1 /*
2 * Copyright (c) 1998, 2024, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "precompiled.hpp"
26 #include "ci/ciMethodData.hpp"
27 #include "classfile/vmSymbols.hpp"
28 #include "compiler/compileLog.hpp"
29 #include "interpreter/linkResolver.hpp"
30 #include "jvm_io.h"
31 #include "memory/resourceArea.hpp"
32 #include "memory/universe.hpp"
33 #include "oops/oop.inline.hpp"
34 #include "opto/addnode.hpp"
35 #include "opto/castnode.hpp"
36 #include "opto/convertnode.hpp"
37 #include "opto/divnode.hpp"
38 #include "opto/idealGraphPrinter.hpp"
39 #include "opto/matcher.hpp"
40 #include "opto/memnode.hpp"
41 #include "opto/mulnode.hpp"
42 #include "opto/opaquenode.hpp"
43 #include "opto/parse.hpp"
44 #include "opto/runtime.hpp"
45 #include "runtime/deoptimization.hpp"
46 #include "runtime/sharedRuntime.hpp"
47
48 #ifndef PRODUCT
49 extern uint explicit_null_checks_inserted,
50 explicit_null_checks_elided;
51 #endif
52
53 //---------------------------------array_load----------------------------------
54 void Parse::array_load(BasicType bt) {
55 const Type* elemtype = Type::TOP;
56 bool big_val = bt == T_DOUBLE || bt == T_LONG;
57 Node* adr = array_addressing(bt, 0, elemtype);
58 if (stopped()) return; // guaranteed null or range check
59
60 pop(); // index (already used)
61 Node* array = pop(); // the array itself
62
63 if (elemtype == TypeInt::BOOL) {
64 bt = T_BOOLEAN;
65 }
66 const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt);
67
68 Node* ld = access_load_at(array, adr, adr_type, elemtype, bt,
69 IN_HEAP | IS_ARRAY | C2_CONTROL_DEPENDENT_LOAD);
70 if (big_val) {
71 push_pair(ld);
72 } else {
73 push(ld);
74 }
75 }
76
77
78 //--------------------------------array_store----------------------------------
79 void Parse::array_store(BasicType bt) {
80 const Type* elemtype = Type::TOP;
81 bool big_val = bt == T_DOUBLE || bt == T_LONG;
82 Node* adr = array_addressing(bt, big_val ? 2 : 1, elemtype);
83 if (stopped()) return; // guaranteed null or range check
84 if (bt == T_OBJECT) {
85 array_store_check();
86 if (stopped()) {
87 return;
88 }
89 }
90 Node* val; // Oop to store
91 if (big_val) {
92 val = pop_pair();
93 } else {
94 val = pop();
95 }
96 pop(); // index (already used)
97 Node* array = pop(); // the array itself
98
99 if (elemtype == TypeInt::BOOL) {
100 bt = T_BOOLEAN;
101 }
102 const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt);
103
104 access_store_at(array, adr, adr_type, val, elemtype, bt, MO_UNORDERED | IN_HEAP | IS_ARRAY);
105 }
106
107
108 //------------------------------array_addressing-------------------------------
109 // Pull array and index from the stack. Compute pointer-to-element.
110 Node* Parse::array_addressing(BasicType type, int vals, const Type*& elemtype) {
111 Node *idx = peek(0+vals); // Get from stack without popping
112 Node *ary = peek(1+vals); // in case of exception
113
114 // Null check the array base, with correct stack contents
115 ary = null_check(ary, T_ARRAY);
116 // Compile-time detect of null-exception?
117 if (stopped()) return top();
118
119 const TypeAryPtr* arytype = _gvn.type(ary)->is_aryptr();
120 const TypeInt* sizetype = arytype->size();
121 elemtype = arytype->elem();
122
123 if (UseUniqueSubclasses) {
124 const Type* el = elemtype->make_ptr();
125 if (el && el->isa_instptr()) {
126 const TypeInstPtr* toop = el->is_instptr();
127 if (toop->instance_klass()->unique_concrete_subklass()) {
128 // If we load from "AbstractClass[]" we must see "ConcreteSubClass".
129 const Type* subklass = Type::get_const_type(toop->instance_klass());
130 elemtype = subklass->join_speculative(el);
131 }
132 }
133 }
134
135 // Check for big class initializers with all constant offsets
136 // feeding into a known-size array.
137 const TypeInt* idxtype = _gvn.type(idx)->is_int();
138 // See if the highest idx value is less than the lowest array bound,
139 // and if the idx value cannot be negative:
140 bool need_range_check = true;
141 if (idxtype->_hi < sizetype->_lo && idxtype->_lo >= 0) {
142 need_range_check = false;
143 if (C->log() != nullptr) C->log()->elem("observe that='!need_range_check'");
144 }
145
146 if (!arytype->is_loaded()) {
147 // Only fails for some -Xcomp runs
148 // The class is unloaded. We have to run this bytecode in the interpreter.
149 ciKlass* klass = arytype->unloaded_klass();
150
151 uncommon_trap(Deoptimization::Reason_unloaded,
152 Deoptimization::Action_reinterpret,
153 klass, "!loaded array");
154 return top();
155 }
156
157 // Do the range check
158 if (need_range_check) {
159 Node* tst;
160 if (sizetype->_hi <= 0) {
161 // The greatest array bound is negative, so we can conclude that we're
162 // compiling unreachable code, but the unsigned compare trick used below
163 // only works with non-negative lengths. Instead, hack "tst" to be zero so
164 // the uncommon_trap path will always be taken.
165 tst = _gvn.intcon(0);
166 } else {
167 // Range is constant in array-oop, so we can use the original state of mem
168 Node* len = load_array_length(ary);
169
170 // Test length vs index (standard trick using unsigned compare)
171 Node* chk = _gvn.transform( new CmpUNode(idx, len) );
172 BoolTest::mask btest = BoolTest::lt;
173 tst = _gvn.transform( new BoolNode(chk, btest) );
174 }
175 RangeCheckNode* rc = new RangeCheckNode(control(), tst, PROB_MAX, COUNT_UNKNOWN);
176 _gvn.set_type(rc, rc->Value(&_gvn));
177 if (!tst->is_Con()) {
178 record_for_igvn(rc);
179 }
180 set_control(_gvn.transform(new IfTrueNode(rc)));
181 // Branch to failure if out of bounds
182 {
183 PreserveJVMState pjvms(this);
184 set_control(_gvn.transform(new IfFalseNode(rc)));
185 if (C->allow_range_check_smearing()) {
186 // Do not use builtin_throw, since range checks are sometimes
187 // made more stringent by an optimistic transformation.
188 // This creates "tentative" range checks at this point,
189 // which are not guaranteed to throw exceptions.
190 // See IfNode::Ideal, is_range_check, adjust_check.
191 uncommon_trap(Deoptimization::Reason_range_check,
192 Deoptimization::Action_make_not_entrant,
193 nullptr, "range_check");
194 } else {
195 // If we have already recompiled with the range-check-widening
196 // heroic optimization turned off, then we must really be throwing
197 // range check exceptions.
198 builtin_throw(Deoptimization::Reason_range_check);
199 }
200 }
201 }
202 // Check for always knowing you are throwing a range-check exception
203 if (stopped()) return top();
204
205 // Make array address computation control dependent to prevent it
206 // from floating above the range check during loop optimizations.
207 Node* ptr = array_element_address(ary, idx, type, sizetype, control());
208 assert(ptr != top(), "top should go hand-in-hand with stopped");
209
210 return ptr;
211 }
212
213
214 // returns IfNode
215 IfNode* Parse::jump_if_fork_int(Node* a, Node* b, BoolTest::mask mask, float prob, float cnt) {
216 Node *cmp = _gvn.transform(new CmpINode(a, b)); // two cases: shiftcount > 32 and shiftcount <= 32
217 Node *tst = _gvn.transform(new BoolNode(cmp, mask));
218 IfNode *iff = create_and_map_if(control(), tst, prob, cnt);
219 return iff;
220 }
221
222
223 // sentinel value for the target bci to mark never taken branches
224 // (according to profiling)
225 static const int never_reached = INT_MAX;
226
227 //------------------------------helper for tableswitch-------------------------
228 void Parse::jump_if_true_fork(IfNode *iff, int dest_bci_if_true, bool unc) {
229 // True branch, use existing map info
230 { PreserveJVMState pjvms(this);
231 Node *iftrue = _gvn.transform( new IfTrueNode (iff) );
232 set_control( iftrue );
1446 // False branch
1447 Node* iffalse = _gvn.transform( new IfFalseNode(iff) );
1448 set_control(iffalse);
1449
1450 if (stopped()) { // Path is dead?
1451 NOT_PRODUCT(explicit_null_checks_elided++);
1452 if (C->eliminate_boxing()) {
1453 // Mark the successor block as parsed
1454 next_block->next_path_num();
1455 }
1456 } else { // Path is live.
1457 adjust_map_after_if(BoolTest(btest).negate(), c, 1.0-prob, next_block);
1458 }
1459
1460 if (do_stress_trap) {
1461 stress_trap(iff, counter, incr_store);
1462 }
1463 }
1464
1465 //------------------------------------do_if------------------------------------
1466 void Parse::do_if(BoolTest::mask btest, Node* c) {
1467 int target_bci = iter().get_dest();
1468
1469 Block* branch_block = successor_for_bci(target_bci);
1470 Block* next_block = successor_for_bci(iter().next_bci());
1471
1472 float cnt;
1473 float prob = branch_prediction(cnt, btest, target_bci, c);
1474 float untaken_prob = 1.0 - prob;
1475
1476 if (prob == PROB_UNKNOWN) {
1477 if (PrintOpto && Verbose) {
1478 tty->print_cr("Never-taken edge stops compilation at bci %d", bci());
1479 }
1480 repush_if_args(); // to gather stats on loop
1481 uncommon_trap(Deoptimization::Reason_unreached,
1482 Deoptimization::Action_reinterpret,
1483 nullptr, "cold");
1484 if (C->eliminate_boxing()) {
1485 // Mark the successor blocks as parsed
1486 branch_block->next_path_num();
1537 }
1538
1539 // Generate real control flow
1540 float true_prob = (taken_if_true ? prob : untaken_prob);
1541 IfNode* iff = create_and_map_if(control(), tst, true_prob, cnt);
1542 assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
1543 Node* taken_branch = new IfTrueNode(iff);
1544 Node* untaken_branch = new IfFalseNode(iff);
1545 if (!taken_if_true) { // Finish conversion to canonical form
1546 Node* tmp = taken_branch;
1547 taken_branch = untaken_branch;
1548 untaken_branch = tmp;
1549 }
1550
1551 // Branch is taken:
1552 { PreserveJVMState pjvms(this);
1553 taken_branch = _gvn.transform(taken_branch);
1554 set_control(taken_branch);
1555
1556 if (stopped()) {
1557 if (C->eliminate_boxing()) {
1558 // Mark the successor block as parsed
1559 branch_block->next_path_num();
1560 }
1561 } else {
1562 adjust_map_after_if(taken_btest, c, prob, branch_block);
1563 if (!stopped()) {
1564 merge(target_bci);
1565 }
1566 }
1567 }
1568
1569 untaken_branch = _gvn.transform(untaken_branch);
1570 set_control(untaken_branch);
1571
1572 // Branch not taken.
1573 if (stopped()) {
1574 if (C->eliminate_boxing()) {
1575 // Mark the successor block as parsed
1576 next_block->next_path_num();
1577 }
1578 } else {
1579 adjust_map_after_if(untaken_btest, c, untaken_prob, next_block);
1580 }
1581
1582 if (do_stress_trap) {
1583 stress_trap(iff, counter, incr_store);
1584 }
1585 }
1586
1587 // Force unstable if traps to be taken randomly to trigger intermittent bugs such as incorrect debug information.
1588 // Add another if before the unstable if that checks a "random" condition at runtime (a simple shared counter) and
1589 // then either takes the trap or executes the original, unstable if.
1590 void Parse::stress_trap(IfNode* orig_iff, Node* counter, Node* incr_store) {
1591 // Search for an unstable if trap
1592 CallStaticJavaNode* trap = nullptr;
1593 assert(orig_iff->Opcode() == Op_If && orig_iff->outcnt() == 2, "malformed if");
1594 ProjNode* trap_proj = orig_iff->uncommon_trap_proj(trap, Deoptimization::Reason_unstable_if);
1595 if (trap == nullptr || !trap->jvms()->should_reexecute()) {
1596 // No suitable trap found. Remove unused counter load and increment.
1597 C->gvn_replace_by(incr_store, incr_store->in(MemNode::Memory));
1598 return;
1599 }
1600
1601 // Remove trap from optimization list since we add another path to the trap.
1602 bool success = C->remove_unstable_if_trap(trap, true);
1603 assert(success, "Trap already modified");
1604
1605 // Add a check before the original if that will trap with a certain frequency and execute the original if otherwise
1606 int freq_log = (C->random() % 31) + 1; // Random logarithmic frequency in [1, 31]
1639 }
1640
1641 void Parse::maybe_add_predicate_after_if(Block* path) {
1642 if (path->is_SEL_head() && path->preds_parsed() == 0) {
1643 // Add predicates at bci of if dominating the loop so traps can be
1644 // recorded on the if's profile data
1645 int bc_depth = repush_if_args();
1646 add_parse_predicates();
1647 dec_sp(bc_depth);
1648 path->set_has_predicates();
1649 }
1650 }
1651
1652
1653 //----------------------------adjust_map_after_if------------------------------
1654 // Adjust the JVM state to reflect the result of taking this path.
1655 // Basically, it means inspecting the CmpNode controlling this
1656 // branch, seeing how it constrains a tested value, and then
1657 // deciding if it's worth our while to encode this constraint
1658 // as graph nodes in the current abstract interpretation map.
1659 void Parse::adjust_map_after_if(BoolTest::mask btest, Node* c, float prob, Block* path) {
1660 if (!c->is_Cmp()) {
1661 maybe_add_predicate_after_if(path);
1662 return;
1663 }
1664
1665 if (stopped() || btest == BoolTest::illegal) {
1666 return; // nothing to do
1667 }
1668
1669 bool is_fallthrough = (path == successor_for_bci(iter().next_bci()));
1670
1671 if (path_is_suitable_for_uncommon_trap(prob)) {
1672 repush_if_args();
1673 Node* call = uncommon_trap(Deoptimization::Reason_unstable_if,
1674 Deoptimization::Action_reinterpret,
1675 nullptr,
1676 (is_fallthrough ? "taken always" : "taken never"));
1677
1678 if (call != nullptr) {
1679 C->record_unstable_if_trap(new UnstableIfTrap(call->as_CallStaticJava(), path));
1680 }
1681 return;
1682 }
1683
1684 Node* val = c->in(1);
1685 Node* con = c->in(2);
1686 const Type* tcon = _gvn.type(con);
1687 const Type* tval = _gvn.type(val);
1688 bool have_con = tcon->singleton();
1689 if (tval->singleton()) {
1690 if (!have_con) {
1691 // Swap, so constant is in con.
1748 if (obj != nullptr && (con_type->isa_instptr() || con_type->isa_aryptr())) {
1749 // Found:
1750 // Bool(CmpP(LoadKlass(obj._klass), ConP(Foo.klass)), [eq])
1751 // or the narrowOop equivalent.
1752 const Type* obj_type = _gvn.type(obj);
1753 const TypeOopPtr* tboth = obj_type->join_speculative(con_type)->isa_oopptr();
1754 if (tboth != nullptr && tboth->klass_is_exact() && tboth != obj_type &&
1755 tboth->higher_equal(obj_type)) {
1756 // obj has to be of the exact type Foo if the CmpP succeeds.
1757 int obj_in_map = map()->find_edge(obj);
1758 JVMState* jvms = this->jvms();
1759 if (obj_in_map >= 0 &&
1760 (jvms->is_loc(obj_in_map) || jvms->is_stk(obj_in_map))) {
1761 TypeNode* ccast = new CheckCastPPNode(control(), obj, tboth);
1762 const Type* tcc = ccast->as_Type()->type();
1763 assert(tcc != obj_type && tcc->higher_equal(obj_type), "must improve");
1764 // Delay transform() call to allow recovery of pre-cast value
1765 // at the control merge.
1766 _gvn.set_type_bottom(ccast);
1767 record_for_igvn(ccast);
1768 // Here's the payoff.
1769 replace_in_map(obj, ccast);
1770 }
1771 }
1772 }
1773 }
1774
1775 int val_in_map = map()->find_edge(val);
1776 if (val_in_map < 0) return; // replace_in_map would be useless
1777 {
1778 JVMState* jvms = this->jvms();
1779 if (!(jvms->is_loc(val_in_map) ||
1780 jvms->is_stk(val_in_map)))
1781 return; // again, it would be useless
1782 }
1783
1784 // Check for a comparison to a constant, and "know" that the compared
1785 // value is constrained on this path.
1786 assert(tcon->singleton(), "");
1787 ConstraintCastNode* ccast = nullptr;
1852 if (c->Opcode() == Op_CmpP &&
1853 (c->in(1)->Opcode() == Op_LoadKlass || c->in(1)->Opcode() == Op_DecodeNKlass) &&
1854 c->in(2)->is_Con()) {
1855 Node* load_klass = nullptr;
1856 Node* decode = nullptr;
1857 if (c->in(1)->Opcode() == Op_DecodeNKlass) {
1858 decode = c->in(1);
1859 load_klass = c->in(1)->in(1);
1860 } else {
1861 load_klass = c->in(1);
1862 }
1863 if (load_klass->in(2)->is_AddP()) {
1864 Node* addp = load_klass->in(2);
1865 Node* obj = addp->in(AddPNode::Address);
1866 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
1867 if (obj_type->speculative_type_not_null() != nullptr) {
1868 ciKlass* k = obj_type->speculative_type();
1869 inc_sp(2);
1870 obj = maybe_cast_profiled_obj(obj, k);
1871 dec_sp(2);
1872 // Make the CmpP use the casted obj
1873 addp = basic_plus_adr(obj, addp->in(AddPNode::Offset));
1874 load_klass = load_klass->clone();
1875 load_klass->set_req(2, addp);
1876 load_klass = _gvn.transform(load_klass);
1877 if (decode != nullptr) {
1878 decode = decode->clone();
1879 decode->set_req(1, load_klass);
1880 load_klass = _gvn.transform(decode);
1881 }
1882 c = c->clone();
1883 c->set_req(1, load_klass);
1884 c = _gvn.transform(c);
1885 }
1886 }
1887 }
1888 return c;
1889 }
1890
1891 //------------------------------do_one_bytecode--------------------------------
2685 // See if we can get some profile data and hand it off to the next block
2686 Block *target_block = block()->successor_for_bci(target_bci);
2687 if (target_block->pred_count() != 1) break;
2688 ciMethodData* methodData = method()->method_data();
2689 if (!methodData->is_mature()) break;
2690 ciProfileData* data = methodData->bci_to_data(bci());
2691 assert(data != nullptr && data->is_JumpData(), "need JumpData for taken branch");
2692 int taken = ((ciJumpData*)data)->taken();
2693 taken = method()->scale_count(taken);
2694 target_block->set_count(taken);
2695 break;
2696 }
2697
2698 case Bytecodes::_ifnull: btest = BoolTest::eq; goto handle_if_null;
2699 case Bytecodes::_ifnonnull: btest = BoolTest::ne; goto handle_if_null;
2700 handle_if_null:
2701 // If this is a backwards branch in the bytecodes, add Safepoint
2702 maybe_add_safepoint(iter().get_dest());
2703 a = null();
2704 b = pop();
2705 if (!_gvn.type(b)->speculative_maybe_null() &&
2706 !too_many_traps(Deoptimization::Reason_speculate_null_check)) {
2707 inc_sp(1);
2708 Node* null_ctl = top();
2709 b = null_check_oop(b, &null_ctl, true, true, true);
2710 assert(null_ctl->is_top(), "no null control here");
2711 dec_sp(1);
2712 } else if (_gvn.type(b)->speculative_always_null() &&
2713 !too_many_traps(Deoptimization::Reason_speculate_null_assert)) {
2714 inc_sp(1);
2715 b = null_assert(b);
2716 dec_sp(1);
2717 }
2718 c = _gvn.transform( new CmpPNode(b, a) );
2719 do_ifnull(btest, c);
2720 break;
2721
2722 case Bytecodes::_if_acmpeq: btest = BoolTest::eq; goto handle_if_acmp;
2723 case Bytecodes::_if_acmpne: btest = BoolTest::ne; goto handle_if_acmp;
2724 handle_if_acmp:
2725 // If this is a backwards branch in the bytecodes, add Safepoint
2726 maybe_add_safepoint(iter().get_dest());
2727 a = pop();
2728 b = pop();
2729 c = _gvn.transform( new CmpPNode(b, a) );
2730 c = optimize_cmp_with_klass(c);
2731 do_if(btest, c);
2732 break;
2733
2734 case Bytecodes::_ifeq: btest = BoolTest::eq; goto handle_ifxx;
2735 case Bytecodes::_ifne: btest = BoolTest::ne; goto handle_ifxx;
2736 case Bytecodes::_iflt: btest = BoolTest::lt; goto handle_ifxx;
2737 case Bytecodes::_ifle: btest = BoolTest::le; goto handle_ifxx;
2738 case Bytecodes::_ifgt: btest = BoolTest::gt; goto handle_ifxx;
2739 case Bytecodes::_ifge: btest = BoolTest::ge; goto handle_ifxx;
2740 handle_ifxx:
2741 // If this is a backwards branch in the bytecodes, add Safepoint
2742 maybe_add_safepoint(iter().get_dest());
2743 a = _gvn.intcon(0);
2744 b = pop();
2745 c = _gvn.transform( new CmpINode(b, a) );
2746 do_if(btest, c);
2747 break;
2748
2749 case Bytecodes::_if_icmpeq: btest = BoolTest::eq; goto handle_if_icmp;
2750 case Bytecodes::_if_icmpne: btest = BoolTest::ne; goto handle_if_icmp;
2751 case Bytecodes::_if_icmplt: btest = BoolTest::lt; goto handle_if_icmp;
2766 break;
2767
2768 case Bytecodes::_lookupswitch:
2769 do_lookupswitch();
2770 break;
2771
2772 case Bytecodes::_invokestatic:
2773 case Bytecodes::_invokedynamic:
2774 case Bytecodes::_invokespecial:
2775 case Bytecodes::_invokevirtual:
2776 case Bytecodes::_invokeinterface:
2777 do_call();
2778 break;
2779 case Bytecodes::_checkcast:
2780 do_checkcast();
2781 break;
2782 case Bytecodes::_instanceof:
2783 do_instanceof();
2784 break;
2785 case Bytecodes::_anewarray:
2786 do_anewarray();
2787 break;
2788 case Bytecodes::_newarray:
2789 do_newarray((BasicType)iter().get_index());
2790 break;
2791 case Bytecodes::_multianewarray:
2792 do_multianewarray();
2793 break;
2794 case Bytecodes::_new:
2795 do_new();
2796 break;
2797
2798 case Bytecodes::_jsr:
2799 case Bytecodes::_jsr_w:
2800 do_jsr();
2801 break;
2802
2803 case Bytecodes::_ret:
2804 do_ret();
2805 break;
2806
|
1 /*
2 * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "precompiled.hpp"
26 #include "ci/ciMethodData.hpp"
27 #include "ci/ciSymbols.hpp"
28 #include "classfile/vmSymbols.hpp"
29 #include "compiler/compileLog.hpp"
30 #include "interpreter/linkResolver.hpp"
31 #include "jvm_io.h"
32 #include "memory/resourceArea.hpp"
33 #include "memory/universe.hpp"
34 #include "oops/oop.inline.hpp"
35 #include "opto/addnode.hpp"
36 #include "opto/castnode.hpp"
37 #include "opto/convertnode.hpp"
38 #include "opto/divnode.hpp"
39 #include "opto/idealGraphPrinter.hpp"
40 #include "opto/idealKit.hpp"
41 #include "opto/inlinetypenode.hpp"
42 #include "opto/matcher.hpp"
43 #include "opto/memnode.hpp"
44 #include "opto/mulnode.hpp"
45 #include "opto/opaquenode.hpp"
46 #include "opto/parse.hpp"
47 #include "opto/runtime.hpp"
48 #include "runtime/deoptimization.hpp"
49 #include "runtime/sharedRuntime.hpp"
50
51 #ifndef PRODUCT
52 extern uint explicit_null_checks_inserted,
53 explicit_null_checks_elided;
54 #endif
55
56 Node* Parse::record_profile_for_speculation_at_array_load(Node* ld) {
57 // Feed unused profile data to type speculation
58 if (UseTypeSpeculation && UseArrayLoadStoreProfile) {
59 ciKlass* array_type = nullptr;
60 ciKlass* element_type = nullptr;
61 ProfilePtrKind element_ptr = ProfileMaybeNull;
62 bool flat_array = true;
63 bool null_free_array = true;
64 method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array);
65 if (element_type != nullptr || element_ptr != ProfileMaybeNull) {
66 ld = record_profile_for_speculation(ld, element_type, element_ptr);
67 }
68 }
69 return ld;
70 }
71
72
73 //---------------------------------array_load----------------------------------
74 void Parse::array_load(BasicType bt) {
75 const Type* elemtype = Type::TOP;
76 Node* adr = array_addressing(bt, 0, elemtype);
77 if (stopped()) return; // guaranteed null or range check
78
79 Node* array_index = pop();
80 Node* array = pop();
81
82 // Handle inline type arrays
83 const TypeOopPtr* element_ptr = elemtype->make_oopptr();
84 const TypeAryPtr* array_type = _gvn.type(array)->is_aryptr();
85 if (array_type->is_flat()) {
86 // Load from flat inline type array
87 Node* inline_type;
88 if (element_ptr->klass_is_exact()) {
89 inline_type = InlineTypeNode::make_from_flat(this, elemtype->inline_klass(), array, adr);
90 } else {
91 // Element type of flat array is not exact. Therefore, we cannot determine the flat array layout statically.
92 // Emit a runtime call to load the element from the flat array.
93 inline_type = load_from_unknown_flat_array(array, array_index, element_ptr);
94 inline_type = record_profile_for_speculation_at_array_load(inline_type);
95 }
96 push(inline_type);
97 return;
98 }
99
100 if (!array_type->is_not_flat()) {
101 // Cannot statically determine if array is a flat array, emit runtime check
102 assert(UseFlatArray && is_reference_type(bt) && element_ptr->can_be_inline_type() && !array_type->is_not_null_free() &&
103 (!element_ptr->is_inlinetypeptr() || element_ptr->inline_klass()->flat_in_array()), "array can't be flat");
104 IdealKit ideal(this);
105 IdealVariable res(ideal);
106 ideal.declarations_done();
107 ideal.if_then(flat_array_test(array, /* flat = */ false)); {
108 // Non-flat array
109 assert(ideal.ctrl()->in(0)->as_If()->is_flat_array_check(&_gvn), "Should be found");
110 sync_kit(ideal);
111 const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt);
112 DecoratorSet decorator_set = IN_HEAP | IS_ARRAY | C2_CONTROL_DEPENDENT_LOAD;
113 if (needs_range_check(array_type->size(), array_index)) {
114 // We've emitted a RangeCheck but now insert an additional check between the range check and the actual load.
115 // We cannot pin the load to two separate nodes. Instead, we pin it conservatively here such that it cannot
116 // possibly float above the range check at any point.
117 decorator_set |= C2_UNKNOWN_CONTROL_LOAD;
118 }
119 Node* ld = access_load_at(array, adr, adr_type, element_ptr, bt, decorator_set);
120 if (element_ptr->is_inlinetypeptr()) {
121 assert(element_ptr->maybe_null(), "null free array should be handled above");
122 ld = InlineTypeNode::make_from_oop(this, ld, element_ptr->inline_klass(), false);
123 }
124 ideal.sync_kit(this);
125 ideal.set(res, ld);
126 } ideal.else_(); {
127 // Flat array
128 sync_kit(ideal);
129 if (element_ptr->is_inlinetypeptr()) {
130 // Element type is known, cast and load from flat array layout.
131 ciInlineKlass* vk = element_ptr->inline_klass();
132 assert(vk->flat_in_array() && element_ptr->maybe_null(), "never/always flat - should be optimized");
133 ciArrayKlass* array_klass = ciArrayKlass::make(vk, /* null_free */ true);
134 const TypeAryPtr* arytype = TypeOopPtr::make_from_klass(array_klass)->isa_aryptr();
135 Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, arytype));
136 Node* casted_adr = array_element_address(cast, array_index, T_OBJECT, array_type->size(), control());
137 // Re-execute flat array load if buffering triggers deoptimization
138 PreserveReexecuteState preexecs(this);
139 jvms()->set_should_reexecute(true);
140 inc_sp(2);
141 Node* vt = InlineTypeNode::make_from_flat(this, vk, cast, casted_adr)->buffer(this, false);
142 ideal.set(res, vt);
143 ideal.sync_kit(this);
144 } else {
145 // Element type is unknown, and thus we cannot statically determine the exact flat array layout. Emit a
146 // runtime call to correctly load the inline type element from the flat array.
147 Node* inline_type = load_from_unknown_flat_array(array, array_index, element_ptr);
148 ideal.sync_kit(this);
149 ideal.set(res, inline_type);
150 }
151 } ideal.end_if();
152 sync_kit(ideal);
153 Node* ld = _gvn.transform(ideal.value(res));
154 ld = record_profile_for_speculation_at_array_load(ld);
155 push_node(bt, ld);
156 return;
157 }
158
159 if (array_type->is_null_free()) {
160 // Load from non-flat inline type array (elements can never be null)
161 bt = T_OBJECT;
162 }
163
164 if (elemtype == TypeInt::BOOL) {
165 bt = T_BOOLEAN;
166 }
167 const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt);
168 Node* ld = access_load_at(array, adr, adr_type, elemtype, bt,
169 IN_HEAP | IS_ARRAY | C2_CONTROL_DEPENDENT_LOAD);
170 ld = record_profile_for_speculation_at_array_load(ld);
171 // Loading an inline type from a non-flat array
172 if (element_ptr != nullptr && element_ptr->is_inlinetypeptr()) {
173 assert(!array_type->is_null_free() || !element_ptr->maybe_null(), "inline type array elements should never be null");
174 ld = InlineTypeNode::make_from_oop(this, ld, element_ptr->inline_klass(), !element_ptr->maybe_null());
175 }
176 push_node(bt, ld);
177 }
178
179 Node* Parse::load_from_unknown_flat_array(Node* array, Node* array_index, const TypeOopPtr* element_ptr) {
180 // Below membars keep this access to an unknown flat array correctly
181 // ordered with other unknown and known flat array accesses.
182 insert_mem_bar_volatile(Op_MemBarCPUOrder, C->get_alias_index(TypeAryPtr::INLINES));
183
184 Node* call = nullptr;
185 {
186 // Re-execute flat array load if runtime call triggers deoptimization
187 PreserveReexecuteState preexecs(this);
188 jvms()->set_bci(_bci);
189 jvms()->set_should_reexecute(true);
190 inc_sp(2);
191 kill_dead_locals();
192 call = make_runtime_call(RC_NO_LEAF | RC_NO_IO,
193 OptoRuntime::load_unknown_inline_Type(),
194 OptoRuntime::load_unknown_inline_Java(),
195 nullptr, TypeRawPtr::BOTTOM,
196 array, array_index);
197 }
198 make_slow_call_ex(call, env()->Throwable_klass(), false);
199 Node* buffer = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
200
201 insert_mem_bar_volatile(Op_MemBarCPUOrder, C->get_alias_index(TypeAryPtr::INLINES));
202
203 // Keep track of the information that the inline type is in flat arrays
204 const Type* unknown_value = element_ptr->is_instptr()->cast_to_flat_in_array();
205 return _gvn.transform(new CheckCastPPNode(control(), buffer, unknown_value));
206 }
207
208 //--------------------------------array_store----------------------------------
209 void Parse::array_store(BasicType bt) {
210 const Type* elemtype = Type::TOP;
211 Node* adr = array_addressing(bt, type2size[bt], elemtype);
212 if (stopped()) return; // guaranteed null or range check
213 Node* stored_value_casted = nullptr;
214 if (bt == T_OBJECT) {
215 stored_value_casted = array_store_check(adr, elemtype);
216 if (stopped()) {
217 return;
218 }
219 }
220 Node* const stored_value = pop_node(bt); // Value to store
221 Node* const array_index = pop(); // Index in the array
222 Node* array = pop(); // The array itself
223
224 const TypeAryPtr* array_type = _gvn.type(array)->is_aryptr();
225 const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt);
226
227 if (elemtype == TypeInt::BOOL) {
228 bt = T_BOOLEAN;
229 } else if (bt == T_OBJECT) {
230 elemtype = elemtype->make_oopptr();
231 const Type* stored_value_casted_type = _gvn.type(stored_value_casted);
232 // Based on the value to be stored, try to determine if the array is not null-free and/or not flat.
233 // This is only legal for non-null stores because the array_store_check always passes for null, even
234 // if the array is null-free. Null stores are handled in GraphKit::inline_array_null_guard().
235 bool not_null_free = !stored_value_casted_type->maybe_null() &&
236 !stored_value_casted_type->is_oopptr()->can_be_inline_type();
237 bool not_flat = not_null_free || (stored_value_casted_type->is_inlinetypeptr() &&
238 !stored_value_casted_type->inline_klass()->flat_in_array());
239 if (!array_type->is_not_null_free() && not_null_free) {
240 // Storing a non-inline type, mark array as not null-free (-> not flat).
241 array_type = array_type->cast_to_not_null_free();
242 Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, array_type));
243 replace_in_map(array, cast);
244 array = cast;
245 } else if (!array_type->is_not_flat() && not_flat) {
246 // Storing to a non-flat array, mark array as not flat.
247 array_type = array_type->cast_to_not_flat();
248 Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, array_type));
249 replace_in_map(array, cast);
250 array = cast;
251 }
252
253 if (array_type->is_flat()) {
254 // Store to flat inline type array
255 assert(!stored_value_casted_type->maybe_null(), "should be guaranteed by array store check");
256 if (array_type->klass_is_exact()) {
257 // Store to exact flat inline type array where we know the flat array layout statically.
258 // Re-execute flat array store if buffering triggers deoptimization
259 PreserveReexecuteState preexecs(this);
260 inc_sp(3);
261 jvms()->set_should_reexecute(true);
262 stored_value_casted->as_InlineType()->store_flat(this, array, adr, nullptr, 0, MO_UNORDERED | IN_HEAP | IS_ARRAY);
263 } else {
264 // Element type of flat array is not exact. Therefore, we cannot determine the flat array layout statically.
265 // Emit a runtime call to store the element to the flat array.
266 store_to_unknown_flat_array(array, array_index, stored_value_casted);
267 }
268 return;
269 }
270 if (array_type->is_null_free()) {
271 // Store to non-flat null-free inline type array (elements can never be null)
272 assert(!stored_value_casted_type->maybe_null(), "should be guaranteed by array store check");
273 if (elemtype->inline_klass()->is_empty()) {
274 // Ignore empty inline stores, array is already initialized.
275 return;
276 }
277 } else if (!array_type->is_not_flat() && (stored_value_casted_type != TypePtr::NULL_PTR || StressReflectiveCode)) {
278 // Array might be a flat array, emit runtime checks (for nullptr, a simple inline_array_null_guard is sufficient).
279 assert(UseFlatArray && !not_flat && elemtype->is_oopptr()->can_be_inline_type() &&
280 !array_type->klass_is_exact() && !array_type->is_not_null_free(), "array can't be a flat array");
281 IdealKit ideal(this);
282 ideal.if_then(flat_array_test(array, /* flat = */ false)); {
283 // Non-flat array
284 assert(ideal.ctrl()->in(0)->as_If()->is_flat_array_check(&_gvn), "Should be found");
285 sync_kit(ideal);
286 Node* cast_array = inline_array_null_guard(array, stored_value_casted, 3);
287 inc_sp(3);
288 access_store_at(cast_array, adr, adr_type, stored_value_casted, elemtype, bt, MO_UNORDERED | IN_HEAP | IS_ARRAY, false);
289 dec_sp(3);
290 ideal.sync_kit(this);
291 } ideal.else_(); {
292 sync_kit(ideal);
293 // flat array
294 Node* null_ctl = top();
295 Node* null_checked_stored_value_casted = null_check_oop(stored_value_casted, &null_ctl);
296 if (null_ctl != top()) {
297 PreserveJVMState pjvms(this);
298 inc_sp(3);
299 set_control(null_ctl);
300 uncommon_trap(Deoptimization::Reason_null_check, Deoptimization::Action_none);
301 dec_sp(3);
302 }
303 // Try to determine the inline klass
304 ciInlineKlass* inline_Klass = nullptr;
305 if (stored_value_casted_type->is_inlinetypeptr()) {
306 inline_Klass = stored_value_casted_type->inline_klass();
307 } else if (elemtype->is_inlinetypeptr()) {
308 inline_Klass = elemtype->inline_klass();
309 }
310 if (!stopped()) {
311 if (inline_Klass != nullptr) {
312 // Element type is known, cast and store to flat array layout.
313 assert(inline_Klass->flat_in_array() && elemtype->maybe_null(), "never/always flat - should be optimized");
314 ciArrayKlass* array_klass = ciArrayKlass::make(inline_Klass, /* null_free */ true);
315 const TypeAryPtr* arytype = TypeOopPtr::make_from_klass(array_klass)->isa_aryptr();
316 Node* casted_array = _gvn.transform(new CheckCastPPNode(control(), array, arytype));
317 Node* casted_adr = array_element_address(casted_array, array_index, T_OBJECT, arytype->size(), control());
318 if (!null_checked_stored_value_casted->is_InlineType()) {
319 assert(!gvn().type(null_checked_stored_value_casted)->maybe_null(),
320 "inline type array elements should never be null");
321 null_checked_stored_value_casted = InlineTypeNode::make_from_oop(this, null_checked_stored_value_casted,
322 inline_Klass);
323 }
324 // Re-execute flat array store if buffering triggers deoptimization
325 PreserveReexecuteState preexecs(this);
326 inc_sp(3);
327 jvms()->set_should_reexecute(true);
328 null_checked_stored_value_casted->as_InlineType()->store_flat(this, casted_array, casted_adr, nullptr, 0, MO_UNORDERED | IN_HEAP | IS_ARRAY);
329 } else {
330 // Element type is unknown, emit a runtime call since the flat array layout is not statically known.
331 store_to_unknown_flat_array(array, array_index, null_checked_stored_value_casted);
332 }
333 }
334 ideal.sync_kit(this);
335 }
336 ideal.end_if();
337 sync_kit(ideal);
338 return;
339 } else if (!array_type->is_not_null_free()) {
340 // Array is not flat but may be null free
341 assert(elemtype->is_oopptr()->can_be_inline_type(), "array can't be null-free");
342 array = inline_array_null_guard(array, stored_value_casted, 3, true);
343 }
344 }
345 inc_sp(3);
346 access_store_at(array, adr, adr_type, stored_value, elemtype, bt, MO_UNORDERED | IN_HEAP | IS_ARRAY);
347 dec_sp(3);
348 }
349
350 // Emit a runtime call to store to a flat array whose element type is either unknown (i.e. we do not know the flat
351 // array layout) or not exact (could have different flat array layouts at runtime).
352 void Parse::store_to_unknown_flat_array(Node* array, Node* const idx, Node* non_null_stored_value) {
353 // Below membars keep this access to an unknown flat array correctly
354 // ordered with other unknown and known flat array accesses.
355 insert_mem_bar_volatile(Op_MemBarCPUOrder, C->get_alias_index(TypeAryPtr::INLINES));
356
357 Node* call = nullptr;
358 {
359 // Re-execute flat array store if runtime call triggers deoptimization
360 PreserveReexecuteState preexecs(this);
361 jvms()->set_bci(_bci);
362 jvms()->set_should_reexecute(true);
363 inc_sp(3);
364 kill_dead_locals();
365 call = make_runtime_call(RC_NO_LEAF | RC_NO_IO,
366 OptoRuntime::store_unknown_inline_Type(),
367 OptoRuntime::store_unknown_inline_Java(),
368 nullptr, TypeRawPtr::BOTTOM,
369 non_null_stored_value, array, idx);
370 }
371 make_slow_call_ex(call, env()->Throwable_klass(), false);
372
373 insert_mem_bar_volatile(Op_MemBarCPUOrder, C->get_alias_index(TypeAryPtr::INLINES));
374 }
375
376 //------------------------------array_addressing-------------------------------
377 // Pull array and index from the stack. Compute pointer-to-element.
378 Node* Parse::array_addressing(BasicType type, int vals, const Type*& elemtype) {
379 Node *idx = peek(0+vals); // Get from stack without popping
380 Node *ary = peek(1+vals); // in case of exception
381
382 // Null check the array base, with correct stack contents
383 ary = null_check(ary, T_ARRAY);
384 // Compile-time detect of null-exception?
385 if (stopped()) return top();
386
387 const TypeAryPtr* arytype = _gvn.type(ary)->is_aryptr();
388 const TypeInt* sizetype = arytype->size();
389 elemtype = arytype->elem();
390
391 if (UseUniqueSubclasses) {
392 const Type* el = elemtype->make_ptr();
393 if (el && el->isa_instptr()) {
394 const TypeInstPtr* toop = el->is_instptr();
395 if (toop->instance_klass()->unique_concrete_subklass()) {
396 // If we load from "AbstractClass[]" we must see "ConcreteSubClass".
397 const Type* subklass = Type::get_const_type(toop->instance_klass());
398 elemtype = subklass->join_speculative(el);
399 }
400 }
401 }
402
403 if (!arytype->is_loaded()) {
404 // Only fails for some -Xcomp runs
405 // The class is unloaded. We have to run this bytecode in the interpreter.
406 ciKlass* klass = arytype->unloaded_klass();
407
408 uncommon_trap(Deoptimization::Reason_unloaded,
409 Deoptimization::Action_reinterpret,
410 klass, "!loaded array");
411 return top();
412 }
413
414 ary = create_speculative_inline_type_array_checks(ary, arytype, elemtype);
415
416 if (needs_range_check(sizetype, idx)) {
417 create_range_check(idx, ary, sizetype);
418 } else if (C->log() != nullptr) {
419 C->log()->elem("observe that='!need_range_check'");
420 }
421
422 // Check for always knowing you are throwing a range-check exception
423 if (stopped()) return top();
424
425 // Make array address computation control dependent to prevent it
426 // from floating above the range check during loop optimizations.
427 Node* ptr = array_element_address(ary, idx, type, sizetype, control());
428 assert(ptr != top(), "top should go hand-in-hand with stopped");
429
430 return ptr;
431 }
432
433 // Check if we need a range check for an array access. This is the case if the index is either negative or if it could
434 // be greater or equal the smallest possible array size (i.e. out-of-bounds).
435 bool Parse::needs_range_check(const TypeInt* size_type, const Node* index) const {
436 const TypeInt* index_type = _gvn.type(index)->is_int();
437 return index_type->_hi >= size_type->_lo || index_type->_lo < 0;
438 }
439
440 void Parse::create_range_check(Node* idx, Node* ary, const TypeInt* sizetype) {
441 Node* tst;
442 if (sizetype->_hi <= 0) {
443 // The greatest array bound is negative, so we can conclude that we're
444 // compiling unreachable code, but the unsigned compare trick used below
445 // only works with non-negative lengths. Instead, hack "tst" to be zero so
446 // the uncommon_trap path will always be taken.
447 tst = _gvn.intcon(0);
448 } else {
449 // Range is constant in array-oop, so we can use the original state of mem
450 Node* len = load_array_length(ary);
451
452 // Test length vs index (standard trick using unsigned compare)
453 Node* chk = _gvn.transform(new CmpUNode(idx, len) );
454 BoolTest::mask btest = BoolTest::lt;
455 tst = _gvn.transform(new BoolNode(chk, btest) );
456 }
457 RangeCheckNode* rc = new RangeCheckNode(control(), tst, PROB_MAX, COUNT_UNKNOWN);
458 _gvn.set_type(rc, rc->Value(&_gvn));
459 if (!tst->is_Con()) {
460 record_for_igvn(rc);
461 }
462 set_control(_gvn.transform(new IfTrueNode(rc)));
463 // Branch to failure if out of bounds
464 {
465 PreserveJVMState pjvms(this);
466 set_control(_gvn.transform(new IfFalseNode(rc)));
467 if (C->allow_range_check_smearing()) {
468 // Do not use builtin_throw, since range checks are sometimes
469 // made more stringent by an optimistic transformation.
470 // This creates "tentative" range checks at this point,
471 // which are not guaranteed to throw exceptions.
472 // See IfNode::Ideal, is_range_check, adjust_check.
473 uncommon_trap(Deoptimization::Reason_range_check,
474 Deoptimization::Action_make_not_entrant,
475 nullptr, "range_check");
476 } else {
477 // If we have already recompiled with the range-check-widening
478 // heroic optimization turned off, then we must really be throwing
479 // range check exceptions.
480 builtin_throw(Deoptimization::Reason_range_check);
481 }
482 }
483 }
484
485 // For inline type arrays, we can use the profiling information for array accesses to speculate on the type, flatness,
486 // and null-freeness. We can either prepare the speculative type for later uses or emit explicit speculative checks with
487 // traps now. In the latter case, the speculative type guarantees can avoid additional runtime checks later (e.g.
488 // non-null-free implies non-flat which allows us to remove flatness checks). This makes the graph simpler.
489 Node* Parse::create_speculative_inline_type_array_checks(Node* array, const TypeAryPtr* array_type,
490 const Type*& element_type) {
491 if (!array_type->is_flat() && !array_type->is_not_flat()) {
492 // For arrays that might be flat, speculate that the array has the exact type reported in the profile data such that
493 // we can rely on a fixed memory layout (i.e. either a flat layout or not).
494 array = cast_to_speculative_array_type(array, array_type, element_type);
495 } else if (UseTypeSpeculation && UseArrayLoadStoreProfile) {
496 // Array is known to be either flat or not flat. If possible, update the speculative type by using the profile data
497 // at this bci.
498 array = cast_to_profiled_array_type(array);
499 }
500
501 // Even though the type does not tell us whether we have an inline type array or not, we can still check the profile data
502 // whether we have a non-null-free or non-flat array. Since non-null-free implies non-flat, we check this first.
503 // Speculating on a non-null-free array doesn't help aaload but could be profitable for a subsequent aastore.
504 if (!array_type->is_null_free() && !array_type->is_not_null_free()) {
505 array = speculate_non_null_free_array(array, array_type);
506 }
507
508 if (!array_type->is_flat() && !array_type->is_not_flat()) {
509 array = speculate_non_flat_array(array, array_type);
510 }
511 return array;
512 }
513
514 // Speculate that the array has the exact type reported in the profile data. We emit a trap when this turns out to be
515 // wrong. On the fast path, we add a CheckCastPP to use the exact type.
516 Node* Parse::cast_to_speculative_array_type(Node* const array, const TypeAryPtr*& array_type, const Type*& element_type) {
517 Deoptimization::DeoptReason reason = Deoptimization::Reason_speculate_class_check;
518 ciKlass* speculative_array_type = array_type->speculative_type();
519 if (too_many_traps_or_recompiles(reason) || speculative_array_type == nullptr) {
520 // No speculative type, check profile data at this bci
521 speculative_array_type = nullptr;
522 reason = Deoptimization::Reason_class_check;
523 if (UseArrayLoadStoreProfile && !too_many_traps_or_recompiles(reason)) {
524 ciKlass* profiled_element_type = nullptr;
525 ProfilePtrKind element_ptr = ProfileMaybeNull;
526 bool flat_array = true;
527 bool null_free_array = true;
528 method()->array_access_profiled_type(bci(), speculative_array_type, profiled_element_type, element_ptr, flat_array,
529 null_free_array);
530 }
531 }
532 if (speculative_array_type != nullptr) {
533 // Speculate that this array has the exact type reported by profile data
534 Node* casted_array = nullptr;
535 DEBUG_ONLY(Node* old_control = control();)
536 Node* slow_ctl = type_check_receiver(array, speculative_array_type, 1.0, &casted_array);
537 if (stopped()) {
538 // The check always fails and therefore profile information is incorrect. Don't use it.
539 assert(old_control == slow_ctl, "type check should have been removed");
540 set_control(slow_ctl);
541 } else if (!slow_ctl->is_top()) {
542 { PreserveJVMState pjvms(this);
543 set_control(slow_ctl);
544 uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
545 }
546 replace_in_map(array, casted_array);
547 array_type = _gvn.type(casted_array)->is_aryptr();
548 element_type = array_type->elem();
549 return casted_array;
550 }
551 }
552 return array;
553 }
554
555 // Create a CheckCastPP when the speculative type can improve the current type.
556 Node* Parse::cast_to_profiled_array_type(Node* const array) {
557 ciKlass* array_type = nullptr;
558 ciKlass* element_type = nullptr;
559 ProfilePtrKind element_ptr = ProfileMaybeNull;
560 bool flat_array = true;
561 bool null_free_array = true;
562 method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array);
563 if (array_type != nullptr) {
564 return record_profile_for_speculation(array, array_type, ProfileMaybeNull);
565 }
566 return array;
567 }
568
569 // Speculate that the array is non-null-free. This will imply non-flatness. We emit a trap when this turns out to be
570 // wrong. On the fast path, we add a CheckCastPP to use the non-null-free type.
571 Node* Parse::speculate_non_null_free_array(Node* const array, const TypeAryPtr*& array_type) {
572 bool null_free_array = true;
573 Deoptimization::DeoptReason reason = Deoptimization::Reason_none;
574 if (array_type->speculative() != nullptr &&
575 array_type->speculative()->is_aryptr()->is_not_null_free() &&
576 !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_class_check)) {
577 null_free_array = false;
578 reason = Deoptimization::Reason_speculate_class_check;
579 } else if (UseArrayLoadStoreProfile && !too_many_traps_or_recompiles(Deoptimization::Reason_class_check)) {
580 ciKlass* profiled_array_type = nullptr;
581 ciKlass* profiled_element_type = nullptr;
582 ProfilePtrKind element_ptr = ProfileMaybeNull;
583 bool flat_array = true;
584 method()->array_access_profiled_type(bci(), profiled_array_type, profiled_element_type, element_ptr, flat_array,
585 null_free_array);
586 reason = Deoptimization::Reason_class_check;
587 }
588 if (!null_free_array) {
589 { // Deoptimize if null-free array
590 BuildCutout unless(this, null_free_array_test(array, /* null_free = */ false), PROB_MAX);
591 uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
592 }
593 assert(!stopped(), "null-free array should have been caught earlier");
594 Node* casted_array = _gvn.transform(new CheckCastPPNode(control(), array, array_type->cast_to_not_null_free()));
595 replace_in_map(array, casted_array);
596 array_type = _gvn.type(casted_array)->is_aryptr();
597 return casted_array;
598 }
599 return array;
600 }
601
602 // Speculate that the array is non-flat. We emit a trap when this turns out to be wrong. On the fast path, we add a
603 // CheckCastPP to use the non-flat type.
604 Node* Parse::speculate_non_flat_array(Node* const array, const TypeAryPtr* const array_type) {
605 bool flat_array = true;
606 Deoptimization::DeoptReason reason = Deoptimization::Reason_none;
607 if (array_type->speculative() != nullptr &&
608 array_type->speculative()->is_aryptr()->is_not_flat() &&
609 !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_class_check)) {
610 flat_array = false;
611 reason = Deoptimization::Reason_speculate_class_check;
612 } else if (UseArrayLoadStoreProfile && !too_many_traps_or_recompiles(reason)) {
613 ciKlass* profiled_array_type = nullptr;
614 ciKlass* profiled_element_type = nullptr;
615 ProfilePtrKind element_ptr = ProfileMaybeNull;
616 bool null_free_array = true;
617 method()->array_access_profiled_type(bci(), profiled_array_type, profiled_element_type, element_ptr, flat_array,
618 null_free_array);
619 reason = Deoptimization::Reason_class_check;
620 }
621 if (!flat_array) {
622 { // Deoptimize if flat array
623 BuildCutout unless(this, flat_array_test(array, /* flat = */ false), PROB_MAX);
624 uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
625 }
626 assert(!stopped(), "flat array should have been caught earlier");
627 Node* casted_array = _gvn.transform(new CheckCastPPNode(control(), array, array_type->cast_to_not_flat()));
628 replace_in_map(array, casted_array);
629 return casted_array;
630 }
631 return array;
632 }
633
634 // returns IfNode
635 IfNode* Parse::jump_if_fork_int(Node* a, Node* b, BoolTest::mask mask, float prob, float cnt) {
636 Node *cmp = _gvn.transform(new CmpINode(a, b)); // two cases: shiftcount > 32 and shiftcount <= 32
637 Node *tst = _gvn.transform(new BoolNode(cmp, mask));
638 IfNode *iff = create_and_map_if(control(), tst, prob, cnt);
639 return iff;
640 }
641
642
643 // sentinel value for the target bci to mark never taken branches
644 // (according to profiling)
645 static const int never_reached = INT_MAX;
646
647 //------------------------------helper for tableswitch-------------------------
648 void Parse::jump_if_true_fork(IfNode *iff, int dest_bci_if_true, bool unc) {
649 // True branch, use existing map info
650 { PreserveJVMState pjvms(this);
651 Node *iftrue = _gvn.transform( new IfTrueNode (iff) );
652 set_control( iftrue );
1866 // False branch
1867 Node* iffalse = _gvn.transform( new IfFalseNode(iff) );
1868 set_control(iffalse);
1869
1870 if (stopped()) { // Path is dead?
1871 NOT_PRODUCT(explicit_null_checks_elided++);
1872 if (C->eliminate_boxing()) {
1873 // Mark the successor block as parsed
1874 next_block->next_path_num();
1875 }
1876 } else { // Path is live.
1877 adjust_map_after_if(BoolTest(btest).negate(), c, 1.0-prob, next_block);
1878 }
1879
1880 if (do_stress_trap) {
1881 stress_trap(iff, counter, incr_store);
1882 }
1883 }
1884
1885 //------------------------------------do_if------------------------------------
1886 void Parse::do_if(BoolTest::mask btest, Node* c, bool can_trap, bool new_path, Node** ctrl_taken) {
1887 int target_bci = iter().get_dest();
1888
1889 Block* branch_block = successor_for_bci(target_bci);
1890 Block* next_block = successor_for_bci(iter().next_bci());
1891
1892 float cnt;
1893 float prob = branch_prediction(cnt, btest, target_bci, c);
1894 float untaken_prob = 1.0 - prob;
1895
1896 if (prob == PROB_UNKNOWN) {
1897 if (PrintOpto && Verbose) {
1898 tty->print_cr("Never-taken edge stops compilation at bci %d", bci());
1899 }
1900 repush_if_args(); // to gather stats on loop
1901 uncommon_trap(Deoptimization::Reason_unreached,
1902 Deoptimization::Action_reinterpret,
1903 nullptr, "cold");
1904 if (C->eliminate_boxing()) {
1905 // Mark the successor blocks as parsed
1906 branch_block->next_path_num();
1957 }
1958
1959 // Generate real control flow
1960 float true_prob = (taken_if_true ? prob : untaken_prob);
1961 IfNode* iff = create_and_map_if(control(), tst, true_prob, cnt);
1962 assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
1963 Node* taken_branch = new IfTrueNode(iff);
1964 Node* untaken_branch = new IfFalseNode(iff);
1965 if (!taken_if_true) { // Finish conversion to canonical form
1966 Node* tmp = taken_branch;
1967 taken_branch = untaken_branch;
1968 untaken_branch = tmp;
1969 }
1970
1971 // Branch is taken:
1972 { PreserveJVMState pjvms(this);
1973 taken_branch = _gvn.transform(taken_branch);
1974 set_control(taken_branch);
1975
1976 if (stopped()) {
1977 if (C->eliminate_boxing() && !new_path) {
1978 // Mark the successor block as parsed (if we haven't created a new path)
1979 branch_block->next_path_num();
1980 }
1981 } else {
1982 adjust_map_after_if(taken_btest, c, prob, branch_block, can_trap);
1983 if (!stopped()) {
1984 if (new_path) {
1985 // Merge by using a new path
1986 merge_new_path(target_bci);
1987 } else if (ctrl_taken != nullptr) {
1988 // Don't merge but save taken branch to be wired by caller
1989 *ctrl_taken = control();
1990 } else {
1991 merge(target_bci);
1992 }
1993 }
1994 }
1995 }
1996
1997 untaken_branch = _gvn.transform(untaken_branch);
1998 set_control(untaken_branch);
1999
2000 // Branch not taken.
2001 if (stopped() && ctrl_taken == nullptr) {
2002 if (C->eliminate_boxing()) {
2003 // Mark the successor block as parsed (if caller does not re-wire control flow)
2004 next_block->next_path_num();
2005 }
2006 } else {
2007 adjust_map_after_if(untaken_btest, c, untaken_prob, next_block, can_trap);
2008 }
2009
2010 if (do_stress_trap) {
2011 stress_trap(iff, counter, incr_store);
2012 }
2013 }
2014
2015
2016 static ProfilePtrKind speculative_ptr_kind(const TypeOopPtr* t) {
2017 if (t->speculative() == nullptr) {
2018 return ProfileUnknownNull;
2019 }
2020 if (t->speculative_always_null()) {
2021 return ProfileAlwaysNull;
2022 }
2023 if (t->speculative_maybe_null()) {
2024 return ProfileMaybeNull;
2025 }
2026 return ProfileNeverNull;
2027 }
2028
2029 void Parse::acmp_always_null_input(Node* input, const TypeOopPtr* tinput, BoolTest::mask btest, Node* eq_region) {
2030 inc_sp(2);
2031 Node* cast = null_check_common(input, T_OBJECT, true, nullptr,
2032 !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_check) &&
2033 speculative_ptr_kind(tinput) == ProfileAlwaysNull);
2034 dec_sp(2);
2035 if (btest == BoolTest::ne) {
2036 {
2037 PreserveJVMState pjvms(this);
2038 replace_in_map(input, cast);
2039 int target_bci = iter().get_dest();
2040 merge(target_bci);
2041 }
2042 record_for_igvn(eq_region);
2043 set_control(_gvn.transform(eq_region));
2044 } else {
2045 replace_in_map(input, cast);
2046 }
2047 }
2048
2049 Node* Parse::acmp_null_check(Node* input, const TypeOopPtr* tinput, ProfilePtrKind input_ptr, Node*& null_ctl) {
2050 inc_sp(2);
2051 null_ctl = top();
2052 Node* cast = null_check_oop(input, &null_ctl,
2053 input_ptr == ProfileNeverNull || (input_ptr == ProfileUnknownNull && !too_many_traps_or_recompiles(Deoptimization::Reason_null_check)),
2054 false,
2055 speculative_ptr_kind(tinput) == ProfileNeverNull &&
2056 !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_check));
2057 dec_sp(2);
2058 assert(!stopped(), "null input should have been caught earlier");
2059 return cast;
2060 }
2061
2062 void Parse::acmp_known_non_inline_type_input(Node* input, const TypeOopPtr* tinput, ProfilePtrKind input_ptr, ciKlass* input_type, BoolTest::mask btest, Node* eq_region) {
2063 Node* ne_region = new RegionNode(1);
2064 Node* null_ctl;
2065 Node* cast = acmp_null_check(input, tinput, input_ptr, null_ctl);
2066 ne_region->add_req(null_ctl);
2067
2068 Node* slow_ctl = type_check_receiver(cast, input_type, 1.0, &cast);
2069 {
2070 PreserveJVMState pjvms(this);
2071 inc_sp(2);
2072 set_control(slow_ctl);
2073 Deoptimization::DeoptReason reason;
2074 if (tinput->speculative_type() != nullptr && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_class_check)) {
2075 reason = Deoptimization::Reason_speculate_class_check;
2076 } else {
2077 reason = Deoptimization::Reason_class_check;
2078 }
2079 uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
2080 }
2081 ne_region->add_req(control());
2082
2083 record_for_igvn(ne_region);
2084 set_control(_gvn.transform(ne_region));
2085 if (btest == BoolTest::ne) {
2086 {
2087 PreserveJVMState pjvms(this);
2088 if (null_ctl == top()) {
2089 replace_in_map(input, cast);
2090 }
2091 int target_bci = iter().get_dest();
2092 merge(target_bci);
2093 }
2094 record_for_igvn(eq_region);
2095 set_control(_gvn.transform(eq_region));
2096 } else {
2097 if (null_ctl == top()) {
2098 replace_in_map(input, cast);
2099 }
2100 set_control(_gvn.transform(ne_region));
2101 }
2102 }
2103
2104 void Parse::acmp_unknown_non_inline_type_input(Node* input, const TypeOopPtr* tinput, ProfilePtrKind input_ptr, BoolTest::mask btest, Node* eq_region) {
2105 Node* ne_region = new RegionNode(1);
2106 Node* null_ctl;
2107 Node* cast = acmp_null_check(input, tinput, input_ptr, null_ctl);
2108 ne_region->add_req(null_ctl);
2109
2110 {
2111 BuildCutout unless(this, inline_type_test(cast, /* is_inline = */ false), PROB_MAX);
2112 inc_sp(2);
2113 uncommon_trap_exact(Deoptimization::Reason_class_check, Deoptimization::Action_maybe_recompile);
2114 }
2115
2116 ne_region->add_req(control());
2117
2118 record_for_igvn(ne_region);
2119 set_control(_gvn.transform(ne_region));
2120 if (btest == BoolTest::ne) {
2121 {
2122 PreserveJVMState pjvms(this);
2123 if (null_ctl == top()) {
2124 replace_in_map(input, cast);
2125 }
2126 int target_bci = iter().get_dest();
2127 merge(target_bci);
2128 }
2129 record_for_igvn(eq_region);
2130 set_control(_gvn.transform(eq_region));
2131 } else {
2132 if (null_ctl == top()) {
2133 replace_in_map(input, cast);
2134 }
2135 set_control(_gvn.transform(ne_region));
2136 }
2137 }
2138
2139 void Parse::do_acmp(BoolTest::mask btest, Node* left, Node* right) {
2140 ciKlass* left_type = nullptr;
2141 ciKlass* right_type = nullptr;
2142 ProfilePtrKind left_ptr = ProfileUnknownNull;
2143 ProfilePtrKind right_ptr = ProfileUnknownNull;
2144 bool left_inline_type = true;
2145 bool right_inline_type = true;
2146
2147 // Leverage profiling at acmp
2148 if (UseACmpProfile) {
2149 method()->acmp_profiled_type(bci(), left_type, right_type, left_ptr, right_ptr, left_inline_type, right_inline_type);
2150 if (too_many_traps_or_recompiles(Deoptimization::Reason_class_check)) {
2151 left_type = nullptr;
2152 right_type = nullptr;
2153 left_inline_type = true;
2154 right_inline_type = true;
2155 }
2156 if (too_many_traps_or_recompiles(Deoptimization::Reason_null_check)) {
2157 left_ptr = ProfileUnknownNull;
2158 right_ptr = ProfileUnknownNull;
2159 }
2160 }
2161
2162 if (UseTypeSpeculation) {
2163 record_profile_for_speculation(left, left_type, left_ptr);
2164 record_profile_for_speculation(right, right_type, right_ptr);
2165 }
2166
2167 if (!EnableValhalla) {
2168 Node* cmp = CmpP(left, right);
2169 cmp = optimize_cmp_with_klass(cmp);
2170 do_if(btest, cmp);
2171 return;
2172 }
2173
2174 // Check for equality before potentially allocating
2175 if (left == right) {
2176 do_if(btest, makecon(TypeInt::CC_EQ));
2177 return;
2178 }
2179
2180 // Allocate inline type operands and re-execute on deoptimization
2181 if (left->is_InlineType()) {
2182 if (_gvn.type(right)->is_zero_type() ||
2183 (right->is_InlineType() && _gvn.type(right->as_InlineType()->get_is_init())->is_zero_type())) {
2184 // Null checking a scalarized but nullable inline type. Check the IsInit
2185 // input instead of the oop input to avoid keeping buffer allocations alive.
2186 Node* cmp = CmpI(left->as_InlineType()->get_is_init(), intcon(0));
2187 do_if(btest, cmp);
2188 return;
2189 } else {
2190 PreserveReexecuteState preexecs(this);
2191 inc_sp(2);
2192 jvms()->set_should_reexecute(true);
2193 left = left->as_InlineType()->buffer(this)->get_oop();
2194 }
2195 }
2196 if (right->is_InlineType()) {
2197 PreserveReexecuteState preexecs(this);
2198 inc_sp(2);
2199 jvms()->set_should_reexecute(true);
2200 right = right->as_InlineType()->buffer(this)->get_oop();
2201 }
2202
2203 // First, do a normal pointer comparison
2204 const TypeOopPtr* tleft = _gvn.type(left)->isa_oopptr();
2205 const TypeOopPtr* tright = _gvn.type(right)->isa_oopptr();
2206 Node* cmp = CmpP(left, right);
2207 cmp = optimize_cmp_with_klass(cmp);
2208 if (tleft == nullptr || !tleft->can_be_inline_type() ||
2209 tright == nullptr || !tright->can_be_inline_type()) {
2210 // This is sufficient, if one of the operands can't be an inline type
2211 do_if(btest, cmp);
2212 return;
2213 }
2214
2215 // Don't add traps to unstable if branches because additional checks are required to
2216 // decide if the operands are equal/substitutable and we therefore shouldn't prune
2217 // branches for one if based on the profiling of the acmp branches.
2218 // Also, OptimizeUnstableIf would set an incorrect re-rexecution state because it
2219 // assumes that there is a 1-1 mapping between the if and the acmp branches and that
2220 // hitting a trap means that we will take the corresponding acmp branch on re-execution.
2221 const bool can_trap = true;
2222
2223 Node* eq_region = nullptr;
2224 if (btest == BoolTest::eq) {
2225 do_if(btest, cmp, !can_trap, true);
2226 if (stopped()) {
2227 // Pointers are equal, operands must be equal
2228 return;
2229 }
2230 } else {
2231 assert(btest == BoolTest::ne, "only eq or ne");
2232 Node* is_not_equal = nullptr;
2233 eq_region = new RegionNode(3);
2234 {
2235 PreserveJVMState pjvms(this);
2236 // Pointers are not equal, but more checks are needed to determine if the operands are (not) substitutable
2237 do_if(btest, cmp, !can_trap, false, &is_not_equal);
2238 if (!stopped()) {
2239 eq_region->init_req(1, control());
2240 }
2241 }
2242 if (is_not_equal == nullptr || is_not_equal->is_top()) {
2243 record_for_igvn(eq_region);
2244 set_control(_gvn.transform(eq_region));
2245 return;
2246 }
2247 set_control(is_not_equal);
2248 }
2249
2250 // Prefer speculative types if available
2251 if (!too_many_traps_or_recompiles(Deoptimization::Reason_speculate_class_check)) {
2252 if (tleft->speculative_type() != nullptr) {
2253 left_type = tleft->speculative_type();
2254 }
2255 if (tright->speculative_type() != nullptr) {
2256 right_type = tright->speculative_type();
2257 }
2258 }
2259
2260 if (speculative_ptr_kind(tleft) != ProfileMaybeNull && speculative_ptr_kind(tleft) != ProfileUnknownNull) {
2261 ProfilePtrKind speculative_left_ptr = speculative_ptr_kind(tleft);
2262 if (speculative_left_ptr == ProfileAlwaysNull && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_assert)) {
2263 left_ptr = speculative_left_ptr;
2264 } else if (speculative_left_ptr == ProfileNeverNull && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_check)) {
2265 left_ptr = speculative_left_ptr;
2266 }
2267 }
2268 if (speculative_ptr_kind(tright) != ProfileMaybeNull && speculative_ptr_kind(tright) != ProfileUnknownNull) {
2269 ProfilePtrKind speculative_right_ptr = speculative_ptr_kind(tright);
2270 if (speculative_right_ptr == ProfileAlwaysNull && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_assert)) {
2271 right_ptr = speculative_right_ptr;
2272 } else if (speculative_right_ptr == ProfileNeverNull && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_check)) {
2273 right_ptr = speculative_right_ptr;
2274 }
2275 }
2276
2277 if (left_ptr == ProfileAlwaysNull) {
2278 // Comparison with null. Assert the input is indeed null and we're done.
2279 acmp_always_null_input(left, tleft, btest, eq_region);
2280 return;
2281 }
2282 if (right_ptr == ProfileAlwaysNull) {
2283 // Comparison with null. Assert the input is indeed null and we're done.
2284 acmp_always_null_input(right, tright, btest, eq_region);
2285 return;
2286 }
2287 if (left_type != nullptr && !left_type->is_inlinetype()) {
2288 // Comparison with an object of known type
2289 acmp_known_non_inline_type_input(left, tleft, left_ptr, left_type, btest, eq_region);
2290 return;
2291 }
2292 if (right_type != nullptr && !right_type->is_inlinetype()) {
2293 // Comparison with an object of known type
2294 acmp_known_non_inline_type_input(right, tright, right_ptr, right_type, btest, eq_region);
2295 return;
2296 }
2297 if (!left_inline_type) {
2298 // Comparison with an object known not to be an inline type
2299 acmp_unknown_non_inline_type_input(left, tleft, left_ptr, btest, eq_region);
2300 return;
2301 }
2302 if (!right_inline_type) {
2303 // Comparison with an object known not to be an inline type
2304 acmp_unknown_non_inline_type_input(right, tright, right_ptr, btest, eq_region);
2305 return;
2306 }
2307
2308 // Pointers are not equal, check if first operand is non-null
2309 Node* ne_region = new RegionNode(6);
2310 Node* null_ctl;
2311 Node* not_null_right = acmp_null_check(right, tright, right_ptr, null_ctl);
2312 ne_region->init_req(1, null_ctl);
2313
2314 // First operand is non-null, check if it is an inline type
2315 Node* is_value = inline_type_test(not_null_right);
2316 IfNode* is_value_iff = create_and_map_if(control(), is_value, PROB_FAIR, COUNT_UNKNOWN);
2317 Node* not_value = _gvn.transform(new IfFalseNode(is_value_iff));
2318 ne_region->init_req(2, not_value);
2319 set_control(_gvn.transform(new IfTrueNode(is_value_iff)));
2320
2321 // The first operand is an inline type, check if the second operand is non-null
2322 Node* not_null_left = acmp_null_check(left, tleft, left_ptr, null_ctl);
2323 ne_region->init_req(3, null_ctl);
2324
2325 // Check if both operands are of the same class.
2326 Node* kls_left = load_object_klass(not_null_left);
2327 Node* kls_right = load_object_klass(not_null_right);
2328 Node* kls_cmp = CmpP(kls_left, kls_right);
2329 Node* kls_bol = _gvn.transform(new BoolNode(kls_cmp, BoolTest::ne));
2330 IfNode* kls_iff = create_and_map_if(control(), kls_bol, PROB_FAIR, COUNT_UNKNOWN);
2331 Node* kls_ne = _gvn.transform(new IfTrueNode(kls_iff));
2332 set_control(_gvn.transform(new IfFalseNode(kls_iff)));
2333 ne_region->init_req(4, kls_ne);
2334
2335 if (stopped()) {
2336 record_for_igvn(ne_region);
2337 set_control(_gvn.transform(ne_region));
2338 if (btest == BoolTest::ne) {
2339 {
2340 PreserveJVMState pjvms(this);
2341 int target_bci = iter().get_dest();
2342 merge(target_bci);
2343 }
2344 record_for_igvn(eq_region);
2345 set_control(_gvn.transform(eq_region));
2346 }
2347 return;
2348 }
2349
2350 // Both operands are values types of the same class, we need to perform a
2351 // substitutability test. Delegate to ValueObjectMethods::isSubstitutable().
2352 Node* ne_io_phi = PhiNode::make(ne_region, i_o());
2353 Node* mem = reset_memory();
2354 Node* ne_mem_phi = PhiNode::make(ne_region, mem);
2355
2356 Node* eq_io_phi = nullptr;
2357 Node* eq_mem_phi = nullptr;
2358 if (eq_region != nullptr) {
2359 eq_io_phi = PhiNode::make(eq_region, i_o());
2360 eq_mem_phi = PhiNode::make(eq_region, mem);
2361 }
2362
2363 set_all_memory(mem);
2364
2365 kill_dead_locals();
2366 ciMethod* subst_method = ciEnv::current()->ValueObjectMethods_klass()->find_method(ciSymbols::isSubstitutable_name(), ciSymbols::object_object_boolean_signature());
2367 CallStaticJavaNode *call = new CallStaticJavaNode(C, TypeFunc::make(subst_method), SharedRuntime::get_resolve_static_call_stub(), subst_method);
2368 call->set_override_symbolic_info(true);
2369 call->init_req(TypeFunc::Parms, not_null_left);
2370 call->init_req(TypeFunc::Parms+1, not_null_right);
2371 inc_sp(2);
2372 set_edges_for_java_call(call, false, false);
2373 Node* ret = set_results_for_java_call(call, false, true);
2374 dec_sp(2);
2375
2376 // Test the return value of ValueObjectMethods::isSubstitutable()
2377 // This is the last check, do_if can emit traps now.
2378 Node* subst_cmp = _gvn.transform(new CmpINode(ret, intcon(1)));
2379 Node* ctl = C->top();
2380 if (btest == BoolTest::eq) {
2381 PreserveJVMState pjvms(this);
2382 do_if(btest, subst_cmp, can_trap);
2383 if (!stopped()) {
2384 ctl = control();
2385 }
2386 } else {
2387 assert(btest == BoolTest::ne, "only eq or ne");
2388 PreserveJVMState pjvms(this);
2389 do_if(btest, subst_cmp, can_trap, false, &ctl);
2390 if (!stopped()) {
2391 eq_region->init_req(2, control());
2392 eq_io_phi->init_req(2, i_o());
2393 eq_mem_phi->init_req(2, reset_memory());
2394 }
2395 }
2396 ne_region->init_req(5, ctl);
2397 ne_io_phi->init_req(5, i_o());
2398 ne_mem_phi->init_req(5, reset_memory());
2399
2400 record_for_igvn(ne_region);
2401 set_control(_gvn.transform(ne_region));
2402 set_i_o(_gvn.transform(ne_io_phi));
2403 set_all_memory(_gvn.transform(ne_mem_phi));
2404
2405 if (btest == BoolTest::ne) {
2406 {
2407 PreserveJVMState pjvms(this);
2408 int target_bci = iter().get_dest();
2409 merge(target_bci);
2410 }
2411
2412 record_for_igvn(eq_region);
2413 set_control(_gvn.transform(eq_region));
2414 set_i_o(_gvn.transform(eq_io_phi));
2415 set_all_memory(_gvn.transform(eq_mem_phi));
2416 }
2417 }
2418
2419 // Force unstable if traps to be taken randomly to trigger intermittent bugs such as incorrect debug information.
2420 // Add another if before the unstable if that checks a "random" condition at runtime (a simple shared counter) and
2421 // then either takes the trap or executes the original, unstable if.
2422 void Parse::stress_trap(IfNode* orig_iff, Node* counter, Node* incr_store) {
2423 // Search for an unstable if trap
2424 CallStaticJavaNode* trap = nullptr;
2425 assert(orig_iff->Opcode() == Op_If && orig_iff->outcnt() == 2, "malformed if");
2426 ProjNode* trap_proj = orig_iff->uncommon_trap_proj(trap, Deoptimization::Reason_unstable_if);
2427 if (trap == nullptr || !trap->jvms()->should_reexecute()) {
2428 // No suitable trap found. Remove unused counter load and increment.
2429 C->gvn_replace_by(incr_store, incr_store->in(MemNode::Memory));
2430 return;
2431 }
2432
2433 // Remove trap from optimization list since we add another path to the trap.
2434 bool success = C->remove_unstable_if_trap(trap, true);
2435 assert(success, "Trap already modified");
2436
2437 // Add a check before the original if that will trap with a certain frequency and execute the original if otherwise
2438 int freq_log = (C->random() % 31) + 1; // Random logarithmic frequency in [1, 31]
2471 }
2472
2473 void Parse::maybe_add_predicate_after_if(Block* path) {
2474 if (path->is_SEL_head() && path->preds_parsed() == 0) {
2475 // Add predicates at bci of if dominating the loop so traps can be
2476 // recorded on the if's profile data
2477 int bc_depth = repush_if_args();
2478 add_parse_predicates();
2479 dec_sp(bc_depth);
2480 path->set_has_predicates();
2481 }
2482 }
2483
2484
2485 //----------------------------adjust_map_after_if------------------------------
2486 // Adjust the JVM state to reflect the result of taking this path.
2487 // Basically, it means inspecting the CmpNode controlling this
2488 // branch, seeing how it constrains a tested value, and then
2489 // deciding if it's worth our while to encode this constraint
2490 // as graph nodes in the current abstract interpretation map.
2491 void Parse::adjust_map_after_if(BoolTest::mask btest, Node* c, float prob, Block* path, bool can_trap) {
2492 if (!c->is_Cmp()) {
2493 maybe_add_predicate_after_if(path);
2494 return;
2495 }
2496
2497 if (stopped() || btest == BoolTest::illegal) {
2498 return; // nothing to do
2499 }
2500
2501 bool is_fallthrough = (path == successor_for_bci(iter().next_bci()));
2502
2503 if (can_trap && path_is_suitable_for_uncommon_trap(prob)) {
2504 repush_if_args();
2505 Node* call = uncommon_trap(Deoptimization::Reason_unstable_if,
2506 Deoptimization::Action_reinterpret,
2507 nullptr,
2508 (is_fallthrough ? "taken always" : "taken never"));
2509
2510 if (call != nullptr) {
2511 C->record_unstable_if_trap(new UnstableIfTrap(call->as_CallStaticJava(), path));
2512 }
2513 return;
2514 }
2515
2516 Node* val = c->in(1);
2517 Node* con = c->in(2);
2518 const Type* tcon = _gvn.type(con);
2519 const Type* tval = _gvn.type(val);
2520 bool have_con = tcon->singleton();
2521 if (tval->singleton()) {
2522 if (!have_con) {
2523 // Swap, so constant is in con.
2580 if (obj != nullptr && (con_type->isa_instptr() || con_type->isa_aryptr())) {
2581 // Found:
2582 // Bool(CmpP(LoadKlass(obj._klass), ConP(Foo.klass)), [eq])
2583 // or the narrowOop equivalent.
2584 const Type* obj_type = _gvn.type(obj);
2585 const TypeOopPtr* tboth = obj_type->join_speculative(con_type)->isa_oopptr();
2586 if (tboth != nullptr && tboth->klass_is_exact() && tboth != obj_type &&
2587 tboth->higher_equal(obj_type)) {
2588 // obj has to be of the exact type Foo if the CmpP succeeds.
2589 int obj_in_map = map()->find_edge(obj);
2590 JVMState* jvms = this->jvms();
2591 if (obj_in_map >= 0 &&
2592 (jvms->is_loc(obj_in_map) || jvms->is_stk(obj_in_map))) {
2593 TypeNode* ccast = new CheckCastPPNode(control(), obj, tboth);
2594 const Type* tcc = ccast->as_Type()->type();
2595 assert(tcc != obj_type && tcc->higher_equal(obj_type), "must improve");
2596 // Delay transform() call to allow recovery of pre-cast value
2597 // at the control merge.
2598 _gvn.set_type_bottom(ccast);
2599 record_for_igvn(ccast);
2600 if (tboth->is_inlinetypeptr()) {
2601 ccast = InlineTypeNode::make_from_oop(this, ccast, tboth->exact_klass(true)->as_inline_klass());
2602 }
2603 // Here's the payoff.
2604 replace_in_map(obj, ccast);
2605 }
2606 }
2607 }
2608 }
2609
2610 int val_in_map = map()->find_edge(val);
2611 if (val_in_map < 0) return; // replace_in_map would be useless
2612 {
2613 JVMState* jvms = this->jvms();
2614 if (!(jvms->is_loc(val_in_map) ||
2615 jvms->is_stk(val_in_map)))
2616 return; // again, it would be useless
2617 }
2618
2619 // Check for a comparison to a constant, and "know" that the compared
2620 // value is constrained on this path.
2621 assert(tcon->singleton(), "");
2622 ConstraintCastNode* ccast = nullptr;
2687 if (c->Opcode() == Op_CmpP &&
2688 (c->in(1)->Opcode() == Op_LoadKlass || c->in(1)->Opcode() == Op_DecodeNKlass) &&
2689 c->in(2)->is_Con()) {
2690 Node* load_klass = nullptr;
2691 Node* decode = nullptr;
2692 if (c->in(1)->Opcode() == Op_DecodeNKlass) {
2693 decode = c->in(1);
2694 load_klass = c->in(1)->in(1);
2695 } else {
2696 load_klass = c->in(1);
2697 }
2698 if (load_klass->in(2)->is_AddP()) {
2699 Node* addp = load_klass->in(2);
2700 Node* obj = addp->in(AddPNode::Address);
2701 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
2702 if (obj_type->speculative_type_not_null() != nullptr) {
2703 ciKlass* k = obj_type->speculative_type();
2704 inc_sp(2);
2705 obj = maybe_cast_profiled_obj(obj, k);
2706 dec_sp(2);
2707 if (obj->is_InlineType()) {
2708 assert(obj->as_InlineType()->is_allocated(&_gvn), "must be allocated");
2709 obj = obj->as_InlineType()->get_oop();
2710 }
2711 // Make the CmpP use the casted obj
2712 addp = basic_plus_adr(obj, addp->in(AddPNode::Offset));
2713 load_klass = load_klass->clone();
2714 load_klass->set_req(2, addp);
2715 load_klass = _gvn.transform(load_klass);
2716 if (decode != nullptr) {
2717 decode = decode->clone();
2718 decode->set_req(1, load_klass);
2719 load_klass = _gvn.transform(decode);
2720 }
2721 c = c->clone();
2722 c->set_req(1, load_klass);
2723 c = _gvn.transform(c);
2724 }
2725 }
2726 }
2727 return c;
2728 }
2729
2730 //------------------------------do_one_bytecode--------------------------------
3524 // See if we can get some profile data and hand it off to the next block
3525 Block *target_block = block()->successor_for_bci(target_bci);
3526 if (target_block->pred_count() != 1) break;
3527 ciMethodData* methodData = method()->method_data();
3528 if (!methodData->is_mature()) break;
3529 ciProfileData* data = methodData->bci_to_data(bci());
3530 assert(data != nullptr && data->is_JumpData(), "need JumpData for taken branch");
3531 int taken = ((ciJumpData*)data)->taken();
3532 taken = method()->scale_count(taken);
3533 target_block->set_count(taken);
3534 break;
3535 }
3536
3537 case Bytecodes::_ifnull: btest = BoolTest::eq; goto handle_if_null;
3538 case Bytecodes::_ifnonnull: btest = BoolTest::ne; goto handle_if_null;
3539 handle_if_null:
3540 // If this is a backwards branch in the bytecodes, add Safepoint
3541 maybe_add_safepoint(iter().get_dest());
3542 a = null();
3543 b = pop();
3544 if (b->is_InlineType()) {
3545 // Null checking a scalarized but nullable inline type. Check the IsInit
3546 // input instead of the oop input to avoid keeping buffer allocations alive
3547 c = _gvn.transform(new CmpINode(b->as_InlineType()->get_is_init(), zerocon(T_INT)));
3548 } else {
3549 if (!_gvn.type(b)->speculative_maybe_null() &&
3550 !too_many_traps(Deoptimization::Reason_speculate_null_check)) {
3551 inc_sp(1);
3552 Node* null_ctl = top();
3553 b = null_check_oop(b, &null_ctl, true, true, true);
3554 assert(null_ctl->is_top(), "no null control here");
3555 dec_sp(1);
3556 } else if (_gvn.type(b)->speculative_always_null() &&
3557 !too_many_traps(Deoptimization::Reason_speculate_null_assert)) {
3558 inc_sp(1);
3559 b = null_assert(b);
3560 dec_sp(1);
3561 }
3562 c = _gvn.transform( new CmpPNode(b, a) );
3563 }
3564 do_ifnull(btest, c);
3565 break;
3566
3567 case Bytecodes::_if_acmpeq: btest = BoolTest::eq; goto handle_if_acmp;
3568 case Bytecodes::_if_acmpne: btest = BoolTest::ne; goto handle_if_acmp;
3569 handle_if_acmp:
3570 // If this is a backwards branch in the bytecodes, add Safepoint
3571 maybe_add_safepoint(iter().get_dest());
3572 a = pop();
3573 b = pop();
3574 do_acmp(btest, b, a);
3575 break;
3576
3577 case Bytecodes::_ifeq: btest = BoolTest::eq; goto handle_ifxx;
3578 case Bytecodes::_ifne: btest = BoolTest::ne; goto handle_ifxx;
3579 case Bytecodes::_iflt: btest = BoolTest::lt; goto handle_ifxx;
3580 case Bytecodes::_ifle: btest = BoolTest::le; goto handle_ifxx;
3581 case Bytecodes::_ifgt: btest = BoolTest::gt; goto handle_ifxx;
3582 case Bytecodes::_ifge: btest = BoolTest::ge; goto handle_ifxx;
3583 handle_ifxx:
3584 // If this is a backwards branch in the bytecodes, add Safepoint
3585 maybe_add_safepoint(iter().get_dest());
3586 a = _gvn.intcon(0);
3587 b = pop();
3588 c = _gvn.transform( new CmpINode(b, a) );
3589 do_if(btest, c);
3590 break;
3591
3592 case Bytecodes::_if_icmpeq: btest = BoolTest::eq; goto handle_if_icmp;
3593 case Bytecodes::_if_icmpne: btest = BoolTest::ne; goto handle_if_icmp;
3594 case Bytecodes::_if_icmplt: btest = BoolTest::lt; goto handle_if_icmp;
3609 break;
3610
3611 case Bytecodes::_lookupswitch:
3612 do_lookupswitch();
3613 break;
3614
3615 case Bytecodes::_invokestatic:
3616 case Bytecodes::_invokedynamic:
3617 case Bytecodes::_invokespecial:
3618 case Bytecodes::_invokevirtual:
3619 case Bytecodes::_invokeinterface:
3620 do_call();
3621 break;
3622 case Bytecodes::_checkcast:
3623 do_checkcast();
3624 break;
3625 case Bytecodes::_instanceof:
3626 do_instanceof();
3627 break;
3628 case Bytecodes::_anewarray:
3629 do_newarray();
3630 break;
3631 case Bytecodes::_newarray:
3632 do_newarray((BasicType)iter().get_index());
3633 break;
3634 case Bytecodes::_multianewarray:
3635 do_multianewarray();
3636 break;
3637 case Bytecodes::_new:
3638 do_new();
3639 break;
3640
3641 case Bytecodes::_jsr:
3642 case Bytecodes::_jsr_w:
3643 do_jsr();
3644 break;
3645
3646 case Bytecodes::_ret:
3647 do_ret();
3648 break;
3649
|