< prev index next >

src/hotspot/share/opto/parse3.cpp

Print this page

  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "precompiled.hpp"
 26 #include "compiler/compileLog.hpp"
 27 #include "interpreter/linkResolver.hpp"
 28 #include "memory/universe.hpp"

 29 #include "oops/objArrayKlass.hpp"
 30 #include "opto/addnode.hpp"
 31 #include "opto/castnode.hpp"

 32 #include "opto/memnode.hpp"
 33 #include "opto/parse.hpp"
 34 #include "opto/rootnode.hpp"
 35 #include "opto/runtime.hpp"
 36 #include "opto/subnode.hpp"
 37 #include "runtime/deoptimization.hpp"
 38 #include "runtime/handles.inline.hpp"
 39 
 40 //=============================================================================
 41 // Helper methods for _get* and _put* bytecodes
 42 //=============================================================================

 43 void Parse::do_field_access(bool is_get, bool is_field) {
 44   bool will_link;
 45   ciField* field = iter().get_field(will_link);
 46   assert(will_link, "getfield: typeflow responsibility");
 47 
 48   ciInstanceKlass* field_holder = field->holder();
 49 












 50   if (is_field == field->is_static()) {
 51     // Interpreter will throw java_lang_IncompatibleClassChangeError
 52     // Check this before allowing <clinit> methods to access static fields
 53     uncommon_trap(Deoptimization::Reason_unhandled,
 54                   Deoptimization::Action_none);
 55     return;
 56   }
 57 
 58   // Deoptimize on putfield writes to call site target field outside of CallSite ctor.
 59   if (!is_get && field->is_call_site_target() &&
 60       !(method()->holder() == field_holder && method()->is_object_initializer())) {
 61     uncommon_trap(Deoptimization::Reason_unhandled,
 62                   Deoptimization::Action_reinterpret,
 63                   nullptr, "put to call site target field");
 64     return;
 65   }
 66 
 67   if (C->needs_clinit_barrier(field, method())) {
 68     clinit_barrier(field_holder, method());
 69     if (stopped())  return;
 70   }
 71 
 72   assert(field->will_link(method(), bc()), "getfield: typeflow responsibility");
 73 
 74   // Note:  We do not check for an unloaded field type here any more.
 75 
 76   // Generate code for the object pointer.
 77   Node* obj;
 78   if (is_field) {
 79     int obj_depth = is_get ? 0 : field->type()->size();
 80     obj = null_check(peek(obj_depth));
 81     // Compile-time detect of null-exception?
 82     if (stopped())  return;
 83 
 84 #ifdef ASSERT
 85     const TypeInstPtr *tjp = TypeInstPtr::make(TypePtr::NotNull, iter().get_declared_field_holder());
 86     assert(_gvn.type(obj)->higher_equal(tjp), "cast_up is no longer needed");
 87 #endif
 88 
 89     if (is_get) {
 90       (void) pop();  // pop receiver before getting
 91       do_get_xxx(obj, field, is_field);
 92     } else {
 93       do_put_xxx(obj, field, is_field);



 94       (void) pop();  // pop receiver after putting
 95     }
 96   } else {
 97     const TypeInstPtr* tip = TypeInstPtr::make(field_holder->java_mirror());
 98     obj = _gvn.makecon(tip);
 99     if (is_get) {
100       do_get_xxx(obj, field, is_field);
101     } else {
102       do_put_xxx(obj, field, is_field);
103     }
104   }
105 }
106 
107 
108 void Parse::do_get_xxx(Node* obj, ciField* field, bool is_field) {
109   BasicType bt = field->layout_type();
110 
111   // Does this field have a constant value?  If so, just push the value.
112   if (field->is_constant() &&
113       // Keep consistent with types found by ciTypeFlow: for an
114       // unloaded field type, ciTypeFlow::StateVector::do_getstatic()
115       // speculates the field is null. The code in the rest of this
116       // method does the same. We must not bypass it and use a non
117       // null constant here.
118       (bt != T_OBJECT || field->type()->is_loaded())) {
119     // final or stable field
120     Node* con = make_constant_from_field(field, obj);
121     if (con != nullptr) {
122       push_node(field->layout_type(), con);
123       return;
124     }
125   }
126 
127   ciType* field_klass = field->type();
128   bool is_vol = field->is_volatile();
129 
130   // Compute address and memory type.
131   int offset = field->offset_in_bytes();
132   const TypePtr* adr_type = C->alias_type(field)->adr_type();
133   Node *adr = basic_plus_adr(obj, obj, offset);
134 
135   // Build the resultant type of the load
136   const Type *type;
137 
138   bool must_assert_null = false;
139 
140   DecoratorSet decorators = IN_HEAP;
141   decorators |= is_vol ? MO_SEQ_CST : MO_UNORDERED;
142 
143   bool is_obj = is_reference_type(bt);
144 
145   if (is_obj) {
146     if (!field->type()->is_loaded()) {
147       type = TypeInstPtr::BOTTOM;
148       must_assert_null = true;
149     } else if (field->is_static_constant()) {
150       // This can happen if the constant oop is non-perm.
151       ciObject* con = field->constant_value().as_object();
152       // Do not "join" in the previous type; it doesn't add value,
153       // and may yield a vacuous result if the field is of interface type.
154       if (con->is_null_object()) {
155         type = TypePtr::NULL_PTR;









156       } else {
157         type = TypeOopPtr::make_from_constant(con)->isa_oopptr();








158       }
159       assert(type != nullptr, "field singleton type must be consistent");
160     } else {
161       type = TypeOopPtr::make_from_klass(field_klass->as_klass());









162     }
163   } else {
164     type = Type::get_const_basic_type(bt);
165   }
166 
167   Node* ld = access_load_at(obj, adr, adr_type, type, bt, decorators);
168 
169   // Adjust Java stack
170   if (type2size[bt] == 1)
171     push(ld);
172   else
173     push_pair(ld);
174 
175   if (must_assert_null) {
176     // Do not take a trap here.  It's possible that the program
177     // will never load the field's class, and will happily see
178     // null values in this field forever.  Don't stumble into a
179     // trap for such a program, or we might get a long series
180     // of useless recompilations.  (Or, we might load a class
181     // which should not be loaded.)  If we ever see a non-null
182     // value, we will then trap and recompile.  (The trap will
183     // not need to mention the class index, since the class will
184     // already have been loaded if we ever see a non-null value.)
185     // uncommon_trap(iter().get_field_signature_index());
186     if (PrintOpto && (Verbose || WizardMode)) {
187       method()->print_name(); tty->print_cr(" asserting nullness of field at bci: %d", bci());
188     }
189     if (C->log() != nullptr) {
190       C->log()->elem("assert_null reason='field' klass='%d'",
191                      C->log()->identify(field->type()));
192     }
193     // If there is going to be a trap, put it at the next bytecode:
194     set_bci(iter().next_bci());
195     null_assert(peek());
196     set_bci(iter().cur_bci()); // put it back
197   }
198 }
199 

















200 void Parse::do_put_xxx(Node* obj, ciField* field, bool is_field) {
201   bool is_vol = field->is_volatile();
202 
203   // Compute address and memory type.
204   int offset = field->offset_in_bytes();
205   const TypePtr* adr_type = C->alias_type(field)->adr_type();
206   Node* adr = basic_plus_adr(obj, obj, offset);
207   BasicType bt = field->layout_type();
208   // Value to be stored
209   Node* val = type2size[bt] == 1 ? pop() : pop_pair();
210 
211   DecoratorSet decorators = IN_HEAP;
212   decorators |= is_vol ? MO_SEQ_CST : MO_UNORDERED;
213 
214   bool is_obj = is_reference_type(bt);
215 
216   // Store the value.
217   const Type* field_type;
218   if (!field->type()->is_loaded()) {
219     field_type = TypeInstPtr::BOTTOM;















220   } else {
221     if (is_obj) {
222       field_type = TypeOopPtr::make_from_klass(field->type()->as_klass());


223     } else {
224       field_type = Type::BOTTOM;




225     }







226   }
227   access_store_at(obj, adr, adr_type, val, field_type, bt, decorators);
228 
229   if (is_field) {
230     // Remember we wrote a volatile field.
231     // For not multiple copy atomic cpu (ppc64) a barrier should be issued
232     // in constructors which have such stores. See do_exits() in parse1.cpp.
233     if (is_vol) {
234       set_wrote_volatile(true);
235     }
236     set_wrote_fields(true);
237 
238     // If the field is final, the rules of Java say we are in <init> or <clinit>.
239     // If the field is @Stable, we can be in any method, but we only care about
240     // constructors at this point.
241     //
242     // Note the presence of writes to final/@Stable non-static fields, so that we
243     // can insert a memory barrier later on to keep the writes from floating
244     // out of the constructor.
245     if (field->is_final() || field->is_stable()) {
246       if (field->is_final()) {
247         set_wrote_final(true);
248       }
249       if (field->is_stable()) {
250         set_wrote_stable(true);
251       }
252       if (AllocateNode::Ideal_allocation(obj) != nullptr) {
253         // Preserve allocation ptr to create precedent edge to it in membar
254         // generated on exit from constructor.
255         set_alloc_with_final_or_stable(obj);
256       }
257     }
258   }
259 }
260 








































261 //=============================================================================
262 void Parse::do_anewarray() {

263   bool will_link;
264   ciKlass* klass = iter().get_klass(will_link);
265 
266   // Uncommon Trap when class that array contains is not loaded
267   // we need the loaded class for the rest of graph; do not
268   // initialize the container class (see Java spec)!!!
269   assert(will_link, "anewarray: typeflow responsibility");


270 
271   ciObjArrayKlass* array_klass = ciObjArrayKlass::make(klass);
272   // Check that array_klass object is loaded
273   if (!array_klass->is_loaded()) {
274     // Generate uncommon_trap for unloaded array_class
275     uncommon_trap(Deoptimization::Reason_unloaded,
276                   Deoptimization::Action_reinterpret,
277                   array_klass);
278     return;







279   }
280 
281   kill_dead_locals();
282 
283   const TypeKlassPtr* array_klass_type = TypeKlassPtr::make(array_klass, Type::trust_interfaces);
284   Node* count_val = pop();
285   Node* obj = new_array(makecon(array_klass_type), count_val, 1);
286   push(obj);
287 }
288 
289 
290 void Parse::do_newarray(BasicType elem_type) {
291   kill_dead_locals();
292 
293   Node*   count_val = pop();
294   const TypeKlassPtr* array_klass = TypeKlassPtr::make(ciTypeArrayKlass::make(elem_type));
295   Node*   obj = new_array(makecon(array_klass), count_val, 1);
296   // Push resultant oop onto stack
297   push(obj);
298 }

319   }
320   return array;
321 }
322 
323 void Parse::do_multianewarray() {
324   int ndimensions = iter().get_dimensions();
325 
326   // the m-dimensional array
327   bool will_link;
328   ciArrayKlass* array_klass = iter().get_klass(will_link)->as_array_klass();
329   assert(will_link, "multianewarray: typeflow responsibility");
330 
331   // Note:  Array classes are always initialized; no is_initialized check.
332 
333   kill_dead_locals();
334 
335   // get the lengths from the stack (first dimension is on top)
336   Node** length = NEW_RESOURCE_ARRAY(Node*, ndimensions + 1);
337   length[ndimensions] = nullptr;  // terminating null for make_runtime_call
338   int j;
339   for (j = ndimensions-1; j >= 0 ; j--) length[j] = pop();











340 
341   // The original expression was of this form: new T[length0][length1]...
342   // It is often the case that the lengths are small (except the last).
343   // If that happens, use the fast 1-d creator a constant number of times.
344   const int expand_limit = MIN2((int)MultiArrayExpandLimit, 100);
345   int64_t expand_count = 1;        // count of allocations in the expansion
346   int64_t expand_fanout = 1;       // running total fanout
347   for (j = 0; j < ndimensions-1; j++) {
348     int dim_con = find_int_con(length[j], -1);
349     // To prevent overflow, we use 64-bit values.  Alternatively,
350     // we could clamp dim_con like so:
351     // dim_con = MIN2(dim_con, expand_limit);
352     expand_fanout *= dim_con;
353     expand_count  += expand_fanout; // count the level-J sub-arrays
354     if (dim_con <= 0
355         || dim_con > expand_limit
356         || expand_count > expand_limit) {
357       expand_count = 0;
358       break;
359     }

  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "precompiled.hpp"
 26 #include "compiler/compileLog.hpp"
 27 #include "interpreter/linkResolver.hpp"
 28 #include "memory/universe.hpp"
 29 #include "oops/flatArrayKlass.hpp"
 30 #include "oops/objArrayKlass.hpp"
 31 #include "opto/addnode.hpp"
 32 #include "opto/castnode.hpp"
 33 #include "opto/inlinetypenode.hpp"
 34 #include "opto/memnode.hpp"
 35 #include "opto/parse.hpp"
 36 #include "opto/rootnode.hpp"
 37 #include "opto/runtime.hpp"
 38 #include "opto/subnode.hpp"
 39 #include "runtime/deoptimization.hpp"
 40 #include "runtime/handles.inline.hpp"
 41 
 42 //=============================================================================
 43 // Helper methods for _get* and _put* bytecodes
 44 //=============================================================================
 45 
 46 void Parse::do_field_access(bool is_get, bool is_field) {
 47   bool will_link;
 48   ciField* field = iter().get_field(will_link);
 49   assert(will_link, "getfield: typeflow responsibility");
 50 
 51   ciInstanceKlass* field_holder = field->holder();
 52 
 53   if (is_get && is_field && field_holder->is_inlinetype() && peek()->is_InlineType()) {
 54     InlineTypeNode* vt = peek()->as_InlineType();
 55     null_check(vt);
 56     Node* value = vt->field_value_by_offset(field->offset_in_bytes());
 57     if (value->is_InlineType()) {
 58       value = value->as_InlineType()->adjust_scalarization_depth(this);
 59     }
 60     pop();
 61     push_node(field->layout_type(), value);
 62     return;
 63   }
 64 
 65   if (is_field == field->is_static()) {
 66     // Interpreter will throw java_lang_IncompatibleClassChangeError
 67     // Check this before allowing <clinit> methods to access static fields
 68     uncommon_trap(Deoptimization::Reason_unhandled,
 69                   Deoptimization::Action_none);
 70     return;
 71   }
 72 
 73   // Deoptimize on putfield writes to call site target field outside of CallSite ctor.
 74   if (!is_get && field->is_call_site_target() &&
 75       !(method()->holder() == field_holder && method()->is_object_constructor())) {
 76     uncommon_trap(Deoptimization::Reason_unhandled,
 77                   Deoptimization::Action_reinterpret,
 78                   nullptr, "put to call site target field");
 79     return;
 80   }
 81 
 82   if (C->needs_clinit_barrier(field, method())) {
 83     clinit_barrier(field_holder, method());
 84     if (stopped())  return;
 85   }
 86 
 87   assert(field->will_link(method(), bc()), "getfield: typeflow responsibility");
 88 
 89   // Note:  We do not check for an unloaded field type here any more.
 90 
 91   // Generate code for the object pointer.
 92   Node* obj;
 93   if (is_field) {
 94     int obj_depth = is_get ? 0 : field->type()->size();
 95     obj = null_check(peek(obj_depth));
 96     // Compile-time detect of null-exception?
 97     if (stopped())  return;
 98 
 99 #ifdef ASSERT
100     const TypeInstPtr *tjp = TypeInstPtr::make(TypePtr::NotNull, iter().get_declared_field_holder());
101     assert(_gvn.type(obj)->higher_equal(tjp), "cast_up is no longer needed");
102 #endif
103 
104     if (is_get) {
105       (void) pop();  // pop receiver before getting
106       do_get_xxx(obj, field);
107     } else {
108       do_put_xxx(obj, field, is_field);
109       if (stopped()) {
110         return;
111       }
112       (void) pop();  // pop receiver after putting
113     }
114   } else {
115     const TypeInstPtr* tip = TypeInstPtr::make(field_holder->java_mirror());
116     obj = _gvn.makecon(tip);
117     if (is_get) {
118       do_get_xxx(obj, field);
119     } else {
120       do_put_xxx(obj, field, is_field);
121     }
122   }
123 }
124 
125 void Parse::do_get_xxx(Node* obj, ciField* field) {

126   BasicType bt = field->layout_type();

127   // Does this field have a constant value?  If so, just push the value.
128   if (field->is_constant() && !field->is_flat() &&
129       // Keep consistent with types found by ciTypeFlow: for an
130       // unloaded field type, ciTypeFlow::StateVector::do_getstatic()
131       // speculates the field is null. The code in the rest of this
132       // method does the same. We must not bypass it and use a non
133       // null constant here.
134       (bt != T_OBJECT || field->type()->is_loaded())) {
135     // final or stable field
136     Node* con = make_constant_from_field(field, obj);
137     if (con != nullptr) {
138       push_node(field->layout_type(), con);
139       return;
140     }
141   }
142 
143   ciType* field_klass = field->type();
144   field_klass = improve_abstract_inline_type_klass(field_klass);


145   int offset = field->offset_in_bytes();






146   bool must_assert_null = false;
147 
148   Node* ld = nullptr;
149   if (field->is_null_free() && field_klass->as_inline_klass()->is_empty()) {
150     // Loading from a field of an empty inline type. Just return the default instance.
151     ld = InlineTypeNode::make_default(_gvn, field_klass->as_inline_klass());
152   } else if (field->is_flat()) {
153     // Loading from a flat inline type field.
154     ld = InlineTypeNode::make_from_flat(this, field_klass->as_inline_klass(), obj, obj, field->holder(), offset);
155   } else {
156     // Build the resultant type of the load
157     const Type* type;
158     if (is_reference_type(bt)) {
159       if (!field_klass->is_loaded()) {
160         type = TypeInstPtr::BOTTOM;
161         must_assert_null = true;
162       } else if (field->is_static_constant()) {
163         // This can happen if the constant oop is non-perm.
164         ciObject* con = field->constant_value().as_object();
165         // Do not "join" in the previous type; it doesn't add value,
166         // and may yield a vacuous result if the field is of interface type.
167         if (con->is_null_object()) {
168           type = TypePtr::NULL_PTR;
169         } else {
170           type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
171         }
172         assert(type != nullptr, "field singleton type must be consistent");
173       } else {
174         type = TypeOopPtr::make_from_klass(field_klass->as_klass());
175         if (field->is_null_free() && field->is_static()) {
176           // Check if static inline type field is already initialized
177           ciInstance* mirror = field->holder()->java_mirror();
178           ciObject* val = mirror->field_value(field).as_object();
179           if (!val->is_null_object()) {
180             type = type->join_speculative(TypePtr::NOTNULL);
181           }
182         }
183       }

184     } else {
185       type = Type::get_const_basic_type(bt);
186     }
187     Node* adr = basic_plus_adr(obj, obj, offset);
188     const TypePtr* adr_type = C->alias_type(field)->adr_type();
189     DecoratorSet decorators = IN_HEAP;
190     decorators |= field->is_volatile() ? MO_SEQ_CST : MO_UNORDERED;
191     ld = access_load_at(obj, adr, adr_type, type, bt, decorators);
192     if (field_klass->is_inlinetype()) {
193       // Load a non-flattened inline type from memory
194       ld = InlineTypeNode::make_from_oop(this, ld, field_klass->as_inline_klass(), field->is_null_free());
195     }


196   }
197 


198   // Adjust Java stack
199   if (type2size[bt] == 1)
200     push(ld);
201   else
202     push_pair(ld);
203 
204   if (must_assert_null) {
205     // Do not take a trap here.  It's possible that the program
206     // will never load the field's class, and will happily see
207     // null values in this field forever.  Don't stumble into a
208     // trap for such a program, or we might get a long series
209     // of useless recompilations.  (Or, we might load a class
210     // which should not be loaded.)  If we ever see a non-null
211     // value, we will then trap and recompile.  (The trap will
212     // not need to mention the class index, since the class will
213     // already have been loaded if we ever see a non-null value.)
214     // uncommon_trap(iter().get_field_signature_index());
215     if (PrintOpto && (Verbose || WizardMode)) {
216       method()->print_name(); tty->print_cr(" asserting nullness of field at bci: %d", bci());
217     }
218     if (C->log() != nullptr) {
219       C->log()->elem("assert_null reason='field' klass='%d'",
220                      C->log()->identify(field_klass));
221     }
222     // If there is going to be a trap, put it at the next bytecode:
223     set_bci(iter().next_bci());
224     null_assert(peek());
225     set_bci(iter().cur_bci()); // put it back
226   }
227 }
228 
229 // If the field klass is an abstract value klass (for which we do not know the layout, yet), it could have a unique
230 // concrete sub klass for which we have a fixed layout. This allows us to use InlineTypeNodes instead.
231 ciType* Parse::improve_abstract_inline_type_klass(ciType* field_klass) {
232   Dependencies* dependencies = C->dependencies();
233   if (UseUniqueSubclasses && dependencies != nullptr && field_klass->is_instance_klass()) {
234     ciInstanceKlass* instance_klass = field_klass->as_instance_klass();
235     if (instance_klass->is_loaded() && instance_klass->is_abstract_value_klass()) {
236       ciInstanceKlass* sub_klass = instance_klass->unique_concrete_subklass();
237       if (sub_klass != nullptr && sub_klass != field_klass) {
238         field_klass = sub_klass;
239         dependencies->assert_abstract_with_unique_concrete_subtype(instance_klass, sub_klass);
240       }
241     }
242   }
243   return field_klass;
244 }
245 
246 void Parse::do_put_xxx(Node* obj, ciField* field, bool is_field) {
247   bool is_vol = field->is_volatile();


248   int offset = field->offset_in_bytes();


249   BasicType bt = field->layout_type();

250   Node* val = type2size[bt] == 1 ? pop() : pop_pair();
251 
252   if (field->is_null_free()) {
253     PreserveReexecuteState preexecs(this);
254     jvms()->set_should_reexecute(true);
255     inc_sp(1);
256     val = null_check(val);
257     if (stopped()) {
258       return;
259     }
260   }
261   if (obj->is_InlineType()) {
262     set_inline_type_field(obj, field, val);
263     return;
264   }
265   if (field->is_null_free() && field->type()->as_inline_klass()->is_empty()) {
266     // Storing to a field of an empty inline type. Ignore.
267     return;
268   } else if (field->is_flat()) {
269     // Storing to a flat inline type field.
270     if (!val->is_InlineType()) {
271       val = InlineTypeNode::make_from_oop(this, val, field->type()->as_inline_klass());
272     }
273     inc_sp(1);
274     val->as_InlineType()->store_flat(this, obj, obj, field->holder(), offset, IN_HEAP | MO_UNORDERED);
275     dec_sp(1);
276   } else {
277     // Store the value.
278     const Type* field_type;
279     if (!field->type()->is_loaded()) {
280       field_type = TypeInstPtr::BOTTOM;
281     } else {
282       if (is_reference_type(bt)) {
283         field_type = TypeOopPtr::make_from_klass(field->type()->as_klass());
284       } else {
285         field_type = Type::BOTTOM;
286       }
287     }
288     Node* adr = basic_plus_adr(obj, obj, offset);
289     const TypePtr* adr_type = C->alias_type(field)->adr_type();
290     DecoratorSet decorators = IN_HEAP;
291     decorators |= is_vol ? MO_SEQ_CST : MO_UNORDERED;
292     inc_sp(1);
293     access_store_at(obj, adr, adr_type, val, field_type, bt, decorators);
294     dec_sp(1);
295   }

296 
297   if (is_field) {
298     // Remember we wrote a volatile field.
299     // For not multiple copy atomic cpu (ppc64) a barrier should be issued
300     // in constructors which have such stores. See do_exits() in parse1.cpp.
301     if (is_vol) {
302       set_wrote_volatile(true);
303     }
304     set_wrote_fields(true);
305 
306     // If the field is final, the rules of Java say we are in <init> or <clinit>.
307     // If the field is @Stable, we can be in any method, but we only care about
308     // constructors at this point.
309     //
310     // Note the presence of writes to final/@Stable non-static fields, so that we
311     // can insert a memory barrier later on to keep the writes from floating
312     // out of the constructor.
313     if (field->is_final() || field->is_stable()) {
314       if (field->is_final()) {
315         set_wrote_final(true);
316       }
317       if (field->is_stable()) {
318         set_wrote_stable(true);
319       }
320       if (AllocateNode::Ideal_allocation(obj) != nullptr) {
321         // Preserve allocation ptr to create precedent edge to it in membar
322         // generated on exit from constructor.
323         set_alloc_with_final_or_stable(obj);
324       }
325     }
326   }
327 }
328 
329 void Parse::set_inline_type_field(Node* obj, ciField* field, Node* val) {
330   assert(_method->is_object_constructor(), "inline type is initialized outside of constructor");
331   assert(obj->as_InlineType()->is_larval(), "must be larval");
332   assert(!_gvn.type(obj)->maybe_null(), "should never be null");
333 
334   // Re-execute if buffering in below code triggers deoptimization.
335   PreserveReexecuteState preexecs(this);
336   jvms()->set_should_reexecute(true);
337   inc_sp(1);
338 
339   if (!val->is_InlineType() && field->type()->is_inlinetype()) {
340     // Scalarize inline type field value
341     val = InlineTypeNode::make_from_oop(this, val, field->type()->as_inline_klass(), field->is_null_free());
342   } else if (val->is_InlineType() && !field->is_flat()) {
343     // Field value needs to be allocated because it can be merged with a non-inline type.
344     val = val->as_InlineType()->buffer(this);
345   }
346 
347   // Clone the inline type node and set the new field value
348   InlineTypeNode* new_vt = obj->as_InlineType()->clone_if_required(&_gvn, _map);
349   new_vt->set_field_value_by_offset(field->offset_in_bytes(), val);
350   new_vt = new_vt->adjust_scalarization_depth(this);
351 
352   // If the inline type is buffered and the caller might use the buffer, update it.
353   if (new_vt->is_allocated(&gvn()) && (!_caller->has_method() || C->inlining_incrementally() || _caller->method()->is_object_constructor())) {
354     new_vt->store(this, new_vt->get_oop(), new_vt->get_oop(), new_vt->bottom_type()->inline_klass(), 0, field->offset_in_bytes());
355 
356     // Preserve allocation ptr to create precedent edge to it in membar
357     // generated on exit from constructor.
358     AllocateNode* alloc = AllocateNode::Ideal_allocation(new_vt->get_oop());
359     if (alloc != nullptr) {
360       set_alloc_with_final_or_stable(new_vt->get_oop());
361     }
362     set_wrote_final(true);
363   }
364 
365   replace_in_map(obj, _gvn.transform(new_vt));
366   return;
367 }
368 
369 //=============================================================================
370 
371 void Parse::do_newarray() {
372   bool will_link;
373   ciKlass* klass = iter().get_klass(will_link);
374 
375   // Uncommon Trap when class that array contains is not loaded
376   // we need the loaded class for the rest of graph; do not
377   // initialize the container class (see Java spec)!!!
378   assert(will_link, "newarray: typeflow responsibility");
379 
380   ciArrayKlass* array_klass = ciArrayKlass::make(klass);
381 

382   // Check that array_klass object is loaded
383   if (!array_klass->is_loaded()) {
384     // Generate uncommon_trap for unloaded array_class
385     uncommon_trap(Deoptimization::Reason_unloaded,
386                   Deoptimization::Action_reinterpret,
387                   array_klass);
388     return;
389   } else if (array_klass->element_klass() != nullptr &&
390              array_klass->element_klass()->is_inlinetype() &&
391              !array_klass->element_klass()->as_inline_klass()->is_initialized()) {
392     uncommon_trap(Deoptimization::Reason_uninitialized,
393                   Deoptimization::Action_reinterpret,
394                   nullptr);
395     return;
396   }
397 
398   kill_dead_locals();
399 
400   const TypeKlassPtr* array_klass_type = TypeKlassPtr::make(array_klass, Type::trust_interfaces);
401   Node* count_val = pop();
402   Node* obj = new_array(makecon(array_klass_type), count_val, 1);
403   push(obj);
404 }
405 
406 
407 void Parse::do_newarray(BasicType elem_type) {
408   kill_dead_locals();
409 
410   Node*   count_val = pop();
411   const TypeKlassPtr* array_klass = TypeKlassPtr::make(ciTypeArrayKlass::make(elem_type));
412   Node*   obj = new_array(makecon(array_klass), count_val, 1);
413   // Push resultant oop onto stack
414   push(obj);
415 }

436   }
437   return array;
438 }
439 
440 void Parse::do_multianewarray() {
441   int ndimensions = iter().get_dimensions();
442 
443   // the m-dimensional array
444   bool will_link;
445   ciArrayKlass* array_klass = iter().get_klass(will_link)->as_array_klass();
446   assert(will_link, "multianewarray: typeflow responsibility");
447 
448   // Note:  Array classes are always initialized; no is_initialized check.
449 
450   kill_dead_locals();
451 
452   // get the lengths from the stack (first dimension is on top)
453   Node** length = NEW_RESOURCE_ARRAY(Node*, ndimensions + 1);
454   length[ndimensions] = nullptr;  // terminating null for make_runtime_call
455   int j;
456   ciKlass* elem_klass = array_klass;
457   for (j = ndimensions-1; j >= 0; j--) {
458     length[j] = pop();
459     elem_klass = elem_klass->as_array_klass()->element_klass();
460   }
461   if (elem_klass != nullptr && elem_klass->is_inlinetype() && !elem_klass->as_inline_klass()->is_initialized()) {
462     inc_sp(ndimensions);
463     uncommon_trap(Deoptimization::Reason_uninitialized,
464                   Deoptimization::Action_reinterpret,
465                   nullptr);
466     return;
467   }
468 
469   // The original expression was of this form: new T[length0][length1]...
470   // It is often the case that the lengths are small (except the last).
471   // If that happens, use the fast 1-d creator a constant number of times.
472   const int expand_limit = MIN2((int)MultiArrayExpandLimit, 100);
473   int64_t expand_count = 1;        // count of allocations in the expansion
474   int64_t expand_fanout = 1;       // running total fanout
475   for (j = 0; j < ndimensions-1; j++) {
476     int dim_con = find_int_con(length[j], -1);
477     // To prevent overflow, we use 64-bit values.  Alternatively,
478     // we could clamp dim_con like so:
479     // dim_con = MIN2(dim_con, expand_limit);
480     expand_fanout *= dim_con;
481     expand_count  += expand_fanout; // count the level-J sub-arrays
482     if (dim_con <= 0
483         || dim_con > expand_limit
484         || expand_count > expand_limit) {
485       expand_count = 0;
486       break;
487     }
< prev index next >