5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "ci/ciMethodData.hpp"
26 #include "classfile/vmSymbols.hpp"
27 #include "compiler/compileLog.hpp"
28 #include "interpreter/linkResolver.hpp"
29 #include "jvm_io.h"
30 #include "memory/resourceArea.hpp"
31 #include "memory/universe.hpp"
32 #include "oops/oop.inline.hpp"
33 #include "opto/addnode.hpp"
34 #include "opto/castnode.hpp"
35 #include "opto/convertnode.hpp"
36 #include "opto/divnode.hpp"
37 #include "opto/idealGraphPrinter.hpp"
38 #include "opto/matcher.hpp"
39 #include "opto/memnode.hpp"
40 #include "opto/mulnode.hpp"
41 #include "opto/opaquenode.hpp"
42 #include "opto/parse.hpp"
43 #include "opto/runtime.hpp"
44 #include "runtime/deoptimization.hpp"
45 #include "runtime/sharedRuntime.hpp"
46
47 #ifndef PRODUCT
48 extern uint explicit_null_checks_inserted,
49 explicit_null_checks_elided;
50 #endif
51
52 //---------------------------------array_load----------------------------------
53 void Parse::array_load(BasicType bt) {
54 const Type* elemtype = Type::TOP;
55 bool big_val = bt == T_DOUBLE || bt == T_LONG;
56 Node* adr = array_addressing(bt, 0, elemtype);
57 if (stopped()) return; // guaranteed null or range check
58
59 pop(); // index (already used)
60 Node* array = pop(); // the array itself
61
62 if (elemtype == TypeInt::BOOL) {
63 bt = T_BOOLEAN;
64 }
65 const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt);
66
67 Node* ld = access_load_at(array, adr, adr_type, elemtype, bt,
68 IN_HEAP | IS_ARRAY | C2_CONTROL_DEPENDENT_LOAD);
69 if (big_val) {
70 push_pair(ld);
71 } else {
72 push(ld);
73 }
74 }
75
76
77 //--------------------------------array_store----------------------------------
78 void Parse::array_store(BasicType bt) {
79 const Type* elemtype = Type::TOP;
80 bool big_val = bt == T_DOUBLE || bt == T_LONG;
81 Node* adr = array_addressing(bt, big_val ? 2 : 1, elemtype);
82 if (stopped()) return; // guaranteed null or range check
83 if (bt == T_OBJECT) {
84 array_store_check();
85 if (stopped()) {
86 return;
87 }
88 }
89 Node* val; // Oop to store
90 if (big_val) {
91 val = pop_pair();
92 } else {
93 val = pop();
94 }
95 pop(); // index (already used)
96 Node* array = pop(); // the array itself
97
98 if (elemtype == TypeInt::BOOL) {
99 bt = T_BOOLEAN;
100 }
101 const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt);
102
103 access_store_at(array, adr, adr_type, val, elemtype, bt, MO_UNORDERED | IN_HEAP | IS_ARRAY);
104 }
105
106
107 //------------------------------array_addressing-------------------------------
108 // Pull array and index from the stack. Compute pointer-to-element.
109 Node* Parse::array_addressing(BasicType type, int vals, const Type*& elemtype) {
110 Node *idx = peek(0+vals); // Get from stack without popping
111 Node *ary = peek(1+vals); // in case of exception
112
113 // Null check the array base, with correct stack contents
114 ary = null_check(ary, T_ARRAY);
115 // Compile-time detect of null-exception?
116 if (stopped()) return top();
117
118 const TypeAryPtr* arytype = _gvn.type(ary)->is_aryptr();
119 const TypeInt* sizetype = arytype->size();
120 elemtype = arytype->elem();
121
122 if (UseUniqueSubclasses) {
123 const Type* el = elemtype->make_ptr();
124 if (el && el->isa_instptr()) {
125 const TypeInstPtr* toop = el->is_instptr();
126 if (toop->instance_klass()->unique_concrete_subklass()) {
127 // If we load from "AbstractClass[]" we must see "ConcreteSubClass".
128 const Type* subklass = Type::get_const_type(toop->instance_klass());
129 elemtype = subklass->join_speculative(el);
130 }
131 }
132 }
133
134 // Check for big class initializers with all constant offsets
135 // feeding into a known-size array.
136 const TypeInt* idxtype = _gvn.type(idx)->is_int();
137 // See if the highest idx value is less than the lowest array bound,
138 // and if the idx value cannot be negative:
139 bool need_range_check = true;
140 if (idxtype->_hi < sizetype->_lo && idxtype->_lo >= 0) {
141 need_range_check = false;
142 if (C->log() != nullptr) C->log()->elem("observe that='!need_range_check'");
143 }
144
145 if (!arytype->is_loaded()) {
146 // Only fails for some -Xcomp runs
147 // The class is unloaded. We have to run this bytecode in the interpreter.
148 ciKlass* klass = arytype->unloaded_klass();
149
150 uncommon_trap(Deoptimization::Reason_unloaded,
151 Deoptimization::Action_reinterpret,
152 klass, "!loaded array");
153 return top();
154 }
155
156 // Do the range check
157 if (need_range_check) {
158 Node* tst;
159 if (sizetype->_hi <= 0) {
160 // The greatest array bound is negative, so we can conclude that we're
161 // compiling unreachable code, but the unsigned compare trick used below
162 // only works with non-negative lengths. Instead, hack "tst" to be zero so
163 // the uncommon_trap path will always be taken.
164 tst = _gvn.intcon(0);
165 } else {
166 // Range is constant in array-oop, so we can use the original state of mem
167 Node* len = load_array_length(ary);
168
169 // Test length vs index (standard trick using unsigned compare)
170 Node* chk = _gvn.transform( new CmpUNode(idx, len) );
171 BoolTest::mask btest = BoolTest::lt;
172 tst = _gvn.transform( new BoolNode(chk, btest) );
173 }
174 RangeCheckNode* rc = new RangeCheckNode(control(), tst, PROB_MAX, COUNT_UNKNOWN);
175 _gvn.set_type(rc, rc->Value(&_gvn));
176 if (!tst->is_Con()) {
177 record_for_igvn(rc);
178 }
179 set_control(_gvn.transform(new IfTrueNode(rc)));
180 // Branch to failure if out of bounds
181 {
182 PreserveJVMState pjvms(this);
183 set_control(_gvn.transform(new IfFalseNode(rc)));
184 if (C->allow_range_check_smearing()) {
185 // Do not use builtin_throw, since range checks are sometimes
186 // made more stringent by an optimistic transformation.
187 // This creates "tentative" range checks at this point,
188 // which are not guaranteed to throw exceptions.
189 // See IfNode::Ideal, is_range_check, adjust_check.
190 uncommon_trap(Deoptimization::Reason_range_check,
191 Deoptimization::Action_make_not_entrant,
192 nullptr, "range_check");
193 } else {
194 // If we have already recompiled with the range-check-widening
195 // heroic optimization turned off, then we must really be throwing
196 // range check exceptions.
197 builtin_throw(Deoptimization::Reason_range_check);
198 }
199 }
200 }
201 // Check for always knowing you are throwing a range-check exception
202 if (stopped()) return top();
203
204 // Make array address computation control dependent to prevent it
205 // from floating above the range check during loop optimizations.
206 Node* ptr = array_element_address(ary, idx, type, sizetype, control());
207 assert(ptr != top(), "top should go hand-in-hand with stopped");
208
209 return ptr;
210 }
211
212
213 // returns IfNode
214 IfNode* Parse::jump_if_fork_int(Node* a, Node* b, BoolTest::mask mask, float prob, float cnt) {
215 Node *cmp = _gvn.transform(new CmpINode(a, b)); // two cases: shiftcount > 32 and shiftcount <= 32
216 Node *tst = _gvn.transform(new BoolNode(cmp, mask));
217 IfNode *iff = create_and_map_if(control(), tst, prob, cnt);
218 return iff;
219 }
220
221
222 // sentinel value for the target bci to mark never taken branches
223 // (according to profiling)
224 static const int never_reached = INT_MAX;
225
226 //------------------------------helper for tableswitch-------------------------
227 void Parse::jump_if_true_fork(IfNode *iff, int dest_bci_if_true, bool unc) {
228 // True branch, use existing map info
229 { PreserveJVMState pjvms(this);
230 Node *iftrue = _gvn.transform( new IfTrueNode (iff) );
231 set_control( iftrue );
1428 // False branch
1429 Node* iffalse = _gvn.transform( new IfFalseNode(iff) );
1430 set_control(iffalse);
1431
1432 if (stopped()) { // Path is dead?
1433 NOT_PRODUCT(explicit_null_checks_elided++);
1434 if (C->eliminate_boxing()) {
1435 // Mark the successor block as parsed
1436 next_block->next_path_num();
1437 }
1438 } else { // Path is live.
1439 adjust_map_after_if(BoolTest(btest).negate(), c, 1.0-prob, next_block);
1440 }
1441
1442 if (do_stress_trap) {
1443 stress_trap(iff, counter, incr_store);
1444 }
1445 }
1446
1447 //------------------------------------do_if------------------------------------
1448 void Parse::do_if(BoolTest::mask btest, Node* c) {
1449 int target_bci = iter().get_dest();
1450
1451 Block* branch_block = successor_for_bci(target_bci);
1452 Block* next_block = successor_for_bci(iter().next_bci());
1453
1454 float cnt;
1455 float prob = branch_prediction(cnt, btest, target_bci, c);
1456 float untaken_prob = 1.0 - prob;
1457
1458 if (prob == PROB_UNKNOWN) {
1459 if (PrintOpto && Verbose) {
1460 tty->print_cr("Never-taken edge stops compilation at bci %d", bci());
1461 }
1462 repush_if_args(); // to gather stats on loop
1463 uncommon_trap(Deoptimization::Reason_unreached,
1464 Deoptimization::Action_reinterpret,
1465 nullptr, "cold");
1466 if (C->eliminate_boxing()) {
1467 // Mark the successor blocks as parsed
1468 branch_block->next_path_num();
1469 next_block->next_path_num();
1470 }
1471 return;
1472 }
1473
1474 Node* counter = nullptr;
1475 Node* incr_store = nullptr;
1476 bool do_stress_trap = StressUnstableIfTraps && ((C->random() % 2) == 0);
1477 if (do_stress_trap) {
1478 increment_trap_stress_counter(counter, incr_store);
1479 }
1480
1481 // Sanity check the probability value
1482 assert(0.0f < prob && prob < 1.0f,"Bad probability in Parser");
1483
1484 bool taken_if_true = true;
1485 // Convert BoolTest to canonical form:
1486 if (!BoolTest(btest).is_canonical()) {
1487 btest = BoolTest(btest).negate();
1488 taken_if_true = false;
1489 // prob is NOT updated here; it remains the probability of the taken
1490 // path (as opposed to the prob of the path guarded by an 'IfTrueNode').
1491 }
1492 assert(btest != BoolTest::eq, "!= is the only canonical exact test");
1493
1494 Node* tst0 = new BoolNode(c, btest);
1495 Node* tst = _gvn.transform(tst0);
1496 BoolTest::mask taken_btest = BoolTest::illegal;
1497 BoolTest::mask untaken_btest = BoolTest::illegal;
1498
1519 }
1520
1521 // Generate real control flow
1522 float true_prob = (taken_if_true ? prob : untaken_prob);
1523 IfNode* iff = create_and_map_if(control(), tst, true_prob, cnt);
1524 assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
1525 Node* taken_branch = new IfTrueNode(iff);
1526 Node* untaken_branch = new IfFalseNode(iff);
1527 if (!taken_if_true) { // Finish conversion to canonical form
1528 Node* tmp = taken_branch;
1529 taken_branch = untaken_branch;
1530 untaken_branch = tmp;
1531 }
1532
1533 // Branch is taken:
1534 { PreserveJVMState pjvms(this);
1535 taken_branch = _gvn.transform(taken_branch);
1536 set_control(taken_branch);
1537
1538 if (stopped()) {
1539 if (C->eliminate_boxing()) {
1540 // Mark the successor block as parsed
1541 branch_block->next_path_num();
1542 }
1543 } else {
1544 adjust_map_after_if(taken_btest, c, prob, branch_block);
1545 if (!stopped()) {
1546 merge(target_bci);
1547 }
1548 }
1549 }
1550
1551 untaken_branch = _gvn.transform(untaken_branch);
1552 set_control(untaken_branch);
1553
1554 // Branch not taken.
1555 if (stopped()) {
1556 if (C->eliminate_boxing()) {
1557 // Mark the successor block as parsed
1558 next_block->next_path_num();
1559 }
1560 } else {
1561 adjust_map_after_if(untaken_btest, c, untaken_prob, next_block);
1562 }
1563
1564 if (do_stress_trap) {
1565 stress_trap(iff, counter, incr_store);
1566 }
1567 }
1568
1569 // Force unstable if traps to be taken randomly to trigger intermittent bugs such as incorrect debug information.
1570 // Add another if before the unstable if that checks a "random" condition at runtime (a simple shared counter) and
1571 // then either takes the trap or executes the original, unstable if.
1572 void Parse::stress_trap(IfNode* orig_iff, Node* counter, Node* incr_store) {
1573 // Search for an unstable if trap
1574 CallStaticJavaNode* trap = nullptr;
1575 assert(orig_iff->Opcode() == Op_If && orig_iff->outcnt() == 2, "malformed if");
1576 ProjNode* trap_proj = orig_iff->uncommon_trap_proj(trap, Deoptimization::Reason_unstable_if);
1577 if (trap == nullptr || !trap->jvms()->should_reexecute()) {
1578 // No suitable trap found. Remove unused counter load and increment.
1579 C->gvn_replace_by(incr_store, incr_store->in(MemNode::Memory));
1580 return;
1581 }
1582
1583 // Remove trap from optimization list since we add another path to the trap.
1584 bool success = C->remove_unstable_if_trap(trap, true);
1585 assert(success, "Trap already modified");
1586
1587 // Add a check before the original if that will trap with a certain frequency and execute the original if otherwise
1588 int freq_log = (C->random() % 31) + 1; // Random logarithmic frequency in [1, 31]
1621 }
1622
1623 void Parse::maybe_add_predicate_after_if(Block* path) {
1624 if (path->is_SEL_head() && path->preds_parsed() == 0) {
1625 // Add predicates at bci of if dominating the loop so traps can be
1626 // recorded on the if's profile data
1627 int bc_depth = repush_if_args();
1628 add_parse_predicates();
1629 dec_sp(bc_depth);
1630 path->set_has_predicates();
1631 }
1632 }
1633
1634
1635 //----------------------------adjust_map_after_if------------------------------
1636 // Adjust the JVM state to reflect the result of taking this path.
1637 // Basically, it means inspecting the CmpNode controlling this
1638 // branch, seeing how it constrains a tested value, and then
1639 // deciding if it's worth our while to encode this constraint
1640 // as graph nodes in the current abstract interpretation map.
1641 void Parse::adjust_map_after_if(BoolTest::mask btest, Node* c, float prob, Block* path) {
1642 if (!c->is_Cmp()) {
1643 maybe_add_predicate_after_if(path);
1644 return;
1645 }
1646
1647 if (stopped() || btest == BoolTest::illegal) {
1648 return; // nothing to do
1649 }
1650
1651 bool is_fallthrough = (path == successor_for_bci(iter().next_bci()));
1652
1653 if (path_is_suitable_for_uncommon_trap(prob)) {
1654 repush_if_args();
1655 Node* call = uncommon_trap(Deoptimization::Reason_unstable_if,
1656 Deoptimization::Action_reinterpret,
1657 nullptr,
1658 (is_fallthrough ? "taken always" : "taken never"));
1659
1660 if (call != nullptr) {
1661 C->record_unstable_if_trap(new UnstableIfTrap(call->as_CallStaticJava(), path));
1662 }
1663 return;
1664 }
1665
1666 Node* val = c->in(1);
1667 Node* con = c->in(2);
1668 const Type* tcon = _gvn.type(con);
1669 const Type* tval = _gvn.type(val);
1670 bool have_con = tcon->singleton();
1671 if (tval->singleton()) {
1672 if (!have_con) {
1673 // Swap, so constant is in con.
1730 if (obj != nullptr && (con_type->isa_instptr() || con_type->isa_aryptr())) {
1731 // Found:
1732 // Bool(CmpP(LoadKlass(obj._klass), ConP(Foo.klass)), [eq])
1733 // or the narrowOop equivalent.
1734 const Type* obj_type = _gvn.type(obj);
1735 const TypeOopPtr* tboth = obj_type->join_speculative(con_type)->isa_oopptr();
1736 if (tboth != nullptr && tboth->klass_is_exact() && tboth != obj_type &&
1737 tboth->higher_equal(obj_type)) {
1738 // obj has to be of the exact type Foo if the CmpP succeeds.
1739 int obj_in_map = map()->find_edge(obj);
1740 JVMState* jvms = this->jvms();
1741 if (obj_in_map >= 0 &&
1742 (jvms->is_loc(obj_in_map) || jvms->is_stk(obj_in_map))) {
1743 TypeNode* ccast = new CheckCastPPNode(control(), obj, tboth);
1744 const Type* tcc = ccast->as_Type()->type();
1745 assert(tcc != obj_type && tcc->higher_equal(obj_type), "must improve");
1746 // Delay transform() call to allow recovery of pre-cast value
1747 // at the control merge.
1748 _gvn.set_type_bottom(ccast);
1749 record_for_igvn(ccast);
1750 // Here's the payoff.
1751 replace_in_map(obj, ccast);
1752 }
1753 }
1754 }
1755 }
1756
1757 int val_in_map = map()->find_edge(val);
1758 if (val_in_map < 0) return; // replace_in_map would be useless
1759 {
1760 JVMState* jvms = this->jvms();
1761 if (!(jvms->is_loc(val_in_map) ||
1762 jvms->is_stk(val_in_map)))
1763 return; // again, it would be useless
1764 }
1765
1766 // Check for a comparison to a constant, and "know" that the compared
1767 // value is constrained on this path.
1768 assert(tcon->singleton(), "");
1769 ConstraintCastNode* ccast = nullptr;
1834 if (c->Opcode() == Op_CmpP &&
1835 (c->in(1)->Opcode() == Op_LoadKlass || c->in(1)->Opcode() == Op_DecodeNKlass) &&
1836 c->in(2)->is_Con()) {
1837 Node* load_klass = nullptr;
1838 Node* decode = nullptr;
1839 if (c->in(1)->Opcode() == Op_DecodeNKlass) {
1840 decode = c->in(1);
1841 load_klass = c->in(1)->in(1);
1842 } else {
1843 load_klass = c->in(1);
1844 }
1845 if (load_klass->in(2)->is_AddP()) {
1846 Node* addp = load_klass->in(2);
1847 Node* obj = addp->in(AddPNode::Address);
1848 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
1849 if (obj_type->speculative_type_not_null() != nullptr) {
1850 ciKlass* k = obj_type->speculative_type();
1851 inc_sp(2);
1852 obj = maybe_cast_profiled_obj(obj, k);
1853 dec_sp(2);
1854 // Make the CmpP use the casted obj
1855 addp = basic_plus_adr(obj, addp->in(AddPNode::Offset));
1856 load_klass = load_klass->clone();
1857 load_klass->set_req(2, addp);
1858 load_klass = _gvn.transform(load_klass);
1859 if (decode != nullptr) {
1860 decode = decode->clone();
1861 decode->set_req(1, load_klass);
1862 load_klass = _gvn.transform(decode);
1863 }
1864 c = c->clone();
1865 c->set_req(1, load_klass);
1866 c = _gvn.transform(c);
1867 }
1868 }
1869 }
1870 return c;
1871 }
1872
1873 //------------------------------do_one_bytecode--------------------------------
2573
2574 case Bytecodes::_i2d:
2575 a = pop();
2576 b = _gvn.transform( new ConvI2DNode(a));
2577 push_pair(b);
2578 break;
2579
2580 case Bytecodes::_iinc: // Increment local
2581 i = iter().get_index(); // Get local index
2582 set_local( i, _gvn.transform( new AddINode( _gvn.intcon(iter().get_iinc_con()), local(i) ) ) );
2583 break;
2584
2585 // Exit points of synchronized methods must have an unlock node
2586 case Bytecodes::_return:
2587 return_current(nullptr);
2588 break;
2589
2590 case Bytecodes::_ireturn:
2591 case Bytecodes::_areturn:
2592 case Bytecodes::_freturn:
2593 return_current(pop());
2594 break;
2595 case Bytecodes::_lreturn:
2596 return_current(pop_pair());
2597 break;
2598 case Bytecodes::_dreturn:
2599 return_current(pop_pair());
2600 break;
2601
2602 case Bytecodes::_athrow:
2603 // null exception oop throws null pointer exception
2604 null_check(peek());
2605 if (stopped()) return;
2606 // Hook the thrown exception directly to subsequent handlers.
2607 if (BailoutToInterpreterForThrows) {
2608 // Keep method interpreted from now on.
2609 uncommon_trap(Deoptimization::Reason_unhandled,
2610 Deoptimization::Action_make_not_compilable);
2611 return;
2612 }
2613 if (env()->jvmti_can_post_on_exceptions()) {
2614 // check if we must post exception events, take uncommon trap if so (with must_throw = false)
2615 uncommon_trap_if_should_post_on_exceptions(Deoptimization::Reason_unhandled, false);
2616 }
2617 // Here if either can_post_on_exceptions or should_post_on_exceptions is false
2630
2631 // See if we can get some profile data and hand it off to the next block
2632 Block *target_block = block()->successor_for_bci(target_bci);
2633 if (target_block->pred_count() != 1) break;
2634 ciMethodData* methodData = method()->method_data();
2635 if (!methodData->is_mature()) break;
2636 ciProfileData* data = methodData->bci_to_data(bci());
2637 assert(data != nullptr && data->is_JumpData(), "need JumpData for taken branch");
2638 int taken = ((ciJumpData*)data)->taken();
2639 taken = method()->scale_count(taken);
2640 target_block->set_count(taken);
2641 break;
2642 }
2643
2644 case Bytecodes::_ifnull: btest = BoolTest::eq; goto handle_if_null;
2645 case Bytecodes::_ifnonnull: btest = BoolTest::ne; goto handle_if_null;
2646 handle_if_null:
2647 // If this is a backwards branch in the bytecodes, add Safepoint
2648 maybe_add_safepoint(iter().get_dest());
2649 a = null();
2650 b = pop();
2651 if (!_gvn.type(b)->speculative_maybe_null() &&
2652 !too_many_traps(Deoptimization::Reason_speculate_null_check)) {
2653 inc_sp(1);
2654 Node* null_ctl = top();
2655 b = null_check_oop(b, &null_ctl, true, true, true);
2656 assert(null_ctl->is_top(), "no null control here");
2657 dec_sp(1);
2658 } else if (_gvn.type(b)->speculative_always_null() &&
2659 !too_many_traps(Deoptimization::Reason_speculate_null_assert)) {
2660 inc_sp(1);
2661 b = null_assert(b);
2662 dec_sp(1);
2663 }
2664 c = _gvn.transform( new CmpPNode(b, a) );
2665 do_ifnull(btest, c);
2666 break;
2667
2668 case Bytecodes::_if_acmpeq: btest = BoolTest::eq; goto handle_if_acmp;
2669 case Bytecodes::_if_acmpne: btest = BoolTest::ne; goto handle_if_acmp;
2670 handle_if_acmp:
2671 // If this is a backwards branch in the bytecodes, add Safepoint
2672 maybe_add_safepoint(iter().get_dest());
2673 a = pop();
2674 b = pop();
2675 c = _gvn.transform( new CmpPNode(b, a) );
2676 c = optimize_cmp_with_klass(c);
2677 do_if(btest, c);
2678 break;
2679
2680 case Bytecodes::_ifeq: btest = BoolTest::eq; goto handle_ifxx;
2681 case Bytecodes::_ifne: btest = BoolTest::ne; goto handle_ifxx;
2682 case Bytecodes::_iflt: btest = BoolTest::lt; goto handle_ifxx;
2683 case Bytecodes::_ifle: btest = BoolTest::le; goto handle_ifxx;
2684 case Bytecodes::_ifgt: btest = BoolTest::gt; goto handle_ifxx;
2685 case Bytecodes::_ifge: btest = BoolTest::ge; goto handle_ifxx;
2686 handle_ifxx:
2687 // If this is a backwards branch in the bytecodes, add Safepoint
2688 maybe_add_safepoint(iter().get_dest());
2689 a = _gvn.intcon(0);
2690 b = pop();
2691 c = _gvn.transform( new CmpINode(b, a) );
2692 do_if(btest, c);
2693 break;
2694
2695 case Bytecodes::_if_icmpeq: btest = BoolTest::eq; goto handle_if_icmp;
2696 case Bytecodes::_if_icmpne: btest = BoolTest::ne; goto handle_if_icmp;
2697 case Bytecodes::_if_icmplt: btest = BoolTest::lt; goto handle_if_icmp;
2712 break;
2713
2714 case Bytecodes::_lookupswitch:
2715 do_lookupswitch();
2716 break;
2717
2718 case Bytecodes::_invokestatic:
2719 case Bytecodes::_invokedynamic:
2720 case Bytecodes::_invokespecial:
2721 case Bytecodes::_invokevirtual:
2722 case Bytecodes::_invokeinterface:
2723 do_call();
2724 break;
2725 case Bytecodes::_checkcast:
2726 do_checkcast();
2727 break;
2728 case Bytecodes::_instanceof:
2729 do_instanceof();
2730 break;
2731 case Bytecodes::_anewarray:
2732 do_anewarray();
2733 break;
2734 case Bytecodes::_newarray:
2735 do_newarray((BasicType)iter().get_index());
2736 break;
2737 case Bytecodes::_multianewarray:
2738 do_multianewarray();
2739 break;
2740 case Bytecodes::_new:
2741 do_new();
2742 break;
2743
2744 case Bytecodes::_jsr:
2745 case Bytecodes::_jsr_w:
2746 do_jsr();
2747 break;
2748
2749 case Bytecodes::_ret:
2750 do_ret();
2751 break;
2752
|
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "ci/ciInlineKlass.hpp"
26 #include "ci/ciMethodData.hpp"
27 #include "ci/ciSymbols.hpp"
28 #include "classfile/vmSymbols.hpp"
29 #include "compiler/compileLog.hpp"
30 #include "interpreter/linkResolver.hpp"
31 #include "jvm_io.h"
32 #include "memory/resourceArea.hpp"
33 #include "memory/universe.hpp"
34 #include "oops/oop.inline.hpp"
35 #include "opto/addnode.hpp"
36 #include "opto/castnode.hpp"
37 #include "opto/convertnode.hpp"
38 #include "opto/divnode.hpp"
39 #include "opto/idealGraphPrinter.hpp"
40 #include "opto/idealKit.hpp"
41 #include "opto/inlinetypenode.hpp"
42 #include "opto/matcher.hpp"
43 #include "opto/memnode.hpp"
44 #include "opto/mulnode.hpp"
45 #include "opto/opaquenode.hpp"
46 #include "opto/parse.hpp"
47 #include "opto/runtime.hpp"
48 #include "runtime/deoptimization.hpp"
49 #include "runtime/sharedRuntime.hpp"
50
51 #ifndef PRODUCT
52 extern uint explicit_null_checks_inserted,
53 explicit_null_checks_elided;
54 #endif
55
56 Node* Parse::record_profile_for_speculation_at_array_load(Node* ld) {
57 // Feed unused profile data to type speculation
58 if (UseTypeSpeculation && UseArrayLoadStoreProfile) {
59 ciKlass* array_type = nullptr;
60 ciKlass* element_type = nullptr;
61 ProfilePtrKind element_ptr = ProfileMaybeNull;
62 bool flat_array = true;
63 bool null_free_array = true;
64 method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array);
65 if (element_type != nullptr || element_ptr != ProfileMaybeNull) {
66 ld = record_profile_for_speculation(ld, element_type, element_ptr);
67 }
68 }
69 return ld;
70 }
71
72
73 //---------------------------------array_load----------------------------------
74 void Parse::array_load(BasicType bt) {
75 const Type* elemtype = Type::TOP;
76 Node* adr = array_addressing(bt, 0, elemtype);
77 if (stopped()) return; // guaranteed null or range check
78
79 Node* array_index = pop();
80 Node* array = pop();
81
82 // Handle inline type arrays
83 const TypeOopPtr* element_ptr = elemtype->make_oopptr();
84 const TypeAryPtr* array_type = _gvn.type(array)->is_aryptr();
85
86 if (!array_type->is_not_flat()) {
87 // Cannot statically determine if array is a flat array, emit runtime check
88 assert(UseArrayFlattening && is_reference_type(bt) && element_ptr->can_be_inline_type() &&
89 (!element_ptr->is_inlinetypeptr() || element_ptr->inline_klass()->maybe_flat_in_array()), "array can't be flat");
90 IdealKit ideal(this);
91 IdealVariable res(ideal);
92 ideal.declarations_done();
93 ideal.if_then(flat_array_test(array, /* flat = */ false)); {
94 // Non-flat array
95 sync_kit(ideal);
96 if (!array_type->is_flat()) {
97 assert(array_type->is_flat() || control()->in(0)->as_If()->is_flat_array_check(&_gvn), "Should be found");
98 const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt);
99 DecoratorSet decorator_set = IN_HEAP | IS_ARRAY | C2_CONTROL_DEPENDENT_LOAD;
100 if (needs_range_check(array_type->size(), array_index)) {
101 // We've emitted a RangeCheck but now insert an additional check between the range check and the actual load.
102 // We cannot pin the load to two separate nodes. Instead, we pin it conservatively here such that it cannot
103 // possibly float above the range check at any point.
104 decorator_set |= C2_UNKNOWN_CONTROL_LOAD;
105 }
106 Node* ld = access_load_at(array, adr, adr_type, element_ptr, bt, decorator_set);
107 if (element_ptr->is_inlinetypeptr()) {
108 ld = InlineTypeNode::make_from_oop(this, ld, element_ptr->inline_klass());
109 }
110 ideal.set(res, ld);
111 }
112 ideal.sync_kit(this);
113 } ideal.else_(); {
114 // Flat array
115 sync_kit(ideal);
116 if (!array_type->is_not_flat()) {
117 if (element_ptr->is_inlinetypeptr()) {
118 ciInlineKlass* vk = element_ptr->inline_klass();
119 Node* flat_array = cast_to_flat_array(array, vk, false, false, false);
120 Node* vt = InlineTypeNode::make_from_flat_array(this, vk, flat_array, array_index);
121 ideal.set(res, vt);
122 } else {
123 // Element type is unknown, and thus we cannot statically determine the exact flat array layout. Emit a
124 // runtime call to correctly load the inline type element from the flat array.
125 Node* inline_type = load_from_unknown_flat_array(array, array_index, element_ptr);
126 bool is_null_free = array_type->is_null_free() || !UseNullableValueFlattening;
127 if (is_null_free) {
128 inline_type = cast_not_null(inline_type);
129 }
130 ideal.set(res, inline_type);
131 }
132 }
133 ideal.sync_kit(this);
134 } ideal.end_if();
135 sync_kit(ideal);
136 Node* ld = _gvn.transform(ideal.value(res));
137 ld = record_profile_for_speculation_at_array_load(ld);
138 push_node(bt, ld);
139 return;
140 }
141
142 if (elemtype == TypeInt::BOOL) {
143 bt = T_BOOLEAN;
144 }
145 const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt);
146 Node* ld = access_load_at(array, adr, adr_type, elemtype, bt,
147 IN_HEAP | IS_ARRAY | C2_CONTROL_DEPENDENT_LOAD);
148 ld = record_profile_for_speculation_at_array_load(ld);
149 // Loading an inline type from a non-flat array
150 if (element_ptr != nullptr && element_ptr->is_inlinetypeptr()) {
151 assert(!array_type->is_null_free() || !element_ptr->maybe_null(), "inline type array elements should never be null");
152 ld = InlineTypeNode::make_from_oop(this, ld, element_ptr->inline_klass());
153 }
154 push_node(bt, ld);
155 }
156
157 Node* Parse::load_from_unknown_flat_array(Node* array, Node* array_index, const TypeOopPtr* element_ptr) {
158 // Below membars keep this access to an unknown flat array correctly
159 // ordered with other unknown and known flat array accesses.
160 insert_mem_bar_volatile(Op_MemBarCPUOrder, C->get_alias_index(TypeAryPtr::INLINES));
161
162 Node* call = nullptr;
163 {
164 // Re-execute flat array load if runtime call triggers deoptimization
165 PreserveReexecuteState preexecs(this);
166 jvms()->set_bci(_bci);
167 jvms()->set_should_reexecute(true);
168 inc_sp(2);
169 kill_dead_locals();
170 call = make_runtime_call(RC_NO_LEAF | RC_NO_IO,
171 OptoRuntime::load_unknown_inline_Type(),
172 OptoRuntime::load_unknown_inline_Java(),
173 nullptr, TypeRawPtr::BOTTOM,
174 array, array_index);
175 }
176 make_slow_call_ex(call, env()->Throwable_klass(), false);
177 Node* buffer = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
178
179 insert_mem_bar_volatile(Op_MemBarCPUOrder, C->get_alias_index(TypeAryPtr::INLINES));
180
181 // Keep track of the information that the inline type is in flat arrays
182 const Type* unknown_value = element_ptr->is_instptr()->cast_to_flat_in_array();
183 return _gvn.transform(new CheckCastPPNode(control(), buffer, unknown_value));
184 }
185
186 //--------------------------------array_store----------------------------------
187 void Parse::array_store(BasicType bt) {
188 const Type* elemtype = Type::TOP;
189 Node* adr = array_addressing(bt, type2size[bt], elemtype);
190 if (stopped()) return; // guaranteed null or range check
191 Node* stored_value_casted = nullptr;
192 if (bt == T_OBJECT) {
193 stored_value_casted = array_store_check(adr, elemtype);
194 if (stopped()) {
195 return;
196 }
197 }
198 Node* const stored_value = pop_node(bt); // Value to store
199 Node* const array_index = pop(); // Index in the array
200 Node* array = pop(); // The array itself
201
202 const TypeAryPtr* array_type = _gvn.type(array)->is_aryptr();
203 const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt);
204
205 if (elemtype == TypeInt::BOOL) {
206 bt = T_BOOLEAN;
207 } else if (bt == T_OBJECT) {
208 elemtype = elemtype->make_oopptr();
209 const Type* stored_value_casted_type = _gvn.type(stored_value_casted);
210 // Based on the value to be stored, try to determine if the array is not null-free and/or not flat.
211 // This is only legal for non-null stores because the array_store_check always passes for null, even
212 // if the array is null-free. Null stores are handled in GraphKit::inline_array_null_guard().
213 bool not_inline = !stored_value_casted_type->maybe_null() && !stored_value_casted_type->is_oopptr()->can_be_inline_type();
214 bool not_null_free = not_inline;
215 bool not_flat = not_inline || ( stored_value_casted_type->is_inlinetypeptr() &&
216 !stored_value_casted_type->inline_klass()->maybe_flat_in_array());
217 if (!array_type->is_not_null_free() && not_null_free) {
218 // Storing a non-inline type, mark array as not null-free.
219 array_type = array_type->cast_to_not_null_free();
220 Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, array_type));
221 replace_in_map(array, cast);
222 array = cast;
223 }
224 if (!array_type->is_not_flat() && not_flat) {
225 // Storing to a non-flat array, mark array as not flat.
226 array_type = array_type->cast_to_not_flat();
227 Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, array_type));
228 replace_in_map(array, cast);
229 array = cast;
230 }
231
232 if (!array_type->is_flat() && array_type->is_null_free()) {
233 // Store to non-flat null-free inline type array (elements can never be null)
234 assert(!stored_value_casted_type->maybe_null(), "should be guaranteed by array store check");
235 if (elemtype->is_inlinetypeptr() && elemtype->inline_klass()->is_empty()) {
236 // Ignore empty inline stores, array is already initialized.
237 return;
238 }
239 } else if (!array_type->is_not_flat()) {
240 // Array might be a flat array, emit runtime checks (for nullptr, a simple inline_array_null_guard is sufficient).
241 assert(UseArrayFlattening && !not_flat && elemtype->is_oopptr()->can_be_inline_type() &&
242 (!array_type->klass_is_exact() || array_type->is_flat()), "array can't be a flat array");
243 // TODO 8350865 Depending on the available layouts, we can avoid this check in below flat/not-flat branches. Also the safe_for_replace arg is now always true.
244 array = inline_array_null_guard(array, stored_value_casted, 3, true);
245 IdealKit ideal(this);
246 ideal.if_then(flat_array_test(array, /* flat = */ false)); {
247 // Non-flat array
248 if (!array_type->is_flat()) {
249 sync_kit(ideal);
250 assert(array_type->is_flat() || ideal.ctrl()->in(0)->as_If()->is_flat_array_check(&_gvn), "Should be found");
251 inc_sp(3);
252 access_store_at(array, adr, adr_type, stored_value_casted, elemtype, bt, MO_UNORDERED | IN_HEAP | IS_ARRAY, false);
253 dec_sp(3);
254 ideal.sync_kit(this);
255 }
256 } ideal.else_(); {
257 // Flat array
258 sync_kit(ideal);
259 if (!array_type->is_not_flat()) {
260 // Try to determine the inline klass type of the stored value
261 ciInlineKlass* vk = nullptr;
262 if (stored_value_casted_type->is_inlinetypeptr()) {
263 vk = stored_value_casted_type->inline_klass();
264 } else if (elemtype->is_inlinetypeptr()) {
265 vk = elemtype->inline_klass();
266 }
267
268 if (vk != nullptr) {
269 // Element type is known, cast and store to flat array layout.
270 Node* flat_array = cast_to_flat_array(array, vk, false, false, false);
271
272 // Re-execute flat array store if buffering triggers deoptimization
273 PreserveReexecuteState preexecs(this);
274 jvms()->set_should_reexecute(true);
275 inc_sp(3);
276
277 if (!stored_value_casted->is_InlineType()) {
278 assert(_gvn.type(stored_value_casted) == TypePtr::NULL_PTR, "Unexpected value");
279 stored_value_casted = InlineTypeNode::make_null(_gvn, vk);
280 }
281
282 stored_value_casted->as_InlineType()->store_flat_array(this, flat_array, array_index);
283 } else {
284 // Element type is unknown, emit a runtime call since the flat array layout is not statically known.
285 store_to_unknown_flat_array(array, array_index, stored_value_casted);
286 }
287 }
288 ideal.sync_kit(this);
289 }
290 ideal.end_if();
291 sync_kit(ideal);
292 return;
293 } else if (!array_type->is_not_null_free()) {
294 // Array is not flat but may be null free
295 assert(elemtype->is_oopptr()->can_be_inline_type(), "array can't be null-free");
296 array = inline_array_null_guard(array, stored_value_casted, 3, true);
297 }
298 }
299 inc_sp(3);
300 access_store_at(array, adr, adr_type, stored_value, elemtype, bt, MO_UNORDERED | IN_HEAP | IS_ARRAY);
301 dec_sp(3);
302 }
303
304 // Emit a runtime call to store to a flat array whose element type is either unknown (i.e. we do not know the flat
305 // array layout) or not exact (could have different flat array layouts at runtime).
306 void Parse::store_to_unknown_flat_array(Node* array, Node* const idx, Node* non_null_stored_value) {
307 // Below membars keep this access to an unknown flat array correctly
308 // ordered with other unknown and known flat array accesses.
309 insert_mem_bar_volatile(Op_MemBarCPUOrder, C->get_alias_index(TypeAryPtr::INLINES));
310
311 Node* call = nullptr;
312 {
313 // Re-execute flat array store if runtime call triggers deoptimization
314 PreserveReexecuteState preexecs(this);
315 jvms()->set_bci(_bci);
316 jvms()->set_should_reexecute(true);
317 inc_sp(3);
318 kill_dead_locals();
319 call = make_runtime_call(RC_NO_LEAF | RC_NO_IO,
320 OptoRuntime::store_unknown_inline_Type(),
321 OptoRuntime::store_unknown_inline_Java(),
322 nullptr, TypeRawPtr::BOTTOM,
323 non_null_stored_value, array, idx);
324 }
325 make_slow_call_ex(call, env()->Throwable_klass(), false);
326
327 insert_mem_bar_volatile(Op_MemBarCPUOrder, C->get_alias_index(TypeAryPtr::INLINES));
328 }
329
330 //------------------------------array_addressing-------------------------------
331 // Pull array and index from the stack. Compute pointer-to-element.
332 Node* Parse::array_addressing(BasicType type, int vals, const Type*& elemtype) {
333 Node *idx = peek(0+vals); // Get from stack without popping
334 Node *ary = peek(1+vals); // in case of exception
335
336 // Null check the array base, with correct stack contents
337 ary = null_check(ary, T_ARRAY);
338 // Compile-time detect of null-exception?
339 if (stopped()) return top();
340
341 const TypeAryPtr* arytype = _gvn.type(ary)->is_aryptr();
342 const TypeInt* sizetype = arytype->size();
343 elemtype = arytype->elem();
344
345 if (UseUniqueSubclasses) {
346 const Type* el = elemtype->make_ptr();
347 if (el && el->isa_instptr()) {
348 const TypeInstPtr* toop = el->is_instptr();
349 if (toop->instance_klass()->unique_concrete_subklass()) {
350 // If we load from "AbstractClass[]" we must see "ConcreteSubClass".
351 const Type* subklass = Type::get_const_type(toop->instance_klass());
352 elemtype = subklass->join_speculative(el);
353 }
354 }
355 }
356
357 if (!arytype->is_loaded()) {
358 // Only fails for some -Xcomp runs
359 // The class is unloaded. We have to run this bytecode in the interpreter.
360 ciKlass* klass = arytype->unloaded_klass();
361
362 uncommon_trap(Deoptimization::Reason_unloaded,
363 Deoptimization::Action_reinterpret,
364 klass, "!loaded array");
365 return top();
366 }
367
368 ary = create_speculative_inline_type_array_checks(ary, arytype, elemtype);
369
370 if (needs_range_check(sizetype, idx)) {
371 create_range_check(idx, ary, sizetype);
372 } else if (C->log() != nullptr) {
373 C->log()->elem("observe that='!need_range_check'");
374 }
375
376 // Check for always knowing you are throwing a range-check exception
377 if (stopped()) return top();
378
379 // Make array address computation control dependent to prevent it
380 // from floating above the range check during loop optimizations.
381 Node* ptr = array_element_address(ary, idx, type, sizetype, control());
382 assert(ptr != top(), "top should go hand-in-hand with stopped");
383
384 return ptr;
385 }
386
387 // Check if we need a range check for an array access. This is the case if the index is either negative or if it could
388 // be greater or equal the smallest possible array size (i.e. out-of-bounds).
389 bool Parse::needs_range_check(const TypeInt* size_type, const Node* index) const {
390 const TypeInt* index_type = _gvn.type(index)->is_int();
391 return index_type->_hi >= size_type->_lo || index_type->_lo < 0;
392 }
393
394 void Parse::create_range_check(Node* idx, Node* ary, const TypeInt* sizetype) {
395 Node* tst;
396 if (sizetype->_hi <= 0) {
397 // The greatest array bound is negative, so we can conclude that we're
398 // compiling unreachable code, but the unsigned compare trick used below
399 // only works with non-negative lengths. Instead, hack "tst" to be zero so
400 // the uncommon_trap path will always be taken.
401 tst = _gvn.intcon(0);
402 } else {
403 // Range is constant in array-oop, so we can use the original state of mem
404 Node* len = load_array_length(ary);
405
406 // Test length vs index (standard trick using unsigned compare)
407 Node* chk = _gvn.transform(new CmpUNode(idx, len) );
408 BoolTest::mask btest = BoolTest::lt;
409 tst = _gvn.transform(new BoolNode(chk, btest) );
410 }
411 RangeCheckNode* rc = new RangeCheckNode(control(), tst, PROB_MAX, COUNT_UNKNOWN);
412 _gvn.set_type(rc, rc->Value(&_gvn));
413 if (!tst->is_Con()) {
414 record_for_igvn(rc);
415 }
416 set_control(_gvn.transform(new IfTrueNode(rc)));
417 // Branch to failure if out of bounds
418 {
419 PreserveJVMState pjvms(this);
420 set_control(_gvn.transform(new IfFalseNode(rc)));
421 if (C->allow_range_check_smearing()) {
422 // Do not use builtin_throw, since range checks are sometimes
423 // made more stringent by an optimistic transformation.
424 // This creates "tentative" range checks at this point,
425 // which are not guaranteed to throw exceptions.
426 // See IfNode::Ideal, is_range_check, adjust_check.
427 uncommon_trap(Deoptimization::Reason_range_check,
428 Deoptimization::Action_make_not_entrant,
429 nullptr, "range_check");
430 } else {
431 // If we have already recompiled with the range-check-widening
432 // heroic optimization turned off, then we must really be throwing
433 // range check exceptions.
434 builtin_throw(Deoptimization::Reason_range_check);
435 }
436 }
437 }
438
439 // For inline type arrays, we can use the profiling information for array accesses to speculate on the type, flatness,
440 // and null-freeness. We can either prepare the speculative type for later uses or emit explicit speculative checks with
441 // traps now. In the latter case, the speculative type guarantees can avoid additional runtime checks later (e.g.
442 // non-null-free implies non-flat which allows us to remove flatness checks). This makes the graph simpler.
443 Node* Parse::create_speculative_inline_type_array_checks(Node* array, const TypeAryPtr* array_type,
444 const Type*& element_type) {
445 if (!array_type->is_flat() && !array_type->is_not_flat()) {
446 // For arrays that might be flat, speculate that the array has the exact type reported in the profile data such that
447 // we can rely on a fixed memory layout (i.e. either a flat layout or not).
448 array = cast_to_speculative_array_type(array, array_type, element_type);
449 } else if (UseTypeSpeculation && UseArrayLoadStoreProfile) {
450 // Array is known to be either flat or not flat. If possible, update the speculative type by using the profile data
451 // at this bci.
452 array = cast_to_profiled_array_type(array);
453 }
454
455 // Even though the type does not tell us whether we have an inline type array or not, we can still check the profile data
456 // whether we have a non-null-free or non-flat array. Speculating on a non-null-free array doesn't help aaload but could
457 // be profitable for a subsequent aastore.
458 if (!array_type->is_null_free() && !array_type->is_not_null_free()) {
459 array = speculate_non_null_free_array(array, array_type);
460 }
461 if (!array_type->is_flat() && !array_type->is_not_flat()) {
462 array = speculate_non_flat_array(array, array_type);
463 }
464 return array;
465 }
466
467 // Speculate that the array has the exact type reported in the profile data. We emit a trap when this turns out to be
468 // wrong. On the fast path, we add a CheckCastPP to use the exact type.
469 Node* Parse::cast_to_speculative_array_type(Node* const array, const TypeAryPtr*& array_type, const Type*& element_type) {
470 Deoptimization::DeoptReason reason = Deoptimization::Reason_speculate_class_check;
471 ciKlass* speculative_array_type = array_type->speculative_type();
472 if (too_many_traps_or_recompiles(reason) || speculative_array_type == nullptr) {
473 // No speculative type, check profile data at this bci
474 speculative_array_type = nullptr;
475 reason = Deoptimization::Reason_class_check;
476 if (UseArrayLoadStoreProfile && !too_many_traps_or_recompiles(reason)) {
477 ciKlass* profiled_element_type = nullptr;
478 ProfilePtrKind element_ptr = ProfileMaybeNull;
479 bool flat_array = true;
480 bool null_free_array = true;
481 method()->array_access_profiled_type(bci(), speculative_array_type, profiled_element_type, element_ptr, flat_array,
482 null_free_array);
483 }
484 }
485 if (speculative_array_type != nullptr) {
486 // Speculate that this array has the exact type reported by profile data
487 Node* casted_array = nullptr;
488 DEBUG_ONLY(Node* old_control = control();)
489 Node* slow_ctl = type_check_receiver(array, speculative_array_type, 1.0, &casted_array);
490 if (stopped()) {
491 // The check always fails and therefore profile information is incorrect. Don't use it.
492 assert(old_control == slow_ctl, "type check should have been removed");
493 set_control(slow_ctl);
494 } else if (!slow_ctl->is_top()) {
495 { PreserveJVMState pjvms(this);
496 set_control(slow_ctl);
497 uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
498 }
499 replace_in_map(array, casted_array);
500 array_type = _gvn.type(casted_array)->is_aryptr();
501 element_type = array_type->elem();
502 return casted_array;
503 }
504 }
505 return array;
506 }
507
508 // Create a CheckCastPP when the speculative type can improve the current type.
509 Node* Parse::cast_to_profiled_array_type(Node* const array) {
510 ciKlass* array_type = nullptr;
511 ciKlass* element_type = nullptr;
512 ProfilePtrKind element_ptr = ProfileMaybeNull;
513 bool flat_array = true;
514 bool null_free_array = true;
515 method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array);
516 if (array_type != nullptr) {
517 return record_profile_for_speculation(array, array_type, ProfileMaybeNull);
518 }
519 return array;
520 }
521
522 // Speculate that the array is non-null-free. We emit a trap when this turns out to be
523 // wrong. On the fast path, we add a CheckCastPP to use the non-null-free type.
524 Node* Parse::speculate_non_null_free_array(Node* const array, const TypeAryPtr*& array_type) {
525 bool null_free_array = true;
526 Deoptimization::DeoptReason reason = Deoptimization::Reason_none;
527 if (array_type->speculative() != nullptr &&
528 array_type->speculative()->is_aryptr()->is_not_null_free() &&
529 !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_class_check)) {
530 null_free_array = false;
531 reason = Deoptimization::Reason_speculate_class_check;
532 } else if (UseArrayLoadStoreProfile && !too_many_traps_or_recompiles(Deoptimization::Reason_class_check)) {
533 ciKlass* profiled_array_type = nullptr;
534 ciKlass* profiled_element_type = nullptr;
535 ProfilePtrKind element_ptr = ProfileMaybeNull;
536 bool flat_array = true;
537 method()->array_access_profiled_type(bci(), profiled_array_type, profiled_element_type, element_ptr, flat_array,
538 null_free_array);
539 reason = Deoptimization::Reason_class_check;
540 }
541 if (!null_free_array) {
542 { // Deoptimize if null-free array
543 BuildCutout unless(this, null_free_array_test(array, /* null_free = */ false), PROB_MAX);
544 uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
545 }
546 assert(!stopped(), "null-free array should have been caught earlier");
547 Node* casted_array = _gvn.transform(new CheckCastPPNode(control(), array, array_type->cast_to_not_null_free()));
548 replace_in_map(array, casted_array);
549 array_type = _gvn.type(casted_array)->is_aryptr();
550 return casted_array;
551 }
552 return array;
553 }
554
555 // Speculate that the array is non-flat. We emit a trap when this turns out to be wrong.
556 // On the fast path, we add a CheckCastPP to use the non-flat type.
557 Node* Parse::speculate_non_flat_array(Node* const array, const TypeAryPtr* const array_type) {
558 bool flat_array = true;
559 Deoptimization::DeoptReason reason = Deoptimization::Reason_none;
560 if (array_type->speculative() != nullptr &&
561 array_type->speculative()->is_aryptr()->is_not_flat() &&
562 !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_class_check)) {
563 flat_array = false;
564 reason = Deoptimization::Reason_speculate_class_check;
565 } else if (UseArrayLoadStoreProfile && !too_many_traps_or_recompiles(reason)) {
566 ciKlass* profiled_array_type = nullptr;
567 ciKlass* profiled_element_type = nullptr;
568 ProfilePtrKind element_ptr = ProfileMaybeNull;
569 bool null_free_array = true;
570 method()->array_access_profiled_type(bci(), profiled_array_type, profiled_element_type, element_ptr, flat_array,
571 null_free_array);
572 reason = Deoptimization::Reason_class_check;
573 }
574 if (!flat_array) {
575 { // Deoptimize if flat array
576 BuildCutout unless(this, flat_array_test(array, /* flat = */ false), PROB_MAX);
577 uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
578 }
579 assert(!stopped(), "flat array should have been caught earlier");
580 Node* casted_array = _gvn.transform(new CheckCastPPNode(control(), array, array_type->cast_to_not_flat()));
581 replace_in_map(array, casted_array);
582 return casted_array;
583 }
584 return array;
585 }
586
587 // returns IfNode
588 IfNode* Parse::jump_if_fork_int(Node* a, Node* b, BoolTest::mask mask, float prob, float cnt) {
589 Node *cmp = _gvn.transform(new CmpINode(a, b)); // two cases: shiftcount > 32 and shiftcount <= 32
590 Node *tst = _gvn.transform(new BoolNode(cmp, mask));
591 IfNode *iff = create_and_map_if(control(), tst, prob, cnt);
592 return iff;
593 }
594
595
596 // sentinel value for the target bci to mark never taken branches
597 // (according to profiling)
598 static const int never_reached = INT_MAX;
599
600 //------------------------------helper for tableswitch-------------------------
601 void Parse::jump_if_true_fork(IfNode *iff, int dest_bci_if_true, bool unc) {
602 // True branch, use existing map info
603 { PreserveJVMState pjvms(this);
604 Node *iftrue = _gvn.transform( new IfTrueNode (iff) );
605 set_control( iftrue );
1802 // False branch
1803 Node* iffalse = _gvn.transform( new IfFalseNode(iff) );
1804 set_control(iffalse);
1805
1806 if (stopped()) { // Path is dead?
1807 NOT_PRODUCT(explicit_null_checks_elided++);
1808 if (C->eliminate_boxing()) {
1809 // Mark the successor block as parsed
1810 next_block->next_path_num();
1811 }
1812 } else { // Path is live.
1813 adjust_map_after_if(BoolTest(btest).negate(), c, 1.0-prob, next_block);
1814 }
1815
1816 if (do_stress_trap) {
1817 stress_trap(iff, counter, incr_store);
1818 }
1819 }
1820
1821 //------------------------------------do_if------------------------------------
1822 void Parse::do_if(BoolTest::mask btest, Node* c, bool can_trap, bool new_path, Node** ctrl_taken, Node** stress_count_mem) {
1823 int target_bci = iter().get_dest();
1824
1825 Block* branch_block = successor_for_bci(target_bci);
1826 Block* next_block = successor_for_bci(iter().next_bci());
1827
1828 float cnt;
1829 float prob = branch_prediction(cnt, btest, target_bci, c);
1830 float untaken_prob = 1.0 - prob;
1831
1832 if (prob == PROB_UNKNOWN) {
1833 if (PrintOpto && Verbose) {
1834 tty->print_cr("Never-taken edge stops compilation at bci %d", bci());
1835 }
1836 repush_if_args(); // to gather stats on loop
1837 uncommon_trap(Deoptimization::Reason_unreached,
1838 Deoptimization::Action_reinterpret,
1839 nullptr, "cold");
1840 if (C->eliminate_boxing()) {
1841 // Mark the successor blocks as parsed
1842 branch_block->next_path_num();
1843 next_block->next_path_num();
1844 }
1845 return;
1846 }
1847
1848 Node* counter = nullptr;
1849 Node* incr_store = nullptr;
1850 bool do_stress_trap = StressUnstableIfTraps && ((C->random() % 2) == 0);
1851 if (do_stress_trap) {
1852 increment_trap_stress_counter(counter, incr_store);
1853 if (stress_count_mem != nullptr) {
1854 *stress_count_mem = incr_store;
1855 }
1856 }
1857
1858 // Sanity check the probability value
1859 assert(0.0f < prob && prob < 1.0f,"Bad probability in Parser");
1860
1861 bool taken_if_true = true;
1862 // Convert BoolTest to canonical form:
1863 if (!BoolTest(btest).is_canonical()) {
1864 btest = BoolTest(btest).negate();
1865 taken_if_true = false;
1866 // prob is NOT updated here; it remains the probability of the taken
1867 // path (as opposed to the prob of the path guarded by an 'IfTrueNode').
1868 }
1869 assert(btest != BoolTest::eq, "!= is the only canonical exact test");
1870
1871 Node* tst0 = new BoolNode(c, btest);
1872 Node* tst = _gvn.transform(tst0);
1873 BoolTest::mask taken_btest = BoolTest::illegal;
1874 BoolTest::mask untaken_btest = BoolTest::illegal;
1875
1896 }
1897
1898 // Generate real control flow
1899 float true_prob = (taken_if_true ? prob : untaken_prob);
1900 IfNode* iff = create_and_map_if(control(), tst, true_prob, cnt);
1901 assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
1902 Node* taken_branch = new IfTrueNode(iff);
1903 Node* untaken_branch = new IfFalseNode(iff);
1904 if (!taken_if_true) { // Finish conversion to canonical form
1905 Node* tmp = taken_branch;
1906 taken_branch = untaken_branch;
1907 untaken_branch = tmp;
1908 }
1909
1910 // Branch is taken:
1911 { PreserveJVMState pjvms(this);
1912 taken_branch = _gvn.transform(taken_branch);
1913 set_control(taken_branch);
1914
1915 if (stopped()) {
1916 if (C->eliminate_boxing() && !new_path) {
1917 // Mark the successor block as parsed (if we haven't created a new path)
1918 branch_block->next_path_num();
1919 }
1920 } else {
1921 adjust_map_after_if(taken_btest, c, prob, branch_block, can_trap);
1922 if (!stopped()) {
1923 if (new_path) {
1924 // Merge by using a new path
1925 merge_new_path(target_bci);
1926 } else if (ctrl_taken != nullptr) {
1927 // Don't merge but save taken branch to be wired by caller
1928 *ctrl_taken = control();
1929 } else {
1930 merge(target_bci);
1931 }
1932 }
1933 }
1934 }
1935
1936 untaken_branch = _gvn.transform(untaken_branch);
1937 set_control(untaken_branch);
1938
1939 // Branch not taken.
1940 if (stopped() && ctrl_taken == nullptr) {
1941 if (C->eliminate_boxing()) {
1942 // Mark the successor block as parsed (if caller does not re-wire control flow)
1943 next_block->next_path_num();
1944 }
1945 } else {
1946 adjust_map_after_if(untaken_btest, c, untaken_prob, next_block, can_trap);
1947 }
1948
1949 if (do_stress_trap) {
1950 stress_trap(iff, counter, incr_store);
1951 }
1952 }
1953
1954
1955 static ProfilePtrKind speculative_ptr_kind(const TypeOopPtr* t) {
1956 if (t->speculative() == nullptr) {
1957 return ProfileUnknownNull;
1958 }
1959 if (t->speculative_always_null()) {
1960 return ProfileAlwaysNull;
1961 }
1962 if (t->speculative_maybe_null()) {
1963 return ProfileMaybeNull;
1964 }
1965 return ProfileNeverNull;
1966 }
1967
1968 void Parse::acmp_always_null_input(Node* input, const TypeOopPtr* tinput, BoolTest::mask btest, Node* eq_region) {
1969 inc_sp(2);
1970 Node* cast = null_check_common(input, T_OBJECT, true, nullptr,
1971 !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_check) &&
1972 speculative_ptr_kind(tinput) == ProfileAlwaysNull);
1973 dec_sp(2);
1974 if (btest == BoolTest::ne) {
1975 {
1976 PreserveJVMState pjvms(this);
1977 replace_in_map(input, cast);
1978 int target_bci = iter().get_dest();
1979 merge(target_bci);
1980 }
1981 record_for_igvn(eq_region);
1982 set_control(_gvn.transform(eq_region));
1983 } else {
1984 replace_in_map(input, cast);
1985 }
1986 }
1987
1988 Node* Parse::acmp_null_check(Node* input, const TypeOopPtr* tinput, ProfilePtrKind input_ptr, Node*& null_ctl) {
1989 inc_sp(2);
1990 null_ctl = top();
1991 Node* cast = null_check_oop(input, &null_ctl,
1992 input_ptr == ProfileNeverNull || (input_ptr == ProfileUnknownNull && !too_many_traps_or_recompiles(Deoptimization::Reason_null_check)),
1993 false,
1994 speculative_ptr_kind(tinput) == ProfileNeverNull &&
1995 !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_check));
1996 dec_sp(2);
1997 assert(!stopped(), "null input should have been caught earlier");
1998 return cast;
1999 }
2000
2001 void Parse::acmp_known_non_inline_type_input(Node* input, const TypeOopPtr* tinput, ProfilePtrKind input_ptr, ciKlass* input_type, BoolTest::mask btest, Node* eq_region) {
2002 Node* ne_region = new RegionNode(1);
2003 Node* null_ctl;
2004 Node* cast = acmp_null_check(input, tinput, input_ptr, null_ctl);
2005 ne_region->add_req(null_ctl);
2006
2007 Node* slow_ctl = type_check_receiver(cast, input_type, 1.0, &cast);
2008 {
2009 PreserveJVMState pjvms(this);
2010 inc_sp(2);
2011 set_control(slow_ctl);
2012 Deoptimization::DeoptReason reason;
2013 if (tinput->speculative_type() != nullptr && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_class_check)) {
2014 reason = Deoptimization::Reason_speculate_class_check;
2015 } else {
2016 reason = Deoptimization::Reason_class_check;
2017 }
2018 uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
2019 }
2020 ne_region->add_req(control());
2021
2022 record_for_igvn(ne_region);
2023 set_control(_gvn.transform(ne_region));
2024 if (btest == BoolTest::ne) {
2025 {
2026 PreserveJVMState pjvms(this);
2027 if (null_ctl == top()) {
2028 replace_in_map(input, cast);
2029 }
2030 int target_bci = iter().get_dest();
2031 merge(target_bci);
2032 }
2033 record_for_igvn(eq_region);
2034 set_control(_gvn.transform(eq_region));
2035 } else {
2036 if (null_ctl == top()) {
2037 replace_in_map(input, cast);
2038 }
2039 set_control(_gvn.transform(ne_region));
2040 }
2041 }
2042
2043 void Parse::acmp_unknown_non_inline_type_input(Node* input, const TypeOopPtr* tinput, ProfilePtrKind input_ptr, BoolTest::mask btest, Node* eq_region) {
2044 Node* ne_region = new RegionNode(1);
2045 Node* null_ctl;
2046 Node* cast = acmp_null_check(input, tinput, input_ptr, null_ctl);
2047 ne_region->add_req(null_ctl);
2048
2049 {
2050 BuildCutout unless(this, inline_type_test(cast, /* is_inline = */ false), PROB_MAX);
2051 inc_sp(2);
2052 uncommon_trap_exact(Deoptimization::Reason_class_check, Deoptimization::Action_maybe_recompile);
2053 }
2054
2055 ne_region->add_req(control());
2056
2057 record_for_igvn(ne_region);
2058 set_control(_gvn.transform(ne_region));
2059 if (btest == BoolTest::ne) {
2060 {
2061 PreserveJVMState pjvms(this);
2062 if (null_ctl == top()) {
2063 replace_in_map(input, cast);
2064 }
2065 int target_bci = iter().get_dest();
2066 merge(target_bci);
2067 }
2068 record_for_igvn(eq_region);
2069 set_control(_gvn.transform(eq_region));
2070 } else {
2071 if (null_ctl == top()) {
2072 replace_in_map(input, cast);
2073 }
2074 set_control(_gvn.transform(ne_region));
2075 }
2076 }
2077
2078 void Parse::do_acmp(BoolTest::mask btest, Node* left, Node* right) {
2079 ciKlass* left_type = nullptr;
2080 ciKlass* right_type = nullptr;
2081 ProfilePtrKind left_ptr = ProfileUnknownNull;
2082 ProfilePtrKind right_ptr = ProfileUnknownNull;
2083 bool left_inline_type = true;
2084 bool right_inline_type = true;
2085
2086 // Leverage profiling at acmp
2087 if (UseACmpProfile) {
2088 method()->acmp_profiled_type(bci(), left_type, right_type, left_ptr, right_ptr, left_inline_type, right_inline_type);
2089 if (too_many_traps_or_recompiles(Deoptimization::Reason_class_check)) {
2090 left_type = nullptr;
2091 right_type = nullptr;
2092 left_inline_type = true;
2093 right_inline_type = true;
2094 }
2095 if (too_many_traps_or_recompiles(Deoptimization::Reason_null_check)) {
2096 left_ptr = ProfileUnknownNull;
2097 right_ptr = ProfileUnknownNull;
2098 }
2099 }
2100
2101 if (UseTypeSpeculation) {
2102 record_profile_for_speculation(left, left_type, left_ptr);
2103 record_profile_for_speculation(right, right_type, right_ptr);
2104 }
2105
2106 if (!EnableValhalla) {
2107 Node* cmp = CmpP(left, right);
2108 cmp = optimize_cmp_with_klass(cmp);
2109 do_if(btest, cmp);
2110 return;
2111 }
2112
2113 // Check for equality before potentially allocating
2114 if (left == right) {
2115 do_if(btest, makecon(TypeInt::CC_EQ));
2116 return;
2117 }
2118
2119 // Allocate inline type operands and re-execute on deoptimization
2120 if (left->is_InlineType()) {
2121 if (_gvn.type(right)->is_zero_type() ||
2122 (right->is_InlineType() && _gvn.type(right->as_InlineType()->get_null_marker())->is_zero_type())) {
2123 // Null checking a scalarized but nullable inline type. Check the null marker
2124 // input instead of the oop input to avoid keeping buffer allocations alive.
2125 Node* cmp = CmpI(left->as_InlineType()->get_null_marker(), intcon(0));
2126 do_if(btest, cmp);
2127 return;
2128 } else {
2129 PreserveReexecuteState preexecs(this);
2130 inc_sp(2);
2131 jvms()->set_should_reexecute(true);
2132 left = left->as_InlineType()->buffer(this)->get_oop();
2133 }
2134 }
2135 if (right->is_InlineType()) {
2136 PreserveReexecuteState preexecs(this);
2137 inc_sp(2);
2138 jvms()->set_should_reexecute(true);
2139 right = right->as_InlineType()->buffer(this)->get_oop();
2140 }
2141
2142 // First, do a normal pointer comparison
2143 const TypeOopPtr* tleft = _gvn.type(left)->isa_oopptr();
2144 const TypeOopPtr* tright = _gvn.type(right)->isa_oopptr();
2145 Node* cmp = CmpP(left, right);
2146 cmp = optimize_cmp_with_klass(cmp);
2147 if (tleft == nullptr || !tleft->can_be_inline_type() ||
2148 tright == nullptr || !tright->can_be_inline_type()) {
2149 // This is sufficient, if one of the operands can't be an inline type
2150 do_if(btest, cmp);
2151 return;
2152 }
2153
2154 // Don't add traps to unstable if branches because additional checks are required to
2155 // decide if the operands are equal/substitutable and we therefore shouldn't prune
2156 // branches for one if based on the profiling of the acmp branches.
2157 // Also, OptimizeUnstableIf would set an incorrect re-rexecution state because it
2158 // assumes that there is a 1-1 mapping between the if and the acmp branches and that
2159 // hitting a trap means that we will take the corresponding acmp branch on re-execution.
2160 const bool can_trap = true;
2161
2162 Node* eq_region = nullptr;
2163 if (btest == BoolTest::eq) {
2164 do_if(btest, cmp, !can_trap, true);
2165 if (stopped()) {
2166 // Pointers are equal, operands must be equal
2167 return;
2168 }
2169 } else {
2170 assert(btest == BoolTest::ne, "only eq or ne");
2171 Node* is_not_equal = nullptr;
2172 eq_region = new RegionNode(3);
2173 {
2174 PreserveJVMState pjvms(this);
2175 // Pointers are not equal, but more checks are needed to determine if the operands are (not) substitutable
2176 do_if(btest, cmp, !can_trap, false, &is_not_equal);
2177 if (!stopped()) {
2178 eq_region->init_req(1, control());
2179 }
2180 }
2181 if (is_not_equal == nullptr || is_not_equal->is_top()) {
2182 record_for_igvn(eq_region);
2183 set_control(_gvn.transform(eq_region));
2184 return;
2185 }
2186 set_control(is_not_equal);
2187 }
2188
2189 // Prefer speculative types if available
2190 if (!too_many_traps_or_recompiles(Deoptimization::Reason_speculate_class_check)) {
2191 if (tleft->speculative_type() != nullptr) {
2192 left_type = tleft->speculative_type();
2193 }
2194 if (tright->speculative_type() != nullptr) {
2195 right_type = tright->speculative_type();
2196 }
2197 }
2198
2199 if (speculative_ptr_kind(tleft) != ProfileMaybeNull && speculative_ptr_kind(tleft) != ProfileUnknownNull) {
2200 ProfilePtrKind speculative_left_ptr = speculative_ptr_kind(tleft);
2201 if (speculative_left_ptr == ProfileAlwaysNull && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_assert)) {
2202 left_ptr = speculative_left_ptr;
2203 } else if (speculative_left_ptr == ProfileNeverNull && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_check)) {
2204 left_ptr = speculative_left_ptr;
2205 }
2206 }
2207 if (speculative_ptr_kind(tright) != ProfileMaybeNull && speculative_ptr_kind(tright) != ProfileUnknownNull) {
2208 ProfilePtrKind speculative_right_ptr = speculative_ptr_kind(tright);
2209 if (speculative_right_ptr == ProfileAlwaysNull && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_assert)) {
2210 right_ptr = speculative_right_ptr;
2211 } else if (speculative_right_ptr == ProfileNeverNull && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_check)) {
2212 right_ptr = speculative_right_ptr;
2213 }
2214 }
2215
2216 if (left_ptr == ProfileAlwaysNull) {
2217 // Comparison with null. Assert the input is indeed null and we're done.
2218 acmp_always_null_input(left, tleft, btest, eq_region);
2219 return;
2220 }
2221 if (right_ptr == ProfileAlwaysNull) {
2222 // Comparison with null. Assert the input is indeed null and we're done.
2223 acmp_always_null_input(right, tright, btest, eq_region);
2224 return;
2225 }
2226 if (left_type != nullptr && !left_type->is_inlinetype()) {
2227 // Comparison with an object of known type
2228 acmp_known_non_inline_type_input(left, tleft, left_ptr, left_type, btest, eq_region);
2229 return;
2230 }
2231 if (right_type != nullptr && !right_type->is_inlinetype()) {
2232 // Comparison with an object of known type
2233 acmp_known_non_inline_type_input(right, tright, right_ptr, right_type, btest, eq_region);
2234 return;
2235 }
2236 if (!left_inline_type) {
2237 // Comparison with an object known not to be an inline type
2238 acmp_unknown_non_inline_type_input(left, tleft, left_ptr, btest, eq_region);
2239 return;
2240 }
2241 if (!right_inline_type) {
2242 // Comparison with an object known not to be an inline type
2243 acmp_unknown_non_inline_type_input(right, tright, right_ptr, btest, eq_region);
2244 return;
2245 }
2246
2247 // Pointers are not equal, check if first operand is non-null
2248 Node* ne_region = new RegionNode(6);
2249 Node* null_ctl;
2250 Node* not_null_right = acmp_null_check(right, tright, right_ptr, null_ctl);
2251 ne_region->init_req(1, null_ctl);
2252
2253 // First operand is non-null, check if it is an inline type
2254 Node* is_value = inline_type_test(not_null_right);
2255 IfNode* is_value_iff = create_and_map_if(control(), is_value, PROB_FAIR, COUNT_UNKNOWN);
2256 Node* not_value = _gvn.transform(new IfFalseNode(is_value_iff));
2257 ne_region->init_req(2, not_value);
2258 set_control(_gvn.transform(new IfTrueNode(is_value_iff)));
2259
2260 // The first operand is an inline type, check if the second operand is non-null
2261 Node* not_null_left = acmp_null_check(left, tleft, left_ptr, null_ctl);
2262 ne_region->init_req(3, null_ctl);
2263
2264 // Check if both operands are of the same class.
2265 Node* kls_left = load_object_klass(not_null_left);
2266 Node* kls_right = load_object_klass(not_null_right);
2267 Node* kls_cmp = CmpP(kls_left, kls_right);
2268 Node* kls_bol = _gvn.transform(new BoolNode(kls_cmp, BoolTest::ne));
2269 IfNode* kls_iff = create_and_map_if(control(), kls_bol, PROB_FAIR, COUNT_UNKNOWN);
2270 Node* kls_ne = _gvn.transform(new IfTrueNode(kls_iff));
2271 set_control(_gvn.transform(new IfFalseNode(kls_iff)));
2272 ne_region->init_req(4, kls_ne);
2273
2274 if (stopped()) {
2275 record_for_igvn(ne_region);
2276 set_control(_gvn.transform(ne_region));
2277 if (btest == BoolTest::ne) {
2278 {
2279 PreserveJVMState pjvms(this);
2280 int target_bci = iter().get_dest();
2281 merge(target_bci);
2282 }
2283 record_for_igvn(eq_region);
2284 set_control(_gvn.transform(eq_region));
2285 }
2286 return;
2287 }
2288
2289 // Both operands are values types of the same class, we need to perform a
2290 // substitutability test. Delegate to ValueObjectMethods::isSubstitutable().
2291 Node* ne_io_phi = PhiNode::make(ne_region, i_o());
2292 Node* mem = reset_memory();
2293 Node* ne_mem_phi = PhiNode::make(ne_region, mem);
2294
2295 Node* eq_io_phi = nullptr;
2296 Node* eq_mem_phi = nullptr;
2297 if (eq_region != nullptr) {
2298 eq_io_phi = PhiNode::make(eq_region, i_o());
2299 eq_mem_phi = PhiNode::make(eq_region, mem);
2300 }
2301
2302 set_all_memory(mem);
2303
2304 kill_dead_locals();
2305 ciSymbol* subst_method_name = UseAltSubstitutabilityMethod ? ciSymbols::isSubstitutableAlt_name() : ciSymbols::isSubstitutable_name();
2306 ciMethod* subst_method = ciEnv::current()->ValueObjectMethods_klass()->find_method(subst_method_name, ciSymbols::object_object_boolean_signature());
2307 CallStaticJavaNode *call = new CallStaticJavaNode(C, TypeFunc::make(subst_method), SharedRuntime::get_resolve_static_call_stub(), subst_method);
2308 call->set_override_symbolic_info(true);
2309 call->init_req(TypeFunc::Parms, not_null_left);
2310 call->init_req(TypeFunc::Parms+1, not_null_right);
2311 inc_sp(2);
2312 set_edges_for_java_call(call, false, false);
2313 Node* ret = set_results_for_java_call(call, false, true);
2314 dec_sp(2);
2315
2316 // Test the return value of ValueObjectMethods::isSubstitutable()
2317 // This is the last check, do_if can emit traps now.
2318 Node* subst_cmp = _gvn.transform(new CmpINode(ret, intcon(1)));
2319 Node* ctl = C->top();
2320 Node* stress_count_mem = nullptr;
2321 if (btest == BoolTest::eq) {
2322 PreserveJVMState pjvms(this);
2323 do_if(btest, subst_cmp, can_trap, false, nullptr, &stress_count_mem);
2324 if (!stopped()) {
2325 ctl = control();
2326 }
2327 } else {
2328 assert(btest == BoolTest::ne, "only eq or ne");
2329 PreserveJVMState pjvms(this);
2330 do_if(btest, subst_cmp, can_trap, false, &ctl, &stress_count_mem);
2331 if (!stopped()) {
2332 eq_region->init_req(2, control());
2333 eq_io_phi->init_req(2, i_o());
2334 eq_mem_phi->init_req(2, reset_memory());
2335 }
2336 }
2337 if (stress_count_mem != nullptr) {
2338 set_memory(stress_count_mem, stress_count_mem->adr_type());
2339 }
2340 ne_region->init_req(5, ctl);
2341 ne_io_phi->init_req(5, i_o());
2342 ne_mem_phi->init_req(5, reset_memory());
2343
2344 record_for_igvn(ne_region);
2345 set_control(_gvn.transform(ne_region));
2346 set_i_o(_gvn.transform(ne_io_phi));
2347 set_all_memory(_gvn.transform(ne_mem_phi));
2348
2349 if (btest == BoolTest::ne) {
2350 {
2351 PreserveJVMState pjvms(this);
2352 int target_bci = iter().get_dest();
2353 merge(target_bci);
2354 }
2355
2356 record_for_igvn(eq_region);
2357 set_control(_gvn.transform(eq_region));
2358 set_i_o(_gvn.transform(eq_io_phi));
2359 set_all_memory(_gvn.transform(eq_mem_phi));
2360 }
2361 }
2362
2363 // Force unstable if traps to be taken randomly to trigger intermittent bugs such as incorrect debug information.
2364 // Add another if before the unstable if that checks a "random" condition at runtime (a simple shared counter) and
2365 // then either takes the trap or executes the original, unstable if.
2366 void Parse::stress_trap(IfNode* orig_iff, Node* counter, Node* incr_store) {
2367 // Search for an unstable if trap
2368 CallStaticJavaNode* trap = nullptr;
2369 assert(orig_iff->Opcode() == Op_If && orig_iff->outcnt() == 2, "malformed if");
2370 ProjNode* trap_proj = orig_iff->uncommon_trap_proj(trap, Deoptimization::Reason_unstable_if);
2371 if (trap == nullptr || !trap->jvms()->should_reexecute()) {
2372 // No suitable trap found. Remove unused counter load and increment.
2373 C->gvn_replace_by(incr_store, incr_store->in(MemNode::Memory));
2374 return;
2375 }
2376
2377 // Remove trap from optimization list since we add another path to the trap.
2378 bool success = C->remove_unstable_if_trap(trap, true);
2379 assert(success, "Trap already modified");
2380
2381 // Add a check before the original if that will trap with a certain frequency and execute the original if otherwise
2382 int freq_log = (C->random() % 31) + 1; // Random logarithmic frequency in [1, 31]
2415 }
2416
2417 void Parse::maybe_add_predicate_after_if(Block* path) {
2418 if (path->is_SEL_head() && path->preds_parsed() == 0) {
2419 // Add predicates at bci of if dominating the loop so traps can be
2420 // recorded on the if's profile data
2421 int bc_depth = repush_if_args();
2422 add_parse_predicates();
2423 dec_sp(bc_depth);
2424 path->set_has_predicates();
2425 }
2426 }
2427
2428
2429 //----------------------------adjust_map_after_if------------------------------
2430 // Adjust the JVM state to reflect the result of taking this path.
2431 // Basically, it means inspecting the CmpNode controlling this
2432 // branch, seeing how it constrains a tested value, and then
2433 // deciding if it's worth our while to encode this constraint
2434 // as graph nodes in the current abstract interpretation map.
2435 void Parse::adjust_map_after_if(BoolTest::mask btest, Node* c, float prob, Block* path, bool can_trap) {
2436 if (!c->is_Cmp()) {
2437 maybe_add_predicate_after_if(path);
2438 return;
2439 }
2440
2441 if (stopped() || btest == BoolTest::illegal) {
2442 return; // nothing to do
2443 }
2444
2445 bool is_fallthrough = (path == successor_for_bci(iter().next_bci()));
2446
2447 if (can_trap && path_is_suitable_for_uncommon_trap(prob)) {
2448 repush_if_args();
2449 Node* call = uncommon_trap(Deoptimization::Reason_unstable_if,
2450 Deoptimization::Action_reinterpret,
2451 nullptr,
2452 (is_fallthrough ? "taken always" : "taken never"));
2453
2454 if (call != nullptr) {
2455 C->record_unstable_if_trap(new UnstableIfTrap(call->as_CallStaticJava(), path));
2456 }
2457 return;
2458 }
2459
2460 Node* val = c->in(1);
2461 Node* con = c->in(2);
2462 const Type* tcon = _gvn.type(con);
2463 const Type* tval = _gvn.type(val);
2464 bool have_con = tcon->singleton();
2465 if (tval->singleton()) {
2466 if (!have_con) {
2467 // Swap, so constant is in con.
2524 if (obj != nullptr && (con_type->isa_instptr() || con_type->isa_aryptr())) {
2525 // Found:
2526 // Bool(CmpP(LoadKlass(obj._klass), ConP(Foo.klass)), [eq])
2527 // or the narrowOop equivalent.
2528 const Type* obj_type = _gvn.type(obj);
2529 const TypeOopPtr* tboth = obj_type->join_speculative(con_type)->isa_oopptr();
2530 if (tboth != nullptr && tboth->klass_is_exact() && tboth != obj_type &&
2531 tboth->higher_equal(obj_type)) {
2532 // obj has to be of the exact type Foo if the CmpP succeeds.
2533 int obj_in_map = map()->find_edge(obj);
2534 JVMState* jvms = this->jvms();
2535 if (obj_in_map >= 0 &&
2536 (jvms->is_loc(obj_in_map) || jvms->is_stk(obj_in_map))) {
2537 TypeNode* ccast = new CheckCastPPNode(control(), obj, tboth);
2538 const Type* tcc = ccast->as_Type()->type();
2539 assert(tcc != obj_type && tcc->higher_equal(obj_type), "must improve");
2540 // Delay transform() call to allow recovery of pre-cast value
2541 // at the control merge.
2542 _gvn.set_type_bottom(ccast);
2543 record_for_igvn(ccast);
2544 if (tboth->is_inlinetypeptr()) {
2545 ccast = InlineTypeNode::make_from_oop(this, ccast, tboth->exact_klass(true)->as_inline_klass());
2546 }
2547 // Here's the payoff.
2548 replace_in_map(obj, ccast);
2549 }
2550 }
2551 }
2552 }
2553
2554 int val_in_map = map()->find_edge(val);
2555 if (val_in_map < 0) return; // replace_in_map would be useless
2556 {
2557 JVMState* jvms = this->jvms();
2558 if (!(jvms->is_loc(val_in_map) ||
2559 jvms->is_stk(val_in_map)))
2560 return; // again, it would be useless
2561 }
2562
2563 // Check for a comparison to a constant, and "know" that the compared
2564 // value is constrained on this path.
2565 assert(tcon->singleton(), "");
2566 ConstraintCastNode* ccast = nullptr;
2631 if (c->Opcode() == Op_CmpP &&
2632 (c->in(1)->Opcode() == Op_LoadKlass || c->in(1)->Opcode() == Op_DecodeNKlass) &&
2633 c->in(2)->is_Con()) {
2634 Node* load_klass = nullptr;
2635 Node* decode = nullptr;
2636 if (c->in(1)->Opcode() == Op_DecodeNKlass) {
2637 decode = c->in(1);
2638 load_klass = c->in(1)->in(1);
2639 } else {
2640 load_klass = c->in(1);
2641 }
2642 if (load_klass->in(2)->is_AddP()) {
2643 Node* addp = load_klass->in(2);
2644 Node* obj = addp->in(AddPNode::Address);
2645 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
2646 if (obj_type->speculative_type_not_null() != nullptr) {
2647 ciKlass* k = obj_type->speculative_type();
2648 inc_sp(2);
2649 obj = maybe_cast_profiled_obj(obj, k);
2650 dec_sp(2);
2651 if (obj->is_InlineType()) {
2652 assert(obj->as_InlineType()->is_allocated(&_gvn), "must be allocated");
2653 obj = obj->as_InlineType()->get_oop();
2654 }
2655 // Make the CmpP use the casted obj
2656 addp = basic_plus_adr(obj, addp->in(AddPNode::Offset));
2657 load_klass = load_klass->clone();
2658 load_klass->set_req(2, addp);
2659 load_klass = _gvn.transform(load_klass);
2660 if (decode != nullptr) {
2661 decode = decode->clone();
2662 decode->set_req(1, load_klass);
2663 load_klass = _gvn.transform(decode);
2664 }
2665 c = c->clone();
2666 c->set_req(1, load_klass);
2667 c = _gvn.transform(c);
2668 }
2669 }
2670 }
2671 return c;
2672 }
2673
2674 //------------------------------do_one_bytecode--------------------------------
3374
3375 case Bytecodes::_i2d:
3376 a = pop();
3377 b = _gvn.transform( new ConvI2DNode(a));
3378 push_pair(b);
3379 break;
3380
3381 case Bytecodes::_iinc: // Increment local
3382 i = iter().get_index(); // Get local index
3383 set_local( i, _gvn.transform( new AddINode( _gvn.intcon(iter().get_iinc_con()), local(i) ) ) );
3384 break;
3385
3386 // Exit points of synchronized methods must have an unlock node
3387 case Bytecodes::_return:
3388 return_current(nullptr);
3389 break;
3390
3391 case Bytecodes::_ireturn:
3392 case Bytecodes::_areturn:
3393 case Bytecodes::_freturn:
3394 return_current(cast_to_non_larval(pop()));
3395 break;
3396 case Bytecodes::_lreturn:
3397 case Bytecodes::_dreturn:
3398 return_current(pop_pair());
3399 break;
3400
3401 case Bytecodes::_athrow:
3402 // null exception oop throws null pointer exception
3403 null_check(peek());
3404 if (stopped()) return;
3405 // Hook the thrown exception directly to subsequent handlers.
3406 if (BailoutToInterpreterForThrows) {
3407 // Keep method interpreted from now on.
3408 uncommon_trap(Deoptimization::Reason_unhandled,
3409 Deoptimization::Action_make_not_compilable);
3410 return;
3411 }
3412 if (env()->jvmti_can_post_on_exceptions()) {
3413 // check if we must post exception events, take uncommon trap if so (with must_throw = false)
3414 uncommon_trap_if_should_post_on_exceptions(Deoptimization::Reason_unhandled, false);
3415 }
3416 // Here if either can_post_on_exceptions or should_post_on_exceptions is false
3429
3430 // See if we can get some profile data and hand it off to the next block
3431 Block *target_block = block()->successor_for_bci(target_bci);
3432 if (target_block->pred_count() != 1) break;
3433 ciMethodData* methodData = method()->method_data();
3434 if (!methodData->is_mature()) break;
3435 ciProfileData* data = methodData->bci_to_data(bci());
3436 assert(data != nullptr && data->is_JumpData(), "need JumpData for taken branch");
3437 int taken = ((ciJumpData*)data)->taken();
3438 taken = method()->scale_count(taken);
3439 target_block->set_count(taken);
3440 break;
3441 }
3442
3443 case Bytecodes::_ifnull: btest = BoolTest::eq; goto handle_if_null;
3444 case Bytecodes::_ifnonnull: btest = BoolTest::ne; goto handle_if_null;
3445 handle_if_null:
3446 // If this is a backwards branch in the bytecodes, add Safepoint
3447 maybe_add_safepoint(iter().get_dest());
3448 a = null();
3449 b = cast_to_non_larval(pop());
3450 if (b->is_InlineType()) {
3451 // Null checking a scalarized but nullable inline type. Check the null marker
3452 // input instead of the oop input to avoid keeping buffer allocations alive
3453 c = _gvn.transform(new CmpINode(b->as_InlineType()->get_null_marker(), zerocon(T_INT)));
3454 } else {
3455 if (!_gvn.type(b)->speculative_maybe_null() &&
3456 !too_many_traps(Deoptimization::Reason_speculate_null_check)) {
3457 inc_sp(1);
3458 Node* null_ctl = top();
3459 b = null_check_oop(b, &null_ctl, true, true, true);
3460 assert(null_ctl->is_top(), "no null control here");
3461 dec_sp(1);
3462 } else if (_gvn.type(b)->speculative_always_null() &&
3463 !too_many_traps(Deoptimization::Reason_speculate_null_assert)) {
3464 inc_sp(1);
3465 b = null_assert(b);
3466 dec_sp(1);
3467 }
3468 c = _gvn.transform( new CmpPNode(b, a) );
3469 }
3470 do_ifnull(btest, c);
3471 break;
3472
3473 case Bytecodes::_if_acmpeq: btest = BoolTest::eq; goto handle_if_acmp;
3474 case Bytecodes::_if_acmpne: btest = BoolTest::ne; goto handle_if_acmp;
3475 handle_if_acmp:
3476 // If this is a backwards branch in the bytecodes, add Safepoint
3477 maybe_add_safepoint(iter().get_dest());
3478 a = cast_to_non_larval(pop());
3479 b = cast_to_non_larval(pop());
3480 do_acmp(btest, b, a);
3481 break;
3482
3483 case Bytecodes::_ifeq: btest = BoolTest::eq; goto handle_ifxx;
3484 case Bytecodes::_ifne: btest = BoolTest::ne; goto handle_ifxx;
3485 case Bytecodes::_iflt: btest = BoolTest::lt; goto handle_ifxx;
3486 case Bytecodes::_ifle: btest = BoolTest::le; goto handle_ifxx;
3487 case Bytecodes::_ifgt: btest = BoolTest::gt; goto handle_ifxx;
3488 case Bytecodes::_ifge: btest = BoolTest::ge; goto handle_ifxx;
3489 handle_ifxx:
3490 // If this is a backwards branch in the bytecodes, add Safepoint
3491 maybe_add_safepoint(iter().get_dest());
3492 a = _gvn.intcon(0);
3493 b = pop();
3494 c = _gvn.transform( new CmpINode(b, a) );
3495 do_if(btest, c);
3496 break;
3497
3498 case Bytecodes::_if_icmpeq: btest = BoolTest::eq; goto handle_if_icmp;
3499 case Bytecodes::_if_icmpne: btest = BoolTest::ne; goto handle_if_icmp;
3500 case Bytecodes::_if_icmplt: btest = BoolTest::lt; goto handle_if_icmp;
3515 break;
3516
3517 case Bytecodes::_lookupswitch:
3518 do_lookupswitch();
3519 break;
3520
3521 case Bytecodes::_invokestatic:
3522 case Bytecodes::_invokedynamic:
3523 case Bytecodes::_invokespecial:
3524 case Bytecodes::_invokevirtual:
3525 case Bytecodes::_invokeinterface:
3526 do_call();
3527 break;
3528 case Bytecodes::_checkcast:
3529 do_checkcast();
3530 break;
3531 case Bytecodes::_instanceof:
3532 do_instanceof();
3533 break;
3534 case Bytecodes::_anewarray:
3535 do_newarray();
3536 break;
3537 case Bytecodes::_newarray:
3538 do_newarray((BasicType)iter().get_index());
3539 break;
3540 case Bytecodes::_multianewarray:
3541 do_multianewarray();
3542 break;
3543 case Bytecodes::_new:
3544 do_new();
3545 break;
3546
3547 case Bytecodes::_jsr:
3548 case Bytecodes::_jsr_w:
3549 do_jsr();
3550 break;
3551
3552 case Bytecodes::_ret:
3553 do_ret();
3554 break;
3555
|