_null_checks_inserted,
  50             explicit_null_checks_elided;
  51 #endif
  52 

















  53 //---------------------------------array_load----------------------------------
  54 void Parse::array_load(BasicType bt) {
  55   const Type* elemtype = Type::TOP;
  56   bool big_val = bt == T_DOUBLE || bt == T_LONG;
  57   Node* adr = array_addressing(bt, 0, elemtype);
  58   if (stopped())  return;     // guaranteed null or range check
  59 
  60   pop();                      // index (already used)
  61   Node* array = pop();        // the array itself
































































































  62 
  63   if (elemtype == TypeInt::BOOL) {
  64     bt = T_BOOLEAN;
  65   }
  66   const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt);
  67 
  68   Node* ld = access_load_at(array, adr, adr_type, elemtype, bt,
  69                             IN_HEAP | IS_ARRAY | C2_CONTROL_DEPENDENT_LOAD);
  70   if (big_val) {
  71     push_pair(ld);
  72   } else {
  73     push(ld);

  74   }

  75 }
  76 
  77 
  78 //--------------------------------array_store----------------------------------
  79 void Parse::array_store(BasicType bt) {
  80   const Type* elemtype = Type::TOP;
  81   bool big_val = bt == T_DOUBLE || bt == T_LONG;
  82   Node* adr = array_addressing(bt, big_val ? 2 : 1, elemtype);
  83   if (stopped())  return;     // guaranteed null or range check

  84   if (bt == T_OBJECT) {
  85     array_store_check();
  86     if (stopped()) {
  87       return;
  88     }
  89   }
  90   Node* val;                  // Oop to store
  91   if (big_val) {
  92     val = pop_pair();
  93   } else {
  94     val = pop();
  95   }
  96   pop();                      // index (already used)
  97   Node* array = pop();        // the array itself
  98 
  99   if (elemtype == TypeInt::BOOL) {
 100     bt = T_BOOLEAN;

















































































































 101   }
 102   const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt);
 103 
 104   access_store_at(array, adr, adr_type, val, elemtype, bt, MO_UNORDERED | IN_HEAP | IS_ARRAY);
 105 }
 106 
 107 
 108 //------------------------------array_addressing-------------------------------
 109 // Pull array and index from the stack.  Compute pointer-to-element.
 110 Node* Parse::array_addressing(BasicType type, int vals, const Type*& elemtype) {
 111   Node *idx   = peek(0+vals);   // Get from stack without popping
 112   Node *ary   = peek(1+vals);   // in case of exception
 113 
 114   // Null check the array base, with correct stack contents
 115   ary = null_check(ary, T_ARRAY);
 116   // Compile-time detect of null-exception?
 117   if (stopped())  return top();
 118 
 119   const TypeAryPtr* arytype  = _gvn.type(ary)->is_aryptr();
 120   const TypeInt*    sizetype = arytype->size();
 121   elemtype = arytype->elem();
 122 
 123   if (UseUniqueSubclasses) {
 124     const Type* el = elemtype->make_ptr();
 125     if (el && el->isa_instptr()) {
 126       const TypeInstPtr* toop = el->is_instptr();
 127       if (toop->instance_klass()->unique_concrete_subklass()) {
 128         // If we load from "AbstractClass[]" we must see "ConcreteSubClass".
 129         const Type* subklass = Type::get_const_type(toop->instance_klass());
 130         elemtype = subklass->join_speculative(el);
 131       }
 132     }
 133   }
 134 
 135   // Check for big class initializers with all constant offsets
 136   // feeding into a known-size array.
 137   const TypeInt* idxtype = _gvn.type(idx)->is_int();
 138   // See if the highest idx value is less than the lowest array bound,
 139   // and if the idx value cannot be negative:
 140   bool need_range_check = true;
 141   if (idxtype->_hi < sizetype->_lo && idxtype->_lo >= 0) {
 142     need_range_check = false;
 143     if (C->log() != nullptr)   C->log()->elem("observe that='!need_range_check'");
 144   }
 145 
 146   if (!arytype->is_loaded()) {
 147     // Only fails for some -Xcomp runs
 148     // The class is unloaded.  We have to run this bytecode in the interpreter.
 149     ciKlass* klass = arytype->unloaded_klass();
 150 
 151     uncommon_trap(Deoptimization::Reason_unloaded,
 152                   Deoptimization::Action_reinterpret,
 153                   klass, "!loaded array");
 154     return top();
 155   }
 156 
 157   // Do the range check
 158   if (need_range_check) {
 159     Node* tst;
 160     if (sizetype->_hi <= 0) {
 161       // The greatest array bound is negative, so we can conclude that we're
 162       // compiling unreachable code, but the unsigned compare trick used below
 163       // only works with non-negative lengths.  Instead, hack "tst" to be zero so
 164       // the uncommon_trap path will always be taken.
 165       tst = _gvn.intcon(0);
 166     } else {
 167       // Range is constant in array-oop, so we can use the original state of mem
 168       Node* len = load_array_length(ary);
 169 
 170       // Test length vs index (standard trick using unsigned compare)
 171       Node* chk = _gvn.transform( new CmpUNode(idx, len) );
 172       BoolTest::mask btest = BoolTest::lt;
 173       tst = _gvn.transform( new BoolNode(chk, btest) );
 174     }
 175     RangeCheckNode* rc = new RangeCheckNode(control(), tst, PROB_MAX, COUNT_UNKNOWN);
 176     _gvn.set_type(rc, rc->Value(&_gvn));
 177     if (!tst->is_Con()) {
 178       record_for_igvn(rc);
 179     }
 180     set_control(_gvn.transform(new IfTrueNode(rc)));
 181     // Branch to failure if out of bounds
 182     {
 183       PreserveJVMState pjvms(this);
 184       set_control(_gvn.transform(new IfFalseNode(rc)));
 185       if (C->allow_range_check_smearing()) {
 186         // Do not use builtin_throw, since range checks are sometimes
 187         // made more stringent by an optimistic transformation.
 188         // This creates "tentative" range checks at this point,
 189         // which are not guaranteed to throw exceptions.
 190         // See IfNode::Ideal, is_range_check, adjust_check.
 191         uncommon_trap(Deoptimization::Reason_range_check,
 192                       Deoptimization::Action_make_not_entrant,
 193                       nullptr, "range_check");
 194       } else {
 195         // If we have already recompiled with the range-check-widening
 196         // heroic optimization turned off, then we must really be throwing
 197         // range check exceptions.
 198         builtin_throw(Deoptimization::Reason_range_check);
 199       }
 200     }
 201   }

 202   // Check for always knowing you are throwing a range-check exception
 203   if (stopped())  return top();
 204 
 205   // Make array address computation control dependent to prevent it
 206   // from floating above the range check during loop optimizations.
 207   Node* ptr = array_element_address(ary, idx, type, sizetype, control());
 208   assert(ptr != top(), "top should go hand-in-hand with stopped");
 209 
 210   return ptr;
 211 }
 212 








































































































































































































 213 
 214 // returns IfNode
 215 IfNode* Parse::jump_if_fork_int(Node* a, Node* b, BoolTest::mask mask, float prob, float cnt) {
 216   Node   *cmp = _gvn.transform(new CmpINode(a, b)); // two cases: shiftcount > 32 and shiftcount <= 32
 217   Node   *tst = _gvn.transform(new BoolNode(cmp, mask));
 218   IfNode *iff = create_and_map_if(control(), tst, prob, cnt);
 219   return iff;
 220 }
 221 
 222 
 223 // sentinel value for the target bci to mark never taken branches
 224 // (according to profiling)
 225 static const int never_reached = INT_MAX;
 226 
 227 //------------------------------helper for tableswitch-------------------------
 228 void Parse::jump_if_true_fork(IfNode *iff, int dest_bci_if_true, bool unc) {
 229   // True branch, use existing map info
 230   { PreserveJVMState pjvms(this);
 231     Node *iftrue  = _gvn.transform( new IfTrueNode (iff) );
 232     set_control( iftrue );

1425       }
1426     }
1427   }
1428 
1429   // False branch
1430   Node* iffalse = _gvn.transform( new IfFalseNode(iff) );
1431   set_control(iffalse);
1432 
1433   if (stopped()) {              // Path is dead?
1434     NOT_PRODUCT(explicit_null_checks_elided++);
1435     if (C->eliminate_boxing()) {
1436       // Mark the successor block as parsed
1437       next_block->next_path_num();
1438     }
1439   } else  {                     // Path is live.
1440     adjust_map_after_if(BoolTest(btest).negate(), c, 1.0-prob, next_block);
1441   }
1442 }
1443 
1444 //------------------------------------do_if------------------------------------
1445 void Parse::do_if(BoolTest::mask btest, Node* c) {
1446   int target_bci = iter().get_dest();
1447 
1448   Block* branch_block = successor_for_bci(target_bci);
1449   Block* next_block   = successor_for_bci(iter().next_bci());
1450 
1451   float cnt;
1452   float prob = branch_prediction(cnt, btest, target_bci, c);
1453   float untaken_prob = 1.0 - prob;
1454 
1455   if (prob == PROB_UNKNOWN) {
1456     if (PrintOpto && Verbose) {
1457       tty->print_cr("Never-taken edge stops compilation at bci %d", bci());
1458     }
1459     repush_if_args(); // to gather stats on loop
1460     uncommon_trap(Deoptimization::Reason_unreached,
1461                   Deoptimization::Action_reinterpret,
1462                   nullptr, "cold");
1463     if (C->eliminate_boxing()) {
1464       // Mark the successor blocks as parsed
1465       branch_block->next_path_num();

1509   }
1510 
1511   // Generate real control flow
1512   float true_prob = (taken_if_true ? prob : untaken_prob);
1513   IfNode* iff = create_and_map_if(control(), tst, true_prob, cnt);
1514   assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
1515   Node* taken_branch   = new IfTrueNode(iff);
1516   Node* untaken_branch = new IfFalseNode(iff);
1517   if (!taken_if_true) {  // Finish conversion to canonical form
1518     Node* tmp      = taken_branch;
1519     taken_branch   = untaken_branch;
1520     untaken_branch = tmp;
1521   }
1522 
1523   // Branch is taken:
1524   { PreserveJVMState pjvms(this);
1525     taken_branch = _gvn.transform(taken_branch);
1526     set_control(taken_branch);
1527 
1528     if (stopped()) {
1529       if (C->eliminate_boxing()) {
1530         // Mark the successor block as parsed
1531         branch_block->next_path_num();
1532       }
1533     } else {
1534       adjust_map_after_if(taken_btest, c, prob, branch_block);
1535       if (!stopped()) {
1536         merge(target_bci);








1537       }
1538     }
1539   }
1540 
1541   untaken_branch = _gvn.transform(untaken_branch);
1542   set_control(untaken_branch);
1543 
1544   // Branch not taken.
1545   if (stopped()) {
1546     if (C->eliminate_boxing()) {
1547       // Mark the successor block as parsed
1548       next_block->next_path_num();
1549     }
1550   } else {
1551     adjust_map_after_if(untaken_btest, c, untaken_prob, next_block);




















































































































































































































































































































































































































1552   }
1553 }
1554 
1555 bool Parse::path_is_suitable_for_uncommon_trap(float prob) const {
1556   // Don't want to speculate on uncommon traps when running with -Xcomp
1557   if (!UseInterpreter) {
1558     return false;
1559   }
1560   return seems_never_taken(prob) &&
1561          !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if);
1562 }
1563 
1564 void Parse::maybe_add_predicate_after_if(Block* path) {
1565   if (path->is_SEL_head() && path->preds_parsed() == 0) {
1566     // Add predicates at bci of if dominating the loop so traps can be
1567     // recorded on the if's profile data
1568     int bc_depth = repush_if_args();
1569     add_parse_predicates();
1570     dec_sp(bc_depth);
1571     path->set_has_predicates();
1572   }
1573 }
1574 
1575 
1576 //----------------------------adjust_map_after_if------------------------------
1577 // Adjust the JVM state to reflect the result of taking this path.
1578 // Basically, it means inspecting the CmpNode controlling this
1579 // branch, seeing how it constrains a tested value, and then
1580 // deciding if it's worth our while to encode this constraint
1581 // as graph nodes in the current abstract interpretation map.
1582 void Parse::adjust_map_after_if(BoolTest::mask btest, Node* c, float prob, Block* path) {
1583   if (!c->is_Cmp()) {
1584     maybe_add_predicate_after_if(path);
1585     return;
1586   }
1587 
1588   if (stopped() || btest == BoolTest::illegal) {
1589     return;                             // nothing to do
1590   }
1591 
1592   bool is_fallthrough = (path == successor_for_bci(iter().next_bci()));
1593 
1594   if (path_is_suitable_for_uncommon_trap(prob)) {
1595     repush_if_args();
1596     Node* call = uncommon_trap(Deoptimization::Reason_unstable_if,
1597                   Deoptimization::Action_reinterpret,
1598                   nullptr,
1599                   (is_fallthrough ? "taken always" : "taken never"));
1600 
1601     if (call != nullptr) {
1602       C->record_unstable_if_trap(new UnstableIfTrap(call->as_CallStaticJava(), path));
1603     }
1604     return;
1605   }
1606 
1607   Node* val = c->in(1);
1608   Node* con = c->in(2);
1609   const Type* tcon = _gvn.type(con);
1610   const Type* tval = _gvn.type(val);
1611   bool have_con = tcon->singleton();
1612   if (tval->singleton()) {
1613     if (!have_con) {
1614       // Swap, so constant is in con.

1671     if (obj != nullptr && (con_type->isa_instptr() || con_type->isa_aryptr())) {
1672        // Found:
1673        //   Bool(CmpP(LoadKlass(obj._klass), ConP(Foo.klass)), [eq])
1674        // or the narrowOop equivalent.
1675        const Type* obj_type = _gvn.type(obj);
1676        const TypeOopPtr* tboth = obj_type->join_speculative(con_type)->isa_oopptr();
1677        if (tboth != nullptr && tboth->klass_is_exact() && tboth != obj_type &&
1678            tboth->higher_equal(obj_type)) {
1679           // obj has to be of the exact type Foo if the CmpP succeeds.
1680           int obj_in_map = map()->find_edge(obj);
1681           JVMState* jvms = this->jvms();
1682           if (obj_in_map >= 0 &&
1683               (jvms->is_loc(obj_in_map) || jvms->is_stk(obj_in_map))) {
1684             TypeNode* ccast = new CheckCastPPNode(control(), obj, tboth);
1685             const Type* tcc = ccast->as_Type()->type();
1686             assert(tcc != obj_type && tcc->higher_equal(obj_type), "must improve");
1687             // Delay transform() call to allow recovery of pre-cast value
1688             // at the control merge.
1689             _gvn.set_type_bottom(ccast);
1690             record_for_igvn(ccast);



1691             // Here's the payoff.
1692             replace_in_map(obj, ccast);
1693           }
1694        }
1695     }
1696   }
1697 
1698   int val_in_map = map()->find_edge(val);
1699   if (val_in_map < 0)  return;          // replace_in_map would be useless
1700   {
1701     JVMState* jvms = this->jvms();
1702     if (!(jvms->is_loc(val_in_map) ||
1703           jvms->is_stk(val_in_map)))
1704       return;                           // again, it would be useless
1705   }
1706 
1707   // Check for a comparison to a constant, and "know" that the compared
1708   // value is constrained on this path.
1709   assert(tcon->singleton(), "");
1710   ConstraintCastNode* ccast = nullptr;

1775   if (c->Opcode() == Op_CmpP &&
1776       (c->in(1)->Opcode() == Op_LoadKlass || c->in(1)->Opcode() == Op_DecodeNKlass) &&
1777       c->in(2)->is_Con()) {
1778     Node* load_klass = nullptr;
1779     Node* decode = nullptr;
1780     if (c->in(1)->Opcode() == Op_DecodeNKlass) {
1781       decode = c->in(1);
1782       load_klass = c->in(1)->in(1);
1783     } else {
1784       load_klass = c->in(1);
1785     }
1786     if (load_klass->in(2)->is_AddP()) {
1787       Node* addp = load_klass->in(2);
1788       Node* obj = addp->in(AddPNode::Address);
1789       const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
1790       if (obj_type->speculative_type_not_null() != nullptr) {
1791         ciKlass* k = obj_type->speculative_type();
1792         inc_sp(2);
1793         obj = maybe_cast_profiled_obj(obj, k);
1794         dec_sp(2);




1795         // Make the CmpP use the casted obj
1796         addp = basic_plus_adr(obj, addp->in(AddPNode::Offset));
1797         load_klass = load_klass->clone();
1798         load_klass->set_req(2, addp);
1799         load_klass = _gvn.transform(load_klass);
1800         if (decode != nullptr) {
1801           decode = decode->clone();
1802           decode->set_req(1, load_klass);
1803           load_klass = _gvn.transform(decode);
1804         }
1805         c = c->clone();
1806         c->set_req(1, load_klass);
1807         c = _gvn.transform(c);
1808       }
1809     }
1810   }
1811   return c;
1812 }
1813 
1814 //------------------------------do_one_bytecode--------------------------------

2621     // See if we can get some profile data and hand it off to the next block
2622     Block *target_block = block()->successor_for_bci(target_bci);
2623     if (target_block->pred_count() != 1)  break;
2624     ciMethodData* methodData = method()->method_data();
2625     if (!methodData->is_mature())  break;
2626     ciProfileData* data = methodData->bci_to_data(bci());
2627     assert(data != nullptr && data->is_JumpData(), "need JumpData for taken branch");
2628     int taken = ((ciJumpData*)data)->taken();
2629     taken = method()->scale_count(taken);
2630     target_block->set_count(taken);
2631     break;
2632   }
2633 
2634   case Bytecodes::_ifnull:    btest = BoolTest::eq; goto handle_if_null;
2635   case Bytecodes::_ifnonnull: btest = BoolTest::ne; goto handle_if_null;
2636   handle_if_null:
2637     // If this is a backwards branch in the bytecodes, add Safepoint
2638     maybe_add_safepoint(iter().get_dest());
2639     a = null();
2640     b = pop();
2641     if (!_gvn.type(b)->speculative_maybe_null() &&
2642         !too_many_traps(Deoptimization::Reason_speculate_null_check)) {
2643       inc_sp(1);
2644       Node* null_ctl = top();
2645       b = null_check_oop(b, &null_ctl, true, true, true);
2646       assert(null_ctl->is_top(), "no null control here");
2647       dec_sp(1);
2648     } else if (_gvn.type(b)->speculative_always_null() &&
2649                !too_many_traps(Deoptimization::Reason_speculate_null_assert)) {
2650       inc_sp(1);
2651       b = null_assert(b);
2652       dec_sp(1);
2653     }
2654     c = _gvn.transform( new CmpPNode(b, a) );






2655     do_ifnull(btest, c);
2656     break;
2657 
2658   case Bytecodes::_if_acmpeq: btest = BoolTest::eq; goto handle_if_acmp;
2659   case Bytecodes::_if_acmpne: btest = BoolTest::ne; goto handle_if_acmp;
2660   handle_if_acmp:
2661     // If this is a backwards branch in the bytecodes, add Safepoint
2662     maybe_add_safepoint(iter().get_dest());
2663     a = pop();
2664     b = pop();
2665     c = _gvn.transform( new CmpPNode(b, a) );
2666     c = optimize_cmp_with_klass(c);
2667     do_if(btest, c);
2668     break;
2669 
2670   case Bytecodes::_ifeq: btest = BoolTest::eq; goto handle_ifxx;
2671   case Bytecodes::_ifne: btest = BoolTest::ne; goto handle_ifxx;
2672   case Bytecodes::_iflt: btest = BoolTest::lt; goto handle_ifxx;
2673   case Bytecodes::_ifle: btest = BoolTest::le; goto handle_ifxx;
2674   case Bytecodes::_ifgt: btest = BoolTest::gt; goto handle_ifxx;
2675   case Bytecodes::_ifge: btest = BoolTest::ge; goto handle_ifxx;
2676   handle_ifxx:
2677     // If this is a backwards branch in the bytecodes, add Safepoint
2678     maybe_add_safepoint(iter().get_dest());
2679     a = _gvn.intcon(0);
2680     b = pop();
2681     c = _gvn.transform( new CmpINode(b, a) );
2682     do_if(btest, c);
2683     break;
2684 
2685   case Bytecodes::_if_icmpeq: btest = BoolTest::eq; goto handle_if_icmp;
2686   case Bytecodes::_if_icmpne: btest = BoolTest::ne; goto handle_if_icmp;
2687   case Bytecodes::_if_icmplt: btest = BoolTest::lt; goto handle_if_icmp;

2702     break;
2703 
2704   case Bytecodes::_lookupswitch:
2705     do_lookupswitch();
2706     break;
2707 
2708   case Bytecodes::_invokestatic:
2709   case Bytecodes::_invokedynamic:
2710   case Bytecodes::_invokespecial:
2711   case Bytecodes::_invokevirtual:
2712   case Bytecodes::_invokeinterface:
2713     do_call();
2714     break;
2715   case Bytecodes::_checkcast:
2716     do_checkcast();
2717     break;
2718   case Bytecodes::_instanceof:
2719     do_instanceof();
2720     break;
2721   case Bytecodes::_anewarray:
2722     do_anewarray();
2723     break;
2724   case Bytecodes::_newarray:
2725     do_newarray((BasicType)iter().get_index());
2726     break;
2727   case Bytecodes::_multianewarray:
2728     do_multianewarray();
2729     break;
2730   case Bytecodes::_new:
2731     do_new();
2732     break;
2733 
2734   case Bytecodes::_jsr:
2735   case Bytecodes::_jsr_w:
2736     do_jsr();
2737     break;
2738 
2739   case Bytecodes::_ret:
2740     do_ret();
2741     break;
2742 

   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciMethodData.hpp"
  27 #include "ci/ciSymbols.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "compiler/compileLog.hpp"
  30 #include "interpreter/linkResolver.hpp"
  31 #include "jvm_io.h"
  32 #include "memory/resourceArea.hpp"
  33 #include "memory/universe.hpp"
  34 #include "oops/oop.inline.hpp"
  35 #include "opto/addnode.hpp"
  36 #include "opto/castnode.hpp"
  37 #include "opto/convertnode.hpp"
  38 #include "opto/divnode.hpp"
  39 #include "opto/idealGraphPrinter.hpp"
  40 #include "opto/idealKit.hpp"
  41 #include "opto/inlinetypenode.hpp"
  42 #include "opto/matcher.hpp"
  43 #include "opto/memnode.hpp"
  44 #include "opto/mulnode.hpp"
  45 #include "opto/opaquenode.hpp"
  46 #include "opto/parse.hpp"
  47 #include "opto/runtime.hpp"
  48 #include "runtime/deoptimization.hpp"
  49 #include "runtime/sharedRuntime.hpp"
  50 
  51 #ifndef PRODUCT
  52 extern uint explicit_null_checks_inserted,
  53             explicit_null_checks_elided;
  54 #endif
  55 
  56 Node* Parse::record_profile_for_speculation_at_array_load(Node* ld) {
  57   // Feed unused profile data to type speculation
  58   if (UseTypeSpeculation && UseArrayLoadStoreProfile) {
  59     ciKlass* array_type = nullptr;
  60     ciKlass* element_type = nullptr;
  61     ProfilePtrKind element_ptr = ProfileMaybeNull;
  62     bool flat_array = true;
  63     bool null_free_array = true;
  64     method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array);
  65     if (element_type != nullptr || element_ptr != ProfileMaybeNull) {
  66       ld = record_profile_for_speculation(ld, element_type, element_ptr);
  67     }
  68   }
  69   return ld;
  70 }
  71 
  72 
  73 //---------------------------------array_load----------------------------------
  74 void Parse::array_load(BasicType bt) {
  75   const Type* elemtype = Type::TOP;

  76   Node* adr = array_addressing(bt, 0, elemtype);
  77   if (stopped())  return;     // guaranteed null or range check
  78 
  79   Node* idx = pop();
  80   Node* ary = pop();
  81 
  82   // Handle inline type arrays
  83   const TypeOopPtr* elemptr = elemtype->make_oopptr();
  84   const TypeAryPtr* ary_t = _gvn.type(ary)->is_aryptr();
  85   if (ary_t->is_flat()) {
  86     // Load from flat inline type array
  87     Node* vt = InlineTypeNode::make_from_flat(this, elemtype->inline_klass(), ary, adr);
  88     push(vt);
  89     return;
  90   } else if (ary_t->is_null_free()) {
  91     // Load from non-flat inline type array (elements can never be null)
  92     bt = T_OBJECT;
  93   } else if (!ary_t->is_not_flat()) {
  94     // Cannot statically determine if array is a flat array, emit runtime check
  95     assert(UseFlatArray && is_reference_type(bt) && elemptr->can_be_inline_type() && !ary_t->is_not_null_free() &&
  96            (!elemptr->is_inlinetypeptr() || elemptr->inline_klass()->flat_in_array()), "array can't be flat");
  97     IdealKit ideal(this);
  98     IdealVariable res(ideal);
  99     ideal.declarations_done();
 100     ideal.if_then(flat_array_test(ary, /* flat = */ false)); {
 101       // non-flat array
 102       assert(ideal.ctrl()->in(0)->as_If()->is_flat_array_check(&_gvn), "Should be found");
 103       sync_kit(ideal);
 104       const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt);
 105       DecoratorSet decorator_set = IN_HEAP | IS_ARRAY | C2_CONTROL_DEPENDENT_LOAD;
 106       if (needs_range_check(ary_t->size(), idx)) {
 107         // We've emitted a RangeCheck but now insert an additional check between the range check and the actual load.
 108         // We cannot pin the load to two separate nodes. Instead, we pin it conservatively here such that it cannot
 109         // possibly float above the range check at any point.
 110         decorator_set |= C2_UNKNOWN_CONTROL_LOAD;
 111       }
 112       Node* ld = access_load_at(ary, adr, adr_type, elemptr, bt, decorator_set);
 113       if (elemptr->is_inlinetypeptr()) {
 114         assert(elemptr->maybe_null(), "null free array should be handled above");
 115         ld = InlineTypeNode::make_from_oop(this, ld, elemptr->inline_klass(), false);
 116       }
 117       ideal.sync_kit(this);
 118       ideal.set(res, ld);
 119     } ideal.else_(); {
 120       // flat array
 121       sync_kit(ideal);
 122       if (elemptr->is_inlinetypeptr()) {
 123         // Element type is known, cast and load from flat representation
 124         ciInlineKlass* vk = elemptr->inline_klass();
 125         assert(vk->flat_in_array() && elemptr->maybe_null(), "never/always flat - should be optimized");
 126         ciArrayKlass* array_klass = ciArrayKlass::make(vk, /* null_free */ true);
 127         const TypeAryPtr* arytype = TypeOopPtr::make_from_klass(array_klass)->isa_aryptr();
 128         Node* cast = _gvn.transform(new CheckCastPPNode(control(), ary, arytype));
 129         Node* casted_adr = array_element_address(cast, idx, T_OBJECT, ary_t->size(), control());
 130         // Re-execute flat array load if buffering triggers deoptimization
 131         PreserveReexecuteState preexecs(this);
 132         jvms()->set_should_reexecute(true);
 133         inc_sp(2);
 134         Node* vt = InlineTypeNode::make_from_flat(this, vk, cast, casted_adr)->buffer(this, false);
 135         ideal.set(res, vt);
 136         ideal.sync_kit(this);
 137       } else {
 138         // Element type is unknown, emit runtime call
 139 
 140         // Below membars keep this access to an unknown flat array correctly
 141         // ordered with other unknown and known flat array accesses.
 142         insert_mem_bar_volatile(Op_MemBarCPUOrder, C->get_alias_index(TypeAryPtr::INLINES));
 143 
 144         Node* call = nullptr;
 145         {
 146           // Re-execute flat array load if runtime call triggers deoptimization
 147           PreserveReexecuteState preexecs(this);
 148           jvms()->set_bci(_bci);
 149           jvms()->set_should_reexecute(true);
 150           inc_sp(2);
 151           kill_dead_locals();
 152           call = make_runtime_call(RC_NO_LEAF | RC_NO_IO,
 153                                    OptoRuntime::load_unknown_inline_type(),
 154                                    OptoRuntime::load_unknown_inline_Java(),
 155                                    nullptr, TypeRawPtr::BOTTOM,
 156                                    ary, idx);
 157         }
 158         make_slow_call_ex(call, env()->Throwable_klass(), false);
 159         Node* buffer = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
 160 
 161         insert_mem_bar_volatile(Op_MemBarCPUOrder, C->get_alias_index(TypeAryPtr::INLINES));
 162 
 163         // Keep track of the information that the inline type is in flat arrays
 164         const Type* unknown_value = elemptr->is_instptr()->cast_to_flat_in_array();
 165         buffer = _gvn.transform(new CheckCastPPNode(control(), buffer, unknown_value));
 166 
 167         ideal.sync_kit(this);
 168         ideal.set(res, buffer);
 169       }
 170     } ideal.end_if();
 171     sync_kit(ideal);
 172     Node* ld = _gvn.transform(ideal.value(res));
 173     ld = record_profile_for_speculation_at_array_load(ld);
 174     push_node(bt, ld);
 175     return;
 176   }
 177 
 178   if (elemtype == TypeInt::BOOL) {
 179     bt = T_BOOLEAN;
 180   }
 181   const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt);
 182   Node* ld = access_load_at(ary, adr, adr_type, elemtype, bt,

 183                             IN_HEAP | IS_ARRAY | C2_CONTROL_DEPENDENT_LOAD);
 184   ld = record_profile_for_speculation_at_array_load(ld);
 185   // Loading an inline type from a non-flat array
 186   if (elemptr != nullptr && elemptr->is_inlinetypeptr()) {
 187     assert(!ary_t->is_null_free() || !elemptr->maybe_null(), "inline type array elements should never be null");
 188     ld = InlineTypeNode::make_from_oop(this, ld, elemptr->inline_klass(), !elemptr->maybe_null());
 189   }
 190   push_node(bt, ld);
 191 }
 192 
 193 
 194 //--------------------------------array_store----------------------------------
 195 void Parse::array_store(BasicType bt) {
 196   const Type* elemtype = Type::TOP;
 197   Node* adr = array_addressing(bt, type2size[bt], elemtype);

 198   if (stopped())  return;     // guaranteed null or range check
 199   Node* cast_val = nullptr;
 200   if (bt == T_OBJECT) {
 201     cast_val = array_store_check(adr, elemtype);
 202     if (stopped()) return;


 203   }
 204   Node* val = pop_node(bt); // Value to store
 205   Node* idx = pop();        // Index in the array
 206   Node* ary = pop();        // The array itself
 207 
 208   const TypeAryPtr* ary_t = _gvn.type(ary)->is_aryptr();
 209   const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt);


 210 
 211   if (elemtype == TypeInt::BOOL) {
 212     bt = T_BOOLEAN;
 213   } else if (bt == T_OBJECT) {
 214     elemtype = elemtype->make_oopptr();
 215     const Type* tval = _gvn.type(cast_val);
 216     // Based on the value to be stored, try to determine if the array is not null-free and/or not flat.
 217     // This is only legal for non-null stores because the array_store_check always passes for null, even
 218     // if the array is null-free. Null stores are handled in GraphKit::gen_inline_array_null_guard().
 219     bool not_null_free = !tval->maybe_null() && !tval->is_oopptr()->can_be_inline_type();
 220     bool not_flat = not_null_free || (tval->is_inlinetypeptr() && !tval->inline_klass()->flat_in_array());
 221     if (!ary_t->is_not_null_free() && not_null_free) {
 222       // Storing a non-inline type, mark array as not null-free (-> not flat).
 223       ary_t = ary_t->cast_to_not_null_free();
 224       Node* cast = _gvn.transform(new CheckCastPPNode(control(), ary, ary_t));
 225       replace_in_map(ary, cast);
 226       ary = cast;
 227     } else if (!ary_t->is_not_flat() && not_flat) {
 228       // Storing to a non-flat array, mark array as not flat.
 229       ary_t = ary_t->cast_to_not_flat();
 230       Node* cast = _gvn.transform(new CheckCastPPNode(control(), ary, ary_t));
 231       replace_in_map(ary, cast);
 232       ary = cast;
 233     }
 234 
 235     if (ary_t->is_flat()) {
 236       // Store to flat inline type array
 237       assert(!tval->maybe_null(), "should be guaranteed by array store check");
 238       // Re-execute flat array store if buffering triggers deoptimization
 239       PreserveReexecuteState preexecs(this);
 240       inc_sp(3);
 241       jvms()->set_should_reexecute(true);
 242       cast_val->as_InlineType()->store_flat(this, ary, adr, nullptr, 0, MO_UNORDERED | IN_HEAP | IS_ARRAY);
 243       return;
 244     } else if (ary_t->is_null_free()) {
 245       // Store to non-flat inline type array (elements can never be null)
 246       assert(!tval->maybe_null(), "should be guaranteed by array store check");
 247       if (elemtype->inline_klass()->is_empty()) {
 248         // Ignore empty inline stores, array is already initialized.
 249         return;
 250       }
 251     } else if (!ary_t->is_not_flat() && (tval != TypePtr::NULL_PTR || StressReflectiveCode)) {
 252       // Array might be a flat array, emit runtime checks (for nullptr, a simple inline_array_null_guard is sufficient).
 253       assert(UseFlatArray && !not_flat && elemtype->is_oopptr()->can_be_inline_type() &&
 254              !ary_t->klass_is_exact() && !ary_t->is_not_null_free(), "array can't be a flat array");
 255       IdealKit ideal(this);
 256       ideal.if_then(flat_array_test(ary, /* flat = */ false)); {
 257         // non-flat array
 258         assert(ideal.ctrl()->in(0)->as_If()->is_flat_array_check(&_gvn), "Should be found");
 259         sync_kit(ideal);
 260         Node* cast_ary = inline_array_null_guard(ary, cast_val, 3);
 261         inc_sp(3);
 262         access_store_at(cast_ary, adr, adr_type, cast_val, elemtype, bt, MO_UNORDERED | IN_HEAP | IS_ARRAY, false);
 263         dec_sp(3);
 264         ideal.sync_kit(this);
 265       } ideal.else_(); {
 266         sync_kit(ideal);
 267         // flat array
 268         Node* null_ctl = top();
 269         Node* val = null_check_oop(cast_val, &null_ctl);
 270         if (null_ctl != top()) {
 271           PreserveJVMState pjvms(this);
 272           inc_sp(3);
 273           set_control(null_ctl);
 274           uncommon_trap(Deoptimization::Reason_null_check, Deoptimization::Action_none);
 275           dec_sp(3);
 276         }
 277         // Try to determine the inline klass
 278         ciInlineKlass* vk = nullptr;
 279         if (tval->is_inlinetypeptr()) {
 280           vk = tval->inline_klass();
 281         } else if (elemtype->is_inlinetypeptr()) {
 282           vk = elemtype->inline_klass();
 283         }
 284         Node* casted_ary = ary;
 285         if (vk != nullptr && !stopped()) {
 286           // Element type is known, cast and store to flat representation
 287           assert(vk->flat_in_array() && elemtype->maybe_null(), "never/always flat - should be optimized");
 288           ciArrayKlass* array_klass = ciArrayKlass::make(vk, /* null_free */ true);
 289           const TypeAryPtr* arytype = TypeOopPtr::make_from_klass(array_klass)->isa_aryptr();
 290           casted_ary = _gvn.transform(new CheckCastPPNode(control(), casted_ary, arytype));
 291           Node* casted_adr = array_element_address(casted_ary, idx, T_OBJECT, arytype->size(), control());
 292           if (!val->is_InlineType()) {
 293             assert(!gvn().type(val)->maybe_null(), "inline type array elements should never be null");
 294             val = InlineTypeNode::make_from_oop(this, val, vk);
 295           }
 296           // Re-execute flat array store if buffering triggers deoptimization
 297           PreserveReexecuteState preexecs(this);
 298           inc_sp(3);
 299           jvms()->set_should_reexecute(true);
 300           val->as_InlineType()->store_flat(this, casted_ary, casted_adr, nullptr, 0, MO_UNORDERED | IN_HEAP | IS_ARRAY);
 301         } else if (!stopped()) {
 302           // Element type is unknown, emit runtime call
 303 
 304           // Below membars keep this access to an unknown flat array correctly
 305           // ordered with other unknown and known flat array accesses.
 306           insert_mem_bar_volatile(Op_MemBarCPUOrder, C->get_alias_index(TypeAryPtr::INLINES));
 307 
 308           make_runtime_call(RC_LEAF,
 309                             OptoRuntime::store_unknown_inline_type(),
 310                             CAST_FROM_FN_PTR(address, OptoRuntime::store_unknown_inline),
 311                             "store_unknown_inline", TypeRawPtr::BOTTOM,
 312                             val, casted_ary, idx);
 313 
 314           insert_mem_bar_volatile(Op_MemBarCPUOrder, C->get_alias_index(TypeAryPtr::INLINES));
 315         }
 316         ideal.sync_kit(this);
 317       }
 318       ideal.end_if();
 319       sync_kit(ideal);
 320       return;
 321     } else if (!ary_t->is_not_null_free()) {
 322       // Array is not flat but may be null free
 323       assert(elemtype->is_oopptr()->can_be_inline_type(), "array can't be null-free");
 324       ary = inline_array_null_guard(ary, cast_val, 3, true);
 325     }
 326   }
 327   inc_sp(3);
 328   access_store_at(ary, adr, adr_type, val, elemtype, bt, MO_UNORDERED | IN_HEAP | IS_ARRAY);
 329   dec_sp(3);
 330 }
 331 
 332 
 333 //------------------------------array_addressing-------------------------------
 334 // Pull array and index from the stack.  Compute pointer-to-element.
 335 Node* Parse::array_addressing(BasicType type, int vals, const Type*& elemtype) {
 336   Node *idx   = peek(0+vals);   // Get from stack without popping
 337   Node *ary   = peek(1+vals);   // in case of exception
 338 
 339   // Null check the array base, with correct stack contents
 340   ary = null_check(ary, T_ARRAY);
 341   // Compile-time detect of null-exception?
 342   if (stopped())  return top();
 343 
 344   const TypeAryPtr* arytype  = _gvn.type(ary)->is_aryptr();
 345   const TypeInt*    sizetype = arytype->size();
 346   elemtype = arytype->elem();
 347 
 348   if (UseUniqueSubclasses) {
 349     const Type* el = elemtype->make_ptr();
 350     if (el && el->isa_instptr()) {
 351       const TypeInstPtr* toop = el->is_instptr();
 352       if (toop->instance_klass()->unique_concrete_subklass()) {
 353         // If we load from "AbstractClass[]" we must see "ConcreteSubClass".
 354         const Type* subklass = Type::get_const_type(toop->instance_klass());
 355         elemtype = subklass->join_speculative(el);
 356       }
 357     }
 358   }
 359 











 360   if (!arytype->is_loaded()) {
 361     // Only fails for some -Xcomp runs
 362     // The class is unloaded.  We have to run this bytecode in the interpreter.
 363     ciKlass* klass = arytype->unloaded_klass();
 364 
 365     uncommon_trap(Deoptimization::Reason_unloaded,
 366                   Deoptimization::Action_reinterpret,
 367                   klass, "!loaded array");
 368     return top();
 369   }
 370 
 371   ary = create_speculative_inline_type_array_checks(ary, arytype, elemtype);











 372 
 373   if (needs_range_check(sizetype, idx)) {
 374     create_range_check(idx, ary, sizetype);
 375   } else if (C->log() != nullptr) {
 376     C->log()->elem("observe that='!need_range_check'");



























 377   }
 378 
 379   // Check for always knowing you are throwing a range-check exception
 380   if (stopped())  return top();
 381 
 382   // Make array address computation control dependent to prevent it
 383   // from floating above the range check during loop optimizations.
 384   Node* ptr = array_element_address(ary, idx, type, sizetype, control());
 385   assert(ptr != top(), "top should go hand-in-hand with stopped");
 386 
 387   return ptr;
 388 }
 389 
 390 // Check if we need a range check for an array access. This is the case if the index is either negative or if it could
 391 // be greater or equal the smallest possible array size (i.e. out-of-bounds).
 392 bool Parse::needs_range_check(const TypeInt* size_type, const Node* index) const {
 393   const TypeInt* index_type = _gvn.type(index)->is_int();
 394   return index_type->_hi >= size_type->_lo || index_type->_lo < 0;
 395 }
 396 
 397 void Parse::create_range_check(Node* idx, Node* ary, const TypeInt* sizetype) {
 398   Node* tst;
 399   if (sizetype->_hi <= 0) {
 400     // The greatest array bound is negative, so we can conclude that we're
 401     // compiling unreachable code, but the unsigned compare trick used below
 402     // only works with non-negative lengths.  Instead, hack "tst" to be zero so
 403     // the uncommon_trap path will always be taken.
 404     tst = _gvn.intcon(0);
 405   } else {
 406     // Range is constant in array-oop, so we can use the original state of mem
 407     Node* len = load_array_length(ary);
 408 
 409     // Test length vs index (standard trick using unsigned compare)
 410     Node* chk = _gvn.transform(new CmpUNode(idx, len) );
 411     BoolTest::mask btest = BoolTest::lt;
 412     tst = _gvn.transform(new BoolNode(chk, btest) );
 413   }
 414   RangeCheckNode* rc = new RangeCheckNode(control(), tst, PROB_MAX, COUNT_UNKNOWN);
 415   _gvn.set_type(rc, rc->Value(&_gvn));
 416   if (!tst->is_Con()) {
 417     record_for_igvn(rc);
 418   }
 419   set_control(_gvn.transform(new IfTrueNode(rc)));
 420   // Branch to failure if out of bounds
 421   {
 422     PreserveJVMState pjvms(this);
 423     set_control(_gvn.transform(new IfFalseNode(rc)));
 424     if (C->allow_range_check_smearing()) {
 425       // Do not use builtin_throw, since range checks are sometimes
 426       // made more stringent by an optimistic transformation.
 427       // This creates "tentative" range checks at this point,
 428       // which are not guaranteed to throw exceptions.
 429       // See IfNode::Ideal, is_range_check, adjust_check.
 430       uncommon_trap(Deoptimization::Reason_range_check,
 431                     Deoptimization::Action_make_not_entrant,
 432                     nullptr, "range_check");
 433     } else {
 434       // If we have already recompiled with the range-check-widening
 435       // heroic optimization turned off, then we must really be throwing
 436       // range check exceptions.
 437       builtin_throw(Deoptimization::Reason_range_check);
 438     }
 439   }
 440 }
 441 
 442 // For inline type arrays, we can use the profiling information for array accesses to speculate on the type, flatness,
 443 // and null-freeness. We can either prepare the speculative type for later uses or emit explicit speculative checks with
 444 // traps now. In the latter case, the speculative type guarantees can avoid additional runtime checks later (e.g.
 445 // non-null-free implies non-flat which allows us to remove flatness checks). This makes the graph simpler.
 446 Node* Parse::create_speculative_inline_type_array_checks(Node* array, const TypeAryPtr* array_type,
 447                                                          const Type*& element_type) {
 448   if (!array_type->is_flat() && !array_type->is_not_flat()) {
 449     // For arrays that might be flat, speculate that the array has the exact type reported in the profile data such that
 450     // we can rely on a fixed memory layout (i.e. either a flat layout or not).
 451     array = cast_to_speculative_array_type(array, array_type, element_type);
 452   } else if (UseTypeSpeculation && UseArrayLoadStoreProfile) {
 453     // Array is known to be either flat or not flat. If possible, update the speculative type by using the profile data
 454     // at this bci.
 455     array = cast_to_profiled_array_type(array);
 456   }
 457 
 458   // Even though the type does not tell us whether we have an inline type array or not, we can still check the profile data
 459   // whether we have a non-null-free or non-flat array. Since non-null-free implies non-flat, we check this first.
 460   // Speculating on a non-null-free array doesn't help aaload but could be profitable for a subsequent aastore.
 461   if (!array_type->is_null_free() && !array_type->is_not_null_free()) {
 462     array = speculate_non_null_free_array(array, array_type);
 463   }
 464 
 465   if (!array_type->is_flat() && !array_type->is_not_flat()) {
 466     array = speculate_non_flat_array(array, array_type);
 467   }
 468   return array;
 469 }
 470 
 471 // Speculate that the array has the exact type reported in the profile data. We emit a trap when this turns out to be
 472 // wrong. On the fast path, we add a CheckCastPP to use the exact type.
 473 Node* Parse::cast_to_speculative_array_type(Node* const array, const TypeAryPtr*& array_type, const Type*& element_type) {
 474   Deoptimization::DeoptReason reason = Deoptimization::Reason_speculate_class_check;
 475   ciKlass* speculative_array_type = array_type->speculative_type();
 476   if (too_many_traps_or_recompiles(reason) || speculative_array_type == nullptr) {
 477     // No speculative type, check profile data at this bci
 478     speculative_array_type = nullptr;
 479     reason = Deoptimization::Reason_class_check;
 480     if (UseArrayLoadStoreProfile && !too_many_traps_or_recompiles(reason)) {
 481       ciKlass* profiled_element_type = nullptr;
 482       ProfilePtrKind element_ptr = ProfileMaybeNull;
 483       bool flat_array = true;
 484       bool null_free_array = true;
 485       method()->array_access_profiled_type(bci(), speculative_array_type, profiled_element_type, element_ptr, flat_array,
 486                                            null_free_array);
 487     }
 488   }
 489   if (speculative_array_type != nullptr) {
 490     // Speculate that this array has the exact type reported by profile data
 491     Node* casted_array = nullptr;
 492     DEBUG_ONLY(Node* old_control = control();)
 493     Node* slow_ctl = type_check_receiver(array, speculative_array_type, 1.0, &casted_array);
 494     if (stopped()) {
 495       // The check always fails and therefore profile information is incorrect. Don't use it.
 496       assert(old_control == slow_ctl, "type check should have been removed");
 497       set_control(slow_ctl);
 498     } else if (!slow_ctl->is_top()) {
 499       { PreserveJVMState pjvms(this);
 500         set_control(slow_ctl);
 501         uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
 502       }
 503       replace_in_map(array, casted_array);
 504       array_type = _gvn.type(casted_array)->is_aryptr();
 505       element_type = array_type->elem();
 506       return casted_array;
 507     }
 508   }
 509   return array;
 510 }
 511 
 512 // Create a CheckCastPP when the speculative type can improve the current type.
 513 Node* Parse::cast_to_profiled_array_type(Node* const array) {
 514   ciKlass* array_type = nullptr;
 515   ciKlass* element_type = nullptr;
 516   ProfilePtrKind element_ptr = ProfileMaybeNull;
 517   bool flat_array = true;
 518   bool null_free_array = true;
 519   method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array);
 520   if (array_type != nullptr) {
 521     return record_profile_for_speculation(array, array_type, ProfileMaybeNull);
 522   }
 523   return array;
 524 }
 525 
 526 // Speculate that the array is non-null-free. This will imply non-flatness. We emit a trap when this turns out to be
 527 // wrong. On the fast path, we add a CheckCastPP to use the non-null-free type.
 528 Node* Parse::speculate_non_null_free_array(Node* const array, const TypeAryPtr*& array_type) {
 529   bool null_free_array = true;
 530   Deoptimization::DeoptReason reason = Deoptimization::Reason_none;
 531   if (array_type->speculative() != nullptr &&
 532       array_type->speculative()->is_aryptr()->is_not_null_free() &&
 533       !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_class_check)) {
 534     null_free_array = false;
 535     reason = Deoptimization::Reason_speculate_class_check;
 536   } else if (UseArrayLoadStoreProfile && !too_many_traps_or_recompiles(Deoptimization::Reason_class_check)) {
 537     ciKlass* profiled_array_type = nullptr;
 538     ciKlass* profiled_element_type = nullptr;
 539     ProfilePtrKind element_ptr = ProfileMaybeNull;
 540     bool flat_array = true;
 541     method()->array_access_profiled_type(bci(), profiled_array_type, profiled_element_type, element_ptr, flat_array,
 542                                          null_free_array);
 543     reason = Deoptimization::Reason_class_check;
 544   }
 545   if (!null_free_array) {
 546     { // Deoptimize if null-free array
 547       BuildCutout unless(this, null_free_array_test(array, /* null_free = */ false), PROB_MAX);
 548       uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
 549     }
 550     assert(!stopped(), "null-free array should have been caught earlier");
 551     Node* casted_array = _gvn.transform(new CheckCastPPNode(control(), array, array_type->cast_to_not_null_free()));
 552     replace_in_map(array, casted_array);
 553     array_type = _gvn.type(casted_array)->is_aryptr();
 554     return casted_array;
 555   }
 556   return array;
 557 }
 558 
 559 // Speculate that the array is non-flat. We emit a trap when this turns out to be wrong. On the fast path, we add a
 560 // CheckCastPP to use the non-flat type.
 561 Node* Parse::speculate_non_flat_array(Node* const array, const TypeAryPtr* const array_type) {
 562   bool flat_array = true;
 563   Deoptimization::DeoptReason reason = Deoptimization::Reason_none;
 564   if (array_type->speculative() != nullptr &&
 565       array_type->speculative()->is_aryptr()->is_not_flat() &&
 566       !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_class_check)) {
 567     flat_array = false;
 568     reason = Deoptimization::Reason_speculate_class_check;
 569   } else if (UseArrayLoadStoreProfile && !too_many_traps_or_recompiles(reason)) {
 570     ciKlass* profiled_array_type = nullptr;
 571     ciKlass* profiled_element_type = nullptr;
 572     ProfilePtrKind element_ptr = ProfileMaybeNull;
 573     bool null_free_array = true;
 574     method()->array_access_profiled_type(bci(), profiled_array_type, profiled_element_type, element_ptr, flat_array,
 575                                          null_free_array);
 576     reason = Deoptimization::Reason_class_check;
 577   }
 578   if (!flat_array) {
 579     { // Deoptimize if flat array
 580       BuildCutout unless(this, flat_array_test(array, /* flat = */ false), PROB_MAX);
 581       uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
 582     }
 583     assert(!stopped(), "flat array should have been caught earlier");
 584     Node* casted_array = _gvn.transform(new CheckCastPPNode(control(), array, array_type->cast_to_not_flat()));
 585     replace_in_map(array, casted_array);
 586     return casted_array;
 587   }
 588   return array;
 589 }
 590 
 591 // returns IfNode
 592 IfNode* Parse::jump_if_fork_int(Node* a, Node* b, BoolTest::mask mask, float prob, float cnt) {
 593   Node   *cmp = _gvn.transform(new CmpINode(a, b)); // two cases: shiftcount > 32 and shiftcount <= 32
 594   Node   *tst = _gvn.transform(new BoolNode(cmp, mask));
 595   IfNode *iff = create_and_map_if(control(), tst, prob, cnt);
 596   return iff;
 597 }
 598 
 599 
 600 // sentinel value for the target bci to mark never taken branches
 601 // (according to profiling)
 602 static const int never_reached = INT_MAX;
 603 
 604 //------------------------------helper for tableswitch-------------------------
 605 void Parse::jump_if_true_fork(IfNode *iff, int dest_bci_if_true, bool unc) {
 606   // True branch, use existing map info
 607   { PreserveJVMState pjvms(this);
 608     Node *iftrue  = _gvn.transform( new IfTrueNode (iff) );
 609     set_control( iftrue );

1802       }
1803     }
1804   }
1805 
1806   // False branch
1807   Node* iffalse = _gvn.transform( new IfFalseNode(iff) );
1808   set_control(iffalse);
1809 
1810   if (stopped()) {              // Path is dead?
1811     NOT_PRODUCT(explicit_null_checks_elided++);
1812     if (C->eliminate_boxing()) {
1813       // Mark the successor block as parsed
1814       next_block->next_path_num();
1815     }
1816   } else  {                     // Path is live.
1817     adjust_map_after_if(BoolTest(btest).negate(), c, 1.0-prob, next_block);
1818   }
1819 }
1820 
1821 //------------------------------------do_if------------------------------------
1822 void Parse::do_if(BoolTest::mask btest, Node* c, bool can_trap, bool new_path, Node** ctrl_taken) {
1823   int target_bci = iter().get_dest();
1824 
1825   Block* branch_block = successor_for_bci(target_bci);
1826   Block* next_block   = successor_for_bci(iter().next_bci());
1827 
1828   float cnt;
1829   float prob = branch_prediction(cnt, btest, target_bci, c);
1830   float untaken_prob = 1.0 - prob;
1831 
1832   if (prob == PROB_UNKNOWN) {
1833     if (PrintOpto && Verbose) {
1834       tty->print_cr("Never-taken edge stops compilation at bci %d", bci());
1835     }
1836     repush_if_args(); // to gather stats on loop
1837     uncommon_trap(Deoptimization::Reason_unreached,
1838                   Deoptimization::Action_reinterpret,
1839                   nullptr, "cold");
1840     if (C->eliminate_boxing()) {
1841       // Mark the successor blocks as parsed
1842       branch_block->next_path_num();

1886   }
1887 
1888   // Generate real control flow
1889   float true_prob = (taken_if_true ? prob : untaken_prob);
1890   IfNode* iff = create_and_map_if(control(), tst, true_prob, cnt);
1891   assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
1892   Node* taken_branch   = new IfTrueNode(iff);
1893   Node* untaken_branch = new IfFalseNode(iff);
1894   if (!taken_if_true) {  // Finish conversion to canonical form
1895     Node* tmp      = taken_branch;
1896     taken_branch   = untaken_branch;
1897     untaken_branch = tmp;
1898   }
1899 
1900   // Branch is taken:
1901   { PreserveJVMState pjvms(this);
1902     taken_branch = _gvn.transform(taken_branch);
1903     set_control(taken_branch);
1904 
1905     if (stopped()) {
1906       if (C->eliminate_boxing() && !new_path) {
1907         // Mark the successor block as parsed (if we haven't created a new path)
1908         branch_block->next_path_num();
1909       }
1910     } else {
1911       adjust_map_after_if(taken_btest, c, prob, branch_block, can_trap);
1912       if (!stopped()) {
1913         if (new_path) {
1914           // Merge by using a new path
1915           merge_new_path(target_bci);
1916         } else if (ctrl_taken != nullptr) {
1917           // Don't merge but save taken branch to be wired by caller
1918           *ctrl_taken = control();
1919         } else {
1920           merge(target_bci);
1921         }
1922       }
1923     }
1924   }
1925 
1926   untaken_branch = _gvn.transform(untaken_branch);
1927   set_control(untaken_branch);
1928 
1929   // Branch not taken.
1930   if (stopped() && ctrl_taken == nullptr) {
1931     if (C->eliminate_boxing()) {
1932       // Mark the successor block as parsed (if caller does not re-wire control flow)
1933       next_block->next_path_num();
1934     }
1935   } else {
1936     adjust_map_after_if(untaken_btest, c, untaken_prob, next_block, can_trap);
1937   }
1938 }
1939 
1940 
1941 static ProfilePtrKind speculative_ptr_kind(const TypeOopPtr* t) {
1942   if (t->speculative() == nullptr) {
1943     return ProfileUnknownNull;
1944   }
1945   if (t->speculative_always_null()) {
1946     return ProfileAlwaysNull;
1947   }
1948   if (t->speculative_maybe_null()) {
1949     return ProfileMaybeNull;
1950   }
1951   return ProfileNeverNull;
1952 }
1953 
1954 void Parse::acmp_always_null_input(Node* input, const TypeOopPtr* tinput, BoolTest::mask btest, Node* eq_region) {
1955   inc_sp(2);
1956   Node* cast = null_check_common(input, T_OBJECT, true, nullptr,
1957                                  !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_check) &&
1958                                  speculative_ptr_kind(tinput) == ProfileAlwaysNull);
1959   dec_sp(2);
1960   if (btest == BoolTest::ne) {
1961     {
1962       PreserveJVMState pjvms(this);
1963       replace_in_map(input, cast);
1964       int target_bci = iter().get_dest();
1965       merge(target_bci);
1966     }
1967     record_for_igvn(eq_region);
1968     set_control(_gvn.transform(eq_region));
1969   } else {
1970     replace_in_map(input, cast);
1971   }
1972 }
1973 
1974 Node* Parse::acmp_null_check(Node* input, const TypeOopPtr* tinput, ProfilePtrKind input_ptr, Node*& null_ctl) {
1975   inc_sp(2);
1976   null_ctl = top();
1977   Node* cast = null_check_oop(input, &null_ctl,
1978                               input_ptr == ProfileNeverNull || (input_ptr == ProfileUnknownNull && !too_many_traps_or_recompiles(Deoptimization::Reason_null_check)),
1979                               false,
1980                               speculative_ptr_kind(tinput) == ProfileNeverNull &&
1981                               !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_check));
1982   dec_sp(2);
1983   assert(!stopped(), "null input should have been caught earlier");
1984   return cast;
1985 }
1986 
1987 void Parse::acmp_known_non_inline_type_input(Node* input, const TypeOopPtr* tinput, ProfilePtrKind input_ptr, ciKlass* input_type, BoolTest::mask btest, Node* eq_region) {
1988   Node* ne_region = new RegionNode(1);
1989   Node* null_ctl;
1990   Node* cast = acmp_null_check(input, tinput, input_ptr, null_ctl);
1991   ne_region->add_req(null_ctl);
1992 
1993   Node* slow_ctl = type_check_receiver(cast, input_type, 1.0, &cast);
1994   {
1995     PreserveJVMState pjvms(this);
1996     inc_sp(2);
1997     set_control(slow_ctl);
1998     Deoptimization::DeoptReason reason;
1999     if (tinput->speculative_type() != nullptr && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_class_check)) {
2000       reason = Deoptimization::Reason_speculate_class_check;
2001     } else {
2002       reason = Deoptimization::Reason_class_check;
2003     }
2004     uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
2005   }
2006   ne_region->add_req(control());
2007 
2008   record_for_igvn(ne_region);
2009   set_control(_gvn.transform(ne_region));
2010   if (btest == BoolTest::ne) {
2011     {
2012       PreserveJVMState pjvms(this);
2013       if (null_ctl == top()) {
2014         replace_in_map(input, cast);
2015       }
2016       int target_bci = iter().get_dest();
2017       merge(target_bci);
2018     }
2019     record_for_igvn(eq_region);
2020     set_control(_gvn.transform(eq_region));
2021   } else {
2022     if (null_ctl == top()) {
2023       replace_in_map(input, cast);
2024     }
2025     set_control(_gvn.transform(ne_region));
2026   }
2027 }
2028 
2029 void Parse::acmp_unknown_non_inline_type_input(Node* input, const TypeOopPtr* tinput, ProfilePtrKind input_ptr, BoolTest::mask btest, Node* eq_region) {
2030   Node* ne_region = new RegionNode(1);
2031   Node* null_ctl;
2032   Node* cast = acmp_null_check(input, tinput, input_ptr, null_ctl);
2033   ne_region->add_req(null_ctl);
2034 
2035   {
2036     BuildCutout unless(this, inline_type_test(cast, /* is_inline = */ false), PROB_MAX);
2037     inc_sp(2);
2038     uncommon_trap_exact(Deoptimization::Reason_class_check, Deoptimization::Action_maybe_recompile);
2039   }
2040 
2041   ne_region->add_req(control());
2042 
2043   record_for_igvn(ne_region);
2044   set_control(_gvn.transform(ne_region));
2045   if (btest == BoolTest::ne) {
2046     {
2047       PreserveJVMState pjvms(this);
2048       if (null_ctl == top()) {
2049         replace_in_map(input, cast);
2050       }
2051       int target_bci = iter().get_dest();
2052       merge(target_bci);
2053     }
2054     record_for_igvn(eq_region);
2055     set_control(_gvn.transform(eq_region));
2056   } else {
2057     if (null_ctl == top()) {
2058       replace_in_map(input, cast);
2059     }
2060     set_control(_gvn.transform(ne_region));
2061   }
2062 }
2063 
2064 void Parse::do_acmp(BoolTest::mask btest, Node* left, Node* right) {
2065   ciKlass* left_type = nullptr;
2066   ciKlass* right_type = nullptr;
2067   ProfilePtrKind left_ptr = ProfileUnknownNull;
2068   ProfilePtrKind right_ptr = ProfileUnknownNull;
2069   bool left_inline_type = true;
2070   bool right_inline_type = true;
2071 
2072   // Leverage profiling at acmp
2073   if (UseACmpProfile) {
2074     method()->acmp_profiled_type(bci(), left_type, right_type, left_ptr, right_ptr, left_inline_type, right_inline_type);
2075     if (too_many_traps_or_recompiles(Deoptimization::Reason_class_check)) {
2076       left_type = nullptr;
2077       right_type = nullptr;
2078       left_inline_type = true;
2079       right_inline_type = true;
2080     }
2081     if (too_many_traps_or_recompiles(Deoptimization::Reason_null_check)) {
2082       left_ptr = ProfileUnknownNull;
2083       right_ptr = ProfileUnknownNull;
2084     }
2085   }
2086 
2087   if (UseTypeSpeculation) {
2088     record_profile_for_speculation(left, left_type, left_ptr);
2089     record_profile_for_speculation(right, right_type, right_ptr);
2090   }
2091 
2092   if (!EnableValhalla) {
2093     Node* cmp = CmpP(left, right);
2094     cmp = optimize_cmp_with_klass(cmp);
2095     do_if(btest, cmp);
2096     return;
2097   }
2098 
2099   // Check for equality before potentially allocating
2100   if (left == right) {
2101     do_if(btest, makecon(TypeInt::CC_EQ));
2102     return;
2103   }
2104 
2105   // Allocate inline type operands and re-execute on deoptimization
2106   if (left->is_InlineType()) {
2107     if (_gvn.type(right)->is_zero_type() ||
2108         (right->is_InlineType() && _gvn.type(right->as_InlineType()->get_is_init())->is_zero_type())) {
2109       // Null checking a scalarized but nullable inline type. Check the IsInit
2110       // input instead of the oop input to avoid keeping buffer allocations alive.
2111       Node* cmp = CmpI(left->as_InlineType()->get_is_init(), intcon(0));
2112       do_if(btest, cmp);
2113       return;
2114     } else {
2115       PreserveReexecuteState preexecs(this);
2116       inc_sp(2);
2117       jvms()->set_should_reexecute(true);
2118       left = left->as_InlineType()->buffer(this)->get_oop();
2119     }
2120   }
2121   if (right->is_InlineType()) {
2122     PreserveReexecuteState preexecs(this);
2123     inc_sp(2);
2124     jvms()->set_should_reexecute(true);
2125     right = right->as_InlineType()->buffer(this)->get_oop();
2126   }
2127 
2128   // First, do a normal pointer comparison
2129   const TypeOopPtr* tleft = _gvn.type(left)->isa_oopptr();
2130   const TypeOopPtr* tright = _gvn.type(right)->isa_oopptr();
2131   Node* cmp = CmpP(left, right);
2132   cmp = optimize_cmp_with_klass(cmp);
2133   if (tleft == nullptr || !tleft->can_be_inline_type() ||
2134       tright == nullptr || !tright->can_be_inline_type()) {
2135     // This is sufficient, if one of the operands can't be an inline type
2136     do_if(btest, cmp);
2137     return;
2138   }
2139 
2140   // Don't add traps to unstable if branches because additional checks are required to
2141   // decide if the operands are equal/substitutable and we therefore shouldn't prune
2142   // branches for one if based on the profiling of the acmp branches.
2143   // Also, OptimizeUnstableIf would set an incorrect re-rexecution state because it
2144   // assumes that there is a 1-1 mapping between the if and the acmp branches and that
2145   // hitting a trap means that we will take the corresponding acmp branch on re-execution.
2146   const bool can_trap = true;
2147 
2148   Node* eq_region = nullptr;
2149   if (btest == BoolTest::eq) {
2150     do_if(btest, cmp, !can_trap, true);
2151     if (stopped()) {
2152       // Pointers are equal, operands must be equal
2153       return;
2154     }
2155   } else {
2156     assert(btest == BoolTest::ne, "only eq or ne");
2157     Node* is_not_equal = nullptr;
2158     eq_region = new RegionNode(3);
2159     {
2160       PreserveJVMState pjvms(this);
2161       // Pointers are not equal, but more checks are needed to determine if the operands are (not) substitutable
2162       do_if(btest, cmp, !can_trap, false, &is_not_equal);
2163       if (!stopped()) {
2164         eq_region->init_req(1, control());
2165       }
2166     }
2167     if (is_not_equal == nullptr || is_not_equal->is_top()) {
2168       record_for_igvn(eq_region);
2169       set_control(_gvn.transform(eq_region));
2170       return;
2171     }
2172     set_control(is_not_equal);
2173   }
2174 
2175   // Prefer speculative types if available
2176   if (!too_many_traps_or_recompiles(Deoptimization::Reason_speculate_class_check)) {
2177     if (tleft->speculative_type() != nullptr) {
2178       left_type = tleft->speculative_type();
2179     }
2180     if (tright->speculative_type() != nullptr) {
2181       right_type = tright->speculative_type();
2182     }
2183   }
2184 
2185   if (speculative_ptr_kind(tleft) != ProfileMaybeNull && speculative_ptr_kind(tleft) != ProfileUnknownNull) {
2186     ProfilePtrKind speculative_left_ptr = speculative_ptr_kind(tleft);
2187     if (speculative_left_ptr == ProfileAlwaysNull && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_assert)) {
2188       left_ptr = speculative_left_ptr;
2189     } else if (speculative_left_ptr == ProfileNeverNull && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_check)) {
2190       left_ptr = speculative_left_ptr;
2191     }
2192   }
2193   if (speculative_ptr_kind(tright) != ProfileMaybeNull && speculative_ptr_kind(tright) != ProfileUnknownNull) {
2194     ProfilePtrKind speculative_right_ptr = speculative_ptr_kind(tright);
2195     if (speculative_right_ptr == ProfileAlwaysNull && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_assert)) {
2196       right_ptr = speculative_right_ptr;
2197     } else if (speculative_right_ptr == ProfileNeverNull && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_check)) {
2198       right_ptr = speculative_right_ptr;
2199     }
2200   }
2201 
2202   if (left_ptr == ProfileAlwaysNull) {
2203     // Comparison with null. Assert the input is indeed null and we're done.
2204     acmp_always_null_input(left, tleft, btest, eq_region);
2205     return;
2206   }
2207   if (right_ptr == ProfileAlwaysNull) {
2208     // Comparison with null. Assert the input is indeed null and we're done.
2209     acmp_always_null_input(right, tright, btest, eq_region);
2210     return;
2211   }
2212   if (left_type != nullptr && !left_type->is_inlinetype()) {
2213     // Comparison with an object of known type
2214     acmp_known_non_inline_type_input(left, tleft, left_ptr, left_type, btest, eq_region);
2215     return;
2216   }
2217   if (right_type != nullptr && !right_type->is_inlinetype()) {
2218     // Comparison with an object of known type
2219     acmp_known_non_inline_type_input(right, tright, right_ptr, right_type, btest, eq_region);
2220     return;
2221   }
2222   if (!left_inline_type) {
2223     // Comparison with an object known not to be an inline type
2224     acmp_unknown_non_inline_type_input(left, tleft, left_ptr, btest, eq_region);
2225     return;
2226   }
2227   if (!right_inline_type) {
2228     // Comparison with an object known not to be an inline type
2229     acmp_unknown_non_inline_type_input(right, tright, right_ptr, btest, eq_region);
2230     return;
2231   }
2232 
2233   // Pointers are not equal, check if first operand is non-null
2234   Node* ne_region = new RegionNode(6);
2235   Node* null_ctl;
2236   Node* not_null_right = acmp_null_check(right, tright, right_ptr, null_ctl);
2237   ne_region->init_req(1, null_ctl);
2238 
2239   // First operand is non-null, check if it is an inline type
2240   Node* is_value = inline_type_test(not_null_right);
2241   IfNode* is_value_iff = create_and_map_if(control(), is_value, PROB_FAIR, COUNT_UNKNOWN);
2242   Node* not_value = _gvn.transform(new IfFalseNode(is_value_iff));
2243   ne_region->init_req(2, not_value);
2244   set_control(_gvn.transform(new IfTrueNode(is_value_iff)));
2245 
2246   // The first operand is an inline type, check if the second operand is non-null
2247   Node* not_null_left = acmp_null_check(left, tleft, left_ptr, null_ctl);
2248   ne_region->init_req(3, null_ctl);
2249 
2250   // Check if both operands are of the same class.
2251   Node* kls_left = load_object_klass(not_null_left);
2252   Node* kls_right = load_object_klass(not_null_right);
2253   Node* kls_cmp = CmpP(kls_left, kls_right);
2254   Node* kls_bol = _gvn.transform(new BoolNode(kls_cmp, BoolTest::ne));
2255   IfNode* kls_iff = create_and_map_if(control(), kls_bol, PROB_FAIR, COUNT_UNKNOWN);
2256   Node* kls_ne = _gvn.transform(new IfTrueNode(kls_iff));
2257   set_control(_gvn.transform(new IfFalseNode(kls_iff)));
2258   ne_region->init_req(4, kls_ne);
2259 
2260   if (stopped()) {
2261     record_for_igvn(ne_region);
2262     set_control(_gvn.transform(ne_region));
2263     if (btest == BoolTest::ne) {
2264       {
2265         PreserveJVMState pjvms(this);
2266         int target_bci = iter().get_dest();
2267         merge(target_bci);
2268       }
2269       record_for_igvn(eq_region);
2270       set_control(_gvn.transform(eq_region));
2271     }
2272     return;
2273   }
2274 
2275   // Both operands are values types of the same class, we need to perform a
2276   // substitutability test. Delegate to ValueObjectMethods::isSubstitutable().
2277   Node* ne_io_phi = PhiNode::make(ne_region, i_o());
2278   Node* mem = reset_memory();
2279   Node* ne_mem_phi = PhiNode::make(ne_region, mem);
2280 
2281   Node* eq_io_phi = nullptr;
2282   Node* eq_mem_phi = nullptr;
2283   if (eq_region != nullptr) {
2284     eq_io_phi = PhiNode::make(eq_region, i_o());
2285     eq_mem_phi = PhiNode::make(eq_region, mem);
2286   }
2287 
2288   set_all_memory(mem);
2289 
2290   kill_dead_locals();
2291   ciMethod* subst_method = ciEnv::current()->ValueObjectMethods_klass()->find_method(ciSymbols::isSubstitutable_name(), ciSymbols::object_object_boolean_signature());
2292   CallStaticJavaNode *call = new CallStaticJavaNode(C, TypeFunc::make(subst_method), SharedRuntime::get_resolve_static_call_stub(), subst_method);
2293   call->set_override_symbolic_info(true);
2294   call->init_req(TypeFunc::Parms, not_null_left);
2295   call->init_req(TypeFunc::Parms+1, not_null_right);
2296   inc_sp(2);
2297   set_edges_for_java_call(call, false, false);
2298   Node* ret = set_results_for_java_call(call, false, true);
2299   dec_sp(2);
2300 
2301   // Test the return value of ValueObjectMethods::isSubstitutable()
2302   // This is the last check, do_if can emit traps now.
2303   Node* subst_cmp = _gvn.transform(new CmpINode(ret, intcon(1)));
2304   Node* ctl = C->top();
2305   if (btest == BoolTest::eq) {
2306     PreserveJVMState pjvms(this);
2307     do_if(btest, subst_cmp, can_trap);
2308     if (!stopped()) {
2309       ctl = control();
2310     }
2311   } else {
2312     assert(btest == BoolTest::ne, "only eq or ne");
2313     PreserveJVMState pjvms(this);
2314     do_if(btest, subst_cmp, can_trap, false, &ctl);
2315     if (!stopped()) {
2316       eq_region->init_req(2, control());
2317       eq_io_phi->init_req(2, i_o());
2318       eq_mem_phi->init_req(2, reset_memory());
2319     }
2320   }
2321   ne_region->init_req(5, ctl);
2322   ne_io_phi->init_req(5, i_o());
2323   ne_mem_phi->init_req(5, reset_memory());
2324 
2325   record_for_igvn(ne_region);
2326   set_control(_gvn.transform(ne_region));
2327   set_i_o(_gvn.transform(ne_io_phi));
2328   set_all_memory(_gvn.transform(ne_mem_phi));
2329 
2330   if (btest == BoolTest::ne) {
2331     {
2332       PreserveJVMState pjvms(this);
2333       int target_bci = iter().get_dest();
2334       merge(target_bci);
2335     }
2336 
2337     record_for_igvn(eq_region);
2338     set_control(_gvn.transform(eq_region));
2339     set_i_o(_gvn.transform(eq_io_phi));
2340     set_all_memory(_gvn.transform(eq_mem_phi));
2341   }
2342 }
2343 
2344 bool Parse::path_is_suitable_for_uncommon_trap(float prob) const {
2345   // Don't want to speculate on uncommon traps when running with -Xcomp
2346   if (!UseInterpreter) {
2347     return false;
2348   }
2349   return seems_never_taken(prob) &&
2350          !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if);
2351 }
2352 
2353 void Parse::maybe_add_predicate_after_if(Block* path) {
2354   if (path->is_SEL_head() && path->preds_parsed() == 0) {
2355     // Add predicates at bci of if dominating the loop so traps can be
2356     // recorded on the if's profile data
2357     int bc_depth = repush_if_args();
2358     add_parse_predicates();
2359     dec_sp(bc_depth);
2360     path->set_has_predicates();
2361   }
2362 }
2363 
2364 
2365 //----------------------------adjust_map_after_if------------------------------
2366 // Adjust the JVM state to reflect the result of taking this path.
2367 // Basically, it means inspecting the CmpNode controlling this
2368 // branch, seeing how it constrains a tested value, and then
2369 // deciding if it's worth our while to encode this constraint
2370 // as graph nodes in the current abstract interpretation map.
2371 void Parse::adjust_map_after_if(BoolTest::mask btest, Node* c, float prob, Block* path, bool can_trap) {
2372   if (!c->is_Cmp()) {
2373     maybe_add_predicate_after_if(path);
2374     return;
2375   }
2376 
2377   if (stopped() || btest == BoolTest::illegal) {
2378     return;                             // nothing to do
2379   }
2380 
2381   bool is_fallthrough = (path == successor_for_bci(iter().next_bci()));
2382 
2383   if (can_trap && path_is_suitable_for_uncommon_trap(prob)) {
2384     repush_if_args();
2385     Node* call = uncommon_trap(Deoptimization::Reason_unstable_if,
2386                   Deoptimization::Action_reinterpret,
2387                   nullptr,
2388                   (is_fallthrough ? "taken always" : "taken never"));
2389 
2390     if (call != nullptr) {
2391       C->record_unstable_if_trap(new UnstableIfTrap(call->as_CallStaticJava(), path));
2392     }
2393     return;
2394   }
2395 
2396   Node* val = c->in(1);
2397   Node* con = c->in(2);
2398   const Type* tcon = _gvn.type(con);
2399   const Type* tval = _gvn.type(val);
2400   bool have_con = tcon->singleton();
2401   if (tval->singleton()) {
2402     if (!have_con) {
2403       // Swap, so constant is in con.

2460     if (obj != nullptr && (con_type->isa_instptr() || con_type->isa_aryptr())) {
2461        // Found:
2462        //   Bool(CmpP(LoadKlass(obj._klass), ConP(Foo.klass)), [eq])
2463        // or the narrowOop equivalent.
2464        const Type* obj_type = _gvn.type(obj);
2465        const TypeOopPtr* tboth = obj_type->join_speculative(con_type)->isa_oopptr();
2466        if (tboth != nullptr && tboth->klass_is_exact() && tboth != obj_type &&
2467            tboth->higher_equal(obj_type)) {
2468           // obj has to be of the exact type Foo if the CmpP succeeds.
2469           int obj_in_map = map()->find_edge(obj);
2470           JVMState* jvms = this->jvms();
2471           if (obj_in_map >= 0 &&
2472               (jvms->is_loc(obj_in_map) || jvms->is_stk(obj_in_map))) {
2473             TypeNode* ccast = new CheckCastPPNode(control(), obj, tboth);
2474             const Type* tcc = ccast->as_Type()->type();
2475             assert(tcc != obj_type && tcc->higher_equal(obj_type), "must improve");
2476             // Delay transform() call to allow recovery of pre-cast value
2477             // at the control merge.
2478             _gvn.set_type_bottom(ccast);
2479             record_for_igvn(ccast);
2480             if (tboth->is_inlinetypeptr()) {
2481               ccast = InlineTypeNode::make_from_oop(this, ccast, tboth->exact_klass(true)->as_inline_klass());
2482             }
2483             // Here's the payoff.
2484             replace_in_map(obj, ccast);
2485           }
2486        }
2487     }
2488   }
2489 
2490   int val_in_map = map()->find_edge(val);
2491   if (val_in_map < 0)  return;          // replace_in_map would be useless
2492   {
2493     JVMState* jvms = this->jvms();
2494     if (!(jvms->is_loc(val_in_map) ||
2495           jvms->is_stk(val_in_map)))
2496       return;                           // again, it would be useless
2497   }
2498 
2499   // Check for a comparison to a constant, and "know" that the compared
2500   // value is constrained on this path.
2501   assert(tcon->singleton(), "");
2502   ConstraintCastNode* ccast = nullptr;

2567   if (c->Opcode() == Op_CmpP &&
2568       (c->in(1)->Opcode() == Op_LoadKlass || c->in(1)->Opcode() == Op_DecodeNKlass) &&
2569       c->in(2)->is_Con()) {
2570     Node* load_klass = nullptr;
2571     Node* decode = nullptr;
2572     if (c->in(1)->Opcode() == Op_DecodeNKlass) {
2573       decode = c->in(1);
2574       load_klass = c->in(1)->in(1);
2575     } else {
2576       load_klass = c->in(1);
2577     }
2578     if (load_klass->in(2)->is_AddP()) {
2579       Node* addp = load_klass->in(2);
2580       Node* obj = addp->in(AddPNode::Address);
2581       const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
2582       if (obj_type->speculative_type_not_null() != nullptr) {
2583         ciKlass* k = obj_type->speculative_type();
2584         inc_sp(2);
2585         obj = maybe_cast_profiled_obj(obj, k);
2586         dec_sp(2);
2587         if (obj->is_InlineType()) {
2588           assert(obj->as_InlineType()->is_allocated(&_gvn), "must be allocated");
2589           obj = obj->as_InlineType()->get_oop();
2590         }
2591         // Make the CmpP use the casted obj
2592         addp = basic_plus_adr(obj, addp->in(AddPNode::Offset));
2593         load_klass = load_klass->clone();
2594         load_klass->set_req(2, addp);
2595         load_klass = _gvn.transform(load_klass);
2596         if (decode != nullptr) {
2597           decode = decode->clone();
2598           decode->set_req(1, load_klass);
2599           load_klass = _gvn.transform(decode);
2600         }
2601         c = c->clone();
2602         c->set_req(1, load_klass);
2603         c = _gvn.transform(c);
2604       }
2605     }
2606   }
2607   return c;
2608 }
2609 
2610 //------------------------------do_one_bytecode--------------------------------

3417     // See if we can get some profile data and hand it off to the next block
3418     Block *target_block = block()->successor_for_bci(target_bci);
3419     if (target_block->pred_count() != 1)  break;
3420     ciMethodData* methodData = method()->method_data();
3421     if (!methodData->is_mature())  break;
3422     ciProfileData* data = methodData->bci_to_data(bci());
3423     assert(data != nullptr && data->is_JumpData(), "need JumpData for taken branch");
3424     int taken = ((ciJumpData*)data)->taken();
3425     taken = method()->scale_count(taken);
3426     target_block->set_count(taken);
3427     break;
3428   }
3429 
3430   case Bytecodes::_ifnull:    btest = BoolTest::eq; goto handle_if_null;
3431   case Bytecodes::_ifnonnull: btest = BoolTest::ne; goto handle_if_null;
3432   handle_if_null:
3433     // If this is a backwards branch in the bytecodes, add Safepoint
3434     maybe_add_safepoint(iter().get_dest());
3435     a = null();
3436     b = pop();
3437     if (b->is_InlineType()) {
3438       // Null checking a scalarized but nullable inline type. Check the IsInit
3439       // input instead of the oop input to avoid keeping buffer allocations alive
3440       c = _gvn.transform(new CmpINode(b->as_InlineType()->get_is_init(), zerocon(T_INT)));
3441     } else {
3442       if (!_gvn.type(b)->speculative_maybe_null() &&
3443           !too_many_traps(Deoptimization::Reason_speculate_null_check)) {
3444         inc_sp(1);
3445         Node* null_ctl = top();
3446         b = null_check_oop(b, &null_ctl, true, true, true);
3447         assert(null_ctl->is_top(), "no null control here");
3448         dec_sp(1);
3449       } else if (_gvn.type(b)->speculative_always_null() &&
3450                  !too_many_traps(Deoptimization::Reason_speculate_null_assert)) {
3451         inc_sp(1);
3452         b = null_assert(b);
3453         dec_sp(1);
3454       }
3455       c = _gvn.transform( new CmpPNode(b, a) );
3456     }
3457     do_ifnull(btest, c);
3458     break;
3459 
3460   case Bytecodes::_if_acmpeq: btest = BoolTest::eq; goto handle_if_acmp;
3461   case Bytecodes::_if_acmpne: btest = BoolTest::ne; goto handle_if_acmp;
3462   handle_if_acmp:
3463     // If this is a backwards branch in the bytecodes, add Safepoint
3464     maybe_add_safepoint(iter().get_dest());
3465     a = pop();
3466     b = pop();
3467     do_acmp(btest, b, a);


3468     break;
3469 
3470   case Bytecodes::_ifeq: btest = BoolTest::eq; goto handle_ifxx;
3471   case Bytecodes::_ifne: btest = BoolTest::ne; goto handle_ifxx;
3472   case Bytecodes::_iflt: btest = BoolTest::lt; goto handle_ifxx;
3473   case Bytecodes::_ifle: btest = BoolTest::le; goto handle_ifxx;
3474   case Bytecodes::_ifgt: btest = BoolTest::gt; goto handle_ifxx;
3475   case Bytecodes::_ifge: btest = BoolTest::ge; goto handle_ifxx;
3476   handle_ifxx:
3477     // If this is a backwards branch in the bytecodes, add Safepoint
3478     maybe_add_safepoint(iter().get_dest());
3479     a = _gvn.intcon(0);
3480     b = pop();
3481     c = _gvn.transform( new CmpINode(b, a) );
3482     do_if(btest, c);
3483     break;
3484 
3485   case Bytecodes::_if_icmpeq: btest = BoolTest::eq; goto handle_if_icmp;
3486   case Bytecodes::_if_icmpne: btest = BoolTest::ne; goto handle_if_icmp;
3487   case Bytecodes::_if_icmplt: btest = BoolTest::lt; goto handle_if_icmp;

3502     break;
3503 
3504   case Bytecodes::_lookupswitch:
3505     do_lookupswitch();
3506     break;
3507 
3508   case Bytecodes::_invokestatic:
3509   case Bytecodes::_invokedynamic:
3510   case Bytecodes::_invokespecial:
3511   case Bytecodes::_invokevirtual:
3512   case Bytecodes::_invokeinterface:
3513     do_call();
3514     break;
3515   case Bytecodes::_checkcast:
3516     do_checkcast();
3517     break;
3518   case Bytecodes::_instanceof:
3519     do_instanceof();
3520     break;
3521   case Bytecodes::_anewarray:
3522     do_newarray();
3523     break;
3524   case Bytecodes::_newarray:
3525     do_newarray((BasicType)iter().get_index());
3526     break;
3527   case Bytecodes::_multianewarray:
3528     do_multianewarray();
3529     break;
3530   case Bytecodes::_new:
3531     do_new();
3532     break;
3533 
3534   case Bytecodes::_jsr:
3535   case Bytecodes::_jsr_w:
3536     do_jsr();
3537     break;
3538 
3539   case Bytecodes::_ret:
3540     do_ret();
3541     break;
3542 
< prev index next >