< prev index next >

src/hotspot/share/opto/type.cpp

Print this page

   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"



  26 #include "ci/ciMethodData.hpp"
  27 #include "ci/ciTypeFlow.hpp"
  28 #include "classfile/javaClasses.hpp"
  29 #include "classfile/symbolTable.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "libadt/dict.hpp"
  32 #include "memory/oopFactory.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "oops/instanceKlass.hpp"
  35 #include "oops/instanceMirrorKlass.hpp"
  36 #include "oops/objArrayKlass.hpp"
  37 #include "oops/typeArrayKlass.hpp"
  38 #include "opto/matcher.hpp"
  39 #include "opto/node.hpp"
  40 #include "opto/opcodes.hpp"
  41 #include "opto/type.hpp"
  42 #include "utilities/checkedCast.hpp"
  43 #include "utilities/powerOfTwo.hpp"
  44 #include "utilities/stringUtils.hpp"
  45 
  46 // Portions of code courtesy of Clifford Click
  47 
  48 // Optimization - Graph Style
  49 
  50 // Dictionary of types shared among compilations.
  51 Dict* Type::_shared_type_dict = nullptr;













































  52 
  53 // Array which maps compiler types to Basic Types
  54 const Type::TypeInfo Type::_type_info[Type::lastype] = {
  55   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
  56   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
  57   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
  58   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
  59   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
  60   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
  61   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
  62   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
  63   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
  64   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
  65   { Bad,             T_ARRAY,      "interfaces:",   false, Node::NotAMachineReg, relocInfo::none          },  // Interfaces
  66 
  67 #if defined(PPC64)
  68   { Bad,             T_ILLEGAL,    "vectormask:",   false, Op_RegVectMask,       relocInfo::none          },  // VectorMask.
  69   { Bad,             T_ILLEGAL,    "vectora:",      false, Op_VecA,              relocInfo::none          },  // VectorA.
  70   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  71   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD

 206   case ciTypeFlow::StateVector::T_NULL:
 207     assert(type == ciTypeFlow::StateVector::null_type(), "");
 208     return TypePtr::NULL_PTR;
 209 
 210   case ciTypeFlow::StateVector::T_LONG2:
 211     // The ciTypeFlow pass pushes a long, then the half.
 212     // We do the same.
 213     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 214     return TypeInt::TOP;
 215 
 216   case ciTypeFlow::StateVector::T_DOUBLE2:
 217     // The ciTypeFlow pass pushes double, then the half.
 218     // Our convention is the same.
 219     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 220     return Type::TOP;
 221 
 222   case T_ADDRESS:
 223     assert(type->is_return_address(), "");
 224     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 225 



 226   default:
 227     // make sure we did not mix up the cases:
 228     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 229     assert(type != ciTypeFlow::StateVector::top_type(), "");
 230     assert(type != ciTypeFlow::StateVector::null_type(), "");
 231     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 232     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 233     assert(!type->is_return_address(), "");
 234 
 235     return Type::get_const_type(type);
 236   }
 237 }
 238 
 239 
 240 //-----------------------make_from_constant------------------------------------
 241 const Type* Type::make_from_constant(ciConstant constant, bool require_constant,
 242                                      int stable_dimension, bool is_narrow_oop,
 243                                      bool is_autobox_cache) {
 244   switch (constant.basic_type()) {
 245     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());

 518   const Type **ffalse =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 519   ffalse[0] = Type::CONTROL;
 520   ffalse[1] = Type::TOP;
 521   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 522 
 523   const Type **fneither =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 524   fneither[0] = Type::TOP;
 525   fneither[1] = Type::TOP;
 526   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 527 
 528   const Type **ftrue =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 529   ftrue[0] = Type::TOP;
 530   ftrue[1] = Type::CONTROL;
 531   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 532 
 533   const Type **floop =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 534   floop[0] = Type::CONTROL;
 535   floop[1] = TypeInt::INT;
 536   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 537 
 538   TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, 0);
 539   TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, OffsetBot);
 540   TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, OffsetBot);
 541 
 542   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 543   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 544 
 545   const Type **fmembar = TypeTuple::fields(0);
 546   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 547 
 548   const Type **fsc = (const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 549   fsc[0] = TypeInt::CC;
 550   fsc[1] = Type::MEMORY;
 551   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 552 
 553   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 554   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 555   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 556   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 557                                            false, nullptr, oopDesc::mark_offset_in_bytes());
 558   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 559                                            false, nullptr, oopDesc::klass_offset_in_bytes());
 560   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
 561 
 562   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, nullptr, OffsetBot);
 563 
 564   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 565   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 566 
 567   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 568 
 569   mreg2type[Op_Node] = Type::BOTTOM;
 570   mreg2type[Op_Set ] = nullptr;
 571   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 572   mreg2type[Op_RegI] = TypeInt::INT;
 573   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 574   mreg2type[Op_RegF] = Type::FLOAT;
 575   mreg2type[Op_RegD] = Type::DOUBLE;
 576   mreg2type[Op_RegL] = TypeLong::LONG;
 577   mreg2type[Op_RegFlags] = TypeInt::CC;
 578 
 579   GrowableArray<ciInstanceKlass*> array_interfaces;
 580   array_interfaces.push(current->env()->Cloneable_klass());
 581   array_interfaces.push(current->env()->Serializable_klass());
 582   TypeAryPtr::_array_interfaces = TypeInterfaces::make(&array_interfaces);
 583   TypeAryKlassPtr::_array_interfaces = TypeAryPtr::_array_interfaces;
 584 
 585   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), nullptr /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
 586 
 587   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), nullptr /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 588 
 589 #ifdef _LP64
 590   if (UseCompressedOops) {
 591     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 592     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 593   } else
 594 #endif
 595   {
 596     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 597     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), nullptr /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 598   }
 599   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
 600   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
 601   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
 602   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
 603   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
 604   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
 605   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);

 606 
 607   // Nobody should ask _array_body_type[T_NARROWOOP]. Use null as assert.
 608   TypeAryPtr::_array_body_type[T_NARROWOOP] = nullptr;
 609   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;

 610   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 611   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 612   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 613   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 614   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 615   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 616   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 617   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 618   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 619 
 620   TypeInstKlassPtr::OBJECT = TypeInstKlassPtr::make(TypePtr::NotNull, current->env()->Object_klass(), 0);
 621   TypeInstKlassPtr::OBJECT_OR_NULL = TypeInstKlassPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), 0);
 622 
 623   const Type **fi2c = TypeTuple::fields(2);
 624   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 625   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 626   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 627 
 628   const Type **intpair = TypeTuple::fields(2);
 629   intpair[0] = TypeInt::INT;
 630   intpair[1] = TypeInt::INT;
 631   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 632 
 633   const Type **longpair = TypeTuple::fields(2);
 634   longpair[0] = TypeLong::LONG;
 635   longpair[1] = TypeLong::LONG;
 636   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 637 
 638   const Type **intccpair = TypeTuple::fields(2);
 639   intccpair[0] = TypeInt::INT;
 640   intccpair[1] = TypeInt::CC;
 641   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 642 
 643   const Type **longccpair = TypeTuple::fields(2);
 644   longccpair[0] = TypeLong::LONG;
 645   longccpair[1] = TypeInt::CC;
 646   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 647 
 648   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 649   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 650   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 651   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 652   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 653   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 654   _const_basic_type[T_INT]         = TypeInt::INT;
 655   _const_basic_type[T_LONG]        = TypeLong::LONG;
 656   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 657   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 658   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 659   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays

 660   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 661   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 662   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 663 
 664   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 665   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 666   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 667   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 668   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 669   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 670   _zero_type[T_INT]         = TypeInt::ZERO;
 671   _zero_type[T_LONG]        = TypeLong::ZERO;
 672   _zero_type[T_FLOAT]       = TypeF::ZERO;
 673   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 674   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 675   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop

 676   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 677   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 678 
 679   // get_zero_type() should not happen for T_CONFLICT
 680   _zero_type[T_CONFLICT]= nullptr;
 681 
 682   TypeVect::VECTMASK = (TypeVect*)(new TypeVectMask(TypeInt::BOOL, MaxVectorSize))->hashcons();
 683   mreg2type[Op_RegVectMask] = TypeVect::VECTMASK;
 684 
 685   if (Matcher::supports_scalable_vector()) {
 686     TypeVect::VECTA = TypeVect::make(T_BYTE, Matcher::scalable_vector_reg_size(T_BYTE));
 687   }
 688 
 689   // Vector predefined types, it needs initialized _const_basic_type[].
 690   if (Matcher::vector_size_supported(T_BYTE,4)) {
 691     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
 692   }
 693   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 694     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
 695   }

 926   ~VerifyMeet() {
 927     assert(_C->_type_verify->_depth != 0, "");
 928     _C->_type_verify->_depth--;
 929     if (_C->_type_verify->_depth == 0) {
 930       _C->_type_verify->_cache.trunc_to(0);
 931     }
 932   }
 933 
 934   const Type* meet(const Type* t1, const Type* t2) const {
 935     return _C->_type_verify->meet(t1, t2);
 936   }
 937 
 938   void add(const Type* t1, const Type* t2, const Type* res) const {
 939     _C->_type_verify->add(t1, t2, res);
 940   }
 941 };
 942 
 943 void Type::check_symmetrical(const Type* t, const Type* mt, const VerifyMeet& verify) const {
 944   Compile* C = Compile::current();
 945   const Type* mt2 = verify.meet(t, this);



 946   if (mt != mt2) {
 947     tty->print_cr("=== Meet Not Commutative ===");
 948     tty->print("t           = ");   t->dump(); tty->cr();
 949     tty->print("this        = ");      dump(); tty->cr();
 950     tty->print("t meet this = "); mt2->dump(); tty->cr();
 951     tty->print("this meet t = ");  mt->dump(); tty->cr();
 952     fatal("meet not commutative");
 953   }
 954   const Type* dual_join = mt->_dual;
 955   const Type* t2t    = verify.meet(dual_join,t->_dual);
 956   const Type* t2this = verify.meet(dual_join,this->_dual);
 957 
 958   // Interface meet Oop is Not Symmetric:
 959   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
 960   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
 961 






 962   if (t2t != t->_dual || t2this != this->_dual) {
 963     tty->print_cr("=== Meet Not Symmetric ===");
 964     tty->print("t   =                   ");              t->dump(); tty->cr();
 965     tty->print("this=                   ");                 dump(); tty->cr();
 966     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
 967 
 968     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
 969     tty->print("this_dual=              ");          _dual->dump(); tty->cr();
 970     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
 971 
 972     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
 973     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
 974 
 975     fatal("meet not symmetric");
 976   }
 977 }
 978 #endif
 979 
 980 //------------------------------meet-------------------------------------------
 981 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is

2112 
2113 bool TypeLong::empty(void) const {
2114   return _lo > _hi;
2115 }
2116 
2117 //=============================================================================
2118 // Convenience common pre-built types.
2119 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
2120 const TypeTuple *TypeTuple::IFFALSE;
2121 const TypeTuple *TypeTuple::IFTRUE;
2122 const TypeTuple *TypeTuple::IFNEITHER;
2123 const TypeTuple *TypeTuple::LOOPBODY;
2124 const TypeTuple *TypeTuple::MEMBAR;
2125 const TypeTuple *TypeTuple::STORECONDITIONAL;
2126 const TypeTuple *TypeTuple::START_I2C;
2127 const TypeTuple *TypeTuple::INT_PAIR;
2128 const TypeTuple *TypeTuple::LONG_PAIR;
2129 const TypeTuple *TypeTuple::INT_CC_PAIR;
2130 const TypeTuple *TypeTuple::LONG_CC_PAIR;
2131 












2132 //------------------------------make-------------------------------------------
2133 // Make a TypeTuple from the range of a method signature
2134 const TypeTuple *TypeTuple::make_range(ciSignature* sig, InterfaceHandling interface_handling) {
2135   ciType* return_type = sig->return_type();
2136   uint arg_cnt = return_type->size();





2137   const Type **field_array = fields(arg_cnt);
2138   switch (return_type->basic_type()) {
2139   case T_LONG:
2140     field_array[TypeFunc::Parms]   = TypeLong::LONG;
2141     field_array[TypeFunc::Parms+1] = Type::HALF;
2142     break;
2143   case T_DOUBLE:
2144     field_array[TypeFunc::Parms]   = Type::DOUBLE;
2145     field_array[TypeFunc::Parms+1] = Type::HALF;
2146     break;
2147   case T_OBJECT:











2148   case T_ARRAY:
2149   case T_BOOLEAN:
2150   case T_CHAR:
2151   case T_FLOAT:
2152   case T_BYTE:
2153   case T_SHORT:
2154   case T_INT:
2155     field_array[TypeFunc::Parms] = get_const_type(return_type, interface_handling);
2156     break;
2157   case T_VOID:
2158     break;
2159   default:
2160     ShouldNotReachHere();
2161   }
2162   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2163 }
2164 
2165 // Make a TypeTuple from the domain of a method signature
2166 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig, InterfaceHandling interface_handling) {
2167   uint arg_cnt = sig->size();








2168 
2169   uint pos = TypeFunc::Parms;
2170   const Type **field_array;
2171   if (recv != nullptr) {
2172     arg_cnt++;
2173     field_array = fields(arg_cnt);
2174     // Use get_const_type here because it respects UseUniqueSubclasses:
2175     field_array[pos++] = get_const_type(recv, interface_handling)->join_speculative(TypePtr::NOTNULL);
2176   } else {
2177     field_array = fields(arg_cnt);
2178   }
2179 
2180   int i = 0;
2181   while (pos < TypeFunc::Parms + arg_cnt) {
2182     ciType* type = sig->type_at(i);

2183 
2184     switch (type->basic_type()) {
2185     case T_LONG:
2186       field_array[pos++] = TypeLong::LONG;
2187       field_array[pos++] = Type::HALF;
2188       break;
2189     case T_DOUBLE:
2190       field_array[pos++] = Type::DOUBLE;
2191       field_array[pos++] = Type::HALF;
2192       break;
2193     case T_OBJECT:








2194     case T_ARRAY:
2195     case T_FLOAT:
2196     case T_INT:
2197       field_array[pos++] = get_const_type(type, interface_handling);
2198       break;
2199     case T_BOOLEAN:
2200     case T_CHAR:
2201     case T_BYTE:
2202     case T_SHORT:
2203       field_array[pos++] = TypeInt::INT;
2204       break;
2205     default:
2206       ShouldNotReachHere();
2207     }
2208     i++;
2209   }

2210 
2211   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2212 }
2213 
2214 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
2215   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
2216 }
2217 
2218 //------------------------------fields-----------------------------------------
2219 // Subroutine call type with space allocated for argument types
2220 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
2221 const Type **TypeTuple::fields( uint arg_cnt ) {
2222   const Type **flds = (const Type **)(Compile::current()->type_arena()->AmallocWords((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
2223   flds[TypeFunc::Control  ] = Type::CONTROL;
2224   flds[TypeFunc::I_O      ] = Type::ABIO;
2225   flds[TypeFunc::Memory   ] = Type::MEMORY;
2226   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
2227   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
2228 
2229   return flds;

2324     if (_fields[i]->empty())  return true;
2325   }
2326   return false;
2327 }
2328 
2329 //=============================================================================
2330 // Convenience common pre-built types.
2331 
2332 inline const TypeInt* normalize_array_size(const TypeInt* size) {
2333   // Certain normalizations keep us sane when comparing types.
2334   // We do not want arrayOop variables to differ only by the wideness
2335   // of their index types.  Pick minimum wideness, since that is the
2336   // forced wideness of small ranges anyway.
2337   if (size->_widen != Type::WidenMin)
2338     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
2339   else
2340     return size;
2341 }
2342 
2343 //------------------------------make-------------------------------------------
2344 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {

2345   if (UseCompressedOops && elem->isa_oopptr()) {
2346     elem = elem->make_narrowoop();
2347   }
2348   size = normalize_array_size(size);
2349   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
2350 }
2351 
2352 //------------------------------meet-------------------------------------------
2353 // Compute the MEET of two types.  It returns a new Type object.
2354 const Type *TypeAry::xmeet( const Type *t ) const {
2355   // Perform a fast test for common case; meeting the same types together.
2356   if( this == t ) return this;  // Meeting same type-rep?
2357 
2358   // Current "this->_base" is Ary
2359   switch (t->base()) {          // switch on original type
2360 
2361   case Bottom:                  // Ye Olde Default
2362     return t;
2363 
2364   default:                      // All else is a mistake
2365     typerr(t);
2366 
2367   case Array: {                 // Meeting 2 arrays?
2368     const TypeAry *a = t->is_ary();
2369     return TypeAry::make(_elem->meet_speculative(a->_elem),
2370                          _size->xmeet(a->_size)->is_int(),
2371                          _stable && a->_stable);



2372   }
2373   case Top:
2374     break;
2375   }
2376   return this;                  // Return the double constant
2377 }
2378 
2379 //------------------------------xdual------------------------------------------
2380 // Dual: compute field-by-field dual
2381 const Type *TypeAry::xdual() const {
2382   const TypeInt* size_dual = _size->dual()->is_int();
2383   size_dual = normalize_array_size(size_dual);
2384   return new TypeAry(_elem->dual(), size_dual, !_stable);
2385 }
2386 
2387 //------------------------------eq---------------------------------------------
2388 // Structural equality check for Type representations
2389 bool TypeAry::eq( const Type *t ) const {
2390   const TypeAry *a = (const TypeAry*)t;
2391   return _elem == a->_elem &&
2392     _stable == a->_stable &&
2393     _size == a->_size;




2394 }
2395 
2396 //------------------------------hash-------------------------------------------
2397 // Type-specific hashing function.
2398 uint TypeAry::hash(void) const {
2399   return (uint)(uintptr_t)_elem + (uint)(uintptr_t)_size + (uint)(_stable ? 43 : 0);

2400 }
2401 
2402 /**
2403  * Return same type without a speculative part in the element
2404  */
2405 const TypeAry* TypeAry::remove_speculative() const {
2406   return make(_elem->remove_speculative(), _size, _stable);
2407 }
2408 
2409 /**
2410  * Return same type with cleaned up speculative part of element
2411  */
2412 const Type* TypeAry::cleanup_speculative() const {
2413   return make(_elem->cleanup_speculative(), _size, _stable);
2414 }
2415 
2416 /**
2417  * Return same type but with a different inline depth (used for speculation)
2418  *
2419  * @param depth  depth to meet with
2420  */
2421 const TypePtr* TypePtr::with_inline_depth(int depth) const {
2422   if (!UseInlineDepthForSpeculativeTypes) {
2423     return this;
2424   }
2425   return make(AnyPtr, _ptr, _offset, _speculative, depth);
2426 }
2427 
2428 //------------------------------dump2------------------------------------------
2429 #ifndef PRODUCT
2430 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2431   if (_stable)  st->print("stable:");





2432   _elem->dump2(d, depth, st);
2433   st->print("[");
2434   _size->dump2(d, depth, st);
2435   st->print("]");
2436 }
2437 #endif
2438 
2439 //------------------------------singleton--------------------------------------
2440 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2441 // constants (Ldi nodes).  Singletons are integer, float or double constants
2442 // or a single symbol.
2443 bool TypeAry::singleton(void) const {
2444   return false;                 // Never a singleton
2445 }
2446 
2447 bool TypeAry::empty(void) const {
2448   return _elem->empty() || _size->empty();
2449 }
2450 
2451 //--------------------------ary_must_be_exact----------------------------------
2452 bool TypeAry::ary_must_be_exact() const {
2453   // This logic looks at the element type of an array, and returns true
2454   // if the element type is either a primitive or a final instance class.
2455   // In such cases, an array built on this ary must have no subclasses.
2456   if (_elem == BOTTOM)      return false;  // general array not exact
2457   if (_elem == TOP   )      return false;  // inverted general array not exact
2458   const TypeOopPtr*  toop = nullptr;
2459   if (UseCompressedOops && _elem->isa_narrowoop()) {
2460     toop = _elem->make_ptr()->isa_oopptr();
2461   } else {
2462     toop = _elem->isa_oopptr();
2463   }
2464   if (!toop)                return true;   // a primitive type, like int
2465   if (!toop->is_loaded())   return false;  // unloaded class
2466   const TypeInstPtr* tinst;
2467   if (_elem->isa_narrowoop())
2468     tinst = _elem->make_ptr()->isa_instptr();
2469   else
2470     tinst = _elem->isa_instptr();
2471   if (tinst)
2472     return tinst->instance_klass()->is_final();








2473   const TypeAryPtr*  tap;
2474   if (_elem->isa_narrowoop())
2475     tap = _elem->make_ptr()->isa_aryptr();
2476   else
2477     tap = _elem->isa_aryptr();
2478   if (tap)
2479     return tap->ary()->ary_must_be_exact();
2480   return false;
2481 }
2482 
2483 //==============================TypeVect=======================================
2484 // Convenience common pre-built types.
2485 const TypeVect *TypeVect::VECTA = nullptr; // vector length agnostic
2486 const TypeVect *TypeVect::VECTS = nullptr; //  32-bit vectors
2487 const TypeVect *TypeVect::VECTD = nullptr; //  64-bit vectors
2488 const TypeVect *TypeVect::VECTX = nullptr; // 128-bit vectors
2489 const TypeVect *TypeVect::VECTY = nullptr; // 256-bit vectors
2490 const TypeVect *TypeVect::VECTZ = nullptr; // 512-bit vectors
2491 const TypeVect *TypeVect::VECTMASK = nullptr; // predicate/mask vector
2492 

2648 
2649 //=============================================================================
2650 // Convenience common pre-built types.
2651 const TypePtr *TypePtr::NULL_PTR;
2652 const TypePtr *TypePtr::NOTNULL;
2653 const TypePtr *TypePtr::BOTTOM;
2654 
2655 //------------------------------meet-------------------------------------------
2656 // Meet over the PTR enum
2657 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2658   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2659   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2660   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2661   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2662   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2663   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2664   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2665 };
2666 
2667 //------------------------------make-------------------------------------------
2668 const TypePtr *TypePtr::make(TYPES t, enum PTR ptr, int offset, const TypePtr* speculative, int inline_depth) {
2669   return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2670 }
2671 
2672 //------------------------------cast_to_ptr_type-------------------------------
2673 const TypePtr* TypePtr::cast_to_ptr_type(PTR ptr) const {
2674   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2675   if( ptr == _ptr ) return this;
2676   return make(_base, ptr, _offset, _speculative, _inline_depth);
2677 }
2678 
2679 //------------------------------get_con----------------------------------------
2680 intptr_t TypePtr::get_con() const {
2681   assert( _ptr == Null, "" );
2682   return _offset;
2683 }
2684 
2685 //------------------------------meet-------------------------------------------
2686 // Compute the MEET of two types.  It returns a new Type object.
2687 const Type *TypePtr::xmeet(const Type *t) const {
2688   const Type* res = xmeet_helper(t);
2689   if (res->isa_ptr() == nullptr) {
2690     return res;
2691   }
2692 
2693   const TypePtr* res_ptr = res->is_ptr();
2694   if (res_ptr->speculative() != nullptr) {
2695     // type->speculative() is null means that speculation is no better
2696     // than type, i.e. type->speculative() == type. So there are 2
2697     // ways to represent the fact that we have no useful speculative
2698     // data and we should use a single one to be able to test for
2699     // equality between types. Check whether type->speculative() ==
2700     // type and set speculative to null if it is the case.
2701     if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2702       return res_ptr->remove_speculative();

2733     int depth = meet_inline_depth(tp->inline_depth());
2734     return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2735   }
2736   case RawPtr:                  // For these, flip the call around to cut down
2737   case OopPtr:
2738   case InstPtr:                 // on the cases I have to handle.
2739   case AryPtr:
2740   case MetadataPtr:
2741   case KlassPtr:
2742   case InstKlassPtr:
2743   case AryKlassPtr:
2744     return t->xmeet(this);      // Call in reverse direction
2745   default:                      // All else is a mistake
2746     typerr(t);
2747 
2748   }
2749   return this;
2750 }
2751 
2752 //------------------------------meet_offset------------------------------------
2753 int TypePtr::meet_offset( int offset ) const {
2754   // Either is 'TOP' offset?  Return the other offset!
2755   if( _offset == OffsetTop ) return offset;
2756   if( offset == OffsetTop ) return _offset;
2757   // If either is different, return 'BOTTOM' offset
2758   if( _offset != offset ) return OffsetBot;
2759   return _offset;
2760 }
2761 
2762 //------------------------------dual_offset------------------------------------
2763 int TypePtr::dual_offset( ) const {
2764   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
2765   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
2766   return _offset;               // Map everything else into self
2767 }
2768 
2769 //------------------------------xdual------------------------------------------
2770 // Dual: compute field-by-field dual
2771 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2772   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2773 };
2774 const Type *TypePtr::xdual() const {
2775   return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2776 }
2777 
2778 //------------------------------xadd_offset------------------------------------
2779 int TypePtr::xadd_offset( intptr_t offset ) const {
2780   // Adding to 'TOP' offset?  Return 'TOP'!
2781   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
2782   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
2783   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
2784   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
2785   offset += (intptr_t)_offset;
2786   if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
2787 
2788   // assert( _offset >= 0 && _offset+offset >= 0, "" );
2789   // It is possible to construct a negative offset during PhaseCCP
2790 
2791   return (int)offset;        // Sum valid offsets
2792 }
2793 
2794 //------------------------------add_offset-------------------------------------
2795 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2796   return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2797 }
2798 
2799 const TypePtr *TypePtr::with_offset(intptr_t offset) const {
2800   return make(AnyPtr, _ptr, offset, _speculative, _inline_depth);
2801 }
2802 
2803 //------------------------------eq---------------------------------------------
2804 // Structural equality check for Type representations
2805 bool TypePtr::eq( const Type *t ) const {
2806   const TypePtr *a = (const TypePtr*)t;
2807   return _ptr == a->ptr() && _offset == a->offset() && eq_speculative(a) && _inline_depth == a->_inline_depth;
2808 }
2809 
2810 //------------------------------hash-------------------------------------------
2811 // Type-specific hashing function.
2812 uint TypePtr::hash(void) const {
2813   return (uint)_ptr + (uint)_offset + (uint)hash_speculative() + (uint)_inline_depth;
2814 }
2815 
2816 /**
2817  * Return same type without a speculative part
2818  */
2819 const TypePtr* TypePtr::remove_speculative() const {
2820   if (_speculative == nullptr) {
2821     return this;
2822   }
2823   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2824   return make(AnyPtr, _ptr, _offset, nullptr, _inline_depth);
2825 }
2826 
2827 /**
2828  * Return same type but drop speculative part if we know we won't use
2829  * it
2830  */
2831 const Type* TypePtr::cleanup_speculative() const {
2832   if (speculative() == nullptr) {
2833     return this;

3059   }
3060   // We already know the speculative type is always null
3061   if (speculative_always_null()) {
3062     return false;
3063   }
3064   if (ptr_kind == ProfileAlwaysNull && speculative() != nullptr && speculative()->isa_oopptr()) {
3065     return false;
3066   }
3067   return true;
3068 }
3069 
3070 //------------------------------dump2------------------------------------------
3071 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
3072   "TopPTR","AnyNull","Constant","null","NotNull","BotPTR"
3073 };
3074 
3075 #ifndef PRODUCT
3076 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3077   if( _ptr == Null ) st->print("null");
3078   else st->print("%s *", ptr_msg[_ptr]);
3079   if( _offset == OffsetTop ) st->print("+top");
3080   else if( _offset == OffsetBot ) st->print("+bot");
3081   else if( _offset ) st->print("+%d", _offset);
3082   dump_inline_depth(st);
3083   dump_speculative(st);
3084 }
3085 
3086 /**
3087  *dump the speculative part of the type
3088  */
3089 void TypePtr::dump_speculative(outputStream *st) const {
3090   if (_speculative != nullptr) {
3091     st->print(" (speculative=");
3092     _speculative->dump_on(st);
3093     st->print(")");
3094   }
3095 }
3096 
3097 /**
3098  *dump the inline depth of the type
3099  */
3100 void TypePtr::dump_inline_depth(outputStream *st) const {
3101   if (_inline_depth != InlineDepthBottom) {
3102     if (_inline_depth == InlineDepthTop) {
3103       st->print(" (inline_depth=InlineDepthTop)");
3104     } else {
3105       st->print(" (inline_depth=%d)", _inline_depth);
3106     }
3107   }
3108 }
3109 #endif
3110 
3111 //------------------------------singleton--------------------------------------
3112 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3113 // constants
3114 bool TypePtr::singleton(void) const {
3115   // TopPTR, Null, AnyNull, Constant are all singletons
3116   return (_offset != OffsetBot) && !below_centerline(_ptr);
3117 }
3118 
3119 bool TypePtr::empty(void) const {
3120   return (_offset == OffsetTop) || above_centerline(_ptr);
3121 }
3122 
3123 //=============================================================================
3124 // Convenience common pre-built types.
3125 const TypeRawPtr *TypeRawPtr::BOTTOM;
3126 const TypeRawPtr *TypeRawPtr::NOTNULL;
3127 
3128 //------------------------------make-------------------------------------------
3129 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
3130   assert( ptr != Constant, "what is the constant?" );
3131   assert( ptr != Null, "Use TypePtr for null" );
3132   return (TypeRawPtr*)(new TypeRawPtr(ptr,nullptr))->hashcons();
3133 }
3134 
3135 const TypeRawPtr *TypeRawPtr::make( address bits ) {
3136   assert( bits, "Use TypePtr for null" );
3137   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
3138 }
3139 
3140 //------------------------------cast_to_ptr_type-------------------------------

3492 void TypeInterfaces::verify_is_loaded() const {
3493   for (int i = 0; i < _list.length(); i++) {
3494     ciKlass* interface = _list.at(i);
3495     assert(interface->is_loaded(), "Interface not loaded");
3496   }
3497 }
3498 #endif
3499 
3500 // Can't be implemented because there's no way to know if the type is above or below the center line.
3501 const Type* TypeInterfaces::xmeet(const Type* t) const {
3502   ShouldNotReachHere();
3503   return Type::xmeet(t);
3504 }
3505 
3506 bool TypeInterfaces::singleton(void) const {
3507   ShouldNotReachHere();
3508   return Type::singleton();
3509 }
3510 
3511 //------------------------------TypeOopPtr-------------------------------------
3512 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int offset,
3513                        int instance_id, const TypePtr* speculative, int inline_depth)
3514   : TypePtr(t, ptr, offset, speculative, inline_depth),
3515     _const_oop(o), _klass(k),
3516     _interfaces(interfaces),
3517     _klass_is_exact(xk),
3518     _is_ptr_to_narrowoop(false),
3519     _is_ptr_to_narrowklass(false),
3520     _is_ptr_to_boxed_value(false),
3521     _instance_id(instance_id) {
3522 #ifdef ASSERT
3523   if (klass() != nullptr && klass()->is_loaded()) {
3524     interfaces->verify_is_loaded();
3525   }
3526 #endif
3527   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
3528       (offset > 0) && xk && (k != nullptr) && k->is_instance_klass()) {
3529     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
3530   }
3531 #ifdef _LP64
3532   if (_offset > 0 || _offset == Type::OffsetTop || _offset == Type::OffsetBot) {
3533     if (_offset == oopDesc::klass_offset_in_bytes()) {
3534       _is_ptr_to_narrowklass = UseCompressedClassPointers;
3535     } else if (klass() == nullptr) {
3536       // Array with unknown body type
3537       assert(this->isa_aryptr(), "only arrays without klass");
3538       _is_ptr_to_narrowoop = UseCompressedOops;
3539     } else if (this->isa_aryptr()) {
3540       _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
3541                              _offset != arrayOopDesc::length_offset_in_bytes());









3542     } else if (klass()->is_instance_klass()) {
3543       ciInstanceKlass* ik = klass()->as_instance_klass();
3544       if (this->isa_klassptr()) {
3545         // Perm objects don't use compressed references
3546       } else if (_offset == OffsetBot || _offset == OffsetTop) {
3547         // unsafe access
3548         _is_ptr_to_narrowoop = UseCompressedOops;
3549       } else {
3550         assert(this->isa_instptr(), "must be an instance ptr.");
3551 
3552         if (klass() == ciEnv::current()->Class_klass() &&
3553             (_offset == java_lang_Class::klass_offset() ||
3554              _offset == java_lang_Class::array_klass_offset())) {
3555           // Special hidden fields from the Class.
3556           assert(this->isa_instptr(), "must be an instance ptr.");
3557           _is_ptr_to_narrowoop = false;
3558         } else if (klass() == ciEnv::current()->Class_klass() &&
3559                    _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
3560           // Static fields
3561           ciField* field = nullptr;
3562           if (const_oop() != nullptr) {
3563             ciInstanceKlass* k = const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
3564             field = k->get_field_by_offset(_offset, true);
3565           }
3566           if (field != nullptr) {
3567             BasicType basic_elem_type = field->layout_type();
3568             _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type);
3569           } else {
3570             // unsafe access
3571             _is_ptr_to_narrowoop = UseCompressedOops;
3572           }
3573         } else {
3574           // Instance fields which contains a compressed oop references.
3575           ciField* field = ik->get_field_by_offset(_offset, false);

3576           if (field != nullptr) {
3577             BasicType basic_elem_type = field->layout_type();
3578             _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type);
3579           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
3580             // Compile::find_alias_type() cast exactness on all types to verify
3581             // that it does not affect alias type.
3582             _is_ptr_to_narrowoop = UseCompressedOops;
3583           } else {
3584             // Type for the copy start in LibraryCallKit::inline_native_clone().
3585             _is_ptr_to_narrowoop = UseCompressedOops;
3586           }
3587         }
3588       }
3589     }
3590   }
3591 #endif
3592 }
3593 
3594 //------------------------------make-------------------------------------------
3595 const TypeOopPtr *TypeOopPtr::make(PTR ptr, int offset, int instance_id,
3596                                      const TypePtr* speculative, int inline_depth) {
3597   assert(ptr != Constant, "no constant generic pointers");
3598   ciKlass*  k = Compile::current()->env()->Object_klass();
3599   bool      xk = false;
3600   ciObject* o = nullptr;
3601   const TypeInterfaces* interfaces = TypeInterfaces::make();
3602   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, interfaces, xk, o, offset, instance_id, speculative, inline_depth))->hashcons();
3603 }
3604 
3605 
3606 //------------------------------cast_to_ptr_type-------------------------------
3607 const TypeOopPtr* TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
3608   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
3609   if( ptr == _ptr ) return this;
3610   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
3611 }
3612 
3613 //-----------------------------cast_to_instance_id----------------------------
3614 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
3615   // There are no instances of a general oop.
3616   // Return self unchanged.
3617   return this;
3618 }
3619 
3620 //-----------------------------cast_to_exactness-------------------------------
3621 const TypeOopPtr* TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
3622   // There is no such thing as an exact general oop.
3623   // Return self unchanged.
3624   return this;
3625 }
3626 
3627 
3628 //------------------------------as_klass_type----------------------------------
3629 // Return the klass type corresponding to this instance or array type.
3630 // It is the type that is loaded from an object of this type.
3631 const TypeKlassPtr* TypeOopPtr::as_klass_type(bool try_for_exact) const {
3632   ShouldNotReachHere();
3633   return nullptr;
3634 }
3635 
3636 //------------------------------meet-------------------------------------------
3637 // Compute the MEET of two types.  It returns a new Type object.
3638 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
3639   // Perform a fast test for common case; meeting the same types together.
3640   if( this == t ) return this;  // Meeting same type-rep?
3641 
3642   // Current "this->_base" is OopPtr
3643   switch (t->base()) {          // switch on original type
3644 
3645   case Int:                     // Mixing ints & oops happens when javac
3646   case Long:                    // reuses local variables
3647   case FloatTop:

3653   case NarrowOop:
3654   case NarrowKlass:
3655   case Bottom:                  // Ye Olde Default
3656     return Type::BOTTOM;
3657   case Top:
3658     return this;
3659 
3660   default:                      // All else is a mistake
3661     typerr(t);
3662 
3663   case RawPtr:
3664   case MetadataPtr:
3665   case KlassPtr:
3666   case InstKlassPtr:
3667   case AryKlassPtr:
3668     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3669 
3670   case AnyPtr: {
3671     // Found an AnyPtr type vs self-OopPtr type
3672     const TypePtr *tp = t->is_ptr();
3673     int offset = meet_offset(tp->offset());
3674     PTR ptr = meet_ptr(tp->ptr());
3675     const TypePtr* speculative = xmeet_speculative(tp);
3676     int depth = meet_inline_depth(tp->inline_depth());
3677     switch (tp->ptr()) {
3678     case Null:
3679       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3680       // else fall through:
3681     case TopPTR:
3682     case AnyNull: {
3683       int instance_id = meet_instance_id(InstanceTop);
3684       return make(ptr, offset, instance_id, speculative, depth);
3685     }
3686     case BotPTR:
3687     case NotNull:
3688       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3689     default: typerr(t);
3690     }
3691   }
3692 
3693   case OopPtr: {                 // Meeting to other OopPtrs

3695     int instance_id = meet_instance_id(tp->instance_id());
3696     const TypePtr* speculative = xmeet_speculative(tp);
3697     int depth = meet_inline_depth(tp->inline_depth());
3698     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
3699   }
3700 
3701   case InstPtr:                  // For these, flip the call around to cut down
3702   case AryPtr:
3703     return t->xmeet(this);      // Call in reverse direction
3704 
3705   } // End of switch
3706   return this;                  // Return the double constant
3707 }
3708 
3709 
3710 //------------------------------xdual------------------------------------------
3711 // Dual of a pure heap pointer.  No relevant klass or oop information.
3712 const Type *TypeOopPtr::xdual() const {
3713   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
3714   assert(const_oop() == nullptr,             "no constants here");
3715   return new TypeOopPtr(_base, dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
3716 }
3717 
3718 //--------------------------make_from_klass_common-----------------------------
3719 // Computes the element-type given a klass.
3720 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact, InterfaceHandling interface_handling) {
3721   if (klass->is_instance_klass()) {
3722     Compile* C = Compile::current();
3723     Dependencies* deps = C->dependencies();
3724     assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
3725     // Element is an instance
3726     bool klass_is_exact = false;
3727     if (klass->is_loaded()) {
3728       // Try to set klass_is_exact.
3729       ciInstanceKlass* ik = klass->as_instance_klass();
3730       klass_is_exact = ik->is_final();
3731       if (!klass_is_exact && klass_change
3732           && deps != nullptr && UseUniqueSubclasses) {
3733         ciInstanceKlass* sub = ik->unique_concrete_subklass();
3734         if (sub != nullptr) {
3735           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3736           klass = ik = sub;
3737           klass_is_exact = sub->is_final();
3738         }
3739       }
3740       if (!klass_is_exact && try_for_exact && deps != nullptr &&
3741           !ik->is_interface() && !ik->has_subklass()) {
3742         // Add a dependence; if concrete subclass added we need to recompile
3743         deps->assert_leaf_type(ik);
3744         klass_is_exact = true;
3745       }
3746     }
3747     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
3748     return TypeInstPtr::make(TypePtr::BotPTR, klass, interfaces, klass_is_exact, nullptr, 0);
3749   } else if (klass->is_obj_array_klass()) {
3750     // Element is an object array. Recursively call ourself.
3751     ciKlass* eklass = klass->as_obj_array_klass()->element_klass();
3752     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(eklass, false, try_for_exact, interface_handling);
3753     bool xk = etype->klass_is_exact();
3754     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);








3755     // We used to pass NotNull in here, asserting that the sub-arrays
3756     // are all not-null.  This is not true in generally, as code can
3757     // slam nulls down in the subarrays.
3758     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, nullptr, xk, 0);
3759     return arr;
3760   } else if (klass->is_type_array_klass()) {
3761     // Element is an typeArray
3762     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3763     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);

3764     // We used to pass NotNull in here, asserting that the array pointer
3765     // is not-null. That was not true in general.
3766     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);






3767     return arr;
3768   } else {
3769     ShouldNotReachHere();
3770     return nullptr;
3771   }
3772 }
3773 
3774 //------------------------------make_from_constant-----------------------------
3775 // Make a java pointer from an oop constant
3776 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
3777   assert(!o->is_null_object(), "null object not yet handled here.");
3778 
3779   const bool make_constant = require_constant || o->should_be_constant();
3780 
3781   ciKlass* klass = o->klass();
3782   if (klass->is_instance_klass()) {
3783     // Element is an instance
3784     if (make_constant) {
3785       return TypeInstPtr::make(o);
3786     } else {
3787       return TypeInstPtr::make(TypePtr::NotNull, klass, true, nullptr, 0);
3788     }
3789   } else if (klass->is_obj_array_klass()) {
3790     // Element is an object array. Recursively call ourself.
3791     const TypeOopPtr *etype =
3792       TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass(), trust_interfaces);
3793     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));





3794     // We used to pass NotNull in here, asserting that the sub-arrays
3795     // are all not-null.  This is not true in generally, as code can
3796     // slam nulls down in the subarrays.
3797     if (make_constant) {
3798       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3799     } else {
3800       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3801     }
3802   } else if (klass->is_type_array_klass()) {
3803     // Element is an typeArray
3804     const Type* etype =
3805       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3806     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3807     // We used to pass NotNull in here, asserting that the array pointer
3808     // is not-null. That was not true in general.
3809     if (make_constant) {
3810       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);












3811     } else {
3812       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3813     }
3814   }
3815 
3816   fatal("unhandled object type");
3817   return nullptr;
3818 }
3819 
3820 //------------------------------get_con----------------------------------------
3821 intptr_t TypeOopPtr::get_con() const {
3822   assert( _ptr == Null || _ptr == Constant, "" );
3823   assert( _offset >= 0, "" );
3824 
3825   if (_offset != 0) {
3826     // After being ported to the compiler interface, the compiler no longer
3827     // directly manipulates the addresses of oops.  Rather, it only has a pointer
3828     // to a handle at compile time.  This handle is embedded in the generated
3829     // code and dereferenced at the time the nmethod is made.  Until that time,
3830     // it is not reasonable to do arithmetic with the addresses of oops (we don't
3831     // have access to the addresses!).  This does not seem to currently happen,
3832     // but this assertion here is to help prevent its occurrence.
3833     tty->print_cr("Found oop constant with non-zero offset");
3834     ShouldNotReachHere();
3835   }
3836 
3837   return (intptr_t)const_oop()->constant_encoding();
3838 }
3839 
3840 
3841 //-----------------------------filter------------------------------------------
3842 // Do not allow interface-vs.-noninterface joins to collapse to top.
3843 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
3844 
3845   const Type* ft = join_helper(kills, include_speculative);

3866   } else {
3867     return one->equals(two) && TypePtr::eq(t);
3868   }
3869 }
3870 
3871 //------------------------------hash-------------------------------------------
3872 // Type-specific hashing function.
3873 uint TypeOopPtr::hash(void) const {
3874   return
3875     (uint)(const_oop() ? const_oop()->hash() : 0) +
3876     (uint)_klass_is_exact +
3877     (uint)_instance_id + TypePtr::hash();
3878 }
3879 
3880 //------------------------------dump2------------------------------------------
3881 #ifndef PRODUCT
3882 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3883   st->print("oopptr:%s", ptr_msg[_ptr]);
3884   if( _klass_is_exact ) st->print(":exact");
3885   if( const_oop() ) st->print(INTPTR_FORMAT, p2i(const_oop()));
3886   switch( _offset ) {
3887   case OffsetTop: st->print("+top"); break;
3888   case OffsetBot: st->print("+any"); break;
3889   case         0: break;
3890   default:        st->print("+%d",_offset); break;
3891   }
3892   if (_instance_id == InstanceTop)
3893     st->print(",iid=top");
3894   else if (_instance_id != InstanceBot)
3895     st->print(",iid=%d",_instance_id);
3896 
3897   dump_inline_depth(st);
3898   dump_speculative(st);
3899 }
3900 #endif
3901 
3902 //------------------------------singleton--------------------------------------
3903 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3904 // constants
3905 bool TypeOopPtr::singleton(void) const {
3906   // detune optimizer to not generate constant oop + constant offset as a constant!
3907   // TopPTR, Null, AnyNull, Constant are all singletons
3908   return (_offset == 0) && !below_centerline(_ptr);
3909 }
3910 
3911 //------------------------------add_offset-------------------------------------
3912 const TypePtr* TypeOopPtr::add_offset(intptr_t offset) const {
3913   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
3914 }
3915 
3916 const TypeOopPtr* TypeOopPtr::with_offset(intptr_t offset) const {
3917   return make(_ptr, offset, _instance_id, with_offset_speculative(offset), _inline_depth);
3918 }
3919 
3920 /**
3921  * Return same type without a speculative part
3922  */
3923 const TypeOopPtr* TypeOopPtr::remove_speculative() const {
3924   if (_speculative == nullptr) {
3925     return this;
3926   }
3927   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3928   return make(_ptr, _offset, _instance_id, nullptr, _inline_depth);
3929 }
3930 
3931 /**
3932  * Return same type but drop speculative part if we know we won't use
3933  * it
3934  */
3935 const Type* TypeOopPtr::cleanup_speculative() const {
3936   // If the klass is exact and the ptr is not null then there's
3937   // nothing that the speculative type can help us with

4010 const TypeInstPtr *TypeInstPtr::BOTTOM;
4011 const TypeInstPtr *TypeInstPtr::MIRROR;
4012 const TypeInstPtr *TypeInstPtr::MARK;
4013 const TypeInstPtr *TypeInstPtr::KLASS;
4014 
4015 // Is there a single ciKlass* that can represent that type?
4016 ciKlass* TypeInstPtr::exact_klass_helper() const {
4017   if (_interfaces->empty()) {
4018     return _klass;
4019   }
4020   if (_klass != ciEnv::current()->Object_klass()) {
4021     if (_interfaces->eq(_klass->as_instance_klass())) {
4022       return _klass;
4023     }
4024     return nullptr;
4025   }
4026   return _interfaces->exact_klass();
4027 }
4028 
4029 //------------------------------TypeInstPtr-------------------------------------
4030 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int off,
4031                          int instance_id, const TypePtr* speculative, int inline_depth)
4032   : TypeOopPtr(InstPtr, ptr, k, interfaces, xk, o, off, instance_id, speculative, inline_depth) {

4033   assert(k == nullptr || !k->is_loaded() || !k->is_interface(), "no interface here");
4034   assert(k != nullptr &&
4035          (k->is_loaded() || o == nullptr),
4036          "cannot have constants with non-loaded klass");


4037 };
4038 
4039 //------------------------------make-------------------------------------------
4040 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
4041                                      ciKlass* k,
4042                                      const TypeInterfaces* interfaces,
4043                                      bool xk,
4044                                      ciObject* o,
4045                                      int offset,

4046                                      int instance_id,
4047                                      const TypePtr* speculative,
4048                                      int inline_depth) {
4049   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
4050   // Either const_oop() is null or else ptr is Constant
4051   assert( (!o && ptr != Constant) || (o && ptr == Constant),
4052           "constant pointers must have a value supplied" );
4053   // Ptr is never Null
4054   assert( ptr != Null, "null pointers are not typed" );
4055 
4056   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4057   if (ptr == Constant) {
4058     // Note:  This case includes meta-object constants, such as methods.
4059     xk = true;
4060   } else if (k->is_loaded()) {
4061     ciInstanceKlass* ik = k->as_instance_klass();
4062     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
4063     assert(!ik->is_interface(), "no interface here");
4064     if (xk && ik->is_interface())  xk = false;  // no exact interface
4065   }
4066 



4067   // Now hash this baby
4068   TypeInstPtr *result =
4069     (TypeInstPtr*)(new TypeInstPtr(ptr, k, interfaces, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
4070 
4071   return result;
4072 }
4073 
4074 const TypeInterfaces* TypePtr::interfaces(ciKlass*& k, bool klass, bool interface, bool array, InterfaceHandling interface_handling) {
4075   if (k->is_instance_klass()) {
4076     if (k->is_loaded()) {
4077       if (k->is_interface() && interface_handling == ignore_interfaces) {
4078         assert(interface, "no interface expected");
4079         k = ciEnv::current()->Object_klass();
4080         const TypeInterfaces* interfaces = TypeInterfaces::make();
4081         return interfaces;
4082       }
4083       GrowableArray<ciInstanceKlass *>* k_interfaces = k->as_instance_klass()->transitive_interfaces();
4084       const TypeInterfaces* interfaces = TypeInterfaces::make(k_interfaces);
4085       if (k->is_interface()) {
4086         assert(interface, "no interface expected");
4087         k = ciEnv::current()->Object_klass();
4088       } else {
4089         assert(klass, "no instance klass expected");

4115   switch (bt) {
4116     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
4117     case T_INT:      return TypeInt::make(constant.as_int());
4118     case T_CHAR:     return TypeInt::make(constant.as_char());
4119     case T_BYTE:     return TypeInt::make(constant.as_byte());
4120     case T_SHORT:    return TypeInt::make(constant.as_short());
4121     case T_FLOAT:    return TypeF::make(constant.as_float());
4122     case T_DOUBLE:   return TypeD::make(constant.as_double());
4123     case T_LONG:     return TypeLong::make(constant.as_long());
4124     default:         break;
4125   }
4126   fatal("Invalid boxed value type '%s'", type2name(bt));
4127   return nullptr;
4128 }
4129 
4130 //------------------------------cast_to_ptr_type-------------------------------
4131 const TypeInstPtr* TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
4132   if( ptr == _ptr ) return this;
4133   // Reconstruct _sig info here since not a problem with later lazy
4134   // construction, _sig will show up on demand.
4135   return make(ptr, klass(), _interfaces, klass_is_exact(), ptr == Constant ? const_oop() : nullptr, _offset, _instance_id, _speculative, _inline_depth);
4136 }
4137 
4138 
4139 //-----------------------------cast_to_exactness-------------------------------
4140 const TypeInstPtr* TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
4141   if( klass_is_exact == _klass_is_exact ) return this;
4142   if (!_klass->is_loaded())  return this;
4143   ciInstanceKlass* ik = _klass->as_instance_klass();
4144   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
4145   assert(!ik->is_interface(), "no interface here");
4146   return make(ptr(), klass(), _interfaces, klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
4147 }
4148 
4149 //-----------------------------cast_to_instance_id----------------------------
4150 const TypeInstPtr* TypeInstPtr::cast_to_instance_id(int instance_id) const {
4151   if( instance_id == _instance_id ) return this;
4152   return make(_ptr, klass(),  _interfaces, _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
4153 }
4154 
4155 //------------------------------xmeet_unloaded---------------------------------
4156 // Compute the MEET of two InstPtrs when at least one is unloaded.
4157 // Assume classes are different since called after check for same name/class-loader
4158 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst, const TypeInterfaces* interfaces) const {
4159   int off = meet_offset(tinst->offset());
4160   PTR ptr = meet_ptr(tinst->ptr());
4161   int instance_id = meet_instance_id(tinst->instance_id());
4162   const TypePtr* speculative = xmeet_speculative(tinst);
4163   int depth = meet_inline_depth(tinst->inline_depth());
4164 
4165   const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
4166   const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
4167   if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
4168     //
4169     // Meet unloaded class with java/lang/Object
4170     //
4171     // Meet
4172     //          |                     Unloaded Class
4173     //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
4174     //  ===================================================================
4175     //   TOP    | ..........................Unloaded......................|
4176     //  AnyNull |  U-AN    |................Unloaded......................|
4177     // Constant | ... O-NN .................................. |   O-BOT   |
4178     //  NotNull | ... O-NN .................................. |   O-BOT   |
4179     //  BOTTOM  | ........................Object-BOTTOM ..................|
4180     //
4181     assert(loaded->ptr() != TypePtr::Null, "insanity check");
4182     //
4183     if (loaded->ptr() == TypePtr::TopPTR)        { return unloaded->with_speculative(speculative); }
4184     else if (loaded->ptr() == TypePtr::AnyNull)  { return make(ptr, unloaded->klass(), interfaces, false, nullptr, off, instance_id, speculative, depth); }
4185     else if (loaded->ptr() == TypePtr::BotPTR)   { return TypeInstPtr::BOTTOM->with_speculative(speculative); }
4186     else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
4187       if (unloaded->ptr() == TypePtr::BotPTR)    { return TypeInstPtr::BOTTOM->with_speculative(speculative);  }
4188       else                                       { return TypeInstPtr::NOTNULL->with_speculative(speculative); }
4189     }
4190     else if (unloaded->ptr() == TypePtr::TopPTR) { return unloaded->with_speculative(speculative); }
4191 
4192     return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr()->with_speculative(speculative);
4193   }
4194 
4195   // Both are unloaded, not the same class, not Object
4196   // Or meet unloaded with a different loaded class, not java/lang/Object
4197   if (ptr != TypePtr::BotPTR) {
4198     return TypeInstPtr::NOTNULL->with_speculative(speculative);
4199   }
4200   return TypeInstPtr::BOTTOM->with_speculative(speculative);
4201 }
4202 
4203 
4204 //------------------------------meet-------------------------------------------

4225   case Top:
4226     return this;
4227 
4228   default:                      // All else is a mistake
4229     typerr(t);
4230 
4231   case MetadataPtr:
4232   case KlassPtr:
4233   case InstKlassPtr:
4234   case AryKlassPtr:
4235   case RawPtr: return TypePtr::BOTTOM;
4236 
4237   case AryPtr: {                // All arrays inherit from Object class
4238     // Call in reverse direction to avoid duplication
4239     return t->is_aryptr()->xmeet_helper(this);
4240   }
4241 
4242   case OopPtr: {                // Meeting to OopPtrs
4243     // Found a OopPtr type vs self-InstPtr type
4244     const TypeOopPtr *tp = t->is_oopptr();
4245     int offset = meet_offset(tp->offset());
4246     PTR ptr = meet_ptr(tp->ptr());
4247     switch (tp->ptr()) {
4248     case TopPTR:
4249     case AnyNull: {
4250       int instance_id = meet_instance_id(InstanceTop);
4251       const TypePtr* speculative = xmeet_speculative(tp);
4252       int depth = meet_inline_depth(tp->inline_depth());
4253       return make(ptr, klass(), _interfaces, klass_is_exact(),
4254                   (ptr == Constant ? const_oop() : nullptr), offset, instance_id, speculative, depth);
4255     }
4256     case NotNull:
4257     case BotPTR: {
4258       int instance_id = meet_instance_id(tp->instance_id());
4259       const TypePtr* speculative = xmeet_speculative(tp);
4260       int depth = meet_inline_depth(tp->inline_depth());
4261       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4262     }
4263     default: typerr(t);
4264     }
4265   }
4266 
4267   case AnyPtr: {                // Meeting to AnyPtrs
4268     // Found an AnyPtr type vs self-InstPtr type
4269     const TypePtr *tp = t->is_ptr();
4270     int offset = meet_offset(tp->offset());
4271     PTR ptr = meet_ptr(tp->ptr());
4272     int instance_id = meet_instance_id(InstanceTop);
4273     const TypePtr* speculative = xmeet_speculative(tp);
4274     int depth = meet_inline_depth(tp->inline_depth());
4275     switch (tp->ptr()) {
4276     case Null:
4277       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4278       // else fall through to AnyNull
4279     case TopPTR:
4280     case AnyNull: {
4281       return make(ptr, klass(), _interfaces, klass_is_exact(),
4282                   (ptr == Constant ? const_oop() : nullptr), offset, instance_id, speculative, depth);
4283     }
4284     case NotNull:
4285     case BotPTR:
4286       return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
4287     default: typerr(t);
4288     }
4289   }
4290 
4291   /*
4292                  A-top         }
4293                /   |   \       }  Tops
4294            B-top A-any C-top   }
4295               | /  |  \ |      }  Any-nulls
4296            B-any   |   C-any   }
4297               |    |    |
4298            B-con A-con C-con   } constants; not comparable across classes
4299               |    |    |
4300            B-not   |   C-not   }
4301               | \  |  / |      }  not-nulls
4302            B-bot A-not C-bot   }
4303                \   |   /       }  Bottoms
4304                  A-bot         }
4305   */
4306 
4307   case InstPtr: {                // Meeting 2 Oops?
4308     // Found an InstPtr sub-type vs self-InstPtr type
4309     const TypeInstPtr *tinst = t->is_instptr();
4310     int off = meet_offset(tinst->offset());
4311     PTR ptr = meet_ptr(tinst->ptr());
4312     int instance_id = meet_instance_id(tinst->instance_id());
4313     const TypePtr* speculative = xmeet_speculative(tinst);
4314     int depth = meet_inline_depth(tinst->inline_depth());
4315     const TypeInterfaces* interfaces = meet_interfaces(tinst);
4316 
4317     ciKlass* tinst_klass = tinst->klass();
4318     ciKlass* this_klass  = klass();
4319 
4320     ciKlass* res_klass = nullptr;
4321     bool res_xk = false;

4322     const Type* res;
4323     MeetResult kind = meet_instptr(ptr, interfaces, this, tinst, res_klass, res_xk);
4324 
4325     if (kind == UNLOADED) {
4326       // One of these classes has not been loaded
4327       const TypeInstPtr* unloaded_meet = xmeet_unloaded(tinst, interfaces);
4328 #ifndef PRODUCT
4329       if (PrintOpto && Verbose) {
4330         tty->print("meet of unloaded classes resulted in: ");
4331         unloaded_meet->dump();
4332         tty->cr();
4333         tty->print("  this == ");
4334         dump();
4335         tty->cr();
4336         tty->print(" tinst == ");
4337         tinst->dump();
4338         tty->cr();
4339       }
4340 #endif
4341       res = unloaded_meet;
4342     } else {
4343       if (kind == NOT_SUBTYPE && instance_id > 0) {
4344         instance_id = InstanceBot;
4345       } else if (kind == LCA) {
4346         instance_id = InstanceBot;
4347       }
4348       ciObject* o = nullptr;             // Assume not constant when done
4349       ciObject* this_oop = const_oop();
4350       ciObject* tinst_oop = tinst->const_oop();
4351       if (ptr == Constant) {
4352         if (this_oop != nullptr && tinst_oop != nullptr &&
4353             this_oop->equals(tinst_oop))
4354           o = this_oop;
4355         else if (above_centerline(_ptr)) {
4356           assert(!tinst_klass->is_interface(), "");
4357           o = tinst_oop;
4358         } else if (above_centerline(tinst->_ptr)) {
4359           assert(!this_klass->is_interface(), "");
4360           o = this_oop;
4361         } else
4362           ptr = NotNull;
4363       }
4364       res = make(ptr, res_klass, interfaces, res_xk, o, off, instance_id, speculative, depth);
4365     }
4366 
4367     return res;
4368 
4369   } // End of case InstPtr
4370 
4371   } // End of switch
4372   return this;                  // Return the double constant
4373 }
4374 
4375 template<class T> TypePtr::MeetResult TypePtr::meet_instptr(PTR& ptr, const TypeInterfaces*& interfaces, const T* this_type, const T* other_type,
4376                                                             ciKlass*& res_klass, bool& res_xk) {
4377   ciKlass* this_klass = this_type->klass();
4378   ciKlass* other_klass = other_type->klass();





4379   bool this_xk = this_type->klass_is_exact();
4380   bool other_xk = other_type->klass_is_exact();
4381   PTR this_ptr = this_type->ptr();
4382   PTR other_ptr = other_type->ptr();
4383   const TypeInterfaces* this_interfaces = this_type->interfaces();
4384   const TypeInterfaces* other_interfaces = other_type->interfaces();
4385   // Check for easy case; klasses are equal (and perhaps not loaded!)
4386   // If we have constants, then we created oops so classes are loaded
4387   // and we can handle the constants further down.  This case handles
4388   // both-not-loaded or both-loaded classes
4389   if (ptr != Constant && this_klass->equals(other_klass) && this_xk == other_xk) {
4390     res_klass = this_klass;
4391     res_xk = this_xk;

4392     return QUICK;
4393   }
4394 
4395   // Classes require inspection in the Java klass hierarchy.  Must be loaded.
4396   if (!other_klass->is_loaded() || !this_klass->is_loaded()) {
4397     return UNLOADED;
4398   }
4399 
4400   // !!! Here's how the symmetry requirement breaks down into invariants:
4401   // If we split one up & one down AND they subtype, take the down man.
4402   // If we split one up & one down AND they do NOT subtype, "fall hard".
4403   // If both are up and they subtype, take the subtype class.
4404   // If both are up and they do NOT subtype, "fall hard".
4405   // If both are down and they subtype, take the supertype class.
4406   // If both are down and they do NOT subtype, "fall hard".
4407   // Constants treated as down.
4408 
4409   // Now, reorder the above list; observe that both-down+subtype is also
4410   // "fall hard"; "fall hard" becomes the default case:
4411   // If we split one up & one down AND they subtype, take the down man.
4412   // If both are up and they subtype, take the subtype class.
4413 
4414   // If both are down and they subtype, "fall hard".
4415   // If both are down and they do NOT subtype, "fall hard".
4416   // If both are up and they do NOT subtype, "fall hard".
4417   // If we split one up & one down AND they do NOT subtype, "fall hard".
4418 
4419   // If a proper subtype is exact, and we return it, we return it exactly.
4420   // If a proper supertype is exact, there can be no subtyping relationship!
4421   // If both types are equal to the subtype, exactness is and-ed below the
4422   // centerline and or-ed above it.  (N.B. Constants are always exact.)
4423 
4424   // Check for subtyping:









4425   const T* subtype = nullptr;
4426   bool subtype_exact = false;

4427   if (this_type->is_same_java_type_as(other_type)) {
4428     subtype = this_type;
4429     subtype_exact = below_centerline(ptr) ? (this_xk && other_xk) : (this_xk || other_xk);
4430   } else if (!other_xk && this_type->is_meet_subtype_of(other_type)) {

4431     subtype = this_type;     // Pick subtyping class
4432     subtype_exact = this_xk;
4433   } else if(!this_xk && other_type->is_meet_subtype_of(this_type)) {


4434     subtype = other_type;    // Pick subtyping class
4435     subtype_exact = other_xk;


4436   }
4437 
4438   if (subtype) {
4439     if (above_centerline(ptr)) { // both are up?

4440       this_type = other_type = subtype;
4441       this_xk = other_xk = subtype_exact;
4442     } else if (above_centerline(this_ptr) && !above_centerline(other_ptr)) {
4443       this_type = other_type; // tinst is down; keep down man

4444       this_xk = other_xk;

4445     } else if (above_centerline(other_ptr) && !above_centerline(this_ptr)) {

4446       other_type = this_type; // this is down; keep down man
4447       other_xk = this_xk;
4448     } else {

4449       this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
4450     }
4451   }
4452 
4453   // Check for classes now being equal
4454   if (this_type->is_same_java_type_as(other_type)) {
4455     // If the klasses are equal, the constants may still differ.  Fall to
4456     // NotNull if they do (neither constant is null; that is a special case
4457     // handled elsewhere).
4458     res_klass = this_type->klass();
4459     res_xk = this_xk;

4460     return SUBTYPE;
4461   } // Else classes are not equal
4462 
4463   // Since klasses are different, we require a LCA in the Java
4464   // class hierarchy - which means we have to fall to at least NotNull.
4465   if (ptr == TopPTR || ptr == AnyNull || ptr == Constant) {
4466     ptr = NotNull;
4467   }
4468 
4469   interfaces = this_interfaces->intersection_with(other_interfaces);
4470 
4471   // Now we find the LCA of Java classes
4472   ciKlass* k = this_klass->least_common_ancestor(other_klass);
4473 
4474   res_klass = k;
4475   res_xk = false;

4476 
4477   return LCA;
4478 }
4479 




4480 //------------------------java_mirror_type--------------------------------------
4481 ciType* TypeInstPtr::java_mirror_type() const {
4482   // must be a singleton type
4483   if( const_oop() == nullptr )  return nullptr;
4484 
4485   // must be of type java.lang.Class
4486   if( klass() != ciEnv::current()->Class_klass() )  return nullptr;
4487 
4488   return const_oop()->as_instance()->java_mirror_type();
4489 }
4490 
4491 
4492 //------------------------------xdual------------------------------------------
4493 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
4494 // inheritance mechanism.
4495 const Type *TypeInstPtr::xdual() const {
4496   return new TypeInstPtr(dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
4497 }
4498 
4499 //------------------------------eq---------------------------------------------
4500 // Structural equality check for Type representations
4501 bool TypeInstPtr::eq( const Type *t ) const {
4502   const TypeInstPtr *p = t->is_instptr();
4503   return
4504     klass()->equals(p->klass()) &&

4505     _interfaces->eq(p->_interfaces) &&
4506     TypeOopPtr::eq(p);          // Check sub-type stuff
4507 }
4508 
4509 //------------------------------hash-------------------------------------------
4510 // Type-specific hashing function.
4511 uint TypeInstPtr::hash(void) const {
4512   return klass()->hash() + TypeOopPtr::hash() + _interfaces->hash();
4513 }
4514 
4515 bool TypeInstPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4516   return TypePtr::is_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
4517 }
4518 
4519 
4520 bool TypeInstPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const {
4521   return TypePtr::is_same_java_type_as_helper_for_instance(this, other);
4522 }
4523 
4524 bool TypeInstPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4525   return TypePtr::maybe_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
4526 }
4527 
4528 
4529 //------------------------------dump2------------------------------------------
4530 // Dump oop Type
4531 #ifndef PRODUCT
4532 void TypeInstPtr::dump2(Dict &d, uint depth, outputStream* st) const {

4546       // suppress newlines from it so -XX:+Verbose -XX:+PrintIdeal dumps one-liner for each node.
4547       char* buf = ss.as_string(/* c_heap= */false);
4548       StringUtils::replace_no_expand(buf, "\n", "");
4549       st->print_raw(buf);
4550     }
4551   case BotPTR:
4552     if (!WizardMode && !Verbose) {
4553       if( _klass_is_exact ) st->print(":exact");
4554       break;
4555     }
4556   case TopPTR:
4557   case AnyNull:
4558   case NotNull:
4559     st->print(":%s", ptr_msg[_ptr]);
4560     if( _klass_is_exact ) st->print(":exact");
4561     break;
4562   default:
4563     break;
4564   }
4565 
4566   if( _offset ) {               // Dump offset, if any
4567     if( _offset == OffsetBot )      st->print("+any");
4568     else if( _offset == OffsetTop ) st->print("+unknown");
4569     else st->print("+%d", _offset);
4570   }
4571 
4572   st->print(" *");





4573   if (_instance_id == InstanceTop)
4574     st->print(",iid=top");
4575   else if (_instance_id != InstanceBot)
4576     st->print(",iid=%d",_instance_id);
4577 
4578   dump_inline_depth(st);
4579   dump_speculative(st);
4580 }
4581 #endif
4582 
4583 //------------------------------add_offset-------------------------------------
4584 const TypePtr* TypeInstPtr::add_offset(intptr_t offset) const {
4585   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), xadd_offset(offset),
4586               _instance_id, add_offset_speculative(offset), _inline_depth);
4587 }
4588 
4589 const TypeInstPtr* TypeInstPtr::with_offset(intptr_t offset) const {
4590   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), offset,
4591               _instance_id, with_offset_speculative(offset), _inline_depth);
4592 }
4593 
4594 const TypeInstPtr* TypeInstPtr::remove_speculative() const {
4595   if (_speculative == nullptr) {
4596     return this;
4597   }
4598   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4599   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset,
4600               _instance_id, nullptr, _inline_depth);
4601 }
4602 
4603 const TypeInstPtr* TypeInstPtr::with_speculative(const TypePtr* speculative) const {
4604   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, _instance_id, speculative, _inline_depth);
4605 }
4606 
4607 const TypePtr* TypeInstPtr::with_inline_depth(int depth) const {
4608   if (!UseInlineDepthForSpeculativeTypes) {
4609     return this;
4610   }
4611   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
4612 }
4613 
4614 const TypePtr* TypeInstPtr::with_instance_id(int instance_id) const {
4615   assert(is_known_instance(), "should be known");
4616   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, instance_id, _speculative, _inline_depth);




4617 }
4618 
4619 const TypeKlassPtr* TypeInstPtr::as_klass_type(bool try_for_exact) const {
4620   bool xk = klass_is_exact();
4621   ciInstanceKlass* ik = klass()->as_instance_klass();
4622   if (try_for_exact && !xk && !ik->has_subklass() && !ik->is_final()) {
4623     if (_interfaces->eq(ik)) {
4624       Compile* C = Compile::current();
4625       Dependencies* deps = C->dependencies();
4626       deps->assert_leaf_type(ik);
4627       xk = true;
4628     }
4629   }
4630   return TypeInstKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, klass(), _interfaces, 0);
4631 }
4632 
4633 template <class T1, class T2> bool TypePtr::is_meet_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_xk, bool other_xk) {
4634   static_assert(std::is_base_of<T2, T1>::value, "");
4635 
4636   if (!this_one->is_instance_type(other)) {
4637     return false;
4638   }
4639 
4640   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty()) {
4641     return true;
4642   }
4643 
4644   return this_one->klass()->is_subtype_of(other->klass()) &&
4645          (!this_xk || this_one->_interfaces->contains(other->_interfaces));
4646 }
4647 
4648 
4649 bool TypeInstPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const {
4650   return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk);

4655   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty()) {
4656     return true;
4657   }
4658 
4659   if (this_one->is_instance_type(other)) {
4660     return other->klass() == ciEnv::current()->Object_klass() && this_one->_interfaces->contains(other->_interfaces);
4661   }
4662 
4663   int dummy;
4664   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
4665   if (this_top_or_bottom) {
4666     return false;
4667   }
4668 
4669   const T1* other_ary = this_one->is_array_type(other);
4670   const TypePtr* other_elem = other_ary->elem()->make_ptr();
4671   const TypePtr* this_elem = this_one->elem()->make_ptr();
4672   if (other_elem != nullptr && this_elem != nullptr) {
4673     return this_one->is_reference_type(this_elem)->is_meet_subtype_of_helper(this_one->is_reference_type(other_elem), this_xk, other_xk);
4674   }
4675 
4676   if (other_elem == nullptr && this_elem == nullptr) {
4677     return this_one->klass()->is_subtype_of(other->klass());
4678   }
4679 
4680   return false;
4681 }
4682 
4683 bool TypeAryPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const {
4684   return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk);
4685 }
4686 
4687 bool TypeInstKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const {
4688   return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk);
4689 }
4690 
4691 bool TypeAryKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const {
4692   return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk);
4693 }
4694 
4695 //=============================================================================
4696 // Convenience common pre-built types.
4697 const TypeAryPtr *TypeAryPtr::RANGE;
4698 const TypeAryPtr *TypeAryPtr::OOPS;
4699 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
4700 const TypeAryPtr *TypeAryPtr::BYTES;
4701 const TypeAryPtr *TypeAryPtr::SHORTS;
4702 const TypeAryPtr *TypeAryPtr::CHARS;
4703 const TypeAryPtr *TypeAryPtr::INTS;
4704 const TypeAryPtr *TypeAryPtr::LONGS;
4705 const TypeAryPtr *TypeAryPtr::FLOATS;
4706 const TypeAryPtr *TypeAryPtr::DOUBLES;

4707 
4708 //------------------------------make-------------------------------------------
4709 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset,
4710                                    int instance_id, const TypePtr* speculative, int inline_depth) {
4711   assert(!(k == nullptr && ary->_elem->isa_int()),
4712          "integral arrays must be pre-equipped with a class");
4713   if (!xk)  xk = ary->ary_must_be_exact();
4714   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4715   if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() &&
4716       k->as_obj_array_klass()->base_element_klass()->is_interface()) {
4717     k = nullptr;
4718   }
4719   return (TypeAryPtr*)(new TypeAryPtr(ptr, nullptr, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons();



4720 }
4721 
4722 //------------------------------make-------------------------------------------
4723 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset,
4724                                    int instance_id, const TypePtr* speculative, int inline_depth,
4725                                    bool is_autobox_cache) {
4726   assert(!(k == nullptr && ary->_elem->isa_int()),
4727          "integral arrays must be pre-equipped with a class");
4728   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
4729   if (!xk)  xk = (o != nullptr) || ary->ary_must_be_exact();
4730   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4731   if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() &&
4732       k->as_obj_array_klass()->base_element_klass()->is_interface()) {
4733     k = nullptr;
4734   }
4735   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();



4736 }
4737 
4738 //------------------------------cast_to_ptr_type-------------------------------
4739 const TypeAryPtr* TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
4740   if( ptr == _ptr ) return this;
4741   return make(ptr, ptr == Constant ? const_oop() : nullptr, _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4742 }
4743 
4744 
4745 //-----------------------------cast_to_exactness-------------------------------
4746 const TypeAryPtr* TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
4747   if( klass_is_exact == _klass_is_exact ) return this;
4748   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
4749   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
4750 }
4751 
4752 //-----------------------------cast_to_instance_id----------------------------
4753 const TypeAryPtr* TypeAryPtr::cast_to_instance_id(int instance_id) const {
4754   if( instance_id == _instance_id ) return this;
4755   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
4756 }
4757 
4758 
4759 //-----------------------------max_array_length-------------------------------
4760 // A wrapper around arrayOopDesc::max_array_length(etype) with some input normalization.
4761 jint TypeAryPtr::max_array_length(BasicType etype) {
4762   if (!is_java_primitive(etype) && !::is_reference_type(etype)) {
4763     if (etype == T_NARROWOOP) {
4764       etype = T_OBJECT;
4765     } else if (etype == T_ILLEGAL) { // bottom[]
4766       etype = T_BYTE; // will produce conservatively high value
4767     } else {
4768       fatal("not an element type: %s", type2name(etype));
4769     }
4770   }
4771   return arrayOopDesc::max_array_length(etype);
4772 }
4773 
4774 //-----------------------------narrow_size_type-------------------------------
4775 // Narrow the given size type to the index range for the given array base type.

4791   if (hi > max_hi) {
4792     hi = max_hi;
4793     if (size->is_con()) {
4794       lo = hi;
4795     }
4796     chg = true;
4797   }
4798   // Negative length arrays will produce weird intermediate dead fast-path code
4799   if (lo > hi)
4800     return TypeInt::ZERO;
4801   if (!chg)
4802     return size;
4803   return TypeInt::make(lo, hi, Type::WidenMin);
4804 }
4805 
4806 //-------------------------------cast_to_size----------------------------------
4807 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
4808   assert(new_size != nullptr, "");
4809   new_size = narrow_size_type(new_size);
4810   if (new_size == size())  return this;
4811   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
4812   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);




























































4813 }
4814 
4815 //------------------------------cast_to_stable---------------------------------
4816 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
4817   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
4818     return this;
4819 
4820   const Type* elem = this->elem();
4821   const TypePtr* elem_ptr = elem->make_ptr();
4822 
4823   if (stable_dimension > 1 && elem_ptr != nullptr && elem_ptr->isa_aryptr()) {
4824     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
4825     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
4826   }
4827 
4828   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
4829 
4830   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4831 }
4832 
4833 //-----------------------------stable_dimension--------------------------------
4834 int TypeAryPtr::stable_dimension() const {
4835   if (!is_stable())  return 0;
4836   int dim = 1;
4837   const TypePtr* elem_ptr = elem()->make_ptr();
4838   if (elem_ptr != nullptr && elem_ptr->isa_aryptr())
4839     dim += elem_ptr->is_aryptr()->stable_dimension();
4840   return dim;
4841 }
4842 
4843 //----------------------cast_to_autobox_cache-----------------------------------
4844 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache() const {
4845   if (is_autobox_cache())  return this;
4846   const TypeOopPtr* etype = elem()->make_oopptr();
4847   if (etype == nullptr)  return this;
4848   // The pointers in the autobox arrays are always non-null.
4849   etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4850   const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable());
4851   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth, /*is_autobox_cache=*/true);
4852 }
4853 
4854 //------------------------------eq---------------------------------------------
4855 // Structural equality check for Type representations
4856 bool TypeAryPtr::eq( const Type *t ) const {
4857   const TypeAryPtr *p = t->is_aryptr();
4858   return
4859     _ary == p->_ary &&  // Check array
4860     TypeOopPtr::eq(p);  // Check sub-parts

4861 }
4862 
4863 //------------------------------hash-------------------------------------------
4864 // Type-specific hashing function.
4865 uint TypeAryPtr::hash(void) const {
4866   return (uint)(uintptr_t)_ary + TypeOopPtr::hash();
4867 }
4868 
4869 bool TypeAryPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4870   return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
4871 }
4872 
4873 bool TypeAryPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const {
4874   return TypePtr::is_same_java_type_as_helper_for_array(this, other);
4875 }
4876 
4877 bool TypeAryPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4878   return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
4879 }
4880 //------------------------------meet-------------------------------------------
4881 // Compute the MEET of two types.  It returns a new Type object.
4882 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
4883   // Perform a fast test for common case; meeting the same types together.
4884   if( this == t ) return this;  // Meeting same type-rep?
4885   // Current "this->_base" is Pointer
4886   switch (t->base()) {          // switch on original type

4890   case Long:
4891   case FloatTop:
4892   case FloatCon:
4893   case FloatBot:
4894   case DoubleTop:
4895   case DoubleCon:
4896   case DoubleBot:
4897   case NarrowOop:
4898   case NarrowKlass:
4899   case Bottom:                  // Ye Olde Default
4900     return Type::BOTTOM;
4901   case Top:
4902     return this;
4903 
4904   default:                      // All else is a mistake
4905     typerr(t);
4906 
4907   case OopPtr: {                // Meeting to OopPtrs
4908     // Found a OopPtr type vs self-AryPtr type
4909     const TypeOopPtr *tp = t->is_oopptr();
4910     int offset = meet_offset(tp->offset());
4911     PTR ptr = meet_ptr(tp->ptr());
4912     int depth = meet_inline_depth(tp->inline_depth());
4913     const TypePtr* speculative = xmeet_speculative(tp);
4914     switch (tp->ptr()) {
4915     case TopPTR:
4916     case AnyNull: {
4917       int instance_id = meet_instance_id(InstanceTop);
4918       return make(ptr, (ptr == Constant ? const_oop() : nullptr),
4919                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4920     }
4921     case BotPTR:
4922     case NotNull: {
4923       int instance_id = meet_instance_id(tp->instance_id());
4924       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4925     }
4926     default: ShouldNotReachHere();
4927     }
4928   }
4929 
4930   case AnyPtr: {                // Meeting two AnyPtrs
4931     // Found an AnyPtr type vs self-AryPtr type
4932     const TypePtr *tp = t->is_ptr();
4933     int offset = meet_offset(tp->offset());
4934     PTR ptr = meet_ptr(tp->ptr());
4935     const TypePtr* speculative = xmeet_speculative(tp);
4936     int depth = meet_inline_depth(tp->inline_depth());
4937     switch (tp->ptr()) {
4938     case TopPTR:
4939       return this;
4940     case BotPTR:
4941     case NotNull:
4942       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4943     case Null:
4944       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4945       // else fall through to AnyNull
4946     case AnyNull: {
4947       int instance_id = meet_instance_id(InstanceTop);
4948       return make(ptr, (ptr == Constant ? const_oop() : nullptr),
4949                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4950     }
4951     default: ShouldNotReachHere();
4952     }
4953   }
4954 
4955   case MetadataPtr:
4956   case KlassPtr:
4957   case InstKlassPtr:
4958   case AryKlassPtr:
4959   case RawPtr: return TypePtr::BOTTOM;
4960 
4961   case AryPtr: {                // Meeting 2 references?
4962     const TypeAryPtr *tap = t->is_aryptr();
4963     int off = meet_offset(tap->offset());

4964     const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
4965     PTR ptr = meet_ptr(tap->ptr());
4966     int instance_id = meet_instance_id(tap->instance_id());
4967     const TypePtr* speculative = xmeet_speculative(tap);
4968     int depth = meet_inline_depth(tap->inline_depth());
4969 
4970     ciKlass* res_klass = nullptr;
4971     bool res_xk = false;



4972     const Type* elem = tary->_elem;
4973     if (meet_aryptr(ptr, elem, this, tap, res_klass, res_xk) == NOT_SUBTYPE) {
4974       instance_id = InstanceBot;














4975     }
4976 
4977     ciObject* o = nullptr;             // Assume not constant when done
4978     ciObject* this_oop = const_oop();
4979     ciObject* tap_oop = tap->const_oop();
4980     if (ptr == Constant) {
4981       if (this_oop != nullptr && tap_oop != nullptr &&
4982           this_oop->equals(tap_oop)) {
4983         o = tap_oop;
4984       } else if (above_centerline(_ptr)) {
4985         o = tap_oop;
4986       } else if (above_centerline(tap->_ptr)) {
4987         o = this_oop;
4988       } else {
4989         ptr = NotNull;
4990       }
4991     }
4992     return make(ptr, o, TypeAry::make(elem, tary->_size, tary->_stable), res_klass, res_xk, off, instance_id, speculative, depth);
4993   }
4994 
4995   // All arrays inherit from Object class
4996   case InstPtr: {
4997     const TypeInstPtr *tp = t->is_instptr();
4998     int offset = meet_offset(tp->offset());
4999     PTR ptr = meet_ptr(tp->ptr());
5000     int instance_id = meet_instance_id(tp->instance_id());
5001     const TypePtr* speculative = xmeet_speculative(tp);
5002     int depth = meet_inline_depth(tp->inline_depth());
5003     const TypeInterfaces* interfaces = meet_interfaces(tp);
5004     const TypeInterfaces* tp_interfaces = tp->_interfaces;
5005     const TypeInterfaces* this_interfaces = _interfaces;
5006 
5007     switch (ptr) {
5008     case TopPTR:
5009     case AnyNull:                // Fall 'down' to dual of object klass
5010       // For instances when a subclass meets a superclass we fall
5011       // below the centerline when the superclass is exact. We need to
5012       // do the same here.
5013       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) && !tp->klass_is_exact()) {
5014         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
5015       } else {
5016         // cannot subclass, so the meet has to fall badly below the centerline
5017         ptr = NotNull;
5018         instance_id = InstanceBot;
5019         interfaces = this_interfaces->intersection_with(tp_interfaces);
5020         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr,offset, instance_id, speculative, depth);
5021       }
5022     case Constant:
5023     case NotNull:
5024     case BotPTR:                // Fall down to object klass
5025       // LCA is object_klass, but if we subclass from the top we can do better
5026       if (above_centerline(tp->ptr())) {
5027         // If 'tp'  is above the centerline and it is Object class
5028         // then we can subclass in the Java class hierarchy.
5029         // For instances when a subclass meets a superclass we fall
5030         // below the centerline when the superclass is exact. We need
5031         // to do the same here.
5032         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) && !tp->klass_is_exact()) {
5033           // that is, my array type is a subtype of 'tp' klass
5034           return make(ptr, (ptr == Constant ? const_oop() : nullptr),
5035                       _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
5036         }
5037       }
5038       // The other case cannot happen, since t cannot be a subtype of an array.
5039       // The meet falls down to Object class below centerline.
5040       if (ptr == Constant) {
5041          ptr = NotNull;
5042       }
5043       if (instance_id > 0) {
5044         instance_id = InstanceBot;
5045       }
5046       interfaces = this_interfaces->intersection_with(tp_interfaces);
5047       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr, offset, instance_id, speculative, depth);
5048     default: typerr(t);
5049     }
5050   }
5051   }
5052   return this;                  // Lint noise
5053 }
5054 
5055 
5056 template<class T> TypePtr::MeetResult TypePtr::meet_aryptr(PTR& ptr, const Type*& elem, const T* this_ary,
5057                                                            const T* other_ary, ciKlass*& res_klass, bool& res_xk) {
5058   int dummy;
5059   bool this_top_or_bottom = (this_ary->base_element_type(dummy) == Type::TOP || this_ary->base_element_type(dummy) == Type::BOTTOM);
5060   bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
5061   ciKlass* this_klass = this_ary->klass();
5062   ciKlass* other_klass = other_ary->klass();
5063   bool this_xk = this_ary->klass_is_exact();
5064   bool other_xk = other_ary->klass_is_exact();
5065   PTR this_ptr = this_ary->ptr();
5066   PTR other_ptr = other_ary->ptr();






5067   res_klass = nullptr;
5068   MeetResult result = SUBTYPE;




5069   if (elem->isa_int()) {
5070     // Integral array element types have irrelevant lattice relations.
5071     // It is the klass that determines array layout, not the element type.
5072     if (this_top_or_bottom)
5073       res_klass = other_klass;
5074     else if (other_top_or_bottom || other_klass == this_klass) {
5075       res_klass = this_klass;
5076     } else {
5077       // Something like byte[int+] meets char[int+].
5078       // This must fall to bottom, not (int[-128..65535])[int+].
5079       // instance_id = InstanceBot;
5080       elem = Type::BOTTOM;
5081       result = NOT_SUBTYPE;
5082       if (above_centerline(ptr) || ptr == Constant) {
5083         ptr = NotNull;
5084         res_xk = false;
5085         return NOT_SUBTYPE;
5086       }
5087     }
5088   } else {// Non integral arrays.
5089     // Must fall to bottom if exact klasses in upper lattice
5090     // are not equal or super klass is exact.
5091     if ((above_centerline(ptr) || ptr == Constant) && !this_ary->is_same_java_type_as(other_ary) &&
5092         // meet with top[] and bottom[] are processed further down:
5093         !this_top_or_bottom && !other_top_or_bottom &&
5094         // both are exact and not equal:

5096          // 'tap'  is exact and super or unrelated:
5097          (other_xk && !other_ary->is_meet_subtype_of(this_ary)) ||
5098          // 'this' is exact and super or unrelated:
5099          (this_xk && !this_ary->is_meet_subtype_of(other_ary)))) {
5100       if (above_centerline(ptr) || (elem->make_ptr() && above_centerline(elem->make_ptr()->_ptr))) {
5101         elem = Type::BOTTOM;
5102       }
5103       ptr = NotNull;
5104       res_xk = false;
5105       return NOT_SUBTYPE;
5106     }
5107   }
5108 
5109   res_xk = false;
5110   switch (other_ptr) {
5111     case AnyNull:
5112     case TopPTR:
5113       // Compute new klass on demand, do not use tap->_klass
5114       if (below_centerline(this_ptr)) {
5115         res_xk = this_xk;



5116       } else {
5117         res_xk = (other_xk || this_xk);
5118       }
5119       return result;
5120     case Constant: {
5121       if (this_ptr == Constant) {
5122         res_xk = true;
5123       } else if(above_centerline(this_ptr)) {
5124         res_xk = true;
5125       } else {
5126         // Only precise for identical arrays
5127         res_xk = this_xk && (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom));





5128       }
5129       return result;
5130     }
5131     case NotNull:
5132     case BotPTR:
5133       // Compute new klass on demand, do not use tap->_klass
5134       if (above_centerline(this_ptr)) {
5135         res_xk = other_xk;



5136       } else {
5137         res_xk = (other_xk && this_xk) &&
5138                  (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom)); // Only precise for identical arrays





5139       }
5140       return result;
5141     default:  {
5142       ShouldNotReachHere();
5143       return result;
5144     }
5145   }
5146   return result;
5147 }
5148 
5149 
5150 //------------------------------xdual------------------------------------------
5151 // Dual: compute field-by-field dual
5152 const Type *TypeAryPtr::xdual() const {
5153   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());









5154 }
5155 
5156 //------------------------------dump2------------------------------------------
5157 #ifndef PRODUCT
5158 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5159   _ary->dump2(d,depth,st);
5160   _interfaces->dump(st);
5161 
5162   switch( _ptr ) {
5163   case Constant:
5164     const_oop()->print(st);
5165     break;
5166   case BotPTR:
5167     if (!WizardMode && !Verbose) {
5168       if( _klass_is_exact ) st->print(":exact");
5169       break;
5170     }
5171   case TopPTR:
5172   case AnyNull:
5173   case NotNull:
5174     st->print(":%s", ptr_msg[_ptr]);
5175     if( _klass_is_exact ) st->print(":exact");
5176     break;
5177   default:
5178     break;
5179   }
5180 
5181   if( _offset != 0 ) {









5182     BasicType basic_elem_type = elem()->basic_type();
5183     int header_size = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5184     if( _offset == OffsetTop )       st->print("+undefined");
5185     else if( _offset == OffsetBot )  st->print("+any");
5186     else if( _offset < header_size ) st->print("+%d", _offset);
5187     else {
5188       if (basic_elem_type == T_ILLEGAL) {
5189         st->print("+any");
5190       } else {
5191         int elem_size = type2aelembytes(basic_elem_type);
5192         st->print("[%d]", (_offset - header_size)/elem_size);
5193       }
5194     }
5195   }
5196   st->print(" *");
5197   if (_instance_id == InstanceTop)
5198     st->print(",iid=top");
5199   else if (_instance_id != InstanceBot)
5200     st->print(",iid=%d",_instance_id);
5201 
5202   dump_inline_depth(st);
5203   dump_speculative(st);
5204 }
5205 #endif
5206 
5207 bool TypeAryPtr::empty(void) const {
5208   if (_ary->empty())       return true;




5209   return TypeOopPtr::empty();
5210 }
5211 
5212 //------------------------------add_offset-------------------------------------
5213 const TypePtr* TypeAryPtr::add_offset(intptr_t offset) const {
5214   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
5215 }
5216 
5217 const TypeAryPtr* TypeAryPtr::with_offset(intptr_t offset) const {
5218   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, offset, _instance_id, with_offset_speculative(offset), _inline_depth);
5219 }
5220 
5221 const TypeAryPtr* TypeAryPtr::with_ary(const TypeAry* ary) const {
5222   return make(_ptr, _const_oop, ary, _klass, _klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
5223 }
5224 
5225 const TypeAryPtr* TypeAryPtr::remove_speculative() const {
5226   if (_speculative == nullptr) {
5227     return this;
5228   }
5229   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
5230   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, nullptr, _inline_depth);













5231 }
5232 
5233 const TypePtr* TypeAryPtr::with_inline_depth(int depth) const {
5234   if (!UseInlineDepthForSpeculativeTypes) {
5235     return this;
5236   }
5237   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth);











































5238 }
5239 
5240 const TypePtr* TypeAryPtr::with_instance_id(int instance_id) const {
5241   assert(is_known_instance(), "should be known");
5242   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
5243 }
5244 
5245 //=============================================================================
5246 

5247 //------------------------------hash-------------------------------------------
5248 // Type-specific hashing function.
5249 uint TypeNarrowPtr::hash(void) const {
5250   return _ptrtype->hash() + 7;
5251 }
5252 
5253 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
5254   return _ptrtype->singleton();
5255 }
5256 
5257 bool TypeNarrowPtr::empty(void) const {
5258   return _ptrtype->empty();
5259 }
5260 
5261 intptr_t TypeNarrowPtr::get_con() const {
5262   return _ptrtype->get_con();
5263 }
5264 
5265 bool TypeNarrowPtr::eq( const Type *t ) const {
5266   const TypeNarrowPtr* tc = isa_same_narrowptr(t);

5317 
5318   case Int:                     // Mixing ints & oops happens when javac
5319   case Long:                    // reuses local variables
5320   case FloatTop:
5321   case FloatCon:
5322   case FloatBot:
5323   case DoubleTop:
5324   case DoubleCon:
5325   case DoubleBot:
5326   case AnyPtr:
5327   case RawPtr:
5328   case OopPtr:
5329   case InstPtr:
5330   case AryPtr:
5331   case MetadataPtr:
5332   case KlassPtr:
5333   case InstKlassPtr:
5334   case AryKlassPtr:
5335   case NarrowOop:
5336   case NarrowKlass:
5337 
5338   case Bottom:                  // Ye Olde Default
5339     return Type::BOTTOM;
5340   case Top:
5341     return this;
5342 
5343   default:                      // All else is a mistake
5344     typerr(t);
5345 
5346   } // End of switch
5347 
5348   return this;
5349 }
5350 
5351 #ifndef PRODUCT
5352 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5353   _ptrtype->dump2(d, depth, st);
5354 }
5355 #endif
5356 
5357 const TypeNarrowOop *TypeNarrowOop::BOTTOM;

5401     return (one == two) && TypePtr::eq(t);
5402   } else {
5403     return one->equals(two) && TypePtr::eq(t);
5404   }
5405 }
5406 
5407 //------------------------------hash-------------------------------------------
5408 // Type-specific hashing function.
5409 uint TypeMetadataPtr::hash(void) const {
5410   return
5411     (metadata() ? metadata()->hash() : 0) +
5412     TypePtr::hash();
5413 }
5414 
5415 //------------------------------singleton--------------------------------------
5416 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5417 // constants
5418 bool TypeMetadataPtr::singleton(void) const {
5419   // detune optimizer to not generate constant metadata + constant offset as a constant!
5420   // TopPTR, Null, AnyNull, Constant are all singletons
5421   return (_offset == 0) && !below_centerline(_ptr);
5422 }
5423 
5424 //------------------------------add_offset-------------------------------------
5425 const TypePtr* TypeMetadataPtr::add_offset( intptr_t offset ) const {
5426   return make( _ptr, _metadata, xadd_offset(offset));
5427 }
5428 
5429 //-----------------------------filter------------------------------------------
5430 // Do not allow interface-vs.-noninterface joins to collapse to top.
5431 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
5432   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
5433   if (ft == nullptr || ft->empty())
5434     return Type::TOP;           // Canonical empty value
5435   return ft;
5436 }
5437 
5438  //------------------------------get_con----------------------------------------
5439 intptr_t TypeMetadataPtr::get_con() const {
5440   assert( _ptr == Null || _ptr == Constant, "" );
5441   assert( _offset >= 0, "" );
5442 
5443   if (_offset != 0) {
5444     // After being ported to the compiler interface, the compiler no longer
5445     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5446     // to a handle at compile time.  This handle is embedded in the generated
5447     // code and dereferenced at the time the nmethod is made.  Until that time,
5448     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5449     // have access to the addresses!).  This does not seem to currently happen,
5450     // but this assertion here is to help prevent its occurrence.
5451     tty->print_cr("Found oop constant with non-zero offset");
5452     ShouldNotReachHere();
5453   }
5454 
5455   return (intptr_t)metadata()->constant_encoding();
5456 }
5457 
5458 //------------------------------cast_to_ptr_type-------------------------------
5459 const TypeMetadataPtr* TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
5460   if( ptr == _ptr ) return this;
5461   return make(ptr, metadata(), _offset);
5462 }
5463 

5474   case Long:                    // reuses local variables
5475   case FloatTop:
5476   case FloatCon:
5477   case FloatBot:
5478   case DoubleTop:
5479   case DoubleCon:
5480   case DoubleBot:
5481   case NarrowOop:
5482   case NarrowKlass:
5483   case Bottom:                  // Ye Olde Default
5484     return Type::BOTTOM;
5485   case Top:
5486     return this;
5487 
5488   default:                      // All else is a mistake
5489     typerr(t);
5490 
5491   case AnyPtr: {
5492     // Found an AnyPtr type vs self-OopPtr type
5493     const TypePtr *tp = t->is_ptr();
5494     int offset = meet_offset(tp->offset());
5495     PTR ptr = meet_ptr(tp->ptr());
5496     switch (tp->ptr()) {
5497     case Null:
5498       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5499       // else fall through:
5500     case TopPTR:
5501     case AnyNull: {
5502       return make(ptr, _metadata, offset);
5503     }
5504     case BotPTR:
5505     case NotNull:
5506       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5507     default: typerr(t);
5508     }
5509   }
5510 
5511   case RawPtr:
5512   case KlassPtr:
5513   case InstKlassPtr:
5514   case AryKlassPtr:
5515   case OopPtr:
5516   case InstPtr:
5517   case AryPtr:
5518     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
5519 
5520   case MetadataPtr: {
5521     const TypeMetadataPtr *tp = t->is_metadataptr();
5522     int offset = meet_offset(tp->offset());
5523     PTR tptr = tp->ptr();
5524     PTR ptr = meet_ptr(tptr);
5525     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
5526     if (tptr == TopPTR || _ptr == TopPTR ||
5527         metadata()->equals(tp->metadata())) {
5528       return make(ptr, md, offset);
5529     }
5530     // metadata is different
5531     if( ptr == Constant ) {  // Cannot be equal constants, so...
5532       if( tptr == Constant && _ptr != Constant)  return t;
5533       if( _ptr == Constant && tptr != Constant)  return this;
5534       ptr = NotNull;            // Fall down in lattice
5535     }
5536     return make(ptr, nullptr, offset);
5537     break;
5538   }
5539   } // End of switch
5540   return this;                  // Return the double constant
5541 }
5542 
5543 
5544 //------------------------------xdual------------------------------------------
5545 // Dual of a pure metadata pointer.
5546 const Type *TypeMetadataPtr::xdual() const {
5547   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
5548 }
5549 
5550 //------------------------------dump2------------------------------------------
5551 #ifndef PRODUCT
5552 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5553   st->print("metadataptr:%s", ptr_msg[_ptr]);
5554   if( metadata() ) st->print(INTPTR_FORMAT, p2i(metadata()));
5555   switch( _offset ) {
5556   case OffsetTop: st->print("+top"); break;
5557   case OffsetBot: st->print("+any"); break;
5558   case         0: break;
5559   default:        st->print("+%d",_offset); break;
5560   }
5561 }
5562 #endif
5563 
5564 
5565 //=============================================================================
5566 // Convenience common pre-built type.
5567 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
5568 
5569 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
5570   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
5571 }
5572 
5573 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
5574   return make(Constant, m, 0);
5575 }
5576 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
5577   return make(Constant, m, 0);
5578 }
5579 
5580 //------------------------------make-------------------------------------------
5581 // Create a meta data constant
5582 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
5583   assert(m == nullptr || !m->is_klass(), "wrong type");
5584   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
5585 }
5586 
5587 
5588 const TypeKlassPtr* TypeAryPtr::as_klass_type(bool try_for_exact) const {
5589   const Type* elem = _ary->_elem;
5590   bool xk = klass_is_exact();
5591   if (elem->make_oopptr() != nullptr) {
5592     elem = elem->make_oopptr()->as_klass_type(try_for_exact);
5593     if (elem->is_klassptr()->klass_is_exact()) {



5594       xk = true;
5595     }
5596   }
5597   return TypeAryKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, elem, klass(), 0);
5598 }
5599 
5600 const TypeKlassPtr* TypeKlassPtr::make(ciKlass *klass, InterfaceHandling interface_handling) {
5601   if (klass->is_instance_klass()) {
5602     return TypeInstKlassPtr::make(klass, interface_handling);
5603   }
5604   return TypeAryKlassPtr::make(klass, interface_handling);
5605 }
5606 
5607 const TypeKlassPtr* TypeKlassPtr::make(PTR ptr, ciKlass* klass, int offset, InterfaceHandling interface_handling) {
5608   if (klass->is_instance_klass()) {
5609     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
5610     return TypeInstKlassPtr::make(ptr, klass, interfaces, offset);
5611   }
5612   return TypeAryKlassPtr::make(ptr, klass, offset, interface_handling);
5613 }
5614 
5615 
5616 //------------------------------TypeKlassPtr-----------------------------------
5617 TypeKlassPtr::TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, int offset)
5618   : TypePtr(t, ptr, offset), _klass(klass), _interfaces(interfaces) {
5619   assert(klass == nullptr || !klass->is_loaded() || (klass->is_instance_klass() && !klass->is_interface()) ||
5620          klass->is_type_array_klass() || !klass->as_obj_array_klass()->base_element_klass()->is_interface(), "no interface here");
5621 }
5622 
5623 // Is there a single ciKlass* that can represent that type?
5624 ciKlass* TypeKlassPtr::exact_klass_helper() const {
5625   assert(_klass->is_instance_klass() && !_klass->is_interface(), "No interface");
5626   if (_interfaces->empty()) {
5627     return _klass;
5628   }
5629   if (_klass != ciEnv::current()->Object_klass()) {
5630     if (_interfaces->eq(_klass->as_instance_klass())) {
5631       return _klass;
5632     }
5633     return nullptr;
5634   }
5635   return _interfaces->exact_klass();
5636 }
5637 
5638 //------------------------------eq---------------------------------------------
5639 // Structural equality check for Type representations
5640 bool TypeKlassPtr::eq(const Type *t) const {
5641   const TypeKlassPtr *p = t->is_klassptr();
5642   return
5643     _interfaces->eq(p->_interfaces) &&
5644     TypePtr::eq(p);
5645 }
5646 
5647 //------------------------------hash-------------------------------------------
5648 // Type-specific hashing function.
5649 uint TypeKlassPtr::hash(void) const {
5650   return TypePtr::hash() + _interfaces->hash();
5651 }
5652 
5653 //------------------------------singleton--------------------------------------
5654 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5655 // constants
5656 bool TypeKlassPtr::singleton(void) const {
5657   // detune optimizer to not generate constant klass + constant offset as a constant!
5658   // TopPTR, Null, AnyNull, Constant are all singletons
5659   return (_offset == 0) && !below_centerline(_ptr);
5660 }
5661 
5662 // Do not allow interface-vs.-noninterface joins to collapse to top.
5663 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
5664   // logic here mirrors the one from TypeOopPtr::filter. See comments
5665   // there.
5666   const Type* ft = join_helper(kills, include_speculative);
5667   const TypeKlassPtr* ftkp = ft->isa_instklassptr();
5668   const TypeKlassPtr* ktkp = kills->isa_instklassptr();
5669 
5670   if (ft->empty()) {
5671     return Type::TOP;           // Canonical empty value
5672   }
5673 
5674   return ft;
5675 }
5676 
5677 const TypeInterfaces* TypeKlassPtr::meet_interfaces(const TypeKlassPtr* other) const {
5678   if (above_centerline(_ptr) && above_centerline(other->_ptr)) {
5679     return _interfaces->union_with(other->_interfaces);
5680   } else if (above_centerline(_ptr) && !above_centerline(other->_ptr)) {
5681     return other->_interfaces;
5682   } else if (above_centerline(other->_ptr) && !above_centerline(_ptr)) {
5683     return _interfaces;
5684   }
5685   return _interfaces->intersection_with(other->_interfaces);
5686 }
5687 
5688 //------------------------------get_con----------------------------------------
5689 intptr_t TypeKlassPtr::get_con() const {
5690   assert( _ptr == Null || _ptr == Constant, "" );
5691   assert( _offset >= 0, "" );
5692 
5693   if (_offset != 0) {
5694     // After being ported to the compiler interface, the compiler no longer
5695     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5696     // to a handle at compile time.  This handle is embedded in the generated
5697     // code and dereferenced at the time the nmethod is made.  Until that time,
5698     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5699     // have access to the addresses!).  This does not seem to currently happen,
5700     // but this assertion here is to help prevent its occurrence.
5701     tty->print_cr("Found oop constant with non-zero offset");
5702     ShouldNotReachHere();
5703   }
5704 
5705   ciKlass* k = exact_klass();
5706 
5707   return (intptr_t)k->constant_encoding();
5708 }
5709 
5710 //------------------------------dump2------------------------------------------
5711 // Dump Klass Type
5712 #ifndef PRODUCT
5713 void TypeKlassPtr::dump2(Dict & d, uint depth, outputStream *st) const {

5717   case NotNull:
5718     {
5719       const char *name = klass()->name()->as_utf8();
5720       if (name) {
5721         st->print("%s: " INTPTR_FORMAT, name, p2i(klass()));
5722       } else {
5723         ShouldNotReachHere();
5724       }
5725       _interfaces->dump(st);
5726     }
5727   case BotPTR:
5728     if (!WizardMode && !Verbose && _ptr != Constant) break;
5729   case TopPTR:
5730   case AnyNull:
5731     st->print(":%s", ptr_msg[_ptr]);
5732     if (_ptr == Constant) st->print(":exact");
5733     break;
5734   default:
5735     break;
5736   }
5737 
5738   if (_offset) {               // Dump offset, if any
5739     if (_offset == OffsetBot)      { st->print("+any"); }
5740     else if (_offset == OffsetTop) { st->print("+unknown"); }
5741     else                            { st->print("+%d", _offset); }
5742   }
5743 
5744   st->print(" *");
5745 }
5746 #endif
5747 
5748 //=============================================================================
5749 // Convenience common pre-built types.
5750 
5751 // Not-null object klass or below
5752 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT;
5753 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT_OR_NULL;
5754 
5755 bool TypeInstKlassPtr::eq(const Type *t) const {
5756   const TypeKlassPtr *p = t->is_klassptr();
5757   return
5758     klass()->equals(p->klass()) &&

5759     TypeKlassPtr::eq(p);
5760 }
5761 
5762 uint TypeInstKlassPtr::hash(void) const {
5763   return klass()->hash() + TypeKlassPtr::hash();
5764 }
5765 
5766 const TypeInstKlassPtr *TypeInstKlassPtr::make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, int offset) {


5767   TypeInstKlassPtr *r =
5768     (TypeInstKlassPtr*)(new TypeInstKlassPtr(ptr, k, interfaces, offset))->hashcons();
5769 
5770   return r;
5771 }
5772 
5773 //------------------------------add_offset-------------------------------------
5774 // Access internals of klass object
5775 const TypePtr* TypeInstKlassPtr::add_offset( intptr_t offset ) const {
5776   return make( _ptr, klass(), _interfaces, xadd_offset(offset) );
5777 }
5778 
5779 const TypeInstKlassPtr* TypeInstKlassPtr::with_offset(intptr_t offset) const {
5780   return make(_ptr, klass(), _interfaces, offset);
5781 }
5782 
5783 //------------------------------cast_to_ptr_type-------------------------------
5784 const TypeInstKlassPtr* TypeInstKlassPtr::cast_to_ptr_type(PTR ptr) const {
5785   assert(_base == InstKlassPtr, "subclass must override cast_to_ptr_type");
5786   if( ptr == _ptr ) return this;
5787   return make(ptr, _klass, _interfaces, _offset);
5788 }
5789 
5790 
5791 bool TypeInstKlassPtr::must_be_exact() const {
5792   if (!_klass->is_loaded())  return false;
5793   ciInstanceKlass* ik = _klass->as_instance_klass();
5794   if (ik->is_final())  return true;  // cannot clear xk
5795   return false;
5796 }
5797 
5798 //-----------------------------cast_to_exactness-------------------------------
5799 const TypeKlassPtr* TypeInstKlassPtr::cast_to_exactness(bool klass_is_exact) const {
5800   if (klass_is_exact == (_ptr == Constant)) return this;
5801   if (must_be_exact()) return this;
5802   ciKlass* k = klass();
5803   return make(klass_is_exact ? Constant : NotNull, k, _interfaces, _offset);
5804 }
5805 
5806 
5807 //-----------------------------as_instance_type--------------------------------
5808 // Corresponding type for an instance of the given class.
5809 // It will be NotNull, and exact if and only if the klass type is exact.
5810 const TypeOopPtr* TypeInstKlassPtr::as_instance_type(bool klass_change) const {
5811   ciKlass* k = klass();
5812   bool xk = klass_is_exact();
5813   Compile* C = Compile::current();
5814   Dependencies* deps = C->dependencies();
5815   assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
5816   // Element is an instance
5817   bool klass_is_exact = false;
5818   const TypeInterfaces* interfaces = _interfaces;
5819   if (k->is_loaded()) {
5820     // Try to set klass_is_exact.
5821     ciInstanceKlass* ik = k->as_instance_klass();
5822     klass_is_exact = ik->is_final();
5823     if (!klass_is_exact && klass_change
5824         && deps != nullptr && UseUniqueSubclasses) {
5825       ciInstanceKlass* sub = ik->unique_concrete_subklass();
5826       if (sub != nullptr) {
5827         if (_interfaces->eq(sub)) {
5828           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
5829           k = ik = sub;
5830           xk = sub->is_final();
5831         }
5832       }
5833     }
5834   }
5835   return TypeInstPtr::make(TypePtr::BotPTR, k, interfaces, xk, nullptr, 0);
5836 }
5837 
5838 //------------------------------xmeet------------------------------------------
5839 // Compute the MEET of two types, return a new Type object.
5840 const Type    *TypeInstKlassPtr::xmeet( const Type *t ) const {
5841   // Perform a fast test for common case; meeting the same types together.
5842   if( this == t ) return this;  // Meeting same type-rep?
5843 
5844   // Current "this->_base" is Pointer
5845   switch (t->base()) {          // switch on original type
5846 
5847   case Int:                     // Mixing ints & oops happens when javac
5848   case Long:                    // reuses local variables
5849   case FloatTop:
5850   case FloatCon:
5851   case FloatBot:
5852   case DoubleTop:
5853   case DoubleCon:
5854   case DoubleBot:
5855   case NarrowOop:
5856   case NarrowKlass:
5857   case Bottom:                  // Ye Olde Default
5858     return Type::BOTTOM;
5859   case Top:
5860     return this;
5861 
5862   default:                      // All else is a mistake
5863     typerr(t);
5864 
5865   case AnyPtr: {                // Meeting to AnyPtrs
5866     // Found an AnyPtr type vs self-KlassPtr type
5867     const TypePtr *tp = t->is_ptr();
5868     int offset = meet_offset(tp->offset());
5869     PTR ptr = meet_ptr(tp->ptr());
5870     switch (tp->ptr()) {
5871     case TopPTR:
5872       return this;
5873     case Null:
5874       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5875     case AnyNull:
5876       return make( ptr, klass(), _interfaces, offset );
5877     case BotPTR:
5878     case NotNull:
5879       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5880     default: typerr(t);
5881     }
5882   }
5883 
5884   case RawPtr:
5885   case MetadataPtr:
5886   case OopPtr:
5887   case AryPtr:                  // Meet with AryPtr
5888   case InstPtr:                 // Meet with InstPtr
5889     return TypePtr::BOTTOM;
5890 
5891   //
5892   //             A-top         }
5893   //           /   |   \       }  Tops
5894   //       B-top A-any C-top   }
5895   //          | /  |  \ |      }  Any-nulls
5896   //       B-any   |   C-any   }
5897   //          |    |    |
5898   //       B-con A-con C-con   } constants; not comparable across classes
5899   //          |    |    |
5900   //       B-not   |   C-not   }
5901   //          | \  |  / |      }  not-nulls
5902   //       B-bot A-not C-bot   }
5903   //           \   |   /       }  Bottoms
5904   //             A-bot         }
5905   //
5906 
5907   case InstKlassPtr: {  // Meet two KlassPtr types
5908     const TypeInstKlassPtr *tkls = t->is_instklassptr();
5909     int  off     = meet_offset(tkls->offset());
5910     PTR  ptr     = meet_ptr(tkls->ptr());
5911     const TypeInterfaces* interfaces = meet_interfaces(tkls);
5912 
5913     ciKlass* res_klass = nullptr;
5914     bool res_xk = false;
5915     switch(meet_instptr(ptr, interfaces, this, tkls, res_klass, res_xk)) {

5916       case UNLOADED:
5917         ShouldNotReachHere();
5918       case SUBTYPE:
5919       case NOT_SUBTYPE:
5920       case LCA:
5921       case QUICK: {
5922         assert(res_xk == (ptr == Constant), "");
5923         const Type* res = make(ptr, res_klass, interfaces, off);
5924         return res;
5925       }
5926       default:
5927         ShouldNotReachHere();
5928     }
5929   } // End of case KlassPtr
5930   case AryKlassPtr: {                // All arrays inherit from Object class
5931     const TypeAryKlassPtr *tp = t->is_aryklassptr();
5932     int offset = meet_offset(tp->offset());
5933     PTR ptr = meet_ptr(tp->ptr());
5934     const TypeInterfaces* interfaces = meet_interfaces(tp);
5935     const TypeInterfaces* tp_interfaces = tp->_interfaces;
5936     const TypeInterfaces* this_interfaces = _interfaces;
5937 
5938     switch (ptr) {
5939     case TopPTR:
5940     case AnyNull:                // Fall 'down' to dual of object klass
5941       // For instances when a subclass meets a superclass we fall
5942       // below the centerline when the superclass is exact. We need to
5943       // do the same here.
5944       if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces->contains(this_interfaces) && !klass_is_exact()) {
5945         return TypeAryKlassPtr::make(ptr, tp->elem(), tp->klass(), offset);
5946       } else {
5947         // cannot subclass, so the meet has to fall badly below the centerline
5948         ptr = NotNull;
5949         interfaces = _interfaces->intersection_with(tp->_interfaces);
5950         return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset);
5951       }
5952     case Constant:
5953     case NotNull:
5954     case BotPTR:                // Fall down to object klass
5955       // LCA is object_klass, but if we subclass from the top we can do better
5956       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
5957         // If 'this' (InstPtr) is above the centerline and it is Object class
5958         // then we can subclass in the Java class hierarchy.
5959         // For instances when a subclass meets a superclass we fall
5960         // below the centerline when the superclass is exact. We need
5961         // to do the same here.
5962         if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces->contains(this_interfaces) && !klass_is_exact()) {
5963           // that is, tp's array type is a subtype of my klass
5964           return TypeAryKlassPtr::make(ptr,
5965                                        tp->elem(), tp->klass(), offset);
5966         }
5967       }
5968       // The other case cannot happen, since I cannot be a subtype of an array.
5969       // The meet falls down to Object class below centerline.
5970       if( ptr == Constant )
5971          ptr = NotNull;
5972       interfaces = this_interfaces->intersection_with(tp_interfaces);
5973       return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset);
5974     default: typerr(t);
5975     }
5976   }
5977 
5978   } // End of switch
5979   return this;                  // Return the double constant
5980 }
5981 
5982 //------------------------------xdual------------------------------------------
5983 // Dual: compute field-by-field dual
5984 const Type    *TypeInstKlassPtr::xdual() const {
5985   return new TypeInstKlassPtr(dual_ptr(), klass(), _interfaces, dual_offset());
5986 }
5987 
5988 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
5989   static_assert(std::is_base_of<T2, T1>::value, "");
5990   if (!this_one->is_loaded() || !other->is_loaded()) {
5991     return false;
5992   }
5993   if (!this_one->is_instance_type(other)) {
5994     return false;
5995   }
5996 
5997   if (!other_exact) {
5998     return false;
5999   }
6000 
6001   if (other->klass()->equals(ciEnv::current()->Object_klass()) && other->_interfaces->empty()) {
6002     return true;
6003   }
6004 
6005   return this_one->klass()->is_subtype_of(other->klass()) && this_one->_interfaces->contains(other->_interfaces);

6066   const TypeInterfaces* interfaces = _interfaces;
6067   if (k->is_loaded()) {
6068     ciInstanceKlass* ik = k->as_instance_klass();
6069     bool klass_is_exact = ik->is_final();
6070     if (!klass_is_exact &&
6071         deps != nullptr) {
6072       ciInstanceKlass* sub = ik->unique_concrete_subklass();
6073       if (sub != nullptr) {
6074         if (_interfaces->eq(sub)) {
6075           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
6076           k = ik = sub;
6077           klass_is_exact = sub->is_final();
6078           return TypeKlassPtr::make(klass_is_exact ? Constant : _ptr, k, _offset);
6079         }
6080       }
6081     }
6082   }
6083   return this;
6084 }
6085 















6086 
6087 const TypeAryKlassPtr *TypeAryKlassPtr::make(PTR ptr, const Type* elem, ciKlass* k, int offset) {
6088   return (TypeAryKlassPtr*)(new TypeAryKlassPtr(ptr, elem, k, offset))->hashcons();
6089 }
6090 
6091 const TypeAryKlassPtr *TypeAryKlassPtr::make(PTR ptr, ciKlass* k, int offset, InterfaceHandling interface_handling) {
6092   if (k->is_obj_array_klass()) {
6093     // Element is an object array. Recursively call ourself.
6094     ciKlass* eklass = k->as_obj_array_klass()->element_klass();
6095     const TypeKlassPtr *etype = TypeKlassPtr::make(eklass, interface_handling)->cast_to_exactness(false);
6096     return TypeAryKlassPtr::make(ptr, etype, nullptr, offset);
6097   } else if (k->is_type_array_klass()) {
6098     // Element is an typeArray
6099     const Type* etype = get_const_basic_type(k->as_type_array_klass()->element_type());
6100     return TypeAryKlassPtr::make(ptr, etype, k, offset);




6101   } else {
6102     ShouldNotReachHere();
6103     return nullptr;
6104   }
6105 }
6106 











6107 const TypeAryKlassPtr* TypeAryKlassPtr::make(ciKlass* klass, InterfaceHandling interface_handling) {
6108   return TypeAryKlassPtr::make(Constant, klass, 0, interface_handling);
6109 }
6110 
6111 //------------------------------eq---------------------------------------------
6112 // Structural equality check for Type representations
6113 bool TypeAryKlassPtr::eq(const Type *t) const {
6114   const TypeAryKlassPtr *p = t->is_aryklassptr();
6115   return
6116     _elem == p->_elem &&  // Check array



6117     TypeKlassPtr::eq(p);  // Check sub-parts
6118 }
6119 
6120 //------------------------------hash-------------------------------------------
6121 // Type-specific hashing function.
6122 uint TypeAryKlassPtr::hash(void) const {
6123   return (uint)(uintptr_t)_elem + TypeKlassPtr::hash();

6124 }
6125 
6126 //----------------------compute_klass------------------------------------------
6127 // Compute the defining klass for this class
6128 ciKlass* TypeAryPtr::compute_klass() const {
6129   // Compute _klass based on element type.
6130   ciKlass* k_ary = nullptr;
6131   const TypeInstPtr *tinst;
6132   const TypeAryPtr *tary;
6133   const Type* el = elem();
6134   if (el->isa_narrowoop()) {
6135     el = el->make_ptr();
6136   }
6137 
6138   // Get element klass
6139   if ((tinst = el->isa_instptr()) != nullptr) {
6140     // Leave k_ary at null.





6141   } else if ((tary = el->isa_aryptr()) != nullptr) {
6142     // Leave k_ary at null.
6143   } else if ((el->base() == Type::Top) ||
6144              (el->base() == Type::Bottom)) {
6145     // element type of Bottom occurs from meet of basic type
6146     // and object; Top occurs when doing join on Bottom.
6147     // Leave k_ary at null.
6148   } else {
6149     assert(!el->isa_int(), "integral arrays must be pre-equipped with a class");
6150     // Compute array klass directly from basic type
6151     k_ary = ciTypeArrayKlass::make(el->basic_type());
6152   }
6153   return k_ary;
6154 }
6155 
6156 //------------------------------klass------------------------------------------
6157 // Return the defining klass for this class
6158 ciKlass* TypeAryPtr::klass() const {
6159   if( _klass ) return _klass;   // Return cached value, if possible
6160 
6161   // Oops, need to compute _klass and cache it
6162   ciKlass* k_ary = compute_klass();

6170     // type TypeAryPtr::OOPS.  This Type is shared between all
6171     // active compilations.  However, the ciKlass which represents
6172     // this Type is *not* shared between compilations, so caching
6173     // this value would result in fetching a dangling pointer.
6174     //
6175     // Recomputing the underlying ciKlass for each request is
6176     // a bit less efficient than caching, but calls to
6177     // TypeAryPtr::OOPS->klass() are not common enough to matter.
6178     ((TypeAryPtr*)this)->_klass = k_ary;
6179   }
6180   return k_ary;
6181 }
6182 
6183 // Is there a single ciKlass* that can represent that type?
6184 ciKlass* TypeAryPtr::exact_klass_helper() const {
6185   if (_ary->_elem->make_ptr() && _ary->_elem->make_ptr()->isa_oopptr()) {
6186     ciKlass* k = _ary->_elem->make_ptr()->is_oopptr()->exact_klass_helper();
6187     if (k == nullptr) {
6188       return nullptr;
6189     }
6190     k = ciObjArrayKlass::make(k);
6191     return k;
6192   }
6193 
6194   return klass();
6195 }
6196 
6197 const Type* TypeAryPtr::base_element_type(int& dims) const {
6198   const Type* elem = this->elem();
6199   dims = 1;
6200   while (elem->make_ptr() && elem->make_ptr()->isa_aryptr()) {
6201     elem = elem->make_ptr()->is_aryptr()->elem();
6202     dims++;
6203   }
6204   return elem;
6205 }
6206 
6207 //------------------------------add_offset-------------------------------------
6208 // Access internals of klass object
6209 const TypePtr* TypeAryKlassPtr::add_offset(intptr_t offset) const {
6210   return make(_ptr, elem(), klass(), xadd_offset(offset));
6211 }
6212 
6213 const TypeAryKlassPtr* TypeAryKlassPtr::with_offset(intptr_t offset) const {
6214   return make(_ptr, elem(), klass(), offset);
6215 }
6216 
6217 //------------------------------cast_to_ptr_type-------------------------------
6218 const TypeAryKlassPtr* TypeAryKlassPtr::cast_to_ptr_type(PTR ptr) const {
6219   assert(_base == AryKlassPtr, "subclass must override cast_to_ptr_type");
6220   if (ptr == _ptr) return this;
6221   return make(ptr, elem(), _klass, _offset);
6222 }
6223 
6224 bool TypeAryKlassPtr::must_be_exact() const {
6225   if (_elem == Type::BOTTOM) return false;
6226   if (_elem == Type::TOP   ) return false;
6227   const TypeKlassPtr*  tk = _elem->isa_klassptr();
6228   if (!tk)             return true;   // a primitive type, like int





6229   return tk->must_be_exact();
6230 }
6231 
6232 
6233 //-----------------------------cast_to_exactness-------------------------------
6234 const TypeKlassPtr *TypeAryKlassPtr::cast_to_exactness(bool klass_is_exact) const {
6235   if (must_be_exact()) return this;  // cannot clear xk



6236   ciKlass* k = _klass;
6237   const Type* elem = this->elem();
6238   if (elem->isa_klassptr() && !klass_is_exact) {
6239     elem = elem->is_klassptr()->cast_to_exactness(klass_is_exact);
6240   }
6241   return make(klass_is_exact ? Constant : NotNull, elem, k, _offset);















6242 }
6243 



6244 
6245 //-----------------------------as_instance_type--------------------------------
6246 // Corresponding type for an instance of the given class.
6247 // It will be NotNull, and exact if and only if the klass type is exact.
6248 const TypeOopPtr* TypeAryKlassPtr::as_instance_type(bool klass_change) const {
6249   ciKlass* k = klass();
6250   bool    xk = klass_is_exact();
6251   const Type* el = nullptr;
6252   if (elem()->isa_klassptr()) {
6253     el = elem()->is_klassptr()->as_instance_type(false)->cast_to_exactness(false);
6254     k = nullptr;
6255   } else {
6256     el = elem();
6257   }
6258   return TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(el, TypeInt::POS), k, xk, 0);




6259 }
6260 
6261 
6262 //------------------------------xmeet------------------------------------------
6263 // Compute the MEET of two types, return a new Type object.
6264 const Type    *TypeAryKlassPtr::xmeet( const Type *t ) const {
6265   // Perform a fast test for common case; meeting the same types together.
6266   if( this == t ) return this;  // Meeting same type-rep?
6267 
6268   // Current "this->_base" is Pointer
6269   switch (t->base()) {          // switch on original type
6270 
6271   case Int:                     // Mixing ints & oops happens when javac
6272   case Long:                    // reuses local variables
6273   case FloatTop:
6274   case FloatCon:
6275   case FloatBot:
6276   case DoubleTop:
6277   case DoubleCon:
6278   case DoubleBot:
6279   case NarrowOop:
6280   case NarrowKlass:
6281   case Bottom:                  // Ye Olde Default
6282     return Type::BOTTOM;
6283   case Top:
6284     return this;
6285 
6286   default:                      // All else is a mistake
6287     typerr(t);
6288 
6289   case AnyPtr: {                // Meeting to AnyPtrs
6290     // Found an AnyPtr type vs self-KlassPtr type
6291     const TypePtr *tp = t->is_ptr();
6292     int offset = meet_offset(tp->offset());
6293     PTR ptr = meet_ptr(tp->ptr());
6294     switch (tp->ptr()) {
6295     case TopPTR:
6296       return this;
6297     case Null:
6298       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6299     case AnyNull:
6300       return make( ptr, _elem, klass(), offset );
6301     case BotPTR:
6302     case NotNull:
6303       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6304     default: typerr(t);
6305     }
6306   }
6307 
6308   case RawPtr:
6309   case MetadataPtr:
6310   case OopPtr:
6311   case AryPtr:                  // Meet with AryPtr
6312   case InstPtr:                 // Meet with InstPtr
6313     return TypePtr::BOTTOM;
6314 
6315   //
6316   //             A-top         }
6317   //           /   |   \       }  Tops
6318   //       B-top A-any C-top   }
6319   //          | /  |  \ |      }  Any-nulls
6320   //       B-any   |   C-any   }
6321   //          |    |    |
6322   //       B-con A-con C-con   } constants; not comparable across classes
6323   //          |    |    |
6324   //       B-not   |   C-not   }
6325   //          | \  |  / |      }  not-nulls
6326   //       B-bot A-not C-bot   }
6327   //           \   |   /       }  Bottoms
6328   //             A-bot         }
6329   //
6330 
6331   case AryKlassPtr: {  // Meet two KlassPtr types
6332     const TypeAryKlassPtr *tap = t->is_aryklassptr();
6333     int off = meet_offset(tap->offset());
6334     const Type* elem = _elem->meet(tap->_elem);
6335 
6336     PTR ptr = meet_ptr(tap->ptr());
6337     ciKlass* res_klass = nullptr;
6338     bool res_xk = false;
6339     meet_aryptr(ptr, elem, this, tap, res_klass, res_xk);




6340     assert(res_xk == (ptr == Constant), "");
6341     return make(ptr, elem, res_klass, off);












6342   } // End of case KlassPtr
6343   case InstKlassPtr: {
6344     const TypeInstKlassPtr *tp = t->is_instklassptr();
6345     int offset = meet_offset(tp->offset());
6346     PTR ptr = meet_ptr(tp->ptr());
6347     const TypeInterfaces* interfaces = meet_interfaces(tp);
6348     const TypeInterfaces* tp_interfaces = tp->_interfaces;
6349     const TypeInterfaces* this_interfaces = _interfaces;
6350 
6351     switch (ptr) {
6352     case TopPTR:
6353     case AnyNull:                // Fall 'down' to dual of object klass
6354       // For instances when a subclass meets a superclass we fall
6355       // below the centerline when the superclass is exact. We need to
6356       // do the same here.
6357       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) &&
6358           !tp->klass_is_exact()) {
6359         return TypeAryKlassPtr::make(ptr, _elem, _klass, offset);
6360       } else {
6361         // cannot subclass, so the meet has to fall badly below the centerline
6362         ptr = NotNull;
6363         interfaces = this_interfaces->intersection_with(tp->_interfaces);
6364         return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset);
6365       }
6366     case Constant:
6367     case NotNull:
6368     case BotPTR:                // Fall down to object klass
6369       // LCA is object_klass, but if we subclass from the top we can do better
6370       if (above_centerline(tp->ptr())) {
6371         // If 'tp'  is above the centerline and it is Object class
6372         // then we can subclass in the Java class hierarchy.
6373         // For instances when a subclass meets a superclass we fall
6374         // below the centerline when the superclass is exact. We need
6375         // to do the same here.
6376         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) &&
6377             !tp->klass_is_exact()) {
6378           // that is, my array type is a subtype of 'tp' klass
6379           return make(ptr, _elem, _klass, offset);
6380         }
6381       }
6382       // The other case cannot happen, since t cannot be a subtype of an array.
6383       // The meet falls down to Object class below centerline.
6384       if (ptr == Constant)
6385          ptr = NotNull;
6386       interfaces = this_interfaces->intersection_with(tp_interfaces);
6387       return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset);
6388     default: typerr(t);
6389     }
6390   }
6391 
6392   } // End of switch
6393   return this;                  // Return the double constant
6394 }
6395 
6396 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
6397   static_assert(std::is_base_of<T2, T1>::value, "");
6398 
6399   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty() && other_exact) {
6400     return true;
6401   }
6402 
6403   int dummy;
6404   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
6405 
6406   if (!this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) {
6407     return false;
6408   }
6409 
6410   if (this_one->is_instance_type(other)) {
6411     return other->klass() == ciEnv::current()->Object_klass() && this_one->_interfaces->contains(other->_interfaces) &&
6412            other_exact;
6413   }
6414 
6415   assert(this_one->is_array_type(other), "");
6416   const T1* other_ary = this_one->is_array_type(other);
6417   bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
6418   if (other_top_or_bottom) {
6419     return false;
6420   }
6421 
6422   const TypePtr* other_elem = other_ary->elem()->make_ptr();
6423   const TypePtr* this_elem = this_one->elem()->make_ptr();
6424   if (this_elem != nullptr && other_elem != nullptr) {



6425     return this_one->is_reference_type(this_elem)->is_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact);
6426   }
6427   if (this_elem == nullptr && other_elem == nullptr) {
6428     return this_one->klass()->is_subtype_of(other->klass());
6429   }
6430   return false;
6431 }
6432 
6433 bool TypeAryKlassPtr::is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
6434   return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
6435 }
6436 
6437 template <class T1, class T2> bool TypePtr::is_same_java_type_as_helper_for_array(const T1* this_one, const T2* other) {
6438   static_assert(std::is_base_of<T2, T1>::value, "");
6439 
6440   int dummy;
6441   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
6442 
6443   if (!this_one->is_array_type(other) ||
6444       !this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) {

6497   }
6498 
6499   const TypePtr* this_elem = this_one->elem()->make_ptr();
6500   const TypePtr* other_elem = other_ary->elem()->make_ptr();
6501   if (other_elem != nullptr && this_elem != nullptr) {
6502     return this_one->is_reference_type(this_elem)->maybe_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact);
6503   }
6504   if (other_elem == nullptr && this_elem == nullptr) {
6505     return this_one->klass()->is_subtype_of(other->klass());
6506   }
6507   return false;
6508 }
6509 
6510 bool TypeAryKlassPtr::maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
6511   return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
6512 }
6513 
6514 //------------------------------xdual------------------------------------------
6515 // Dual: compute field-by-field dual
6516 const Type    *TypeAryKlassPtr::xdual() const {
6517   return new TypeAryKlassPtr(dual_ptr(), elem()->dual(), klass(), dual_offset());
6518 }
6519 
6520 // Is there a single ciKlass* that can represent that type?
6521 ciKlass* TypeAryKlassPtr::exact_klass_helper() const {
6522   if (elem()->isa_klassptr()) {
6523     ciKlass* k = elem()->is_klassptr()->exact_klass_helper();
6524     if (k == nullptr) {
6525       return nullptr;
6526     }
6527     k = ciObjArrayKlass::make(k);
6528     return k;
6529   }
6530 
6531   return klass();
6532 }
6533 
6534 ciKlass* TypeAryKlassPtr::klass() const {
6535   if (_klass != nullptr) {
6536     return _klass;
6537   }
6538   ciKlass* k = nullptr;
6539   if (elem()->isa_klassptr()) {
6540     // leave null
6541   } else if ((elem()->base() == Type::Top) ||
6542              (elem()->base() == Type::Bottom)) {
6543   } else {
6544     k = ciTypeArrayKlass::make(elem()->basic_type());
6545     ((TypeAryKlassPtr*)this)->_klass = k;
6546   }
6547   return k;

6554   switch( _ptr ) {
6555   case Constant:
6556     st->print("precise ");
6557   case NotNull:
6558     {
6559       st->print("[");
6560       _elem->dump2(d, depth, st);
6561       _interfaces->dump(st);
6562       st->print(": ");
6563     }
6564   case BotPTR:
6565     if( !WizardMode && !Verbose && _ptr != Constant ) break;
6566   case TopPTR:
6567   case AnyNull:
6568     st->print(":%s", ptr_msg[_ptr]);
6569     if( _ptr == Constant ) st->print(":exact");
6570     break;
6571   default:
6572     break;
6573   }
6574 
6575   if( _offset ) {               // Dump offset, if any
6576     if( _offset == OffsetBot )      { st->print("+any"); }
6577     else if( _offset == OffsetTop ) { st->print("+unknown"); }
6578     else                            { st->print("+%d", _offset); }
6579   }
6580 


6581   st->print(" *");
6582 }
6583 #endif
6584 
6585 const Type* TypeAryKlassPtr::base_element_type(int& dims) const {
6586   const Type* elem = this->elem();
6587   dims = 1;
6588   while (elem->isa_aryklassptr()) {
6589     elem = elem->is_aryklassptr()->elem();
6590     dims++;
6591   }
6592   return elem;
6593 }
6594 
6595 //=============================================================================
6596 // Convenience common pre-built types.
6597 
6598 //------------------------------make-------------------------------------------
6599 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
6600   return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();












6601 }
6602 
6603 //------------------------------make-------------------------------------------
6604 const TypeFunc *TypeFunc::make(ciMethod* method) {
6605   Compile* C = Compile::current();
6606   const TypeFunc* tf = C->last_tf(method); // check cache
6607   if (tf != nullptr)  return tf;  // The hit rate here is almost 50%.
6608   const TypeTuple *domain;
6609   if (method->is_static()) {
6610     domain = TypeTuple::make_domain(nullptr, method->signature(), ignore_interfaces);
6611   } else {
6612     domain = TypeTuple::make_domain(method->holder(), method->signature(), ignore_interfaces);

















6613   }
6614   const TypeTuple *range  = TypeTuple::make_range(method->signature(), ignore_interfaces);
6615   tf = TypeFunc::make(domain, range);
6616   C->set_last_tf(method, tf);  // fill cache
6617   return tf;
6618 }
6619 
6620 //------------------------------meet-------------------------------------------
6621 // Compute the MEET of two types.  It returns a new Type object.
6622 const Type *TypeFunc::xmeet( const Type *t ) const {
6623   // Perform a fast test for common case; meeting the same types together.
6624   if( this == t ) return this;  // Meeting same type-rep?
6625 
6626   // Current "this->_base" is Func
6627   switch (t->base()) {          // switch on original type
6628 
6629   case Bottom:                  // Ye Olde Default
6630     return t;
6631 
6632   default:                      // All else is a mistake
6633     typerr(t);
6634 
6635   case Top:
6636     break;
6637   }
6638   return this;                  // Return the double constant
6639 }
6640 
6641 //------------------------------xdual------------------------------------------
6642 // Dual: compute field-by-field dual
6643 const Type *TypeFunc::xdual() const {
6644   return this;
6645 }
6646 
6647 //------------------------------eq---------------------------------------------
6648 // Structural equality check for Type representations
6649 bool TypeFunc::eq( const Type *t ) const {
6650   const TypeFunc *a = (const TypeFunc*)t;
6651   return _domain == a->_domain &&
6652     _range == a->_range;


6653 }
6654 
6655 //------------------------------hash-------------------------------------------
6656 // Type-specific hashing function.
6657 uint TypeFunc::hash(void) const {
6658   return (uint)(uintptr_t)_domain + (uint)(uintptr_t)_range;
6659 }
6660 
6661 //------------------------------dump2------------------------------------------
6662 // Dump Function Type
6663 #ifndef PRODUCT
6664 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
6665   if( _range->cnt() <= Parms )
6666     st->print("void");
6667   else {
6668     uint i;
6669     for (i = Parms; i < _range->cnt()-1; i++) {
6670       _range->field_at(i)->dump2(d,depth,st);
6671       st->print("/");
6672     }
6673     _range->field_at(i)->dump2(d,depth,st);
6674   }
6675   st->print(" ");
6676   st->print("( ");
6677   if( !depth || d[this] ) {     // Check for recursive dump
6678     st->print("...)");
6679     return;
6680   }
6681   d.Insert((void*)this,(void*)this);    // Stop recursion
6682   if (Parms < _domain->cnt())
6683     _domain->field_at(Parms)->dump2(d,depth-1,st);
6684   for (uint i = Parms+1; i < _domain->cnt(); i++) {
6685     st->print(", ");
6686     _domain->field_at(i)->dump2(d,depth-1,st);
6687   }
6688   st->print(" )");
6689 }
6690 #endif
6691 
6692 //------------------------------singleton--------------------------------------
6693 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
6694 // constants (Ldi nodes).  Singletons are integer, float or double constants
6695 // or a single symbol.
6696 bool TypeFunc::singleton(void) const {
6697   return false;                 // Never a singleton
6698 }
6699 
6700 bool TypeFunc::empty(void) const {
6701   return false;                 // Never empty
6702 }
6703 
6704 
6705 BasicType TypeFunc::return_type() const{
6706   if (range()->cnt() == TypeFunc::Parms) {
6707     return T_VOID;
6708   }
6709   return range()->field_at(TypeFunc::Parms)->basic_type();
6710 }

   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciFlatArrayKlass.hpp"
  27 #include "ci/ciField.hpp"
  28 #include "ci/ciInlineKlass.hpp"
  29 #include "ci/ciMethodData.hpp"
  30 #include "ci/ciTypeFlow.hpp"
  31 #include "classfile/javaClasses.hpp"
  32 #include "classfile/symbolTable.hpp"
  33 #include "compiler/compileLog.hpp"
  34 #include "libadt/dict.hpp"
  35 #include "memory/oopFactory.hpp"
  36 #include "memory/resourceArea.hpp"
  37 #include "oops/instanceKlass.hpp"
  38 #include "oops/instanceMirrorKlass.hpp"
  39 #include "oops/objArrayKlass.hpp"
  40 #include "oops/typeArrayKlass.hpp"
  41 #include "opto/matcher.hpp"
  42 #include "opto/node.hpp"
  43 #include "opto/opcodes.hpp"
  44 #include "opto/type.hpp"
  45 #include "utilities/checkedCast.hpp"
  46 #include "utilities/powerOfTwo.hpp"
  47 #include "utilities/stringUtils.hpp"
  48 
  49 // Portions of code courtesy of Clifford Click
  50 
  51 // Optimization - Graph Style
  52 
  53 // Dictionary of types shared among compilations.
  54 Dict* Type::_shared_type_dict = nullptr;
  55 const Type::Offset Type::Offset::top(Type::OffsetTop);
  56 const Type::Offset Type::Offset::bottom(Type::OffsetBot);
  57 
  58 const Type::Offset Type::Offset::meet(const Type::Offset other) const {
  59   // Either is 'TOP' offset?  Return the other offset!
  60   if (_offset == OffsetTop) return other;
  61   if (other._offset == OffsetTop) return *this;
  62   // If either is different, return 'BOTTOM' offset
  63   if (_offset != other._offset) return bottom;
  64   return Offset(_offset);
  65 }
  66 
  67 const Type::Offset Type::Offset::dual() const {
  68   if (_offset == OffsetTop) return bottom;// Map 'TOP' into 'BOTTOM'
  69   if (_offset == OffsetBot) return top;// Map 'BOTTOM' into 'TOP'
  70   return Offset(_offset);               // Map everything else into self
  71 }
  72 
  73 const Type::Offset Type::Offset::add(intptr_t offset) const {
  74   // Adding to 'TOP' offset?  Return 'TOP'!
  75   if (_offset == OffsetTop || offset == OffsetTop) return top;
  76   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
  77   if (_offset == OffsetBot || offset == OffsetBot) return bottom;
  78   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
  79   offset += (intptr_t)_offset;
  80   if (offset != (int)offset || offset == OffsetTop) return bottom;
  81 
  82   // assert( _offset >= 0 && _offset+offset >= 0, "" );
  83   // It is possible to construct a negative offset during PhaseCCP
  84 
  85   return Offset((int)offset);        // Sum valid offsets
  86 }
  87 
  88 void Type::Offset::dump2(outputStream *st) const {
  89   if (_offset == 0) {
  90     return;
  91   } else if (_offset == OffsetTop) {
  92     st->print("+top");
  93   }
  94   else if (_offset == OffsetBot) {
  95     st->print("+bot");
  96   } else if (_offset) {
  97     st->print("+%d", _offset);
  98   }
  99 }
 100 
 101 // Array which maps compiler types to Basic Types
 102 const Type::TypeInfo Type::_type_info[Type::lastype] = {
 103   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
 104   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
 105   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
 106   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
 107   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
 108   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
 109   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
 110   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
 111   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
 112   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
 113   { Bad,             T_ARRAY,      "interfaces:",   false, Node::NotAMachineReg, relocInfo::none          },  // Interfaces
 114 
 115 #if defined(PPC64)
 116   { Bad,             T_ILLEGAL,    "vectormask:",   false, Op_RegVectMask,       relocInfo::none          },  // VectorMask.
 117   { Bad,             T_ILLEGAL,    "vectora:",      false, Op_VecA,              relocInfo::none          },  // VectorA.
 118   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
 119   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD

 254   case ciTypeFlow::StateVector::T_NULL:
 255     assert(type == ciTypeFlow::StateVector::null_type(), "");
 256     return TypePtr::NULL_PTR;
 257 
 258   case ciTypeFlow::StateVector::T_LONG2:
 259     // The ciTypeFlow pass pushes a long, then the half.
 260     // We do the same.
 261     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 262     return TypeInt::TOP;
 263 
 264   case ciTypeFlow::StateVector::T_DOUBLE2:
 265     // The ciTypeFlow pass pushes double, then the half.
 266     // Our convention is the same.
 267     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 268     return Type::TOP;
 269 
 270   case T_ADDRESS:
 271     assert(type->is_return_address(), "");
 272     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 273 
 274   case T_OBJECT:
 275     return Type::get_const_type(type->unwrap())->join_speculative(type->is_null_free() ? TypePtr::NOTNULL : TypePtr::BOTTOM);
 276 
 277   default:
 278     // make sure we did not mix up the cases:
 279     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 280     assert(type != ciTypeFlow::StateVector::top_type(), "");
 281     assert(type != ciTypeFlow::StateVector::null_type(), "");
 282     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 283     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 284     assert(!type->is_return_address(), "");
 285 
 286     return Type::get_const_type(type);
 287   }
 288 }
 289 
 290 
 291 //-----------------------make_from_constant------------------------------------
 292 const Type* Type::make_from_constant(ciConstant constant, bool require_constant,
 293                                      int stable_dimension, bool is_narrow_oop,
 294                                      bool is_autobox_cache) {
 295   switch (constant.basic_type()) {
 296     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());

 569   const Type **ffalse =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 570   ffalse[0] = Type::CONTROL;
 571   ffalse[1] = Type::TOP;
 572   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 573 
 574   const Type **fneither =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 575   fneither[0] = Type::TOP;
 576   fneither[1] = Type::TOP;
 577   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 578 
 579   const Type **ftrue =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 580   ftrue[0] = Type::TOP;
 581   ftrue[1] = Type::CONTROL;
 582   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 583 
 584   const Type **floop =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 585   floop[0] = Type::CONTROL;
 586   floop[1] = TypeInt::INT;
 587   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 588 
 589   TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, Offset(0));
 590   TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, Offset::bottom);
 591   TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, Offset::bottom);
 592 
 593   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 594   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 595 
 596   const Type **fmembar = TypeTuple::fields(0);
 597   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 598 
 599   const Type **fsc = (const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 600   fsc[0] = TypeInt::CC;
 601   fsc[1] = Type::MEMORY;
 602   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 603 
 604   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 605   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 606   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 607   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 608                                            false, nullptr, Offset(oopDesc::mark_offset_in_bytes()));
 609   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 610                                            false, nullptr, Offset(oopDesc::klass_offset_in_bytes()));
 611   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, Offset::bottom, TypeOopPtr::InstanceBot);
 612 
 613   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, nullptr, Offset::bottom);
 614 
 615   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 616   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 617 
 618   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 619 
 620   mreg2type[Op_Node] = Type::BOTTOM;
 621   mreg2type[Op_Set ] = nullptr;
 622   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 623   mreg2type[Op_RegI] = TypeInt::INT;
 624   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 625   mreg2type[Op_RegF] = Type::FLOAT;
 626   mreg2type[Op_RegD] = Type::DOUBLE;
 627   mreg2type[Op_RegL] = TypeLong::LONG;
 628   mreg2type[Op_RegFlags] = TypeInt::CC;
 629 
 630   GrowableArray<ciInstanceKlass*> array_interfaces;
 631   array_interfaces.push(current->env()->Cloneable_klass());
 632   array_interfaces.push(current->env()->Serializable_klass());
 633   TypeAryPtr::_array_interfaces = TypeInterfaces::make(&array_interfaces);
 634   TypeAryKlassPtr::_array_interfaces = TypeAryPtr::_array_interfaces;
 635 
 636   TypeAryPtr::RANGE   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), nullptr /* current->env()->Object_klass() */, false, Offset(arrayOopDesc::length_offset_in_bytes()));
 637 
 638   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), nullptr /*ciArrayKlass::make(o)*/,  false,  Offset::bottom);
 639 
 640 #ifdef _LP64
 641   if (UseCompressedOops) {
 642     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 643     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 644   } else
 645 #endif
 646   {
 647     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 648     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), nullptr /*ciArrayKlass::make(o)*/,  false,  Offset::bottom);
 649   }
 650   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Offset::bottom);
 651   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Offset::bottom);
 652   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Offset::bottom);
 653   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Offset::bottom);
 654   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Offset::bottom);
 655   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Offset::bottom);
 656   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Offset::bottom);
 657   TypeAryPtr::INLINES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS, /* stable= */ false, /* flat= */ true), nullptr, false, Offset::bottom);
 658 
 659   // Nobody should ask _array_body_type[T_NARROWOOP]. Use null as assert.
 660   TypeAryPtr::_array_body_type[T_NARROWOOP] = nullptr;
 661   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 662   TypeAryPtr::_array_body_type[T_PRIMITIVE_OBJECT] = TypeAryPtr::OOPS;
 663   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 664   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 665   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 666   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 667   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 668   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 669   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 670   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 671   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 672 
 673   TypeInstKlassPtr::OBJECT = TypeInstKlassPtr::make(TypePtr::NotNull, current->env()->Object_klass(), Offset(0));
 674   TypeInstKlassPtr::OBJECT_OR_NULL = TypeInstKlassPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), Offset(0));
 675 
 676   const Type **fi2c = TypeTuple::fields(2);
 677   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 678   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 679   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 680 
 681   const Type **intpair = TypeTuple::fields(2);
 682   intpair[0] = TypeInt::INT;
 683   intpair[1] = TypeInt::INT;
 684   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 685 
 686   const Type **longpair = TypeTuple::fields(2);
 687   longpair[0] = TypeLong::LONG;
 688   longpair[1] = TypeLong::LONG;
 689   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 690 
 691   const Type **intccpair = TypeTuple::fields(2);
 692   intccpair[0] = TypeInt::INT;
 693   intccpair[1] = TypeInt::CC;
 694   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 695 
 696   const Type **longccpair = TypeTuple::fields(2);
 697   longccpair[0] = TypeLong::LONG;
 698   longccpair[1] = TypeInt::CC;
 699   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 700 
 701   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 702   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 703   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 704   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 705   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 706   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 707   _const_basic_type[T_INT]         = TypeInt::INT;
 708   _const_basic_type[T_LONG]        = TypeLong::LONG;
 709   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 710   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 711   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 712   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 713   _const_basic_type[T_PRIMITIVE_OBJECT] = TypeInstPtr::BOTTOM;
 714   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 715   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 716   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 717 
 718   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 719   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 720   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 721   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 722   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 723   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 724   _zero_type[T_INT]         = TypeInt::ZERO;
 725   _zero_type[T_LONG]        = TypeLong::ZERO;
 726   _zero_type[T_FLOAT]       = TypeF::ZERO;
 727   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 728   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 729   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
 730   _zero_type[T_PRIMITIVE_OBJECT] = TypePtr::NULL_PTR;
 731   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 732   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 733 
 734   // get_zero_type() should not happen for T_CONFLICT
 735   _zero_type[T_CONFLICT]= nullptr;
 736 
 737   TypeVect::VECTMASK = (TypeVect*)(new TypeVectMask(TypeInt::BOOL, MaxVectorSize))->hashcons();
 738   mreg2type[Op_RegVectMask] = TypeVect::VECTMASK;
 739 
 740   if (Matcher::supports_scalable_vector()) {
 741     TypeVect::VECTA = TypeVect::make(T_BYTE, Matcher::scalable_vector_reg_size(T_BYTE));
 742   }
 743 
 744   // Vector predefined types, it needs initialized _const_basic_type[].
 745   if (Matcher::vector_size_supported(T_BYTE,4)) {
 746     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
 747   }
 748   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 749     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
 750   }

 981   ~VerifyMeet() {
 982     assert(_C->_type_verify->_depth != 0, "");
 983     _C->_type_verify->_depth--;
 984     if (_C->_type_verify->_depth == 0) {
 985       _C->_type_verify->_cache.trunc_to(0);
 986     }
 987   }
 988 
 989   const Type* meet(const Type* t1, const Type* t2) const {
 990     return _C->_type_verify->meet(t1, t2);
 991   }
 992 
 993   void add(const Type* t1, const Type* t2, const Type* res) const {
 994     _C->_type_verify->add(t1, t2, res);
 995   }
 996 };
 997 
 998 void Type::check_symmetrical(const Type* t, const Type* mt, const VerifyMeet& verify) const {
 999   Compile* C = Compile::current();
1000   const Type* mt2 = verify.meet(t, this);
1001 
1002   // Verify that:
1003   //      this meet t == t meet this
1004   if (mt != mt2) {
1005     tty->print_cr("=== Meet Not Commutative ===");
1006     tty->print("t           = ");   t->dump(); tty->cr();
1007     tty->print("this        = ");      dump(); tty->cr();
1008     tty->print("t meet this = "); mt2->dump(); tty->cr();
1009     tty->print("this meet t = ");  mt->dump(); tty->cr();
1010     fatal("meet not commutative");
1011   }
1012   const Type* dual_join = mt->_dual;
1013   const Type* t2t    = verify.meet(dual_join,t->_dual);
1014   const Type* t2this = verify.meet(dual_join,this->_dual);
1015 
1016   // Interface meet Oop is Not Symmetric:
1017   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
1018   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
1019 
1020   // Verify that:
1021   //      !(t meet this)  meet !t ==
1022   //      (!t join !this) meet !t == !t
1023   // and
1024   //      !(t meet this)  meet !this ==
1025   //      (!t join !this) meet !this == !this
1026   if (t2t != t->_dual || t2this != this->_dual) {
1027     tty->print_cr("=== Meet Not Symmetric ===");
1028     tty->print("t   =                   ");              t->dump(); tty->cr();
1029     tty->print("this=                   ");                 dump(); tty->cr();
1030     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
1031 
1032     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
1033     tty->print("this_dual=              ");          _dual->dump(); tty->cr();
1034     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
1035 
1036     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
1037     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
1038 
1039     fatal("meet not symmetric");
1040   }
1041 }
1042 #endif
1043 
1044 //------------------------------meet-------------------------------------------
1045 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is

2176 
2177 bool TypeLong::empty(void) const {
2178   return _lo > _hi;
2179 }
2180 
2181 //=============================================================================
2182 // Convenience common pre-built types.
2183 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
2184 const TypeTuple *TypeTuple::IFFALSE;
2185 const TypeTuple *TypeTuple::IFTRUE;
2186 const TypeTuple *TypeTuple::IFNEITHER;
2187 const TypeTuple *TypeTuple::LOOPBODY;
2188 const TypeTuple *TypeTuple::MEMBAR;
2189 const TypeTuple *TypeTuple::STORECONDITIONAL;
2190 const TypeTuple *TypeTuple::START_I2C;
2191 const TypeTuple *TypeTuple::INT_PAIR;
2192 const TypeTuple *TypeTuple::LONG_PAIR;
2193 const TypeTuple *TypeTuple::INT_CC_PAIR;
2194 const TypeTuple *TypeTuple::LONG_CC_PAIR;
2195 
2196 static void collect_inline_fields(ciInlineKlass* vk, const Type** field_array, uint& pos) {
2197   for (int j = 0; j < vk->nof_nonstatic_fields(); j++) {
2198     ciField* field = vk->nonstatic_field_at(j);
2199     BasicType bt = field->type()->basic_type();
2200     const Type* ft = Type::get_const_type(field->type());
2201     field_array[pos++] = ft;
2202     if (type2size[bt] == 2) {
2203       field_array[pos++] = Type::HALF;
2204     }
2205   }
2206 }
2207 
2208 //------------------------------make-------------------------------------------
2209 // Make a TypeTuple from the range of a method signature
2210 const TypeTuple *TypeTuple::make_range(ciSignature* sig, InterfaceHandling interface_handling, bool ret_vt_fields) {
2211   ciType* return_type = sig->return_type();
2212   uint arg_cnt = return_type->size();
2213   if (ret_vt_fields) {
2214     arg_cnt = return_type->as_inline_klass()->inline_arg_slots() + 1;
2215     // InlineTypeNode::IsInit field used for null checking
2216     arg_cnt++;
2217   }
2218   const Type **field_array = fields(arg_cnt);
2219   switch (return_type->basic_type()) {
2220   case T_LONG:
2221     field_array[TypeFunc::Parms]   = TypeLong::LONG;
2222     field_array[TypeFunc::Parms+1] = Type::HALF;
2223     break;
2224   case T_DOUBLE:
2225     field_array[TypeFunc::Parms]   = Type::DOUBLE;
2226     field_array[TypeFunc::Parms+1] = Type::HALF;
2227     break;
2228   case T_OBJECT:
2229     if (return_type->is_inlinetype() && ret_vt_fields) {
2230       uint pos = TypeFunc::Parms;
2231       field_array[pos++] = get_const_type(return_type); // Oop might be null when returning as fields
2232       collect_inline_fields(return_type->as_inline_klass(), field_array, pos);
2233       // InlineTypeNode::IsInit field used for null checking
2234       field_array[pos++] = get_const_basic_type(T_BOOLEAN);
2235       break;
2236     } else {
2237       field_array[TypeFunc::Parms] = get_const_type(return_type, interface_handling)->join_speculative(TypePtr::BOTTOM);
2238     }
2239     break;
2240   case T_ARRAY:
2241   case T_BOOLEAN:
2242   case T_CHAR:
2243   case T_FLOAT:
2244   case T_BYTE:
2245   case T_SHORT:
2246   case T_INT:
2247     field_array[TypeFunc::Parms] = get_const_type(return_type, interface_handling);
2248     break;
2249   case T_VOID:
2250     break;
2251   default:
2252     ShouldNotReachHere();
2253   }
2254   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2255 }
2256 
2257 // Make a TypeTuple from the domain of a method signature
2258 const TypeTuple *TypeTuple::make_domain(ciMethod* method, InterfaceHandling interface_handling, bool vt_fields_as_args) {
2259   ciSignature* sig = method->signature();
2260   uint arg_cnt = sig->size() + (method->is_static() ? 0 : 1);
2261   if (vt_fields_as_args) {
2262     arg_cnt = 0;
2263     assert(method->get_sig_cc() != nullptr, "Should have scalarized signature");
2264     for (ExtendedSignature sig_cc = ExtendedSignature(method->get_sig_cc(), SigEntryFilter()); !sig_cc.at_end(); ++sig_cc) {
2265       arg_cnt += type2size[(*sig_cc)._bt];
2266     }
2267   }
2268 
2269   uint pos = TypeFunc::Parms;
2270   const Type** field_array = fields(arg_cnt);
2271   if (!method->is_static()) {
2272     ciInstanceKlass* recv = method->holder();
2273     if (vt_fields_as_args && recv->is_inlinetype() && recv->as_inline_klass()->can_be_passed_as_fields() && method->is_scalarized_arg(0)) {
2274       collect_inline_fields(recv->as_inline_klass(), field_array, pos);
2275     } else {
2276       field_array[pos++] = get_const_type(recv, interface_handling)->join_speculative(TypePtr::NOTNULL);
2277     }
2278   }
2279 
2280   int i = 0;
2281   while (pos < TypeFunc::Parms + arg_cnt) {
2282     ciType* type = sig->type_at(i);
2283     BasicType bt = type->basic_type();
2284 
2285     switch (bt) {
2286     case T_LONG:
2287       field_array[pos++] = TypeLong::LONG;
2288       field_array[pos++] = Type::HALF;
2289       break;
2290     case T_DOUBLE:
2291       field_array[pos++] = Type::DOUBLE;
2292       field_array[pos++] = Type::HALF;
2293       break;
2294     case T_OBJECT:
2295       if (type->is_inlinetype() && vt_fields_as_args && method->is_scalarized_arg(i + (method->is_static() ? 0 : 1))) {
2296         // InlineTypeNode::IsInit field used for null checking
2297         field_array[pos++] = get_const_basic_type(T_BOOLEAN);
2298         collect_inline_fields(type->as_inline_klass(), field_array, pos);
2299       } else {
2300         field_array[pos++] = get_const_type(type, interface_handling);
2301       }
2302       break;
2303     case T_ARRAY:
2304     case T_FLOAT:
2305     case T_INT:
2306       field_array[pos++] = get_const_type(type, interface_handling);
2307       break;
2308     case T_BOOLEAN:
2309     case T_CHAR:
2310     case T_BYTE:
2311     case T_SHORT:
2312       field_array[pos++] = TypeInt::INT;
2313       break;
2314     default:
2315       ShouldNotReachHere();
2316     }
2317     i++;
2318   }
2319   assert(pos == TypeFunc::Parms + arg_cnt, "wrong number of arguments");
2320 
2321   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2322 }
2323 
2324 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
2325   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
2326 }
2327 
2328 //------------------------------fields-----------------------------------------
2329 // Subroutine call type with space allocated for argument types
2330 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
2331 const Type **TypeTuple::fields( uint arg_cnt ) {
2332   const Type **flds = (const Type **)(Compile::current()->type_arena()->AmallocWords((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
2333   flds[TypeFunc::Control  ] = Type::CONTROL;
2334   flds[TypeFunc::I_O      ] = Type::ABIO;
2335   flds[TypeFunc::Memory   ] = Type::MEMORY;
2336   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
2337   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
2338 
2339   return flds;

2434     if (_fields[i]->empty())  return true;
2435   }
2436   return false;
2437 }
2438 
2439 //=============================================================================
2440 // Convenience common pre-built types.
2441 
2442 inline const TypeInt* normalize_array_size(const TypeInt* size) {
2443   // Certain normalizations keep us sane when comparing types.
2444   // We do not want arrayOop variables to differ only by the wideness
2445   // of their index types.  Pick minimum wideness, since that is the
2446   // forced wideness of small ranges anyway.
2447   if (size->_widen != Type::WidenMin)
2448     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
2449   else
2450     return size;
2451 }
2452 
2453 //------------------------------make-------------------------------------------
2454 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable,
2455                              bool flat, bool not_flat, bool not_null_free) {
2456   if (UseCompressedOops && elem->isa_oopptr()) {
2457     elem = elem->make_narrowoop();
2458   }
2459   size = normalize_array_size(size);
2460   return (TypeAry*)(new TypeAry(elem, size, stable, flat, not_flat, not_null_free))->hashcons();
2461 }
2462 
2463 //------------------------------meet-------------------------------------------
2464 // Compute the MEET of two types.  It returns a new Type object.
2465 const Type *TypeAry::xmeet( const Type *t ) const {
2466   // Perform a fast test for common case; meeting the same types together.
2467   if( this == t ) return this;  // Meeting same type-rep?
2468 
2469   // Current "this->_base" is Ary
2470   switch (t->base()) {          // switch on original type
2471 
2472   case Bottom:                  // Ye Olde Default
2473     return t;
2474 
2475   default:                      // All else is a mistake
2476     typerr(t);
2477 
2478   case Array: {                 // Meeting 2 arrays?
2479     const TypeAry *a = t->is_ary();
2480     return TypeAry::make(_elem->meet_speculative(a->_elem),
2481                          _size->xmeet(a->_size)->is_int(),
2482                          _stable && a->_stable,
2483                          _flat && a->_flat,
2484                          _not_flat && a->_not_flat,
2485                          _not_null_free && a->_not_null_free);
2486   }
2487   case Top:
2488     break;
2489   }
2490   return this;                  // Return the double constant
2491 }
2492 
2493 //------------------------------xdual------------------------------------------
2494 // Dual: compute field-by-field dual
2495 const Type *TypeAry::xdual() const {
2496   const TypeInt* size_dual = _size->dual()->is_int();
2497   size_dual = normalize_array_size(size_dual);
2498   return new TypeAry(_elem->dual(), size_dual, !_stable, !_flat, !_not_flat, !_not_null_free);
2499 }
2500 
2501 //------------------------------eq---------------------------------------------
2502 // Structural equality check for Type representations
2503 bool TypeAry::eq( const Type *t ) const {
2504   const TypeAry *a = (const TypeAry*)t;
2505   return _elem == a->_elem &&
2506     _stable == a->_stable &&
2507     _size == a->_size &&
2508     _flat == a->_flat &&
2509     _not_flat == a->_not_flat &&
2510     _not_null_free == a->_not_null_free;
2511 
2512 }
2513 
2514 //------------------------------hash-------------------------------------------
2515 // Type-specific hashing function.
2516 uint TypeAry::hash(void) const {
2517   return (uint)(uintptr_t)_elem + (uint)(uintptr_t)_size + (uint)(_stable ? 43 : 0) +
2518       (uint)(_flat ? 44 : 0) + (uint)(_not_flat ? 45 : 0) + (uint)(_not_null_free ? 46 : 0);
2519 }
2520 
2521 /**
2522  * Return same type without a speculative part in the element
2523  */
2524 const TypeAry* TypeAry::remove_speculative() const {
2525   return make(_elem->remove_speculative(), _size, _stable, _flat, _not_flat, _not_null_free);
2526 }
2527 
2528 /**
2529  * Return same type with cleaned up speculative part of element
2530  */
2531 const Type* TypeAry::cleanup_speculative() const {
2532   return make(_elem->cleanup_speculative(), _size, _stable, _flat, _not_flat, _not_null_free);
2533 }
2534 
2535 /**
2536  * Return same type but with a different inline depth (used for speculation)
2537  *
2538  * @param depth  depth to meet with
2539  */
2540 const TypePtr* TypePtr::with_inline_depth(int depth) const {
2541   if (!UseInlineDepthForSpeculativeTypes) {
2542     return this;
2543   }
2544   return make(AnyPtr, _ptr, _offset, _speculative, depth);
2545 }
2546 
2547 //------------------------------dump2------------------------------------------
2548 #ifndef PRODUCT
2549 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2550   if (_stable)  st->print("stable:");
2551   if (_flat) st->print("flat:");
2552   if (Verbose) {
2553     if (_not_flat) st->print("not flat:");
2554     if (_not_null_free) st->print("not null free:");
2555   }
2556   _elem->dump2(d, depth, st);
2557   st->print("[");
2558   _size->dump2(d, depth, st);
2559   st->print("]");
2560 }
2561 #endif
2562 
2563 //------------------------------singleton--------------------------------------
2564 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2565 // constants (Ldi nodes).  Singletons are integer, float or double constants
2566 // or a single symbol.
2567 bool TypeAry::singleton(void) const {
2568   return false;                 // Never a singleton
2569 }
2570 
2571 bool TypeAry::empty(void) const {
2572   return _elem->empty() || _size->empty();
2573 }
2574 
2575 //--------------------------ary_must_be_exact----------------------------------
2576 bool TypeAry::ary_must_be_exact() const {
2577   // This logic looks at the element type of an array, and returns true
2578   // if the element type is either a primitive or a final instance class.
2579   // In such cases, an array built on this ary must have no subclasses.
2580   if (_elem == BOTTOM)      return false;  // general array not exact
2581   if (_elem == TOP   )      return false;  // inverted general array not exact
2582   const TypeOopPtr*  toop = nullptr;
2583   if (UseCompressedOops && _elem->isa_narrowoop()) {
2584     toop = _elem->make_ptr()->isa_oopptr();
2585   } else {
2586     toop = _elem->isa_oopptr();
2587   }
2588   if (!toop)                return true;   // a primitive type, like int
2589   if (!toop->is_loaded())   return false;  // unloaded class
2590   const TypeInstPtr* tinst;
2591   if (_elem->isa_narrowoop())
2592     tinst = _elem->make_ptr()->isa_instptr();
2593   else
2594     tinst = _elem->isa_instptr();
2595   if (tinst) {
2596     if (tinst->instance_klass()->is_final()) {
2597       // Even though MyValue is final, [LMyValue is not exact because null-free [LMyValue is a subtype.
2598       if (tinst->is_inlinetypeptr() && (tinst->ptr() == TypePtr::BotPTR || tinst->ptr() == TypePtr::TopPTR)) {
2599         return false;
2600       }
2601       return true;
2602     }
2603     return false;
2604   }
2605   const TypeAryPtr*  tap;
2606   if (_elem->isa_narrowoop())
2607     tap = _elem->make_ptr()->isa_aryptr();
2608   else
2609     tap = _elem->isa_aryptr();
2610   if (tap)
2611     return tap->ary()->ary_must_be_exact();
2612   return false;
2613 }
2614 
2615 //==============================TypeVect=======================================
2616 // Convenience common pre-built types.
2617 const TypeVect *TypeVect::VECTA = nullptr; // vector length agnostic
2618 const TypeVect *TypeVect::VECTS = nullptr; //  32-bit vectors
2619 const TypeVect *TypeVect::VECTD = nullptr; //  64-bit vectors
2620 const TypeVect *TypeVect::VECTX = nullptr; // 128-bit vectors
2621 const TypeVect *TypeVect::VECTY = nullptr; // 256-bit vectors
2622 const TypeVect *TypeVect::VECTZ = nullptr; // 512-bit vectors
2623 const TypeVect *TypeVect::VECTMASK = nullptr; // predicate/mask vector
2624 

2780 
2781 //=============================================================================
2782 // Convenience common pre-built types.
2783 const TypePtr *TypePtr::NULL_PTR;
2784 const TypePtr *TypePtr::NOTNULL;
2785 const TypePtr *TypePtr::BOTTOM;
2786 
2787 //------------------------------meet-------------------------------------------
2788 // Meet over the PTR enum
2789 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2790   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2791   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2792   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2793   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2794   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2795   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2796   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2797 };
2798 
2799 //------------------------------make-------------------------------------------
2800 const TypePtr* TypePtr::make(TYPES t, enum PTR ptr, Offset offset, const TypePtr* speculative, int inline_depth) {
2801   return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2802 }
2803 
2804 //------------------------------cast_to_ptr_type-------------------------------
2805 const TypePtr* TypePtr::cast_to_ptr_type(PTR ptr) const {
2806   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2807   if( ptr == _ptr ) return this;
2808   return make(_base, ptr, _offset, _speculative, _inline_depth);
2809 }
2810 
2811 //------------------------------get_con----------------------------------------
2812 intptr_t TypePtr::get_con() const {
2813   assert( _ptr == Null, "" );
2814   return offset();
2815 }
2816 
2817 //------------------------------meet-------------------------------------------
2818 // Compute the MEET of two types.  It returns a new Type object.
2819 const Type *TypePtr::xmeet(const Type *t) const {
2820   const Type* res = xmeet_helper(t);
2821   if (res->isa_ptr() == nullptr) {
2822     return res;
2823   }
2824 
2825   const TypePtr* res_ptr = res->is_ptr();
2826   if (res_ptr->speculative() != nullptr) {
2827     // type->speculative() is null means that speculation is no better
2828     // than type, i.e. type->speculative() == type. So there are 2
2829     // ways to represent the fact that we have no useful speculative
2830     // data and we should use a single one to be able to test for
2831     // equality between types. Check whether type->speculative() ==
2832     // type and set speculative to null if it is the case.
2833     if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2834       return res_ptr->remove_speculative();

2865     int depth = meet_inline_depth(tp->inline_depth());
2866     return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2867   }
2868   case RawPtr:                  // For these, flip the call around to cut down
2869   case OopPtr:
2870   case InstPtr:                 // on the cases I have to handle.
2871   case AryPtr:
2872   case MetadataPtr:
2873   case KlassPtr:
2874   case InstKlassPtr:
2875   case AryKlassPtr:
2876     return t->xmeet(this);      // Call in reverse direction
2877   default:                      // All else is a mistake
2878     typerr(t);
2879 
2880   }
2881   return this;
2882 }
2883 
2884 //------------------------------meet_offset------------------------------------
2885 Type::Offset TypePtr::meet_offset(int offset) const {
2886   return _offset.meet(Offset(offset));





2887 }
2888 
2889 //------------------------------dual_offset------------------------------------
2890 Type::Offset TypePtr::dual_offset() const {
2891   return _offset.dual();


2892 }
2893 
2894 //------------------------------xdual------------------------------------------
2895 // Dual: compute field-by-field dual
2896 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2897   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2898 };
2899 const Type *TypePtr::xdual() const {
2900   return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2901 }
2902 
2903 //------------------------------xadd_offset------------------------------------
2904 Type::Offset TypePtr::xadd_offset(intptr_t offset) const {
2905   return _offset.add(offset);











2906 }
2907 
2908 //------------------------------add_offset-------------------------------------
2909 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2910   return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2911 }
2912 
2913 const TypePtr *TypePtr::with_offset(intptr_t offset) const {
2914   return make(AnyPtr, _ptr, Offset(offset), _speculative, _inline_depth);
2915 }
2916 
2917 //------------------------------eq---------------------------------------------
2918 // Structural equality check for Type representations
2919 bool TypePtr::eq( const Type *t ) const {
2920   const TypePtr *a = (const TypePtr*)t;
2921   return _ptr == a->ptr() && _offset == a->_offset && eq_speculative(a) && _inline_depth == a->_inline_depth;
2922 }
2923 
2924 //------------------------------hash-------------------------------------------
2925 // Type-specific hashing function.
2926 uint TypePtr::hash(void) const {
2927   return (uint)_ptr + (uint)offset() + (uint)hash_speculative() + (uint)_inline_depth;
2928 }
2929 
2930 /**
2931  * Return same type without a speculative part
2932  */
2933 const TypePtr* TypePtr::remove_speculative() const {
2934   if (_speculative == nullptr) {
2935     return this;
2936   }
2937   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2938   return make(AnyPtr, _ptr, _offset, nullptr, _inline_depth);
2939 }
2940 
2941 /**
2942  * Return same type but drop speculative part if we know we won't use
2943  * it
2944  */
2945 const Type* TypePtr::cleanup_speculative() const {
2946   if (speculative() == nullptr) {
2947     return this;

3173   }
3174   // We already know the speculative type is always null
3175   if (speculative_always_null()) {
3176     return false;
3177   }
3178   if (ptr_kind == ProfileAlwaysNull && speculative() != nullptr && speculative()->isa_oopptr()) {
3179     return false;
3180   }
3181   return true;
3182 }
3183 
3184 //------------------------------dump2------------------------------------------
3185 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
3186   "TopPTR","AnyNull","Constant","null","NotNull","BotPTR"
3187 };
3188 
3189 #ifndef PRODUCT
3190 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3191   if( _ptr == Null ) st->print("null");
3192   else st->print("%s *", ptr_msg[_ptr]);
3193   _offset.dump2(st);


3194   dump_inline_depth(st);
3195   dump_speculative(st);
3196 }
3197 
3198 /**
3199  *dump the speculative part of the type
3200  */
3201 void TypePtr::dump_speculative(outputStream *st) const {
3202   if (_speculative != nullptr) {
3203     st->print(" (speculative=");
3204     _speculative->dump_on(st);
3205     st->print(")");
3206   }
3207 }
3208 
3209 /**
3210  *dump the inline depth of the type
3211  */
3212 void TypePtr::dump_inline_depth(outputStream *st) const {
3213   if (_inline_depth != InlineDepthBottom) {
3214     if (_inline_depth == InlineDepthTop) {
3215       st->print(" (inline_depth=InlineDepthTop)");
3216     } else {
3217       st->print(" (inline_depth=%d)", _inline_depth);
3218     }
3219   }
3220 }
3221 #endif
3222 
3223 //------------------------------singleton--------------------------------------
3224 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3225 // constants
3226 bool TypePtr::singleton(void) const {
3227   // TopPTR, Null, AnyNull, Constant are all singletons
3228   return (_offset != Offset::bottom) && !below_centerline(_ptr);
3229 }
3230 
3231 bool TypePtr::empty(void) const {
3232   return (_offset == Offset::top) || above_centerline(_ptr);
3233 }
3234 
3235 //=============================================================================
3236 // Convenience common pre-built types.
3237 const TypeRawPtr *TypeRawPtr::BOTTOM;
3238 const TypeRawPtr *TypeRawPtr::NOTNULL;
3239 
3240 //------------------------------make-------------------------------------------
3241 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
3242   assert( ptr != Constant, "what is the constant?" );
3243   assert( ptr != Null, "Use TypePtr for null" );
3244   return (TypeRawPtr*)(new TypeRawPtr(ptr,nullptr))->hashcons();
3245 }
3246 
3247 const TypeRawPtr *TypeRawPtr::make( address bits ) {
3248   assert( bits, "Use TypePtr for null" );
3249   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
3250 }
3251 
3252 //------------------------------cast_to_ptr_type-------------------------------

3604 void TypeInterfaces::verify_is_loaded() const {
3605   for (int i = 0; i < _list.length(); i++) {
3606     ciKlass* interface = _list.at(i);
3607     assert(interface->is_loaded(), "Interface not loaded");
3608   }
3609 }
3610 #endif
3611 
3612 // Can't be implemented because there's no way to know if the type is above or below the center line.
3613 const Type* TypeInterfaces::xmeet(const Type* t) const {
3614   ShouldNotReachHere();
3615   return Type::xmeet(t);
3616 }
3617 
3618 bool TypeInterfaces::singleton(void) const {
3619   ShouldNotReachHere();
3620   return Type::singleton();
3621 }
3622 
3623 //------------------------------TypeOopPtr-------------------------------------
3624 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset offset, Offset field_offset,
3625                        int instance_id, const TypePtr* speculative, int inline_depth)
3626   : TypePtr(t, ptr, offset, speculative, inline_depth),
3627     _const_oop(o), _klass(k),
3628     _interfaces(interfaces),
3629     _klass_is_exact(xk),
3630     _is_ptr_to_narrowoop(false),
3631     _is_ptr_to_narrowklass(false),
3632     _is_ptr_to_boxed_value(false),
3633     _instance_id(instance_id) {
3634 #ifdef ASSERT
3635   if (klass() != nullptr && klass()->is_loaded()) {
3636     interfaces->verify_is_loaded();
3637   }
3638 #endif
3639   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
3640       (offset.get() > 0) && xk && (k != nullptr) && k->is_instance_klass()) {
3641     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset.get());
3642   }
3643 #ifdef _LP64
3644   if (this->offset() > 0 || this->offset() == Type::OffsetTop || this->offset() == Type::OffsetBot) {
3645     if (this->offset() == oopDesc::klass_offset_in_bytes()) {
3646       _is_ptr_to_narrowklass = UseCompressedClassPointers;
3647     } else if (klass() == nullptr) {
3648       // Array with unknown body type
3649       assert(this->isa_aryptr(), "only arrays without klass");
3650       _is_ptr_to_narrowoop = UseCompressedOops;
3651     } else if (UseCompressedOops && this->isa_aryptr() && this->offset() != arrayOopDesc::length_offset_in_bytes()) {
3652       if (klass()->is_obj_array_klass()) {
3653         _is_ptr_to_narrowoop = true;
3654       } else if (klass()->is_flat_array_klass() && field_offset != Offset::top && field_offset != Offset::bottom) {
3655         // Check if the field of the inline type array element contains oops
3656         ciInlineKlass* vk = klass()->as_flat_array_klass()->element_klass()->as_inline_klass();
3657         int foffset = field_offset.get() + vk->first_field_offset();
3658         ciField* field = vk->get_field_by_offset(foffset, false);
3659         assert(field != nullptr, "missing field");
3660         BasicType bt = field->layout_type();
3661         _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(bt);
3662       }
3663     } else if (klass()->is_instance_klass()) {

3664       if (this->isa_klassptr()) {
3665         // Perm objects don't use compressed references
3666       } else if (_offset == Offset::bottom || _offset == Offset::top) {
3667         // unsafe access
3668         _is_ptr_to_narrowoop = UseCompressedOops;
3669       } else {
3670         assert(this->isa_instptr(), "must be an instance ptr.");

3671         if (klass() == ciEnv::current()->Class_klass() &&
3672             (this->offset() == java_lang_Class::klass_offset() ||
3673              this->offset() == java_lang_Class::array_klass_offset())) {
3674           // Special hidden fields from the Class.
3675           assert(this->isa_instptr(), "must be an instance ptr.");
3676           _is_ptr_to_narrowoop = false;
3677         } else if (klass() == ciEnv::current()->Class_klass() &&
3678                    this->offset() >= InstanceMirrorKlass::offset_of_static_fields()) {
3679           // Static fields
3680           ciField* field = nullptr;
3681           if (const_oop() != nullptr) {
3682             ciInstanceKlass* k = const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
3683             field = k->get_field_by_offset(this->offset(), true);
3684           }
3685           if (field != nullptr) {
3686             BasicType basic_elem_type = field->layout_type();
3687             _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type);
3688           } else {
3689             // unsafe access
3690             _is_ptr_to_narrowoop = UseCompressedOops;
3691           }
3692         } else {
3693           // Instance fields which contains a compressed oop references.
3694           ciInstanceKlass* ik = klass()->as_instance_klass();
3695           ciField* field = ik->get_field_by_offset(this->offset(), false);
3696           if (field != nullptr) {
3697             BasicType basic_elem_type = field->layout_type();
3698             _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type);
3699           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
3700             // Compile::find_alias_type() cast exactness on all types to verify
3701             // that it does not affect alias type.
3702             _is_ptr_to_narrowoop = UseCompressedOops;
3703           } else {
3704             // Type for the copy start in LibraryCallKit::inline_native_clone().
3705             _is_ptr_to_narrowoop = UseCompressedOops;
3706           }
3707         }
3708       }
3709     }
3710   }
3711 #endif
3712 }
3713 
3714 //------------------------------make-------------------------------------------
3715 const TypeOopPtr *TypeOopPtr::make(PTR ptr, Offset offset, int instance_id,
3716                                    const TypePtr* speculative, int inline_depth) {
3717   assert(ptr != Constant, "no constant generic pointers");
3718   ciKlass*  k = Compile::current()->env()->Object_klass();
3719   bool      xk = false;
3720   ciObject* o = nullptr;
3721   const TypeInterfaces* interfaces = TypeInterfaces::make();
3722   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, interfaces, xk, o, offset, Offset::bottom, instance_id, speculative, inline_depth))->hashcons();
3723 }
3724 
3725 
3726 //------------------------------cast_to_ptr_type-------------------------------
3727 const TypeOopPtr* TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
3728   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
3729   if( ptr == _ptr ) return this;
3730   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
3731 }
3732 
3733 //-----------------------------cast_to_instance_id----------------------------
3734 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
3735   // There are no instances of a general oop.
3736   // Return self unchanged.
3737   return this;
3738 }
3739 
3740 //-----------------------------cast_to_exactness-------------------------------
3741 const TypeOopPtr* TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
3742   // There is no such thing as an exact general oop.
3743   // Return self unchanged.
3744   return this;
3745 }
3746 

3747 //------------------------------as_klass_type----------------------------------
3748 // Return the klass type corresponding to this instance or array type.
3749 // It is the type that is loaded from an object of this type.
3750 const TypeKlassPtr* TypeOopPtr::as_klass_type(bool try_for_exact) const {
3751   ShouldNotReachHere();
3752   return nullptr;
3753 }
3754 
3755 //------------------------------meet-------------------------------------------
3756 // Compute the MEET of two types.  It returns a new Type object.
3757 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
3758   // Perform a fast test for common case; meeting the same types together.
3759   if( this == t ) return this;  // Meeting same type-rep?
3760 
3761   // Current "this->_base" is OopPtr
3762   switch (t->base()) {          // switch on original type
3763 
3764   case Int:                     // Mixing ints & oops happens when javac
3765   case Long:                    // reuses local variables
3766   case FloatTop:

3772   case NarrowOop:
3773   case NarrowKlass:
3774   case Bottom:                  // Ye Olde Default
3775     return Type::BOTTOM;
3776   case Top:
3777     return this;
3778 
3779   default:                      // All else is a mistake
3780     typerr(t);
3781 
3782   case RawPtr:
3783   case MetadataPtr:
3784   case KlassPtr:
3785   case InstKlassPtr:
3786   case AryKlassPtr:
3787     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3788 
3789   case AnyPtr: {
3790     // Found an AnyPtr type vs self-OopPtr type
3791     const TypePtr *tp = t->is_ptr();
3792     Offset offset = meet_offset(tp->offset());
3793     PTR ptr = meet_ptr(tp->ptr());
3794     const TypePtr* speculative = xmeet_speculative(tp);
3795     int depth = meet_inline_depth(tp->inline_depth());
3796     switch (tp->ptr()) {
3797     case Null:
3798       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3799       // else fall through:
3800     case TopPTR:
3801     case AnyNull: {
3802       int instance_id = meet_instance_id(InstanceTop);
3803       return make(ptr, offset, instance_id, speculative, depth);
3804     }
3805     case BotPTR:
3806     case NotNull:
3807       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3808     default: typerr(t);
3809     }
3810   }
3811 
3812   case OopPtr: {                 // Meeting to other OopPtrs

3814     int instance_id = meet_instance_id(tp->instance_id());
3815     const TypePtr* speculative = xmeet_speculative(tp);
3816     int depth = meet_inline_depth(tp->inline_depth());
3817     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
3818   }
3819 
3820   case InstPtr:                  // For these, flip the call around to cut down
3821   case AryPtr:
3822     return t->xmeet(this);      // Call in reverse direction
3823 
3824   } // End of switch
3825   return this;                  // Return the double constant
3826 }
3827 
3828 
3829 //------------------------------xdual------------------------------------------
3830 // Dual of a pure heap pointer.  No relevant klass or oop information.
3831 const Type *TypeOopPtr::xdual() const {
3832   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
3833   assert(const_oop() == nullptr,             "no constants here");
3834   return new TypeOopPtr(_base, dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), Offset::bottom, dual_instance_id(), dual_speculative(), dual_inline_depth());
3835 }
3836 
3837 //--------------------------make_from_klass_common-----------------------------
3838 // Computes the element-type given a klass.
3839 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact, InterfaceHandling interface_handling) {
3840   if (klass->is_instance_klass() || klass->is_inlinetype()) {
3841     Compile* C = Compile::current();
3842     Dependencies* deps = C->dependencies();
3843     assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
3844     // Element is an instance
3845     bool klass_is_exact = false;
3846     if (klass->is_loaded()) {
3847       // Try to set klass_is_exact.
3848       ciInstanceKlass* ik = klass->as_instance_klass();
3849       klass_is_exact = ik->is_final();
3850       if (!klass_is_exact && klass_change
3851           && deps != nullptr && UseUniqueSubclasses) {
3852         ciInstanceKlass* sub = ik->unique_concrete_subklass();
3853         if (sub != nullptr) {
3854           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3855           klass = ik = sub;
3856           klass_is_exact = sub->is_final();
3857         }
3858       }
3859       if (!klass_is_exact && try_for_exact && deps != nullptr &&
3860           !ik->is_interface() && !ik->has_subklass()) {
3861         // Add a dependence; if concrete subclass added we need to recompile
3862         deps->assert_leaf_type(ik);
3863         klass_is_exact = true;
3864       }
3865     }
3866     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
3867     return TypeInstPtr::make(TypePtr::BotPTR, klass, interfaces, klass_is_exact, nullptr, Offset(0));
3868   } else if (klass->is_obj_array_klass()) {
3869     // Element is an object or inline type array. Recursively call ourself.
3870     const TypeOopPtr* etype = TypeOopPtr::make_from_klass_common(klass->as_array_klass()->element_klass(), /* klass_change= */ false, try_for_exact, interface_handling);
3871     // Determine null-free/flat properties
3872     const TypeOopPtr* exact_etype = etype;
3873     if (etype->can_be_inline_type()) {
3874       // Use exact type if element can be an inline type
3875       exact_etype = TypeOopPtr::make_from_klass_common(klass->as_array_klass()->element_klass(), /* klass_change= */ true, /* try_for_exact= */ true, interface_handling);
3876     }
3877     bool not_null_free = !exact_etype->can_be_inline_type();
3878     bool not_flat = !UseFlatArray || not_null_free || (exact_etype->is_inlinetypeptr() && !exact_etype->inline_klass()->flat_in_array());
3879     // Even though MyValue is final, [LMyValue is not exact because null-free [LMyValue is a subtype.
3880     bool xk = etype->klass_is_exact() && !etype->is_inlinetypeptr();
3881     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS, /* stable= */ false, /* flat= */ false, not_flat, not_null_free);
3882     // We used to pass NotNull in here, asserting that the sub-arrays
3883     // are all not-null.  This is not true in generally, as code can
3884     // slam nullptrs down in the subarrays.
3885     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, nullptr, xk, Offset(0));
3886     return arr;
3887   } else if (klass->is_type_array_klass()) {
3888     // Element is an typeArray
3889     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3890     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS,
3891                                         /* stable= */ false, /* flat= */ false, /* not_flat= */ true, /* not_null_free= */ true);
3892     // We used to pass NotNull in here, asserting that the array pointer
3893     // is not-null. That was not true in general.
3894     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, Offset(0));
3895     return arr;
3896   } else if (klass->is_flat_array_klass()) {
3897     const TypeOopPtr* etype = TypeOopPtr::make_from_klass_raw(klass->as_array_klass()->element_klass(), trust_interfaces);
3898     etype = etype->join_speculative(TypePtr::NOTNULL)->is_oopptr();
3899     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS, /* stable= */ false, /* flat= */ true);
3900     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, Offset(0));
3901     return arr;
3902   } else {
3903     ShouldNotReachHere();
3904     return nullptr;
3905   }
3906 }
3907 
3908 //------------------------------make_from_constant-----------------------------
3909 // Make a java pointer from an oop constant
3910 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
3911   assert(!o->is_null_object(), "null object not yet handled here.");
3912 
3913   const bool make_constant = require_constant || o->should_be_constant();
3914 
3915   ciKlass* klass = o->klass();
3916   if (klass->is_instance_klass() || klass->is_inlinetype()) {
3917     // Element is an instance or inline type
3918     if (make_constant) {
3919       return TypeInstPtr::make(o);
3920     } else {
3921       return TypeInstPtr::make(TypePtr::NotNull, klass, true, nullptr, Offset(0));
3922     }
3923   } else if (klass->is_obj_array_klass()) {
3924     // Element is an object array. Recursively call ourself.
3925     const TypeOopPtr* etype = TypeOopPtr::make_from_klass_raw(klass->as_array_klass()->element_klass(), trust_interfaces);
3926     bool is_flat = o->as_obj_array()->is_flat();
3927     bool is_null_free = o->as_obj_array()->is_null_free();
3928     if (is_null_free) {
3929       etype = etype->join_speculative(TypePtr::NOTNULL)->is_oopptr();
3930     }
3931     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()),
3932                                         /* stable= */ false, /* flat= */ false, /* not_flat= */ !is_flat, /* not_null_free= */ !is_null_free);
3933     // We used to pass NotNull in here, asserting that the sub-arrays
3934     // are all not-null.  This is not true in generally, as code can
3935     // slam nulls down in the subarrays.
3936     if (make_constant) {
3937       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3938     } else {
3939       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3940     }
3941   } else if (klass->is_type_array_klass()) {
3942     // Element is an typeArray
3943     const Type* etype = (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3944     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()),
3945                                         /* stable= */ false, /* flat= */ false, /* not_flat= */ true, /* not_null_free= */ true);
3946     // We used to pass NotNull in here, asserting that the array pointer
3947     // is not-null. That was not true in general.
3948     if (make_constant) {
3949       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3950     } else {
3951       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3952     }
3953   } else if (klass->is_flat_array_klass()) {
3954     const TypeOopPtr* etype = TypeOopPtr::make_from_klass_raw(klass->as_array_klass()->element_klass(), trust_interfaces);
3955     etype = etype->join_speculative(TypePtr::NOTNULL)->is_oopptr();
3956     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()), /* stable= */ false, /* flat= */ true);
3957     // We used to pass NotNull in here, asserting that the sub-arrays
3958     // are all not-null.  This is not true in generally, as code can
3959     // slam nullptrs down in the subarrays.
3960     if (make_constant) {
3961       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3962     } else {
3963       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3964     }
3965   }
3966 
3967   fatal("unhandled object type");
3968   return nullptr;
3969 }
3970 
3971 //------------------------------get_con----------------------------------------
3972 intptr_t TypeOopPtr::get_con() const {
3973   assert( _ptr == Null || _ptr == Constant, "" );
3974   assert(offset() >= 0, "");
3975 
3976   if (offset() != 0) {
3977     // After being ported to the compiler interface, the compiler no longer
3978     // directly manipulates the addresses of oops.  Rather, it only has a pointer
3979     // to a handle at compile time.  This handle is embedded in the generated
3980     // code and dereferenced at the time the nmethod is made.  Until that time,
3981     // it is not reasonable to do arithmetic with the addresses of oops (we don't
3982     // have access to the addresses!).  This does not seem to currently happen,
3983     // but this assertion here is to help prevent its occurrence.
3984     tty->print_cr("Found oop constant with non-zero offset");
3985     ShouldNotReachHere();
3986   }
3987 
3988   return (intptr_t)const_oop()->constant_encoding();
3989 }
3990 
3991 
3992 //-----------------------------filter------------------------------------------
3993 // Do not allow interface-vs.-noninterface joins to collapse to top.
3994 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
3995 
3996   const Type* ft = join_helper(kills, include_speculative);

4017   } else {
4018     return one->equals(two) && TypePtr::eq(t);
4019   }
4020 }
4021 
4022 //------------------------------hash-------------------------------------------
4023 // Type-specific hashing function.
4024 uint TypeOopPtr::hash(void) const {
4025   return
4026     (uint)(const_oop() ? const_oop()->hash() : 0) +
4027     (uint)_klass_is_exact +
4028     (uint)_instance_id + TypePtr::hash();
4029 }
4030 
4031 //------------------------------dump2------------------------------------------
4032 #ifndef PRODUCT
4033 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4034   st->print("oopptr:%s", ptr_msg[_ptr]);
4035   if( _klass_is_exact ) st->print(":exact");
4036   if( const_oop() ) st->print(INTPTR_FORMAT, p2i(const_oop()));
4037   _offset.dump2(st);





4038   if (_instance_id == InstanceTop)
4039     st->print(",iid=top");
4040   else if (_instance_id != InstanceBot)
4041     st->print(",iid=%d",_instance_id);
4042 
4043   dump_inline_depth(st);
4044   dump_speculative(st);
4045 }
4046 #endif
4047 
4048 //------------------------------singleton--------------------------------------
4049 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4050 // constants
4051 bool TypeOopPtr::singleton(void) const {
4052   // detune optimizer to not generate constant oop + constant offset as a constant!
4053   // TopPTR, Null, AnyNull, Constant are all singletons
4054   return (offset() == 0) && !below_centerline(_ptr);
4055 }
4056 
4057 //------------------------------add_offset-------------------------------------
4058 const TypePtr* TypeOopPtr::add_offset(intptr_t offset) const {
4059   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
4060 }
4061 
4062 const TypeOopPtr* TypeOopPtr::with_offset(intptr_t offset) const {
4063   return make(_ptr, Offset(offset), _instance_id, with_offset_speculative(offset), _inline_depth);
4064 }
4065 
4066 /**
4067  * Return same type without a speculative part
4068  */
4069 const TypeOopPtr* TypeOopPtr::remove_speculative() const {
4070   if (_speculative == nullptr) {
4071     return this;
4072   }
4073   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4074   return make(_ptr, _offset, _instance_id, nullptr, _inline_depth);
4075 }
4076 
4077 /**
4078  * Return same type but drop speculative part if we know we won't use
4079  * it
4080  */
4081 const Type* TypeOopPtr::cleanup_speculative() const {
4082   // If the klass is exact and the ptr is not null then there's
4083   // nothing that the speculative type can help us with

4156 const TypeInstPtr *TypeInstPtr::BOTTOM;
4157 const TypeInstPtr *TypeInstPtr::MIRROR;
4158 const TypeInstPtr *TypeInstPtr::MARK;
4159 const TypeInstPtr *TypeInstPtr::KLASS;
4160 
4161 // Is there a single ciKlass* that can represent that type?
4162 ciKlass* TypeInstPtr::exact_klass_helper() const {
4163   if (_interfaces->empty()) {
4164     return _klass;
4165   }
4166   if (_klass != ciEnv::current()->Object_klass()) {
4167     if (_interfaces->eq(_klass->as_instance_klass())) {
4168       return _klass;
4169     }
4170     return nullptr;
4171   }
4172   return _interfaces->exact_klass();
4173 }
4174 
4175 //------------------------------TypeInstPtr-------------------------------------
4176 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset off,
4177                          bool flat_in_array, int instance_id, const TypePtr* speculative, int inline_depth)
4178   : TypeOopPtr(InstPtr, ptr, k, interfaces, xk, o, off, Offset::bottom, instance_id, speculative, inline_depth),
4179     _flat_in_array(flat_in_array) {
4180   assert(k == nullptr || !k->is_loaded() || !k->is_interface(), "no interface here");
4181   assert(k != nullptr &&
4182          (k->is_loaded() || o == nullptr),
4183          "cannot have constants with non-loaded klass");
4184   assert(!klass()->flat_in_array() || flat_in_array, "Should be flat in array");
4185   assert(!flat_in_array || can_be_inline_type(), "Only inline types can be flat in array");
4186 };
4187 
4188 //------------------------------make-------------------------------------------
4189 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
4190                                      ciKlass* k,
4191                                      const TypeInterfaces* interfaces,
4192                                      bool xk,
4193                                      ciObject* o,
4194                                      Offset offset,
4195                                      bool flat_in_array,
4196                                      int instance_id,
4197                                      const TypePtr* speculative,
4198                                      int inline_depth) {
4199   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
4200   // Either const_oop() is null or else ptr is Constant
4201   assert( (!o && ptr != Constant) || (o && ptr == Constant),
4202           "constant pointers must have a value supplied" );
4203   // Ptr is never Null
4204   assert( ptr != Null, "null pointers are not typed" );
4205 
4206   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4207   if (ptr == Constant) {
4208     // Note:  This case includes meta-object constants, such as methods.
4209     xk = true;
4210   } else if (k->is_loaded()) {
4211     ciInstanceKlass* ik = k->as_instance_klass();
4212     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
4213     assert(!ik->is_interface(), "no interface here");
4214     if (xk && ik->is_interface())  xk = false;  // no exact interface
4215   }
4216 
4217   // Check if this type is known to be flat in arrays
4218   flat_in_array = flat_in_array || k->flat_in_array();
4219 
4220   // Now hash this baby
4221   TypeInstPtr *result =
4222     (TypeInstPtr*)(new TypeInstPtr(ptr, k, interfaces, xk, o, offset, flat_in_array, instance_id, speculative, inline_depth))->hashcons();
4223 
4224   return result;
4225 }
4226 
4227 const TypeInterfaces* TypePtr::interfaces(ciKlass*& k, bool klass, bool interface, bool array, InterfaceHandling interface_handling) {
4228   if (k->is_instance_klass()) {
4229     if (k->is_loaded()) {
4230       if (k->is_interface() && interface_handling == ignore_interfaces) {
4231         assert(interface, "no interface expected");
4232         k = ciEnv::current()->Object_klass();
4233         const TypeInterfaces* interfaces = TypeInterfaces::make();
4234         return interfaces;
4235       }
4236       GrowableArray<ciInstanceKlass *>* k_interfaces = k->as_instance_klass()->transitive_interfaces();
4237       const TypeInterfaces* interfaces = TypeInterfaces::make(k_interfaces);
4238       if (k->is_interface()) {
4239         assert(interface, "no interface expected");
4240         k = ciEnv::current()->Object_klass();
4241       } else {
4242         assert(klass, "no instance klass expected");

4268   switch (bt) {
4269     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
4270     case T_INT:      return TypeInt::make(constant.as_int());
4271     case T_CHAR:     return TypeInt::make(constant.as_char());
4272     case T_BYTE:     return TypeInt::make(constant.as_byte());
4273     case T_SHORT:    return TypeInt::make(constant.as_short());
4274     case T_FLOAT:    return TypeF::make(constant.as_float());
4275     case T_DOUBLE:   return TypeD::make(constant.as_double());
4276     case T_LONG:     return TypeLong::make(constant.as_long());
4277     default:         break;
4278   }
4279   fatal("Invalid boxed value type '%s'", type2name(bt));
4280   return nullptr;
4281 }
4282 
4283 //------------------------------cast_to_ptr_type-------------------------------
4284 const TypeInstPtr* TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
4285   if( ptr == _ptr ) return this;
4286   // Reconstruct _sig info here since not a problem with later lazy
4287   // construction, _sig will show up on demand.
4288   return make(ptr, klass(), _interfaces, klass_is_exact(), ptr == Constant ? const_oop() : nullptr, _offset, _flat_in_array, _instance_id, _speculative, _inline_depth);
4289 }
4290 
4291 
4292 //-----------------------------cast_to_exactness-------------------------------
4293 const TypeInstPtr* TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
4294   if( klass_is_exact == _klass_is_exact ) return this;
4295   if (!_klass->is_loaded())  return this;
4296   ciInstanceKlass* ik = _klass->as_instance_klass();
4297   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
4298   assert(!ik->is_interface(), "no interface here");
4299   return make(ptr(), klass(), _interfaces, klass_is_exact, const_oop(), _offset, _flat_in_array, _instance_id, _speculative, _inline_depth);
4300 }
4301 
4302 //-----------------------------cast_to_instance_id----------------------------
4303 const TypeInstPtr* TypeInstPtr::cast_to_instance_id(int instance_id) const {
4304   if( instance_id == _instance_id ) return this;
4305   return make(_ptr, klass(), _interfaces, _klass_is_exact, const_oop(), _offset, _flat_in_array, instance_id, _speculative, _inline_depth);
4306 }
4307 
4308 //------------------------------xmeet_unloaded---------------------------------
4309 // Compute the MEET of two InstPtrs when at least one is unloaded.
4310 // Assume classes are different since called after check for same name/class-loader
4311 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst, const TypeInterfaces* interfaces) const {
4312   Offset off = meet_offset(tinst->offset());
4313   PTR ptr = meet_ptr(tinst->ptr());
4314   int instance_id = meet_instance_id(tinst->instance_id());
4315   const TypePtr* speculative = xmeet_speculative(tinst);
4316   int depth = meet_inline_depth(tinst->inline_depth());
4317 
4318   const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
4319   const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
4320   if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
4321     //
4322     // Meet unloaded class with java/lang/Object
4323     //
4324     // Meet
4325     //          |                     Unloaded Class
4326     //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
4327     //  ===================================================================
4328     //   TOP    | ..........................Unloaded......................|
4329     //  AnyNull |  U-AN    |................Unloaded......................|
4330     // Constant | ... O-NN .................................. |   O-BOT   |
4331     //  NotNull | ... O-NN .................................. |   O-BOT   |
4332     //  BOTTOM  | ........................Object-BOTTOM ..................|
4333     //
4334     assert(loaded->ptr() != TypePtr::Null, "insanity check");
4335     //
4336     if (loaded->ptr() == TypePtr::TopPTR)        { return unloaded->with_speculative(speculative); }
4337     else if (loaded->ptr() == TypePtr::AnyNull)  { return make(ptr, unloaded->klass(), interfaces, false, nullptr, off, false, instance_id, speculative, depth); }
4338     else if (loaded->ptr() == TypePtr::BotPTR)   { return TypeInstPtr::BOTTOM->with_speculative(speculative); }
4339     else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
4340       if (unloaded->ptr() == TypePtr::BotPTR)    { return TypeInstPtr::BOTTOM->with_speculative(speculative);  }
4341       else                                       { return TypeInstPtr::NOTNULL->with_speculative(speculative); }
4342     }
4343     else if (unloaded->ptr() == TypePtr::TopPTR) { return unloaded->with_speculative(speculative); }
4344 
4345     return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr()->with_speculative(speculative);
4346   }
4347 
4348   // Both are unloaded, not the same class, not Object
4349   // Or meet unloaded with a different loaded class, not java/lang/Object
4350   if (ptr != TypePtr::BotPTR) {
4351     return TypeInstPtr::NOTNULL->with_speculative(speculative);
4352   }
4353   return TypeInstPtr::BOTTOM->with_speculative(speculative);
4354 }
4355 
4356 
4357 //------------------------------meet-------------------------------------------

4378   case Top:
4379     return this;
4380 
4381   default:                      // All else is a mistake
4382     typerr(t);
4383 
4384   case MetadataPtr:
4385   case KlassPtr:
4386   case InstKlassPtr:
4387   case AryKlassPtr:
4388   case RawPtr: return TypePtr::BOTTOM;
4389 
4390   case AryPtr: {                // All arrays inherit from Object class
4391     // Call in reverse direction to avoid duplication
4392     return t->is_aryptr()->xmeet_helper(this);
4393   }
4394 
4395   case OopPtr: {                // Meeting to OopPtrs
4396     // Found a OopPtr type vs self-InstPtr type
4397     const TypeOopPtr *tp = t->is_oopptr();
4398     Offset offset = meet_offset(tp->offset());
4399     PTR ptr = meet_ptr(tp->ptr());
4400     switch (tp->ptr()) {
4401     case TopPTR:
4402     case AnyNull: {
4403       int instance_id = meet_instance_id(InstanceTop);
4404       const TypePtr* speculative = xmeet_speculative(tp);
4405       int depth = meet_inline_depth(tp->inline_depth());
4406       return make(ptr, klass(), _interfaces, klass_is_exact(),
4407                   (ptr == Constant ? const_oop() : nullptr), offset, flat_in_array(), instance_id, speculative, depth);
4408     }
4409     case NotNull:
4410     case BotPTR: {
4411       int instance_id = meet_instance_id(tp->instance_id());
4412       const TypePtr* speculative = xmeet_speculative(tp);
4413       int depth = meet_inline_depth(tp->inline_depth());
4414       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4415     }
4416     default: typerr(t);
4417     }
4418   }
4419 
4420   case AnyPtr: {                // Meeting to AnyPtrs
4421     // Found an AnyPtr type vs self-InstPtr type
4422     const TypePtr *tp = t->is_ptr();
4423     Offset offset = meet_offset(tp->offset());
4424     PTR ptr = meet_ptr(tp->ptr());
4425     int instance_id = meet_instance_id(InstanceTop);
4426     const TypePtr* speculative = xmeet_speculative(tp);
4427     int depth = meet_inline_depth(tp->inline_depth());
4428     switch (tp->ptr()) {
4429     case Null:
4430       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4431       // else fall through to AnyNull
4432     case TopPTR:
4433     case AnyNull: {
4434       return make(ptr, klass(), _interfaces, klass_is_exact(),
4435                   (ptr == Constant ? const_oop() : nullptr), offset, flat_in_array(), instance_id, speculative, depth);
4436     }
4437     case NotNull:
4438     case BotPTR:
4439       return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
4440     default: typerr(t);
4441     }
4442   }
4443 
4444   /*
4445                  A-top         }
4446                /   |   \       }  Tops
4447            B-top A-any C-top   }
4448               | /  |  \ |      }  Any-nulls
4449            B-any   |   C-any   }
4450               |    |    |
4451            B-con A-con C-con   } constants; not comparable across classes
4452               |    |    |
4453            B-not   |   C-not   }
4454               | \  |  / |      }  not-nulls
4455            B-bot A-not C-bot   }
4456                \   |   /       }  Bottoms
4457                  A-bot         }
4458   */
4459 
4460   case InstPtr: {                // Meeting 2 Oops?
4461     // Found an InstPtr sub-type vs self-InstPtr type
4462     const TypeInstPtr *tinst = t->is_instptr();
4463     Offset off = meet_offset(tinst->offset());
4464     PTR ptr = meet_ptr(tinst->ptr());
4465     int instance_id = meet_instance_id(tinst->instance_id());
4466     const TypePtr* speculative = xmeet_speculative(tinst);
4467     int depth = meet_inline_depth(tinst->inline_depth());
4468     const TypeInterfaces* interfaces = meet_interfaces(tinst);
4469 
4470     ciKlass* tinst_klass = tinst->klass();
4471     ciKlass* this_klass  = klass();
4472 
4473     ciKlass* res_klass = nullptr;
4474     bool res_xk = false;
4475     bool res_flat_in_array = false;
4476     const Type* res;
4477     MeetResult kind = meet_instptr(ptr, interfaces, this, tinst, res_klass, res_xk, res_flat_in_array);
4478 
4479     if (kind == UNLOADED) {
4480       // One of these classes has not been loaded
4481       const TypeInstPtr* unloaded_meet = xmeet_unloaded(tinst, interfaces);
4482 #ifndef PRODUCT
4483       if (PrintOpto && Verbose) {
4484         tty->print("meet of unloaded classes resulted in: ");
4485         unloaded_meet->dump();
4486         tty->cr();
4487         tty->print("  this == ");
4488         dump();
4489         tty->cr();
4490         tty->print(" tinst == ");
4491         tinst->dump();
4492         tty->cr();
4493       }
4494 #endif
4495       res = unloaded_meet;
4496     } else {
4497       if (kind == NOT_SUBTYPE && instance_id > 0) {
4498         instance_id = InstanceBot;
4499       } else if (kind == LCA) {
4500         instance_id = InstanceBot;
4501       }
4502       ciObject* o = nullptr;             // Assume not constant when done
4503       ciObject* this_oop = const_oop();
4504       ciObject* tinst_oop = tinst->const_oop();
4505       if (ptr == Constant) {
4506         if (this_oop != nullptr && tinst_oop != nullptr &&
4507             this_oop->equals(tinst_oop))
4508           o = this_oop;
4509         else if (above_centerline(_ptr)) {
4510           assert(!tinst_klass->is_interface(), "");
4511           o = tinst_oop;
4512         } else if (above_centerline(tinst->_ptr)) {
4513           assert(!this_klass->is_interface(), "");
4514           o = this_oop;
4515         } else
4516           ptr = NotNull;
4517       }
4518       res = make(ptr, res_klass, interfaces, res_xk, o, off, res_flat_in_array, instance_id, speculative, depth);
4519     }
4520 
4521     return res;
4522 
4523   } // End of case InstPtr
4524 
4525   } // End of switch
4526   return this;                  // Return the double constant
4527 }
4528 
4529 template<class T> TypePtr::MeetResult TypePtr::meet_instptr(PTR& ptr, const TypeInterfaces*& interfaces, const T* this_type, const T* other_type,
4530                                                             ciKlass*& res_klass, bool& res_xk, bool& res_flat_in_array) {
4531   ciKlass* this_klass = this_type->klass();
4532   ciKlass* other_klass = other_type->klass();
4533   const bool this_flat_in_array = this_type->flat_in_array();
4534   const bool other_flat_in_array = other_type->flat_in_array();
4535   const bool this_not_flat_in_array = this_type->not_flat_in_array();
4536   const bool other_not_flat_in_array = other_type->not_flat_in_array();
4537 
4538   bool this_xk = this_type->klass_is_exact();
4539   bool other_xk = other_type->klass_is_exact();
4540   PTR this_ptr = this_type->ptr();
4541   PTR other_ptr = other_type->ptr();
4542   const TypeInterfaces* this_interfaces = this_type->interfaces();
4543   const TypeInterfaces* other_interfaces = other_type->interfaces();
4544   // Check for easy case; klasses are equal (and perhaps not loaded!)
4545   // If we have constants, then we created oops so classes are loaded
4546   // and we can handle the constants further down.  This case handles
4547   // both-not-loaded or both-loaded classes
4548   if (ptr != Constant && this_klass->equals(other_klass) && this_xk == other_xk && this_flat_in_array == other_flat_in_array) {
4549     res_klass = this_klass;
4550     res_xk = this_xk;
4551     res_flat_in_array = this_flat_in_array;
4552     return QUICK;
4553   }
4554 
4555   // Classes require inspection in the Java klass hierarchy.  Must be loaded.
4556   if (!other_klass->is_loaded() || !this_klass->is_loaded()) {
4557     return UNLOADED;
4558   }
4559 
4560   // !!! Here's how the symmetry requirement breaks down into invariants:
4561   // If we split one up & one down AND they subtype, take the down man.
4562   // If we split one up & one down AND they do NOT subtype, "fall hard".
4563   // If both are up and they subtype, take the subtype class.
4564   // If both are up and they do NOT subtype, "fall hard".
4565   // If both are down and they subtype, take the supertype class.
4566   // If both are down and they do NOT subtype, "fall hard".
4567   // Constants treated as down.
4568 
4569   // Now, reorder the above list; observe that both-down+subtype is also
4570   // "fall hard"; "fall hard" becomes the default case:
4571   // If we split one up & one down AND they subtype, take the down man.
4572   // If both are up and they subtype, take the subtype class.
4573 
4574   // If both are down and they subtype, "fall hard".
4575   // If both are down and they do NOT subtype, "fall hard".
4576   // If both are up and they do NOT subtype, "fall hard".
4577   // If we split one up & one down AND they do NOT subtype, "fall hard".
4578 
4579   // If a proper subtype is exact, and we return it, we return it exactly.
4580   // If a proper supertype is exact, there can be no subtyping relationship!
4581   // If both types are equal to the subtype, exactness is and-ed below the
4582   // centerline and or-ed above it.  (N.B. Constants are always exact.)
4583 
4584   // Check for subtyping:
4585   // Flat in array matrix, yes = y, no = n, maybe = m, top/empty = T:
4586   //        yes maybe no   -> Super Klass
4587   //   yes   y    y    y
4588   // maybe   y    m    m
4589   //    no   T    n    n
4590   //    |
4591   //    v
4592   // Sub Klass
4593 
4594   const T* subtype = nullptr;
4595   bool subtype_exact = false;
4596   bool flat_in_array = false;
4597   if (this_type->is_same_java_type_as(other_type)) {
4598     subtype = this_type;
4599     subtype_exact = below_centerline(ptr) ? (this_xk && other_xk) : (this_xk || other_xk);
4600     flat_in_array = below_centerline(ptr) ? (this_flat_in_array && other_flat_in_array) : (this_flat_in_array || other_flat_in_array);
4601   } else if (!other_xk && is_meet_subtype_of(this_type, other_type)) {
4602     subtype = this_type;     // Pick subtyping class
4603     subtype_exact = this_xk;
4604     bool other_flat_this_maybe_flat = other_flat_in_array && (!this_flat_in_array && !this_not_flat_in_array);
4605     flat_in_array = this_flat_in_array || other_flat_this_maybe_flat;
4606   } else if (!this_xk && is_meet_subtype_of(other_type, this_type)) {
4607     subtype = other_type;    // Pick subtyping class
4608     subtype_exact = other_xk;
4609     bool this_flat_other_maybe_flat = this_flat_in_array && (!other_flat_in_array && !other_not_flat_in_array);
4610     flat_in_array = other_flat_in_array || this_flat_other_maybe_flat;
4611   }
4612 
4613   if (subtype) {
4614     if (above_centerline(ptr)) {
4615       // Both types are empty.
4616       this_type = other_type = subtype;
4617       this_xk = other_xk = subtype_exact;
4618     } else if (above_centerline(this_ptr) && !above_centerline(other_ptr)) {
4619       // this_type is empty while other_type is not. Take other_type.
4620       this_type = other_type;
4621       this_xk = other_xk;
4622       flat_in_array = other_flat_in_array;
4623     } else if (above_centerline(other_ptr) && !above_centerline(this_ptr)) {
4624       // other_type is empty while this_type is not. Take this_type.
4625       other_type = this_type; // this is down; keep down man
4626       flat_in_array = this_flat_in_array;
4627     } else {
4628       // this_type and other_type are both non-empty.
4629       this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
4630     }
4631   }
4632 
4633   // Check for classes now being equal
4634   if (this_type->is_same_java_type_as(other_type)) {
4635     // If the klasses are equal, the constants may still differ.  Fall to
4636     // NotNull if they do (neither constant is null; that is a special case
4637     // handled elsewhere).
4638     res_klass = this_type->klass();
4639     res_xk = this_xk;
4640     res_flat_in_array = subtype ? flat_in_array : this_flat_in_array;
4641     return SUBTYPE;
4642   } // Else classes are not equal
4643 
4644   // Since klasses are different, we require a LCA in the Java
4645   // class hierarchy - which means we have to fall to at least NotNull.
4646   if (ptr == TopPTR || ptr == AnyNull || ptr == Constant) {
4647     ptr = NotNull;
4648   }
4649 
4650   interfaces = this_interfaces->intersection_with(other_interfaces);
4651 
4652   // Now we find the LCA of Java classes
4653   ciKlass* k = this_klass->least_common_ancestor(other_klass);
4654 
4655   res_klass = k;
4656   res_xk = false;
4657   res_flat_in_array = this_flat_in_array && other_flat_in_array;
4658 
4659   return LCA;
4660 }
4661 
4662 template<class T> bool TypePtr::is_meet_subtype_of(const T* sub_type, const T* super_type) {
4663   return sub_type->is_meet_subtype_of(super_type) && !(super_type->flat_in_array() && sub_type->not_flat_in_array());
4664 }
4665 
4666 //------------------------java_mirror_type--------------------------------------
4667 ciType* TypeInstPtr::java_mirror_type(bool* is_null_free_array) const {
4668   // must be a singleton type
4669   if( const_oop() == nullptr )  return nullptr;
4670 
4671   // must be of type java.lang.Class
4672   if( klass() != ciEnv::current()->Class_klass() )  return nullptr;
4673   return const_oop()->as_instance()->java_mirror_type(is_null_free_array);

4674 }
4675 
4676 
4677 //------------------------------xdual------------------------------------------
4678 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
4679 // inheritance mechanism.
4680 const Type *TypeInstPtr::xdual() const {
4681   return new TypeInstPtr(dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), flat_in_array(), dual_instance_id(), dual_speculative(), dual_inline_depth());
4682 }
4683 
4684 //------------------------------eq---------------------------------------------
4685 // Structural equality check for Type representations
4686 bool TypeInstPtr::eq( const Type *t ) const {
4687   const TypeInstPtr *p = t->is_instptr();
4688   return
4689     klass()->equals(p->klass()) &&
4690     flat_in_array() == p->flat_in_array() &&
4691     _interfaces->eq(p->_interfaces) &&
4692     TypeOopPtr::eq(p);          // Check sub-type stuff
4693 }
4694 
4695 //------------------------------hash-------------------------------------------
4696 // Type-specific hashing function.
4697 uint TypeInstPtr::hash(void) const {
4698   return klass()->hash() + TypeOopPtr::hash() + _interfaces->hash() + (uint)flat_in_array();
4699 }
4700 
4701 bool TypeInstPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4702   return TypePtr::is_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
4703 }
4704 
4705 
4706 bool TypeInstPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const {
4707   return TypePtr::is_same_java_type_as_helper_for_instance(this, other);
4708 }
4709 
4710 bool TypeInstPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4711   return TypePtr::maybe_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
4712 }
4713 
4714 
4715 //------------------------------dump2------------------------------------------
4716 // Dump oop Type
4717 #ifndef PRODUCT
4718 void TypeInstPtr::dump2(Dict &d, uint depth, outputStream* st) const {

4732       // suppress newlines from it so -XX:+Verbose -XX:+PrintIdeal dumps one-liner for each node.
4733       char* buf = ss.as_string(/* c_heap= */false);
4734       StringUtils::replace_no_expand(buf, "\n", "");
4735       st->print_raw(buf);
4736     }
4737   case BotPTR:
4738     if (!WizardMode && !Verbose) {
4739       if( _klass_is_exact ) st->print(":exact");
4740       break;
4741     }
4742   case TopPTR:
4743   case AnyNull:
4744   case NotNull:
4745     st->print(":%s", ptr_msg[_ptr]);
4746     if( _klass_is_exact ) st->print(":exact");
4747     break;
4748   default:
4749     break;
4750   }
4751 
4752   _offset.dump2(st);




4753 
4754   st->print(" *");
4755 
4756   if (flat_in_array() && !klass()->is_inlinetype()) {
4757     st->print(" (flat in array)");
4758   }
4759 
4760   if (_instance_id == InstanceTop)
4761     st->print(",iid=top");
4762   else if (_instance_id != InstanceBot)
4763     st->print(",iid=%d",_instance_id);
4764 
4765   dump_inline_depth(st);
4766   dump_speculative(st);
4767 }
4768 #endif
4769 
4770 //------------------------------add_offset-------------------------------------
4771 const TypePtr* TypeInstPtr::add_offset(intptr_t offset) const {
4772   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), xadd_offset(offset), flat_in_array(),
4773               _instance_id, add_offset_speculative(offset), _inline_depth);
4774 }
4775 
4776 const TypeInstPtr* TypeInstPtr::with_offset(intptr_t offset) const {
4777   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), Offset(offset), flat_in_array(),
4778               _instance_id, with_offset_speculative(offset), _inline_depth);
4779 }
4780 
4781 const TypeInstPtr* TypeInstPtr::remove_speculative() const {
4782   if (_speculative == nullptr) {
4783     return this;
4784   }
4785   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4786   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, flat_in_array(),
4787               _instance_id, nullptr, _inline_depth);
4788 }
4789 
4790 const TypeInstPtr* TypeInstPtr::with_speculative(const TypePtr* speculative) const {
4791   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, flat_in_array(), _instance_id, speculative, _inline_depth);
4792 }
4793 
4794 const TypePtr* TypeInstPtr::with_inline_depth(int depth) const {
4795   if (!UseInlineDepthForSpeculativeTypes) {
4796     return this;
4797   }
4798   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, flat_in_array(), _instance_id, _speculative, depth);
4799 }
4800 
4801 const TypePtr* TypeInstPtr::with_instance_id(int instance_id) const {
4802   assert(is_known_instance(), "should be known");
4803   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, flat_in_array(), instance_id, _speculative, _inline_depth);
4804 }
4805 
4806 const TypeInstPtr *TypeInstPtr::cast_to_flat_in_array() const {
4807   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, true, _instance_id, _speculative, _inline_depth);
4808 }
4809 
4810 const TypeKlassPtr* TypeInstPtr::as_klass_type(bool try_for_exact) const {
4811   bool xk = klass_is_exact();
4812   ciInstanceKlass* ik = klass()->as_instance_klass();
4813   if (try_for_exact && !xk && !ik->has_subklass() && !ik->is_final()) {
4814     if (_interfaces->eq(ik)) {
4815       Compile* C = Compile::current();
4816       Dependencies* deps = C->dependencies();
4817       deps->assert_leaf_type(ik);
4818       xk = true;
4819     }
4820   }
4821   return TypeInstKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, klass(), _interfaces, Offset(0), flat_in_array());
4822 }
4823 
4824 template <class T1, class T2> bool TypePtr::is_meet_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_xk, bool other_xk) {
4825   static_assert(std::is_base_of<T2, T1>::value, "");
4826 
4827   if (!this_one->is_instance_type(other)) {
4828     return false;
4829   }
4830 
4831   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty()) {
4832     return true;
4833   }
4834 
4835   return this_one->klass()->is_subtype_of(other->klass()) &&
4836          (!this_xk || this_one->_interfaces->contains(other->_interfaces));
4837 }
4838 
4839 
4840 bool TypeInstPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const {
4841   return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk);

4846   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty()) {
4847     return true;
4848   }
4849 
4850   if (this_one->is_instance_type(other)) {
4851     return other->klass() == ciEnv::current()->Object_klass() && this_one->_interfaces->contains(other->_interfaces);
4852   }
4853 
4854   int dummy;
4855   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
4856   if (this_top_or_bottom) {
4857     return false;
4858   }
4859 
4860   const T1* other_ary = this_one->is_array_type(other);
4861   const TypePtr* other_elem = other_ary->elem()->make_ptr();
4862   const TypePtr* this_elem = this_one->elem()->make_ptr();
4863   if (other_elem != nullptr && this_elem != nullptr) {
4864     return this_one->is_reference_type(this_elem)->is_meet_subtype_of_helper(this_one->is_reference_type(other_elem), this_xk, other_xk);
4865   }

4866   if (other_elem == nullptr && this_elem == nullptr) {
4867     return this_one->klass()->is_subtype_of(other->klass());
4868   }
4869 
4870   return false;
4871 }
4872 
4873 bool TypeAryPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const {
4874   return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk);
4875 }
4876 
4877 bool TypeInstKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const {
4878   return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk);
4879 }
4880 
4881 bool TypeAryKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const {
4882   return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk);
4883 }
4884 
4885 //=============================================================================
4886 // Convenience common pre-built types.
4887 const TypeAryPtr *TypeAryPtr::RANGE;
4888 const TypeAryPtr *TypeAryPtr::OOPS;
4889 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
4890 const TypeAryPtr *TypeAryPtr::BYTES;
4891 const TypeAryPtr *TypeAryPtr::SHORTS;
4892 const TypeAryPtr *TypeAryPtr::CHARS;
4893 const TypeAryPtr *TypeAryPtr::INTS;
4894 const TypeAryPtr *TypeAryPtr::LONGS;
4895 const TypeAryPtr *TypeAryPtr::FLOATS;
4896 const TypeAryPtr *TypeAryPtr::DOUBLES;
4897 const TypeAryPtr *TypeAryPtr::INLINES;
4898 
4899 //------------------------------make-------------------------------------------
4900 const TypeAryPtr* TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, Offset offset, Offset field_offset,
4901                                    int instance_id, const TypePtr* speculative, int inline_depth) {
4902   assert(!(k == nullptr && ary->_elem->isa_int()),
4903          "integral arrays must be pre-equipped with a class");
4904   if (!xk)  xk = ary->ary_must_be_exact();
4905   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4906   if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() &&
4907       k->as_obj_array_klass()->base_element_klass()->is_interface()) {
4908     k = nullptr;
4909   }
4910   if (k != nullptr && k->is_flat_array_klass() && !ary->_flat) {
4911     k = nullptr;
4912   }
4913   return (TypeAryPtr*)(new TypeAryPtr(ptr, nullptr, ary, k, xk, offset, field_offset, instance_id, false, speculative, inline_depth))->hashcons();
4914 }
4915 
4916 //------------------------------make-------------------------------------------
4917 const TypeAryPtr* TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, Offset offset, Offset field_offset,
4918                                    int instance_id, const TypePtr* speculative, int inline_depth,
4919                                    bool is_autobox_cache) {
4920   assert(!(k == nullptr && ary->_elem->isa_int()),
4921          "integral arrays must be pre-equipped with a class");
4922   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
4923   if (!xk)  xk = (o != nullptr) || ary->ary_must_be_exact();
4924   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4925   if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() &&
4926       k->as_obj_array_klass()->base_element_klass()->is_interface()) {
4927     k = nullptr;
4928   }
4929   if (k != nullptr && k->is_flat_array_klass() && !ary->_flat) {
4930     k = nullptr;
4931   }
4932   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, field_offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
4933 }
4934 
4935 //------------------------------cast_to_ptr_type-------------------------------
4936 const TypeAryPtr* TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
4937   if( ptr == _ptr ) return this;
4938   return make(ptr, ptr == Constant ? const_oop() : nullptr, _ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4939 }
4940 
4941 
4942 //-----------------------------cast_to_exactness-------------------------------
4943 const TypeAryPtr* TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
4944   if( klass_is_exact == _klass_is_exact ) return this;
4945   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
4946   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4947 }
4948 
4949 //-----------------------------cast_to_instance_id----------------------------
4950 const TypeAryPtr* TypeAryPtr::cast_to_instance_id(int instance_id) const {
4951   if( instance_id == _instance_id ) return this;
4952   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, _field_offset, instance_id, _speculative, _inline_depth, _is_autobox_cache);
4953 }
4954 
4955 
4956 //-----------------------------max_array_length-------------------------------
4957 // A wrapper around arrayOopDesc::max_array_length(etype) with some input normalization.
4958 jint TypeAryPtr::max_array_length(BasicType etype) {
4959   if (!is_java_primitive(etype) && !::is_reference_type(etype)) {
4960     if (etype == T_NARROWOOP) {
4961       etype = T_OBJECT;
4962     } else if (etype == T_ILLEGAL) { // bottom[]
4963       etype = T_BYTE; // will produce conservatively high value
4964     } else {
4965       fatal("not an element type: %s", type2name(etype));
4966     }
4967   }
4968   return arrayOopDesc::max_array_length(etype);
4969 }
4970 
4971 //-----------------------------narrow_size_type-------------------------------
4972 // Narrow the given size type to the index range for the given array base type.

4988   if (hi > max_hi) {
4989     hi = max_hi;
4990     if (size->is_con()) {
4991       lo = hi;
4992     }
4993     chg = true;
4994   }
4995   // Negative length arrays will produce weird intermediate dead fast-path code
4996   if (lo > hi)
4997     return TypeInt::ZERO;
4998   if (!chg)
4999     return size;
5000   return TypeInt::make(lo, hi, Type::WidenMin);
5001 }
5002 
5003 //-------------------------------cast_to_size----------------------------------
5004 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
5005   assert(new_size != nullptr, "");
5006   new_size = narrow_size_type(new_size);
5007   if (new_size == size())  return this;
5008   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable(), is_flat(), is_not_flat(), is_not_null_free());
5009   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5010 }
5011 
5012 //-------------------------------cast_to_not_flat------------------------------
5013 const TypeAryPtr* TypeAryPtr::cast_to_not_flat(bool not_flat) const {
5014   if (not_flat == is_not_flat()) {
5015     return this;
5016   }
5017   assert(!not_flat || !is_flat(), "inconsistency");
5018   const TypeAry* new_ary = TypeAry::make(elem(), size(), is_stable(), is_flat(), not_flat, is_not_null_free());
5019   const TypeAryPtr* res = make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5020   // We keep the speculative part if it contains information about flat-/nullability.
5021   // Make sure it's removed if it's not better than the non-speculative type anymore.
5022   if (res->speculative() == res->remove_speculative()) {
5023     return res->remove_speculative();
5024   }
5025   return res;
5026 }
5027 
5028 //-------------------------------cast_to_not_null_free-------------------------
5029 const TypeAryPtr* TypeAryPtr::cast_to_not_null_free(bool not_null_free) const {
5030   if (not_null_free == is_not_null_free()) {
5031     return this;
5032   }
5033   assert(!not_null_free || !is_flat(), "inconsistency");
5034   const TypeAry* new_ary = TypeAry::make(elem(), size(), is_stable(), is_flat(), /* not_flat= */ not_null_free ? true : is_not_flat(), not_null_free);
5035   const TypeAryPtr* res = make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset,
5036                                _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5037   // We keep the speculative part if it contains information about flat-/nullability.
5038   // Make sure it's removed if it's not better than the non-speculative type anymore.
5039   if (res->speculative() == res->remove_speculative()) {
5040     return res->remove_speculative();
5041   }
5042   return res;
5043 }
5044 
5045 //---------------------------------update_properties---------------------------
5046 const TypeAryPtr* TypeAryPtr::update_properties(const TypeAryPtr* from) const {
5047   if ((from->is_flat()          && is_not_flat()) ||
5048       (from->is_not_flat()      && is_flat()) ||
5049       (from->is_null_free()     && is_not_null_free()) ||
5050       (from->is_not_null_free() && is_null_free())) {
5051     return nullptr; // Inconsistent properties
5052   } else if (from->is_not_null_free()) {
5053     return cast_to_not_null_free(); // Implies not flat
5054   } else if (from->is_not_flat()) {
5055     return cast_to_not_flat();
5056   }
5057   return this;
5058 }
5059 
5060 jint TypeAryPtr::flat_layout_helper() const {
5061   return klass()->as_flat_array_klass()->layout_helper();
5062 }
5063 
5064 int TypeAryPtr::flat_elem_size() const {
5065   return klass()->as_flat_array_klass()->element_byte_size();
5066 }
5067 
5068 int TypeAryPtr::flat_log_elem_size() const {
5069   return klass()->as_flat_array_klass()->log2_element_size();
5070 }
5071 
5072 //------------------------------cast_to_stable---------------------------------
5073 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
5074   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
5075     return this;
5076 
5077   const Type* elem = this->elem();
5078   const TypePtr* elem_ptr = elem->make_ptr();
5079 
5080   if (stable_dimension > 1 && elem_ptr != nullptr && elem_ptr->isa_aryptr()) {
5081     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
5082     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
5083   }
5084 
5085   const TypeAry* new_ary = TypeAry::make(elem, size(), stable, is_flat(), is_not_flat(), is_not_null_free());
5086 
5087   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5088 }
5089 
5090 //-----------------------------stable_dimension--------------------------------
5091 int TypeAryPtr::stable_dimension() const {
5092   if (!is_stable())  return 0;
5093   int dim = 1;
5094   const TypePtr* elem_ptr = elem()->make_ptr();
5095   if (elem_ptr != nullptr && elem_ptr->isa_aryptr())
5096     dim += elem_ptr->is_aryptr()->stable_dimension();
5097   return dim;
5098 }
5099 
5100 //----------------------cast_to_autobox_cache-----------------------------------
5101 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache() const {
5102   if (is_autobox_cache())  return this;
5103   const TypeOopPtr* etype = elem()->make_oopptr();
5104   if (etype == nullptr)  return this;
5105   // The pointers in the autobox arrays are always non-null.
5106   etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
5107   const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable(), is_flat(), is_not_flat(), is_not_null_free());
5108   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, /*is_autobox_cache=*/true);
5109 }
5110 
5111 //------------------------------eq---------------------------------------------
5112 // Structural equality check for Type representations
5113 bool TypeAryPtr::eq( const Type *t ) const {
5114   const TypeAryPtr *p = t->is_aryptr();
5115   return
5116     _ary == p->_ary &&  // Check array
5117     TypeOopPtr::eq(p) &&// Check sub-parts
5118     _field_offset == p->_field_offset;
5119 }
5120 
5121 //------------------------------hash-------------------------------------------
5122 // Type-specific hashing function.
5123 uint TypeAryPtr::hash(void) const {
5124   return (uint)(uintptr_t)_ary + TypeOopPtr::hash() + _field_offset.get();
5125 }
5126 
5127 bool TypeAryPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
5128   return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
5129 }
5130 
5131 bool TypeAryPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const {
5132   return TypePtr::is_same_java_type_as_helper_for_array(this, other);
5133 }
5134 
5135 bool TypeAryPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
5136   return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
5137 }
5138 //------------------------------meet-------------------------------------------
5139 // Compute the MEET of two types.  It returns a new Type object.
5140 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
5141   // Perform a fast test for common case; meeting the same types together.
5142   if( this == t ) return this;  // Meeting same type-rep?
5143   // Current "this->_base" is Pointer
5144   switch (t->base()) {          // switch on original type

5148   case Long:
5149   case FloatTop:
5150   case FloatCon:
5151   case FloatBot:
5152   case DoubleTop:
5153   case DoubleCon:
5154   case DoubleBot:
5155   case NarrowOop:
5156   case NarrowKlass:
5157   case Bottom:                  // Ye Olde Default
5158     return Type::BOTTOM;
5159   case Top:
5160     return this;
5161 
5162   default:                      // All else is a mistake
5163     typerr(t);
5164 
5165   case OopPtr: {                // Meeting to OopPtrs
5166     // Found a OopPtr type vs self-AryPtr type
5167     const TypeOopPtr *tp = t->is_oopptr();
5168     Offset offset = meet_offset(tp->offset());
5169     PTR ptr = meet_ptr(tp->ptr());
5170     int depth = meet_inline_depth(tp->inline_depth());
5171     const TypePtr* speculative = xmeet_speculative(tp);
5172     switch (tp->ptr()) {
5173     case TopPTR:
5174     case AnyNull: {
5175       int instance_id = meet_instance_id(InstanceTop);
5176       return make(ptr, (ptr == Constant ? const_oop() : nullptr),
5177                   _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
5178     }
5179     case BotPTR:
5180     case NotNull: {
5181       int instance_id = meet_instance_id(tp->instance_id());
5182       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
5183     }
5184     default: ShouldNotReachHere();
5185     }
5186   }
5187 
5188   case AnyPtr: {                // Meeting two AnyPtrs
5189     // Found an AnyPtr type vs self-AryPtr type
5190     const TypePtr *tp = t->is_ptr();
5191     Offset offset = meet_offset(tp->offset());
5192     PTR ptr = meet_ptr(tp->ptr());
5193     const TypePtr* speculative = xmeet_speculative(tp);
5194     int depth = meet_inline_depth(tp->inline_depth());
5195     switch (tp->ptr()) {
5196     case TopPTR:
5197       return this;
5198     case BotPTR:
5199     case NotNull:
5200       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
5201     case Null:
5202       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
5203       // else fall through to AnyNull
5204     case AnyNull: {
5205       int instance_id = meet_instance_id(InstanceTop);
5206       return make(ptr, (ptr == Constant ? const_oop() : nullptr),
5207                   _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
5208     }
5209     default: ShouldNotReachHere();
5210     }
5211   }
5212 
5213   case MetadataPtr:
5214   case KlassPtr:
5215   case InstKlassPtr:
5216   case AryKlassPtr:
5217   case RawPtr: return TypePtr::BOTTOM;
5218 
5219   case AryPtr: {                // Meeting 2 references?
5220     const TypeAryPtr *tap = t->is_aryptr();
5221     Offset off = meet_offset(tap->offset());
5222     Offset field_off = meet_field_offset(tap->field_offset());
5223     const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
5224     PTR ptr = meet_ptr(tap->ptr());
5225     int instance_id = meet_instance_id(tap->instance_id());
5226     const TypePtr* speculative = xmeet_speculative(tap);
5227     int depth = meet_inline_depth(tap->inline_depth());
5228 
5229     ciKlass* res_klass = nullptr;
5230     bool res_xk = false;
5231     bool res_flat = false;
5232     bool res_not_flat = false;
5233     bool res_not_null_free = false;
5234     const Type* elem = tary->_elem;
5235     if (meet_aryptr(ptr, elem, this, tap, res_klass, res_xk, res_flat, res_not_flat, res_not_null_free) == NOT_SUBTYPE) {
5236       instance_id = InstanceBot;
5237     } else if (this->is_flat() != tap->is_flat()) {
5238       // Meeting flat inline type array with non-flat array. Adjust (field) offset accordingly.
5239       if (tary->_flat) {
5240         // Result is in a flat representation
5241         off = Offset(is_flat() ? offset() : tap->offset());
5242         field_off = is_flat() ? field_offset() : tap->field_offset();
5243       } else if (below_centerline(ptr)) {
5244         // Result is in a non-flat representation
5245         off = Offset(flat_offset()).meet(Offset(tap->flat_offset()));
5246         field_off = (field_off == Offset::top) ? Offset::top : Offset::bottom;
5247       } else if (flat_offset() == tap->flat_offset()) {
5248         off = Offset(!is_flat() ? offset() : tap->offset());
5249         field_off = !is_flat() ? field_offset() : tap->field_offset();
5250       }
5251     }
5252 
5253     ciObject* o = nullptr;             // Assume not constant when done
5254     ciObject* this_oop = const_oop();
5255     ciObject* tap_oop = tap->const_oop();
5256     if (ptr == Constant) {
5257       if (this_oop != nullptr && tap_oop != nullptr &&
5258           this_oop->equals(tap_oop)) {
5259         o = tap_oop;
5260       } else if (above_centerline(_ptr)) {
5261         o = tap_oop;
5262       } else if (above_centerline(tap->_ptr)) {
5263         o = this_oop;
5264       } else {
5265         ptr = NotNull;
5266       }
5267     }
5268     return make(ptr, o, TypeAry::make(elem, tary->_size, tary->_stable, res_flat, res_not_flat, res_not_null_free), res_klass, res_xk, off, field_off, instance_id, speculative, depth);
5269   }
5270 
5271   // All arrays inherit from Object class
5272   case InstPtr: {
5273     const TypeInstPtr *tp = t->is_instptr();
5274     Offset offset = meet_offset(tp->offset());
5275     PTR ptr = meet_ptr(tp->ptr());
5276     int instance_id = meet_instance_id(tp->instance_id());
5277     const TypePtr* speculative = xmeet_speculative(tp);
5278     int depth = meet_inline_depth(tp->inline_depth());
5279     const TypeInterfaces* interfaces = meet_interfaces(tp);
5280     const TypeInterfaces* tp_interfaces = tp->_interfaces;
5281     const TypeInterfaces* this_interfaces = _interfaces;
5282 
5283     switch (ptr) {
5284     case TopPTR:
5285     case AnyNull:                // Fall 'down' to dual of object klass
5286       // For instances when a subclass meets a superclass we fall
5287       // below the centerline when the superclass is exact. We need to
5288       // do the same here.
5289       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) && !tp->klass_is_exact() && !tp->flat_in_array()) {
5290         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
5291       } else {
5292         // cannot subclass, so the meet has to fall badly below the centerline
5293         ptr = NotNull;
5294         instance_id = InstanceBot;
5295         interfaces = this_interfaces->intersection_with(tp_interfaces);
5296         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr, offset, false, instance_id, speculative, depth);
5297       }
5298     case Constant:
5299     case NotNull:
5300     case BotPTR:                // Fall down to object klass
5301       // LCA is object_klass, but if we subclass from the top we can do better
5302       if (above_centerline(tp->ptr())) {
5303         // If 'tp'  is above the centerline and it is Object class
5304         // then we can subclass in the Java class hierarchy.
5305         // For instances when a subclass meets a superclass we fall
5306         // below the centerline when the superclass is exact. We need
5307         // to do the same here.
5308         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) && !tp->klass_is_exact() && !tp->flat_in_array()) {
5309           // that is, my array type is a subtype of 'tp' klass
5310           return make(ptr, (ptr == Constant ? const_oop() : nullptr),
5311                       _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
5312         }
5313       }
5314       // The other case cannot happen, since t cannot be a subtype of an array.
5315       // The meet falls down to Object class below centerline.
5316       if (ptr == Constant) {
5317          ptr = NotNull;
5318       }
5319       if (instance_id > 0) {
5320         instance_id = InstanceBot;
5321       }
5322       interfaces = this_interfaces->intersection_with(tp_interfaces);
5323       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr, offset, false, instance_id, speculative, depth);
5324     default: typerr(t);
5325     }
5326   }
5327   }
5328   return this;                  // Lint noise
5329 }
5330 
5331 
5332 template<class T> TypePtr::MeetResult TypePtr::meet_aryptr(PTR& ptr, const Type*& elem, const T* this_ary, const T* other_ary,
5333                                                            ciKlass*& res_klass, bool& res_xk, bool &res_flat, bool& res_not_flat, bool& res_not_null_free) {
5334   int dummy;
5335   bool this_top_or_bottom = (this_ary->base_element_type(dummy) == Type::TOP || this_ary->base_element_type(dummy) == Type::BOTTOM);
5336   bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
5337   ciKlass* this_klass = this_ary->klass();
5338   ciKlass* other_klass = other_ary->klass();
5339   bool this_xk = this_ary->klass_is_exact();
5340   bool other_xk = other_ary->klass_is_exact();
5341   PTR this_ptr = this_ary->ptr();
5342   PTR other_ptr = other_ary->ptr();
5343   bool this_flat = this_ary->is_flat();
5344   bool this_not_flat = this_ary->is_not_flat();
5345   bool other_flat = other_ary->is_flat();
5346   bool other_not_flat = other_ary->is_not_flat();
5347   bool this_not_null_free = this_ary->is_not_null_free();
5348   bool other_not_null_free = other_ary->is_not_null_free();
5349   res_klass = nullptr;
5350   MeetResult result = SUBTYPE;
5351   res_flat = this_flat && other_flat;
5352   res_not_flat = this_not_flat && other_not_flat;
5353   res_not_null_free = this_not_null_free && other_not_null_free;
5354 
5355   if (elem->isa_int()) {
5356     // Integral array element types have irrelevant lattice relations.
5357     // It is the klass that determines array layout, not the element type.
5358       if (this_top_or_bottom) {
5359         res_klass = other_klass;
5360       } else if (other_top_or_bottom || other_klass == this_klass) {
5361       res_klass = this_klass;
5362     } else {
5363       // Something like byte[int+] meets char[int+].
5364       // This must fall to bottom, not (int[-128..65535])[int+].
5365       // instance_id = InstanceBot;
5366       elem = Type::BOTTOM;
5367       result = NOT_SUBTYPE;
5368       if (above_centerline(ptr) || ptr == Constant) {
5369         ptr = NotNull;
5370         res_xk = false;
5371         return NOT_SUBTYPE;
5372       }
5373     }
5374   } else {// Non integral arrays.
5375     // Must fall to bottom if exact klasses in upper lattice
5376     // are not equal or super klass is exact.
5377     if ((above_centerline(ptr) || ptr == Constant) && !this_ary->is_same_java_type_as(other_ary) &&
5378         // meet with top[] and bottom[] are processed further down:
5379         !this_top_or_bottom && !other_top_or_bottom &&
5380         // both are exact and not equal:

5382          // 'tap'  is exact and super or unrelated:
5383          (other_xk && !other_ary->is_meet_subtype_of(this_ary)) ||
5384          // 'this' is exact and super or unrelated:
5385          (this_xk && !this_ary->is_meet_subtype_of(other_ary)))) {
5386       if (above_centerline(ptr) || (elem->make_ptr() && above_centerline(elem->make_ptr()->_ptr))) {
5387         elem = Type::BOTTOM;
5388       }
5389       ptr = NotNull;
5390       res_xk = false;
5391       return NOT_SUBTYPE;
5392     }
5393   }
5394 
5395   res_xk = false;
5396   switch (other_ptr) {
5397     case AnyNull:
5398     case TopPTR:
5399       // Compute new klass on demand, do not use tap->_klass
5400       if (below_centerline(this_ptr)) {
5401         res_xk = this_xk;
5402         if (this_ary->is_flat()) {
5403           elem = this_ary->elem();
5404         }
5405       } else {
5406         res_xk = (other_xk || this_xk);
5407       }
5408       break;
5409     case Constant: {
5410       if (this_ptr == Constant) {
5411         res_xk = true;
5412       } else if (above_centerline(this_ptr)) {
5413         res_xk = true;
5414       } else {
5415         // Only precise for identical arrays
5416         res_xk = this_xk && (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom));
5417         // Even though MyValue is final, [LMyValue is only exact if the array
5418         // is null-free due to null-free [LMyValue <: null-able [LMyValue.
5419         if (res_xk && !res_not_null_free) {
5420           res_xk = false;
5421         }
5422       }
5423       break;
5424     }
5425     case NotNull:
5426     case BotPTR:
5427       // Compute new klass on demand, do not use tap->_klass
5428       if (above_centerline(this_ptr)) {
5429         res_xk = other_xk;
5430         if (other_ary->is_flat()) {
5431           elem = other_ary->elem();
5432         }
5433       } else {
5434         res_xk = (other_xk && this_xk) &&
5435                  (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom)); // Only precise for identical arrays
5436         // Even though MyValue is final, [LMyValue is only exact if the array
5437         // is null-free due to null-free [LMyValue <: null-able [LMyValue.
5438         if (res_xk && !res_not_null_free) {
5439           res_xk = false;
5440         }
5441       }
5442       break;
5443     default:  {
5444       ShouldNotReachHere();
5445       return result;
5446     }
5447   }
5448   return result;
5449 }
5450 
5451 
5452 //------------------------------xdual------------------------------------------
5453 // Dual: compute field-by-field dual
5454 const Type *TypeAryPtr::xdual() const {
5455   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(), _klass, _klass_is_exact, dual_offset(), dual_field_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
5456 }
5457 
5458 Type::Offset TypeAryPtr::meet_field_offset(const Type::Offset offset) const {
5459   return _field_offset.meet(offset);
5460 }
5461 
5462 //------------------------------dual_offset------------------------------------
5463 Type::Offset TypeAryPtr::dual_field_offset() const {
5464   return _field_offset.dual();
5465 }
5466 
5467 //------------------------------dump2------------------------------------------
5468 #ifndef PRODUCT
5469 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5470   _ary->dump2(d,depth,st);
5471   _interfaces->dump(st);
5472 
5473   switch( _ptr ) {
5474   case Constant:
5475     const_oop()->print(st);
5476     break;
5477   case BotPTR:
5478     if (!WizardMode && !Verbose) {
5479       if( _klass_is_exact ) st->print(":exact");
5480       break;
5481     }
5482   case TopPTR:
5483   case AnyNull:
5484   case NotNull:
5485     st->print(":%s", ptr_msg[_ptr]);
5486     if( _klass_is_exact ) st->print(":exact");
5487     break;
5488   default:
5489     break;
5490   }
5491 
5492   if (is_flat()) {
5493     st->print(":flat");
5494     st->print("(");
5495     _field_offset.dump2(st);
5496     st->print(")");
5497   }
5498   if (is_null_free()) {
5499     st->print(":null_free");
5500   }
5501   if (offset() != 0) {
5502     BasicType basic_elem_type = elem()->basic_type();
5503     int header_size = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5504     if( _offset == Offset::top )       st->print("+undefined");
5505     else if( _offset == Offset::bottom )  st->print("+any");
5506     else if( offset() < header_size ) st->print("+%d", offset());
5507     else {
5508       if (basic_elem_type == T_ILLEGAL) {
5509         st->print("+any");
5510       } else {
5511         int elem_size = type2aelembytes(basic_elem_type);
5512         st->print("[%d]", (offset() - header_size)/elem_size);
5513       }
5514     }
5515   }
5516   st->print(" *");
5517   if (_instance_id == InstanceTop)
5518     st->print(",iid=top");
5519   else if (_instance_id != InstanceBot)
5520     st->print(",iid=%d",_instance_id);
5521 
5522   dump_inline_depth(st);
5523   dump_speculative(st);
5524 }
5525 #endif
5526 
5527 bool TypeAryPtr::empty(void) const {
5528   if (_ary->empty())       return true;
5529   // FIXME: Does this belong here? Or in the meet code itself?
5530   if (is_flat() && is_not_flat()) {
5531     return true;
5532   }
5533   return TypeOopPtr::empty();
5534 }
5535 
5536 //------------------------------add_offset-------------------------------------
5537 const TypePtr* TypeAryPtr::add_offset(intptr_t offset) const {
5538   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _field_offset, _instance_id, add_offset_speculative(offset), _inline_depth, _is_autobox_cache);
5539 }
5540 
5541 const TypeAryPtr* TypeAryPtr::with_offset(intptr_t offset) const {
5542   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, Offset(offset), _field_offset, _instance_id, with_offset_speculative(offset), _inline_depth, _is_autobox_cache);
5543 }
5544 
5545 const TypeAryPtr* TypeAryPtr::with_ary(const TypeAry* ary) const {
5546   return make(_ptr, _const_oop, ary, _klass, _klass_is_exact, _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5547 }
5548 
5549 const TypeAryPtr* TypeAryPtr::remove_speculative() const {
5550   if (_speculative == nullptr) {
5551     return this;
5552   }
5553   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
5554   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, _instance_id, nullptr, _inline_depth, _is_autobox_cache);
5555 }
5556 
5557 const Type* TypeAryPtr::cleanup_speculative() const {
5558   if (speculative() == nullptr) {
5559     return this;
5560   }
5561   // Keep speculative part if it contains information about flat-/nullability
5562   const TypeAryPtr* spec_aryptr = speculative()->isa_aryptr();
5563   if (spec_aryptr != nullptr && !above_centerline(spec_aryptr->ptr()) &&
5564       (spec_aryptr->is_not_flat() || spec_aryptr->is_not_null_free())) {
5565     return this;
5566   }
5567   return TypeOopPtr::cleanup_speculative();
5568 }
5569 
5570 const TypePtr* TypeAryPtr::with_inline_depth(int depth) const {
5571   if (!UseInlineDepthForSpeculativeTypes) {
5572     return this;
5573   }
5574   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, _instance_id, _speculative, depth, _is_autobox_cache);
5575 }
5576 
5577 const TypeAryPtr* TypeAryPtr::with_field_offset(int offset) const {
5578   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, Offset(offset), _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5579 }
5580 
5581 const TypePtr* TypeAryPtr::add_field_offset_and_offset(intptr_t offset) const {
5582   int adj = 0;
5583   if (is_flat() && offset != Type::OffsetBot && offset != Type::OffsetTop) {
5584     if (_offset.get() != OffsetBot && _offset.get() != OffsetTop) {
5585       adj = _offset.get();
5586       offset += _offset.get();
5587     }
5588     uint header = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
5589     if (_field_offset.get() != OffsetBot && _field_offset.get() != OffsetTop) {
5590       offset += _field_offset.get();
5591       if (_offset.get() == OffsetBot || _offset.get() == OffsetTop) {
5592         offset += header;
5593       }
5594     }
5595     if (elem()->make_oopptr()->is_inlinetypeptr() && (offset >= (intptr_t)header || offset < 0)) {
5596       // Try to get the field of the inline type array element we are pointing to
5597       ciInlineKlass* vk = elem()->inline_klass();
5598       int shift = flat_log_elem_size();
5599       int mask = (1 << shift) - 1;
5600       intptr_t field_offset = ((offset - header) & mask);
5601       ciField* field = vk->get_field_by_offset(field_offset + vk->first_field_offset(), false);
5602       if (field != nullptr) {
5603         return with_field_offset(field_offset)->add_offset(offset - field_offset - adj);
5604       }
5605     }
5606   }
5607   return add_offset(offset - adj);
5608 }
5609 
5610 // Return offset incremented by field_offset for flat inline type arrays
5611 int TypeAryPtr::flat_offset() const {
5612   int offset = _offset.get();
5613   if (offset != Type::OffsetBot && offset != Type::OffsetTop &&
5614       _field_offset != Offset::bottom && _field_offset != Offset::top) {
5615     offset += _field_offset.get();
5616   }
5617   return offset;
5618 }
5619 
5620 const TypePtr* TypeAryPtr::with_instance_id(int instance_id) const {
5621   assert(is_known_instance(), "should be known");
5622   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, instance_id, _speculative, _inline_depth);
5623 }
5624 
5625 //=============================================================================
5626 
5627 
5628 //------------------------------hash-------------------------------------------
5629 // Type-specific hashing function.
5630 uint TypeNarrowPtr::hash(void) const {
5631   return _ptrtype->hash() + 7;
5632 }
5633 
5634 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
5635   return _ptrtype->singleton();
5636 }
5637 
5638 bool TypeNarrowPtr::empty(void) const {
5639   return _ptrtype->empty();
5640 }
5641 
5642 intptr_t TypeNarrowPtr::get_con() const {
5643   return _ptrtype->get_con();
5644 }
5645 
5646 bool TypeNarrowPtr::eq( const Type *t ) const {
5647   const TypeNarrowPtr* tc = isa_same_narrowptr(t);

5698 
5699   case Int:                     // Mixing ints & oops happens when javac
5700   case Long:                    // reuses local variables
5701   case FloatTop:
5702   case FloatCon:
5703   case FloatBot:
5704   case DoubleTop:
5705   case DoubleCon:
5706   case DoubleBot:
5707   case AnyPtr:
5708   case RawPtr:
5709   case OopPtr:
5710   case InstPtr:
5711   case AryPtr:
5712   case MetadataPtr:
5713   case KlassPtr:
5714   case InstKlassPtr:
5715   case AryKlassPtr:
5716   case NarrowOop:
5717   case NarrowKlass:

5718   case Bottom:                  // Ye Olde Default
5719     return Type::BOTTOM;
5720   case Top:
5721     return this;
5722 
5723   default:                      // All else is a mistake
5724     typerr(t);
5725 
5726   } // End of switch
5727 
5728   return this;
5729 }
5730 
5731 #ifndef PRODUCT
5732 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5733   _ptrtype->dump2(d, depth, st);
5734 }
5735 #endif
5736 
5737 const TypeNarrowOop *TypeNarrowOop::BOTTOM;

5781     return (one == two) && TypePtr::eq(t);
5782   } else {
5783     return one->equals(two) && TypePtr::eq(t);
5784   }
5785 }
5786 
5787 //------------------------------hash-------------------------------------------
5788 // Type-specific hashing function.
5789 uint TypeMetadataPtr::hash(void) const {
5790   return
5791     (metadata() ? metadata()->hash() : 0) +
5792     TypePtr::hash();
5793 }
5794 
5795 //------------------------------singleton--------------------------------------
5796 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5797 // constants
5798 bool TypeMetadataPtr::singleton(void) const {
5799   // detune optimizer to not generate constant metadata + constant offset as a constant!
5800   // TopPTR, Null, AnyNull, Constant are all singletons
5801   return (offset() == 0) && !below_centerline(_ptr);
5802 }
5803 
5804 //------------------------------add_offset-------------------------------------
5805 const TypePtr* TypeMetadataPtr::add_offset( intptr_t offset ) const {
5806   return make( _ptr, _metadata, xadd_offset(offset));
5807 }
5808 
5809 //-----------------------------filter------------------------------------------
5810 // Do not allow interface-vs.-noninterface joins to collapse to top.
5811 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
5812   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
5813   if (ft == nullptr || ft->empty())
5814     return Type::TOP;           // Canonical empty value
5815   return ft;
5816 }
5817 
5818  //------------------------------get_con----------------------------------------
5819 intptr_t TypeMetadataPtr::get_con() const {
5820   assert( _ptr == Null || _ptr == Constant, "" );
5821   assert(offset() >= 0, "");
5822 
5823   if (offset() != 0) {
5824     // After being ported to the compiler interface, the compiler no longer
5825     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5826     // to a handle at compile time.  This handle is embedded in the generated
5827     // code and dereferenced at the time the nmethod is made.  Until that time,
5828     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5829     // have access to the addresses!).  This does not seem to currently happen,
5830     // but this assertion here is to help prevent its occurrence.
5831     tty->print_cr("Found oop constant with non-zero offset");
5832     ShouldNotReachHere();
5833   }
5834 
5835   return (intptr_t)metadata()->constant_encoding();
5836 }
5837 
5838 //------------------------------cast_to_ptr_type-------------------------------
5839 const TypeMetadataPtr* TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
5840   if( ptr == _ptr ) return this;
5841   return make(ptr, metadata(), _offset);
5842 }
5843 

5854   case Long:                    // reuses local variables
5855   case FloatTop:
5856   case FloatCon:
5857   case FloatBot:
5858   case DoubleTop:
5859   case DoubleCon:
5860   case DoubleBot:
5861   case NarrowOop:
5862   case NarrowKlass:
5863   case Bottom:                  // Ye Olde Default
5864     return Type::BOTTOM;
5865   case Top:
5866     return this;
5867 
5868   default:                      // All else is a mistake
5869     typerr(t);
5870 
5871   case AnyPtr: {
5872     // Found an AnyPtr type vs self-OopPtr type
5873     const TypePtr *tp = t->is_ptr();
5874     Offset offset = meet_offset(tp->offset());
5875     PTR ptr = meet_ptr(tp->ptr());
5876     switch (tp->ptr()) {
5877     case Null:
5878       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5879       // else fall through:
5880     case TopPTR:
5881     case AnyNull: {
5882       return make(ptr, _metadata, offset);
5883     }
5884     case BotPTR:
5885     case NotNull:
5886       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5887     default: typerr(t);
5888     }
5889   }
5890 
5891   case RawPtr:
5892   case KlassPtr:
5893   case InstKlassPtr:
5894   case AryKlassPtr:
5895   case OopPtr:
5896   case InstPtr:
5897   case AryPtr:
5898     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
5899 
5900   case MetadataPtr: {
5901     const TypeMetadataPtr *tp = t->is_metadataptr();
5902     Offset offset = meet_offset(tp->offset());
5903     PTR tptr = tp->ptr();
5904     PTR ptr = meet_ptr(tptr);
5905     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
5906     if (tptr == TopPTR || _ptr == TopPTR ||
5907         metadata()->equals(tp->metadata())) {
5908       return make(ptr, md, offset);
5909     }
5910     // metadata is different
5911     if( ptr == Constant ) {  // Cannot be equal constants, so...
5912       if( tptr == Constant && _ptr != Constant)  return t;
5913       if( _ptr == Constant && tptr != Constant)  return this;
5914       ptr = NotNull;            // Fall down in lattice
5915     }
5916     return make(ptr, nullptr, offset);
5917     break;
5918   }
5919   } // End of switch
5920   return this;                  // Return the double constant
5921 }
5922 
5923 
5924 //------------------------------xdual------------------------------------------
5925 // Dual of a pure metadata pointer.
5926 const Type *TypeMetadataPtr::xdual() const {
5927   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
5928 }
5929 
5930 //------------------------------dump2------------------------------------------
5931 #ifndef PRODUCT
5932 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5933   st->print("metadataptr:%s", ptr_msg[_ptr]);
5934   if( metadata() ) st->print(INTPTR_FORMAT, p2i(metadata()));
5935   switch (offset()) {
5936   case OffsetTop: st->print("+top"); break;
5937   case OffsetBot: st->print("+any"); break;
5938   case         0: break;
5939   default:        st->print("+%d",offset()); break;
5940   }
5941 }
5942 #endif
5943 
5944 
5945 //=============================================================================
5946 // Convenience common pre-built type.
5947 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
5948 
5949 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, Offset offset):
5950   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
5951 }
5952 
5953 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
5954   return make(Constant, m, Offset(0));
5955 }
5956 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
5957   return make(Constant, m, Offset(0));
5958 }
5959 
5960 //------------------------------make-------------------------------------------
5961 // Create a meta data constant
5962 const TypeMetadataPtr* TypeMetadataPtr::make(PTR ptr, ciMetadata* m, Offset offset) {
5963   assert(m == nullptr || !m->is_klass(), "wrong type");
5964   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
5965 }
5966 
5967 
5968 const TypeKlassPtr* TypeAryPtr::as_klass_type(bool try_for_exact) const {
5969   const Type* elem = _ary->_elem;
5970   bool xk = klass_is_exact();
5971   if (elem->make_oopptr() != nullptr) {
5972     elem = elem->make_oopptr()->as_klass_type(try_for_exact);
5973     if (elem->is_klassptr()->klass_is_exact() &&
5974         // Even though MyValue is final, [LMyValue is only exact if the array
5975         // is null-free due to null-free [LMyValue <: null-able [LMyValue.
5976         (is_null_free() || !_ary->_elem->make_oopptr()->is_inlinetypeptr())) {
5977       xk = true;
5978     }
5979   }
5980   return TypeAryKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, elem, klass(), Offset(0), is_not_flat(), is_not_null_free(), is_null_free());
5981 }
5982 
5983 const TypeKlassPtr* TypeKlassPtr::make(ciKlass* klass, InterfaceHandling interface_handling) {
5984   if (klass->is_instance_klass()) {
5985     return TypeInstKlassPtr::make(klass, interface_handling);
5986   }
5987   return TypeAryKlassPtr::make(klass, interface_handling);
5988 }
5989 
5990 const TypeKlassPtr* TypeKlassPtr::make(PTR ptr, ciKlass* klass, Offset offset, InterfaceHandling interface_handling) {
5991   if (klass->is_instance_klass()) {
5992     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
5993     return TypeInstKlassPtr::make(ptr, klass, interfaces, offset);
5994   }
5995   return TypeAryKlassPtr::make(ptr, klass, offset, interface_handling);
5996 }
5997 
5998 TypeKlassPtr::TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, Offset offset)


5999   : TypePtr(t, ptr, offset), _klass(klass), _interfaces(interfaces) {
6000   assert(klass == nullptr || !klass->is_loaded() || (klass->is_instance_klass() && !klass->is_interface()) ||
6001          klass->is_type_array_klass() || klass->is_flat_array_klass() || !klass->as_obj_array_klass()->base_element_klass()->is_interface(), "no interface here");
6002 }
6003 
6004 // Is there a single ciKlass* that can represent that type?
6005 ciKlass* TypeKlassPtr::exact_klass_helper() const {
6006   assert(_klass->is_instance_klass() && !_klass->is_interface(), "No interface");
6007   if (_interfaces->empty()) {
6008     return _klass;
6009   }
6010   if (_klass != ciEnv::current()->Object_klass()) {
6011     if (_interfaces->eq(_klass->as_instance_klass())) {
6012       return _klass;
6013     }
6014     return nullptr;
6015   }
6016   return _interfaces->exact_klass();
6017 }
6018 
6019 //------------------------------eq---------------------------------------------
6020 // Structural equality check for Type representations
6021 bool TypeKlassPtr::eq(const Type *t) const {
6022   const TypeKlassPtr *p = t->is_klassptr();
6023   return
6024     _interfaces->eq(p->_interfaces) &&
6025     TypePtr::eq(p);
6026 }
6027 
6028 //------------------------------hash-------------------------------------------
6029 // Type-specific hashing function.
6030 uint TypeKlassPtr::hash(void) const {
6031   return TypePtr::hash() + _interfaces->hash();
6032 }
6033 
6034 //------------------------------singleton--------------------------------------
6035 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
6036 // constants
6037 bool TypeKlassPtr::singleton(void) const {
6038   // detune optimizer to not generate constant klass + constant offset as a constant!
6039   // TopPTR, Null, AnyNull, Constant are all singletons
6040   return (offset() == 0) && !below_centerline(_ptr);
6041 }
6042 
6043 // Do not allow interface-vs.-noninterface joins to collapse to top.
6044 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
6045   // logic here mirrors the one from TypeOopPtr::filter. See comments
6046   // there.
6047   const Type* ft = join_helper(kills, include_speculative);
6048   const TypeKlassPtr* ftkp = ft->isa_instklassptr();
6049   const TypeKlassPtr* ktkp = kills->isa_instklassptr();
6050 
6051   if (ft->empty()) {
6052     return Type::TOP;           // Canonical empty value
6053   }
6054 
6055   return ft;
6056 }
6057 
6058 const TypeInterfaces* TypeKlassPtr::meet_interfaces(const TypeKlassPtr* other) const {
6059   if (above_centerline(_ptr) && above_centerline(other->_ptr)) {
6060     return _interfaces->union_with(other->_interfaces);
6061   } else if (above_centerline(_ptr) && !above_centerline(other->_ptr)) {
6062     return other->_interfaces;
6063   } else if (above_centerline(other->_ptr) && !above_centerline(_ptr)) {
6064     return _interfaces;
6065   }
6066   return _interfaces->intersection_with(other->_interfaces);
6067 }
6068 
6069 //------------------------------get_con----------------------------------------
6070 intptr_t TypeKlassPtr::get_con() const {
6071   assert( _ptr == Null || _ptr == Constant, "" );
6072   assert( offset() >= 0, "" );
6073 
6074   if (offset() != 0) {
6075     // After being ported to the compiler interface, the compiler no longer
6076     // directly manipulates the addresses of oops.  Rather, it only has a pointer
6077     // to a handle at compile time.  This handle is embedded in the generated
6078     // code and dereferenced at the time the nmethod is made.  Until that time,
6079     // it is not reasonable to do arithmetic with the addresses of oops (we don't
6080     // have access to the addresses!).  This does not seem to currently happen,
6081     // but this assertion here is to help prevent its occurrence.
6082     tty->print_cr("Found oop constant with non-zero offset");
6083     ShouldNotReachHere();
6084   }
6085 
6086   ciKlass* k = exact_klass();
6087 
6088   return (intptr_t)k->constant_encoding();
6089 }
6090 
6091 //------------------------------dump2------------------------------------------
6092 // Dump Klass Type
6093 #ifndef PRODUCT
6094 void TypeKlassPtr::dump2(Dict & d, uint depth, outputStream *st) const {

6098   case NotNull:
6099     {
6100       const char *name = klass()->name()->as_utf8();
6101       if (name) {
6102         st->print("%s: " INTPTR_FORMAT, name, p2i(klass()));
6103       } else {
6104         ShouldNotReachHere();
6105       }
6106       _interfaces->dump(st);
6107     }
6108   case BotPTR:
6109     if (!WizardMode && !Verbose && _ptr != Constant) break;
6110   case TopPTR:
6111   case AnyNull:
6112     st->print(":%s", ptr_msg[_ptr]);
6113     if (_ptr == Constant) st->print(":exact");
6114     break;
6115   default:
6116     break;
6117   }
6118   if (Verbose) {
6119     if (isa_instklassptr() && is_instklassptr()->flat_in_array()) st->print(":flat in array");



6120   }
6121   _offset.dump2(st);
6122   st->print(" *");
6123 }
6124 #endif
6125 
6126 //=============================================================================
6127 // Convenience common pre-built types.
6128 
6129 // Not-null object klass or below
6130 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT;
6131 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT_OR_NULL;
6132 
6133 bool TypeInstKlassPtr::eq(const Type *t) const {
6134   const TypeKlassPtr *p = t->is_klassptr();
6135   return
6136     klass()->equals(p->klass()) &&
6137     flat_in_array() == p->flat_in_array() &&
6138     TypeKlassPtr::eq(p);
6139 }
6140 
6141 uint TypeInstKlassPtr::hash(void) const {
6142   return klass()->hash() + TypeKlassPtr::hash() + (uint)flat_in_array();
6143 }
6144 
6145 const TypeInstKlassPtr *TypeInstKlassPtr::make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, Offset offset, bool flat_in_array) {
6146   flat_in_array = flat_in_array || k->flat_in_array();
6147 
6148   TypeInstKlassPtr *r =
6149     (TypeInstKlassPtr*)(new TypeInstKlassPtr(ptr, k, interfaces, offset, flat_in_array))->hashcons();
6150 
6151   return r;
6152 }
6153 
6154 //------------------------------add_offset-------------------------------------
6155 // Access internals of klass object
6156 const TypePtr *TypeInstKlassPtr::add_offset( intptr_t offset ) const {
6157   return make(_ptr, klass(), _interfaces, xadd_offset(offset), flat_in_array());
6158 }
6159 
6160 const TypeInstKlassPtr* TypeInstKlassPtr::with_offset(intptr_t offset) const {
6161   return make(_ptr, klass(), _interfaces, Offset(offset), flat_in_array());
6162 }
6163 
6164 //------------------------------cast_to_ptr_type-------------------------------
6165 const TypeInstKlassPtr* TypeInstKlassPtr::cast_to_ptr_type(PTR ptr) const {
6166   assert(_base == InstKlassPtr, "subclass must override cast_to_ptr_type");
6167   if( ptr == _ptr ) return this;
6168   return make(ptr, _klass, _interfaces, _offset, flat_in_array());
6169 }
6170 
6171 
6172 bool TypeInstKlassPtr::must_be_exact() const {
6173   if (!_klass->is_loaded())  return false;
6174   ciInstanceKlass* ik = _klass->as_instance_klass();
6175   if (ik->is_final())  return true;  // cannot clear xk
6176   return false;
6177 }
6178 
6179 //-----------------------------cast_to_exactness-------------------------------
6180 const TypeKlassPtr* TypeInstKlassPtr::cast_to_exactness(bool klass_is_exact) const {
6181   if (klass_is_exact == (_ptr == Constant)) return this;
6182   if (must_be_exact()) return this;
6183   ciKlass* k = klass();
6184   return make(klass_is_exact ? Constant : NotNull, k, _interfaces, _offset, flat_in_array());
6185 }
6186 
6187 
6188 //-----------------------------as_instance_type--------------------------------
6189 // Corresponding type for an instance of the given class.
6190 // It will be NotNull, and exact if and only if the klass type is exact.
6191 const TypeOopPtr* TypeInstKlassPtr::as_instance_type(bool klass_change) const {
6192   ciKlass* k = klass();
6193   bool xk = klass_is_exact();
6194   Compile* C = Compile::current();
6195   Dependencies* deps = C->dependencies();
6196   assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
6197   // Element is an instance
6198   bool klass_is_exact = false;
6199   const TypeInterfaces* interfaces = _interfaces;
6200   if (k->is_loaded()) {
6201     // Try to set klass_is_exact.
6202     ciInstanceKlass* ik = k->as_instance_klass();
6203     klass_is_exact = ik->is_final();
6204     if (!klass_is_exact && klass_change
6205         && deps != nullptr && UseUniqueSubclasses) {
6206       ciInstanceKlass* sub = ik->unique_concrete_subklass();
6207       if (sub != nullptr) {
6208         if (_interfaces->eq(sub)) {
6209           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
6210           k = ik = sub;
6211           xk = sub->is_final();
6212         }
6213       }
6214     }
6215   }
6216   return TypeInstPtr::make(TypePtr::BotPTR, k, interfaces, xk, nullptr, Offset(0), flat_in_array() && !klass()->is_inlinetype());
6217 }
6218 
6219 //------------------------------xmeet------------------------------------------
6220 // Compute the MEET of two types, return a new Type object.
6221 const Type    *TypeInstKlassPtr::xmeet( const Type *t ) const {
6222   // Perform a fast test for common case; meeting the same types together.
6223   if( this == t ) return this;  // Meeting same type-rep?
6224 
6225   // Current "this->_base" is Pointer
6226   switch (t->base()) {          // switch on original type
6227 
6228   case Int:                     // Mixing ints & oops happens when javac
6229   case Long:                    // reuses local variables
6230   case FloatTop:
6231   case FloatCon:
6232   case FloatBot:
6233   case DoubleTop:
6234   case DoubleCon:
6235   case DoubleBot:
6236   case NarrowOop:
6237   case NarrowKlass:
6238   case Bottom:                  // Ye Olde Default
6239     return Type::BOTTOM;
6240   case Top:
6241     return this;
6242 
6243   default:                      // All else is a mistake
6244     typerr(t);
6245 
6246   case AnyPtr: {                // Meeting to AnyPtrs
6247     // Found an AnyPtr type vs self-KlassPtr type
6248     const TypePtr *tp = t->is_ptr();
6249     Offset offset = meet_offset(tp->offset());
6250     PTR ptr = meet_ptr(tp->ptr());
6251     switch (tp->ptr()) {
6252     case TopPTR:
6253       return this;
6254     case Null:
6255       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6256     case AnyNull:
6257       return make(ptr, klass(), _interfaces, offset, flat_in_array());
6258     case BotPTR:
6259     case NotNull:
6260       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6261     default: typerr(t);
6262     }
6263   }
6264 
6265   case RawPtr:
6266   case MetadataPtr:
6267   case OopPtr:
6268   case AryPtr:                  // Meet with AryPtr
6269   case InstPtr:                 // Meet with InstPtr
6270       return TypePtr::BOTTOM;
6271 
6272   //
6273   //             A-top         }
6274   //           /   |   \       }  Tops
6275   //       B-top A-any C-top   }
6276   //          | /  |  \ |      }  Any-nulls
6277   //       B-any   |   C-any   }
6278   //          |    |    |
6279   //       B-con A-con C-con   } constants; not comparable across classes
6280   //          |    |    |
6281   //       B-not   |   C-not   }
6282   //          | \  |  / |      }  not-nulls
6283   //       B-bot A-not C-bot   }
6284   //           \   |   /       }  Bottoms
6285   //             A-bot         }
6286   //
6287 
6288   case InstKlassPtr: {  // Meet two KlassPtr types
6289     const TypeInstKlassPtr *tkls = t->is_instklassptr();
6290     Offset  off     = meet_offset(tkls->offset());
6291     PTR  ptr     = meet_ptr(tkls->ptr());
6292     const TypeInterfaces* interfaces = meet_interfaces(tkls);
6293 
6294     ciKlass* res_klass = nullptr;
6295     bool res_xk = false;
6296     bool res_flat_in_array = false;
6297     switch(meet_instptr(ptr, interfaces, this, tkls, res_klass, res_xk, res_flat_in_array)) {
6298       case UNLOADED:
6299         ShouldNotReachHere();
6300       case SUBTYPE:
6301       case NOT_SUBTYPE:
6302       case LCA:
6303       case QUICK: {
6304         assert(res_xk == (ptr == Constant), "");
6305         const Type* res = make(ptr, res_klass, interfaces, off, res_flat_in_array);
6306         return res;
6307       }
6308       default:
6309         ShouldNotReachHere();
6310     }
6311   } // End of case KlassPtr
6312   case AryKlassPtr: {                // All arrays inherit from Object class
6313     const TypeAryKlassPtr *tp = t->is_aryklassptr();
6314     Offset offset = meet_offset(tp->offset());
6315     PTR ptr = meet_ptr(tp->ptr());
6316     const TypeInterfaces* interfaces = meet_interfaces(tp);
6317     const TypeInterfaces* tp_interfaces = tp->_interfaces;
6318     const TypeInterfaces* this_interfaces = _interfaces;
6319 
6320     switch (ptr) {
6321     case TopPTR:
6322     case AnyNull:                // Fall 'down' to dual of object klass
6323       // For instances when a subclass meets a superclass we fall
6324       // below the centerline when the superclass is exact. We need to
6325       // do the same here.
6326       if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces->contains(this_interfaces) && !klass_is_exact()) {
6327         return TypeAryKlassPtr::make(ptr, tp->elem(), tp->klass(), offset, tp->is_not_flat(), tp->is_not_null_free(), tp->is_null_free());
6328       } else {
6329         // cannot subclass, so the meet has to fall badly below the centerline
6330         ptr = NotNull;
6331         interfaces = _interfaces->intersection_with(tp->_interfaces);
6332         return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset, false);
6333       }
6334     case Constant:
6335     case NotNull:
6336     case BotPTR:                // Fall down to object klass
6337       // LCA is object_klass, but if we subclass from the top we can do better
6338       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
6339         // If 'this' (InstPtr) is above the centerline and it is Object class
6340         // then we can subclass in the Java class hierarchy.
6341         // For instances when a subclass meets a superclass we fall
6342         // below the centerline when the superclass is exact. We need
6343         // to do the same here.
6344         if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces->contains(this_interfaces) && !klass_is_exact()) {
6345           // that is, tp's array type is a subtype of my klass
6346           return TypeAryKlassPtr::make(ptr, tp->elem(), tp->klass(), offset, tp->is_not_flat(), tp->is_not_null_free(), tp->is_null_free());

6347         }
6348       }
6349       // The other case cannot happen, since I cannot be a subtype of an array.
6350       // The meet falls down to Object class below centerline.
6351       if( ptr == Constant )
6352          ptr = NotNull;
6353       interfaces = this_interfaces->intersection_with(tp_interfaces);
6354       return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset, false);
6355     default: typerr(t);
6356     }
6357   }
6358 
6359   } // End of switch
6360   return this;                  // Return the double constant
6361 }
6362 
6363 //------------------------------xdual------------------------------------------
6364 // Dual: compute field-by-field dual
6365 const Type    *TypeInstKlassPtr::xdual() const {
6366   return new TypeInstKlassPtr(dual_ptr(), klass(), _interfaces, dual_offset(), flat_in_array());
6367 }
6368 
6369 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
6370   static_assert(std::is_base_of<T2, T1>::value, "");
6371   if (!this_one->is_loaded() || !other->is_loaded()) {
6372     return false;
6373   }
6374   if (!this_one->is_instance_type(other)) {
6375     return false;
6376   }
6377 
6378   if (!other_exact) {
6379     return false;
6380   }
6381 
6382   if (other->klass()->equals(ciEnv::current()->Object_klass()) && other->_interfaces->empty()) {
6383     return true;
6384   }
6385 
6386   return this_one->klass()->is_subtype_of(other->klass()) && this_one->_interfaces->contains(other->_interfaces);

6447   const TypeInterfaces* interfaces = _interfaces;
6448   if (k->is_loaded()) {
6449     ciInstanceKlass* ik = k->as_instance_klass();
6450     bool klass_is_exact = ik->is_final();
6451     if (!klass_is_exact &&
6452         deps != nullptr) {
6453       ciInstanceKlass* sub = ik->unique_concrete_subklass();
6454       if (sub != nullptr) {
6455         if (_interfaces->eq(sub)) {
6456           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
6457           k = ik = sub;
6458           klass_is_exact = sub->is_final();
6459           return TypeKlassPtr::make(klass_is_exact ? Constant : _ptr, k, _offset);
6460         }
6461       }
6462     }
6463   }
6464   return this;
6465 }
6466 
6467 bool TypeInstKlassPtr::can_be_inline_array() const {
6468   return _klass->equals(ciEnv::current()->Object_klass()) && TypeAryKlassPtr::_array_interfaces->contains(_interfaces);
6469 }
6470 
6471 bool TypeAryKlassPtr::can_be_inline_array() const {
6472   return _elem->isa_instklassptr() && _elem->is_instklassptr()->_klass->can_be_inline_klass();
6473 }
6474 
6475 bool TypeInstPtr::can_be_inline_array() const {
6476   return _klass->equals(ciEnv::current()->Object_klass()) && TypeAryPtr::_array_interfaces->contains(_interfaces);
6477 }
6478 
6479 bool TypeAryPtr::can_be_inline_array() const {
6480   return elem()->make_ptr() && elem()->make_ptr()->isa_instptr() && elem()->make_ptr()->is_instptr()->_klass->can_be_inline_klass();
6481 }
6482 
6483 const TypeAryKlassPtr *TypeAryKlassPtr::make(PTR ptr, const Type* elem, ciKlass* k, Offset offset, bool not_flat, bool not_null_free, bool null_free) {
6484   return (TypeAryKlassPtr*)(new TypeAryKlassPtr(ptr, elem, k, offset, not_flat, not_null_free, null_free))->hashcons();
6485 }
6486 
6487 const TypeAryKlassPtr* TypeAryKlassPtr::make(PTR ptr, ciKlass* k, Offset offset, InterfaceHandling interface_handling, bool not_flat, bool not_null_free, bool null_free) {
6488   if (k->is_obj_array_klass()) {
6489     // Element is an object array. Recursively call ourself.
6490     ciKlass* eklass = k->as_obj_array_klass()->element_klass();
6491     const TypeKlassPtr* etype = TypeKlassPtr::make(eklass, interface_handling)->cast_to_exactness(false);
6492     return TypeAryKlassPtr::make(ptr, etype, nullptr, offset, not_flat, not_null_free, null_free);
6493   } else if (k->is_type_array_klass()) {
6494     // Element is an typeArray
6495     const Type* etype = get_const_basic_type(k->as_type_array_klass()->element_type());
6496     return TypeAryKlassPtr::make(ptr, etype, k, offset, not_flat, not_null_free, null_free);
6497   } else if (k->is_flat_array_klass()) {
6498     ciKlass* eklass = k->as_flat_array_klass()->element_klass();
6499     const TypeKlassPtr* etype = TypeKlassPtr::make(eklass);
6500     return TypeAryKlassPtr::make(ptr, etype, k, offset, not_flat, not_null_free, null_free);
6501   } else {
6502     ShouldNotReachHere();
6503     return nullptr;
6504   }
6505 }
6506 
6507 const TypeAryKlassPtr* TypeAryKlassPtr::make(PTR ptr, ciKlass* k, Offset offset, InterfaceHandling interface_handling) {
6508   bool null_free = k->as_array_klass()->is_elem_null_free();
6509   bool not_null_free = (ptr == Constant) ? !null_free : !k->is_flat_array_klass() && (k->is_type_array_klass() || !k->as_array_klass()->element_klass()->can_be_inline_klass(false));
6510 
6511   bool not_flat = !UseFlatArray || not_null_free || (k->as_array_klass()->element_klass() != nullptr &&
6512                                                      k->as_array_klass()->element_klass()->is_inlinetype() &&
6513                                                      !k->as_array_klass()->element_klass()->flat_in_array());
6514 
6515   return TypeAryKlassPtr::make(ptr, k, offset, interface_handling, not_flat, not_null_free, null_free);
6516 }
6517 
6518 const TypeAryKlassPtr* TypeAryKlassPtr::make(ciKlass* klass, InterfaceHandling interface_handling) {
6519   return TypeAryKlassPtr::make(Constant, klass, Offset(0), interface_handling);
6520 }
6521 
6522 //------------------------------eq---------------------------------------------
6523 // Structural equality check for Type representations
6524 bool TypeAryKlassPtr::eq(const Type *t) const {
6525   const TypeAryKlassPtr *p = t->is_aryklassptr();
6526   return
6527     _elem == p->_elem &&  // Check array
6528     _not_flat == p->_not_flat &&
6529     _not_null_free == p->_not_null_free &&
6530     _null_free == p->_null_free &&
6531     TypeKlassPtr::eq(p);  // Check sub-parts
6532 }
6533 
6534 //------------------------------hash-------------------------------------------
6535 // Type-specific hashing function.
6536 uint TypeAryKlassPtr::hash(void) const {
6537   return (uint)(uintptr_t)_elem + TypeKlassPtr::hash() + (uint)(_not_flat ? 43 : 0) +
6538       (uint)(_not_null_free ? 44 : 0) + (uint)(_null_free ? 45 : 0);
6539 }
6540 
6541 //----------------------compute_klass------------------------------------------
6542 // Compute the defining klass for this class
6543 ciKlass* TypeAryPtr::compute_klass() const {
6544   // Compute _klass based on element type.
6545   ciKlass* k_ary = nullptr;
6546   const TypeInstPtr *tinst;
6547   const TypeAryPtr *tary;
6548   const Type* el = elem();
6549   if (el->isa_narrowoop()) {
6550     el = el->make_ptr();
6551   }
6552 
6553   // Get element klass
6554   if (is_flat() && el->is_inlinetypeptr()) {
6555     // Klass is required by TypeAryPtr::flat_layout_helper() and others
6556     if (el->inline_klass() != nullptr) {
6557       k_ary = ciArrayKlass::make(el->inline_klass(), /* null_free */ true);
6558     }
6559   } else if ((tinst = el->isa_instptr()) != nullptr) {
6560     // Leave k_ary at nullptr.
6561   } else if ((tary = el->isa_aryptr()) != nullptr) {
6562     // Leave k_ary at nullptr.
6563   } else if ((el->base() == Type::Top) ||
6564              (el->base() == Type::Bottom)) {
6565     // element type of Bottom occurs from meet of basic type
6566     // and object; Top occurs when doing join on Bottom.
6567     // Leave k_ary at null.
6568   } else {
6569     assert(!el->isa_int(), "integral arrays must be pre-equipped with a class");
6570     // Compute array klass directly from basic type
6571     k_ary = ciTypeArrayKlass::make(el->basic_type());
6572   }
6573   return k_ary;
6574 }
6575 
6576 //------------------------------klass------------------------------------------
6577 // Return the defining klass for this class
6578 ciKlass* TypeAryPtr::klass() const {
6579   if( _klass ) return _klass;   // Return cached value, if possible
6580 
6581   // Oops, need to compute _klass and cache it
6582   ciKlass* k_ary = compute_klass();

6590     // type TypeAryPtr::OOPS.  This Type is shared between all
6591     // active compilations.  However, the ciKlass which represents
6592     // this Type is *not* shared between compilations, so caching
6593     // this value would result in fetching a dangling pointer.
6594     //
6595     // Recomputing the underlying ciKlass for each request is
6596     // a bit less efficient than caching, but calls to
6597     // TypeAryPtr::OOPS->klass() are not common enough to matter.
6598     ((TypeAryPtr*)this)->_klass = k_ary;
6599   }
6600   return k_ary;
6601 }
6602 
6603 // Is there a single ciKlass* that can represent that type?
6604 ciKlass* TypeAryPtr::exact_klass_helper() const {
6605   if (_ary->_elem->make_ptr() && _ary->_elem->make_ptr()->isa_oopptr()) {
6606     ciKlass* k = _ary->_elem->make_ptr()->is_oopptr()->exact_klass_helper();
6607     if (k == nullptr) {
6608       return nullptr;
6609     }
6610     k = ciArrayKlass::make(k, is_null_free());
6611     return k;
6612   }
6613 
6614   return klass();
6615 }
6616 
6617 const Type* TypeAryPtr::base_element_type(int& dims) const {
6618   const Type* elem = this->elem();
6619   dims = 1;
6620   while (elem->make_ptr() && elem->make_ptr()->isa_aryptr()) {
6621     elem = elem->make_ptr()->is_aryptr()->elem();
6622     dims++;
6623   }
6624   return elem;
6625 }
6626 
6627 //------------------------------add_offset-------------------------------------
6628 // Access internals of klass object
6629 const TypePtr* TypeAryKlassPtr::add_offset(intptr_t offset) const {
6630   return make(_ptr, elem(), klass(), xadd_offset(offset), is_not_flat(), is_not_null_free(), _null_free);
6631 }
6632 
6633 const TypeAryKlassPtr* TypeAryKlassPtr::with_offset(intptr_t offset) const {
6634   return make(_ptr, elem(), klass(), Offset(offset), is_not_flat(), is_not_null_free(), _null_free);
6635 }
6636 
6637 //------------------------------cast_to_ptr_type-------------------------------
6638 const TypeAryKlassPtr* TypeAryKlassPtr::cast_to_ptr_type(PTR ptr) const {
6639   assert(_base == AryKlassPtr, "subclass must override cast_to_ptr_type");
6640   if (ptr == _ptr) return this;
6641   return make(ptr, elem(), _klass, _offset, is_not_flat(), is_not_null_free(), _null_free);
6642 }
6643 
6644 bool TypeAryKlassPtr::must_be_exact() const {
6645   if (_elem == Type::BOTTOM) return false;
6646   if (_elem == Type::TOP   ) return false;
6647   const TypeKlassPtr*  tk = _elem->isa_klassptr();
6648   if (!tk)             return true;   // a primitive type, like int
6649   // Even though MyValue is final, [LMyValue is only exact if the array
6650   // is null-free due to null-free [LMyValue <: null-able [LMyValue.
6651   if (tk->isa_instklassptr() && tk->klass()->is_inlinetype() && !is_null_free()) {
6652     return false;
6653   }
6654   return tk->must_be_exact();
6655 }
6656 
6657 
6658 //-----------------------------cast_to_exactness-------------------------------
6659 const TypeKlassPtr *TypeAryKlassPtr::cast_to_exactness(bool klass_is_exact) const {
6660   if (must_be_exact() && !klass_is_exact) return this;  // cannot clear xk
6661   if (klass_is_exact == this->klass_is_exact()) {
6662     return this;
6663   }
6664   ciKlass* k = _klass;
6665   const Type* elem = this->elem();
6666   if (elem->isa_klassptr() && !klass_is_exact) {
6667     elem = elem->is_klassptr()->cast_to_exactness(klass_is_exact);
6668   }
6669   bool not_flat = is_not_flat();
6670   bool not_null_free = is_not_null_free();
6671   if (_elem->isa_klassptr()) {
6672     if (klass_is_exact || _elem->isa_aryklassptr()) {
6673       assert(!is_null_free() && !is_flat(), "null-free (or flat) inline type arrays should always be exact");
6674       // An array can't be null-free (or flat) if the klass is exact
6675       not_null_free = true;
6676       not_flat = true;
6677     } else {
6678       // Klass is not exact (anymore), re-compute null-free/flat properties
6679       const TypeOopPtr* exact_etype = TypeOopPtr::make_from_klass_unique(_elem->is_instklassptr()->instance_klass());
6680       not_null_free = !exact_etype->can_be_inline_type();
6681       not_flat = !UseFlatArray || not_null_free || (exact_etype->is_inlinetypeptr() && !exact_etype->inline_klass()->flat_in_array());
6682     }
6683   }
6684   return make(klass_is_exact ? Constant : NotNull, elem, k, _offset, not_flat, not_null_free, _null_free);
6685 }
6686 
6687 const TypeAryKlassPtr* TypeAryKlassPtr::cast_to_null_free() const {
6688   return make(_ptr, elem(), klass(), _offset, is_not_flat(), false, true);
6689 }
6690 
6691 //-----------------------------as_instance_type--------------------------------
6692 // Corresponding type for an instance of the given class.
6693 // It will be NotNull, and exact if and only if the klass type is exact.
6694 const TypeOopPtr* TypeAryKlassPtr::as_instance_type(bool klass_change) const {
6695   ciKlass* k = klass();
6696   bool    xk = klass_is_exact();
6697   const Type* el = nullptr;
6698   if (elem()->isa_klassptr()) {
6699     el = elem()->is_klassptr()->as_instance_type(false)->cast_to_exactness(false);
6700     k = nullptr;
6701   } else {
6702     el = elem();
6703   }
6704   bool null_free = _null_free;
6705   if (null_free && el->isa_ptr()) {
6706     el = el->is_ptr()->join_speculative(TypePtr::NOTNULL);
6707   }
6708   return TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(el, TypeInt::POS, false, is_flat(), is_not_flat(), is_not_null_free()), k, xk, Offset(0));
6709 }
6710 
6711 
6712 //------------------------------xmeet------------------------------------------
6713 // Compute the MEET of two types, return a new Type object.
6714 const Type    *TypeAryKlassPtr::xmeet( const Type *t ) const {
6715   // Perform a fast test for common case; meeting the same types together.
6716   if( this == t ) return this;  // Meeting same type-rep?
6717 
6718   // Current "this->_base" is Pointer
6719   switch (t->base()) {          // switch on original type
6720 
6721   case Int:                     // Mixing ints & oops happens when javac
6722   case Long:                    // reuses local variables
6723   case FloatTop:
6724   case FloatCon:
6725   case FloatBot:
6726   case DoubleTop:
6727   case DoubleCon:
6728   case DoubleBot:
6729   case NarrowOop:
6730   case NarrowKlass:
6731   case Bottom:                  // Ye Olde Default
6732     return Type::BOTTOM;
6733   case Top:
6734     return this;
6735 
6736   default:                      // All else is a mistake
6737     typerr(t);
6738 
6739   case AnyPtr: {                // Meeting to AnyPtrs
6740     // Found an AnyPtr type vs self-KlassPtr type
6741     const TypePtr *tp = t->is_ptr();
6742     Offset offset = meet_offset(tp->offset());
6743     PTR ptr = meet_ptr(tp->ptr());
6744     switch (tp->ptr()) {
6745     case TopPTR:
6746       return this;
6747     case Null:
6748       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6749     case AnyNull:
6750       return make(ptr, _elem, klass(), offset, is_not_flat(), is_not_null_free(), is_null_free());
6751     case BotPTR:
6752     case NotNull:
6753       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6754     default: typerr(t);
6755     }
6756   }
6757 
6758   case RawPtr:
6759   case MetadataPtr:
6760   case OopPtr:
6761   case AryPtr:                  // Meet with AryPtr
6762   case InstPtr:                 // Meet with InstPtr
6763     return TypePtr::BOTTOM;
6764 
6765   //
6766   //             A-top         }
6767   //           /   |   \       }  Tops
6768   //       B-top A-any C-top   }
6769   //          | /  |  \ |      }  Any-nulls
6770   //       B-any   |   C-any   }
6771   //          |    |    |
6772   //       B-con A-con C-con   } constants; not comparable across classes
6773   //          |    |    |
6774   //       B-not   |   C-not   }
6775   //          | \  |  / |      }  not-nulls
6776   //       B-bot A-not C-bot   }
6777   //           \   |   /       }  Bottoms
6778   //             A-bot         }
6779   //
6780 
6781   case AryKlassPtr: {  // Meet two KlassPtr types
6782     const TypeAryKlassPtr *tap = t->is_aryklassptr();
6783     Offset off = meet_offset(tap->offset());
6784     const Type* elem = _elem->meet(tap->_elem);

6785     PTR ptr = meet_ptr(tap->ptr());
6786     ciKlass* res_klass = nullptr;
6787     bool res_xk = false;
6788     bool res_flat = false;
6789     bool res_not_flat = false;
6790     bool res_not_null_free = false;
6791     MeetResult res = meet_aryptr(ptr, elem, this, tap,
6792                                  res_klass, res_xk, res_flat, res_not_flat, res_not_null_free);
6793     assert(res_xk == (ptr == Constant), "");
6794     bool null_free = meet_null_free(tap->_null_free);
6795     if (res == NOT_SUBTYPE) {
6796       null_free = false;
6797     } else if (res == SUBTYPE) {
6798       if (above_centerline(tap->ptr()) && !above_centerline(this->ptr())) {
6799         null_free = _null_free;
6800       } else if (above_centerline(this->ptr()) && !above_centerline(tap->ptr())) {
6801         null_free = tap->_null_free;
6802       } else if (above_centerline(this->ptr()) && above_centerline(tap->ptr())) {
6803         null_free = _null_free || tap->_null_free;
6804       }
6805     }
6806     return make(ptr, elem, res_klass, off, res_not_flat, res_not_null_free, null_free);
6807   } // End of case KlassPtr
6808   case InstKlassPtr: {
6809     const TypeInstKlassPtr *tp = t->is_instklassptr();
6810     Offset offset = meet_offset(tp->offset());
6811     PTR ptr = meet_ptr(tp->ptr());
6812     const TypeInterfaces* interfaces = meet_interfaces(tp);
6813     const TypeInterfaces* tp_interfaces = tp->_interfaces;
6814     const TypeInterfaces* this_interfaces = _interfaces;
6815 
6816     switch (ptr) {
6817     case TopPTR:
6818     case AnyNull:                // Fall 'down' to dual of object klass
6819       // For instances when a subclass meets a superclass we fall
6820       // below the centerline when the superclass is exact. We need to
6821       // do the same here.
6822       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) &&
6823           !tp->klass_is_exact()) {
6824         return TypeAryKlassPtr::make(ptr, _elem, _klass, offset, is_not_flat(), is_not_null_free(), is_null_free());
6825       } else {
6826         // cannot subclass, so the meet has to fall badly below the centerline
6827         ptr = NotNull;
6828         interfaces = this_interfaces->intersection_with(tp->_interfaces);
6829         return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset, false);
6830       }
6831     case Constant:
6832     case NotNull:
6833     case BotPTR:                // Fall down to object klass
6834       // LCA is object_klass, but if we subclass from the top we can do better
6835       if (above_centerline(tp->ptr())) {
6836         // If 'tp'  is above the centerline and it is Object class
6837         // then we can subclass in the Java class hierarchy.
6838         // For instances when a subclass meets a superclass we fall
6839         // below the centerline when the superclass is exact. We need
6840         // to do the same here.
6841         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) &&
6842             !tp->klass_is_exact()) {
6843           // that is, my array type is a subtype of 'tp' klass
6844           return make(ptr, _elem, _klass, offset, is_not_flat(), is_not_null_free(), is_null_free());
6845         }
6846       }
6847       // The other case cannot happen, since t cannot be a subtype of an array.
6848       // The meet falls down to Object class below centerline.
6849       if (ptr == Constant)
6850          ptr = NotNull;
6851       interfaces = this_interfaces->intersection_with(tp_interfaces);
6852       return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset, false);
6853     default: typerr(t);
6854     }
6855   }
6856 
6857   } // End of switch
6858   return this;                  // Return the double constant
6859 }
6860 
6861 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
6862   static_assert(std::is_base_of<T2, T1>::value, "");
6863 
6864   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty() && other_exact) {
6865     return true;
6866   }
6867 
6868   int dummy;
6869   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
6870 
6871   if (!this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) {
6872     return false;
6873   }
6874 
6875   if (this_one->is_instance_type(other)) {
6876     return other->klass() == ciEnv::current()->Object_klass() && this_one->_interfaces->contains(other->_interfaces) &&
6877            other_exact;
6878   }
6879 
6880   assert(this_one->is_array_type(other), "");
6881   const T1* other_ary = this_one->is_array_type(other);
6882   bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
6883   if (other_top_or_bottom) {
6884     return false;
6885   }
6886 
6887   const TypePtr* other_elem = other_ary->elem()->make_ptr();
6888   const TypePtr* this_elem = this_one->elem()->make_ptr();
6889   if (this_elem != nullptr && other_elem != nullptr) {
6890     if (other->is_null_free() && !this_one->is_null_free()) {
6891       return false; // A nullable array can't be a subtype of a null-free array
6892     }
6893     return this_one->is_reference_type(this_elem)->is_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact);
6894   }
6895   if (this_elem == nullptr && other_elem == nullptr) {
6896     return this_one->klass()->is_subtype_of(other->klass());
6897   }
6898   return false;
6899 }
6900 
6901 bool TypeAryKlassPtr::is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
6902   return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
6903 }
6904 
6905 template <class T1, class T2> bool TypePtr::is_same_java_type_as_helper_for_array(const T1* this_one, const T2* other) {
6906   static_assert(std::is_base_of<T2, T1>::value, "");
6907 
6908   int dummy;
6909   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
6910 
6911   if (!this_one->is_array_type(other) ||
6912       !this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) {

6965   }
6966 
6967   const TypePtr* this_elem = this_one->elem()->make_ptr();
6968   const TypePtr* other_elem = other_ary->elem()->make_ptr();
6969   if (other_elem != nullptr && this_elem != nullptr) {
6970     return this_one->is_reference_type(this_elem)->maybe_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact);
6971   }
6972   if (other_elem == nullptr && this_elem == nullptr) {
6973     return this_one->klass()->is_subtype_of(other->klass());
6974   }
6975   return false;
6976 }
6977 
6978 bool TypeAryKlassPtr::maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
6979   return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
6980 }
6981 
6982 //------------------------------xdual------------------------------------------
6983 // Dual: compute field-by-field dual
6984 const Type    *TypeAryKlassPtr::xdual() const {
6985   return new TypeAryKlassPtr(dual_ptr(), elem()->dual(), klass(), dual_offset(), !is_not_flat(), !is_not_null_free(), dual_null_free());
6986 }
6987 
6988 // Is there a single ciKlass* that can represent that type?
6989 ciKlass* TypeAryKlassPtr::exact_klass_helper() const {
6990   if (elem()->isa_klassptr()) {
6991     ciKlass* k = elem()->is_klassptr()->exact_klass_helper();
6992     if (k == nullptr) {
6993       return nullptr;
6994     }
6995     k = ciArrayKlass::make(k, _null_free);
6996     return k;
6997   }
6998 
6999   return klass();
7000 }
7001 
7002 ciKlass* TypeAryKlassPtr::klass() const {
7003   if (_klass != nullptr) {
7004     return _klass;
7005   }
7006   ciKlass* k = nullptr;
7007   if (elem()->isa_klassptr()) {
7008     // leave null
7009   } else if ((elem()->base() == Type::Top) ||
7010              (elem()->base() == Type::Bottom)) {
7011   } else {
7012     k = ciTypeArrayKlass::make(elem()->basic_type());
7013     ((TypeAryKlassPtr*)this)->_klass = k;
7014   }
7015   return k;

7022   switch( _ptr ) {
7023   case Constant:
7024     st->print("precise ");
7025   case NotNull:
7026     {
7027       st->print("[");
7028       _elem->dump2(d, depth, st);
7029       _interfaces->dump(st);
7030       st->print(": ");
7031     }
7032   case BotPTR:
7033     if( !WizardMode && !Verbose && _ptr != Constant ) break;
7034   case TopPTR:
7035   case AnyNull:
7036     st->print(":%s", ptr_msg[_ptr]);
7037     if( _ptr == Constant ) st->print(":exact");
7038     break;
7039   default:
7040     break;
7041   }
7042   if (is_flat()) st->print(":flat");
7043   if (_null_free) st->print(":null free");
7044   if (Verbose) {
7045     if (_not_flat) st->print(":not flat");
7046     if (_not_null_free) st->print(":not null free");
7047   }
7048 
7049   _offset.dump2(st);
7050 
7051   st->print(" *");
7052 }
7053 #endif
7054 
7055 const Type* TypeAryKlassPtr::base_element_type(int& dims) const {
7056   const Type* elem = this->elem();
7057   dims = 1;
7058   while (elem->isa_aryklassptr()) {
7059     elem = elem->is_aryklassptr()->elem();
7060     dims++;
7061   }
7062   return elem;
7063 }
7064 
7065 //=============================================================================
7066 // Convenience common pre-built types.
7067 
7068 //------------------------------make-------------------------------------------
7069 const TypeFunc *TypeFunc::make(const TypeTuple *domain_sig, const TypeTuple* domain_cc,
7070                                const TypeTuple *range_sig, const TypeTuple *range_cc) {
7071   return (TypeFunc*)(new TypeFunc(domain_sig, domain_cc, range_sig, range_cc))->hashcons();
7072 }
7073 
7074 const TypeFunc *TypeFunc::make(const TypeTuple *domain, const TypeTuple *range) {
7075   return make(domain, domain, range, range);
7076 }
7077 
7078 //------------------------------osr_domain-----------------------------
7079 const TypeTuple* osr_domain() {
7080   const Type **fields = TypeTuple::fields(2);
7081   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM;  // address of osr buffer
7082   return TypeTuple::make(TypeFunc::Parms+1, fields);
7083 }
7084 
7085 //------------------------------make-------------------------------------------
7086 const TypeFunc* TypeFunc::make(ciMethod* method, bool is_osr_compilation) {
7087   Compile* C = Compile::current();
7088   const TypeFunc* tf = nullptr;
7089   if (!is_osr_compilation) {
7090     tf = C->last_tf(method); // check cache
7091     if (tf != nullptr)  return tf;  // The hit rate here is almost 50%.
7092   }
7093   // Inline types are not passed/returned by reference, instead each field of
7094   // the inline type is passed/returned as an argument. We maintain two views of
7095   // the argument/return list here: one based on the signature (with an inline
7096   // type argument/return as a single slot), one based on the actual calling
7097   // convention (with an inline type argument/return as a list of its fields).
7098   bool has_scalar_args = method->has_scalarized_args() && !is_osr_compilation;
7099   // Fall back to the non-scalarized calling convention when compiling a call via a mismatching method
7100   if (method != C->method() && method->get_Method()->mismatch()) {
7101     has_scalar_args = false;
7102   }
7103   const TypeTuple* domain_sig = is_osr_compilation ? osr_domain() : TypeTuple::make_domain(method, ignore_interfaces, false);
7104   const TypeTuple* domain_cc = has_scalar_args ? TypeTuple::make_domain(method, ignore_interfaces, true) : domain_sig;
7105   ciSignature* sig = method->signature();
7106   bool has_scalar_ret = !method->is_native() && sig->return_type()->is_inlinetype() && sig->return_type()->as_inline_klass()->can_be_returned_as_fields();
7107   const TypeTuple* range_sig = TypeTuple::make_range(sig, ignore_interfaces, false);
7108   const TypeTuple* range_cc = has_scalar_ret ? TypeTuple::make_range(sig, ignore_interfaces, true) : range_sig;
7109   tf = TypeFunc::make(domain_sig, domain_cc, range_sig, range_cc);
7110   if (!is_osr_compilation) {
7111     C->set_last_tf(method, tf);  // fill cache
7112   }



7113   return tf;
7114 }
7115 
7116 //------------------------------meet-------------------------------------------
7117 // Compute the MEET of two types.  It returns a new Type object.
7118 const Type *TypeFunc::xmeet( const Type *t ) const {
7119   // Perform a fast test for common case; meeting the same types together.
7120   if( this == t ) return this;  // Meeting same type-rep?
7121 
7122   // Current "this->_base" is Func
7123   switch (t->base()) {          // switch on original type
7124 
7125   case Bottom:                  // Ye Olde Default
7126     return t;
7127 
7128   default:                      // All else is a mistake
7129     typerr(t);
7130 
7131   case Top:
7132     break;
7133   }
7134   return this;                  // Return the double constant
7135 }
7136 
7137 //------------------------------xdual------------------------------------------
7138 // Dual: compute field-by-field dual
7139 const Type *TypeFunc::xdual() const {
7140   return this;
7141 }
7142 
7143 //------------------------------eq---------------------------------------------
7144 // Structural equality check for Type representations
7145 bool TypeFunc::eq( const Type *t ) const {
7146   const TypeFunc *a = (const TypeFunc*)t;
7147   return _domain_sig == a->_domain_sig &&
7148     _domain_cc == a->_domain_cc &&
7149     _range_sig == a->_range_sig &&
7150     _range_cc == a->_range_cc;
7151 }
7152 
7153 //------------------------------hash-------------------------------------------
7154 // Type-specific hashing function.
7155 uint TypeFunc::hash(void) const {
7156   return (uint)(intptr_t)_domain_sig + (uint)(intptr_t)_domain_cc + (uint)(intptr_t)_range_sig + (uint)(intptr_t)_range_cc;
7157 }
7158 
7159 //------------------------------dump2------------------------------------------
7160 // Dump Function Type
7161 #ifndef PRODUCT
7162 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
7163   if( _range_sig->cnt() <= Parms )
7164     st->print("void");
7165   else {
7166     uint i;
7167     for (i = Parms; i < _range_sig->cnt()-1; i++) {
7168       _range_sig->field_at(i)->dump2(d,depth,st);
7169       st->print("/");
7170     }
7171     _range_sig->field_at(i)->dump2(d,depth,st);
7172   }
7173   st->print(" ");
7174   st->print("( ");
7175   if( !depth || d[this] ) {     // Check for recursive dump
7176     st->print("...)");
7177     return;
7178   }
7179   d.Insert((void*)this,(void*)this);    // Stop recursion
7180   if (Parms < _domain_sig->cnt())
7181     _domain_sig->field_at(Parms)->dump2(d,depth-1,st);
7182   for (uint i = Parms+1; i < _domain_sig->cnt(); i++) {
7183     st->print(", ");
7184     _domain_sig->field_at(i)->dump2(d,depth-1,st);
7185   }
7186   st->print(" )");
7187 }
7188 #endif
7189 
7190 //------------------------------singleton--------------------------------------
7191 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
7192 // constants (Ldi nodes).  Singletons are integer, float or double constants
7193 // or a single symbol.
7194 bool TypeFunc::singleton(void) const {
7195   return false;                 // Never a singleton
7196 }
7197 
7198 bool TypeFunc::empty(void) const {
7199   return false;                 // Never empty
7200 }
7201 
7202 
7203 BasicType TypeFunc::return_type() const{
7204   if (range_sig()->cnt() == TypeFunc::Parms) {
7205     return T_VOID;
7206   }
7207   return range_sig()->field_at(TypeFunc::Parms)->basic_type();
7208 }
< prev index next >