< prev index next >

src/hotspot/share/opto/type.cpp

Print this page

   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 



  25 #include "ci/ciMethodData.hpp"
  26 #include "ci/ciTypeFlow.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "libadt/dict.hpp"
  32 #include "memory/oopFactory.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "oops/instanceKlass.hpp"
  35 #include "oops/instanceMirrorKlass.hpp"
  36 #include "oops/objArrayKlass.hpp"
  37 #include "oops/typeArrayKlass.hpp"
  38 #include "opto/arraycopynode.hpp"
  39 #include "opto/callnode.hpp"
  40 #include "opto/matcher.hpp"
  41 #include "opto/node.hpp"
  42 #include "opto/opcodes.hpp"
  43 #include "opto/rangeinference.hpp"
  44 #include "opto/runtime.hpp"
  45 #include "opto/type.hpp"
  46 #include "runtime/stubRoutines.hpp"
  47 #include "utilities/checkedCast.hpp"

  48 #include "utilities/powerOfTwo.hpp"
  49 #include "utilities/stringUtils.hpp"
  50 
  51 // Portions of code courtesy of Clifford Click
  52 
  53 // Optimization - Graph Style
  54 
  55 // Dictionary of types shared among compilations.
  56 Dict* Type::_shared_type_dict = nullptr;













































  57 
  58 // Array which maps compiler types to Basic Types
  59 const Type::TypeInfo Type::_type_info[Type::lastype] = {
  60   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
  61   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
  62   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
  63   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
  64   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
  65   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
  66   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
  67   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
  68   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
  69   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
  70   { Bad,             T_ARRAY,      "interfaces:",   false, Node::NotAMachineReg, relocInfo::none          },  // Interfaces
  71 
  72 #if defined(PPC64)
  73   { Bad,             T_ILLEGAL,    "vectormask:",   false, Op_RegVectMask,       relocInfo::none          },  // VectorMask.
  74   { Bad,             T_ILLEGAL,    "vectora:",      false, Op_VecA,              relocInfo::none          },  // VectorA.
  75   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  76   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD

 215   case ciTypeFlow::StateVector::T_NULL:
 216     assert(type == ciTypeFlow::StateVector::null_type(), "");
 217     return TypePtr::NULL_PTR;
 218 
 219   case ciTypeFlow::StateVector::T_LONG2:
 220     // The ciTypeFlow pass pushes a long, then the half.
 221     // We do the same.
 222     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 223     return TypeInt::TOP;
 224 
 225   case ciTypeFlow::StateVector::T_DOUBLE2:
 226     // The ciTypeFlow pass pushes double, then the half.
 227     // Our convention is the same.
 228     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 229     return Type::TOP;
 230 
 231   case T_ADDRESS:
 232     assert(type->is_return_address(), "");
 233     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 234 



 235   default:
 236     // make sure we did not mix up the cases:
 237     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 238     assert(type != ciTypeFlow::StateVector::top_type(), "");
 239     assert(type != ciTypeFlow::StateVector::null_type(), "");
 240     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 241     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 242     assert(!type->is_return_address(), "");
 243 
 244     return Type::get_const_type(type);
 245   }
 246 }
 247 
 248 
 249 //-----------------------make_from_constant------------------------------------
 250 const Type* Type::make_from_constant(ciConstant constant, bool require_constant,
 251                                      int stable_dimension, bool is_narrow_oop,
 252                                      bool is_autobox_cache) {
 253   switch (constant.basic_type()) {
 254     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());

 537   const Type **ffalse =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 538   ffalse[0] = Type::CONTROL;
 539   ffalse[1] = Type::TOP;
 540   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 541 
 542   const Type **fneither =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 543   fneither[0] = Type::TOP;
 544   fneither[1] = Type::TOP;
 545   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 546 
 547   const Type **ftrue =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 548   ftrue[0] = Type::TOP;
 549   ftrue[1] = Type::CONTROL;
 550   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 551 
 552   const Type **floop =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 553   floop[0] = Type::CONTROL;
 554   floop[1] = TypeInt::INT;
 555   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 556 
 557   TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, 0);
 558   TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, OffsetBot);
 559   TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, OffsetBot);
 560 
 561   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 562   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 563 
 564   const Type **fmembar = TypeTuple::fields(0);
 565   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 566 
 567   const Type **fsc = (const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 568   fsc[0] = TypeInt::CC;
 569   fsc[1] = Type::MEMORY;
 570   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 571 
 572   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 573   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 574   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 575   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 576                                            false, nullptr, oopDesc::mark_offset_in_bytes());
 577   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 578                                            false, nullptr, oopDesc::klass_offset_in_bytes());
 579   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
 580 
 581   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, nullptr, OffsetBot);
 582 
 583   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 584   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 585 
 586   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 587 
 588   mreg2type[Op_Node] = Type::BOTTOM;
 589   mreg2type[Op_Set ] = nullptr;
 590   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 591   mreg2type[Op_RegI] = TypeInt::INT;
 592   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 593   mreg2type[Op_RegF] = Type::FLOAT;
 594   mreg2type[Op_RegD] = Type::DOUBLE;
 595   mreg2type[Op_RegL] = TypeLong::LONG;
 596   mreg2type[Op_RegFlags] = TypeInt::CC;
 597 
 598   GrowableArray<ciInstanceKlass*> array_interfaces;
 599   array_interfaces.push(current->env()->Cloneable_klass());
 600   array_interfaces.push(current->env()->Serializable_klass());
 601   TypeAryPtr::_array_interfaces = TypeInterfaces::make(&array_interfaces);
 602   TypeAryKlassPtr::_array_interfaces = TypeAryPtr::_array_interfaces;
 603 
 604   TypeAryPtr::BOTTOM = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::BOTTOM, TypeInt::POS), nullptr, false, Type::OffsetBot);
 605   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), nullptr /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
 606 
 607   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), nullptr /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 608 
 609 #ifdef _LP64
 610   if (UseCompressedOops) {
 611     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 612     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 613   } else
 614 #endif
 615   {
 616     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 617     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), nullptr /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 618   }
 619   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
 620   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
 621   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
 622   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
 623   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
 624   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
 625   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);

 626 
 627   // Nobody should ask _array_body_type[T_NARROWOOP]. Use null as assert.
 628   TypeAryPtr::_array_body_type[T_NARROWOOP] = nullptr;
 629   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;

 630   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 631   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 632   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 633   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 634   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 635   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 636   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 637   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 638   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 639 
 640   TypeInstKlassPtr::OBJECT = TypeInstKlassPtr::make(TypePtr::NotNull, current->env()->Object_klass(), 0);
 641   TypeInstKlassPtr::OBJECT_OR_NULL = TypeInstKlassPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), 0);
 642 
 643   const Type **fi2c = TypeTuple::fields(2);
 644   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 645   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 646   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 647 
 648   const Type **intpair = TypeTuple::fields(2);
 649   intpair[0] = TypeInt::INT;
 650   intpair[1] = TypeInt::INT;
 651   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 652 
 653   const Type **longpair = TypeTuple::fields(2);
 654   longpair[0] = TypeLong::LONG;
 655   longpair[1] = TypeLong::LONG;
 656   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 657 
 658   const Type **intccpair = TypeTuple::fields(2);
 659   intccpair[0] = TypeInt::INT;
 660   intccpair[1] = TypeInt::CC;
 661   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 662 
 663   const Type **longccpair = TypeTuple::fields(2);
 664   longccpair[0] = TypeLong::LONG;
 665   longccpair[1] = TypeInt::CC;
 666   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 667 
 668   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 669   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 670   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 671   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 672   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 673   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 674   _const_basic_type[T_INT]         = TypeInt::INT;
 675   _const_basic_type[T_LONG]        = TypeLong::LONG;
 676   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 677   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 678   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 679   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays

 680   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 681   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 682   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 683 
 684   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 685   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 686   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 687   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 688   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 689   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 690   _zero_type[T_INT]         = TypeInt::ZERO;
 691   _zero_type[T_LONG]        = TypeLong::ZERO;
 692   _zero_type[T_FLOAT]       = TypeF::ZERO;
 693   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 694   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 695   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop

 696   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 697   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 698 
 699   // get_zero_type() should not happen for T_CONFLICT
 700   _zero_type[T_CONFLICT]= nullptr;
 701 
 702   TypeVect::VECTMASK = (TypeVect*)(new TypeVectMask(T_BOOLEAN, MaxVectorSize))->hashcons();
 703   mreg2type[Op_RegVectMask] = TypeVect::VECTMASK;
 704 
 705   if (Matcher::supports_scalable_vector()) {
 706     TypeVect::VECTA = TypeVect::make(T_BYTE, Matcher::scalable_vector_reg_size(T_BYTE));
 707   }
 708 
 709   // Vector predefined types, it needs initialized _const_basic_type[].
 710   if (Matcher::vector_size_supported(T_BYTE, 4)) {
 711     TypeVect::VECTS = TypeVect::make(T_BYTE, 4);
 712   }
 713   if (Matcher::vector_size_supported(T_FLOAT, 2)) {
 714     TypeVect::VECTD = TypeVect::make(T_FLOAT, 2);
 715   }

 950   ~VerifyMeet() {
 951     assert(_C->_type_verify->_depth != 0, "");
 952     _C->_type_verify->_depth--;
 953     if (_C->_type_verify->_depth == 0) {
 954       _C->_type_verify->_cache.trunc_to(0);
 955     }
 956   }
 957 
 958   const Type* meet(const Type* t1, const Type* t2) const {
 959     return _C->_type_verify->meet(t1, t2);
 960   }
 961 
 962   void add(const Type* t1, const Type* t2, const Type* res) const {
 963     _C->_type_verify->add(t1, t2, res);
 964   }
 965 };
 966 
 967 void Type::check_symmetrical(const Type* t, const Type* mt, const VerifyMeet& verify) const {
 968   Compile* C = Compile::current();
 969   const Type* mt2 = verify.meet(t, this);



 970   if (mt != mt2) {
 971     tty->print_cr("=== Meet Not Commutative ===");
 972     tty->print("t           = ");   t->dump(); tty->cr();
 973     tty->print("this        = ");      dump(); tty->cr();
 974     tty->print("t meet this = "); mt2->dump(); tty->cr();
 975     tty->print("this meet t = ");  mt->dump(); tty->cr();
 976     fatal("meet not commutative");
 977   }
 978   const Type* dual_join = mt->_dual;
 979   const Type* t2t    = verify.meet(dual_join,t->_dual);
 980   const Type* t2this = verify.meet(dual_join,this->_dual);
 981 
 982   // Interface meet Oop is Not Symmetric:
 983   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
 984   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
 985 









 986   if (t2t != t->_dual || t2this != this->_dual) {
 987     tty->print_cr("=== Meet Not Symmetric ===");
 988     tty->print("t   =                   ");              t->dump(); tty->cr();
 989     tty->print("this=                   ");                 dump(); tty->cr();
 990     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
 991 
 992     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
 993     tty->print("this_dual=              ");          _dual->dump(); tty->cr();
 994     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
 995 

 996     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();

 997     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
 998 
 999     fatal("meet not symmetric");
1000   }
1001 }
1002 #endif
1003 
1004 //------------------------------meet-------------------------------------------
1005 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
1006 // commutative and the lattice is symmetric.
1007 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
1008   if (isa_narrowoop() && t->isa_narrowoop()) {
1009     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
1010     return result->make_narrowoop();
1011   }
1012   if (isa_narrowklass() && t->isa_narrowklass()) {
1013     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
1014     return result->make_narrowklass();
1015   }
1016 
1017 #ifdef ASSERT
1018   Compile* C = Compile::current();
1019   VerifyMeet verify(C);
1020 #endif
1021 
1022   const Type *this_t = maybe_remove_speculative(include_speculative);
1023   t = t->maybe_remove_speculative(include_speculative);
1024 
1025   const Type *mt = this_t->xmeet(t);
1026 #ifdef ASSERT
1027   verify.add(this_t, t, mt);
1028   if (isa_narrowoop() || t->isa_narrowoop()) {
1029     return mt;
1030   }
1031   if (isa_narrowklass() || t->isa_narrowklass()) {
1032     return mt;
1033   }



1034   this_t->check_symmetrical(t, mt, verify);
1035   const Type *mt_dual = verify.meet(this_t->_dual, t->_dual);
1036   this_t->_dual->check_symmetrical(t->_dual, mt_dual, verify);
1037 #endif
1038   return mt;
1039 }
1040 
1041 //------------------------------xmeet------------------------------------------
1042 // Compute the MEET of two types.  It returns a new Type object.
1043 const Type *Type::xmeet( const Type *t ) const {
1044   // Perform a fast test for common case; meeting the same types together.
1045   if( this == t ) return this;  // Meeting same type-rep?
1046 
1047   // Meeting TOP with anything?
1048   if( _base == Top ) return t;
1049 
1050   // Meeting BOTTOM with anything?
1051   if( _base == Bottom ) return BOTTOM;
1052 
1053   // Current "this->_base" is one of: Bad, Multi, Control, Top,

2030 void TypeLong::dump_verbose() const {
2031   TypeIntHelper::int_type_dump(this, tty, true);
2032 }
2033 #endif
2034 
2035 //=============================================================================
2036 // Convenience common pre-built types.
2037 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
2038 const TypeTuple *TypeTuple::IFFALSE;
2039 const TypeTuple *TypeTuple::IFTRUE;
2040 const TypeTuple *TypeTuple::IFNEITHER;
2041 const TypeTuple *TypeTuple::LOOPBODY;
2042 const TypeTuple *TypeTuple::MEMBAR;
2043 const TypeTuple *TypeTuple::STORECONDITIONAL;
2044 const TypeTuple *TypeTuple::START_I2C;
2045 const TypeTuple *TypeTuple::INT_PAIR;
2046 const TypeTuple *TypeTuple::LONG_PAIR;
2047 const TypeTuple *TypeTuple::INT_CC_PAIR;
2048 const TypeTuple *TypeTuple::LONG_CC_PAIR;
2049 





















2050 //------------------------------make-------------------------------------------
2051 // Make a TypeTuple from the range of a method signature
2052 const TypeTuple *TypeTuple::make_range(ciSignature* sig, InterfaceHandling interface_handling) {
2053   ciType* return_type = sig->return_type();
2054   uint arg_cnt = return_type->size();





2055   const Type **field_array = fields(arg_cnt);
2056   switch (return_type->basic_type()) {
2057   case T_LONG:
2058     field_array[TypeFunc::Parms]   = TypeLong::LONG;
2059     field_array[TypeFunc::Parms+1] = Type::HALF;
2060     break;
2061   case T_DOUBLE:
2062     field_array[TypeFunc::Parms]   = Type::DOUBLE;
2063     field_array[TypeFunc::Parms+1] = Type::HALF;
2064     break;
2065   case T_OBJECT:












2066   case T_ARRAY:
2067   case T_BOOLEAN:
2068   case T_CHAR:
2069   case T_FLOAT:
2070   case T_BYTE:
2071   case T_SHORT:
2072   case T_INT:
2073     field_array[TypeFunc::Parms] = get_const_type(return_type, interface_handling);
2074     break;
2075   case T_VOID:
2076     break;
2077   default:
2078     ShouldNotReachHere();
2079   }
2080   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2081 }
2082 
2083 // Make a TypeTuple from the domain of a method signature
2084 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig, InterfaceHandling interface_handling) {
2085   uint arg_cnt = sig->size();








2086 
2087   uint pos = TypeFunc::Parms;
2088   const Type **field_array;
2089   if (recv != nullptr) {
2090     arg_cnt++;
2091     field_array = fields(arg_cnt);
2092     // Use get_const_type here because it respects UseUniqueSubclasses:
2093     field_array[pos++] = get_const_type(recv, interface_handling)->join_speculative(TypePtr::NOTNULL);
2094   } else {
2095     field_array = fields(arg_cnt);
2096   }
2097 
2098   int i = 0;
2099   while (pos < TypeFunc::Parms + arg_cnt) {
2100     ciType* type = sig->type_at(i);

2101 
2102     switch (type->basic_type()) {
2103     case T_LONG:
2104       field_array[pos++] = TypeLong::LONG;
2105       field_array[pos++] = Type::HALF;
2106       break;
2107     case T_DOUBLE:
2108       field_array[pos++] = Type::DOUBLE;
2109       field_array[pos++] = Type::HALF;
2110       break;
2111     case T_OBJECT:








2112     case T_ARRAY:
2113     case T_FLOAT:
2114     case T_INT:
2115       field_array[pos++] = get_const_type(type, interface_handling);
2116       break;
2117     case T_BOOLEAN:
2118     case T_CHAR:
2119     case T_BYTE:
2120     case T_SHORT:
2121       field_array[pos++] = TypeInt::INT;
2122       break;
2123     default:
2124       ShouldNotReachHere();
2125     }
2126     i++;
2127   }

2128 
2129   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2130 }
2131 
2132 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
2133   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
2134 }
2135 
2136 //------------------------------fields-----------------------------------------
2137 // Subroutine call type with space allocated for argument types
2138 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
2139 const Type **TypeTuple::fields( uint arg_cnt ) {
2140   const Type **flds = (const Type **)(Compile::current()->type_arena()->AmallocWords((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
2141   flds[TypeFunc::Control  ] = Type::CONTROL;
2142   flds[TypeFunc::I_O      ] = Type::ABIO;
2143   flds[TypeFunc::Memory   ] = Type::MEMORY;
2144   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
2145   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
2146 
2147   return flds;

2242     if (_fields[i]->empty())  return true;
2243   }
2244   return false;
2245 }
2246 
2247 //=============================================================================
2248 // Convenience common pre-built types.
2249 
2250 inline const TypeInt* normalize_array_size(const TypeInt* size) {
2251   // Certain normalizations keep us sane when comparing types.
2252   // We do not want arrayOop variables to differ only by the wideness
2253   // of their index types.  Pick minimum wideness, since that is the
2254   // forced wideness of small ranges anyway.
2255   if (size->_widen != Type::WidenMin)
2256     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
2257   else
2258     return size;
2259 }
2260 
2261 //------------------------------make-------------------------------------------
2262 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {

2263   if (UseCompressedOops && elem->isa_oopptr()) {
2264     elem = elem->make_narrowoop();
2265   }
2266   size = normalize_array_size(size);
2267   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
2268 }
2269 
2270 //------------------------------meet-------------------------------------------
2271 // Compute the MEET of two types.  It returns a new Type object.
2272 const Type *TypeAry::xmeet( const Type *t ) const {
2273   // Perform a fast test for common case; meeting the same types together.
2274   if( this == t ) return this;  // Meeting same type-rep?
2275 
2276   // Current "this->_base" is Ary
2277   switch (t->base()) {          // switch on original type
2278 
2279   case Bottom:                  // Ye Olde Default
2280     return t;
2281 
2282   default:                      // All else is a mistake
2283     typerr(t);
2284 
2285   case Array: {                 // Meeting 2 arrays?
2286     const TypeAry* a = t->is_ary();
2287     const Type* size = _size->xmeet(a->_size);
2288     const TypeInt* isize = size->isa_int();
2289     if (isize == nullptr) {
2290       assert(size == Type::TOP || size == Type::BOTTOM, "");
2291       return size;
2292     }
2293     return TypeAry::make(_elem->meet_speculative(a->_elem),
2294                          isize, _stable && a->_stable);




2295   }
2296   case Top:
2297     break;
2298   }
2299   return this;                  // Return the double constant
2300 }
2301 
2302 //------------------------------xdual------------------------------------------
2303 // Dual: compute field-by-field dual
2304 const Type *TypeAry::xdual() const {
2305   const TypeInt* size_dual = _size->dual()->is_int();
2306   size_dual = normalize_array_size(size_dual);
2307   return new TypeAry(_elem->dual(), size_dual, !_stable);
2308 }
2309 
2310 //------------------------------eq---------------------------------------------
2311 // Structural equality check for Type representations
2312 bool TypeAry::eq( const Type *t ) const {
2313   const TypeAry *a = (const TypeAry*)t;
2314   return _elem == a->_elem &&
2315     _stable == a->_stable &&
2316     _size == a->_size;





2317 }
2318 
2319 //------------------------------hash-------------------------------------------
2320 // Type-specific hashing function.
2321 uint TypeAry::hash(void) const {
2322   return (uint)(uintptr_t)_elem + (uint)(uintptr_t)_size + (uint)(_stable ? 43 : 0);

2323 }
2324 
2325 /**
2326  * Return same type without a speculative part in the element
2327  */
2328 const TypeAry* TypeAry::remove_speculative() const {
2329   return make(_elem->remove_speculative(), _size, _stable);
2330 }
2331 
2332 /**
2333  * Return same type with cleaned up speculative part of element
2334  */
2335 const Type* TypeAry::cleanup_speculative() const {
2336   return make(_elem->cleanup_speculative(), _size, _stable);
2337 }
2338 
2339 /**
2340  * Return same type but with a different inline depth (used for speculation)
2341  *
2342  * @param depth  depth to meet with
2343  */
2344 const TypePtr* TypePtr::with_inline_depth(int depth) const {
2345   if (!UseInlineDepthForSpeculativeTypes) {
2346     return this;
2347   }
2348   return make(AnyPtr, _ptr, _offset, _speculative, depth);
2349 }
2350 
2351 //------------------------------dump2------------------------------------------
2352 #ifndef PRODUCT
2353 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2354   if (_stable)  st->print("stable:");






2355   _elem->dump2(d, depth, st);
2356   st->print("[");
2357   _size->dump2(d, depth, st);
2358   st->print("]");
2359 }
2360 #endif
2361 
2362 //------------------------------singleton--------------------------------------
2363 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2364 // constants (Ldi nodes).  Singletons are integer, float or double constants
2365 // or a single symbol.
2366 bool TypeAry::singleton(void) const {
2367   return false;                 // Never a singleton
2368 }
2369 
2370 bool TypeAry::empty(void) const {
2371   return _elem->empty() || _size->empty();
2372 }
2373 
2374 //--------------------------ary_must_be_exact----------------------------------
2375 bool TypeAry::ary_must_be_exact() const {
2376   // This logic looks at the element type of an array, and returns true
2377   // if the element type is either a primitive or a final instance class.
2378   // In such cases, an array built on this ary must have no subclasses.
2379   if (_elem == BOTTOM)      return false;  // general array not exact
2380   if (_elem == TOP   )      return false;  // inverted general array not exact
2381   const TypeOopPtr*  toop = nullptr;
2382   if (UseCompressedOops && _elem->isa_narrowoop()) {
2383     toop = _elem->make_ptr()->isa_oopptr();
2384   } else {
2385     toop = _elem->isa_oopptr();
2386   }
2387   if (!toop)                return true;   // a primitive type, like int
2388   if (!toop->is_loaded())   return false;  // unloaded class
2389   const TypeInstPtr* tinst;
2390   if (_elem->isa_narrowoop())
2391     tinst = _elem->make_ptr()->isa_instptr();
2392   else
2393     tinst = _elem->isa_instptr();
2394   if (tinst)
2395     return tinst->instance_klass()->is_final();











2396   const TypeAryPtr*  tap;
2397   if (_elem->isa_narrowoop())
2398     tap = _elem->make_ptr()->isa_aryptr();
2399   else
2400     tap = _elem->isa_aryptr();
2401   if (tap)
2402     return tap->ary()->ary_must_be_exact();
2403   return false;
2404 }
2405 
2406 //==============================TypeVect=======================================
2407 // Convenience common pre-built types.
2408 const TypeVect* TypeVect::VECTA = nullptr; // vector length agnostic
2409 const TypeVect* TypeVect::VECTS = nullptr; //  32-bit vectors
2410 const TypeVect* TypeVect::VECTD = nullptr; //  64-bit vectors
2411 const TypeVect* TypeVect::VECTX = nullptr; // 128-bit vectors
2412 const TypeVect* TypeVect::VECTY = nullptr; // 256-bit vectors
2413 const TypeVect* TypeVect::VECTZ = nullptr; // 512-bit vectors
2414 const TypeVect* TypeVect::VECTMASK = nullptr; // predicate/mask vector
2415 

2550 
2551 //=============================================================================
2552 // Convenience common pre-built types.
2553 const TypePtr *TypePtr::NULL_PTR;
2554 const TypePtr *TypePtr::NOTNULL;
2555 const TypePtr *TypePtr::BOTTOM;
2556 
2557 //------------------------------meet-------------------------------------------
2558 // Meet over the PTR enum
2559 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2560   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2561   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2562   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2563   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2564   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2565   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2566   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2567 };
2568 
2569 //------------------------------make-------------------------------------------
2570 const TypePtr *TypePtr::make(TYPES t, enum PTR ptr, int offset, const TypePtr* speculative, int inline_depth) {
2571   return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2572 }
2573 
2574 //------------------------------cast_to_ptr_type-------------------------------
2575 const TypePtr* TypePtr::cast_to_ptr_type(PTR ptr) const {
2576   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2577   if( ptr == _ptr ) return this;
2578   return make(_base, ptr, _offset, _speculative, _inline_depth);
2579 }
2580 
2581 //------------------------------get_con----------------------------------------
2582 intptr_t TypePtr::get_con() const {
2583   assert( _ptr == Null, "" );
2584   return _offset;
2585 }
2586 
2587 //------------------------------meet-------------------------------------------
2588 // Compute the MEET of two types.  It returns a new Type object.
2589 const Type *TypePtr::xmeet(const Type *t) const {
2590   const Type* res = xmeet_helper(t);
2591   if (res->isa_ptr() == nullptr) {
2592     return res;
2593   }
2594 
2595   const TypePtr* res_ptr = res->is_ptr();
2596   if (res_ptr->speculative() != nullptr) {
2597     // type->speculative() is null means that speculation is no better
2598     // than type, i.e. type->speculative() == type. So there are 2
2599     // ways to represent the fact that we have no useful speculative
2600     // data and we should use a single one to be able to test for
2601     // equality between types. Check whether type->speculative() ==
2602     // type and set speculative to null if it is the case.
2603     if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2604       return res_ptr->remove_speculative();

2638     int depth = meet_inline_depth(tp->inline_depth());
2639     return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2640   }
2641   case RawPtr:                  // For these, flip the call around to cut down
2642   case OopPtr:
2643   case InstPtr:                 // on the cases I have to handle.
2644   case AryPtr:
2645   case MetadataPtr:
2646   case KlassPtr:
2647   case InstKlassPtr:
2648   case AryKlassPtr:
2649     return t->xmeet(this);      // Call in reverse direction
2650   default:                      // All else is a mistake
2651     typerr(t);
2652 
2653   }
2654   return this;
2655 }
2656 
2657 //------------------------------meet_offset------------------------------------
2658 int TypePtr::meet_offset( int offset ) const {
2659   // Either is 'TOP' offset?  Return the other offset!
2660   if( _offset == OffsetTop ) return offset;
2661   if( offset == OffsetTop ) return _offset;
2662   // If either is different, return 'BOTTOM' offset
2663   if( _offset != offset ) return OffsetBot;
2664   return _offset;
2665 }
2666 
2667 //------------------------------dual_offset------------------------------------
2668 int TypePtr::dual_offset( ) const {
2669   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
2670   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
2671   return _offset;               // Map everything else into self
2672 }
2673 
2674 //------------------------------xdual------------------------------------------
2675 // Dual: compute field-by-field dual
2676 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2677   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2678 };
2679 const Type *TypePtr::xdual() const {
2680   return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2681 }
2682 
2683 //------------------------------xadd_offset------------------------------------
2684 int TypePtr::xadd_offset( intptr_t offset ) const {
2685   // Adding to 'TOP' offset?  Return 'TOP'!
2686   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
2687   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
2688   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
2689   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
2690   offset += (intptr_t)_offset;
2691   if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
2692 
2693   // assert( _offset >= 0 && _offset+offset >= 0, "" );
2694   // It is possible to construct a negative offset during PhaseCCP
2695 
2696   return (int)offset;        // Sum valid offsets
2697 }
2698 
2699 //------------------------------add_offset-------------------------------------
2700 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2701   return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2702 }
2703 
2704 const TypePtr *TypePtr::with_offset(intptr_t offset) const {
2705   return make(AnyPtr, _ptr, offset, _speculative, _inline_depth);
2706 }
2707 
2708 //------------------------------eq---------------------------------------------
2709 // Structural equality check for Type representations
2710 bool TypePtr::eq( const Type *t ) const {
2711   const TypePtr *a = (const TypePtr*)t;
2712   return _ptr == a->ptr() && _offset == a->offset() && eq_speculative(a) && _inline_depth == a->_inline_depth;
2713 }
2714 
2715 //------------------------------hash-------------------------------------------
2716 // Type-specific hashing function.
2717 uint TypePtr::hash(void) const {
2718   return (uint)_ptr + (uint)_offset + (uint)hash_speculative() + (uint)_inline_depth;
2719 }
2720 
2721 /**
2722  * Return same type without a speculative part
2723  */
2724 const TypePtr* TypePtr::remove_speculative() const {
2725   if (_speculative == nullptr) {
2726     return this;
2727   }
2728   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2729   return make(AnyPtr, _ptr, _offset, nullptr, _inline_depth);
2730 }
2731 
2732 /**
2733  * Return same type but drop speculative part if we know we won't use
2734  * it
2735  */
2736 const Type* TypePtr::cleanup_speculative() const {
2737   if (speculative() == nullptr) {
2738     return this;

2964   }
2965   // We already know the speculative type is always null
2966   if (speculative_always_null()) {
2967     return false;
2968   }
2969   if (ptr_kind == ProfileAlwaysNull && speculative() != nullptr && speculative()->isa_oopptr()) {
2970     return false;
2971   }
2972   return true;
2973 }
2974 
2975 //------------------------------dump2------------------------------------------
2976 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
2977   "TopPTR","AnyNull","Constant","null","NotNull","BotPTR"
2978 };
2979 
2980 #ifndef PRODUCT
2981 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2982   if( _ptr == Null ) st->print("null");
2983   else st->print("%s *", ptr_msg[_ptr]);
2984   if( _offset == OffsetTop ) st->print("+top");
2985   else if( _offset == OffsetBot ) st->print("+bot");
2986   else if( _offset ) st->print("+%d", _offset);
2987   dump_inline_depth(st);
2988   dump_speculative(st);
2989 }
2990 
2991 /**
2992  *dump the speculative part of the type
2993  */
2994 void TypePtr::dump_speculative(outputStream *st) const {
2995   if (_speculative != nullptr) {
2996     st->print(" (speculative=");
2997     _speculative->dump_on(st);
2998     st->print(")");
2999   }
3000 }
3001 
3002 /**
3003  *dump the inline depth of the type
3004  */
3005 void TypePtr::dump_inline_depth(outputStream *st) const {
3006   if (_inline_depth != InlineDepthBottom) {
3007     if (_inline_depth == InlineDepthTop) {
3008       st->print(" (inline_depth=InlineDepthTop)");
3009     } else {
3010       st->print(" (inline_depth=%d)", _inline_depth);
3011     }
3012   }
3013 }
3014 #endif
3015 
3016 //------------------------------singleton--------------------------------------
3017 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3018 // constants
3019 bool TypePtr::singleton(void) const {
3020   // TopPTR, Null, AnyNull, Constant are all singletons
3021   return (_offset != OffsetBot) && !below_centerline(_ptr);
3022 }
3023 
3024 bool TypePtr::empty(void) const {
3025   return (_offset == OffsetTop) || above_centerline(_ptr);
3026 }
3027 
3028 //=============================================================================
3029 // Convenience common pre-built types.
3030 const TypeRawPtr *TypeRawPtr::BOTTOM;
3031 const TypeRawPtr *TypeRawPtr::NOTNULL;
3032 
3033 //------------------------------make-------------------------------------------
3034 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
3035   assert( ptr != Constant, "what is the constant?" );
3036   assert( ptr != Null, "Use TypePtr for null" );
3037   return (TypeRawPtr*)(new TypeRawPtr(ptr,nullptr))->hashcons();
3038 }
3039 
3040 const TypeRawPtr *TypeRawPtr::make(address bits) {
3041   assert(bits != nullptr, "Use TypePtr for null");
3042   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
3043 }
3044 
3045 //------------------------------cast_to_ptr_type-------------------------------

3412 #endif
3413 
3414 // Can't be implemented because there's no way to know if the type is above or below the center line.
3415 const Type* TypeInterfaces::xmeet(const Type* t) const {
3416   ShouldNotReachHere();
3417   return Type::xmeet(t);
3418 }
3419 
3420 bool TypeInterfaces::singleton(void) const {
3421   ShouldNotReachHere();
3422   return Type::singleton();
3423 }
3424 
3425 bool TypeInterfaces::has_non_array_interface() const {
3426   assert(TypeAryPtr::_array_interfaces != nullptr, "How come Type::Initialize_shared wasn't called yet?");
3427 
3428   return !TypeAryPtr::_array_interfaces->contains(this);
3429 }
3430 
3431 //------------------------------TypeOopPtr-------------------------------------
3432 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int offset,
3433                        int instance_id, const TypePtr* speculative, int inline_depth)
3434   : TypePtr(t, ptr, offset, speculative, inline_depth),
3435     _const_oop(o), _klass(k),
3436     _interfaces(interfaces),
3437     _klass_is_exact(xk),
3438     _is_ptr_to_narrowoop(false),
3439     _is_ptr_to_narrowklass(false),
3440     _is_ptr_to_boxed_value(false),

3441     _instance_id(instance_id) {
3442 #ifdef ASSERT
3443   if (klass() != nullptr && klass()->is_loaded()) {
3444     interfaces->verify_is_loaded();
3445   }
3446 #endif
3447   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
3448       (offset > 0) && xk && (k != nullptr) && k->is_instance_klass()) {
3449     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);

3450   }









3451 #ifdef _LP64
3452   if (_offset > 0 || _offset == Type::OffsetTop || _offset == Type::OffsetBot) {
3453     if (_offset == oopDesc::klass_offset_in_bytes()) {
3454       _is_ptr_to_narrowklass = UseCompressedClassPointers;
3455     } else if (klass() == nullptr) {
3456       // Array with unknown body type
3457       assert(this->isa_aryptr(), "only arrays without klass");
3458       _is_ptr_to_narrowoop = UseCompressedOops;
3459     } else if (this->isa_aryptr()) {
3460       _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
3461                              _offset != arrayOopDesc::length_offset_in_bytes());














3462     } else if (klass()->is_instance_klass()) {
3463       ciInstanceKlass* ik = klass()->as_instance_klass();
3464       if (this->isa_klassptr()) {
3465         // Perm objects don't use compressed references
3466       } else if (_offset == OffsetBot || _offset == OffsetTop) {
3467         // unsafe access
3468         _is_ptr_to_narrowoop = UseCompressedOops;
3469       } else {
3470         assert(this->isa_instptr(), "must be an instance ptr.");
3471 
3472         if (klass() == ciEnv::current()->Class_klass() &&
3473             (_offset == java_lang_Class::klass_offset() ||
3474              _offset == java_lang_Class::array_klass_offset())) {
3475           // Special hidden fields from the Class.
3476           assert(this->isa_instptr(), "must be an instance ptr.");
3477           _is_ptr_to_narrowoop = false;
3478         } else if (klass() == ciEnv::current()->Class_klass() &&
3479                    _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
3480           // Static fields
3481           ciField* field = nullptr;
3482           if (const_oop() != nullptr) {
3483             ciInstanceKlass* k = const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
3484             field = k->get_field_by_offset(_offset, true);
3485           }
3486           if (field != nullptr) {
3487             BasicType basic_elem_type = field->layout_type();
3488             _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type);
3489           } else {
3490             // unsafe access
3491             _is_ptr_to_narrowoop = UseCompressedOops;
3492           }
3493         } else {
3494           // Instance fields which contains a compressed oop references.
3495           ciField* field = ik->get_field_by_offset(_offset, false);

3496           if (field != nullptr) {
3497             BasicType basic_elem_type = field->layout_type();
3498             _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type);
3499           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
3500             // Compile::find_alias_type() cast exactness on all types to verify
3501             // that it does not affect alias type.
3502             _is_ptr_to_narrowoop = UseCompressedOops;
3503           } else {
3504             // Type for the copy start in LibraryCallKit::inline_native_clone().
3505             _is_ptr_to_narrowoop = UseCompressedOops;
3506           }
3507         }
3508       }
3509     }
3510   }
3511 #endif
3512 }
3513 
3514 //------------------------------make-------------------------------------------
3515 const TypeOopPtr *TypeOopPtr::make(PTR ptr, int offset, int instance_id,
3516                                      const TypePtr* speculative, int inline_depth) {
3517   assert(ptr != Constant, "no constant generic pointers");
3518   ciKlass*  k = Compile::current()->env()->Object_klass();
3519   bool      xk = false;
3520   ciObject* o = nullptr;
3521   const TypeInterfaces* interfaces = TypeInterfaces::make();
3522   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, interfaces, xk, o, offset, instance_id, speculative, inline_depth))->hashcons();
3523 }
3524 
3525 
3526 //------------------------------cast_to_ptr_type-------------------------------
3527 const TypeOopPtr* TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
3528   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
3529   if( ptr == _ptr ) return this;
3530   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
3531 }
3532 
3533 //-----------------------------cast_to_instance_id----------------------------
3534 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
3535   // There are no instances of a general oop.
3536   // Return self unchanged.
3537   return this;
3538 }
3539 
3540 //-----------------------------cast_to_exactness-------------------------------
3541 const TypeOopPtr* TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
3542   // There is no such thing as an exact general oop.
3543   // Return self unchanged.
3544   return this;
3545 }
3546 
3547 
3548 //------------------------------as_klass_type----------------------------------
3549 // Return the klass type corresponding to this instance or array type.
3550 // It is the type that is loaded from an object of this type.
3551 const TypeKlassPtr* TypeOopPtr::as_klass_type(bool try_for_exact) const {
3552   ShouldNotReachHere();
3553   return nullptr;
3554 }
3555 
3556 //------------------------------meet-------------------------------------------
3557 // Compute the MEET of two types.  It returns a new Type object.
3558 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
3559   // Perform a fast test for common case; meeting the same types together.
3560   if( this == t ) return this;  // Meeting same type-rep?
3561 
3562   // Current "this->_base" is OopPtr
3563   switch (t->base()) {          // switch on original type
3564 
3565   case Int:                     // Mixing ints & oops happens when javac
3566   case Long:                    // reuses local variables
3567   case HalfFloatTop:

3576   case NarrowOop:
3577   case NarrowKlass:
3578   case Bottom:                  // Ye Olde Default
3579     return Type::BOTTOM;
3580   case Top:
3581     return this;
3582 
3583   default:                      // All else is a mistake
3584     typerr(t);
3585 
3586   case RawPtr:
3587   case MetadataPtr:
3588   case KlassPtr:
3589   case InstKlassPtr:
3590   case AryKlassPtr:
3591     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3592 
3593   case AnyPtr: {
3594     // Found an AnyPtr type vs self-OopPtr type
3595     const TypePtr *tp = t->is_ptr();
3596     int offset = meet_offset(tp->offset());
3597     PTR ptr = meet_ptr(tp->ptr());
3598     const TypePtr* speculative = xmeet_speculative(tp);
3599     int depth = meet_inline_depth(tp->inline_depth());
3600     switch (tp->ptr()) {
3601     case Null:
3602       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3603       // else fall through:
3604     case TopPTR:
3605     case AnyNull: {
3606       int instance_id = meet_instance_id(InstanceTop);
3607       return make(ptr, offset, instance_id, speculative, depth);
3608     }
3609     case BotPTR:
3610     case NotNull:
3611       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3612     default: typerr(t);
3613     }
3614   }
3615 
3616   case OopPtr: {                 // Meeting to other OopPtrs

3618     int instance_id = meet_instance_id(tp->instance_id());
3619     const TypePtr* speculative = xmeet_speculative(tp);
3620     int depth = meet_inline_depth(tp->inline_depth());
3621     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
3622   }
3623 
3624   case InstPtr:                  // For these, flip the call around to cut down
3625   case AryPtr:
3626     return t->xmeet(this);      // Call in reverse direction
3627 
3628   } // End of switch
3629   return this;                  // Return the double constant
3630 }
3631 
3632 
3633 //------------------------------xdual------------------------------------------
3634 // Dual of a pure heap pointer.  No relevant klass or oop information.
3635 const Type *TypeOopPtr::xdual() const {
3636   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
3637   assert(const_oop() == nullptr,             "no constants here");
3638   return new TypeOopPtr(_base, dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
3639 }
3640 
3641 //--------------------------make_from_klass_common-----------------------------
3642 // Computes the element-type given a klass.
3643 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact, InterfaceHandling interface_handling) {
3644   if (klass->is_instance_klass()) {
3645     Compile* C = Compile::current();
3646     Dependencies* deps = C->dependencies();
3647     assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
3648     // Element is an instance
3649     bool klass_is_exact = false;
3650     if (klass->is_loaded()) {
3651       // Try to set klass_is_exact.
3652       ciInstanceKlass* ik = klass->as_instance_klass();
3653       klass_is_exact = ik->is_final();
3654       if (!klass_is_exact && klass_change
3655           && deps != nullptr && UseUniqueSubclasses) {
3656         ciInstanceKlass* sub = ik->unique_concrete_subklass();
3657         if (sub != nullptr) {
3658           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3659           klass = ik = sub;
3660           klass_is_exact = sub->is_final();
3661         }
3662       }
3663       if (!klass_is_exact && try_for_exact && deps != nullptr &&
3664           !ik->is_interface() && !ik->has_subklass()) {
3665         // Add a dependence; if concrete subclass added we need to recompile
3666         deps->assert_leaf_type(ik);
3667         klass_is_exact = true;
3668       }
3669     }
3670     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
3671     return TypeInstPtr::make(TypePtr::BotPTR, klass, interfaces, klass_is_exact, nullptr, 0);
3672   } else if (klass->is_obj_array_klass()) {
3673     // Element is an object array. Recursively call ourself.
3674     ciKlass* eklass = klass->as_obj_array_klass()->element_klass();
3675     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(eklass, false, try_for_exact, interface_handling);
3676     bool xk = etype->klass_is_exact();
3677     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);














3678     // We used to pass NotNull in here, asserting that the sub-arrays
3679     // are all not-null.  This is not true in generally, as code can
3680     // slam nulls down in the subarrays.
3681     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, nullptr, xk, 0);
3682     return arr;
3683   } else if (klass->is_type_array_klass()) {
3684     // Element is an typeArray
3685     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3686     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);

3687     // We used to pass NotNull in here, asserting that the array pointer
3688     // is not-null. That was not true in general.
3689     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);











3690     return arr;
3691   } else {
3692     ShouldNotReachHere();
3693     return nullptr;
3694   }
3695 }
3696 
3697 //------------------------------make_from_constant-----------------------------
3698 // Make a java pointer from an oop constant
3699 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
3700   assert(!o->is_null_object(), "null object not yet handled here.");
3701 
3702   const bool make_constant = require_constant || o->should_be_constant();
3703 
3704   ciKlass* klass = o->klass();
3705   if (klass->is_instance_klass()) {
3706     // Element is an instance
3707     if (make_constant) {
3708       return TypeInstPtr::make(o);
3709     } else {
3710       return TypeInstPtr::make(TypePtr::NotNull, klass, true, nullptr, 0);
3711     }
3712   } else if (klass->is_obj_array_klass()) {
3713     // Element is an object array. Recursively call ourself.
3714     const TypeOopPtr *etype =
3715       TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass(), trust_interfaces);
3716     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));






3717     // We used to pass NotNull in here, asserting that the sub-arrays
3718     // are all not-null.  This is not true in generally, as code can
3719     // slam nulls down in the subarrays.
3720     if (make_constant) {
3721       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3722     } else {
3723       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3724     }
3725   } else if (klass->is_type_array_klass()) {
3726     // Element is an typeArray
3727     const Type* etype =
3728       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3729     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3730     // We used to pass NotNull in here, asserting that the array pointer
3731     // is not-null. That was not true in general.
3732     if (make_constant) {
3733       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3734     } else {
3735       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);

















3736     }
3737   }
3738 
3739   fatal("unhandled object type");
3740   return nullptr;
3741 }
3742 
3743 //------------------------------get_con----------------------------------------
3744 intptr_t TypeOopPtr::get_con() const {
3745   assert( _ptr == Null || _ptr == Constant, "" );
3746   assert( _offset >= 0, "" );
3747 
3748   if (_offset != 0) {
3749     // After being ported to the compiler interface, the compiler no longer
3750     // directly manipulates the addresses of oops.  Rather, it only has a pointer
3751     // to a handle at compile time.  This handle is embedded in the generated
3752     // code and dereferenced at the time the nmethod is made.  Until that time,
3753     // it is not reasonable to do arithmetic with the addresses of oops (we don't
3754     // have access to the addresses!).  This does not seem to currently happen,
3755     // but this assertion here is to help prevent its occurrence.
3756     tty->print_cr("Found oop constant with non-zero offset");
3757     ShouldNotReachHere();
3758   }
3759 
3760   return (intptr_t)const_oop()->constant_encoding();
3761 }
3762 
3763 
3764 //-----------------------------filter------------------------------------------
3765 // Do not allow interface-vs.-noninterface joins to collapse to top.
3766 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
3767 
3768   const Type* ft = join_helper(kills, include_speculative);

3787   } else {
3788     return one->equals(two) && TypePtr::eq(t);
3789   }
3790 }
3791 
3792 //------------------------------hash-------------------------------------------
3793 // Type-specific hashing function.
3794 uint TypeOopPtr::hash(void) const {
3795   return
3796     (uint)(const_oop() ? const_oop()->hash() : 0) +
3797     (uint)_klass_is_exact +
3798     (uint)_instance_id + TypePtr::hash();
3799 }
3800 
3801 //------------------------------dump2------------------------------------------
3802 #ifndef PRODUCT
3803 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3804   st->print("oopptr:%s", ptr_msg[_ptr]);
3805   if( _klass_is_exact ) st->print(":exact");
3806   if( const_oop() ) st->print(INTPTR_FORMAT, p2i(const_oop()));
3807   switch( _offset ) {
3808   case OffsetTop: st->print("+top"); break;
3809   case OffsetBot: st->print("+any"); break;
3810   case         0: break;
3811   default:        st->print("+%d",_offset); break;
3812   }
3813   if (_instance_id == InstanceTop)
3814     st->print(",iid=top");
3815   else if (_instance_id != InstanceBot)
3816     st->print(",iid=%d",_instance_id);
3817 
3818   dump_inline_depth(st);
3819   dump_speculative(st);
3820 }
3821 #endif
3822 
3823 //------------------------------singleton--------------------------------------
3824 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3825 // constants
3826 bool TypeOopPtr::singleton(void) const {
3827   // detune optimizer to not generate constant oop + constant offset as a constant!
3828   // TopPTR, Null, AnyNull, Constant are all singletons
3829   return (_offset == 0) && !below_centerline(_ptr);
3830 }
3831 
3832 //------------------------------add_offset-------------------------------------
3833 const TypePtr* TypeOopPtr::add_offset(intptr_t offset) const {
3834   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
3835 }
3836 
3837 const TypeOopPtr* TypeOopPtr::with_offset(intptr_t offset) const {
3838   return make(_ptr, offset, _instance_id, with_offset_speculative(offset), _inline_depth);
3839 }
3840 
3841 /**
3842  * Return same type without a speculative part
3843  */
3844 const TypeOopPtr* TypeOopPtr::remove_speculative() const {
3845   if (_speculative == nullptr) {
3846     return this;
3847   }
3848   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3849   return make(_ptr, _offset, _instance_id, nullptr, _inline_depth);
3850 }
3851 
3852 /**
3853  * Return same type but drop speculative part if we know we won't use
3854  * it
3855  */
3856 const Type* TypeOopPtr::cleanup_speculative() const {
3857   // If the klass is exact and the ptr is not null then there's
3858   // nothing that the speculative type can help us with

3931 const TypeInstPtr *TypeInstPtr::BOTTOM;
3932 const TypeInstPtr *TypeInstPtr::MIRROR;
3933 const TypeInstPtr *TypeInstPtr::MARK;
3934 const TypeInstPtr *TypeInstPtr::KLASS;
3935 
3936 // Is there a single ciKlass* that can represent that type?
3937 ciKlass* TypeInstPtr::exact_klass_helper() const {
3938   if (_interfaces->empty()) {
3939     return _klass;
3940   }
3941   if (_klass != ciEnv::current()->Object_klass()) {
3942     if (_interfaces->eq(_klass->as_instance_klass())) {
3943       return _klass;
3944     }
3945     return nullptr;
3946   }
3947   return _interfaces->exact_klass();
3948 }
3949 
3950 //------------------------------TypeInstPtr-------------------------------------
3951 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int off,
3952                          int instance_id, const TypePtr* speculative, int inline_depth)
3953   : TypeOopPtr(InstPtr, ptr, k, interfaces, xk, o, off, instance_id, speculative, inline_depth) {

3954   assert(k == nullptr || !k->is_loaded() || !k->is_interface(), "no interface here");
3955   assert(k != nullptr &&
3956          (k->is_loaded() || o == nullptr),
3957          "cannot have constants with non-loaded klass");


3958 };
3959 
3960 //------------------------------make-------------------------------------------
3961 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
3962                                      ciKlass* k,
3963                                      const TypeInterfaces* interfaces,
3964                                      bool xk,
3965                                      ciObject* o,
3966                                      int offset,

3967                                      int instance_id,
3968                                      const TypePtr* speculative,
3969                                      int inline_depth) {
3970   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
3971   // Either const_oop() is null or else ptr is Constant
3972   assert( (!o && ptr != Constant) || (o && ptr == Constant),
3973           "constant pointers must have a value supplied" );
3974   // Ptr is never Null
3975   assert( ptr != Null, "null pointers are not typed" );
3976 
3977   assert(instance_id <= 0 || xk, "instances are always exactly typed");
3978   if (ptr == Constant) {
3979     // Note:  This case includes meta-object constants, such as methods.
3980     xk = true;
3981   } else if (k->is_loaded()) {
3982     ciInstanceKlass* ik = k->as_instance_klass();
3983     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
3984     assert(!ik->is_interface(), "no interface here");
3985     if (xk && ik->is_interface())  xk = false;  // no exact interface
3986   }
3987 



3988   // Now hash this baby
3989   TypeInstPtr *result =
3990     (TypeInstPtr*)(new TypeInstPtr(ptr, k, interfaces, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
3991 
3992   return result;
3993 }
3994 
3995 const TypeInterfaces* TypePtr::interfaces(ciKlass*& k, bool klass, bool interface, bool array, InterfaceHandling interface_handling) {
3996   if (k->is_instance_klass()) {
3997     if (k->is_loaded()) {
3998       if (k->is_interface() && interface_handling == ignore_interfaces) {
3999         assert(interface, "no interface expected");
4000         k = ciEnv::current()->Object_klass();
4001         const TypeInterfaces* interfaces = TypeInterfaces::make();
4002         return interfaces;
4003       }
4004       GrowableArray<ciInstanceKlass *>* k_interfaces = k->as_instance_klass()->transitive_interfaces();
4005       const TypeInterfaces* interfaces = TypeInterfaces::make(k_interfaces);
4006       if (k->is_interface()) {
4007         assert(interface, "no interface expected");
4008         k = ciEnv::current()->Object_klass();
4009       } else {
4010         assert(klass, "no instance klass expected");

4036   switch (bt) {
4037     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
4038     case T_INT:      return TypeInt::make(constant.as_int());
4039     case T_CHAR:     return TypeInt::make(constant.as_char());
4040     case T_BYTE:     return TypeInt::make(constant.as_byte());
4041     case T_SHORT:    return TypeInt::make(constant.as_short());
4042     case T_FLOAT:    return TypeF::make(constant.as_float());
4043     case T_DOUBLE:   return TypeD::make(constant.as_double());
4044     case T_LONG:     return TypeLong::make(constant.as_long());
4045     default:         break;
4046   }
4047   fatal("Invalid boxed value type '%s'", type2name(bt));
4048   return nullptr;
4049 }
4050 
4051 //------------------------------cast_to_ptr_type-------------------------------
4052 const TypeInstPtr* TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
4053   if( ptr == _ptr ) return this;
4054   // Reconstruct _sig info here since not a problem with later lazy
4055   // construction, _sig will show up on demand.
4056   return make(ptr, klass(), _interfaces, klass_is_exact(), ptr == Constant ? const_oop() : nullptr, _offset, _instance_id, _speculative, _inline_depth);
4057 }
4058 
4059 
4060 //-----------------------------cast_to_exactness-------------------------------
4061 const TypeInstPtr* TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
4062   if( klass_is_exact == _klass_is_exact ) return this;
4063   if (!_klass->is_loaded())  return this;
4064   ciInstanceKlass* ik = _klass->as_instance_klass();
4065   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
4066   assert(!ik->is_interface(), "no interface here");
4067   return make(ptr(), klass(), _interfaces, klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
4068 }
4069 
4070 //-----------------------------cast_to_instance_id----------------------------
4071 const TypeInstPtr* TypeInstPtr::cast_to_instance_id(int instance_id) const {
4072   if( instance_id == _instance_id ) return this;
4073   return make(_ptr, klass(),  _interfaces, _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
4074 }
4075 
4076 //------------------------------xmeet_unloaded---------------------------------
4077 // Compute the MEET of two InstPtrs when at least one is unloaded.
4078 // Assume classes are different since called after check for same name/class-loader
4079 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst, const TypeInterfaces* interfaces) const {
4080   int off = meet_offset(tinst->offset());
4081   PTR ptr = meet_ptr(tinst->ptr());
4082   int instance_id = meet_instance_id(tinst->instance_id());
4083   const TypePtr* speculative = xmeet_speculative(tinst);
4084   int depth = meet_inline_depth(tinst->inline_depth());
4085 
4086   const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
4087   const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
4088   if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
4089     //
4090     // Meet unloaded class with java/lang/Object
4091     //
4092     // Meet
4093     //          |                     Unloaded Class
4094     //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
4095     //  ===================================================================
4096     //   TOP    | ..........................Unloaded......................|
4097     //  AnyNull |  U-AN    |................Unloaded......................|
4098     // Constant | ... O-NN .................................. |   O-BOT   |
4099     //  NotNull | ... O-NN .................................. |   O-BOT   |
4100     //  BOTTOM  | ........................Object-BOTTOM ..................|
4101     //
4102     assert(loaded->ptr() != TypePtr::Null, "insanity check");
4103     //
4104     if (loaded->ptr() == TypePtr::TopPTR)        { return unloaded->with_speculative(speculative); }
4105     else if (loaded->ptr() == TypePtr::AnyNull)  { return make(ptr, unloaded->klass(), interfaces, false, nullptr, off, instance_id, speculative, depth); }
4106     else if (loaded->ptr() == TypePtr::BotPTR)   { return TypeInstPtr::BOTTOM->with_speculative(speculative); }
4107     else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
4108       if (unloaded->ptr() == TypePtr::BotPTR)    { return TypeInstPtr::BOTTOM->with_speculative(speculative);  }
4109       else                                       { return TypeInstPtr::NOTNULL->with_speculative(speculative); }
4110     }
4111     else if (unloaded->ptr() == TypePtr::TopPTR) { return unloaded->with_speculative(speculative); }
4112 
4113     return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr()->with_speculative(speculative);
4114   }
4115 
4116   // Both are unloaded, not the same class, not Object
4117   // Or meet unloaded with a different loaded class, not java/lang/Object
4118   if (ptr != TypePtr::BotPTR) {
4119     return TypeInstPtr::NOTNULL->with_speculative(speculative);
4120   }
4121   return TypeInstPtr::BOTTOM->with_speculative(speculative);
4122 }
4123 
4124 
4125 //------------------------------meet-------------------------------------------

4149   case Top:
4150     return this;
4151 
4152   default:                      // All else is a mistake
4153     typerr(t);
4154 
4155   case MetadataPtr:
4156   case KlassPtr:
4157   case InstKlassPtr:
4158   case AryKlassPtr:
4159   case RawPtr: return TypePtr::BOTTOM;
4160 
4161   case AryPtr: {                // All arrays inherit from Object class
4162     // Call in reverse direction to avoid duplication
4163     return t->is_aryptr()->xmeet_helper(this);
4164   }
4165 
4166   case OopPtr: {                // Meeting to OopPtrs
4167     // Found a OopPtr type vs self-InstPtr type
4168     const TypeOopPtr *tp = t->is_oopptr();
4169     int offset = meet_offset(tp->offset());
4170     PTR ptr = meet_ptr(tp->ptr());
4171     switch (tp->ptr()) {
4172     case TopPTR:
4173     case AnyNull: {
4174       int instance_id = meet_instance_id(InstanceTop);
4175       const TypePtr* speculative = xmeet_speculative(tp);
4176       int depth = meet_inline_depth(tp->inline_depth());
4177       return make(ptr, klass(), _interfaces, klass_is_exact(),
4178                   (ptr == Constant ? const_oop() : nullptr), offset, instance_id, speculative, depth);
4179     }
4180     case NotNull:
4181     case BotPTR: {
4182       int instance_id = meet_instance_id(tp->instance_id());
4183       const TypePtr* speculative = xmeet_speculative(tp);
4184       int depth = meet_inline_depth(tp->inline_depth());
4185       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4186     }
4187     default: typerr(t);
4188     }
4189   }
4190 
4191   case AnyPtr: {                // Meeting to AnyPtrs
4192     // Found an AnyPtr type vs self-InstPtr type
4193     const TypePtr *tp = t->is_ptr();
4194     int offset = meet_offset(tp->offset());
4195     PTR ptr = meet_ptr(tp->ptr());
4196     int instance_id = meet_instance_id(InstanceTop);
4197     const TypePtr* speculative = xmeet_speculative(tp);
4198     int depth = meet_inline_depth(tp->inline_depth());
4199     switch (tp->ptr()) {
4200     case Null:
4201       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4202       // else fall through to AnyNull
4203     case TopPTR:
4204     case AnyNull: {
4205       return make(ptr, klass(), _interfaces, klass_is_exact(),
4206                   (ptr == Constant ? const_oop() : nullptr), offset, instance_id, speculative, depth);
4207     }
4208     case NotNull:
4209     case BotPTR:
4210       return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
4211     default: typerr(t);
4212     }
4213   }
4214 
4215   /*
4216                  A-top         }
4217                /   |   \       }  Tops
4218            B-top A-any C-top   }
4219               | /  |  \ |      }  Any-nulls
4220            B-any   |   C-any   }
4221               |    |    |
4222            B-con A-con C-con   } constants; not comparable across classes
4223               |    |    |
4224            B-not   |   C-not   }
4225               | \  |  / |      }  not-nulls
4226            B-bot A-not C-bot   }
4227                \   |   /       }  Bottoms
4228                  A-bot         }
4229   */
4230 
4231   case InstPtr: {                // Meeting 2 Oops?
4232     // Found an InstPtr sub-type vs self-InstPtr type
4233     const TypeInstPtr *tinst = t->is_instptr();
4234     int off = meet_offset(tinst->offset());
4235     PTR ptr = meet_ptr(tinst->ptr());
4236     int instance_id = meet_instance_id(tinst->instance_id());
4237     const TypePtr* speculative = xmeet_speculative(tinst);
4238     int depth = meet_inline_depth(tinst->inline_depth());
4239     const TypeInterfaces* interfaces = meet_interfaces(tinst);
4240 
4241     ciKlass* tinst_klass = tinst->klass();
4242     ciKlass* this_klass  = klass();
4243 
4244     ciKlass* res_klass = nullptr;
4245     bool res_xk = false;

4246     const Type* res;
4247     MeetResult kind = meet_instptr(ptr, interfaces, this, tinst, res_klass, res_xk);
4248 
4249     if (kind == UNLOADED) {
4250       // One of these classes has not been loaded
4251       const TypeInstPtr* unloaded_meet = xmeet_unloaded(tinst, interfaces);
4252 #ifndef PRODUCT
4253       if (PrintOpto && Verbose) {
4254         tty->print("meet of unloaded classes resulted in: ");
4255         unloaded_meet->dump();
4256         tty->cr();
4257         tty->print("  this == ");
4258         dump();
4259         tty->cr();
4260         tty->print(" tinst == ");
4261         tinst->dump();
4262         tty->cr();
4263       }
4264 #endif
4265       res = unloaded_meet;
4266     } else {
4267       if (kind == NOT_SUBTYPE && instance_id > 0) {
4268         instance_id = InstanceBot;
4269       } else if (kind == LCA) {
4270         instance_id = InstanceBot;
4271       }
4272       ciObject* o = nullptr;             // Assume not constant when done
4273       ciObject* this_oop = const_oop();
4274       ciObject* tinst_oop = tinst->const_oop();
4275       if (ptr == Constant) {
4276         if (this_oop != nullptr && tinst_oop != nullptr &&
4277             this_oop->equals(tinst_oop))
4278           o = this_oop;
4279         else if (above_centerline(_ptr)) {
4280           assert(!tinst_klass->is_interface(), "");
4281           o = tinst_oop;
4282         } else if (above_centerline(tinst->_ptr)) {
4283           assert(!this_klass->is_interface(), "");
4284           o = this_oop;
4285         } else
4286           ptr = NotNull;
4287       }
4288       res = make(ptr, res_klass, interfaces, res_xk, o, off, instance_id, speculative, depth);
4289     }
4290 
4291     return res;
4292 
4293   } // End of case InstPtr
4294 
4295   } // End of switch
4296   return this;                  // Return the double constant
4297 }
4298 
4299 template<class T> TypePtr::MeetResult TypePtr::meet_instptr(PTR& ptr, const TypeInterfaces*& interfaces, const T* this_type, const T* other_type,
4300                                                             ciKlass*& res_klass, bool& res_xk) {
4301   ciKlass* this_klass = this_type->klass();
4302   ciKlass* other_klass = other_type->klass();





4303   bool this_xk = this_type->klass_is_exact();
4304   bool other_xk = other_type->klass_is_exact();
4305   PTR this_ptr = this_type->ptr();
4306   PTR other_ptr = other_type->ptr();
4307   const TypeInterfaces* this_interfaces = this_type->interfaces();
4308   const TypeInterfaces* other_interfaces = other_type->interfaces();
4309   // Check for easy case; klasses are equal (and perhaps not loaded!)
4310   // If we have constants, then we created oops so classes are loaded
4311   // and we can handle the constants further down.  This case handles
4312   // both-not-loaded or both-loaded classes
4313   if (ptr != Constant && this_klass->equals(other_klass) && this_xk == other_xk) {
4314     res_klass = this_klass;
4315     res_xk = this_xk;

4316     return QUICK;
4317   }
4318 
4319   // Classes require inspection in the Java klass hierarchy.  Must be loaded.
4320   if (!other_klass->is_loaded() || !this_klass->is_loaded()) {
4321     return UNLOADED;
4322   }
4323 
4324   // !!! Here's how the symmetry requirement breaks down into invariants:
4325   // If we split one up & one down AND they subtype, take the down man.
4326   // If we split one up & one down AND they do NOT subtype, "fall hard".
4327   // If both are up and they subtype, take the subtype class.
4328   // If both are up and they do NOT subtype, "fall hard".
4329   // If both are down and they subtype, take the supertype class.
4330   // If both are down and they do NOT subtype, "fall hard".
4331   // Constants treated as down.
4332 
4333   // Now, reorder the above list; observe that both-down+subtype is also
4334   // "fall hard"; "fall hard" becomes the default case:
4335   // If we split one up & one down AND they subtype, take the down man.
4336   // If both are up and they subtype, take the subtype class.
4337 
4338   // If both are down and they subtype, "fall hard".
4339   // If both are down and they do NOT subtype, "fall hard".
4340   // If both are up and they do NOT subtype, "fall hard".
4341   // If we split one up & one down AND they do NOT subtype, "fall hard".
4342 
4343   // If a proper subtype is exact, and we return it, we return it exactly.
4344   // If a proper supertype is exact, there can be no subtyping relationship!
4345   // If both types are equal to the subtype, exactness is and-ed below the
4346   // centerline and or-ed above it.  (N.B. Constants are always exact.)
4347 
4348   // Check for subtyping:
























































4349   const T* subtype = nullptr;
4350   bool subtype_exact = false;


4351   if (this_type->is_same_java_type_as(other_type)) {

4352     subtype = this_type;
4353     subtype_exact = below_centerline(ptr) ? (this_xk && other_xk) : (this_xk || other_xk);
4354   } else if (!other_xk && this_type->is_meet_subtype_of(other_type)) {





4355     subtype = this_type;     // Pick subtyping class
4356     subtype_exact = this_xk;
4357   } else if(!this_xk && other_type->is_meet_subtype_of(this_type)) {








4358     subtype = other_type;    // Pick subtyping class
4359     subtype_exact = other_xk;








4360   }
4361 
4362   if (subtype) {
4363     if (above_centerline(ptr)) { // both are up?


4364       this_type = other_type = subtype;
4365       this_xk = other_xk = subtype_exact;





4366     } else if (above_centerline(this_ptr) && !above_centerline(other_ptr)) {
4367       this_type = other_type; // tinst is down; keep down man

4368       this_xk = other_xk;

4369     } else if (above_centerline(other_ptr) && !above_centerline(this_ptr)) {

4370       other_type = this_type; // this is down; keep down man
4371       other_xk = this_xk;
4372     } else {

4373       this_xk = subtype_exact;  // either they are equal, or we'll do an LCA



4374     }
4375   }
4376 
4377   // Check for classes now being equal
4378   if (this_type->is_same_java_type_as(other_type)) {
4379     // If the klasses are equal, the constants may still differ.  Fall to
4380     // NotNull if they do (neither constant is null; that is a special case
4381     // handled elsewhere).
4382     res_klass = this_type->klass();
4383     res_xk = this_xk;

4384     return SUBTYPE;
4385   } // Else classes are not equal
4386 
4387   // Since klasses are different, we require a LCA in the Java
4388   // class hierarchy - which means we have to fall to at least NotNull.
4389   if (ptr == TopPTR || ptr == AnyNull || ptr == Constant) {
4390     ptr = NotNull;
4391   }
4392 
4393   interfaces = this_interfaces->intersection_with(other_interfaces);
4394 
4395   // Now we find the LCA of Java classes
4396   ciKlass* k = this_klass->least_common_ancestor(other_klass);
4397 
4398   res_klass = k;
4399   res_xk = false;

4400 
4401   return LCA;
4402 }
4403 




4404 //------------------------java_mirror_type--------------------------------------
4405 ciType* TypeInstPtr::java_mirror_type() const {
4406   // must be a singleton type
4407   if( const_oop() == nullptr )  return nullptr;
4408 
4409   // must be of type java.lang.Class
4410   if( klass() != ciEnv::current()->Class_klass() )  return nullptr;
4411 
4412   return const_oop()->as_instance()->java_mirror_type();
4413 }
4414 
4415 
4416 //------------------------------xdual------------------------------------------
4417 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
4418 // inheritance mechanism.
4419 const Type *TypeInstPtr::xdual() const {
4420   return new TypeInstPtr(dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
4421 }
4422 
4423 //------------------------------eq---------------------------------------------
4424 // Structural equality check for Type representations
4425 bool TypeInstPtr::eq( const Type *t ) const {
4426   const TypeInstPtr *p = t->is_instptr();
4427   return
4428     klass()->equals(p->klass()) &&

4429     _interfaces->eq(p->_interfaces) &&
4430     TypeOopPtr::eq(p);          // Check sub-type stuff
4431 }
4432 
4433 //------------------------------hash-------------------------------------------
4434 // Type-specific hashing function.
4435 uint TypeInstPtr::hash(void) const {
4436   return klass()->hash() + TypeOopPtr::hash() + _interfaces->hash();
4437 }
4438 
4439 bool TypeInstPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4440   return TypePtr::is_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
4441 }
4442 
4443 
4444 bool TypeInstPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const {
4445   return TypePtr::is_same_java_type_as_helper_for_instance(this, other);
4446 }
4447 
4448 bool TypeInstPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4449   return TypePtr::maybe_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
4450 }
4451 
4452 
4453 //------------------------------dump2------------------------------------------
4454 // Dump oop Type
4455 #ifndef PRODUCT
4456 void TypeInstPtr::dump2(Dict &d, uint depth, outputStream* st) const {

4470       // suppress newlines from it so -XX:+Verbose -XX:+PrintIdeal dumps one-liner for each node.
4471       char* buf = ss.as_string(/* c_heap= */false);
4472       StringUtils::replace_no_expand(buf, "\n", "");
4473       st->print_raw(buf);
4474     }
4475   case BotPTR:
4476     if (!WizardMode && !Verbose) {
4477       if( _klass_is_exact ) st->print(":exact");
4478       break;
4479     }
4480   case TopPTR:
4481   case AnyNull:
4482   case NotNull:
4483     st->print(":%s", ptr_msg[_ptr]);
4484     if( _klass_is_exact ) st->print(":exact");
4485     break;
4486   default:
4487     break;
4488   }
4489 
4490   if( _offset ) {               // Dump offset, if any
4491     if( _offset == OffsetBot )      st->print("+any");
4492     else if( _offset == OffsetTop ) st->print("+unknown");
4493     else st->print("+%d", _offset);
4494   }
4495 
4496   st->print(" *");





4497   if (_instance_id == InstanceTop)
4498     st->print(",iid=top");
4499   else if (_instance_id != InstanceBot)
4500     st->print(",iid=%d",_instance_id);
4501 
4502   dump_inline_depth(st);
4503   dump_speculative(st);
4504 }
4505 #endif
4506 
4507 //------------------------------add_offset-------------------------------------
4508 const TypePtr* TypeInstPtr::add_offset(intptr_t offset) const {
4509   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), xadd_offset(offset),
4510               _instance_id, add_offset_speculative(offset), _inline_depth);
4511 }
4512 
4513 const TypeInstPtr* TypeInstPtr::with_offset(intptr_t offset) const {
4514   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), offset,
4515               _instance_id, with_offset_speculative(offset), _inline_depth);
4516 }
4517 
4518 const TypeInstPtr* TypeInstPtr::remove_speculative() const {
4519   if (_speculative == nullptr) {
4520     return this;
4521   }
4522   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4523   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset,
4524               _instance_id, nullptr, _inline_depth);
4525 }
4526 
4527 const TypeInstPtr* TypeInstPtr::with_speculative(const TypePtr* speculative) const {
4528   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, _instance_id, speculative, _inline_depth);
4529 }
4530 
4531 const TypePtr* TypeInstPtr::with_inline_depth(int depth) const {
4532   if (!UseInlineDepthForSpeculativeTypes) {
4533     return this;
4534   }
4535   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
4536 }
4537 
4538 const TypePtr* TypeInstPtr::with_instance_id(int instance_id) const {
4539   assert(is_known_instance(), "should be known");
4540   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, instance_id, _speculative, _inline_depth);




4541 }
4542 
4543 const TypeKlassPtr* TypeInstPtr::as_klass_type(bool try_for_exact) const {
4544   bool xk = klass_is_exact();
4545   ciInstanceKlass* ik = klass()->as_instance_klass();
4546   if (try_for_exact && !xk && !ik->has_subklass() && !ik->is_final()) {
4547     if (_interfaces->eq(ik)) {
4548       Compile* C = Compile::current();
4549       Dependencies* deps = C->dependencies();
4550       deps->assert_leaf_type(ik);
4551       xk = true;
4552     }
4553   }
4554   return TypeInstKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, klass(), _interfaces, 0);
4555 }
4556 
4557 template <class T1, class T2> bool TypePtr::is_meet_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_xk, bool other_xk) {
4558   static_assert(std::is_base_of<T2, T1>::value, "");
4559 
4560   if (!this_one->is_instance_type(other)) {
4561     return false;
4562   }
4563 
4564   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty()) {
4565     return true;
4566   }
4567 
4568   return this_one->klass()->is_subtype_of(other->klass()) &&
4569          (!this_xk || this_one->_interfaces->contains(other->_interfaces));
4570 }
4571 
4572 
4573 bool TypeInstPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const {
4574   return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk);

4579   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty()) {
4580     return true;
4581   }
4582 
4583   if (this_one->is_instance_type(other)) {
4584     return other->klass() == ciEnv::current()->Object_klass() && this_one->_interfaces->contains(other->_interfaces);
4585   }
4586 
4587   int dummy;
4588   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
4589   if (this_top_or_bottom) {
4590     return false;
4591   }
4592 
4593   const T1* other_ary = this_one->is_array_type(other);
4594   const TypePtr* other_elem = other_ary->elem()->make_ptr();
4595   const TypePtr* this_elem = this_one->elem()->make_ptr();
4596   if (other_elem != nullptr && this_elem != nullptr) {
4597     return this_one->is_reference_type(this_elem)->is_meet_subtype_of_helper(this_one->is_reference_type(other_elem), this_xk, other_xk);
4598   }
4599 
4600   if (other_elem == nullptr && this_elem == nullptr) {
4601     return this_one->klass()->is_subtype_of(other->klass());
4602   }
4603 
4604   return false;
4605 }
4606 
4607 bool TypeAryPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const {
4608   return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk);
4609 }
4610 
4611 bool TypeInstKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const {
4612   return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk);
4613 }
4614 
4615 bool TypeAryKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const {
4616   return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk);
4617 }
4618 
4619 //=============================================================================
4620 // Convenience common pre-built types.
4621 const TypeAryPtr* TypeAryPtr::BOTTOM;
4622 const TypeAryPtr* TypeAryPtr::RANGE;
4623 const TypeAryPtr* TypeAryPtr::OOPS;
4624 const TypeAryPtr* TypeAryPtr::NARROWOOPS;
4625 const TypeAryPtr* TypeAryPtr::BYTES;
4626 const TypeAryPtr* TypeAryPtr::SHORTS;
4627 const TypeAryPtr* TypeAryPtr::CHARS;
4628 const TypeAryPtr* TypeAryPtr::INTS;
4629 const TypeAryPtr* TypeAryPtr::LONGS;
4630 const TypeAryPtr* TypeAryPtr::FLOATS;
4631 const TypeAryPtr* TypeAryPtr::DOUBLES;

4632 
4633 //------------------------------make-------------------------------------------
4634 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset,
4635                                    int instance_id, const TypePtr* speculative, int inline_depth) {
4636   assert(!(k == nullptr && ary->_elem->isa_int()),
4637          "integral arrays must be pre-equipped with a class");
4638   if (!xk)  xk = ary->ary_must_be_exact();
4639   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4640   if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() &&
4641       k->as_obj_array_klass()->base_element_klass()->is_interface()) {
4642     k = nullptr;
4643   }
4644   return (TypeAryPtr*)(new TypeAryPtr(ptr, nullptr, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons();
4645 }
4646 
4647 //------------------------------make-------------------------------------------
4648 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset,
4649                                    int instance_id, const TypePtr* speculative, int inline_depth,
4650                                    bool is_autobox_cache) {
4651   assert(!(k == nullptr && ary->_elem->isa_int()),
4652          "integral arrays must be pre-equipped with a class");
4653   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
4654   if (!xk)  xk = (o != nullptr) || ary->ary_must_be_exact();
4655   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4656   if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() &&
4657       k->as_obj_array_klass()->base_element_klass()->is_interface()) {
4658     k = nullptr;
4659   }
4660   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
4661 }
4662 
4663 //------------------------------cast_to_ptr_type-------------------------------
4664 const TypeAryPtr* TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
4665   if( ptr == _ptr ) return this;
4666   return make(ptr, ptr == Constant ? const_oop() : nullptr, _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4667 }
4668 
4669 
4670 //-----------------------------cast_to_exactness-------------------------------
4671 const TypeAryPtr* TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
4672   if( klass_is_exact == _klass_is_exact ) return this;
4673   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
4674   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
4675 }
4676 
4677 //-----------------------------cast_to_instance_id----------------------------
4678 const TypeAryPtr* TypeAryPtr::cast_to_instance_id(int instance_id) const {
4679   if( instance_id == _instance_id ) return this;
4680   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
4681 }
4682 
4683 
4684 //-----------------------------max_array_length-------------------------------
4685 // A wrapper around arrayOopDesc::max_array_length(etype) with some input normalization.
4686 jint TypeAryPtr::max_array_length(BasicType etype) {
4687   if (!is_java_primitive(etype) && !::is_reference_type(etype)) {
4688     if (etype == T_NARROWOOP) {
4689       etype = T_OBJECT;
4690     } else if (etype == T_ILLEGAL) { // bottom[]
4691       etype = T_BYTE; // will produce conservatively high value
4692     } else {
4693       fatal("not an element type: %s", type2name(etype));
4694     }
4695   }
4696   return arrayOopDesc::max_array_length(etype);
4697 }
4698 
4699 //-----------------------------narrow_size_type-------------------------------
4700 // Narrow the given size type to the index range for the given array base type.

4718     if (size->is_con()) {
4719       lo = hi;
4720     }
4721     chg = true;
4722   }
4723   // Negative length arrays will produce weird intermediate dead fast-path code
4724   if (lo > hi) {
4725     return TypeInt::ZERO;
4726   }
4727   if (!chg) {
4728     return size;
4729   }
4730   return TypeInt::make(lo, hi, Type::WidenMin);
4731 }
4732 
4733 //-------------------------------cast_to_size----------------------------------
4734 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
4735   assert(new_size != nullptr, "");
4736   new_size = narrow_size_type(new_size);
4737   if (new_size == size())  return this;
4738   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
4739   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);































































4740 }
4741 
4742 //------------------------------cast_to_stable---------------------------------
4743 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
4744   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
4745     return this;
4746 
4747   const Type* elem = this->elem();
4748   const TypePtr* elem_ptr = elem->make_ptr();
4749 
4750   if (stable_dimension > 1 && elem_ptr != nullptr && elem_ptr->isa_aryptr()) {
4751     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
4752     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
4753   }
4754 
4755   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
4756 
4757   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4758 }
4759 
4760 //-----------------------------stable_dimension--------------------------------
4761 int TypeAryPtr::stable_dimension() const {
4762   if (!is_stable())  return 0;
4763   int dim = 1;
4764   const TypePtr* elem_ptr = elem()->make_ptr();
4765   if (elem_ptr != nullptr && elem_ptr->isa_aryptr())
4766     dim += elem_ptr->is_aryptr()->stable_dimension();
4767   return dim;
4768 }
4769 
4770 //----------------------cast_to_autobox_cache-----------------------------------
4771 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache() const {
4772   if (is_autobox_cache())  return this;
4773   const TypeOopPtr* etype = elem()->make_oopptr();
4774   if (etype == nullptr)  return this;
4775   // The pointers in the autobox arrays are always non-null.
4776   etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4777   const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable());
4778   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth, /*is_autobox_cache=*/true);
4779 }
4780 
4781 //------------------------------eq---------------------------------------------
4782 // Structural equality check for Type representations
4783 bool TypeAryPtr::eq( const Type *t ) const {
4784   const TypeAryPtr *p = t->is_aryptr();
4785   return
4786     _ary == p->_ary &&  // Check array
4787     TypeOopPtr::eq(p);  // Check sub-parts

4788 }
4789 
4790 //------------------------------hash-------------------------------------------
4791 // Type-specific hashing function.
4792 uint TypeAryPtr::hash(void) const {
4793   return (uint)(uintptr_t)_ary + TypeOopPtr::hash();
4794 }
4795 
4796 bool TypeAryPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4797   return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
4798 }
4799 
4800 bool TypeAryPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const {
4801   return TypePtr::is_same_java_type_as_helper_for_array(this, other);
4802 }
4803 
4804 bool TypeAryPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4805   return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
4806 }
4807 //------------------------------meet-------------------------------------------
4808 // Compute the MEET of two types.  It returns a new Type object.
4809 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
4810   // Perform a fast test for common case; meeting the same types together.
4811   if( this == t ) return this;  // Meeting same type-rep?
4812   // Current "this->_base" is Pointer
4813   switch (t->base()) {          // switch on original type

4820   case HalfFloatBot:
4821   case FloatTop:
4822   case FloatCon:
4823   case FloatBot:
4824   case DoubleTop:
4825   case DoubleCon:
4826   case DoubleBot:
4827   case NarrowOop:
4828   case NarrowKlass:
4829   case Bottom:                  // Ye Olde Default
4830     return Type::BOTTOM;
4831   case Top:
4832     return this;
4833 
4834   default:                      // All else is a mistake
4835     typerr(t);
4836 
4837   case OopPtr: {                // Meeting to OopPtrs
4838     // Found a OopPtr type vs self-AryPtr type
4839     const TypeOopPtr *tp = t->is_oopptr();
4840     int offset = meet_offset(tp->offset());
4841     PTR ptr = meet_ptr(tp->ptr());
4842     int depth = meet_inline_depth(tp->inline_depth());
4843     const TypePtr* speculative = xmeet_speculative(tp);
4844     switch (tp->ptr()) {
4845     case TopPTR:
4846     case AnyNull: {
4847       int instance_id = meet_instance_id(InstanceTop);
4848       return make(ptr, (ptr == Constant ? const_oop() : nullptr),
4849                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4850     }
4851     case BotPTR:
4852     case NotNull: {
4853       int instance_id = meet_instance_id(tp->instance_id());
4854       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4855     }
4856     default: ShouldNotReachHere();
4857     }
4858   }
4859 
4860   case AnyPtr: {                // Meeting two AnyPtrs
4861     // Found an AnyPtr type vs self-AryPtr type
4862     const TypePtr *tp = t->is_ptr();
4863     int offset = meet_offset(tp->offset());
4864     PTR ptr = meet_ptr(tp->ptr());
4865     const TypePtr* speculative = xmeet_speculative(tp);
4866     int depth = meet_inline_depth(tp->inline_depth());
4867     switch (tp->ptr()) {
4868     case TopPTR:
4869       return this;
4870     case BotPTR:
4871     case NotNull:
4872       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4873     case Null:
4874       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4875       // else fall through to AnyNull
4876     case AnyNull: {
4877       int instance_id = meet_instance_id(InstanceTop);
4878       return make(ptr, (ptr == Constant ? const_oop() : nullptr),
4879                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4880     }
4881     default: ShouldNotReachHere();
4882     }
4883   }
4884 
4885   case MetadataPtr:
4886   case KlassPtr:
4887   case InstKlassPtr:
4888   case AryKlassPtr:
4889   case RawPtr: return TypePtr::BOTTOM;
4890 
4891   case AryPtr: {                // Meeting 2 references?
4892     const TypeAryPtr *tap = t->is_aryptr();
4893     int off = meet_offset(tap->offset());

4894     const Type* tm = _ary->meet_speculative(tap->_ary);
4895     const TypeAry* tary = tm->isa_ary();
4896     if (tary == nullptr) {
4897       assert(tm == Type::TOP || tm == Type::BOTTOM, "");
4898       return tm;
4899     }
4900     PTR ptr = meet_ptr(tap->ptr());
4901     int instance_id = meet_instance_id(tap->instance_id());
4902     const TypePtr* speculative = xmeet_speculative(tap);
4903     int depth = meet_inline_depth(tap->inline_depth());
4904 
4905     ciKlass* res_klass = nullptr;
4906     bool res_xk = false;




4907     const Type* elem = tary->_elem;
4908     if (meet_aryptr(ptr, elem, this, tap, res_klass, res_xk) == NOT_SUBTYPE) {
4909       instance_id = InstanceBot;














4910     }
4911 
4912     ciObject* o = nullptr;             // Assume not constant when done
4913     ciObject* this_oop = const_oop();
4914     ciObject* tap_oop = tap->const_oop();
4915     if (ptr == Constant) {
4916       if (this_oop != nullptr && tap_oop != nullptr &&
4917           this_oop->equals(tap_oop)) {
4918         o = tap_oop;
4919       } else if (above_centerline(_ptr)) {
4920         o = tap_oop;
4921       } else if (above_centerline(tap->_ptr)) {
4922         o = this_oop;
4923       } else {
4924         ptr = NotNull;
4925       }
4926     }
4927     return make(ptr, o, TypeAry::make(elem, tary->_size, tary->_stable), res_klass, res_xk, off, instance_id, speculative, depth);
4928   }
4929 
4930   // All arrays inherit from Object class
4931   case InstPtr: {
4932     const TypeInstPtr *tp = t->is_instptr();
4933     int offset = meet_offset(tp->offset());
4934     PTR ptr = meet_ptr(tp->ptr());
4935     int instance_id = meet_instance_id(tp->instance_id());
4936     const TypePtr* speculative = xmeet_speculative(tp);
4937     int depth = meet_inline_depth(tp->inline_depth());
4938     const TypeInterfaces* interfaces = meet_interfaces(tp);
4939     const TypeInterfaces* tp_interfaces = tp->_interfaces;
4940     const TypeInterfaces* this_interfaces = _interfaces;
4941 
4942     switch (ptr) {
4943     case TopPTR:
4944     case AnyNull:                // Fall 'down' to dual of object klass
4945       // For instances when a subclass meets a superclass we fall
4946       // below the centerline when the superclass is exact. We need to
4947       // do the same here.
4948       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) && !tp->klass_is_exact()) {
4949         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4950       } else {
4951         // cannot subclass, so the meet has to fall badly below the centerline
4952         ptr = NotNull;
4953         instance_id = InstanceBot;
4954         interfaces = this_interfaces->intersection_with(tp_interfaces);
4955         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr,offset, instance_id, speculative, depth);
4956       }
4957     case Constant:
4958     case NotNull:
4959     case BotPTR:                // Fall down to object klass
4960       // LCA is object_klass, but if we subclass from the top we can do better
4961       if (above_centerline(tp->ptr())) {
4962         // If 'tp'  is above the centerline and it is Object class
4963         // then we can subclass in the Java class hierarchy.
4964         // For instances when a subclass meets a superclass we fall
4965         // below the centerline when the superclass is exact. We need
4966         // to do the same here.
4967         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) && !tp->klass_is_exact()) {
4968           // that is, my array type is a subtype of 'tp' klass
4969           return make(ptr, (ptr == Constant ? const_oop() : nullptr),
4970                       _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4971         }
4972       }
4973       // The other case cannot happen, since t cannot be a subtype of an array.
4974       // The meet falls down to Object class below centerline.
4975       if (ptr == Constant) {
4976          ptr = NotNull;
4977       }
4978       if (instance_id > 0) {
4979         instance_id = InstanceBot;
4980       }
4981       interfaces = this_interfaces->intersection_with(tp_interfaces);
4982       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr, offset, instance_id, speculative, depth);
4983     default: typerr(t);
4984     }
4985   }
4986   }
4987   return this;                  // Lint noise
4988 }
4989 
4990 
4991 template<class T> TypePtr::MeetResult TypePtr::meet_aryptr(PTR& ptr, const Type*& elem, const T* this_ary,
4992                                                            const T* other_ary, ciKlass*& res_klass, bool& res_xk) {
4993   int dummy;
4994   bool this_top_or_bottom = (this_ary->base_element_type(dummy) == Type::TOP || this_ary->base_element_type(dummy) == Type::BOTTOM);
4995   bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
4996   ciKlass* this_klass = this_ary->klass();
4997   ciKlass* other_klass = other_ary->klass();
4998   bool this_xk = this_ary->klass_is_exact();
4999   bool other_xk = other_ary->klass_is_exact();
5000   PTR this_ptr = this_ary->ptr();
5001   PTR other_ptr = other_ary->ptr();









5002   res_klass = nullptr;
5003   MeetResult result = SUBTYPE;






5004   if (elem->isa_int()) {
5005     // Integral array element types have irrelevant lattice relations.
5006     // It is the klass that determines array layout, not the element type.
5007     if (this_top_or_bottom)
5008       res_klass = other_klass;
5009     else if (other_top_or_bottom || other_klass == this_klass) {
5010       res_klass = this_klass;
5011     } else {
5012       // Something like byte[int+] meets char[int+].
5013       // This must fall to bottom, not (int[-128..65535])[int+].
5014       // instance_id = InstanceBot;
5015       elem = Type::BOTTOM;
5016       result = NOT_SUBTYPE;
5017       if (above_centerline(ptr) || ptr == Constant) {
5018         ptr = NotNull;
5019         res_xk = false;
5020         return NOT_SUBTYPE;
5021       }
5022     }
5023   } else {// Non integral arrays.
5024     // Must fall to bottom if exact klasses in upper lattice
5025     // are not equal or super klass is exact.
5026     if ((above_centerline(ptr) || ptr == Constant) && !this_ary->is_same_java_type_as(other_ary) &&
5027         // meet with top[] and bottom[] are processed further down:
5028         !this_top_or_bottom && !other_top_or_bottom &&
5029         // both are exact and not equal:

5031          // 'tap'  is exact and super or unrelated:
5032          (other_xk && !other_ary->is_meet_subtype_of(this_ary)) ||
5033          // 'this' is exact and super or unrelated:
5034          (this_xk && !this_ary->is_meet_subtype_of(other_ary)))) {
5035       if (above_centerline(ptr) || (elem->make_ptr() && above_centerline(elem->make_ptr()->_ptr))) {
5036         elem = Type::BOTTOM;
5037       }
5038       ptr = NotNull;
5039       res_xk = false;
5040       return NOT_SUBTYPE;
5041     }
5042   }
5043 
5044   res_xk = false;
5045   switch (other_ptr) {
5046     case AnyNull:
5047     case TopPTR:
5048       // Compute new klass on demand, do not use tap->_klass
5049       if (below_centerline(this_ptr)) {
5050         res_xk = this_xk;



5051       } else {
5052         res_xk = (other_xk || this_xk);
5053       }
5054       return result;
5055     case Constant: {
5056       if (this_ptr == Constant) {


5057         res_xk = true;
5058       } else if(above_centerline(this_ptr)) {
5059         res_xk = true;
5060       } else {
5061         // Only precise for identical arrays
5062         res_xk = this_xk && (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom));






5063       }
5064       return result;
5065     }
5066     case NotNull:
5067     case BotPTR:
5068       // Compute new klass on demand, do not use tap->_klass
5069       if (above_centerline(this_ptr)) {
5070         res_xk = other_xk;



5071       } else {
5072         res_xk = (other_xk && this_xk) &&
5073                  (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom)); // Only precise for identical arrays






5074       }
5075       return result;
5076     default:  {
5077       ShouldNotReachHere();
5078       return result;
5079     }
5080   }
5081   return result;
5082 }
5083 
5084 
5085 //------------------------------xdual------------------------------------------
5086 // Dual: compute field-by-field dual
5087 const Type *TypeAryPtr::xdual() const {
5088   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());










5089 }
5090 
5091 //------------------------------dump2------------------------------------------
5092 #ifndef PRODUCT
5093 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5094   _ary->dump2(d,depth,st);
5095   _interfaces->dump(st);
5096 
5097   switch( _ptr ) {
5098   case Constant:
5099     const_oop()->print(st);
5100     break;
5101   case BotPTR:
5102     if (!WizardMode && !Verbose) {
5103       if( _klass_is_exact ) st->print(":exact");
5104       break;
5105     }
5106   case TopPTR:
5107   case AnyNull:
5108   case NotNull:
5109     st->print(":%s", ptr_msg[_ptr]);
5110     if( _klass_is_exact ) st->print(":exact");
5111     break;
5112   default:
5113     break;
5114   }
5115 
5116   if( _offset != 0 ) {






















5117     BasicType basic_elem_type = elem()->basic_type();
5118     int header_size = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5119     if( _offset == OffsetTop )       st->print("+undefined");
5120     else if( _offset == OffsetBot )  st->print("+any");
5121     else if( _offset < header_size ) st->print("+%d", _offset);
5122     else {
5123       if (basic_elem_type == T_ILLEGAL) {
5124         st->print("+any");
5125       } else {
5126         int elem_size = type2aelembytes(basic_elem_type);
5127         st->print("[%d]", (_offset - header_size)/elem_size);
5128       }
5129     }
5130   }
5131   st->print(" *");
5132   if (_instance_id == InstanceTop)
5133     st->print(",iid=top");
5134   else if (_instance_id != InstanceBot)
5135     st->print(",iid=%d",_instance_id);
5136 
5137   dump_inline_depth(st);
5138   dump_speculative(st);
5139 }
5140 #endif
5141 
5142 bool TypeAryPtr::empty(void) const {
5143   if (_ary->empty())       return true;




5144   return TypeOopPtr::empty();
5145 }
5146 
5147 //------------------------------add_offset-------------------------------------
5148 const TypePtr* TypeAryPtr::add_offset(intptr_t offset) const {
5149   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
5150 }
5151 
5152 const TypeAryPtr* TypeAryPtr::with_offset(intptr_t offset) const {
5153   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, offset, _instance_id, with_offset_speculative(offset), _inline_depth);
5154 }
5155 
5156 const TypeAryPtr* TypeAryPtr::with_ary(const TypeAry* ary) const {
5157   return make(_ptr, _const_oop, ary, _klass, _klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
5158 }
5159 
5160 const TypeAryPtr* TypeAryPtr::remove_speculative() const {
5161   if (_speculative == nullptr) {
5162     return this;
5163   }
5164   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
5165   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, nullptr, _inline_depth);













5166 }
5167 
5168 const TypePtr* TypeAryPtr::with_inline_depth(int depth) const {
5169   if (!UseInlineDepthForSpeculativeTypes) {
5170     return this;
5171   }
5172   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth);











































5173 }
5174 
5175 const TypePtr* TypeAryPtr::with_instance_id(int instance_id) const {
5176   assert(is_known_instance(), "should be known");
5177   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
5178 }
5179 
5180 //=============================================================================
5181 

5182 //------------------------------hash-------------------------------------------
5183 // Type-specific hashing function.
5184 uint TypeNarrowPtr::hash(void) const {
5185   return _ptrtype->hash() + 7;
5186 }
5187 
5188 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
5189   return _ptrtype->singleton();
5190 }
5191 
5192 bool TypeNarrowPtr::empty(void) const {
5193   return _ptrtype->empty();
5194 }
5195 
5196 intptr_t TypeNarrowPtr::get_con() const {
5197   return _ptrtype->get_con();
5198 }
5199 
5200 bool TypeNarrowPtr::eq( const Type *t ) const {
5201   const TypeNarrowPtr* tc = isa_same_narrowptr(t);

5255   case HalfFloatTop:
5256   case HalfFloatCon:
5257   case HalfFloatBot:
5258   case FloatTop:
5259   case FloatCon:
5260   case FloatBot:
5261   case DoubleTop:
5262   case DoubleCon:
5263   case DoubleBot:
5264   case AnyPtr:
5265   case RawPtr:
5266   case OopPtr:
5267   case InstPtr:
5268   case AryPtr:
5269   case MetadataPtr:
5270   case KlassPtr:
5271   case InstKlassPtr:
5272   case AryKlassPtr:
5273   case NarrowOop:
5274   case NarrowKlass:
5275 
5276   case Bottom:                  // Ye Olde Default
5277     return Type::BOTTOM;
5278   case Top:
5279     return this;
5280 
5281   default:                      // All else is a mistake
5282     typerr(t);
5283 
5284   } // End of switch
5285 
5286   return this;
5287 }
5288 
5289 #ifndef PRODUCT
5290 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5291   _ptrtype->dump2(d, depth, st);
5292 }
5293 #endif
5294 
5295 const TypeNarrowOop *TypeNarrowOop::BOTTOM;

5339     return (one == two) && TypePtr::eq(t);
5340   } else {
5341     return one->equals(two) && TypePtr::eq(t);
5342   }
5343 }
5344 
5345 //------------------------------hash-------------------------------------------
5346 // Type-specific hashing function.
5347 uint TypeMetadataPtr::hash(void) const {
5348   return
5349     (metadata() ? metadata()->hash() : 0) +
5350     TypePtr::hash();
5351 }
5352 
5353 //------------------------------singleton--------------------------------------
5354 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5355 // constants
5356 bool TypeMetadataPtr::singleton(void) const {
5357   // detune optimizer to not generate constant metadata + constant offset as a constant!
5358   // TopPTR, Null, AnyNull, Constant are all singletons
5359   return (_offset == 0) && !below_centerline(_ptr);
5360 }
5361 
5362 //------------------------------add_offset-------------------------------------
5363 const TypePtr* TypeMetadataPtr::add_offset( intptr_t offset ) const {
5364   return make( _ptr, _metadata, xadd_offset(offset));
5365 }
5366 
5367 //-----------------------------filter------------------------------------------
5368 // Do not allow interface-vs.-noninterface joins to collapse to top.
5369 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
5370   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
5371   if (ft == nullptr || ft->empty())
5372     return Type::TOP;           // Canonical empty value
5373   return ft;
5374 }
5375 
5376  //------------------------------get_con----------------------------------------
5377 intptr_t TypeMetadataPtr::get_con() const {
5378   assert( _ptr == Null || _ptr == Constant, "" );
5379   assert( _offset >= 0, "" );
5380 
5381   if (_offset != 0) {
5382     // After being ported to the compiler interface, the compiler no longer
5383     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5384     // to a handle at compile time.  This handle is embedded in the generated
5385     // code and dereferenced at the time the nmethod is made.  Until that time,
5386     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5387     // have access to the addresses!).  This does not seem to currently happen,
5388     // but this assertion here is to help prevent its occurrence.
5389     tty->print_cr("Found oop constant with non-zero offset");
5390     ShouldNotReachHere();
5391   }
5392 
5393   return (intptr_t)metadata()->constant_encoding();
5394 }
5395 
5396 //------------------------------cast_to_ptr_type-------------------------------
5397 const TypeMetadataPtr* TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
5398   if( ptr == _ptr ) return this;
5399   return make(ptr, metadata(), _offset);
5400 }
5401 

5415   case HalfFloatBot:
5416   case FloatTop:
5417   case FloatCon:
5418   case FloatBot:
5419   case DoubleTop:
5420   case DoubleCon:
5421   case DoubleBot:
5422   case NarrowOop:
5423   case NarrowKlass:
5424   case Bottom:                  // Ye Olde Default
5425     return Type::BOTTOM;
5426   case Top:
5427     return this;
5428 
5429   default:                      // All else is a mistake
5430     typerr(t);
5431 
5432   case AnyPtr: {
5433     // Found an AnyPtr type vs self-OopPtr type
5434     const TypePtr *tp = t->is_ptr();
5435     int offset = meet_offset(tp->offset());
5436     PTR ptr = meet_ptr(tp->ptr());
5437     switch (tp->ptr()) {
5438     case Null:
5439       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5440       // else fall through:
5441     case TopPTR:
5442     case AnyNull: {
5443       return make(ptr, _metadata, offset);
5444     }
5445     case BotPTR:
5446     case NotNull:
5447       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5448     default: typerr(t);
5449     }
5450   }
5451 
5452   case RawPtr:
5453   case KlassPtr:
5454   case InstKlassPtr:
5455   case AryKlassPtr:
5456   case OopPtr:
5457   case InstPtr:
5458   case AryPtr:
5459     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
5460 
5461   case MetadataPtr: {
5462     const TypeMetadataPtr *tp = t->is_metadataptr();
5463     int offset = meet_offset(tp->offset());
5464     PTR tptr = tp->ptr();
5465     PTR ptr = meet_ptr(tptr);
5466     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
5467     if (tptr == TopPTR || _ptr == TopPTR ||
5468         metadata()->equals(tp->metadata())) {
5469       return make(ptr, md, offset);
5470     }
5471     // metadata is different
5472     if( ptr == Constant ) {  // Cannot be equal constants, so...
5473       if( tptr == Constant && _ptr != Constant)  return t;
5474       if( _ptr == Constant && tptr != Constant)  return this;
5475       ptr = NotNull;            // Fall down in lattice
5476     }
5477     return make(ptr, nullptr, offset);
5478     break;
5479   }
5480   } // End of switch
5481   return this;                  // Return the double constant
5482 }
5483 
5484 
5485 //------------------------------xdual------------------------------------------
5486 // Dual of a pure metadata pointer.
5487 const Type *TypeMetadataPtr::xdual() const {
5488   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
5489 }
5490 
5491 //------------------------------dump2------------------------------------------
5492 #ifndef PRODUCT
5493 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5494   st->print("metadataptr:%s", ptr_msg[_ptr]);
5495   if( metadata() ) st->print(INTPTR_FORMAT, p2i(metadata()));
5496   switch( _offset ) {
5497   case OffsetTop: st->print("+top"); break;
5498   case OffsetBot: st->print("+any"); break;
5499   case         0: break;
5500   default:        st->print("+%d",_offset); break;
5501   }
5502 }
5503 #endif
5504 
5505 
5506 //=============================================================================
5507 // Convenience common pre-built type.
5508 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
5509 
5510 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
5511   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
5512 }
5513 
5514 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
5515   return make(Constant, m, 0);
5516 }
5517 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
5518   return make(Constant, m, 0);
5519 }
5520 
5521 //------------------------------make-------------------------------------------
5522 // Create a meta data constant
5523 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
5524   assert(m == nullptr || !m->is_klass(), "wrong type");
5525   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
5526 }
5527 
5528 
5529 const TypeKlassPtr* TypeAryPtr::as_klass_type(bool try_for_exact) const {
5530   const Type* elem = _ary->_elem;
5531   bool xk = klass_is_exact();
5532   if (elem->make_oopptr() != nullptr) {
5533     elem = elem->make_oopptr()->as_klass_type(try_for_exact);
5534     if (elem->is_klassptr()->klass_is_exact()) {





5535       xk = true;
5536     }
5537   }
5538   return TypeAryKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, elem, klass(), 0);
5539 }
5540 
5541 const TypeKlassPtr* TypeKlassPtr::make(ciKlass *klass, InterfaceHandling interface_handling) {
5542   if (klass->is_instance_klass()) {
5543     return TypeInstKlassPtr::make(klass, interface_handling);
5544   }
5545   return TypeAryKlassPtr::make(klass, interface_handling);
5546 }
5547 
5548 const TypeKlassPtr* TypeKlassPtr::make(PTR ptr, ciKlass* klass, int offset, InterfaceHandling interface_handling) {
5549   if (klass->is_instance_klass()) {
5550     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
5551     return TypeInstKlassPtr::make(ptr, klass, interfaces, offset);
5552   }
5553   return TypeAryKlassPtr::make(ptr, klass, offset, interface_handling);
5554 }
5555 
5556 
5557 //------------------------------TypeKlassPtr-----------------------------------
5558 TypeKlassPtr::TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, int offset)
5559   : TypePtr(t, ptr, offset), _klass(klass), _interfaces(interfaces) {
5560   assert(klass == nullptr || !klass->is_loaded() || (klass->is_instance_klass() && !klass->is_interface()) ||
5561          klass->is_type_array_klass() || !klass->as_obj_array_klass()->base_element_klass()->is_interface(), "no interface here");
5562 }
5563 
5564 // Is there a single ciKlass* that can represent that type?
5565 ciKlass* TypeKlassPtr::exact_klass_helper() const {
5566   assert(_klass->is_instance_klass() && !_klass->is_interface(), "No interface");
5567   if (_interfaces->empty()) {
5568     return _klass;
5569   }
5570   if (_klass != ciEnv::current()->Object_klass()) {
5571     if (_interfaces->eq(_klass->as_instance_klass())) {
5572       return _klass;
5573     }
5574     return nullptr;
5575   }
5576   return _interfaces->exact_klass();
5577 }
5578 
5579 //------------------------------eq---------------------------------------------
5580 // Structural equality check for Type representations
5581 bool TypeKlassPtr::eq(const Type *t) const {
5582   const TypeKlassPtr *p = t->is_klassptr();
5583   return
5584     _interfaces->eq(p->_interfaces) &&
5585     TypePtr::eq(p);
5586 }
5587 
5588 //------------------------------hash-------------------------------------------
5589 // Type-specific hashing function.
5590 uint TypeKlassPtr::hash(void) const {
5591   return TypePtr::hash() + _interfaces->hash();
5592 }
5593 
5594 //------------------------------singleton--------------------------------------
5595 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5596 // constants
5597 bool TypeKlassPtr::singleton(void) const {
5598   // detune optimizer to not generate constant klass + constant offset as a constant!
5599   // TopPTR, Null, AnyNull, Constant are all singletons
5600   return (_offset == 0) && !below_centerline(_ptr);
5601 }
5602 
5603 // Do not allow interface-vs.-noninterface joins to collapse to top.
5604 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
5605   // logic here mirrors the one from TypeOopPtr::filter. See comments
5606   // there.
5607   const Type* ft = join_helper(kills, include_speculative);
5608 
5609   if (ft->empty()) {
5610     return Type::TOP;           // Canonical empty value
5611   }
5612 
5613   return ft;
5614 }
5615 
5616 const TypeInterfaces* TypeKlassPtr::meet_interfaces(const TypeKlassPtr* other) const {
5617   if (above_centerline(_ptr) && above_centerline(other->_ptr)) {
5618     return _interfaces->union_with(other->_interfaces);
5619   } else if (above_centerline(_ptr) && !above_centerline(other->_ptr)) {
5620     return other->_interfaces;
5621   } else if (above_centerline(other->_ptr) && !above_centerline(_ptr)) {
5622     return _interfaces;
5623   }
5624   return _interfaces->intersection_with(other->_interfaces);
5625 }
5626 
5627 //------------------------------get_con----------------------------------------
5628 intptr_t TypeKlassPtr::get_con() const {
5629   assert( _ptr == Null || _ptr == Constant, "" );
5630   assert( _offset >= 0, "" );
5631 
5632   if (_offset != 0) {
5633     // After being ported to the compiler interface, the compiler no longer
5634     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5635     // to a handle at compile time.  This handle is embedded in the generated
5636     // code and dereferenced at the time the nmethod is made.  Until that time,
5637     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5638     // have access to the addresses!).  This does not seem to currently happen,
5639     // but this assertion here is to help prevent its occurrence.
5640     tty->print_cr("Found oop constant with non-zero offset");
5641     ShouldNotReachHere();
5642   }
5643 
5644   ciKlass* k = exact_klass();
5645 
5646   return (intptr_t)k->constant_encoding();
5647 }
5648 
5649 //------------------------------dump2------------------------------------------
5650 // Dump Klass Type
5651 #ifndef PRODUCT
5652 void TypeKlassPtr::dump2(Dict & d, uint depth, outputStream *st) const {

5656   case NotNull:
5657     {
5658       const char *name = klass()->name()->as_utf8();
5659       if (name) {
5660         st->print("%s: " INTPTR_FORMAT, name, p2i(klass()));
5661       } else {
5662         ShouldNotReachHere();
5663       }
5664       _interfaces->dump(st);
5665     }
5666   case BotPTR:
5667     if (!WizardMode && !Verbose && _ptr != Constant) break;
5668   case TopPTR:
5669   case AnyNull:
5670     st->print(":%s", ptr_msg[_ptr]);
5671     if (_ptr == Constant) st->print(":exact");
5672     break;
5673   default:
5674     break;
5675   }
5676 
5677   if (_offset) {               // Dump offset, if any
5678     if (_offset == OffsetBot)      { st->print("+any"); }
5679     else if (_offset == OffsetTop) { st->print("+unknown"); }
5680     else                            { st->print("+%d", _offset); }
5681   }
5682 
5683   st->print(" *");




5684 }
5685 #endif
5686 
5687 //=============================================================================
5688 // Convenience common pre-built types.
5689 
5690 // Not-null object klass or below
5691 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT;
5692 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT_OR_NULL;
5693 
5694 bool TypeInstKlassPtr::eq(const Type *t) const {
5695   const TypeKlassPtr *p = t->is_klassptr();
5696   return
5697     klass()->equals(p->klass()) &&

5698     TypeKlassPtr::eq(p);
5699 }
5700 
5701 uint TypeInstKlassPtr::hash(void) const {
5702   return klass()->hash() + TypeKlassPtr::hash();
5703 }
5704 
5705 const TypeInstKlassPtr *TypeInstKlassPtr::make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, int offset) {


5706   TypeInstKlassPtr *r =
5707     (TypeInstKlassPtr*)(new TypeInstKlassPtr(ptr, k, interfaces, offset))->hashcons();
5708 
5709   return r;
5710 }
5711 
5712 //------------------------------add_offset-------------------------------------
5713 // Access internals of klass object
5714 const TypePtr* TypeInstKlassPtr::add_offset( intptr_t offset ) const {
5715   return make( _ptr, klass(), _interfaces, xadd_offset(offset) );
5716 }
5717 
5718 const TypeInstKlassPtr* TypeInstKlassPtr::with_offset(intptr_t offset) const {
5719   return make(_ptr, klass(), _interfaces, offset);
5720 }
5721 
5722 //------------------------------cast_to_ptr_type-------------------------------
5723 const TypeInstKlassPtr* TypeInstKlassPtr::cast_to_ptr_type(PTR ptr) const {
5724   assert(_base == InstKlassPtr, "subclass must override cast_to_ptr_type");
5725   if( ptr == _ptr ) return this;
5726   return make(ptr, _klass, _interfaces, _offset);
5727 }
5728 
5729 
5730 bool TypeInstKlassPtr::must_be_exact() const {
5731   if (!_klass->is_loaded())  return false;
5732   ciInstanceKlass* ik = _klass->as_instance_klass();
5733   if (ik->is_final())  return true;  // cannot clear xk
5734   return false;
5735 }
5736 
5737 //-----------------------------cast_to_exactness-------------------------------
5738 const TypeKlassPtr* TypeInstKlassPtr::cast_to_exactness(bool klass_is_exact) const {
5739   if (klass_is_exact == (_ptr == Constant)) return this;
5740   if (must_be_exact()) return this;
5741   ciKlass* k = klass();
5742   return make(klass_is_exact ? Constant : NotNull, k, _interfaces, _offset);
5743 }
5744 
5745 
5746 //-----------------------------as_instance_type--------------------------------
5747 // Corresponding type for an instance of the given class.
5748 // It will be NotNull, and exact if and only if the klass type is exact.
5749 const TypeOopPtr* TypeInstKlassPtr::as_instance_type(bool klass_change) const {
5750   ciKlass* k = klass();
5751   bool xk = klass_is_exact();
5752   Compile* C = Compile::current();
5753   Dependencies* deps = C->dependencies();
5754   assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
5755   // Element is an instance
5756   bool klass_is_exact = false;
5757   const TypeInterfaces* interfaces = _interfaces;
5758   if (k->is_loaded()) {
5759     // Try to set klass_is_exact.
5760     ciInstanceKlass* ik = k->as_instance_klass();
5761     klass_is_exact = ik->is_final();
5762     if (!klass_is_exact && klass_change
5763         && deps != nullptr && UseUniqueSubclasses) {
5764       ciInstanceKlass* sub = ik->unique_concrete_subklass();
5765       if (sub != nullptr) {
5766         if (_interfaces->eq(sub)) {
5767           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
5768           k = ik = sub;
5769           xk = sub->is_final();
5770         }
5771       }
5772     }
5773   }
5774   return TypeInstPtr::make(TypePtr::BotPTR, k, interfaces, xk, nullptr, 0);
5775 }
5776 
5777 //------------------------------xmeet------------------------------------------
5778 // Compute the MEET of two types, return a new Type object.
5779 const Type    *TypeInstKlassPtr::xmeet( const Type *t ) const {
5780   // Perform a fast test for common case; meeting the same types together.
5781   if( this == t ) return this;  // Meeting same type-rep?
5782 
5783   // Current "this->_base" is Pointer
5784   switch (t->base()) {          // switch on original type
5785 
5786   case Int:                     // Mixing ints & oops happens when javac
5787   case Long:                    // reuses local variables
5788   case HalfFloatTop:
5789   case HalfFloatCon:
5790   case HalfFloatBot:
5791   case FloatTop:
5792   case FloatCon:
5793   case FloatBot:
5794   case DoubleTop:
5795   case DoubleCon:
5796   case DoubleBot:
5797   case NarrowOop:
5798   case NarrowKlass:
5799   case Bottom:                  // Ye Olde Default
5800     return Type::BOTTOM;
5801   case Top:
5802     return this;
5803 
5804   default:                      // All else is a mistake
5805     typerr(t);
5806 
5807   case AnyPtr: {                // Meeting to AnyPtrs
5808     // Found an AnyPtr type vs self-KlassPtr type
5809     const TypePtr *tp = t->is_ptr();
5810     int offset = meet_offset(tp->offset());
5811     PTR ptr = meet_ptr(tp->ptr());
5812     switch (tp->ptr()) {
5813     case TopPTR:
5814       return this;
5815     case Null:
5816       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5817     case AnyNull:
5818       return make( ptr, klass(), _interfaces, offset );
5819     case BotPTR:
5820     case NotNull:
5821       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5822     default: typerr(t);
5823     }
5824   }
5825 
5826   case RawPtr:
5827   case MetadataPtr:
5828   case OopPtr:
5829   case AryPtr:                  // Meet with AryPtr
5830   case InstPtr:                 // Meet with InstPtr
5831     return TypePtr::BOTTOM;
5832 
5833   //
5834   //             A-top         }
5835   //           /   |   \       }  Tops
5836   //       B-top A-any C-top   }
5837   //          | /  |  \ |      }  Any-nulls
5838   //       B-any   |   C-any   }
5839   //          |    |    |
5840   //       B-con A-con C-con   } constants; not comparable across classes
5841   //          |    |    |
5842   //       B-not   |   C-not   }
5843   //          | \  |  / |      }  not-nulls
5844   //       B-bot A-not C-bot   }
5845   //           \   |   /       }  Bottoms
5846   //             A-bot         }
5847   //
5848 
5849   case InstKlassPtr: {  // Meet two KlassPtr types
5850     const TypeInstKlassPtr *tkls = t->is_instklassptr();
5851     int  off     = meet_offset(tkls->offset());
5852     PTR  ptr     = meet_ptr(tkls->ptr());
5853     const TypeInterfaces* interfaces = meet_interfaces(tkls);
5854 
5855     ciKlass* res_klass = nullptr;
5856     bool res_xk = false;
5857     switch(meet_instptr(ptr, interfaces, this, tkls, res_klass, res_xk)) {

5858       case UNLOADED:
5859         ShouldNotReachHere();
5860       case SUBTYPE:
5861       case NOT_SUBTYPE:
5862       case LCA:
5863       case QUICK: {
5864         assert(res_xk == (ptr == Constant), "");
5865         const Type* res = make(ptr, res_klass, interfaces, off);
5866         return res;
5867       }
5868       default:
5869         ShouldNotReachHere();
5870     }
5871   } // End of case KlassPtr
5872   case AryKlassPtr: {                // All arrays inherit from Object class
5873     const TypeAryKlassPtr *tp = t->is_aryklassptr();
5874     int offset = meet_offset(tp->offset());
5875     PTR ptr = meet_ptr(tp->ptr());
5876     const TypeInterfaces* interfaces = meet_interfaces(tp);
5877     const TypeInterfaces* tp_interfaces = tp->_interfaces;
5878     const TypeInterfaces* this_interfaces = _interfaces;
5879 
5880     switch (ptr) {
5881     case TopPTR:
5882     case AnyNull:                // Fall 'down' to dual of object klass
5883       // For instances when a subclass meets a superclass we fall
5884       // below the centerline when the superclass is exact. We need to
5885       // do the same here.
5886       if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces->contains(this_interfaces) && !klass_is_exact()) {
5887         return TypeAryKlassPtr::make(ptr, tp->elem(), tp->klass(), offset);
5888       } else {
5889         // cannot subclass, so the meet has to fall badly below the centerline
5890         ptr = NotNull;
5891         interfaces = _interfaces->intersection_with(tp->_interfaces);
5892         return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset);
5893       }
5894     case Constant:
5895     case NotNull:
5896     case BotPTR:                // Fall down to object klass
5897       // LCA is object_klass, but if we subclass from the top we can do better
5898       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
5899         // If 'this' (InstPtr) is above the centerline and it is Object class
5900         // then we can subclass in the Java class hierarchy.
5901         // For instances when a subclass meets a superclass we fall
5902         // below the centerline when the superclass is exact. We need
5903         // to do the same here.
5904         if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces->contains(this_interfaces) && !klass_is_exact()) {
5905           // that is, tp's array type is a subtype of my klass
5906           return TypeAryKlassPtr::make(ptr,
5907                                        tp->elem(), tp->klass(), offset);
5908         }
5909       }
5910       // The other case cannot happen, since I cannot be a subtype of an array.
5911       // The meet falls down to Object class below centerline.
5912       if( ptr == Constant )
5913          ptr = NotNull;
5914       interfaces = this_interfaces->intersection_with(tp_interfaces);
5915       return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset);
5916     default: typerr(t);
5917     }
5918   }
5919 
5920   } // End of switch
5921   return this;                  // Return the double constant
5922 }
5923 
5924 //------------------------------xdual------------------------------------------
5925 // Dual: compute field-by-field dual
5926 const Type    *TypeInstKlassPtr::xdual() const {
5927   return new TypeInstKlassPtr(dual_ptr(), klass(), _interfaces, dual_offset());
5928 }
5929 
5930 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
5931   static_assert(std::is_base_of<T2, T1>::value, "");
5932   if (!this_one->is_loaded() || !other->is_loaded()) {
5933     return false;
5934   }
5935   if (!this_one->is_instance_type(other)) {
5936     return false;
5937   }
5938 
5939   if (!other_exact) {
5940     return false;
5941   }
5942 
5943   if (other->klass()->equals(ciEnv::current()->Object_klass()) && other->_interfaces->empty()) {
5944     return true;
5945   }
5946 
5947   return this_one->klass()->is_subtype_of(other->klass()) && this_one->_interfaces->contains(other->_interfaces);

6021   const TypeInterfaces* interfaces = _interfaces;
6022   if (k->is_loaded()) {
6023     ciInstanceKlass* ik = k->as_instance_klass();
6024     bool klass_is_exact = ik->is_final();
6025     if (!klass_is_exact &&
6026         deps != nullptr) {
6027       ciInstanceKlass* sub = ik->unique_concrete_subklass();
6028       if (sub != nullptr) {
6029         if (_interfaces->eq(sub)) {
6030           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
6031           k = ik = sub;
6032           klass_is_exact = sub->is_final();
6033           return TypeKlassPtr::make(klass_is_exact ? Constant : _ptr, k, _offset);
6034         }
6035       }
6036     }
6037   }
6038   return this;
6039 }
6040 



6041 
6042 const TypeAryKlassPtr *TypeAryKlassPtr::make(PTR ptr, const Type* elem, ciKlass* k, int offset) {
6043   return (TypeAryKlassPtr*)(new TypeAryKlassPtr(ptr, elem, k, offset))->hashcons();
6044 }
6045 
6046 const TypeAryKlassPtr *TypeAryKlassPtr::make(PTR ptr, ciKlass* k, int offset, InterfaceHandling interface_handling) {












6047   if (k->is_obj_array_klass()) {
6048     // Element is an object array. Recursively call ourself.
6049     ciKlass* eklass = k->as_obj_array_klass()->element_klass();
6050     const TypeKlassPtr *etype = TypeKlassPtr::make(eklass, interface_handling)->cast_to_exactness(false);
6051     return TypeAryKlassPtr::make(ptr, etype, nullptr, offset);
6052   } else if (k->is_type_array_klass()) {
6053     // Element is an typeArray
6054     const Type* etype = get_const_basic_type(k->as_type_array_klass()->element_type());
6055     return TypeAryKlassPtr::make(ptr, etype, k, offset);




6056   } else {
6057     ShouldNotReachHere();
6058     return nullptr;
6059   }
6060 }
6061 
6062 const TypeAryKlassPtr* TypeAryKlassPtr::make(ciKlass* klass, InterfaceHandling interface_handling) {
6063   return TypeAryKlassPtr::make(Constant, klass, 0, interface_handling);




























6064 }
6065 
6066 //------------------------------eq---------------------------------------------
6067 // Structural equality check for Type representations
6068 bool TypeAryKlassPtr::eq(const Type *t) const {
6069   const TypeAryKlassPtr *p = t->is_aryklassptr();
6070   return
6071     _elem == p->_elem &&  // Check array






6072     TypeKlassPtr::eq(p);  // Check sub-parts
6073 }
6074 
6075 //------------------------------hash-------------------------------------------
6076 // Type-specific hashing function.
6077 uint TypeAryKlassPtr::hash(void) const {
6078   return (uint)(uintptr_t)_elem + TypeKlassPtr::hash();

6079 }
6080 
6081 //----------------------compute_klass------------------------------------------
6082 // Compute the defining klass for this class
6083 ciKlass* TypeAryPtr::compute_klass() const {
6084   // Compute _klass based on element type.
6085   ciKlass* k_ary = nullptr;
6086   const TypeInstPtr *tinst;
6087   const TypeAryPtr *tary;
6088   const Type* el = elem();
6089   if (el->isa_narrowoop()) {
6090     el = el->make_ptr();
6091   }
6092 
6093   // Get element klass
6094   if ((tinst = el->isa_instptr()) != nullptr) {
6095     // Leave k_ary at null.







6096   } else if ((tary = el->isa_aryptr()) != nullptr) {
6097     // Leave k_ary at null.
6098   } else if ((el->base() == Type::Top) ||
6099              (el->base() == Type::Bottom)) {
6100     // element type of Bottom occurs from meet of basic type
6101     // and object; Top occurs when doing join on Bottom.
6102     // Leave k_ary at null.
6103   } else {
6104     assert(!el->isa_int(), "integral arrays must be pre-equipped with a class");
6105     // Compute array klass directly from basic type
6106     k_ary = ciTypeArrayKlass::make(el->basic_type());
6107   }
6108   return k_ary;
6109 }
6110 
6111 //------------------------------klass------------------------------------------
6112 // Return the defining klass for this class
6113 ciKlass* TypeAryPtr::klass() const {
6114   if( _klass ) return _klass;   // Return cached value, if possible
6115 
6116   // Oops, need to compute _klass and cache it
6117   ciKlass* k_ary = compute_klass();

6125     // type TypeAryPtr::OOPS.  This Type is shared between all
6126     // active compilations.  However, the ciKlass which represents
6127     // this Type is *not* shared between compilations, so caching
6128     // this value would result in fetching a dangling pointer.
6129     //
6130     // Recomputing the underlying ciKlass for each request is
6131     // a bit less efficient than caching, but calls to
6132     // TypeAryPtr::OOPS->klass() are not common enough to matter.
6133     ((TypeAryPtr*)this)->_klass = k_ary;
6134   }
6135   return k_ary;
6136 }
6137 
6138 // Is there a single ciKlass* that can represent that type?
6139 ciKlass* TypeAryPtr::exact_klass_helper() const {
6140   if (_ary->_elem->make_ptr() && _ary->_elem->make_ptr()->isa_oopptr()) {
6141     ciKlass* k = _ary->_elem->make_ptr()->is_oopptr()->exact_klass_helper();
6142     if (k == nullptr) {
6143       return nullptr;
6144     }
6145     k = ciObjArrayKlass::make(k);
6146     return k;
6147   }
6148 
6149   return klass();
6150 }
6151 
6152 const Type* TypeAryPtr::base_element_type(int& dims) const {
6153   const Type* elem = this->elem();
6154   dims = 1;
6155   while (elem->make_ptr() && elem->make_ptr()->isa_aryptr()) {
6156     elem = elem->make_ptr()->is_aryptr()->elem();
6157     dims++;
6158   }
6159   return elem;
6160 }
6161 
6162 //------------------------------add_offset-------------------------------------
6163 // Access internals of klass object
6164 const TypePtr* TypeAryKlassPtr::add_offset(intptr_t offset) const {
6165   return make(_ptr, elem(), klass(), xadd_offset(offset));
6166 }
6167 
6168 const TypeAryKlassPtr* TypeAryKlassPtr::with_offset(intptr_t offset) const {
6169   return make(_ptr, elem(), klass(), offset);
6170 }
6171 
6172 //------------------------------cast_to_ptr_type-------------------------------
6173 const TypeAryKlassPtr* TypeAryKlassPtr::cast_to_ptr_type(PTR ptr) const {
6174   assert(_base == AryKlassPtr, "subclass must override cast_to_ptr_type");
6175   if (ptr == _ptr) return this;
6176   return make(ptr, elem(), _klass, _offset);
6177 }
6178 
6179 bool TypeAryKlassPtr::must_be_exact() const {
6180   if (_elem == Type::BOTTOM) return false;
6181   if (_elem == Type::TOP   ) return false;
6182   const TypeKlassPtr*  tk = _elem->isa_klassptr();
6183   if (!tk)             return true;   // a primitive type, like int







6184   return tk->must_be_exact();
6185 }
6186 
6187 
6188 //-----------------------------cast_to_exactness-------------------------------
6189 const TypeKlassPtr *TypeAryKlassPtr::cast_to_exactness(bool klass_is_exact) const {
6190   if (must_be_exact()) return this;  // cannot clear xk



6191   ciKlass* k = _klass;
6192   const Type* elem = this->elem();
6193   if (elem->isa_klassptr() && !klass_is_exact) {
6194     elem = elem->is_klassptr()->cast_to_exactness(klass_is_exact);
6195   }
6196   return make(klass_is_exact ? Constant : NotNull, elem, k, _offset);


















6197 }
6198 
6199 
6200 //-----------------------------as_instance_type--------------------------------
6201 // Corresponding type for an instance of the given class.
6202 // It will be NotNull, and exact if and only if the klass type is exact.
6203 const TypeOopPtr* TypeAryKlassPtr::as_instance_type(bool klass_change) const {
6204   ciKlass* k = klass();
6205   bool    xk = klass_is_exact();
6206   const Type* el = nullptr;
6207   if (elem()->isa_klassptr()) {
6208     el = elem()->is_klassptr()->as_instance_type(false)->cast_to_exactness(false);
6209     k = nullptr;
6210   } else {
6211     el = elem();
6212   }
6213   return TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(el, TypeInt::POS), k, xk, 0);




6214 }
6215 
6216 
6217 //------------------------------xmeet------------------------------------------
6218 // Compute the MEET of two types, return a new Type object.
6219 const Type    *TypeAryKlassPtr::xmeet( const Type *t ) const {
6220   // Perform a fast test for common case; meeting the same types together.
6221   if( this == t ) return this;  // Meeting same type-rep?
6222 
6223   // Current "this->_base" is Pointer
6224   switch (t->base()) {          // switch on original type
6225 
6226   case Int:                     // Mixing ints & oops happens when javac
6227   case Long:                    // reuses local variables
6228   case HalfFloatTop:
6229   case HalfFloatCon:
6230   case HalfFloatBot:
6231   case FloatTop:
6232   case FloatCon:
6233   case FloatBot:
6234   case DoubleTop:
6235   case DoubleCon:
6236   case DoubleBot:
6237   case NarrowOop:
6238   case NarrowKlass:
6239   case Bottom:                  // Ye Olde Default
6240     return Type::BOTTOM;
6241   case Top:
6242     return this;
6243 
6244   default:                      // All else is a mistake
6245     typerr(t);
6246 
6247   case AnyPtr: {                // Meeting to AnyPtrs
6248     // Found an AnyPtr type vs self-KlassPtr type
6249     const TypePtr *tp = t->is_ptr();
6250     int offset = meet_offset(tp->offset());
6251     PTR ptr = meet_ptr(tp->ptr());
6252     switch (tp->ptr()) {
6253     case TopPTR:
6254       return this;
6255     case Null:
6256       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6257     case AnyNull:
6258       return make( ptr, _elem, klass(), offset );
6259     case BotPTR:
6260     case NotNull:
6261       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6262     default: typerr(t);
6263     }
6264   }
6265 
6266   case RawPtr:
6267   case MetadataPtr:
6268   case OopPtr:
6269   case AryPtr:                  // Meet with AryPtr
6270   case InstPtr:                 // Meet with InstPtr
6271     return TypePtr::BOTTOM;
6272 
6273   //
6274   //             A-top         }
6275   //           /   |   \       }  Tops
6276   //       B-top A-any C-top   }
6277   //          | /  |  \ |      }  Any-nulls
6278   //       B-any   |   C-any   }
6279   //          |    |    |
6280   //       B-con A-con C-con   } constants; not comparable across classes
6281   //          |    |    |
6282   //       B-not   |   C-not   }
6283   //          | \  |  / |      }  not-nulls
6284   //       B-bot A-not C-bot   }
6285   //           \   |   /       }  Bottoms
6286   //             A-bot         }
6287   //
6288 
6289   case AryKlassPtr: {  // Meet two KlassPtr types
6290     const TypeAryKlassPtr *tap = t->is_aryklassptr();
6291     int off = meet_offset(tap->offset());
6292     const Type* elem = _elem->meet(tap->_elem);
6293 
6294     PTR ptr = meet_ptr(tap->ptr());
6295     ciKlass* res_klass = nullptr;
6296     bool res_xk = false;
6297     meet_aryptr(ptr, elem, this, tap, res_klass, res_xk);





6298     assert(res_xk == (ptr == Constant), "");
6299     return make(ptr, elem, res_klass, off);
































6300   } // End of case KlassPtr
6301   case InstKlassPtr: {
6302     const TypeInstKlassPtr *tp = t->is_instklassptr();
6303     int offset = meet_offset(tp->offset());
6304     PTR ptr = meet_ptr(tp->ptr());
6305     const TypeInterfaces* interfaces = meet_interfaces(tp);
6306     const TypeInterfaces* tp_interfaces = tp->_interfaces;
6307     const TypeInterfaces* this_interfaces = _interfaces;
6308 
6309     switch (ptr) {
6310     case TopPTR:
6311     case AnyNull:                // Fall 'down' to dual of object klass
6312       // For instances when a subclass meets a superclass we fall
6313       // below the centerline when the superclass is exact. We need to
6314       // do the same here.
6315       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) &&
6316           !tp->klass_is_exact()) {
6317         return TypeAryKlassPtr::make(ptr, _elem, _klass, offset);
6318       } else {
6319         // cannot subclass, so the meet has to fall badly below the centerline
6320         ptr = NotNull;
6321         interfaces = this_interfaces->intersection_with(tp->_interfaces);
6322         return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset);
6323       }
6324     case Constant:
6325     case NotNull:
6326     case BotPTR:                // Fall down to object klass
6327       // LCA is object_klass, but if we subclass from the top we can do better
6328       if (above_centerline(tp->ptr())) {
6329         // If 'tp'  is above the centerline and it is Object class
6330         // then we can subclass in the Java class hierarchy.
6331         // For instances when a subclass meets a superclass we fall
6332         // below the centerline when the superclass is exact. We need
6333         // to do the same here.
6334         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) &&
6335             !tp->klass_is_exact()) {
6336           // that is, my array type is a subtype of 'tp' klass
6337           return make(ptr, _elem, _klass, offset);
6338         }
6339       }
6340       // The other case cannot happen, since t cannot be a subtype of an array.
6341       // The meet falls down to Object class below centerline.
6342       if (ptr == Constant)
6343          ptr = NotNull;
6344       interfaces = this_interfaces->intersection_with(tp_interfaces);
6345       return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset);
6346     default: typerr(t);
6347     }
6348   }
6349 
6350   } // End of switch
6351   return this;                  // Return the double constant
6352 }
6353 
6354 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
6355   static_assert(std::is_base_of<T2, T1>::value, "");
6356 
6357   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty() && other_exact) {
6358     return true;
6359   }
6360 
6361   int dummy;
6362   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
6363 
6364   if (!this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) {
6365     return false;
6366   }
6367 
6368   if (this_one->is_instance_type(other)) {
6369     return other->klass() == ciEnv::current()->Object_klass() && this_one->_interfaces->contains(other->_interfaces) &&
6370            other_exact;
6371   }
6372 
6373   assert(this_one->is_array_type(other), "");
6374   const T1* other_ary = this_one->is_array_type(other);
6375   bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
6376   if (other_top_or_bottom) {
6377     return false;
6378   }
6379 
6380   const TypePtr* other_elem = other_ary->elem()->make_ptr();
6381   const TypePtr* this_elem = this_one->elem()->make_ptr();
6382   if (this_elem != nullptr && other_elem != nullptr) {



6383     return this_one->is_reference_type(this_elem)->is_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact);
6384   }
6385   if (this_elem == nullptr && other_elem == nullptr) {
6386     return this_one->klass()->is_subtype_of(other->klass());
6387   }
6388   return false;
6389 }
6390 
6391 bool TypeAryKlassPtr::is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
6392   return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
6393 }
6394 
6395 template <class T1, class T2> bool TypePtr::is_same_java_type_as_helper_for_array(const T1* this_one, const T2* other) {
6396   static_assert(std::is_base_of<T2, T1>::value, "");
6397 
6398   int dummy;
6399   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
6400 
6401   if (!this_one->is_array_type(other) ||
6402       !this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) {

6455   }
6456 
6457   const TypePtr* this_elem = this_one->elem()->make_ptr();
6458   const TypePtr* other_elem = other_ary->elem()->make_ptr();
6459   if (other_elem != nullptr && this_elem != nullptr) {
6460     return this_one->is_reference_type(this_elem)->maybe_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact);
6461   }
6462   if (other_elem == nullptr && this_elem == nullptr) {
6463     return this_one->klass()->is_subtype_of(other->klass());
6464   }
6465   return false;
6466 }
6467 
6468 bool TypeAryKlassPtr::maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
6469   return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
6470 }
6471 
6472 //------------------------------xdual------------------------------------------
6473 // Dual: compute field-by-field dual
6474 const Type    *TypeAryKlassPtr::xdual() const {
6475   return new TypeAryKlassPtr(dual_ptr(), elem()->dual(), klass(), dual_offset());
6476 }
6477 
6478 // Is there a single ciKlass* that can represent that type?
6479 ciKlass* TypeAryKlassPtr::exact_klass_helper() const {
6480   if (elem()->isa_klassptr()) {
6481     ciKlass* k = elem()->is_klassptr()->exact_klass_helper();
6482     if (k == nullptr) {
6483       return nullptr;
6484     }
6485     k = ciObjArrayKlass::make(k);
6486     return k;
6487   }
6488 
6489   return klass();
6490 }
6491 
6492 ciKlass* TypeAryKlassPtr::klass() const {
6493   if (_klass != nullptr) {
6494     return _klass;
6495   }
6496   ciKlass* k = nullptr;
6497   if (elem()->isa_klassptr()) {
6498     // leave null
6499   } else if ((elem()->base() == Type::Top) ||
6500              (elem()->base() == Type::Bottom)) {
6501   } else {
6502     k = ciTypeArrayKlass::make(elem()->basic_type());
6503     ((TypeAryKlassPtr*)this)->_klass = k;
6504   }
6505   return k;

6512   switch( _ptr ) {
6513   case Constant:
6514     st->print("precise ");
6515   case NotNull:
6516     {
6517       st->print("[");
6518       _elem->dump2(d, depth, st);
6519       _interfaces->dump(st);
6520       st->print(": ");
6521     }
6522   case BotPTR:
6523     if( !WizardMode && !Verbose && _ptr != Constant ) break;
6524   case TopPTR:
6525   case AnyNull:
6526     st->print(":%s", ptr_msg[_ptr]);
6527     if( _ptr == Constant ) st->print(":exact");
6528     break;
6529   default:
6530     break;
6531   }
6532 
6533   if( _offset ) {               // Dump offset, if any
6534     if( _offset == OffsetBot )      { st->print("+any"); }
6535     else if( _offset == OffsetTop ) { st->print("+unknown"); }
6536     else                            { st->print("+%d", _offset); }


6537   }
6538 


6539   st->print(" *");
6540 }
6541 #endif
6542 
6543 const Type* TypeAryKlassPtr::base_element_type(int& dims) const {
6544   const Type* elem = this->elem();
6545   dims = 1;
6546   while (elem->isa_aryklassptr()) {
6547     elem = elem->is_aryklassptr()->elem();
6548     dims++;
6549   }
6550   return elem;
6551 }
6552 
6553 //=============================================================================
6554 // Convenience common pre-built types.
6555 
6556 //------------------------------make-------------------------------------------
6557 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
6558   return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();












6559 }
6560 
6561 //------------------------------make-------------------------------------------
6562 const TypeFunc *TypeFunc::make(ciMethod* method) {
6563   Compile* C = Compile::current();
6564   const TypeFunc* tf = C->last_tf(method); // check cache
6565   if (tf != nullptr)  return tf;  // The hit rate here is almost 50%.
6566   const TypeTuple *domain;
6567   if (method->is_static()) {
6568     domain = TypeTuple::make_domain(nullptr, method->signature(), ignore_interfaces);
6569   } else {
6570     domain = TypeTuple::make_domain(method->holder(), method->signature(), ignore_interfaces);

















6571   }
6572   const TypeTuple *range  = TypeTuple::make_range(method->signature(), ignore_interfaces);
6573   tf = TypeFunc::make(domain, range);
6574   C->set_last_tf(method, tf);  // fill cache
6575   return tf;
6576 }
6577 
6578 //------------------------------meet-------------------------------------------
6579 // Compute the MEET of two types.  It returns a new Type object.
6580 const Type *TypeFunc::xmeet( const Type *t ) const {
6581   // Perform a fast test for common case; meeting the same types together.
6582   if( this == t ) return this;  // Meeting same type-rep?
6583 
6584   // Current "this->_base" is Func
6585   switch (t->base()) {          // switch on original type
6586 
6587   case Bottom:                  // Ye Olde Default
6588     return t;
6589 
6590   default:                      // All else is a mistake
6591     typerr(t);
6592 
6593   case Top:
6594     break;
6595   }
6596   return this;                  // Return the double constant
6597 }
6598 
6599 //------------------------------xdual------------------------------------------
6600 // Dual: compute field-by-field dual
6601 const Type *TypeFunc::xdual() const {
6602   return this;
6603 }
6604 
6605 //------------------------------eq---------------------------------------------
6606 // Structural equality check for Type representations
6607 bool TypeFunc::eq( const Type *t ) const {
6608   const TypeFunc *a = (const TypeFunc*)t;
6609   return _domain == a->_domain &&
6610     _range == a->_range;


6611 }
6612 
6613 //------------------------------hash-------------------------------------------
6614 // Type-specific hashing function.
6615 uint TypeFunc::hash(void) const {
6616   return (uint)(uintptr_t)_domain + (uint)(uintptr_t)_range;
6617 }
6618 
6619 //------------------------------dump2------------------------------------------
6620 // Dump Function Type
6621 #ifndef PRODUCT
6622 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
6623   if( _range->cnt() <= Parms )
6624     st->print("void");
6625   else {
6626     uint i;
6627     for (i = Parms; i < _range->cnt()-1; i++) {
6628       _range->field_at(i)->dump2(d,depth,st);
6629       st->print("/");
6630     }
6631     _range->field_at(i)->dump2(d,depth,st);
6632   }
6633   st->print(" ");
6634   st->print("( ");
6635   if( !depth || d[this] ) {     // Check for recursive dump
6636     st->print("...)");
6637     return;
6638   }
6639   d.Insert((void*)this,(void*)this);    // Stop recursion
6640   if (Parms < _domain->cnt())
6641     _domain->field_at(Parms)->dump2(d,depth-1,st);
6642   for (uint i = Parms+1; i < _domain->cnt(); i++) {
6643     st->print(", ");
6644     _domain->field_at(i)->dump2(d,depth-1,st);
6645   }
6646   st->print(" )");
6647 }
6648 #endif
6649 
6650 //------------------------------singleton--------------------------------------
6651 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
6652 // constants (Ldi nodes).  Singletons are integer, float or double constants
6653 // or a single symbol.
6654 bool TypeFunc::singleton(void) const {
6655   return false;                 // Never a singleton
6656 }
6657 
6658 bool TypeFunc::empty(void) const {
6659   return false;                 // Never empty
6660 }
6661 
6662 
6663 BasicType TypeFunc::return_type() const{
6664   if (range()->cnt() == TypeFunc::Parms) {
6665     return T_VOID;
6666   }
6667   return range()->field_at(TypeFunc::Parms)->basic_type();
6668 }

   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "ci/ciField.hpp"
  26 #include "ci/ciFlatArrayKlass.hpp"
  27 #include "ci/ciInlineKlass.hpp"
  28 #include "ci/ciMethodData.hpp"
  29 #include "ci/ciTypeFlow.hpp"
  30 #include "classfile/javaClasses.hpp"
  31 #include "classfile/symbolTable.hpp"
  32 #include "classfile/vmSymbols.hpp"
  33 #include "compiler/compileLog.hpp"
  34 #include "libadt/dict.hpp"
  35 #include "memory/oopFactory.hpp"
  36 #include "memory/resourceArea.hpp"
  37 #include "oops/instanceKlass.hpp"
  38 #include "oops/instanceMirrorKlass.hpp"
  39 #include "oops/objArrayKlass.hpp"
  40 #include "oops/typeArrayKlass.hpp"
  41 #include "opto/arraycopynode.hpp"
  42 #include "opto/callnode.hpp"
  43 #include "opto/matcher.hpp"
  44 #include "opto/node.hpp"
  45 #include "opto/opcodes.hpp"
  46 #include "opto/rangeinference.hpp"
  47 #include "opto/runtime.hpp"
  48 #include "opto/type.hpp"
  49 #include "runtime/stubRoutines.hpp"
  50 #include "utilities/checkedCast.hpp"
  51 #include "utilities/globalDefinitions.hpp"
  52 #include "utilities/powerOfTwo.hpp"
  53 #include "utilities/stringUtils.hpp"
  54 
  55 // Portions of code courtesy of Clifford Click
  56 
  57 // Optimization - Graph Style
  58 
  59 // Dictionary of types shared among compilations.
  60 Dict* Type::_shared_type_dict = nullptr;
  61 const Type::Offset Type::Offset::top(Type::OffsetTop);
  62 const Type::Offset Type::Offset::bottom(Type::OffsetBot);
  63 
  64 const Type::Offset Type::Offset::meet(const Type::Offset other) const {
  65   // Either is 'TOP' offset?  Return the other offset!
  66   if (_offset == OffsetTop) return other;
  67   if (other._offset == OffsetTop) return *this;
  68   // If either is different, return 'BOTTOM' offset
  69   if (_offset != other._offset) return bottom;
  70   return Offset(_offset);
  71 }
  72 
  73 const Type::Offset Type::Offset::dual() const {
  74   if (_offset == OffsetTop) return bottom;// Map 'TOP' into 'BOTTOM'
  75   if (_offset == OffsetBot) return top;// Map 'BOTTOM' into 'TOP'
  76   return Offset(_offset);               // Map everything else into self
  77 }
  78 
  79 const Type::Offset Type::Offset::add(intptr_t offset) const {
  80   // Adding to 'TOP' offset?  Return 'TOP'!
  81   if (_offset == OffsetTop || offset == OffsetTop) return top;
  82   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
  83   if (_offset == OffsetBot || offset == OffsetBot) return bottom;
  84   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
  85   offset += (intptr_t)_offset;
  86   if (offset != (int)offset || offset == OffsetTop) return bottom;
  87 
  88   // assert( _offset >= 0 && _offset+offset >= 0, "" );
  89   // It is possible to construct a negative offset during PhaseCCP
  90 
  91   return Offset((int)offset);        // Sum valid offsets
  92 }
  93 
  94 void Type::Offset::dump2(outputStream *st) const {
  95   if (_offset == 0) {
  96     return;
  97   } else if (_offset == OffsetTop) {
  98     st->print("+top");
  99   }
 100   else if (_offset == OffsetBot) {
 101     st->print("+bot");
 102   } else if (_offset) {
 103     st->print("+%d", _offset);
 104   }
 105 }
 106 
 107 // Array which maps compiler types to Basic Types
 108 const Type::TypeInfo Type::_type_info[Type::lastype] = {
 109   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
 110   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
 111   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
 112   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
 113   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
 114   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
 115   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
 116   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
 117   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
 118   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
 119   { Bad,             T_ARRAY,      "interfaces:",   false, Node::NotAMachineReg, relocInfo::none          },  // Interfaces
 120 
 121 #if defined(PPC64)
 122   { Bad,             T_ILLEGAL,    "vectormask:",   false, Op_RegVectMask,       relocInfo::none          },  // VectorMask.
 123   { Bad,             T_ILLEGAL,    "vectora:",      false, Op_VecA,              relocInfo::none          },  // VectorA.
 124   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
 125   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD

 264   case ciTypeFlow::StateVector::T_NULL:
 265     assert(type == ciTypeFlow::StateVector::null_type(), "");
 266     return TypePtr::NULL_PTR;
 267 
 268   case ciTypeFlow::StateVector::T_LONG2:
 269     // The ciTypeFlow pass pushes a long, then the half.
 270     // We do the same.
 271     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 272     return TypeInt::TOP;
 273 
 274   case ciTypeFlow::StateVector::T_DOUBLE2:
 275     // The ciTypeFlow pass pushes double, then the half.
 276     // Our convention is the same.
 277     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 278     return Type::TOP;
 279 
 280   case T_ADDRESS:
 281     assert(type->is_return_address(), "");
 282     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 283 
 284   case T_OBJECT:
 285     return Type::get_const_type(type->unwrap())->join_speculative(type->is_null_free() ? TypePtr::NOTNULL : TypePtr::BOTTOM);
 286 
 287   default:
 288     // make sure we did not mix up the cases:
 289     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 290     assert(type != ciTypeFlow::StateVector::top_type(), "");
 291     assert(type != ciTypeFlow::StateVector::null_type(), "");
 292     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 293     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 294     assert(!type->is_return_address(), "");
 295 
 296     return Type::get_const_type(type);
 297   }
 298 }
 299 
 300 
 301 //-----------------------make_from_constant------------------------------------
 302 const Type* Type::make_from_constant(ciConstant constant, bool require_constant,
 303                                      int stable_dimension, bool is_narrow_oop,
 304                                      bool is_autobox_cache) {
 305   switch (constant.basic_type()) {
 306     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());

 589   const Type **ffalse =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 590   ffalse[0] = Type::CONTROL;
 591   ffalse[1] = Type::TOP;
 592   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 593 
 594   const Type **fneither =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 595   fneither[0] = Type::TOP;
 596   fneither[1] = Type::TOP;
 597   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 598 
 599   const Type **ftrue =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 600   ftrue[0] = Type::TOP;
 601   ftrue[1] = Type::CONTROL;
 602   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 603 
 604   const Type **floop =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 605   floop[0] = Type::CONTROL;
 606   floop[1] = TypeInt::INT;
 607   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 608 
 609   TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, Offset(0));
 610   TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, Offset::bottom);
 611   TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, Offset::bottom);
 612 
 613   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 614   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 615 
 616   const Type **fmembar = TypeTuple::fields(0);
 617   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 618 
 619   const Type **fsc = (const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 620   fsc[0] = TypeInt::CC;
 621   fsc[1] = Type::MEMORY;
 622   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 623 
 624   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 625   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 626   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 627   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 628                                            false, nullptr, Offset(oopDesc::mark_offset_in_bytes()));
 629   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 630                                            false, nullptr, Offset(oopDesc::klass_offset_in_bytes()));
 631   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, Offset::bottom, TypeOopPtr::InstanceBot);
 632 
 633   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, nullptr, Offset::bottom);
 634 
 635   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 636   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 637 
 638   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 639 
 640   mreg2type[Op_Node] = Type::BOTTOM;
 641   mreg2type[Op_Set ] = nullptr;
 642   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 643   mreg2type[Op_RegI] = TypeInt::INT;
 644   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 645   mreg2type[Op_RegF] = Type::FLOAT;
 646   mreg2type[Op_RegD] = Type::DOUBLE;
 647   mreg2type[Op_RegL] = TypeLong::LONG;
 648   mreg2type[Op_RegFlags] = TypeInt::CC;
 649 
 650   GrowableArray<ciInstanceKlass*> array_interfaces;
 651   array_interfaces.push(current->env()->Cloneable_klass());
 652   array_interfaces.push(current->env()->Serializable_klass());
 653   TypeAryPtr::_array_interfaces = TypeInterfaces::make(&array_interfaces);
 654   TypeAryKlassPtr::_array_interfaces = TypeAryPtr::_array_interfaces;
 655 
 656   TypeAryPtr::BOTTOM = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::BOTTOM, TypeInt::POS), nullptr, false, Offset::bottom);
 657   TypeAryPtr::RANGE   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), nullptr /* current->env()->Object_klass() */, false, Offset(arrayOopDesc::length_offset_in_bytes()));
 658 
 659   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), nullptr /*ciArrayKlass::make(o)*/,  false,  Offset::bottom);
 660 
 661 #ifdef _LP64
 662   if (UseCompressedOops) {
 663     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 664     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 665   } else
 666 #endif
 667   {
 668     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 669     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), nullptr /*ciArrayKlass::make(o)*/,  false,  Offset::bottom);
 670   }
 671   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Offset::bottom);
 672   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Offset::bottom);
 673   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Offset::bottom);
 674   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Offset::bottom);
 675   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Offset::bottom);
 676   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Offset::bottom);
 677   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Offset::bottom);
 678   TypeAryPtr::INLINES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS, /* stable= */ false, /* flat= */ true), nullptr, false, Offset::bottom);
 679 
 680   // Nobody should ask _array_body_type[T_NARROWOOP]. Use null as assert.
 681   TypeAryPtr::_array_body_type[T_NARROWOOP] = nullptr;
 682   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 683   TypeAryPtr::_array_body_type[T_FLAT_ELEMENT] = TypeAryPtr::OOPS;
 684   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 685   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 686   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 687   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 688   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 689   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 690   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 691   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 692   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 693 
 694   TypeInstKlassPtr::OBJECT = TypeInstKlassPtr::make(TypePtr::NotNull, current->env()->Object_klass(), Offset(0));
 695   TypeInstKlassPtr::OBJECT_OR_NULL = TypeInstKlassPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), Offset(0));
 696 
 697   const Type **fi2c = TypeTuple::fields(2);
 698   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 699   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 700   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 701 
 702   const Type **intpair = TypeTuple::fields(2);
 703   intpair[0] = TypeInt::INT;
 704   intpair[1] = TypeInt::INT;
 705   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 706 
 707   const Type **longpair = TypeTuple::fields(2);
 708   longpair[0] = TypeLong::LONG;
 709   longpair[1] = TypeLong::LONG;
 710   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 711 
 712   const Type **intccpair = TypeTuple::fields(2);
 713   intccpair[0] = TypeInt::INT;
 714   intccpair[1] = TypeInt::CC;
 715   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 716 
 717   const Type **longccpair = TypeTuple::fields(2);
 718   longccpair[0] = TypeLong::LONG;
 719   longccpair[1] = TypeInt::CC;
 720   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 721 
 722   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 723   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 724   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 725   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 726   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 727   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 728   _const_basic_type[T_INT]         = TypeInt::INT;
 729   _const_basic_type[T_LONG]        = TypeLong::LONG;
 730   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 731   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 732   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 733   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 734   _const_basic_type[T_FLAT_ELEMENT] = TypeInstPtr::BOTTOM;
 735   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 736   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 737   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 738 
 739   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 740   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 741   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 742   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 743   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 744   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 745   _zero_type[T_INT]         = TypeInt::ZERO;
 746   _zero_type[T_LONG]        = TypeLong::ZERO;
 747   _zero_type[T_FLOAT]       = TypeF::ZERO;
 748   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 749   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 750   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
 751   _zero_type[T_FLAT_ELEMENT] = TypePtr::NULL_PTR;
 752   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 753   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 754 
 755   // get_zero_type() should not happen for T_CONFLICT
 756   _zero_type[T_CONFLICT]= nullptr;
 757 
 758   TypeVect::VECTMASK = (TypeVect*)(new TypeVectMask(T_BOOLEAN, MaxVectorSize))->hashcons();
 759   mreg2type[Op_RegVectMask] = TypeVect::VECTMASK;
 760 
 761   if (Matcher::supports_scalable_vector()) {
 762     TypeVect::VECTA = TypeVect::make(T_BYTE, Matcher::scalable_vector_reg_size(T_BYTE));
 763   }
 764 
 765   // Vector predefined types, it needs initialized _const_basic_type[].
 766   if (Matcher::vector_size_supported(T_BYTE, 4)) {
 767     TypeVect::VECTS = TypeVect::make(T_BYTE, 4);
 768   }
 769   if (Matcher::vector_size_supported(T_FLOAT, 2)) {
 770     TypeVect::VECTD = TypeVect::make(T_FLOAT, 2);
 771   }

1006   ~VerifyMeet() {
1007     assert(_C->_type_verify->_depth != 0, "");
1008     _C->_type_verify->_depth--;
1009     if (_C->_type_verify->_depth == 0) {
1010       _C->_type_verify->_cache.trunc_to(0);
1011     }
1012   }
1013 
1014   const Type* meet(const Type* t1, const Type* t2) const {
1015     return _C->_type_verify->meet(t1, t2);
1016   }
1017 
1018   void add(const Type* t1, const Type* t2, const Type* res) const {
1019     _C->_type_verify->add(t1, t2, res);
1020   }
1021 };
1022 
1023 void Type::check_symmetrical(const Type* t, const Type* mt, const VerifyMeet& verify) const {
1024   Compile* C = Compile::current();
1025   const Type* mt2 = verify.meet(t, this);
1026 
1027   // Verify that:
1028   //      this meet t == t meet this
1029   if (mt != mt2) {
1030     tty->print_cr("=== Meet Not Commutative ===");
1031     tty->print("t           = ");   t->dump(); tty->cr();
1032     tty->print("this        = ");      dump(); tty->cr();
1033     tty->print("t meet this = "); mt2->dump(); tty->cr();
1034     tty->print("this meet t = ");  mt->dump(); tty->cr();
1035     fatal("meet not commutative");
1036   }
1037   const Type* dual_join = mt->_dual;
1038   const Type* t2t    = verify.meet(dual_join,t->_dual);
1039   const Type* t2this = verify.meet(dual_join,this->_dual);
1040 
1041   // Interface meet Oop is Not Symmetric:
1042   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
1043   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
1044 
1045   // Verify that:
1046   // 1)     mt_dual meet t_dual    == t_dual
1047   //    which corresponds to
1048   //       !(t meet this)  meet !t ==
1049   //       (!t join !this) meet !t == !t
1050   // 2)    mt_dual meet this_dual     == this_dual
1051   //    which corresponds to
1052   //       !(t meet this)  meet !this ==
1053   //       (!t join !this) meet !this == !this
1054   if (t2t != t->_dual || t2this != this->_dual) {
1055     tty->print_cr("=== Meet Not Symmetric ===");
1056     tty->print("t   =                   ");              t->dump(); tty->cr();
1057     tty->print("this=                   ");                 dump(); tty->cr();
1058     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
1059 
1060     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
1061     tty->print("this_dual=              ");          _dual->dump(); tty->cr();
1062     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
1063 
1064     // 1)
1065     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
1066     // 2)
1067     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
1068 
1069     fatal("meet not symmetric");
1070   }
1071 }
1072 #endif
1073 
1074 //------------------------------meet-------------------------------------------
1075 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
1076 // commutative and the lattice is symmetric.
1077 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
1078   if (isa_narrowoop() && t->isa_narrowoop()) {
1079     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
1080     return result->make_narrowoop();
1081   }
1082   if (isa_narrowklass() && t->isa_narrowklass()) {
1083     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
1084     return result->make_narrowklass();
1085   }
1086 
1087 #ifdef ASSERT
1088   Compile* C = Compile::current();
1089   VerifyMeet verify(C);
1090 #endif
1091 
1092   const Type *this_t = maybe_remove_speculative(include_speculative);
1093   t = t->maybe_remove_speculative(include_speculative);
1094 
1095   const Type *mt = this_t->xmeet(t);
1096 #ifdef ASSERT
1097   verify.add(this_t, t, mt);
1098   if (isa_narrowoop() || t->isa_narrowoop()) {
1099     return mt;
1100   }
1101   if (isa_narrowklass() || t->isa_narrowklass()) {
1102     return mt;
1103   }
1104   // TODO 8350865 This currently triggers a verification failure, the code around "// Even though MyValue is final" needs adjustments
1105   if ((this_t->isa_ptr() && this_t->is_ptr()->is_not_flat()) ||
1106       (this_t->_dual->isa_ptr() && this_t->_dual->is_ptr()->is_not_flat())) return mt;
1107   this_t->check_symmetrical(t, mt, verify);
1108   const Type *mt_dual = verify.meet(this_t->_dual, t->_dual);
1109   this_t->_dual->check_symmetrical(t->_dual, mt_dual, verify);
1110 #endif
1111   return mt;
1112 }
1113 
1114 //------------------------------xmeet------------------------------------------
1115 // Compute the MEET of two types.  It returns a new Type object.
1116 const Type *Type::xmeet( const Type *t ) const {
1117   // Perform a fast test for common case; meeting the same types together.
1118   if( this == t ) return this;  // Meeting same type-rep?
1119 
1120   // Meeting TOP with anything?
1121   if( _base == Top ) return t;
1122 
1123   // Meeting BOTTOM with anything?
1124   if( _base == Bottom ) return BOTTOM;
1125 
1126   // Current "this->_base" is one of: Bad, Multi, Control, Top,

2103 void TypeLong::dump_verbose() const {
2104   TypeIntHelper::int_type_dump(this, tty, true);
2105 }
2106 #endif
2107 
2108 //=============================================================================
2109 // Convenience common pre-built types.
2110 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
2111 const TypeTuple *TypeTuple::IFFALSE;
2112 const TypeTuple *TypeTuple::IFTRUE;
2113 const TypeTuple *TypeTuple::IFNEITHER;
2114 const TypeTuple *TypeTuple::LOOPBODY;
2115 const TypeTuple *TypeTuple::MEMBAR;
2116 const TypeTuple *TypeTuple::STORECONDITIONAL;
2117 const TypeTuple *TypeTuple::START_I2C;
2118 const TypeTuple *TypeTuple::INT_PAIR;
2119 const TypeTuple *TypeTuple::LONG_PAIR;
2120 const TypeTuple *TypeTuple::INT_CC_PAIR;
2121 const TypeTuple *TypeTuple::LONG_CC_PAIR;
2122 
2123 static void collect_inline_fields(ciInlineKlass* vk, const Type** field_array, uint& pos) {
2124   for (int i = 0; i < vk->nof_declared_nonstatic_fields(); i++) {
2125     ciField* field = vk->declared_nonstatic_field_at(i);
2126     if (field->is_flat()) {
2127       collect_inline_fields(field->type()->as_inline_klass(), field_array, pos);
2128       if (!field->is_null_free()) {
2129         // Use T_INT instead of T_BOOLEAN here because the upper bits can contain garbage if the holder
2130         // is null and C2 will only zero them for T_INT assuming that T_BOOLEAN is already canonicalized.
2131         field_array[pos++] = Type::get_const_basic_type(T_INT);
2132       }
2133     } else {
2134       BasicType bt = field->type()->basic_type();
2135       const Type* ft = Type::get_const_type(field->type());
2136       field_array[pos++] = ft;
2137       if (type2size[bt] == 2) {
2138         field_array[pos++] = Type::HALF;
2139       }
2140     }
2141   }
2142 }
2143 
2144 //------------------------------make-------------------------------------------
2145 // Make a TypeTuple from the range of a method signature
2146 const TypeTuple *TypeTuple::make_range(ciSignature* sig, InterfaceHandling interface_handling, bool ret_vt_fields) {
2147   ciType* return_type = sig->return_type();
2148   uint arg_cnt = return_type->size();
2149   if (ret_vt_fields) {
2150     arg_cnt = return_type->as_inline_klass()->inline_arg_slots() + 1;
2151     // InlineTypeNode::NullMarker field used for null checking
2152     arg_cnt++;
2153   }
2154   const Type **field_array = fields(arg_cnt);
2155   switch (return_type->basic_type()) {
2156   case T_LONG:
2157     field_array[TypeFunc::Parms]   = TypeLong::LONG;
2158     field_array[TypeFunc::Parms+1] = Type::HALF;
2159     break;
2160   case T_DOUBLE:
2161     field_array[TypeFunc::Parms]   = Type::DOUBLE;
2162     field_array[TypeFunc::Parms+1] = Type::HALF;
2163     break;
2164   case T_OBJECT:
2165     if (return_type->is_inlinetype() && ret_vt_fields) {
2166       uint pos = TypeFunc::Parms;
2167       field_array[pos++] = get_const_type(return_type); // Oop might be null when returning as fields
2168       collect_inline_fields(return_type->as_inline_klass(), field_array, pos);
2169       // InlineTypeNode::NullMarker field used for null checking
2170       field_array[pos++] = get_const_basic_type(T_BOOLEAN);
2171       assert(pos == (TypeFunc::Parms + arg_cnt), "out of bounds");
2172       break;
2173     } else {
2174       field_array[TypeFunc::Parms] = get_const_type(return_type, interface_handling)->join_speculative(TypePtr::BOTTOM);
2175     }
2176     break;
2177   case T_ARRAY:
2178   case T_BOOLEAN:
2179   case T_CHAR:
2180   case T_FLOAT:
2181   case T_BYTE:
2182   case T_SHORT:
2183   case T_INT:
2184     field_array[TypeFunc::Parms] = get_const_type(return_type, interface_handling);
2185     break;
2186   case T_VOID:
2187     break;
2188   default:
2189     ShouldNotReachHere();
2190   }
2191   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2192 }
2193 
2194 // Make a TypeTuple from the domain of a method signature
2195 const TypeTuple *TypeTuple::make_domain(ciMethod* method, InterfaceHandling interface_handling, bool vt_fields_as_args) {
2196   ciSignature* sig = method->signature();
2197   uint arg_cnt = sig->size() + (method->is_static() ? 0 : 1);
2198   if (vt_fields_as_args) {
2199     arg_cnt = 0;
2200     assert(method->get_sig_cc() != nullptr, "Should have scalarized signature");
2201     for (ExtendedSignature sig_cc = ExtendedSignature(method->get_sig_cc(), SigEntryFilter()); !sig_cc.at_end(); ++sig_cc) {
2202       arg_cnt += type2size[(*sig_cc)._bt];
2203     }
2204   }
2205 
2206   uint pos = TypeFunc::Parms;
2207   const Type** field_array = fields(arg_cnt);
2208   if (!method->is_static()) {
2209     ciInstanceKlass* recv = method->holder();
2210     if (vt_fields_as_args && recv->is_inlinetype() && recv->as_inline_klass()->can_be_passed_as_fields() && method->is_scalarized_arg(0)) {
2211       collect_inline_fields(recv->as_inline_klass(), field_array, pos);
2212     } else {
2213       field_array[pos++] = get_const_type(recv, interface_handling)->join_speculative(TypePtr::NOTNULL);
2214     }
2215   }
2216 
2217   int i = 0;
2218   while (pos < TypeFunc::Parms + arg_cnt) {
2219     ciType* type = sig->type_at(i);
2220     BasicType bt = type->basic_type();
2221 
2222     switch (bt) {
2223     case T_LONG:
2224       field_array[pos++] = TypeLong::LONG;
2225       field_array[pos++] = Type::HALF;
2226       break;
2227     case T_DOUBLE:
2228       field_array[pos++] = Type::DOUBLE;
2229       field_array[pos++] = Type::HALF;
2230       break;
2231     case T_OBJECT:
2232       if (type->is_inlinetype() && vt_fields_as_args && method->is_scalarized_arg(i + (method->is_static() ? 0 : 1))) {
2233         // InlineTypeNode::NullMarker field used for null checking
2234         field_array[pos++] = get_const_basic_type(T_BOOLEAN);
2235         collect_inline_fields(type->as_inline_klass(), field_array, pos);
2236       } else {
2237         field_array[pos++] = get_const_type(type, interface_handling);
2238       }
2239       break;
2240     case T_ARRAY:
2241     case T_FLOAT:
2242     case T_INT:
2243       field_array[pos++] = get_const_type(type, interface_handling);
2244       break;
2245     case T_BOOLEAN:
2246     case T_CHAR:
2247     case T_BYTE:
2248     case T_SHORT:
2249       field_array[pos++] = TypeInt::INT;
2250       break;
2251     default:
2252       ShouldNotReachHere();
2253     }
2254     i++;
2255   }
2256   assert(pos == TypeFunc::Parms + arg_cnt, "wrong number of arguments");
2257 
2258   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2259 }
2260 
2261 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
2262   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
2263 }
2264 
2265 //------------------------------fields-----------------------------------------
2266 // Subroutine call type with space allocated for argument types
2267 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
2268 const Type **TypeTuple::fields( uint arg_cnt ) {
2269   const Type **flds = (const Type **)(Compile::current()->type_arena()->AmallocWords((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
2270   flds[TypeFunc::Control  ] = Type::CONTROL;
2271   flds[TypeFunc::I_O      ] = Type::ABIO;
2272   flds[TypeFunc::Memory   ] = Type::MEMORY;
2273   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
2274   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
2275 
2276   return flds;

2371     if (_fields[i]->empty())  return true;
2372   }
2373   return false;
2374 }
2375 
2376 //=============================================================================
2377 // Convenience common pre-built types.
2378 
2379 inline const TypeInt* normalize_array_size(const TypeInt* size) {
2380   // Certain normalizations keep us sane when comparing types.
2381   // We do not want arrayOop variables to differ only by the wideness
2382   // of their index types.  Pick minimum wideness, since that is the
2383   // forced wideness of small ranges anyway.
2384   if (size->_widen != Type::WidenMin)
2385     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
2386   else
2387     return size;
2388 }
2389 
2390 //------------------------------make-------------------------------------------
2391 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable,
2392                              bool flat, bool not_flat, bool not_null_free, bool atomic) {
2393   if (UseCompressedOops && elem->isa_oopptr()) {
2394     elem = elem->make_narrowoop();
2395   }
2396   size = normalize_array_size(size);
2397   return (TypeAry*)(new TypeAry(elem, size, stable, flat, not_flat, not_null_free, atomic))->hashcons();
2398 }
2399 
2400 //------------------------------meet-------------------------------------------
2401 // Compute the MEET of two types.  It returns a new Type object.
2402 const Type *TypeAry::xmeet( const Type *t ) const {
2403   // Perform a fast test for common case; meeting the same types together.
2404   if( this == t ) return this;  // Meeting same type-rep?
2405 
2406   // Current "this->_base" is Ary
2407   switch (t->base()) {          // switch on original type
2408 
2409   case Bottom:                  // Ye Olde Default
2410     return t;
2411 
2412   default:                      // All else is a mistake
2413     typerr(t);
2414 
2415   case Array: {                 // Meeting 2 arrays?
2416     const TypeAry* a = t->is_ary();
2417     const Type* size = _size->xmeet(a->_size);
2418     const TypeInt* isize = size->isa_int();
2419     if (isize == nullptr) {
2420       assert(size == Type::TOP || size == Type::BOTTOM, "");
2421       return size;
2422     }
2423     return TypeAry::make(_elem->meet_speculative(a->_elem),
2424                          isize, _stable && a->_stable,
2425                          _flat && a->_flat,
2426                          _not_flat && a->_not_flat,
2427                          _not_null_free && a->_not_null_free,
2428                          _atomic && a->_atomic);
2429   }
2430   case Top:
2431     break;
2432   }
2433   return this;                  // Return the double constant
2434 }
2435 
2436 //------------------------------xdual------------------------------------------
2437 // Dual: compute field-by-field dual
2438 const Type *TypeAry::xdual() const {
2439   const TypeInt* size_dual = _size->dual()->is_int();
2440   size_dual = normalize_array_size(size_dual);
2441   return new TypeAry(_elem->dual(), size_dual, !_stable, !_flat, !_not_flat, !_not_null_free, !_atomic);
2442 }
2443 
2444 //------------------------------eq---------------------------------------------
2445 // Structural equality check for Type representations
2446 bool TypeAry::eq( const Type *t ) const {
2447   const TypeAry *a = (const TypeAry*)t;
2448   return _elem == a->_elem &&
2449     _stable == a->_stable &&
2450     _size == a->_size &&
2451     _flat == a->_flat &&
2452     _not_flat == a->_not_flat &&
2453     _not_null_free == a->_not_null_free &&
2454     _atomic == a->_atomic;
2455 
2456 }
2457 
2458 //------------------------------hash-------------------------------------------
2459 // Type-specific hashing function.
2460 uint TypeAry::hash(void) const {
2461   return (uint)(uintptr_t)_elem + (uint)(uintptr_t)_size + (uint)(_stable ? 43 : 0) +
2462       (uint)(_flat ? 44 : 0) + (uint)(_not_flat ? 45 : 0) + (uint)(_not_null_free ? 46 : 0) + (uint)(_atomic ? 47 : 0);
2463 }
2464 
2465 /**
2466  * Return same type without a speculative part in the element
2467  */
2468 const TypeAry* TypeAry::remove_speculative() const {
2469   return make(_elem->remove_speculative(), _size, _stable, _flat, _not_flat, _not_null_free, _atomic);
2470 }
2471 
2472 /**
2473  * Return same type with cleaned up speculative part of element
2474  */
2475 const Type* TypeAry::cleanup_speculative() const {
2476   return make(_elem->cleanup_speculative(), _size, _stable, _flat, _not_flat, _not_null_free, _atomic);
2477 }
2478 
2479 /**
2480  * Return same type but with a different inline depth (used for speculation)
2481  *
2482  * @param depth  depth to meet with
2483  */
2484 const TypePtr* TypePtr::with_inline_depth(int depth) const {
2485   if (!UseInlineDepthForSpeculativeTypes) {
2486     return this;
2487   }
2488   return make(AnyPtr, _ptr, _offset, _speculative, depth);
2489 }
2490 
2491 //------------------------------dump2------------------------------------------
2492 #ifndef PRODUCT
2493 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2494   if (_stable)  st->print("stable:");
2495   if (_flat) st->print("flat:");
2496   if (Verbose) {
2497     if (_not_flat) st->print("not flat:");
2498     if (_not_null_free) st->print("not null free:");
2499   }
2500   if (_atomic) st->print("atomic:");
2501   _elem->dump2(d, depth, st);
2502   st->print("[");
2503   _size->dump2(d, depth, st);
2504   st->print("]");
2505 }
2506 #endif
2507 
2508 //------------------------------singleton--------------------------------------
2509 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2510 // constants (Ldi nodes).  Singletons are integer, float or double constants
2511 // or a single symbol.
2512 bool TypeAry::singleton(void) const {
2513   return false;                 // Never a singleton
2514 }
2515 
2516 bool TypeAry::empty(void) const {
2517   return _elem->empty() || _size->empty();
2518 }
2519 
2520 //--------------------------ary_must_be_exact----------------------------------
2521 bool TypeAry::ary_must_be_exact() const {
2522   // This logic looks at the element type of an array, and returns true
2523   // if the element type is either a primitive or a final instance class.
2524   // In such cases, an array built on this ary must have no subclasses.
2525   if (_elem == BOTTOM)      return false;  // general array not exact
2526   if (_elem == TOP   )      return false;  // inverted general array not exact
2527   const TypeOopPtr*  toop = nullptr;
2528   if (UseCompressedOops && _elem->isa_narrowoop()) {
2529     toop = _elem->make_ptr()->isa_oopptr();
2530   } else {
2531     toop = _elem->isa_oopptr();
2532   }
2533   if (!toop)                return true;   // a primitive type, like int
2534   if (!toop->is_loaded())   return false;  // unloaded class
2535   const TypeInstPtr* tinst;
2536   if (_elem->isa_narrowoop())
2537     tinst = _elem->make_ptr()->isa_instptr();
2538   else
2539     tinst = _elem->isa_instptr();
2540   if (tinst) {
2541     if (tinst->instance_klass()->is_final()) {
2542       // Even though MyValue is final, [LMyValue is only exact if the array
2543       // is (not) null-free due to null-free [LMyValue <: null-able [LMyValue.
2544       // TODO 8350865 If we know that the array can't be null-free, it's allowed to be exact, right?
2545       // If so, we should add '&& !_not_null_free'
2546       if (tinst->is_inlinetypeptr() && (tinst->ptr() != TypePtr::NotNull)) {
2547         return false;
2548       }
2549       return true;
2550     }
2551     return false;
2552   }
2553   const TypeAryPtr*  tap;
2554   if (_elem->isa_narrowoop())
2555     tap = _elem->make_ptr()->isa_aryptr();
2556   else
2557     tap = _elem->isa_aryptr();
2558   if (tap)
2559     return tap->ary()->ary_must_be_exact();
2560   return false;
2561 }
2562 
2563 //==============================TypeVect=======================================
2564 // Convenience common pre-built types.
2565 const TypeVect* TypeVect::VECTA = nullptr; // vector length agnostic
2566 const TypeVect* TypeVect::VECTS = nullptr; //  32-bit vectors
2567 const TypeVect* TypeVect::VECTD = nullptr; //  64-bit vectors
2568 const TypeVect* TypeVect::VECTX = nullptr; // 128-bit vectors
2569 const TypeVect* TypeVect::VECTY = nullptr; // 256-bit vectors
2570 const TypeVect* TypeVect::VECTZ = nullptr; // 512-bit vectors
2571 const TypeVect* TypeVect::VECTMASK = nullptr; // predicate/mask vector
2572 

2707 
2708 //=============================================================================
2709 // Convenience common pre-built types.
2710 const TypePtr *TypePtr::NULL_PTR;
2711 const TypePtr *TypePtr::NOTNULL;
2712 const TypePtr *TypePtr::BOTTOM;
2713 
2714 //------------------------------meet-------------------------------------------
2715 // Meet over the PTR enum
2716 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2717   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2718   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2719   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2720   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2721   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2722   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2723   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2724 };
2725 
2726 //------------------------------make-------------------------------------------
2727 const TypePtr* TypePtr::make(TYPES t, enum PTR ptr, Offset offset, const TypePtr* speculative, int inline_depth) {
2728   return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2729 }
2730 
2731 //------------------------------cast_to_ptr_type-------------------------------
2732 const TypePtr* TypePtr::cast_to_ptr_type(PTR ptr) const {
2733   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2734   if( ptr == _ptr ) return this;
2735   return make(_base, ptr, _offset, _speculative, _inline_depth);
2736 }
2737 
2738 //------------------------------get_con----------------------------------------
2739 intptr_t TypePtr::get_con() const {
2740   assert( _ptr == Null, "" );
2741   return offset();
2742 }
2743 
2744 //------------------------------meet-------------------------------------------
2745 // Compute the MEET of two types.  It returns a new Type object.
2746 const Type *TypePtr::xmeet(const Type *t) const {
2747   const Type* res = xmeet_helper(t);
2748   if (res->isa_ptr() == nullptr) {
2749     return res;
2750   }
2751 
2752   const TypePtr* res_ptr = res->is_ptr();
2753   if (res_ptr->speculative() != nullptr) {
2754     // type->speculative() is null means that speculation is no better
2755     // than type, i.e. type->speculative() == type. So there are 2
2756     // ways to represent the fact that we have no useful speculative
2757     // data and we should use a single one to be able to test for
2758     // equality between types. Check whether type->speculative() ==
2759     // type and set speculative to null if it is the case.
2760     if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2761       return res_ptr->remove_speculative();

2795     int depth = meet_inline_depth(tp->inline_depth());
2796     return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2797   }
2798   case RawPtr:                  // For these, flip the call around to cut down
2799   case OopPtr:
2800   case InstPtr:                 // on the cases I have to handle.
2801   case AryPtr:
2802   case MetadataPtr:
2803   case KlassPtr:
2804   case InstKlassPtr:
2805   case AryKlassPtr:
2806     return t->xmeet(this);      // Call in reverse direction
2807   default:                      // All else is a mistake
2808     typerr(t);
2809 
2810   }
2811   return this;
2812 }
2813 
2814 //------------------------------meet_offset------------------------------------
2815 Type::Offset TypePtr::meet_offset(int offset) const {
2816   return _offset.meet(Offset(offset));





2817 }
2818 
2819 //------------------------------dual_offset------------------------------------
2820 Type::Offset TypePtr::dual_offset() const {
2821   return _offset.dual();


2822 }
2823 
2824 //------------------------------xdual------------------------------------------
2825 // Dual: compute field-by-field dual
2826 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2827   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2828 };
2829 const Type *TypePtr::xdual() const {
2830   return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2831 }
2832 
2833 //------------------------------xadd_offset------------------------------------
2834 Type::Offset TypePtr::xadd_offset(intptr_t offset) const {
2835   return _offset.add(offset);











2836 }
2837 
2838 //------------------------------add_offset-------------------------------------
2839 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2840   return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2841 }
2842 
2843 const TypePtr *TypePtr::with_offset(intptr_t offset) const {
2844   return make(AnyPtr, _ptr, Offset(offset), _speculative, _inline_depth);
2845 }
2846 
2847 //------------------------------eq---------------------------------------------
2848 // Structural equality check for Type representations
2849 bool TypePtr::eq( const Type *t ) const {
2850   const TypePtr *a = (const TypePtr*)t;
2851   return _ptr == a->ptr() && _offset == a->_offset && eq_speculative(a) && _inline_depth == a->_inline_depth;
2852 }
2853 
2854 //------------------------------hash-------------------------------------------
2855 // Type-specific hashing function.
2856 uint TypePtr::hash(void) const {
2857   return (uint)_ptr + (uint)offset() + (uint)hash_speculative() + (uint)_inline_depth;
2858 }
2859 
2860 /**
2861  * Return same type without a speculative part
2862  */
2863 const TypePtr* TypePtr::remove_speculative() const {
2864   if (_speculative == nullptr) {
2865     return this;
2866   }
2867   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2868   return make(AnyPtr, _ptr, _offset, nullptr, _inline_depth);
2869 }
2870 
2871 /**
2872  * Return same type but drop speculative part if we know we won't use
2873  * it
2874  */
2875 const Type* TypePtr::cleanup_speculative() const {
2876   if (speculative() == nullptr) {
2877     return this;

3103   }
3104   // We already know the speculative type is always null
3105   if (speculative_always_null()) {
3106     return false;
3107   }
3108   if (ptr_kind == ProfileAlwaysNull && speculative() != nullptr && speculative()->isa_oopptr()) {
3109     return false;
3110   }
3111   return true;
3112 }
3113 
3114 //------------------------------dump2------------------------------------------
3115 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
3116   "TopPTR","AnyNull","Constant","null","NotNull","BotPTR"
3117 };
3118 
3119 #ifndef PRODUCT
3120 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3121   if( _ptr == Null ) st->print("null");
3122   else st->print("%s *", ptr_msg[_ptr]);
3123   _offset.dump2(st);


3124   dump_inline_depth(st);
3125   dump_speculative(st);
3126 }
3127 
3128 /**
3129  *dump the speculative part of the type
3130  */
3131 void TypePtr::dump_speculative(outputStream *st) const {
3132   if (_speculative != nullptr) {
3133     st->print(" (speculative=");
3134     _speculative->dump_on(st);
3135     st->print(")");
3136   }
3137 }
3138 
3139 /**
3140  *dump the inline depth of the type
3141  */
3142 void TypePtr::dump_inline_depth(outputStream *st) const {
3143   if (_inline_depth != InlineDepthBottom) {
3144     if (_inline_depth == InlineDepthTop) {
3145       st->print(" (inline_depth=InlineDepthTop)");
3146     } else {
3147       st->print(" (inline_depth=%d)", _inline_depth);
3148     }
3149   }
3150 }
3151 #endif
3152 
3153 //------------------------------singleton--------------------------------------
3154 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3155 // constants
3156 bool TypePtr::singleton(void) const {
3157   // TopPTR, Null, AnyNull, Constant are all singletons
3158   return (_offset != Offset::bottom) && !below_centerline(_ptr);
3159 }
3160 
3161 bool TypePtr::empty(void) const {
3162   return (_offset == Offset::top) || above_centerline(_ptr);
3163 }
3164 
3165 //=============================================================================
3166 // Convenience common pre-built types.
3167 const TypeRawPtr *TypeRawPtr::BOTTOM;
3168 const TypeRawPtr *TypeRawPtr::NOTNULL;
3169 
3170 //------------------------------make-------------------------------------------
3171 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
3172   assert( ptr != Constant, "what is the constant?" );
3173   assert( ptr != Null, "Use TypePtr for null" );
3174   return (TypeRawPtr*)(new TypeRawPtr(ptr,nullptr))->hashcons();
3175 }
3176 
3177 const TypeRawPtr *TypeRawPtr::make(address bits) {
3178   assert(bits != nullptr, "Use TypePtr for null");
3179   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
3180 }
3181 
3182 //------------------------------cast_to_ptr_type-------------------------------

3549 #endif
3550 
3551 // Can't be implemented because there's no way to know if the type is above or below the center line.
3552 const Type* TypeInterfaces::xmeet(const Type* t) const {
3553   ShouldNotReachHere();
3554   return Type::xmeet(t);
3555 }
3556 
3557 bool TypeInterfaces::singleton(void) const {
3558   ShouldNotReachHere();
3559   return Type::singleton();
3560 }
3561 
3562 bool TypeInterfaces::has_non_array_interface() const {
3563   assert(TypeAryPtr::_array_interfaces != nullptr, "How come Type::Initialize_shared wasn't called yet?");
3564 
3565   return !TypeAryPtr::_array_interfaces->contains(this);
3566 }
3567 
3568 //------------------------------TypeOopPtr-------------------------------------
3569 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset offset, Offset field_offset,
3570                        int instance_id, const TypePtr* speculative, int inline_depth)
3571   : TypePtr(t, ptr, offset, speculative, inline_depth),
3572     _const_oop(o), _klass(k),
3573     _interfaces(interfaces),
3574     _klass_is_exact(xk),
3575     _is_ptr_to_narrowoop(false),
3576     _is_ptr_to_narrowklass(false),
3577     _is_ptr_to_boxed_value(false),
3578     _is_ptr_to_strict_final_field(false),
3579     _instance_id(instance_id) {
3580 #ifdef ASSERT
3581   if (klass() != nullptr && klass()->is_loaded()) {
3582     interfaces->verify_is_loaded();
3583   }
3584 #endif
3585   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
3586       (offset.get() > 0) && xk && (k != nullptr) && k->is_instance_klass()) {
3587     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset.get());
3588     _is_ptr_to_strict_final_field = _is_ptr_to_boxed_value;
3589   }
3590 
3591   if (klass() != nullptr && klass()->is_instance_klass() && klass()->is_loaded() &&
3592       this->offset() != Type::OffsetBot && this->offset() != Type::OffsetTop) {
3593     ciField* field = klass()->as_instance_klass()->get_field_by_offset(this->offset(), false);
3594     if (field != nullptr && field->is_strict() && field->is_final()) {
3595       _is_ptr_to_strict_final_field = true;
3596     }
3597   }
3598 
3599 #ifdef _LP64
3600   if (this->offset() > 0 || this->offset() == Type::OffsetTop || this->offset() == Type::OffsetBot) {
3601     if (this->offset() == oopDesc::klass_offset_in_bytes()) {
3602       _is_ptr_to_narrowklass = UseCompressedClassPointers;
3603     } else if (klass() == nullptr) {
3604       // Array with unknown body type
3605       assert(this->isa_aryptr(), "only arrays without klass");
3606       _is_ptr_to_narrowoop = UseCompressedOops;
3607     } else if (UseCompressedOops && this->isa_aryptr() && this->offset() != arrayOopDesc::length_offset_in_bytes()) {
3608       if (klass()->is_obj_array_klass()) {
3609         _is_ptr_to_narrowoop = true;
3610       } else if (klass()->is_flat_array_klass() && field_offset != Offset::top && field_offset != Offset::bottom) {
3611         // Check if the field of the inline type array element contains oops
3612         ciInlineKlass* vk = klass()->as_flat_array_klass()->element_klass()->as_inline_klass();
3613         int foffset = field_offset.get() + vk->payload_offset();
3614         BasicType field_bt;
3615         ciField* field = vk->get_field_by_offset(foffset, false);
3616         if (field != nullptr) {
3617           field_bt = field->layout_type();
3618         } else {
3619           assert(field_offset.get() == vk->null_marker_offset_in_payload(), "no field or null marker of %s at offset %d", vk->name()->as_utf8(), foffset);
3620           field_bt = T_BOOLEAN;
3621         }
3622         _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(field_bt);
3623       }
3624     } else if (klass()->is_instance_klass()) {

3625       if (this->isa_klassptr()) {
3626         // Perm objects don't use compressed references
3627       } else if (_offset == Offset::bottom || _offset == Offset::top) {
3628         // unsafe access
3629         _is_ptr_to_narrowoop = UseCompressedOops;
3630       } else {
3631         assert(this->isa_instptr(), "must be an instance ptr.");

3632         if (klass() == ciEnv::current()->Class_klass() &&
3633             (this->offset() == java_lang_Class::klass_offset() ||
3634              this->offset() == java_lang_Class::array_klass_offset())) {
3635           // Special hidden fields from the Class.
3636           assert(this->isa_instptr(), "must be an instance ptr.");
3637           _is_ptr_to_narrowoop = false;
3638         } else if (klass() == ciEnv::current()->Class_klass() &&
3639                    this->offset() >= InstanceMirrorKlass::offset_of_static_fields()) {
3640           // Static fields
3641           ciField* field = nullptr;
3642           if (const_oop() != nullptr) {
3643             ciInstanceKlass* k = const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
3644             field = k->get_field_by_offset(this->offset(), true);
3645           }
3646           if (field != nullptr) {
3647             BasicType basic_elem_type = field->layout_type();
3648             _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type);
3649           } else {
3650             // unsafe access
3651             _is_ptr_to_narrowoop = UseCompressedOops;
3652           }
3653         } else {
3654           // Instance fields which contains a compressed oop references.
3655           ciInstanceKlass* ik = klass()->as_instance_klass();
3656           ciField* field = ik->get_field_by_offset(this->offset(), false);
3657           if (field != nullptr) {
3658             BasicType basic_elem_type = field->layout_type();
3659             _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type);
3660           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
3661             // Compile::find_alias_type() cast exactness on all types to verify
3662             // that it does not affect alias type.
3663             _is_ptr_to_narrowoop = UseCompressedOops;
3664           } else {
3665             // Type for the copy start in LibraryCallKit::inline_native_clone().
3666             _is_ptr_to_narrowoop = UseCompressedOops;
3667           }
3668         }
3669       }
3670     }
3671   }
3672 #endif // _LP64
3673 }
3674 
3675 //------------------------------make-------------------------------------------
3676 const TypeOopPtr *TypeOopPtr::make(PTR ptr, Offset offset, int instance_id,
3677                                    const TypePtr* speculative, int inline_depth) {
3678   assert(ptr != Constant, "no constant generic pointers");
3679   ciKlass*  k = Compile::current()->env()->Object_klass();
3680   bool      xk = false;
3681   ciObject* o = nullptr;
3682   const TypeInterfaces* interfaces = TypeInterfaces::make();
3683   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, interfaces, xk, o, offset, Offset::bottom, instance_id, speculative, inline_depth))->hashcons();
3684 }
3685 
3686 
3687 //------------------------------cast_to_ptr_type-------------------------------
3688 const TypeOopPtr* TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
3689   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
3690   if( ptr == _ptr ) return this;
3691   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
3692 }
3693 
3694 //-----------------------------cast_to_instance_id----------------------------
3695 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
3696   // There are no instances of a general oop.
3697   // Return self unchanged.
3698   return this;
3699 }
3700 
3701 //-----------------------------cast_to_exactness-------------------------------
3702 const TypeOopPtr* TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
3703   // There is no such thing as an exact general oop.
3704   // Return self unchanged.
3705   return this;
3706 }
3707 

3708 //------------------------------as_klass_type----------------------------------
3709 // Return the klass type corresponding to this instance or array type.
3710 // It is the type that is loaded from an object of this type.
3711 const TypeKlassPtr* TypeOopPtr::as_klass_type(bool try_for_exact) const {
3712   ShouldNotReachHere();
3713   return nullptr;
3714 }
3715 
3716 //------------------------------meet-------------------------------------------
3717 // Compute the MEET of two types.  It returns a new Type object.
3718 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
3719   // Perform a fast test for common case; meeting the same types together.
3720   if( this == t ) return this;  // Meeting same type-rep?
3721 
3722   // Current "this->_base" is OopPtr
3723   switch (t->base()) {          // switch on original type
3724 
3725   case Int:                     // Mixing ints & oops happens when javac
3726   case Long:                    // reuses local variables
3727   case HalfFloatTop:

3736   case NarrowOop:
3737   case NarrowKlass:
3738   case Bottom:                  // Ye Olde Default
3739     return Type::BOTTOM;
3740   case Top:
3741     return this;
3742 
3743   default:                      // All else is a mistake
3744     typerr(t);
3745 
3746   case RawPtr:
3747   case MetadataPtr:
3748   case KlassPtr:
3749   case InstKlassPtr:
3750   case AryKlassPtr:
3751     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3752 
3753   case AnyPtr: {
3754     // Found an AnyPtr type vs self-OopPtr type
3755     const TypePtr *tp = t->is_ptr();
3756     Offset offset = meet_offset(tp->offset());
3757     PTR ptr = meet_ptr(tp->ptr());
3758     const TypePtr* speculative = xmeet_speculative(tp);
3759     int depth = meet_inline_depth(tp->inline_depth());
3760     switch (tp->ptr()) {
3761     case Null:
3762       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3763       // else fall through:
3764     case TopPTR:
3765     case AnyNull: {
3766       int instance_id = meet_instance_id(InstanceTop);
3767       return make(ptr, offset, instance_id, speculative, depth);
3768     }
3769     case BotPTR:
3770     case NotNull:
3771       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3772     default: typerr(t);
3773     }
3774   }
3775 
3776   case OopPtr: {                 // Meeting to other OopPtrs

3778     int instance_id = meet_instance_id(tp->instance_id());
3779     const TypePtr* speculative = xmeet_speculative(tp);
3780     int depth = meet_inline_depth(tp->inline_depth());
3781     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
3782   }
3783 
3784   case InstPtr:                  // For these, flip the call around to cut down
3785   case AryPtr:
3786     return t->xmeet(this);      // Call in reverse direction
3787 
3788   } // End of switch
3789   return this;                  // Return the double constant
3790 }
3791 
3792 
3793 //------------------------------xdual------------------------------------------
3794 // Dual of a pure heap pointer.  No relevant klass or oop information.
3795 const Type *TypeOopPtr::xdual() const {
3796   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
3797   assert(const_oop() == nullptr,             "no constants here");
3798   return new TypeOopPtr(_base, dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), Offset::bottom, dual_instance_id(), dual_speculative(), dual_inline_depth());
3799 }
3800 
3801 //--------------------------make_from_klass_common-----------------------------
3802 // Computes the element-type given a klass.
3803 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact, InterfaceHandling interface_handling) {
3804   if (klass->is_instance_klass() || klass->is_inlinetype()) {
3805     Compile* C = Compile::current();
3806     Dependencies* deps = C->dependencies();
3807     assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
3808     // Element is an instance
3809     bool klass_is_exact = false;
3810     if (klass->is_loaded()) {
3811       // Try to set klass_is_exact.
3812       ciInstanceKlass* ik = klass->as_instance_klass();
3813       klass_is_exact = ik->is_final();
3814       if (!klass_is_exact && klass_change
3815           && deps != nullptr && UseUniqueSubclasses) {
3816         ciInstanceKlass* sub = ik->unique_concrete_subklass();
3817         if (sub != nullptr) {
3818           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3819           klass = ik = sub;
3820           klass_is_exact = sub->is_final();
3821         }
3822       }
3823       if (!klass_is_exact && try_for_exact && deps != nullptr &&
3824           !ik->is_interface() && !ik->has_subklass()) {
3825         // Add a dependence; if concrete subclass added we need to recompile
3826         deps->assert_leaf_type(ik);
3827         klass_is_exact = true;
3828       }
3829     }
3830     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
3831     return TypeInstPtr::make(TypePtr::BotPTR, klass, interfaces, klass_is_exact, nullptr, Offset(0));
3832   } else if (klass->is_obj_array_klass()) {
3833     // Element is an object or inline type array. Recursively call ourself.
3834     const TypeOopPtr* etype = TypeOopPtr::make_from_klass_common(klass->as_array_klass()->element_klass(), /* klass_change= */ false, try_for_exact, interface_handling);
3835     // Determine null-free/flat properties
3836     const bool is_null_free = klass->as_array_klass()->is_elem_null_free();
3837     if (is_null_free) {
3838       etype = etype->join_speculative(NOTNULL)->is_oopptr();
3839     }
3840     const TypeOopPtr* exact_etype = etype;
3841     if (etype->can_be_inline_type()) {
3842       // Use exact type if element can be an inline type
3843       exact_etype = TypeOopPtr::make_from_klass_common(klass->as_array_klass()->element_klass(), /* klass_change= */ true, /* try_for_exact= */ true, interface_handling);
3844     }
3845     bool not_inline = !exact_etype->can_be_inline_type();
3846     bool not_null_free = not_inline;
3847     bool not_flat = !UseArrayFlattening || not_inline || (exact_etype->is_inlinetypeptr() && !exact_etype->inline_klass()->maybe_flat_in_array());
3848     bool atomic = klass->as_array_klass()->is_elem_atomic();
3849     // Even though MyValue is final, [LMyValue is not exact because null-free [LMyValue is a subtype.
3850     bool xk = etype->klass_is_exact() && !etype->is_inlinetypeptr();
3851     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS, /* stable= */ false, /* flat= */ false, not_flat, not_null_free, atomic);
3852     // We used to pass NotNull in here, asserting that the sub-arrays
3853     // are all not-null.  This is not true in generally, as code can
3854     // slam nullptrs down in the subarrays.
3855     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, nullptr, xk, Offset(0));
3856     return arr;
3857   } else if (klass->is_type_array_klass()) {
3858     // Element is an typeArray
3859     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3860     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS,
3861                                         /* stable= */ false, /* flat= */ false, /* not_flat= */ true, /* not_null_free= */ true);
3862     // We used to pass NotNull in here, asserting that the array pointer
3863     // is not-null. That was not true in general.
3864     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, Offset(0));
3865     return arr;
3866   } else if (klass->is_flat_array_klass()) {
3867     const TypeOopPtr* etype = TypeOopPtr::make_from_klass_raw(klass->as_array_klass()->element_klass(), trust_interfaces);
3868     const bool is_null_free = klass->as_array_klass()->is_elem_null_free();
3869     if (is_null_free) {
3870       etype = etype->join_speculative(NOTNULL)->is_oopptr();
3871     }
3872     bool atomic = klass->as_array_klass()->is_elem_atomic();
3873     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS, /* stable= */ false, /* flat= */ true, /* not_flat= */ false, /* not_null_free= */ false, atomic);
3874     const bool exact = is_null_free; // Only exact if null-free because "null-free [LMyValue <: null-able [LMyValue".
3875     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, exact, Offset(0));
3876     return arr;
3877   } else {
3878     ShouldNotReachHere();
3879     return nullptr;
3880   }
3881 }
3882 
3883 //------------------------------make_from_constant-----------------------------
3884 // Make a java pointer from an oop constant
3885 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
3886   assert(!o->is_null_object(), "null object not yet handled here.");
3887 
3888   const bool make_constant = require_constant || o->should_be_constant();
3889 
3890   ciKlass* klass = o->klass();
3891   if (klass->is_instance_klass() || klass->is_inlinetype()) {
3892     // Element is an instance or inline type
3893     if (make_constant) {
3894       return TypeInstPtr::make(o);
3895     } else {
3896       return TypeInstPtr::make(TypePtr::NotNull, klass, true, nullptr, Offset(0));
3897     }
3898   } else if (klass->is_obj_array_klass()) {
3899     // Element is an object array. Recursively call ourself.
3900     const TypeOopPtr* etype = TypeOopPtr::make_from_klass_raw(klass->as_array_klass()->element_klass(), trust_interfaces);
3901     bool is_flat = o->as_array()->is_flat();
3902     bool is_null_free = o->as_array()->is_null_free();
3903     if (is_null_free) {
3904       etype = etype->join_speculative(TypePtr::NOTNULL)->is_oopptr();
3905     }
3906     bool is_atomic = o->as_array()->is_atomic();
3907     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()), /* stable= */ false, /* flat= */ false,
3908                                         /* not_flat= */ !is_flat, /* not_null_free= */ !is_null_free, /* atomic= */ is_atomic);
3909     // We used to pass NotNull in here, asserting that the sub-arrays
3910     // are all not-null.  This is not true in generally, as code can
3911     // slam nulls down in the subarrays.
3912     if (make_constant) {
3913       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3914     } else {
3915       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3916     }
3917   } else if (klass->is_type_array_klass()) {
3918     // Element is an typeArray
3919     const Type* etype = (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3920     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()), /* stable= */ false, /* flat= */ false,
3921                                         /* not_flat= */ true, /* not_null_free= */ true);
3922     // We used to pass NotNull in here, asserting that the array pointer
3923     // is not-null. That was not true in general.
3924     if (make_constant) {
3925       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3926     } else {
3927       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3928     }
3929   } else if (klass->is_flat_array_klass()) {
3930     const TypeOopPtr* etype = TypeOopPtr::make_from_klass_raw(klass->as_array_klass()->element_klass(), trust_interfaces);
3931     bool is_null_free = o->as_array()->is_null_free();
3932     if (is_null_free) {
3933       etype = etype->join_speculative(TypePtr::NOTNULL)->is_oopptr();
3934     }
3935     bool is_atomic = o->as_array()->is_atomic();
3936     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()), /* stable= */ false, /* flat= */ true,
3937                                         /* not_flat= */ false, /* not_null_free= */ !is_null_free, /* atomic= */ is_atomic);
3938     // We used to pass NotNull in here, asserting that the sub-arrays
3939     // are all not-null.  This is not true in generally, as code can
3940     // slam nullptrs down in the subarrays.
3941     if (make_constant) {
3942       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3943     } else {
3944       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3945     }
3946   }
3947 
3948   fatal("unhandled object type");
3949   return nullptr;
3950 }
3951 
3952 //------------------------------get_con----------------------------------------
3953 intptr_t TypeOopPtr::get_con() const {
3954   assert( _ptr == Null || _ptr == Constant, "" );
3955   assert(offset() >= 0, "");
3956 
3957   if (offset() != 0) {
3958     // After being ported to the compiler interface, the compiler no longer
3959     // directly manipulates the addresses of oops.  Rather, it only has a pointer
3960     // to a handle at compile time.  This handle is embedded in the generated
3961     // code and dereferenced at the time the nmethod is made.  Until that time,
3962     // it is not reasonable to do arithmetic with the addresses of oops (we don't
3963     // have access to the addresses!).  This does not seem to currently happen,
3964     // but this assertion here is to help prevent its occurrence.
3965     tty->print_cr("Found oop constant with non-zero offset");
3966     ShouldNotReachHere();
3967   }
3968 
3969   return (intptr_t)const_oop()->constant_encoding();
3970 }
3971 
3972 
3973 //-----------------------------filter------------------------------------------
3974 // Do not allow interface-vs.-noninterface joins to collapse to top.
3975 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
3976 
3977   const Type* ft = join_helper(kills, include_speculative);

3996   } else {
3997     return one->equals(two) && TypePtr::eq(t);
3998   }
3999 }
4000 
4001 //------------------------------hash-------------------------------------------
4002 // Type-specific hashing function.
4003 uint TypeOopPtr::hash(void) const {
4004   return
4005     (uint)(const_oop() ? const_oop()->hash() : 0) +
4006     (uint)_klass_is_exact +
4007     (uint)_instance_id + TypePtr::hash();
4008 }
4009 
4010 //------------------------------dump2------------------------------------------
4011 #ifndef PRODUCT
4012 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4013   st->print("oopptr:%s", ptr_msg[_ptr]);
4014   if( _klass_is_exact ) st->print(":exact");
4015   if( const_oop() ) st->print(INTPTR_FORMAT, p2i(const_oop()));
4016   _offset.dump2(st);





4017   if (_instance_id == InstanceTop)
4018     st->print(",iid=top");
4019   else if (_instance_id != InstanceBot)
4020     st->print(",iid=%d",_instance_id);
4021 
4022   dump_inline_depth(st);
4023   dump_speculative(st);
4024 }
4025 #endif
4026 
4027 //------------------------------singleton--------------------------------------
4028 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4029 // constants
4030 bool TypeOopPtr::singleton(void) const {
4031   // detune optimizer to not generate constant oop + constant offset as a constant!
4032   // TopPTR, Null, AnyNull, Constant are all singletons
4033   return (offset() == 0) && !below_centerline(_ptr);
4034 }
4035 
4036 //------------------------------add_offset-------------------------------------
4037 const TypePtr* TypeOopPtr::add_offset(intptr_t offset) const {
4038   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
4039 }
4040 
4041 const TypeOopPtr* TypeOopPtr::with_offset(intptr_t offset) const {
4042   return make(_ptr, Offset(offset), _instance_id, with_offset_speculative(offset), _inline_depth);
4043 }
4044 
4045 /**
4046  * Return same type without a speculative part
4047  */
4048 const TypeOopPtr* TypeOopPtr::remove_speculative() const {
4049   if (_speculative == nullptr) {
4050     return this;
4051   }
4052   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4053   return make(_ptr, _offset, _instance_id, nullptr, _inline_depth);
4054 }
4055 
4056 /**
4057  * Return same type but drop speculative part if we know we won't use
4058  * it
4059  */
4060 const Type* TypeOopPtr::cleanup_speculative() const {
4061   // If the klass is exact and the ptr is not null then there's
4062   // nothing that the speculative type can help us with

4135 const TypeInstPtr *TypeInstPtr::BOTTOM;
4136 const TypeInstPtr *TypeInstPtr::MIRROR;
4137 const TypeInstPtr *TypeInstPtr::MARK;
4138 const TypeInstPtr *TypeInstPtr::KLASS;
4139 
4140 // Is there a single ciKlass* that can represent that type?
4141 ciKlass* TypeInstPtr::exact_klass_helper() const {
4142   if (_interfaces->empty()) {
4143     return _klass;
4144   }
4145   if (_klass != ciEnv::current()->Object_klass()) {
4146     if (_interfaces->eq(_klass->as_instance_klass())) {
4147       return _klass;
4148     }
4149     return nullptr;
4150   }
4151   return _interfaces->exact_klass();
4152 }
4153 
4154 //------------------------------TypeInstPtr-------------------------------------
4155 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset off,
4156                          bool flat_in_array, int instance_id, const TypePtr* speculative, int inline_depth)
4157   : TypeOopPtr(InstPtr, ptr, k, interfaces, xk, o, off, Offset::bottom, instance_id, speculative, inline_depth),
4158     _flat_in_array(flat_in_array) {
4159   assert(k == nullptr || !k->is_loaded() || !k->is_interface(), "no interface here");
4160   assert(k != nullptr &&
4161          (k->is_loaded() || o == nullptr),
4162          "cannot have constants with non-loaded klass");
4163   assert(!klass()->maybe_flat_in_array() || flat_in_array, "Should be flat in array");
4164   assert(!flat_in_array || can_be_inline_type(), "Only inline types can be flat in array");
4165 };
4166 
4167 //------------------------------make-------------------------------------------
4168 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
4169                                      ciKlass* k,
4170                                      const TypeInterfaces* interfaces,
4171                                      bool xk,
4172                                      ciObject* o,
4173                                      Offset offset,
4174                                      bool flat_in_array,
4175                                      int instance_id,
4176                                      const TypePtr* speculative,
4177                                      int inline_depth) {
4178   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
4179   // Either const_oop() is null or else ptr is Constant
4180   assert( (!o && ptr != Constant) || (o && ptr == Constant),
4181           "constant pointers must have a value supplied" );
4182   // Ptr is never Null
4183   assert( ptr != Null, "null pointers are not typed" );
4184 
4185   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4186   if (ptr == Constant) {
4187     // Note:  This case includes meta-object constants, such as methods.
4188     xk = true;
4189   } else if (k->is_loaded()) {
4190     ciInstanceKlass* ik = k->as_instance_klass();
4191     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
4192     assert(!ik->is_interface(), "no interface here");
4193     if (xk && ik->is_interface())  xk = false;  // no exact interface
4194   }
4195 
4196   // Check if this type is known to be flat in arrays
4197   flat_in_array = flat_in_array || k->maybe_flat_in_array();
4198 
4199   // Now hash this baby
4200   TypeInstPtr *result =
4201     (TypeInstPtr*)(new TypeInstPtr(ptr, k, interfaces, xk, o, offset, flat_in_array, instance_id, speculative, inline_depth))->hashcons();
4202 
4203   return result;
4204 }
4205 
4206 const TypeInterfaces* TypePtr::interfaces(ciKlass*& k, bool klass, bool interface, bool array, InterfaceHandling interface_handling) {
4207   if (k->is_instance_klass()) {
4208     if (k->is_loaded()) {
4209       if (k->is_interface() && interface_handling == ignore_interfaces) {
4210         assert(interface, "no interface expected");
4211         k = ciEnv::current()->Object_klass();
4212         const TypeInterfaces* interfaces = TypeInterfaces::make();
4213         return interfaces;
4214       }
4215       GrowableArray<ciInstanceKlass *>* k_interfaces = k->as_instance_klass()->transitive_interfaces();
4216       const TypeInterfaces* interfaces = TypeInterfaces::make(k_interfaces);
4217       if (k->is_interface()) {
4218         assert(interface, "no interface expected");
4219         k = ciEnv::current()->Object_klass();
4220       } else {
4221         assert(klass, "no instance klass expected");

4247   switch (bt) {
4248     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
4249     case T_INT:      return TypeInt::make(constant.as_int());
4250     case T_CHAR:     return TypeInt::make(constant.as_char());
4251     case T_BYTE:     return TypeInt::make(constant.as_byte());
4252     case T_SHORT:    return TypeInt::make(constant.as_short());
4253     case T_FLOAT:    return TypeF::make(constant.as_float());
4254     case T_DOUBLE:   return TypeD::make(constant.as_double());
4255     case T_LONG:     return TypeLong::make(constant.as_long());
4256     default:         break;
4257   }
4258   fatal("Invalid boxed value type '%s'", type2name(bt));
4259   return nullptr;
4260 }
4261 
4262 //------------------------------cast_to_ptr_type-------------------------------
4263 const TypeInstPtr* TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
4264   if( ptr == _ptr ) return this;
4265   // Reconstruct _sig info here since not a problem with later lazy
4266   // construction, _sig will show up on demand.
4267   return make(ptr, klass(), _interfaces, klass_is_exact(), ptr == Constant ? const_oop() : nullptr, _offset, _flat_in_array, _instance_id, _speculative, _inline_depth);
4268 }
4269 
4270 
4271 //-----------------------------cast_to_exactness-------------------------------
4272 const TypeInstPtr* TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
4273   if( klass_is_exact == _klass_is_exact ) return this;
4274   if (!_klass->is_loaded())  return this;
4275   ciInstanceKlass* ik = _klass->as_instance_klass();
4276   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
4277   assert(!ik->is_interface(), "no interface here");
4278   return make(ptr(), klass(), _interfaces, klass_is_exact, const_oop(), _offset, _flat_in_array, _instance_id, _speculative, _inline_depth);
4279 }
4280 
4281 //-----------------------------cast_to_instance_id----------------------------
4282 const TypeInstPtr* TypeInstPtr::cast_to_instance_id(int instance_id) const {
4283   if( instance_id == _instance_id ) return this;
4284   return make(_ptr, klass(), _interfaces, _klass_is_exact, const_oop(), _offset, _flat_in_array, instance_id, _speculative, _inline_depth);
4285 }
4286 
4287 //------------------------------xmeet_unloaded---------------------------------
4288 // Compute the MEET of two InstPtrs when at least one is unloaded.
4289 // Assume classes are different since called after check for same name/class-loader
4290 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst, const TypeInterfaces* interfaces) const {
4291   Offset off = meet_offset(tinst->offset());
4292   PTR ptr = meet_ptr(tinst->ptr());
4293   int instance_id = meet_instance_id(tinst->instance_id());
4294   const TypePtr* speculative = xmeet_speculative(tinst);
4295   int depth = meet_inline_depth(tinst->inline_depth());
4296 
4297   const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
4298   const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
4299   if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
4300     //
4301     // Meet unloaded class with java/lang/Object
4302     //
4303     // Meet
4304     //          |                     Unloaded Class
4305     //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
4306     //  ===================================================================
4307     //   TOP    | ..........................Unloaded......................|
4308     //  AnyNull |  U-AN    |................Unloaded......................|
4309     // Constant | ... O-NN .................................. |   O-BOT   |
4310     //  NotNull | ... O-NN .................................. |   O-BOT   |
4311     //  BOTTOM  | ........................Object-BOTTOM ..................|
4312     //
4313     assert(loaded->ptr() != TypePtr::Null, "insanity check");
4314     //
4315     if (loaded->ptr() == TypePtr::TopPTR)        { return unloaded->with_speculative(speculative); }
4316     else if (loaded->ptr() == TypePtr::AnyNull)  { return make(ptr, unloaded->klass(), interfaces, false, nullptr, off, false, instance_id, speculative, depth); }
4317     else if (loaded->ptr() == TypePtr::BotPTR)   { return TypeInstPtr::BOTTOM->with_speculative(speculative); }
4318     else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
4319       if (unloaded->ptr() == TypePtr::BotPTR)    { return TypeInstPtr::BOTTOM->with_speculative(speculative);  }
4320       else                                       { return TypeInstPtr::NOTNULL->with_speculative(speculative); }
4321     }
4322     else if (unloaded->ptr() == TypePtr::TopPTR) { return unloaded->with_speculative(speculative); }
4323 
4324     return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr()->with_speculative(speculative);
4325   }
4326 
4327   // Both are unloaded, not the same class, not Object
4328   // Or meet unloaded with a different loaded class, not java/lang/Object
4329   if (ptr != TypePtr::BotPTR) {
4330     return TypeInstPtr::NOTNULL->with_speculative(speculative);
4331   }
4332   return TypeInstPtr::BOTTOM->with_speculative(speculative);
4333 }
4334 
4335 
4336 //------------------------------meet-------------------------------------------

4360   case Top:
4361     return this;
4362 
4363   default:                      // All else is a mistake
4364     typerr(t);
4365 
4366   case MetadataPtr:
4367   case KlassPtr:
4368   case InstKlassPtr:
4369   case AryKlassPtr:
4370   case RawPtr: return TypePtr::BOTTOM;
4371 
4372   case AryPtr: {                // All arrays inherit from Object class
4373     // Call in reverse direction to avoid duplication
4374     return t->is_aryptr()->xmeet_helper(this);
4375   }
4376 
4377   case OopPtr: {                // Meeting to OopPtrs
4378     // Found a OopPtr type vs self-InstPtr type
4379     const TypeOopPtr *tp = t->is_oopptr();
4380     Offset offset = meet_offset(tp->offset());
4381     PTR ptr = meet_ptr(tp->ptr());
4382     switch (tp->ptr()) {
4383     case TopPTR:
4384     case AnyNull: {
4385       int instance_id = meet_instance_id(InstanceTop);
4386       const TypePtr* speculative = xmeet_speculative(tp);
4387       int depth = meet_inline_depth(tp->inline_depth());
4388       return make(ptr, klass(), _interfaces, klass_is_exact(),
4389                   (ptr == Constant ? const_oop() : nullptr), offset, flat_in_array(), instance_id, speculative, depth);
4390     }
4391     case NotNull:
4392     case BotPTR: {
4393       int instance_id = meet_instance_id(tp->instance_id());
4394       const TypePtr* speculative = xmeet_speculative(tp);
4395       int depth = meet_inline_depth(tp->inline_depth());
4396       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4397     }
4398     default: typerr(t);
4399     }
4400   }
4401 
4402   case AnyPtr: {                // Meeting to AnyPtrs
4403     // Found an AnyPtr type vs self-InstPtr type
4404     const TypePtr *tp = t->is_ptr();
4405     Offset offset = meet_offset(tp->offset());
4406     PTR ptr = meet_ptr(tp->ptr());
4407     int instance_id = meet_instance_id(InstanceTop);
4408     const TypePtr* speculative = xmeet_speculative(tp);
4409     int depth = meet_inline_depth(tp->inline_depth());
4410     switch (tp->ptr()) {
4411     case Null:
4412       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4413       // else fall through to AnyNull
4414     case TopPTR:
4415     case AnyNull: {
4416       return make(ptr, klass(), _interfaces, klass_is_exact(),
4417                   (ptr == Constant ? const_oop() : nullptr), offset, flat_in_array(), instance_id, speculative, depth);
4418     }
4419     case NotNull:
4420     case BotPTR:
4421       return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
4422     default: typerr(t);
4423     }
4424   }
4425 
4426   /*
4427                  A-top         }
4428                /   |   \       }  Tops
4429            B-top A-any C-top   }
4430               | /  |  \ |      }  Any-nulls
4431            B-any   |   C-any   }
4432               |    |    |
4433            B-con A-con C-con   } constants; not comparable across classes
4434               |    |    |
4435            B-not   |   C-not   }
4436               | \  |  / |      }  not-nulls
4437            B-bot A-not C-bot   }
4438                \   |   /       }  Bottoms
4439                  A-bot         }
4440   */
4441 
4442   case InstPtr: {                // Meeting 2 Oops?
4443     // Found an InstPtr sub-type vs self-InstPtr type
4444     const TypeInstPtr *tinst = t->is_instptr();
4445     Offset off = meet_offset(tinst->offset());
4446     PTR ptr = meet_ptr(tinst->ptr());
4447     int instance_id = meet_instance_id(tinst->instance_id());
4448     const TypePtr* speculative = xmeet_speculative(tinst);
4449     int depth = meet_inline_depth(tinst->inline_depth());
4450     const TypeInterfaces* interfaces = meet_interfaces(tinst);
4451 
4452     ciKlass* tinst_klass = tinst->klass();
4453     ciKlass* this_klass  = klass();
4454 
4455     ciKlass* res_klass = nullptr;
4456     bool res_xk = false;
4457     bool res_flat_in_array = false;
4458     const Type* res;
4459     MeetResult kind = meet_instptr(ptr, interfaces, this, tinst, res_klass, res_xk, res_flat_in_array);
4460 
4461     if (kind == UNLOADED) {
4462       // One of these classes has not been loaded
4463       const TypeInstPtr* unloaded_meet = xmeet_unloaded(tinst, interfaces);
4464 #ifndef PRODUCT
4465       if (PrintOpto && Verbose) {
4466         tty->print("meet of unloaded classes resulted in: ");
4467         unloaded_meet->dump();
4468         tty->cr();
4469         tty->print("  this == ");
4470         dump();
4471         tty->cr();
4472         tty->print(" tinst == ");
4473         tinst->dump();
4474         tty->cr();
4475       }
4476 #endif
4477       res = unloaded_meet;
4478     } else {
4479       if (kind == NOT_SUBTYPE && instance_id > 0) {
4480         instance_id = InstanceBot;
4481       } else if (kind == LCA) {
4482         instance_id = InstanceBot;
4483       }
4484       ciObject* o = nullptr;             // Assume not constant when done
4485       ciObject* this_oop = const_oop();
4486       ciObject* tinst_oop = tinst->const_oop();
4487       if (ptr == Constant) {
4488         if (this_oop != nullptr && tinst_oop != nullptr &&
4489             this_oop->equals(tinst_oop))
4490           o = this_oop;
4491         else if (above_centerline(_ptr)) {
4492           assert(!tinst_klass->is_interface(), "");
4493           o = tinst_oop;
4494         } else if (above_centerline(tinst->_ptr)) {
4495           assert(!this_klass->is_interface(), "");
4496           o = this_oop;
4497         } else
4498           ptr = NotNull;
4499       }
4500       res = make(ptr, res_klass, interfaces, res_xk, o, off, res_flat_in_array, instance_id, speculative, depth);
4501     }
4502 
4503     return res;
4504 
4505   } // End of case InstPtr
4506 
4507   } // End of switch
4508   return this;                  // Return the double constant
4509 }
4510 
4511 template<class T> TypePtr::MeetResult TypePtr::meet_instptr(PTR& ptr, const TypeInterfaces*& interfaces, const T* this_type, const T* other_type,
4512                                                             ciKlass*& res_klass, bool& res_xk, bool& res_flat_in_array) {
4513   ciKlass* this_klass = this_type->klass();
4514   ciKlass* other_klass = other_type->klass();
4515   const bool this_flat_in_array = this_type->flat_in_array();
4516   const bool other_flat_in_array = other_type->flat_in_array();
4517   const bool this_not_flat_in_array = this_type->not_flat_in_array();
4518   const bool other_not_flat_in_array = other_type->not_flat_in_array();
4519 
4520   bool this_xk = this_type->klass_is_exact();
4521   bool other_xk = other_type->klass_is_exact();
4522   PTR this_ptr = this_type->ptr();
4523   PTR other_ptr = other_type->ptr();
4524   const TypeInterfaces* this_interfaces = this_type->interfaces();
4525   const TypeInterfaces* other_interfaces = other_type->interfaces();
4526   // Check for easy case; klasses are equal (and perhaps not loaded!)
4527   // If we have constants, then we created oops so classes are loaded
4528   // and we can handle the constants further down.  This case handles
4529   // both-not-loaded or both-loaded classes
4530   if (ptr != Constant && this_klass->equals(other_klass) && this_xk == other_xk && this_flat_in_array == other_flat_in_array) {
4531     res_klass = this_klass;
4532     res_xk = this_xk;
4533     res_flat_in_array = this_flat_in_array;
4534     return QUICK;
4535   }
4536 
4537   // Classes require inspection in the Java klass hierarchy.  Must be loaded.
4538   if (!other_klass->is_loaded() || !this_klass->is_loaded()) {
4539     return UNLOADED;
4540   }
4541 
4542   // !!! Here's how the symmetry requirement breaks down into invariants:
4543   // If we split one up & one down AND they subtype, take the down man.
4544   // If we split one up & one down AND they do NOT subtype, "fall hard".
4545   // If both are up and they subtype, take the subtype class.
4546   // If both are up and they do NOT subtype, "fall hard".
4547   // If both are down and they subtype, take the supertype class.
4548   // If both are down and they do NOT subtype, "fall hard".
4549   // Constants treated as down.
4550 
4551   // Now, reorder the above list; observe that both-down+subtype is also
4552   // "fall hard"; "fall hard" becomes the default case:
4553   // If we split one up & one down AND they subtype, take the down man.
4554   // If both are up and they subtype, take the subtype class.
4555 
4556   // If both are down and they subtype, "fall hard".
4557   // If both are down and they do NOT subtype, "fall hard".
4558   // If both are up and they do NOT subtype, "fall hard".
4559   // If we split one up & one down AND they do NOT subtype, "fall hard".
4560 
4561   // If a proper subtype is exact, and we return it, we return it exactly.
4562   // If a proper supertype is exact, there can be no subtyping relationship!
4563   // If both types are equal to the subtype, exactness is and-ed below the
4564   // centerline and or-ed above it.  (N.B. Constants are always exact.)
4565 
4566   // Flat in Array property _flat_in_array.
4567   // For simplicity, _flat_in_array is a boolean but we actually have a tri state:
4568   // - Flat in array       -> flat_in_array()
4569   // - Not flat in array   -> not_flat_in_array()
4570   // - Maybe flat in array -> !not_flat_in_array()
4571   //
4572   // Maybe we should convert _flat_in_array to a proper lattice with four elements at some point:
4573   //
4574   //                  Top
4575   //    Flat in Array     Not Flat in Array
4576   //          Maybe Flat in Array
4577   //
4578   // where
4579   //     Top = dual(maybe Flat In Array) = "Flat in Array AND Not Flat in Array"
4580   //
4581   // But for now we stick with the current model with _flat_in_array as a boolean.
4582   //
4583   // When meeting two InstPtr types, we want to have the following behavior:
4584   //
4585   // (FiA-M) Meet(this, other):
4586   //     'this' and 'other' are either the same klass OR sub klasses:
4587   //
4588   //                yes maybe no
4589   //           yes   y    m    m                      y = Flat in Array
4590   //         maybe   m    m    m                      n = Not Flat in Array
4591   //            no   m    m    n                      m = Maybe Flat in Array
4592   //
4593   //  Join(this, other):
4594   //     (FiA-J-Same) 'this' and 'other' are the SAME klass:
4595   //
4596   //                yes maybe no                      E = Empty set
4597   //           yes   y    y    E                      y = Flat in Array
4598   //         maybe   y    m    m                      n = Not Flat in Array
4599   //            no   E    m    n                      m = Maybe Flat in Array
4600   //
4601   //     (FiA-J-Sub) 'this' and 'other' are SUB klasses:
4602   //
4603   //               yes maybe no   -> Super Klass      E = Empty set
4604   //          yes   y    y    y                       y = Flat in Array
4605   //        maybe   y    m    m                       n = Not Flat in Array
4606   //           no   E    m    n                       m = Maybe Flat in Array
4607   //           |
4608   //           v
4609   //       Sub Klass
4610   //
4611   //     Note the difference when joining a super klass that is not flat in array with a sub klass that is compared to
4612   //     the same klass case. We will take over the flat in array property of the sub klass. This can be done because
4613   //     the super klass could be Object (i.e. not an inline type and thus not flat in array) while the sub klass is a
4614   //     value class which can be flat in array.
4615   //
4616   //     The empty set is only a possible result when matching 'ptr' above the center line (i.e. joining). In this case,
4617   //     we can "fall hard" by setting 'ptr' to NotNull such that when we take the dual of that meet above the center
4618   //     line, we get an empty set again.
4619   //
4620   //     Note: When changing to a separate lattice with _flat_in_array we may want to add TypeInst(Klass)Ptr::empty()
4621   //           that returns true when the meet result is FlatInArray::Top (i.e. dual(maybe flat in array)).
4622 
4623   const T* subtype = nullptr;
4624   bool subtype_exact = false;
4625   bool flat_in_array = false;
4626   bool is_empty = false;
4627   if (this_type->is_same_java_type_as(other_type)) {
4628     // Same klass
4629     subtype = this_type;
4630     subtype_exact = below_centerline(ptr) ? (this_xk && other_xk) : (this_xk || other_xk);
4631     if (above_centerline(ptr)) {
4632       // Case (FiA-J-Same)
4633       // One is flat in array and the other not? Result is empty/"fall hard".
4634       is_empty = (this_flat_in_array && other_not_flat_in_array) || (this_not_flat_in_array && other_flat_in_array);
4635     }
4636   } else if (!other_xk && is_meet_subtype_of(this_type, other_type)) {
4637     subtype = this_type;     // Pick subtyping class
4638     subtype_exact = this_xk;
4639     if (above_centerline(ptr)) {
4640       // Case (FiA-J-Sub)
4641       is_empty = this_not_flat_in_array && other_flat_in_array;
4642       if (!is_empty) {
4643         bool other_flat_this_maybe_flat = other_flat_in_array && (!this_flat_in_array && !this_not_flat_in_array);
4644         flat_in_array = this_flat_in_array || other_flat_this_maybe_flat;
4645       }
4646     }
4647   } else if (!this_xk && is_meet_subtype_of(other_type, this_type)) {
4648     subtype = other_type;    // Pick subtyping class
4649     subtype_exact = other_xk;
4650     if (above_centerline(ptr)) {
4651       // Case (FiA-J-Sub)
4652       is_empty = this_flat_in_array && other_not_flat_in_array;
4653       if (!is_empty) {
4654         bool this_flat_other_maybe_flat = this_flat_in_array && (!other_flat_in_array && !other_not_flat_in_array);
4655         flat_in_array = other_flat_in_array || this_flat_other_maybe_flat;
4656       }
4657     }
4658   }
4659 
4660 
4661   if (subtype && !is_empty) {
4662     if (above_centerline(ptr)) {
4663       // Both types are empty.
4664       this_type = other_type = subtype;
4665       this_xk = other_xk = subtype_exact;
4666       // Case (FiA-J-Sub)
4667       bool other_flat_this_maybe_flat = other_flat_in_array && (!this_flat_in_array && !this_not_flat_in_array);
4668       flat_in_array = this_flat_in_array || other_flat_this_maybe_flat;
4669       // One is flat in array and the other not? Result is empty/"fall hard".
4670       is_empty = (this_flat_in_array && other_not_flat_in_array) || (this_not_flat_in_array && other_flat_in_array);
4671     } else if (above_centerline(this_ptr) && !above_centerline(other_ptr)) {
4672       // this_type is empty while other_type is not. Take other_type.
4673       this_type = other_type;
4674       this_xk = other_xk;
4675       flat_in_array = other_flat_in_array;
4676     } else if (above_centerline(other_ptr) && !above_centerline(this_ptr)) {
4677       // other_type is empty while this_type is not. Take this_type.
4678       other_type = this_type; // this is down; keep down man
4679       flat_in_array = this_flat_in_array;
4680     } else {
4681       // this_type and other_type are both non-empty.
4682       this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
4683       // Case (FiA-M)
4684       // Meeting two types below the center line: Only flat in array if both are.
4685       flat_in_array = this_flat_in_array && other_flat_in_array;
4686     }
4687   }
4688 
4689   // Check for classes now being equal
4690   if (this_type->is_same_java_type_as(other_type) && !is_empty) {
4691     // If the klasses are equal, the constants may still differ.  Fall to
4692     // NotNull if they do (neither constant is null; that is a special case
4693     // handled elsewhere).
4694     res_klass = this_type->klass();
4695     res_xk = this_xk;
4696     res_flat_in_array = flat_in_array;
4697     return SUBTYPE;
4698   } // Else classes are not equal
4699 
4700   // Since klasses are different, we require a LCA in the Java
4701   // class hierarchy - which means we have to fall to at least NotNull.
4702   if (ptr == TopPTR || ptr == AnyNull || ptr == Constant) {
4703     ptr = NotNull;
4704   }
4705 
4706   interfaces = this_interfaces->intersection_with(other_interfaces);
4707 
4708   // Now we find the LCA of Java classes
4709   ciKlass* k = this_klass->least_common_ancestor(other_klass);
4710 
4711   res_klass = k;
4712   res_xk = false;
4713   res_flat_in_array = this_flat_in_array && other_flat_in_array;
4714 
4715   return LCA;
4716 }
4717 
4718 template<class T> bool TypePtr::is_meet_subtype_of(const T* sub_type, const T* super_type) {
4719   return sub_type->is_meet_subtype_of(super_type) && !(super_type->flat_in_array() && sub_type->not_flat_in_array());
4720 }
4721 
4722 //------------------------java_mirror_type--------------------------------------
4723 ciType* TypeInstPtr::java_mirror_type() const {
4724   // must be a singleton type
4725   if( const_oop() == nullptr )  return nullptr;
4726 
4727   // must be of type java.lang.Class
4728   if( klass() != ciEnv::current()->Class_klass() )  return nullptr;

4729   return const_oop()->as_instance()->java_mirror_type();
4730 }
4731 
4732 
4733 //------------------------------xdual------------------------------------------
4734 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
4735 // inheritance mechanism.
4736 const Type *TypeInstPtr::xdual() const {
4737   return new TypeInstPtr(dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), flat_in_array(), dual_instance_id(), dual_speculative(), dual_inline_depth());
4738 }
4739 
4740 //------------------------------eq---------------------------------------------
4741 // Structural equality check for Type representations
4742 bool TypeInstPtr::eq( const Type *t ) const {
4743   const TypeInstPtr *p = t->is_instptr();
4744   return
4745     klass()->equals(p->klass()) &&
4746     flat_in_array() == p->flat_in_array() &&
4747     _interfaces->eq(p->_interfaces) &&
4748     TypeOopPtr::eq(p);          // Check sub-type stuff
4749 }
4750 
4751 //------------------------------hash-------------------------------------------
4752 // Type-specific hashing function.
4753 uint TypeInstPtr::hash(void) const {
4754   return klass()->hash() + TypeOopPtr::hash() + _interfaces->hash() + (uint)flat_in_array();
4755 }
4756 
4757 bool TypeInstPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4758   return TypePtr::is_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
4759 }
4760 
4761 
4762 bool TypeInstPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const {
4763   return TypePtr::is_same_java_type_as_helper_for_instance(this, other);
4764 }
4765 
4766 bool TypeInstPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4767   return TypePtr::maybe_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
4768 }
4769 
4770 
4771 //------------------------------dump2------------------------------------------
4772 // Dump oop Type
4773 #ifndef PRODUCT
4774 void TypeInstPtr::dump2(Dict &d, uint depth, outputStream* st) const {

4788       // suppress newlines from it so -XX:+Verbose -XX:+PrintIdeal dumps one-liner for each node.
4789       char* buf = ss.as_string(/* c_heap= */false);
4790       StringUtils::replace_no_expand(buf, "\n", "");
4791       st->print_raw(buf);
4792     }
4793   case BotPTR:
4794     if (!WizardMode && !Verbose) {
4795       if( _klass_is_exact ) st->print(":exact");
4796       break;
4797     }
4798   case TopPTR:
4799   case AnyNull:
4800   case NotNull:
4801     st->print(":%s", ptr_msg[_ptr]);
4802     if( _klass_is_exact ) st->print(":exact");
4803     break;
4804   default:
4805     break;
4806   }
4807 
4808   _offset.dump2(st);




4809 
4810   st->print(" *");
4811 
4812   if (flat_in_array() && !klass()->is_inlinetype()) {
4813     st->print(" (flat in array)");
4814   }
4815 
4816   if (_instance_id == InstanceTop)
4817     st->print(",iid=top");
4818   else if (_instance_id != InstanceBot)
4819     st->print(",iid=%d",_instance_id);
4820 
4821   dump_inline_depth(st);
4822   dump_speculative(st);
4823 }
4824 #endif
4825 
4826 //------------------------------add_offset-------------------------------------
4827 const TypePtr* TypeInstPtr::add_offset(intptr_t offset) const {
4828   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), xadd_offset(offset), flat_in_array(),
4829               _instance_id, add_offset_speculative(offset), _inline_depth);
4830 }
4831 
4832 const TypeInstPtr* TypeInstPtr::with_offset(intptr_t offset) const {
4833   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), Offset(offset), flat_in_array(),
4834               _instance_id, with_offset_speculative(offset), _inline_depth);
4835 }
4836 
4837 const TypeInstPtr* TypeInstPtr::remove_speculative() const {
4838   if (_speculative == nullptr) {
4839     return this;
4840   }
4841   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4842   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, flat_in_array(),
4843               _instance_id, nullptr, _inline_depth);
4844 }
4845 
4846 const TypeInstPtr* TypeInstPtr::with_speculative(const TypePtr* speculative) const {
4847   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, flat_in_array(), _instance_id, speculative, _inline_depth);
4848 }
4849 
4850 const TypePtr* TypeInstPtr::with_inline_depth(int depth) const {
4851   if (!UseInlineDepthForSpeculativeTypes) {
4852     return this;
4853   }
4854   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, flat_in_array(), _instance_id, _speculative, depth);
4855 }
4856 
4857 const TypePtr* TypeInstPtr::with_instance_id(int instance_id) const {
4858   assert(is_known_instance(), "should be known");
4859   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, flat_in_array(), instance_id, _speculative, _inline_depth);
4860 }
4861 
4862 const TypeInstPtr *TypeInstPtr::cast_to_flat_in_array() const {
4863   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, true, _instance_id, _speculative, _inline_depth);
4864 }
4865 
4866 const TypeKlassPtr* TypeInstPtr::as_klass_type(bool try_for_exact) const {
4867   bool xk = klass_is_exact();
4868   ciInstanceKlass* ik = klass()->as_instance_klass();
4869   if (try_for_exact && !xk && !ik->has_subklass() && !ik->is_final()) {
4870     if (_interfaces->eq(ik)) {
4871       Compile* C = Compile::current();
4872       Dependencies* deps = C->dependencies();
4873       deps->assert_leaf_type(ik);
4874       xk = true;
4875     }
4876   }
4877   return TypeInstKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, klass(), _interfaces, Offset(0), flat_in_array());
4878 }
4879 
4880 template <class T1, class T2> bool TypePtr::is_meet_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_xk, bool other_xk) {
4881   static_assert(std::is_base_of<T2, T1>::value, "");
4882 
4883   if (!this_one->is_instance_type(other)) {
4884     return false;
4885   }
4886 
4887   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty()) {
4888     return true;
4889   }
4890 
4891   return this_one->klass()->is_subtype_of(other->klass()) &&
4892          (!this_xk || this_one->_interfaces->contains(other->_interfaces));
4893 }
4894 
4895 
4896 bool TypeInstPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const {
4897   return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk);

4902   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty()) {
4903     return true;
4904   }
4905 
4906   if (this_one->is_instance_type(other)) {
4907     return other->klass() == ciEnv::current()->Object_klass() && this_one->_interfaces->contains(other->_interfaces);
4908   }
4909 
4910   int dummy;
4911   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
4912   if (this_top_or_bottom) {
4913     return false;
4914   }
4915 
4916   const T1* other_ary = this_one->is_array_type(other);
4917   const TypePtr* other_elem = other_ary->elem()->make_ptr();
4918   const TypePtr* this_elem = this_one->elem()->make_ptr();
4919   if (other_elem != nullptr && this_elem != nullptr) {
4920     return this_one->is_reference_type(this_elem)->is_meet_subtype_of_helper(this_one->is_reference_type(other_elem), this_xk, other_xk);
4921   }

4922   if (other_elem == nullptr && this_elem == nullptr) {
4923     return this_one->klass()->is_subtype_of(other->klass());
4924   }
4925 
4926   return false;
4927 }
4928 
4929 bool TypeAryPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const {
4930   return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk);
4931 }
4932 
4933 bool TypeInstKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const {
4934   return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk);
4935 }
4936 
4937 bool TypeAryKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const {
4938   return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk);
4939 }
4940 
4941 //=============================================================================
4942 // Convenience common pre-built types.
4943 const TypeAryPtr* TypeAryPtr::BOTTOM;
4944 const TypeAryPtr *TypeAryPtr::RANGE;
4945 const TypeAryPtr *TypeAryPtr::OOPS;
4946 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
4947 const TypeAryPtr *TypeAryPtr::BYTES;
4948 const TypeAryPtr *TypeAryPtr::SHORTS;
4949 const TypeAryPtr *TypeAryPtr::CHARS;
4950 const TypeAryPtr *TypeAryPtr::INTS;
4951 const TypeAryPtr *TypeAryPtr::LONGS;
4952 const TypeAryPtr *TypeAryPtr::FLOATS;
4953 const TypeAryPtr *TypeAryPtr::DOUBLES;
4954 const TypeAryPtr *TypeAryPtr::INLINES;
4955 
4956 //------------------------------make-------------------------------------------
4957 const TypeAryPtr* TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, Offset offset, Offset field_offset,
4958                                    int instance_id, const TypePtr* speculative, int inline_depth) {
4959   assert(!(k == nullptr && ary->_elem->isa_int()),
4960          "integral arrays must be pre-equipped with a class");
4961   if (!xk)  xk = ary->ary_must_be_exact();
4962   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4963   if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() &&
4964       k->as_obj_array_klass()->base_element_klass()->is_interface()) {
4965     k = nullptr;
4966   }
4967   return (TypeAryPtr*)(new TypeAryPtr(ptr, nullptr, ary, k, xk, offset, field_offset, instance_id, false, speculative, inline_depth))->hashcons();
4968 }
4969 
4970 //------------------------------make-------------------------------------------
4971 const TypeAryPtr* TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, Offset offset, Offset field_offset,
4972                                    int instance_id, const TypePtr* speculative, int inline_depth,
4973                                    bool is_autobox_cache) {
4974   assert(!(k == nullptr && ary->_elem->isa_int()),
4975          "integral arrays must be pre-equipped with a class");
4976   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
4977   if (!xk)  xk = (o != nullptr) || ary->ary_must_be_exact();
4978   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4979   if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() &&
4980       k->as_obj_array_klass()->base_element_klass()->is_interface()) {
4981     k = nullptr;
4982   }
4983   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, field_offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
4984 }
4985 
4986 //------------------------------cast_to_ptr_type-------------------------------
4987 const TypeAryPtr* TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
4988   if( ptr == _ptr ) return this;
4989   return make(ptr, ptr == Constant ? const_oop() : nullptr, _ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4990 }
4991 
4992 
4993 //-----------------------------cast_to_exactness-------------------------------
4994 const TypeAryPtr* TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
4995   if( klass_is_exact == _klass_is_exact ) return this;
4996   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
4997   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4998 }
4999 
5000 //-----------------------------cast_to_instance_id----------------------------
5001 const TypeAryPtr* TypeAryPtr::cast_to_instance_id(int instance_id) const {
5002   if( instance_id == _instance_id ) return this;
5003   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, _field_offset, instance_id, _speculative, _inline_depth, _is_autobox_cache);
5004 }
5005 
5006 
5007 //-----------------------------max_array_length-------------------------------
5008 // A wrapper around arrayOopDesc::max_array_length(etype) with some input normalization.
5009 jint TypeAryPtr::max_array_length(BasicType etype) {
5010   if (!is_java_primitive(etype) && !::is_reference_type(etype)) {
5011     if (etype == T_NARROWOOP) {
5012       etype = T_OBJECT;
5013     } else if (etype == T_ILLEGAL) { // bottom[]
5014       etype = T_BYTE; // will produce conservatively high value
5015     } else {
5016       fatal("not an element type: %s", type2name(etype));
5017     }
5018   }
5019   return arrayOopDesc::max_array_length(etype);
5020 }
5021 
5022 //-----------------------------narrow_size_type-------------------------------
5023 // Narrow the given size type to the index range for the given array base type.

5041     if (size->is_con()) {
5042       lo = hi;
5043     }
5044     chg = true;
5045   }
5046   // Negative length arrays will produce weird intermediate dead fast-path code
5047   if (lo > hi) {
5048     return TypeInt::ZERO;
5049   }
5050   if (!chg) {
5051     return size;
5052   }
5053   return TypeInt::make(lo, hi, Type::WidenMin);
5054 }
5055 
5056 //-------------------------------cast_to_size----------------------------------
5057 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
5058   assert(new_size != nullptr, "");
5059   new_size = narrow_size_type(new_size);
5060   if (new_size == size())  return this;
5061   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable(), is_flat(), is_not_flat(), is_not_null_free(), is_atomic());
5062   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5063 }
5064 
5065 //-------------------------------cast_to_not_flat------------------------------
5066 const TypeAryPtr* TypeAryPtr::cast_to_not_flat(bool not_flat) const {
5067   if (not_flat == is_not_flat()) {
5068     return this;
5069   }
5070   assert(!not_flat || !is_flat(), "inconsistency");
5071   const TypeAry* new_ary = TypeAry::make(elem(), size(), is_stable(), is_flat(), not_flat, is_not_null_free(), is_atomic());
5072   const TypeAryPtr* res = make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5073   // We keep the speculative part if it contains information about flat-/nullability.
5074   // Make sure it's removed if it's not better than the non-speculative type anymore.
5075   if (res->speculative() == res->remove_speculative()) {
5076     return res->remove_speculative();
5077   }
5078   return res;
5079 }
5080 
5081 //-------------------------------cast_to_not_null_free-------------------------
5082 const TypeAryPtr* TypeAryPtr::cast_to_not_null_free(bool not_null_free) const {
5083   if (not_null_free == is_not_null_free()) {
5084     return this;
5085   }
5086   assert(!not_null_free || !is_null_free(), "inconsistency");
5087   const TypeAry* new_ary = TypeAry::make(elem(), size(), is_stable(), is_flat(), is_not_flat(), not_null_free, is_atomic());
5088   const TypeAryPtr* res = make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset,
5089                                _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5090   // We keep the speculative part if it contains information about flat-/nullability.
5091   // Make sure it's removed if it's not better than the non-speculative type anymore.
5092   if (res->speculative() == res->remove_speculative()) {
5093     return res->remove_speculative();
5094   }
5095   return res;
5096 }
5097 
5098 //---------------------------------update_properties---------------------------
5099 const TypeAryPtr* TypeAryPtr::update_properties(const TypeAryPtr* from) const {
5100   if ((from->is_flat()          && is_not_flat()) ||
5101       (from->is_not_flat()      && is_flat()) ||
5102       (from->is_null_free()     && is_not_null_free()) ||
5103       (from->is_not_null_free() && is_null_free())) {
5104     return nullptr; // Inconsistent properties
5105   }
5106   const TypeAryPtr* res = this;
5107   if (from->is_not_null_free()) {
5108     res = res->cast_to_not_null_free();
5109   }
5110   if (from->is_not_flat()) {
5111     res = res->cast_to_not_flat();
5112   }
5113   return res;
5114 }
5115 
5116 jint TypeAryPtr::flat_layout_helper() const {
5117   return klass()->as_flat_array_klass()->layout_helper();
5118 }
5119 
5120 int TypeAryPtr::flat_elem_size() const {
5121   return klass()->as_flat_array_klass()->element_byte_size();
5122 }
5123 
5124 int TypeAryPtr::flat_log_elem_size() const {
5125   return klass()->as_flat_array_klass()->log2_element_size();
5126 }
5127 
5128 //------------------------------cast_to_stable---------------------------------
5129 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
5130   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
5131     return this;
5132 
5133   const Type* elem = this->elem();
5134   const TypePtr* elem_ptr = elem->make_ptr();
5135 
5136   if (stable_dimension > 1 && elem_ptr != nullptr && elem_ptr->isa_aryptr()) {
5137     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
5138     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
5139   }
5140 
5141   const TypeAry* new_ary = TypeAry::make(elem, size(), stable, is_flat(), is_not_flat(), is_not_null_free(), is_atomic());
5142 
5143   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5144 }
5145 
5146 //-----------------------------stable_dimension--------------------------------
5147 int TypeAryPtr::stable_dimension() const {
5148   if (!is_stable())  return 0;
5149   int dim = 1;
5150   const TypePtr* elem_ptr = elem()->make_ptr();
5151   if (elem_ptr != nullptr && elem_ptr->isa_aryptr())
5152     dim += elem_ptr->is_aryptr()->stable_dimension();
5153   return dim;
5154 }
5155 
5156 //----------------------cast_to_autobox_cache-----------------------------------
5157 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache() const {
5158   if (is_autobox_cache())  return this;
5159   const TypeOopPtr* etype = elem()->make_oopptr();
5160   if (etype == nullptr)  return this;
5161   // The pointers in the autobox arrays are always non-null.
5162   etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
5163   const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable(), is_flat(), is_not_flat(), is_not_null_free(), is_atomic());
5164   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, /*is_autobox_cache=*/true);
5165 }
5166 
5167 //------------------------------eq---------------------------------------------
5168 // Structural equality check for Type representations
5169 bool TypeAryPtr::eq( const Type *t ) const {
5170   const TypeAryPtr *p = t->is_aryptr();
5171   return
5172     _ary == p->_ary &&  // Check array
5173     TypeOopPtr::eq(p) &&// Check sub-parts
5174     _field_offset == p->_field_offset;
5175 }
5176 
5177 //------------------------------hash-------------------------------------------
5178 // Type-specific hashing function.
5179 uint TypeAryPtr::hash(void) const {
5180   return (uint)(uintptr_t)_ary + TypeOopPtr::hash() + _field_offset.get();
5181 }
5182 
5183 bool TypeAryPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
5184   return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
5185 }
5186 
5187 bool TypeAryPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const {
5188   return TypePtr::is_same_java_type_as_helper_for_array(this, other);
5189 }
5190 
5191 bool TypeAryPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
5192   return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
5193 }
5194 //------------------------------meet-------------------------------------------
5195 // Compute the MEET of two types.  It returns a new Type object.
5196 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
5197   // Perform a fast test for common case; meeting the same types together.
5198   if( this == t ) return this;  // Meeting same type-rep?
5199   // Current "this->_base" is Pointer
5200   switch (t->base()) {          // switch on original type

5207   case HalfFloatBot:
5208   case FloatTop:
5209   case FloatCon:
5210   case FloatBot:
5211   case DoubleTop:
5212   case DoubleCon:
5213   case DoubleBot:
5214   case NarrowOop:
5215   case NarrowKlass:
5216   case Bottom:                  // Ye Olde Default
5217     return Type::BOTTOM;
5218   case Top:
5219     return this;
5220 
5221   default:                      // All else is a mistake
5222     typerr(t);
5223 
5224   case OopPtr: {                // Meeting to OopPtrs
5225     // Found a OopPtr type vs self-AryPtr type
5226     const TypeOopPtr *tp = t->is_oopptr();
5227     Offset offset = meet_offset(tp->offset());
5228     PTR ptr = meet_ptr(tp->ptr());
5229     int depth = meet_inline_depth(tp->inline_depth());
5230     const TypePtr* speculative = xmeet_speculative(tp);
5231     switch (tp->ptr()) {
5232     case TopPTR:
5233     case AnyNull: {
5234       int instance_id = meet_instance_id(InstanceTop);
5235       return make(ptr, (ptr == Constant ? const_oop() : nullptr),
5236                   _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
5237     }
5238     case BotPTR:
5239     case NotNull: {
5240       int instance_id = meet_instance_id(tp->instance_id());
5241       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
5242     }
5243     default: ShouldNotReachHere();
5244     }
5245   }
5246 
5247   case AnyPtr: {                // Meeting two AnyPtrs
5248     // Found an AnyPtr type vs self-AryPtr type
5249     const TypePtr *tp = t->is_ptr();
5250     Offset offset = meet_offset(tp->offset());
5251     PTR ptr = meet_ptr(tp->ptr());
5252     const TypePtr* speculative = xmeet_speculative(tp);
5253     int depth = meet_inline_depth(tp->inline_depth());
5254     switch (tp->ptr()) {
5255     case TopPTR:
5256       return this;
5257     case BotPTR:
5258     case NotNull:
5259       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
5260     case Null:
5261       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
5262       // else fall through to AnyNull
5263     case AnyNull: {
5264       int instance_id = meet_instance_id(InstanceTop);
5265       return make(ptr, (ptr == Constant ? const_oop() : nullptr),
5266                   _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
5267     }
5268     default: ShouldNotReachHere();
5269     }
5270   }
5271 
5272   case MetadataPtr:
5273   case KlassPtr:
5274   case InstKlassPtr:
5275   case AryKlassPtr:
5276   case RawPtr: return TypePtr::BOTTOM;
5277 
5278   case AryPtr: {                // Meeting 2 references?
5279     const TypeAryPtr *tap = t->is_aryptr();
5280     Offset off = meet_offset(tap->offset());
5281     Offset field_off = meet_field_offset(tap->field_offset());
5282     const Type* tm = _ary->meet_speculative(tap->_ary);
5283     const TypeAry* tary = tm->isa_ary();
5284     if (tary == nullptr) {
5285       assert(tm == Type::TOP || tm == Type::BOTTOM, "");
5286       return tm;
5287     }
5288     PTR ptr = meet_ptr(tap->ptr());
5289     int instance_id = meet_instance_id(tap->instance_id());
5290     const TypePtr* speculative = xmeet_speculative(tap);
5291     int depth = meet_inline_depth(tap->inline_depth());
5292 
5293     ciKlass* res_klass = nullptr;
5294     bool res_xk = false;
5295     bool res_flat = false;
5296     bool res_not_flat = false;
5297     bool res_not_null_free = false;
5298     bool res_atomic = false;
5299     const Type* elem = tary->_elem;
5300     if (meet_aryptr(ptr, elem, this, tap, res_klass, res_xk, res_flat, res_not_flat, res_not_null_free, res_atomic) == NOT_SUBTYPE) {
5301       instance_id = InstanceBot;
5302     } else if (this->is_flat() != tap->is_flat()) {
5303       // Meeting flat inline type array with non-flat array. Adjust (field) offset accordingly.
5304       if (tary->_flat) {
5305         // Result is in a flat representation
5306         off = Offset(is_flat() ? offset() : tap->offset());
5307         field_off = is_flat() ? field_offset() : tap->field_offset();
5308       } else if (below_centerline(ptr)) {
5309         // Result is in a non-flat representation
5310         off = Offset(flat_offset()).meet(Offset(tap->flat_offset()));
5311         field_off = (field_off == Offset::top) ? Offset::top : Offset::bottom;
5312       } else if (flat_offset() == tap->flat_offset()) {
5313         off = Offset(!is_flat() ? offset() : tap->offset());
5314         field_off = !is_flat() ? field_offset() : tap->field_offset();
5315       }
5316     }
5317 
5318     ciObject* o = nullptr;             // Assume not constant when done
5319     ciObject* this_oop = const_oop();
5320     ciObject* tap_oop = tap->const_oop();
5321     if (ptr == Constant) {
5322       if (this_oop != nullptr && tap_oop != nullptr &&
5323           this_oop->equals(tap_oop)) {
5324         o = tap_oop;
5325       } else if (above_centerline(_ptr)) {
5326         o = tap_oop;
5327       } else if (above_centerline(tap->_ptr)) {
5328         o = this_oop;
5329       } else {
5330         ptr = NotNull;
5331       }
5332     }
5333     return make(ptr, o, TypeAry::make(elem, tary->_size, tary->_stable, res_flat, res_not_flat, res_not_null_free, res_atomic), res_klass, res_xk, off, field_off, instance_id, speculative, depth);
5334   }
5335 
5336   // All arrays inherit from Object class
5337   case InstPtr: {
5338     const TypeInstPtr *tp = t->is_instptr();
5339     Offset offset = meet_offset(tp->offset());
5340     PTR ptr = meet_ptr(tp->ptr());
5341     int instance_id = meet_instance_id(tp->instance_id());
5342     const TypePtr* speculative = xmeet_speculative(tp);
5343     int depth = meet_inline_depth(tp->inline_depth());
5344     const TypeInterfaces* interfaces = meet_interfaces(tp);
5345     const TypeInterfaces* tp_interfaces = tp->_interfaces;
5346     const TypeInterfaces* this_interfaces = _interfaces;
5347 
5348     switch (ptr) {
5349     case TopPTR:
5350     case AnyNull:                // Fall 'down' to dual of object klass
5351       // For instances when a subclass meets a superclass we fall
5352       // below the centerline when the superclass is exact. We need to
5353       // do the same here.
5354       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) && !tp->klass_is_exact() && !tp->flat_in_array()) {
5355         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
5356       } else {
5357         // cannot subclass, so the meet has to fall badly below the centerline
5358         ptr = NotNull;
5359         instance_id = InstanceBot;
5360         interfaces = this_interfaces->intersection_with(tp_interfaces);
5361         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr, offset, false, instance_id, speculative, depth);
5362       }
5363     case Constant:
5364     case NotNull:
5365     case BotPTR:                // Fall down to object klass
5366       // LCA is object_klass, but if we subclass from the top we can do better
5367       if (above_centerline(tp->ptr())) {
5368         // If 'tp'  is above the centerline and it is Object class
5369         // then we can subclass in the Java class hierarchy.
5370         // For instances when a subclass meets a superclass we fall
5371         // below the centerline when the superclass is exact. We need
5372         // to do the same here.
5373         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) && !tp->klass_is_exact() && !tp->flat_in_array()) {
5374           // that is, my array type is a subtype of 'tp' klass
5375           return make(ptr, (ptr == Constant ? const_oop() : nullptr),
5376                       _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
5377         }
5378       }
5379       // The other case cannot happen, since t cannot be a subtype of an array.
5380       // The meet falls down to Object class below centerline.
5381       if (ptr == Constant) {
5382          ptr = NotNull;
5383       }
5384       if (instance_id > 0) {
5385         instance_id = InstanceBot;
5386       }
5387       interfaces = this_interfaces->intersection_with(tp_interfaces);
5388       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr, offset, false, instance_id, speculative, depth);
5389     default: typerr(t);
5390     }
5391   }
5392   }
5393   return this;                  // Lint noise
5394 }
5395 
5396 
5397 template<class T> TypePtr::MeetResult TypePtr::meet_aryptr(PTR& ptr, const Type*& elem, const T* this_ary, const T* other_ary,
5398                                                            ciKlass*& res_klass, bool& res_xk, bool &res_flat, bool& res_not_flat, bool& res_not_null_free, bool &res_atomic) {
5399   int dummy;
5400   bool this_top_or_bottom = (this_ary->base_element_type(dummy) == Type::TOP || this_ary->base_element_type(dummy) == Type::BOTTOM);
5401   bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
5402   ciKlass* this_klass = this_ary->klass();
5403   ciKlass* other_klass = other_ary->klass();
5404   bool this_xk = this_ary->klass_is_exact();
5405   bool other_xk = other_ary->klass_is_exact();
5406   PTR this_ptr = this_ary->ptr();
5407   PTR other_ptr = other_ary->ptr();
5408   bool this_flat = this_ary->is_flat();
5409   bool this_not_flat = this_ary->is_not_flat();
5410   bool other_flat = other_ary->is_flat();
5411   bool other_not_flat = other_ary->is_not_flat();
5412   bool this_not_null_free = this_ary->is_not_null_free();
5413   bool other_not_null_free = other_ary->is_not_null_free();
5414   bool this_atomic = this_ary->is_atomic();
5415   bool other_atomic = other_ary->is_atomic();
5416   const bool same_nullness = this_ary->is_null_free() == other_ary->is_null_free();
5417   res_klass = nullptr;
5418   MeetResult result = SUBTYPE;
5419   res_flat = this_flat && other_flat;
5420   bool res_null_free = this_ary->is_null_free() && other_ary->is_null_free();
5421   res_not_flat = this_not_flat && other_not_flat;
5422   res_not_null_free = this_not_null_free && other_not_null_free;
5423   res_atomic = this_atomic && other_atomic;
5424 
5425   if (elem->isa_int()) {
5426     // Integral array element types have irrelevant lattice relations.
5427     // It is the klass that determines array layout, not the element type.
5428       if (this_top_or_bottom) {
5429         res_klass = other_klass;
5430       } else if (other_top_or_bottom || other_klass == this_klass) {
5431       res_klass = this_klass;
5432     } else {
5433       // Something like byte[int+] meets char[int+].
5434       // This must fall to bottom, not (int[-128..65535])[int+].
5435       // instance_id = InstanceBot;
5436       elem = Type::BOTTOM;
5437       result = NOT_SUBTYPE;
5438       if (above_centerline(ptr) || ptr == Constant) {
5439         ptr = NotNull;
5440         res_xk = false;
5441         return NOT_SUBTYPE;
5442       }
5443     }
5444   } else {// Non integral arrays.
5445     // Must fall to bottom if exact klasses in upper lattice
5446     // are not equal or super klass is exact.
5447     if ((above_centerline(ptr) || ptr == Constant) && !this_ary->is_same_java_type_as(other_ary) &&
5448         // meet with top[] and bottom[] are processed further down:
5449         !this_top_or_bottom && !other_top_or_bottom &&
5450         // both are exact and not equal:

5452          // 'tap'  is exact and super or unrelated:
5453          (other_xk && !other_ary->is_meet_subtype_of(this_ary)) ||
5454          // 'this' is exact and super or unrelated:
5455          (this_xk && !this_ary->is_meet_subtype_of(other_ary)))) {
5456       if (above_centerline(ptr) || (elem->make_ptr() && above_centerline(elem->make_ptr()->_ptr))) {
5457         elem = Type::BOTTOM;
5458       }
5459       ptr = NotNull;
5460       res_xk = false;
5461       return NOT_SUBTYPE;
5462     }
5463   }
5464 
5465   res_xk = false;
5466   switch (other_ptr) {
5467     case AnyNull:
5468     case TopPTR:
5469       // Compute new klass on demand, do not use tap->_klass
5470       if (below_centerline(this_ptr)) {
5471         res_xk = this_xk;
5472         if (this_ary->is_flat()) {
5473           elem = this_ary->elem();
5474         }
5475       } else {
5476         res_xk = (other_xk || this_xk);
5477       }
5478       break;
5479     case Constant: {
5480       if (this_ptr == Constant && same_nullness) {
5481         // Only exact if same nullness since:
5482         //     null-free [LMyValue <: nullable [LMyValue.
5483         res_xk = true;
5484       } else if (above_centerline(this_ptr)) {
5485         res_xk = true;
5486       } else {
5487         // Only precise for identical arrays
5488         res_xk = this_xk && (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom));
5489         // Even though MyValue is final, [LMyValue is only exact if the array
5490         // is (not) null-free due to null-free [LMyValue <: null-able [LMyValue.
5491         if (res_xk && !res_null_free && !res_not_null_free) {
5492           ptr = NotNull;
5493           res_xk = false;
5494         }
5495       }
5496       break;
5497     }
5498     case NotNull:
5499     case BotPTR:
5500       // Compute new klass on demand, do not use tap->_klass
5501       if (above_centerline(this_ptr)) {
5502         res_xk = other_xk;
5503         if (other_ary->is_flat()) {
5504           elem = other_ary->elem();
5505         }
5506       } else {
5507         res_xk = (other_xk && this_xk) &&
5508                  (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom)); // Only precise for identical arrays
5509         // Even though MyValue is final, [LMyValue is only exact if the array
5510         // is (not) null-free due to null-free [LMyValue <: null-able [LMyValue.
5511         if (res_xk && !res_null_free && !res_not_null_free) {
5512           ptr = NotNull;
5513           res_xk = false;
5514         }
5515       }
5516       break;
5517     default:  {
5518       ShouldNotReachHere();
5519       return result;
5520     }
5521   }
5522   return result;
5523 }
5524 
5525 
5526 //------------------------------xdual------------------------------------------
5527 // Dual: compute field-by-field dual
5528 const Type *TypeAryPtr::xdual() const {
5529   bool xk = _klass_is_exact;
5530   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(), _klass, xk, dual_offset(), dual_field_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
5531 }
5532 
5533 Type::Offset TypeAryPtr::meet_field_offset(const Type::Offset offset) const {
5534   return _field_offset.meet(offset);
5535 }
5536 
5537 //------------------------------dual_offset------------------------------------
5538 Type::Offset TypeAryPtr::dual_field_offset() const {
5539   return _field_offset.dual();
5540 }
5541 
5542 //------------------------------dump2------------------------------------------
5543 #ifndef PRODUCT
5544 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5545   _ary->dump2(d,depth,st);
5546   _interfaces->dump(st);
5547 
5548   switch( _ptr ) {
5549   case Constant:
5550     const_oop()->print(st);
5551     break;
5552   case BotPTR:
5553     if (!WizardMode && !Verbose) {
5554       if( _klass_is_exact ) st->print(":exact");
5555       break;
5556     }
5557   case TopPTR:
5558   case AnyNull:
5559   case NotNull:
5560     st->print(":%s", ptr_msg[_ptr]);
5561     if( _klass_is_exact ) st->print(":exact");
5562     break;
5563   default:
5564     break;
5565   }
5566 
5567   if (is_flat()) {
5568     st->print(":flat");
5569     st->print("(");
5570     _field_offset.dump2(st);
5571     st->print(")");
5572   } else if (is_not_flat()) {
5573     st->print(":not_flat");
5574   }
5575   if (is_null_free()) {
5576     st->print(":null free");
5577   }
5578   if (is_atomic()) {
5579     st->print(":atomic");
5580   }
5581   if (Verbose) {
5582     if (is_not_flat()) {
5583       st->print(":not flat");
5584     }
5585     if (is_not_null_free()) {
5586       st->print(":nullable");
5587     }
5588   }
5589   if (offset() != 0) {
5590     BasicType basic_elem_type = elem()->basic_type();
5591     int header_size = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5592     if( _offset == Offset::top )       st->print("+undefined");
5593     else if( _offset == Offset::bottom )  st->print("+any");
5594     else if( offset() < header_size ) st->print("+%d", offset());
5595     else {
5596       if (basic_elem_type == T_ILLEGAL) {
5597         st->print("+any");
5598       } else {
5599         int elem_size = type2aelembytes(basic_elem_type);
5600         st->print("[%d]", (offset() - header_size)/elem_size);
5601       }
5602     }
5603   }
5604   st->print(" *");
5605   if (_instance_id == InstanceTop)
5606     st->print(",iid=top");
5607   else if (_instance_id != InstanceBot)
5608     st->print(",iid=%d",_instance_id);
5609 
5610   dump_inline_depth(st);
5611   dump_speculative(st);
5612 }
5613 #endif
5614 
5615 bool TypeAryPtr::empty(void) const {
5616   if (_ary->empty())       return true;
5617   // FIXME: Does this belong here? Or in the meet code itself?
5618   if (is_flat() && is_not_flat()) {
5619     return true;
5620   }
5621   return TypeOopPtr::empty();
5622 }
5623 
5624 //------------------------------add_offset-------------------------------------
5625 const TypePtr* TypeAryPtr::add_offset(intptr_t offset) const {
5626   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _field_offset, _instance_id, add_offset_speculative(offset), _inline_depth, _is_autobox_cache);
5627 }
5628 
5629 const TypeAryPtr* TypeAryPtr::with_offset(intptr_t offset) const {
5630   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, Offset(offset), _field_offset, _instance_id, with_offset_speculative(offset), _inline_depth, _is_autobox_cache);
5631 }
5632 
5633 const TypeAryPtr* TypeAryPtr::with_ary(const TypeAry* ary) const {
5634   return make(_ptr, _const_oop, ary, _klass, _klass_is_exact, _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5635 }
5636 
5637 const TypeAryPtr* TypeAryPtr::remove_speculative() const {
5638   if (_speculative == nullptr) {
5639     return this;
5640   }
5641   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
5642   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, _instance_id, nullptr, _inline_depth, _is_autobox_cache);
5643 }
5644 
5645 const Type* TypeAryPtr::cleanup_speculative() const {
5646   if (speculative() == nullptr) {
5647     return this;
5648   }
5649   // Keep speculative part if it contains information about flat-/nullability
5650   const TypeAryPtr* spec_aryptr = speculative()->isa_aryptr();
5651   if (spec_aryptr != nullptr && !above_centerline(spec_aryptr->ptr()) &&
5652       (spec_aryptr->is_not_flat() || spec_aryptr->is_not_null_free())) {
5653     return this;
5654   }
5655   return TypeOopPtr::cleanup_speculative();
5656 }
5657 
5658 const TypePtr* TypeAryPtr::with_inline_depth(int depth) const {
5659   if (!UseInlineDepthForSpeculativeTypes) {
5660     return this;
5661   }
5662   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, _instance_id, _speculative, depth, _is_autobox_cache);
5663 }
5664 
5665 const TypeAryPtr* TypeAryPtr::with_field_offset(int offset) const {
5666   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, Offset(offset), _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5667 }
5668 
5669 const TypePtr* TypeAryPtr::add_field_offset_and_offset(intptr_t offset) const {
5670   int adj = 0;
5671   if (is_flat() && offset != Type::OffsetBot && offset != Type::OffsetTop) {
5672     if (_offset.get() != OffsetBot && _offset.get() != OffsetTop) {
5673       adj = _offset.get();
5674       offset += _offset.get();
5675     }
5676     uint header = arrayOopDesc::base_offset_in_bytes(T_FLAT_ELEMENT);
5677     if (_field_offset.get() != OffsetBot && _field_offset.get() != OffsetTop) {
5678       offset += _field_offset.get();
5679       if (_offset.get() == OffsetBot || _offset.get() == OffsetTop) {
5680         offset += header;
5681       }
5682     }
5683     if (elem()->make_oopptr()->is_inlinetypeptr() && (offset >= (intptr_t)header || offset < 0)) {
5684       // Try to get the field of the inline type array element we are pointing to
5685       ciInlineKlass* vk = elem()->inline_klass();
5686       int shift = flat_log_elem_size();
5687       int mask = (1 << shift) - 1;
5688       intptr_t field_offset = ((offset - header) & mask);
5689       ciField* field = vk->get_field_by_offset(field_offset + vk->payload_offset(), false);
5690       if (field != nullptr || field_offset == vk->null_marker_offset_in_payload()) {
5691         return with_field_offset(field_offset)->add_offset(offset - field_offset - adj);
5692       }
5693     }
5694   }
5695   return add_offset(offset - adj);
5696 }
5697 
5698 // Return offset incremented by field_offset for flat inline type arrays
5699 int TypeAryPtr::flat_offset() const {
5700   int offset = _offset.get();
5701   if (offset != Type::OffsetBot && offset != Type::OffsetTop &&
5702       _field_offset != Offset::bottom && _field_offset != Offset::top) {
5703     offset += _field_offset.get();
5704   }
5705   return offset;
5706 }
5707 
5708 const TypePtr* TypeAryPtr::with_instance_id(int instance_id) const {
5709   assert(is_known_instance(), "should be known");
5710   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, instance_id, _speculative, _inline_depth);
5711 }
5712 
5713 //=============================================================================
5714 
5715 
5716 //------------------------------hash-------------------------------------------
5717 // Type-specific hashing function.
5718 uint TypeNarrowPtr::hash(void) const {
5719   return _ptrtype->hash() + 7;
5720 }
5721 
5722 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
5723   return _ptrtype->singleton();
5724 }
5725 
5726 bool TypeNarrowPtr::empty(void) const {
5727   return _ptrtype->empty();
5728 }
5729 
5730 intptr_t TypeNarrowPtr::get_con() const {
5731   return _ptrtype->get_con();
5732 }
5733 
5734 bool TypeNarrowPtr::eq( const Type *t ) const {
5735   const TypeNarrowPtr* tc = isa_same_narrowptr(t);

5789   case HalfFloatTop:
5790   case HalfFloatCon:
5791   case HalfFloatBot:
5792   case FloatTop:
5793   case FloatCon:
5794   case FloatBot:
5795   case DoubleTop:
5796   case DoubleCon:
5797   case DoubleBot:
5798   case AnyPtr:
5799   case RawPtr:
5800   case OopPtr:
5801   case InstPtr:
5802   case AryPtr:
5803   case MetadataPtr:
5804   case KlassPtr:
5805   case InstKlassPtr:
5806   case AryKlassPtr:
5807   case NarrowOop:
5808   case NarrowKlass:

5809   case Bottom:                  // Ye Olde Default
5810     return Type::BOTTOM;
5811   case Top:
5812     return this;
5813 
5814   default:                      // All else is a mistake
5815     typerr(t);
5816 
5817   } // End of switch
5818 
5819   return this;
5820 }
5821 
5822 #ifndef PRODUCT
5823 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5824   _ptrtype->dump2(d, depth, st);
5825 }
5826 #endif
5827 
5828 const TypeNarrowOop *TypeNarrowOop::BOTTOM;

5872     return (one == two) && TypePtr::eq(t);
5873   } else {
5874     return one->equals(two) && TypePtr::eq(t);
5875   }
5876 }
5877 
5878 //------------------------------hash-------------------------------------------
5879 // Type-specific hashing function.
5880 uint TypeMetadataPtr::hash(void) const {
5881   return
5882     (metadata() ? metadata()->hash() : 0) +
5883     TypePtr::hash();
5884 }
5885 
5886 //------------------------------singleton--------------------------------------
5887 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5888 // constants
5889 bool TypeMetadataPtr::singleton(void) const {
5890   // detune optimizer to not generate constant metadata + constant offset as a constant!
5891   // TopPTR, Null, AnyNull, Constant are all singletons
5892   return (offset() == 0) && !below_centerline(_ptr);
5893 }
5894 
5895 //------------------------------add_offset-------------------------------------
5896 const TypePtr* TypeMetadataPtr::add_offset( intptr_t offset ) const {
5897   return make( _ptr, _metadata, xadd_offset(offset));
5898 }
5899 
5900 //-----------------------------filter------------------------------------------
5901 // Do not allow interface-vs.-noninterface joins to collapse to top.
5902 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
5903   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
5904   if (ft == nullptr || ft->empty())
5905     return Type::TOP;           // Canonical empty value
5906   return ft;
5907 }
5908 
5909  //------------------------------get_con----------------------------------------
5910 intptr_t TypeMetadataPtr::get_con() const {
5911   assert( _ptr == Null || _ptr == Constant, "" );
5912   assert(offset() >= 0, "");
5913 
5914   if (offset() != 0) {
5915     // After being ported to the compiler interface, the compiler no longer
5916     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5917     // to a handle at compile time.  This handle is embedded in the generated
5918     // code and dereferenced at the time the nmethod is made.  Until that time,
5919     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5920     // have access to the addresses!).  This does not seem to currently happen,
5921     // but this assertion here is to help prevent its occurrence.
5922     tty->print_cr("Found oop constant with non-zero offset");
5923     ShouldNotReachHere();
5924   }
5925 
5926   return (intptr_t)metadata()->constant_encoding();
5927 }
5928 
5929 //------------------------------cast_to_ptr_type-------------------------------
5930 const TypeMetadataPtr* TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
5931   if( ptr == _ptr ) return this;
5932   return make(ptr, metadata(), _offset);
5933 }
5934 

5948   case HalfFloatBot:
5949   case FloatTop:
5950   case FloatCon:
5951   case FloatBot:
5952   case DoubleTop:
5953   case DoubleCon:
5954   case DoubleBot:
5955   case NarrowOop:
5956   case NarrowKlass:
5957   case Bottom:                  // Ye Olde Default
5958     return Type::BOTTOM;
5959   case Top:
5960     return this;
5961 
5962   default:                      // All else is a mistake
5963     typerr(t);
5964 
5965   case AnyPtr: {
5966     // Found an AnyPtr type vs self-OopPtr type
5967     const TypePtr *tp = t->is_ptr();
5968     Offset offset = meet_offset(tp->offset());
5969     PTR ptr = meet_ptr(tp->ptr());
5970     switch (tp->ptr()) {
5971     case Null:
5972       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5973       // else fall through:
5974     case TopPTR:
5975     case AnyNull: {
5976       return make(ptr, _metadata, offset);
5977     }
5978     case BotPTR:
5979     case NotNull:
5980       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5981     default: typerr(t);
5982     }
5983   }
5984 
5985   case RawPtr:
5986   case KlassPtr:
5987   case InstKlassPtr:
5988   case AryKlassPtr:
5989   case OopPtr:
5990   case InstPtr:
5991   case AryPtr:
5992     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
5993 
5994   case MetadataPtr: {
5995     const TypeMetadataPtr *tp = t->is_metadataptr();
5996     Offset offset = meet_offset(tp->offset());
5997     PTR tptr = tp->ptr();
5998     PTR ptr = meet_ptr(tptr);
5999     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
6000     if (tptr == TopPTR || _ptr == TopPTR ||
6001         metadata()->equals(tp->metadata())) {
6002       return make(ptr, md, offset);
6003     }
6004     // metadata is different
6005     if( ptr == Constant ) {  // Cannot be equal constants, so...
6006       if( tptr == Constant && _ptr != Constant)  return t;
6007       if( _ptr == Constant && tptr != Constant)  return this;
6008       ptr = NotNull;            // Fall down in lattice
6009     }
6010     return make(ptr, nullptr, offset);
6011     break;
6012   }
6013   } // End of switch
6014   return this;                  // Return the double constant
6015 }
6016 
6017 
6018 //------------------------------xdual------------------------------------------
6019 // Dual of a pure metadata pointer.
6020 const Type *TypeMetadataPtr::xdual() const {
6021   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
6022 }
6023 
6024 //------------------------------dump2------------------------------------------
6025 #ifndef PRODUCT
6026 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
6027   st->print("metadataptr:%s", ptr_msg[_ptr]);
6028   if( metadata() ) st->print(INTPTR_FORMAT, p2i(metadata()));
6029   switch (offset()) {
6030   case OffsetTop: st->print("+top"); break;
6031   case OffsetBot: st->print("+any"); break;
6032   case         0: break;
6033   default:        st->print("+%d",offset()); break;
6034   }
6035 }
6036 #endif
6037 
6038 
6039 //=============================================================================
6040 // Convenience common pre-built type.
6041 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
6042 
6043 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, Offset offset):
6044   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
6045 }
6046 
6047 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
6048   return make(Constant, m, Offset(0));
6049 }
6050 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
6051   return make(Constant, m, Offset(0));
6052 }
6053 
6054 //------------------------------make-------------------------------------------
6055 // Create a meta data constant
6056 const TypeMetadataPtr* TypeMetadataPtr::make(PTR ptr, ciMetadata* m, Offset offset) {
6057   assert(m == nullptr || !m->is_klass(), "wrong type");
6058   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
6059 }
6060 
6061 
6062 const TypeKlassPtr* TypeAryPtr::as_klass_type(bool try_for_exact) const {
6063   const Type* elem = _ary->_elem;
6064   bool xk = klass_is_exact();
6065   if (elem->make_oopptr() != nullptr) {
6066     elem = elem->make_oopptr()->as_klass_type(try_for_exact);
6067     if (elem->is_klassptr()->klass_is_exact() &&
6068         // Even though MyValue is final, [LMyValue is only exact if the array
6069         // is (not) null-free due to null-free [LMyValue <: null-able [LMyValue.
6070         // TODO 8350865 If we know that the array can't be null-free, it's allowed to be exact, right?
6071         // If so, we should add '|| is_not_null_free()'
6072         (is_null_free() || !_ary->_elem->make_oopptr()->is_inlinetypeptr())) {
6073       xk = true;
6074     }
6075   }
6076   return TypeAryKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, elem, klass(), Offset(0), is_not_flat(), is_not_null_free(), is_flat(), is_null_free(), is_atomic(), is_flat() || is_null_free());
6077 }
6078 
6079 const TypeKlassPtr* TypeKlassPtr::make(ciKlass* klass, InterfaceHandling interface_handling) {
6080   if (klass->is_instance_klass()) {
6081     return TypeInstKlassPtr::make(klass, interface_handling);
6082   }
6083   return TypeAryKlassPtr::make(klass, interface_handling);
6084 }
6085 
6086 const TypeKlassPtr* TypeKlassPtr::make(PTR ptr, ciKlass* klass, Offset offset, InterfaceHandling interface_handling) {
6087   if (klass->is_instance_klass()) {
6088     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
6089     return TypeInstKlassPtr::make(ptr, klass, interfaces, offset);
6090   }
6091   return TypeAryKlassPtr::make(ptr, klass, offset, interface_handling);
6092 }
6093 
6094 TypeKlassPtr::TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, Offset offset)


6095   : TypePtr(t, ptr, offset), _klass(klass), _interfaces(interfaces) {
6096   assert(klass == nullptr || !klass->is_loaded() || (klass->is_instance_klass() && !klass->is_interface()) ||
6097          klass->is_type_array_klass() || klass->is_flat_array_klass() || !klass->as_obj_array_klass()->base_element_klass()->is_interface(), "no interface here");
6098 }
6099 
6100 // Is there a single ciKlass* that can represent that type?
6101 ciKlass* TypeKlassPtr::exact_klass_helper() const {
6102   assert(_klass->is_instance_klass() && !_klass->is_interface(), "No interface");
6103   if (_interfaces->empty()) {
6104     return _klass;
6105   }
6106   if (_klass != ciEnv::current()->Object_klass()) {
6107     if (_interfaces->eq(_klass->as_instance_klass())) {
6108       return _klass;
6109     }
6110     return nullptr;
6111   }
6112   return _interfaces->exact_klass();
6113 }
6114 
6115 //------------------------------eq---------------------------------------------
6116 // Structural equality check for Type representations
6117 bool TypeKlassPtr::eq(const Type *t) const {
6118   const TypeKlassPtr *p = t->is_klassptr();
6119   return
6120     _interfaces->eq(p->_interfaces) &&
6121     TypePtr::eq(p);
6122 }
6123 
6124 //------------------------------hash-------------------------------------------
6125 // Type-specific hashing function.
6126 uint TypeKlassPtr::hash(void) const {
6127   return TypePtr::hash() + _interfaces->hash();
6128 }
6129 
6130 //------------------------------singleton--------------------------------------
6131 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
6132 // constants
6133 bool TypeKlassPtr::singleton(void) const {
6134   // detune optimizer to not generate constant klass + constant offset as a constant!
6135   // TopPTR, Null, AnyNull, Constant are all singletons
6136   return (offset() == 0) && !below_centerline(_ptr);
6137 }
6138 
6139 // Do not allow interface-vs.-noninterface joins to collapse to top.
6140 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
6141   // logic here mirrors the one from TypeOopPtr::filter. See comments
6142   // there.
6143   const Type* ft = join_helper(kills, include_speculative);
6144 
6145   if (ft->empty()) {
6146     return Type::TOP;           // Canonical empty value
6147   }
6148 
6149   return ft;
6150 }
6151 
6152 const TypeInterfaces* TypeKlassPtr::meet_interfaces(const TypeKlassPtr* other) const {
6153   if (above_centerline(_ptr) && above_centerline(other->_ptr)) {
6154     return _interfaces->union_with(other->_interfaces);
6155   } else if (above_centerline(_ptr) && !above_centerline(other->_ptr)) {
6156     return other->_interfaces;
6157   } else if (above_centerline(other->_ptr) && !above_centerline(_ptr)) {
6158     return _interfaces;
6159   }
6160   return _interfaces->intersection_with(other->_interfaces);
6161 }
6162 
6163 //------------------------------get_con----------------------------------------
6164 intptr_t TypeKlassPtr::get_con() const {
6165   assert( _ptr == Null || _ptr == Constant, "" );
6166   assert( offset() >= 0, "" );
6167 
6168   if (offset() != 0) {
6169     // After being ported to the compiler interface, the compiler no longer
6170     // directly manipulates the addresses of oops.  Rather, it only has a pointer
6171     // to a handle at compile time.  This handle is embedded in the generated
6172     // code and dereferenced at the time the nmethod is made.  Until that time,
6173     // it is not reasonable to do arithmetic with the addresses of oops (we don't
6174     // have access to the addresses!).  This does not seem to currently happen,
6175     // but this assertion here is to help prevent its occurrence.
6176     tty->print_cr("Found oop constant with non-zero offset");
6177     ShouldNotReachHere();
6178   }
6179 
6180   ciKlass* k = exact_klass();
6181 
6182   return (intptr_t)k->constant_encoding();
6183 }
6184 
6185 //------------------------------dump2------------------------------------------
6186 // Dump Klass Type
6187 #ifndef PRODUCT
6188 void TypeKlassPtr::dump2(Dict & d, uint depth, outputStream *st) const {

6192   case NotNull:
6193     {
6194       const char *name = klass()->name()->as_utf8();
6195       if (name) {
6196         st->print("%s: " INTPTR_FORMAT, name, p2i(klass()));
6197       } else {
6198         ShouldNotReachHere();
6199       }
6200       _interfaces->dump(st);
6201     }
6202   case BotPTR:
6203     if (!WizardMode && !Verbose && _ptr != Constant) break;
6204   case TopPTR:
6205   case AnyNull:
6206     st->print(":%s", ptr_msg[_ptr]);
6207     if (_ptr == Constant) st->print(":exact");
6208     break;
6209   default:
6210     break;
6211   }
6212   if (Verbose) {
6213     if (isa_instklassptr() && is_instklassptr()->flat_in_array()) st->print(":flat in array");



6214   }
6215   _offset.dump2(st);
6216   st->print(" *");
6217 
6218   if (flat_in_array() && !klass()->is_inlinetype()) {
6219     st->print(" (flat in array)");
6220   }
6221 }
6222 #endif
6223 
6224 //=============================================================================
6225 // Convenience common pre-built types.
6226 
6227 // Not-null object klass or below
6228 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT;
6229 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT_OR_NULL;
6230 
6231 bool TypeInstKlassPtr::eq(const Type *t) const {
6232   const TypeKlassPtr *p = t->is_klassptr();
6233   return
6234     klass()->equals(p->klass()) &&
6235     flat_in_array() == p->flat_in_array() &&
6236     TypeKlassPtr::eq(p);
6237 }
6238 
6239 uint TypeInstKlassPtr::hash(void) const {
6240   return klass()->hash() + TypeKlassPtr::hash() + (uint)flat_in_array();
6241 }
6242 
6243 const TypeInstKlassPtr *TypeInstKlassPtr::make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, Offset offset, bool flat_in_array) {
6244   flat_in_array = flat_in_array || k->maybe_flat_in_array();
6245 
6246   TypeInstKlassPtr *r =
6247     (TypeInstKlassPtr*)(new TypeInstKlassPtr(ptr, k, interfaces, offset, flat_in_array))->hashcons();
6248 
6249   return r;
6250 }
6251 
6252 //------------------------------add_offset-------------------------------------
6253 // Access internals of klass object
6254 const TypePtr *TypeInstKlassPtr::add_offset( intptr_t offset ) const {
6255   return make(_ptr, klass(), _interfaces, xadd_offset(offset), flat_in_array());
6256 }
6257 
6258 const TypeInstKlassPtr* TypeInstKlassPtr::with_offset(intptr_t offset) const {
6259   return make(_ptr, klass(), _interfaces, Offset(offset), flat_in_array());
6260 }
6261 
6262 //------------------------------cast_to_ptr_type-------------------------------
6263 const TypeInstKlassPtr* TypeInstKlassPtr::cast_to_ptr_type(PTR ptr) const {
6264   assert(_base == InstKlassPtr, "subclass must override cast_to_ptr_type");
6265   if( ptr == _ptr ) return this;
6266   return make(ptr, _klass, _interfaces, _offset, flat_in_array());
6267 }
6268 
6269 
6270 bool TypeInstKlassPtr::must_be_exact() const {
6271   if (!_klass->is_loaded())  return false;
6272   ciInstanceKlass* ik = _klass->as_instance_klass();
6273   if (ik->is_final())  return true;  // cannot clear xk
6274   return false;
6275 }
6276 
6277 //-----------------------------cast_to_exactness-------------------------------
6278 const TypeKlassPtr* TypeInstKlassPtr::cast_to_exactness(bool klass_is_exact) const {
6279   if (klass_is_exact == (_ptr == Constant)) return this;
6280   if (must_be_exact()) return this;
6281   ciKlass* k = klass();
6282   return make(klass_is_exact ? Constant : NotNull, k, _interfaces, _offset, flat_in_array());
6283 }
6284 
6285 
6286 //-----------------------------as_instance_type--------------------------------
6287 // Corresponding type for an instance of the given class.
6288 // It will be NotNull, and exact if and only if the klass type is exact.
6289 const TypeOopPtr* TypeInstKlassPtr::as_instance_type(bool klass_change) const {
6290   ciKlass* k = klass();
6291   bool xk = klass_is_exact();
6292   Compile* C = Compile::current();
6293   Dependencies* deps = C->dependencies();
6294   assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
6295   // Element is an instance
6296   bool klass_is_exact = false;
6297   const TypeInterfaces* interfaces = _interfaces;
6298   if (k->is_loaded()) {
6299     // Try to set klass_is_exact.
6300     ciInstanceKlass* ik = k->as_instance_klass();
6301     klass_is_exact = ik->is_final();
6302     if (!klass_is_exact && klass_change
6303         && deps != nullptr && UseUniqueSubclasses) {
6304       ciInstanceKlass* sub = ik->unique_concrete_subklass();
6305       if (sub != nullptr) {
6306         if (_interfaces->eq(sub)) {
6307           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
6308           k = ik = sub;
6309           xk = sub->is_final();
6310         }
6311       }
6312     }
6313   }
6314   return TypeInstPtr::make(TypePtr::BotPTR, k, interfaces, xk, nullptr, Offset(0), flat_in_array() && !klass()->is_inlinetype());
6315 }
6316 
6317 //------------------------------xmeet------------------------------------------
6318 // Compute the MEET of two types, return a new Type object.
6319 const Type    *TypeInstKlassPtr::xmeet( const Type *t ) const {
6320   // Perform a fast test for common case; meeting the same types together.
6321   if( this == t ) return this;  // Meeting same type-rep?
6322 
6323   // Current "this->_base" is Pointer
6324   switch (t->base()) {          // switch on original type
6325 
6326   case Int:                     // Mixing ints & oops happens when javac
6327   case Long:                    // reuses local variables
6328   case HalfFloatTop:
6329   case HalfFloatCon:
6330   case HalfFloatBot:
6331   case FloatTop:
6332   case FloatCon:
6333   case FloatBot:
6334   case DoubleTop:
6335   case DoubleCon:
6336   case DoubleBot:
6337   case NarrowOop:
6338   case NarrowKlass:
6339   case Bottom:                  // Ye Olde Default
6340     return Type::BOTTOM;
6341   case Top:
6342     return this;
6343 
6344   default:                      // All else is a mistake
6345     typerr(t);
6346 
6347   case AnyPtr: {                // Meeting to AnyPtrs
6348     // Found an AnyPtr type vs self-KlassPtr type
6349     const TypePtr *tp = t->is_ptr();
6350     Offset offset = meet_offset(tp->offset());
6351     PTR ptr = meet_ptr(tp->ptr());
6352     switch (tp->ptr()) {
6353     case TopPTR:
6354       return this;
6355     case Null:
6356       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6357     case AnyNull:
6358       return make(ptr, klass(), _interfaces, offset, flat_in_array());
6359     case BotPTR:
6360     case NotNull:
6361       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6362     default: typerr(t);
6363     }
6364   }
6365 
6366   case RawPtr:
6367   case MetadataPtr:
6368   case OopPtr:
6369   case AryPtr:                  // Meet with AryPtr
6370   case InstPtr:                 // Meet with InstPtr
6371       return TypePtr::BOTTOM;
6372 
6373   //
6374   //             A-top         }
6375   //           /   |   \       }  Tops
6376   //       B-top A-any C-top   }
6377   //          | /  |  \ |      }  Any-nulls
6378   //       B-any   |   C-any   }
6379   //          |    |    |
6380   //       B-con A-con C-con   } constants; not comparable across classes
6381   //          |    |    |
6382   //       B-not   |   C-not   }
6383   //          | \  |  / |      }  not-nulls
6384   //       B-bot A-not C-bot   }
6385   //           \   |   /       }  Bottoms
6386   //             A-bot         }
6387   //
6388 
6389   case InstKlassPtr: {  // Meet two KlassPtr types
6390     const TypeInstKlassPtr *tkls = t->is_instklassptr();
6391     Offset  off     = meet_offset(tkls->offset());
6392     PTR  ptr     = meet_ptr(tkls->ptr());
6393     const TypeInterfaces* interfaces = meet_interfaces(tkls);
6394 
6395     ciKlass* res_klass = nullptr;
6396     bool res_xk = false;
6397     bool res_flat_in_array = false;
6398     switch(meet_instptr(ptr, interfaces, this, tkls, res_klass, res_xk, res_flat_in_array)) {
6399       case UNLOADED:
6400         ShouldNotReachHere();
6401       case SUBTYPE:
6402       case NOT_SUBTYPE:
6403       case LCA:
6404       case QUICK: {
6405         assert(res_xk == (ptr == Constant), "");
6406         const Type* res = make(ptr, res_klass, interfaces, off, res_flat_in_array);
6407         return res;
6408       }
6409       default:
6410         ShouldNotReachHere();
6411     }
6412   } // End of case KlassPtr
6413   case AryKlassPtr: {                // All arrays inherit from Object class
6414     const TypeAryKlassPtr *tp = t->is_aryklassptr();
6415     Offset offset = meet_offset(tp->offset());
6416     PTR ptr = meet_ptr(tp->ptr());
6417     const TypeInterfaces* interfaces = meet_interfaces(tp);
6418     const TypeInterfaces* tp_interfaces = tp->_interfaces;
6419     const TypeInterfaces* this_interfaces = _interfaces;
6420 
6421     switch (ptr) {
6422     case TopPTR:
6423     case AnyNull:                // Fall 'down' to dual of object klass
6424       // For instances when a subclass meets a superclass we fall
6425       // below the centerline when the superclass is exact. We need to
6426       // do the same here.
6427       if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces->contains(this_interfaces) && !klass_is_exact()) {
6428         return TypeAryKlassPtr::make(ptr, tp->elem(), tp->klass(), offset, tp->is_not_flat(), tp->is_not_null_free(), tp->is_flat(), tp->is_null_free(), tp->is_atomic(), tp->is_refined_type());
6429       } else {
6430         // cannot subclass, so the meet has to fall badly below the centerline
6431         ptr = NotNull;
6432         interfaces = _interfaces->intersection_with(tp->_interfaces);
6433         return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset, false);
6434       }
6435     case Constant:
6436     case NotNull:
6437     case BotPTR:                // Fall down to object klass
6438       // LCA is object_klass, but if we subclass from the top we can do better
6439       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
6440         // If 'this' (InstPtr) is above the centerline and it is Object class
6441         // then we can subclass in the Java class hierarchy.
6442         // For instances when a subclass meets a superclass we fall
6443         // below the centerline when the superclass is exact. We need
6444         // to do the same here.
6445         if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces->contains(this_interfaces) && !klass_is_exact()) {
6446           // that is, tp's array type is a subtype of my klass
6447           return TypeAryKlassPtr::make(ptr, tp->elem(), tp->klass(), offset, tp->is_not_flat(), tp->is_not_null_free(), tp->is_flat(), tp->is_null_free(), tp->is_atomic(), tp->is_refined_type());

6448         }
6449       }
6450       // The other case cannot happen, since I cannot be a subtype of an array.
6451       // The meet falls down to Object class below centerline.
6452       if( ptr == Constant )
6453          ptr = NotNull;
6454       interfaces = this_interfaces->intersection_with(tp_interfaces);
6455       return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset, false);
6456     default: typerr(t);
6457     }
6458   }
6459 
6460   } // End of switch
6461   return this;                  // Return the double constant
6462 }
6463 
6464 //------------------------------xdual------------------------------------------
6465 // Dual: compute field-by-field dual
6466 const Type    *TypeInstKlassPtr::xdual() const {
6467   return new TypeInstKlassPtr(dual_ptr(), klass(), _interfaces, dual_offset(), flat_in_array());
6468 }
6469 
6470 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
6471   static_assert(std::is_base_of<T2, T1>::value, "");
6472   if (!this_one->is_loaded() || !other->is_loaded()) {
6473     return false;
6474   }
6475   if (!this_one->is_instance_type(other)) {
6476     return false;
6477   }
6478 
6479   if (!other_exact) {
6480     return false;
6481   }
6482 
6483   if (other->klass()->equals(ciEnv::current()->Object_klass()) && other->_interfaces->empty()) {
6484     return true;
6485   }
6486 
6487   return this_one->klass()->is_subtype_of(other->klass()) && this_one->_interfaces->contains(other->_interfaces);

6561   const TypeInterfaces* interfaces = _interfaces;
6562   if (k->is_loaded()) {
6563     ciInstanceKlass* ik = k->as_instance_klass();
6564     bool klass_is_exact = ik->is_final();
6565     if (!klass_is_exact &&
6566         deps != nullptr) {
6567       ciInstanceKlass* sub = ik->unique_concrete_subklass();
6568       if (sub != nullptr) {
6569         if (_interfaces->eq(sub)) {
6570           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
6571           k = ik = sub;
6572           klass_is_exact = sub->is_final();
6573           return TypeKlassPtr::make(klass_is_exact ? Constant : _ptr, k, _offset);
6574         }
6575       }
6576     }
6577   }
6578   return this;
6579 }
6580 
6581 bool TypeInstKlassPtr::can_be_inline_array() const {
6582   return _klass->equals(ciEnv::current()->Object_klass()) && TypeAryKlassPtr::_array_interfaces->contains(_interfaces);
6583 }
6584 
6585 bool TypeAryKlassPtr::can_be_inline_array() const {
6586   return _elem->isa_instklassptr() && _elem->is_instklassptr()->_klass->can_be_inline_klass();
6587 }
6588 
6589 bool TypeInstPtr::can_be_inline_array() const {
6590   return _klass->equals(ciEnv::current()->Object_klass()) && TypeAryPtr::_array_interfaces->contains(_interfaces);
6591 }
6592 
6593 bool TypeAryPtr::can_be_inline_array() const {
6594   return elem()->make_ptr() && elem()->make_ptr()->isa_instptr() && elem()->make_ptr()->is_instptr()->_klass->can_be_inline_klass();
6595 }
6596 
6597 const TypeAryKlassPtr *TypeAryKlassPtr::make(PTR ptr, const Type* elem, ciKlass* k, Offset offset, bool not_flat, bool not_null_free, bool flat, bool null_free, bool atomic, bool refined_type) {
6598   return (TypeAryKlassPtr*)(new TypeAryKlassPtr(ptr, elem, k, offset, not_flat, not_null_free, flat, null_free, atomic, refined_type))->hashcons();
6599 }
6600 
6601 const TypeAryKlassPtr* TypeAryKlassPtr::make(PTR ptr, ciKlass* k, Offset offset, InterfaceHandling interface_handling, bool not_flat, bool not_null_free, bool flat, bool null_free, bool atomic, bool refined_type) {
6602   if (k->is_obj_array_klass()) {
6603     // Element is an object array. Recursively call ourself.
6604     ciKlass* eklass = k->as_obj_array_klass()->element_klass();
6605     const TypeKlassPtr* etype = TypeKlassPtr::make(eklass, interface_handling)->cast_to_exactness(false);
6606     return TypeAryKlassPtr::make(ptr, etype, nullptr, offset, not_flat, not_null_free, flat, null_free, atomic, refined_type);
6607   } else if (k->is_type_array_klass()) {
6608     // Element is an typeArray
6609     const Type* etype = get_const_basic_type(k->as_type_array_klass()->element_type());
6610     return TypeAryKlassPtr::make(ptr, etype, k, offset, not_flat, not_null_free, flat, null_free, atomic);
6611   } else if (k->is_flat_array_klass()) {
6612     ciKlass* eklass = k->as_flat_array_klass()->element_klass();
6613     const TypeKlassPtr* etype = TypeKlassPtr::make(eklass, interface_handling)->cast_to_exactness(false);
6614     return TypeAryKlassPtr::make(ptr, etype, k, offset, not_flat, not_null_free, flat, null_free, atomic, refined_type);
6615   } else {
6616     ShouldNotReachHere();
6617     return nullptr;
6618   }
6619 }
6620 
6621 const TypeAryKlassPtr* TypeAryKlassPtr::make(PTR ptr, ciKlass* k, Offset offset, InterfaceHandling interface_handling, bool refined_type) {
6622   bool flat = k->is_flat_array_klass();
6623   bool null_free = k->as_array_klass()->is_elem_null_free();
6624   bool atomic = k->as_array_klass()->is_elem_atomic();
6625 
6626   bool not_inline = k->is_type_array_klass() || !k->as_array_klass()->element_klass()->can_be_inline_klass(false);
6627   bool not_null_free = (ptr == Constant) ? !null_free : not_inline;
6628   bool not_flat = (ptr == Constant) ? !flat : (!UseArrayFlattening || not_inline ||
6629                    (k->as_array_klass()->element_klass() != nullptr &&
6630                     k->as_array_klass()->element_klass()->is_inlinetype() &&
6631                    !k->as_array_klass()->element_klass()->maybe_flat_in_array()));
6632 
6633   return TypeAryKlassPtr::make(ptr, k, offset, interface_handling, not_flat, not_null_free, flat, null_free, atomic, refined_type);
6634 }
6635 
6636 const TypeAryKlassPtr* TypeAryKlassPtr::make(ciKlass* klass, InterfaceHandling interface_handling, bool refined_type) {
6637   return TypeAryKlassPtr::make(Constant, klass, Offset(0), interface_handling, refined_type);
6638 }
6639 
6640 // Get the (non-)refined array klass ptr
6641 const TypeAryKlassPtr* TypeAryKlassPtr::cast_to_refined_array_klass_ptr(bool refined) const {
6642   if ((refined == is_refined_type()) || !klass_is_exact() || (!exact_klass()->is_obj_array_klass() && !exact_klass()->is_flat_array_klass())) {
6643     return this;
6644   }
6645   ciKlass* eklass = elem()->is_klassptr()->exact_klass_helper();
6646   if (elem()->isa_aryklassptr()) {
6647     eklass = exact_klass()->as_obj_array_klass()->element_klass();
6648   }
6649   ciKlass* array_klass = ciArrayKlass::make(eklass, eklass->is_inlinetype() ? is_null_free() : false, eklass->is_inlinetype() ? is_atomic() : true, refined);
6650   return make(_ptr, array_klass, Offset(0), trust_interfaces, refined);
6651 }
6652 
6653 //------------------------------eq---------------------------------------------
6654 // Structural equality check for Type representations
6655 bool TypeAryKlassPtr::eq(const Type *t) const {
6656   const TypeAryKlassPtr *p = t->is_aryklassptr();
6657   return
6658     _elem == p->_elem &&  // Check array
6659     _flat == p->_flat &&
6660     _not_flat == p->_not_flat &&
6661     _null_free == p->_null_free &&
6662     _not_null_free == p->_not_null_free &&
6663     _atomic == p->_atomic &&
6664     _refined_type == p->_refined_type &&
6665     TypeKlassPtr::eq(p);  // Check sub-parts
6666 }
6667 
6668 //------------------------------hash-------------------------------------------
6669 // Type-specific hashing function.
6670 uint TypeAryKlassPtr::hash(void) const {
6671   return (uint)(uintptr_t)_elem + TypeKlassPtr::hash() + (uint)(_not_flat ? 43 : 0) +
6672       (uint)(_not_null_free ? 44 : 0) + (uint)(_flat ? 45 : 0) + (uint)(_null_free ? 46 : 0)  + (uint)(_atomic ? 47 : 0) + (uint)(_refined_type ? 48 : 0);
6673 }
6674 
6675 //----------------------compute_klass------------------------------------------
6676 // Compute the defining klass for this class
6677 ciKlass* TypeAryPtr::compute_klass() const {
6678   // Compute _klass based on element type.
6679   ciKlass* k_ary = nullptr;
6680   const TypeInstPtr *tinst;
6681   const TypeAryPtr *tary;
6682   const Type* el = elem();
6683   if (el->isa_narrowoop()) {
6684     el = el->make_ptr();
6685   }
6686 
6687   // Get element klass
6688   if (is_flat() && el->is_inlinetypeptr()) {
6689     // Klass is required by TypeAryPtr::flat_layout_helper() and others
6690     if (el->inline_klass() != nullptr) {
6691       // TODO 8350865 We assume atomic if the atomic layout is available, use is_atomic() here
6692       bool atomic = is_null_free() ? el->inline_klass()->has_atomic_layout() : el->inline_klass()->has_nullable_atomic_layout();
6693       k_ary = ciArrayKlass::make(el->inline_klass(), is_null_free(), atomic, true);
6694     }
6695   } else if ((tinst = el->isa_instptr()) != nullptr) {
6696     // Leave k_ary at nullptr.
6697   } else if ((tary = el->isa_aryptr()) != nullptr) {
6698     // Leave k_ary at nullptr.
6699   } else if ((el->base() == Type::Top) ||
6700              (el->base() == Type::Bottom)) {
6701     // element type of Bottom occurs from meet of basic type
6702     // and object; Top occurs when doing join on Bottom.
6703     // Leave k_ary at null.
6704   } else {
6705     assert(!el->isa_int(), "integral arrays must be pre-equipped with a class");
6706     // Compute array klass directly from basic type
6707     k_ary = ciTypeArrayKlass::make(el->basic_type());
6708   }
6709   return k_ary;
6710 }
6711 
6712 //------------------------------klass------------------------------------------
6713 // Return the defining klass for this class
6714 ciKlass* TypeAryPtr::klass() const {
6715   if( _klass ) return _klass;   // Return cached value, if possible
6716 
6717   // Oops, need to compute _klass and cache it
6718   ciKlass* k_ary = compute_klass();

6726     // type TypeAryPtr::OOPS.  This Type is shared between all
6727     // active compilations.  However, the ciKlass which represents
6728     // this Type is *not* shared between compilations, so caching
6729     // this value would result in fetching a dangling pointer.
6730     //
6731     // Recomputing the underlying ciKlass for each request is
6732     // a bit less efficient than caching, but calls to
6733     // TypeAryPtr::OOPS->klass() are not common enough to matter.
6734     ((TypeAryPtr*)this)->_klass = k_ary;
6735   }
6736   return k_ary;
6737 }
6738 
6739 // Is there a single ciKlass* that can represent that type?
6740 ciKlass* TypeAryPtr::exact_klass_helper() const {
6741   if (_ary->_elem->make_ptr() && _ary->_elem->make_ptr()->isa_oopptr()) {
6742     ciKlass* k = _ary->_elem->make_ptr()->is_oopptr()->exact_klass_helper();
6743     if (k == nullptr) {
6744       return nullptr;
6745     }
6746     k = ciArrayKlass::make(k, is_null_free(), is_atomic(), is_flat() || is_null_free());
6747     return k;
6748   }
6749 
6750   return klass();
6751 }
6752 
6753 const Type* TypeAryPtr::base_element_type(int& dims) const {
6754   const Type* elem = this->elem();
6755   dims = 1;
6756   while (elem->make_ptr() && elem->make_ptr()->isa_aryptr()) {
6757     elem = elem->make_ptr()->is_aryptr()->elem();
6758     dims++;
6759   }
6760   return elem;
6761 }
6762 
6763 //------------------------------add_offset-------------------------------------
6764 // Access internals of klass object
6765 const TypePtr* TypeAryKlassPtr::add_offset(intptr_t offset) const {
6766   return make(_ptr, elem(), klass(), xadd_offset(offset), is_not_flat(), is_not_null_free(), _flat, _null_free, _atomic, _refined_type);
6767 }
6768 
6769 const TypeAryKlassPtr* TypeAryKlassPtr::with_offset(intptr_t offset) const {
6770   return make(_ptr, elem(), klass(), Offset(offset), is_not_flat(), is_not_null_free(), _flat, _null_free, _atomic, _refined_type);
6771 }
6772 
6773 //------------------------------cast_to_ptr_type-------------------------------
6774 const TypeAryKlassPtr* TypeAryKlassPtr::cast_to_ptr_type(PTR ptr) const {
6775   assert(_base == AryKlassPtr, "subclass must override cast_to_ptr_type");
6776   if (ptr == _ptr) return this;
6777   return make(ptr, elem(), _klass, _offset, is_not_flat(), is_not_null_free(), _flat, _null_free, _atomic, _refined_type);
6778 }
6779 
6780 bool TypeAryKlassPtr::must_be_exact() const {
6781   if (_elem == Type::BOTTOM) return false;
6782   if (_elem == Type::TOP   ) return false;
6783   const TypeKlassPtr*  tk = _elem->isa_klassptr();
6784   if (!tk)             return true;   // a primitive type, like int
6785   // Even though MyValue is final, [LMyValue is only exact if the array
6786   // is (not) null-free due to null-free [LMyValue <: null-able [LMyValue.
6787   // TODO 8350865 If we know that the array can't be null-free, it's allowed to be exact, right?
6788   // If so, we should add '&& !is_not_null_free()'
6789   if (tk->isa_instklassptr() && tk->klass()->is_inlinetype() && !is_null_free()) {
6790     return false;
6791   }
6792   return tk->must_be_exact();
6793 }
6794 
6795 
6796 //-----------------------------cast_to_exactness-------------------------------
6797 const TypeKlassPtr *TypeAryKlassPtr::cast_to_exactness(bool klass_is_exact) const {
6798   if (must_be_exact() && !klass_is_exact) return this;  // cannot clear xk
6799   if (klass_is_exact == this->klass_is_exact()) {
6800     return this;
6801   }
6802   ciKlass* k = _klass;
6803   const Type* elem = this->elem();
6804   if (elem->isa_klassptr() && !klass_is_exact) {
6805     elem = elem->is_klassptr()->cast_to_exactness(klass_is_exact);
6806   }
6807   bool not_flat = is_not_flat();
6808   bool not_null_free = is_not_null_free();
6809   if (_elem->isa_klassptr()) {
6810     if (klass_is_exact || _elem->isa_aryklassptr()) {
6811       assert((!is_null_free() && !is_flat()) ||
6812              _elem->is_klassptr()->klass()->is_abstract() || _elem->is_klassptr()->klass()->is_java_lang_Object(),
6813              "null-free (or flat) concrete inline type arrays should always be exact");
6814       // An array can't be null-free (or flat) if the klass is exact
6815       not_null_free = true;
6816       not_flat = true;
6817     } else {
6818       // Klass is not exact (anymore), re-compute null-free/flat properties
6819       const TypeOopPtr* exact_etype = TypeOopPtr::make_from_klass_unique(_elem->is_instklassptr()->instance_klass());
6820       bool not_inline = !exact_etype->can_be_inline_type();
6821       not_null_free = not_inline;
6822       not_flat = !UseArrayFlattening || not_inline || (exact_etype->is_inlinetypeptr() && !exact_etype->inline_klass()->maybe_flat_in_array());
6823     }
6824   }
6825   return make(klass_is_exact ? Constant : NotNull, elem, k, _offset, not_flat, not_null_free, _flat, _null_free, _atomic, _refined_type);
6826 }
6827 

6828 //-----------------------------as_instance_type--------------------------------
6829 // Corresponding type for an instance of the given class.
6830 // It will be NotNull, and exact if and only if the klass type is exact.
6831 const TypeOopPtr* TypeAryKlassPtr::as_instance_type(bool klass_change) const {
6832   ciKlass* k = klass();
6833   bool    xk = klass_is_exact();
6834   const Type* el = nullptr;
6835   if (elem()->isa_klassptr()) {
6836     el = elem()->is_klassptr()->as_instance_type(false)->cast_to_exactness(false);
6837     k = nullptr;
6838   } else {
6839     el = elem();
6840   }
6841   bool null_free = _null_free;
6842   if (null_free && el->isa_ptr()) {
6843     el = el->is_ptr()->join_speculative(TypePtr::NOTNULL);
6844   }
6845   return TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(el, TypeInt::POS, false, is_flat(), is_not_flat(), is_not_null_free(), is_atomic()), k, xk, Offset(0));
6846 }
6847 
6848 
6849 //------------------------------xmeet------------------------------------------
6850 // Compute the MEET of two types, return a new Type object.
6851 const Type    *TypeAryKlassPtr::xmeet( const Type *t ) const {
6852   // Perform a fast test for common case; meeting the same types together.
6853   if( this == t ) return this;  // Meeting same type-rep?
6854 
6855   // Current "this->_base" is Pointer
6856   switch (t->base()) {          // switch on original type
6857 
6858   case Int:                     // Mixing ints & oops happens when javac
6859   case Long:                    // reuses local variables
6860   case HalfFloatTop:
6861   case HalfFloatCon:
6862   case HalfFloatBot:
6863   case FloatTop:
6864   case FloatCon:
6865   case FloatBot:
6866   case DoubleTop:
6867   case DoubleCon:
6868   case DoubleBot:
6869   case NarrowOop:
6870   case NarrowKlass:
6871   case Bottom:                  // Ye Olde Default
6872     return Type::BOTTOM;
6873   case Top:
6874     return this;
6875 
6876   default:                      // All else is a mistake
6877     typerr(t);
6878 
6879   case AnyPtr: {                // Meeting to AnyPtrs
6880     // Found an AnyPtr type vs self-KlassPtr type
6881     const TypePtr *tp = t->is_ptr();
6882     Offset offset = meet_offset(tp->offset());
6883     PTR ptr = meet_ptr(tp->ptr());
6884     switch (tp->ptr()) {
6885     case TopPTR:
6886       return this;
6887     case Null:
6888       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6889     case AnyNull:
6890       return make(ptr, _elem, klass(), offset, is_not_flat(), is_not_null_free(), is_flat(), is_null_free(), is_atomic(), is_refined_type());
6891     case BotPTR:
6892     case NotNull:
6893       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6894     default: typerr(t);
6895     }
6896   }
6897 
6898   case RawPtr:
6899   case MetadataPtr:
6900   case OopPtr:
6901   case AryPtr:                  // Meet with AryPtr
6902   case InstPtr:                 // Meet with InstPtr
6903     return TypePtr::BOTTOM;
6904 
6905   //
6906   //             A-top         }
6907   //           /   |   \       }  Tops
6908   //       B-top A-any C-top   }
6909   //          | /  |  \ |      }  Any-nulls
6910   //       B-any   |   C-any   }
6911   //          |    |    |
6912   //       B-con A-con C-con   } constants; not comparable across classes
6913   //          |    |    |
6914   //       B-not   |   C-not   }
6915   //          | \  |  / |      }  not-nulls
6916   //       B-bot A-not C-bot   }
6917   //           \   |   /       }  Bottoms
6918   //             A-bot         }
6919   //
6920 
6921   case AryKlassPtr: {  // Meet two KlassPtr types
6922     const TypeAryKlassPtr *tap = t->is_aryklassptr();
6923     Offset off = meet_offset(tap->offset());
6924     const Type* elem = _elem->meet(tap->_elem);

6925     PTR ptr = meet_ptr(tap->ptr());
6926     ciKlass* res_klass = nullptr;
6927     bool res_xk = false;
6928     bool res_flat = false;
6929     bool res_not_flat = false;
6930     bool res_not_null_free = false;
6931     bool res_atomic = false;
6932     MeetResult res = meet_aryptr(ptr, elem, this, tap,
6933                                  res_klass, res_xk, res_flat, res_not_flat, res_not_null_free, res_atomic);
6934     assert(res_xk == (ptr == Constant), "");
6935     bool flat = meet_flat(tap->_flat);
6936     bool null_free = meet_null_free(tap->_null_free);
6937     bool atomic = meet_atomic(tap->_atomic);
6938     bool refined_type = _refined_type && tap->_refined_type;
6939     if (res == NOT_SUBTYPE) {
6940       flat = false;
6941       null_free = false;
6942       atomic = false;
6943       refined_type = false;
6944     } else if (res == SUBTYPE) {
6945       if (above_centerline(tap->ptr()) && !above_centerline(this->ptr())) {
6946         flat = _flat;
6947         null_free = _null_free;
6948         atomic = _atomic;
6949         refined_type = _refined_type;
6950       } else if (above_centerline(this->ptr()) && !above_centerline(tap->ptr())) {
6951         flat = tap->_flat;
6952         null_free = tap->_null_free;
6953         atomic = tap->_atomic;
6954         refined_type = tap->_refined_type;
6955       } else if (above_centerline(this->ptr()) && above_centerline(tap->ptr())) {
6956         flat = _flat || tap->_flat;
6957         null_free = _null_free || tap->_null_free;
6958         atomic = _atomic || tap->_atomic;
6959         refined_type = _refined_type || tap->_refined_type;
6960       } else if (res_xk && _refined_type != tap->_refined_type) {
6961         // This can happen if the phi emitted by LibraryCallKit::load_default_refined_array_klass/load_non_refined_array_klass
6962         // is processed before the typeArray guard is folded. Both inputs are constant but the input corresponding to the
6963         // typeArray will go away. Don't constant fold it yet but wait for the control input to collapse.
6964         ptr = PTR::NotNull;
6965       }
6966     }
6967     return make(ptr, elem, res_klass, off, res_not_flat, res_not_null_free, flat, null_free, atomic, refined_type);
6968   } // End of case KlassPtr
6969   case InstKlassPtr: {
6970     const TypeInstKlassPtr *tp = t->is_instklassptr();
6971     Offset offset = meet_offset(tp->offset());
6972     PTR ptr = meet_ptr(tp->ptr());
6973     const TypeInterfaces* interfaces = meet_interfaces(tp);
6974     const TypeInterfaces* tp_interfaces = tp->_interfaces;
6975     const TypeInterfaces* this_interfaces = _interfaces;
6976 
6977     switch (ptr) {
6978     case TopPTR:
6979     case AnyNull:                // Fall 'down' to dual of object klass
6980       // For instances when a subclass meets a superclass we fall
6981       // below the centerline when the superclass is exact. We need to
6982       // do the same here.
6983       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) &&
6984           !tp->klass_is_exact()) {
6985         return TypeAryKlassPtr::make(ptr, _elem, _klass, offset, is_not_flat(), is_not_null_free(), is_flat(), is_null_free(), is_atomic(), is_refined_type());
6986       } else {
6987         // cannot subclass, so the meet has to fall badly below the centerline
6988         ptr = NotNull;
6989         interfaces = this_interfaces->intersection_with(tp->_interfaces);
6990         return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset, false);
6991       }
6992     case Constant:
6993     case NotNull:
6994     case BotPTR:                // Fall down to object klass
6995       // LCA is object_klass, but if we subclass from the top we can do better
6996       if (above_centerline(tp->ptr())) {
6997         // If 'tp'  is above the centerline and it is Object class
6998         // then we can subclass in the Java class hierarchy.
6999         // For instances when a subclass meets a superclass we fall
7000         // below the centerline when the superclass is exact. We need
7001         // to do the same here.
7002         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) &&
7003             !tp->klass_is_exact()) {
7004           // that is, my array type is a subtype of 'tp' klass
7005           return make(ptr, _elem, _klass, offset, is_not_flat(), is_not_null_free(), is_flat(), is_null_free(), is_atomic(), is_refined_type());
7006         }
7007       }
7008       // The other case cannot happen, since t cannot be a subtype of an array.
7009       // The meet falls down to Object class below centerline.
7010       if (ptr == Constant)
7011          ptr = NotNull;
7012       interfaces = this_interfaces->intersection_with(tp_interfaces);
7013       return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset, false);
7014     default: typerr(t);
7015     }
7016   }
7017 
7018   } // End of switch
7019   return this;                  // Return the double constant
7020 }
7021 
7022 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
7023   static_assert(std::is_base_of<T2, T1>::value, "");
7024 
7025   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty() && other_exact) {
7026     return true;
7027   }
7028 
7029   int dummy;
7030   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
7031 
7032   if (!this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) {
7033     return false;
7034   }
7035 
7036   if (this_one->is_instance_type(other)) {
7037     return other->klass() == ciEnv::current()->Object_klass() && this_one->_interfaces->contains(other->_interfaces) &&
7038            other_exact;
7039   }
7040 
7041   assert(this_one->is_array_type(other), "");
7042   const T1* other_ary = this_one->is_array_type(other);
7043   bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
7044   if (other_top_or_bottom) {
7045     return false;
7046   }
7047 
7048   const TypePtr* other_elem = other_ary->elem()->make_ptr();
7049   const TypePtr* this_elem = this_one->elem()->make_ptr();
7050   if (this_elem != nullptr && other_elem != nullptr) {
7051     if (other->is_null_free() && !this_one->is_null_free()) {
7052       return false; // A nullable array can't be a subtype of a null-free array
7053     }
7054     return this_one->is_reference_type(this_elem)->is_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact);
7055   }
7056   if (this_elem == nullptr && other_elem == nullptr) {
7057     return this_one->klass()->is_subtype_of(other->klass());
7058   }
7059   return false;
7060 }
7061 
7062 bool TypeAryKlassPtr::is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
7063   return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
7064 }
7065 
7066 template <class T1, class T2> bool TypePtr::is_same_java_type_as_helper_for_array(const T1* this_one, const T2* other) {
7067   static_assert(std::is_base_of<T2, T1>::value, "");
7068 
7069   int dummy;
7070   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
7071 
7072   if (!this_one->is_array_type(other) ||
7073       !this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) {

7126   }
7127 
7128   const TypePtr* this_elem = this_one->elem()->make_ptr();
7129   const TypePtr* other_elem = other_ary->elem()->make_ptr();
7130   if (other_elem != nullptr && this_elem != nullptr) {
7131     return this_one->is_reference_type(this_elem)->maybe_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact);
7132   }
7133   if (other_elem == nullptr && this_elem == nullptr) {
7134     return this_one->klass()->is_subtype_of(other->klass());
7135   }
7136   return false;
7137 }
7138 
7139 bool TypeAryKlassPtr::maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
7140   return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
7141 }
7142 
7143 //------------------------------xdual------------------------------------------
7144 // Dual: compute field-by-field dual
7145 const Type    *TypeAryKlassPtr::xdual() const {
7146   return new TypeAryKlassPtr(dual_ptr(), elem()->dual(), klass(), dual_offset(), !is_not_flat(), !is_not_null_free(), dual_flat(), dual_null_free(), dual_atomic(), _refined_type);
7147 }
7148 
7149 // Is there a single ciKlass* that can represent that type?
7150 ciKlass* TypeAryKlassPtr::exact_klass_helper() const {
7151   if (elem()->isa_klassptr()) {
7152     ciKlass* k = elem()->is_klassptr()->exact_klass_helper();
7153     if (k == nullptr) {
7154       return nullptr;
7155     }
7156     k = ciArrayKlass::make(k, k->is_inlinetype() ? is_null_free() : false, k->is_inlinetype() ? is_atomic() : true, _refined_type);
7157     return k;
7158   }
7159 
7160   return klass();
7161 }
7162 
7163 ciKlass* TypeAryKlassPtr::klass() const {
7164   if (_klass != nullptr) {
7165     return _klass;
7166   }
7167   ciKlass* k = nullptr;
7168   if (elem()->isa_klassptr()) {
7169     // leave null
7170   } else if ((elem()->base() == Type::Top) ||
7171              (elem()->base() == Type::Bottom)) {
7172   } else {
7173     k = ciTypeArrayKlass::make(elem()->basic_type());
7174     ((TypeAryKlassPtr*)this)->_klass = k;
7175   }
7176   return k;

7183   switch( _ptr ) {
7184   case Constant:
7185     st->print("precise ");
7186   case NotNull:
7187     {
7188       st->print("[");
7189       _elem->dump2(d, depth, st);
7190       _interfaces->dump(st);
7191       st->print(": ");
7192     }
7193   case BotPTR:
7194     if( !WizardMode && !Verbose && _ptr != Constant ) break;
7195   case TopPTR:
7196   case AnyNull:
7197     st->print(":%s", ptr_msg[_ptr]);
7198     if( _ptr == Constant ) st->print(":exact");
7199     break;
7200   default:
7201     break;
7202   }
7203   if (_flat) st->print(":flat");
7204   if (_null_free) st->print(":null free");
7205   if (_atomic) st->print(":atomic");
7206   if (_refined_type) st->print(":refined_type");
7207   if (Verbose) {
7208     if (_not_flat) st->print(":not flat");
7209     if (_not_null_free) st->print(":nullable");
7210   }
7211 
7212   _offset.dump2(st);
7213 
7214   st->print(" *");
7215 }
7216 #endif
7217 
7218 const Type* TypeAryKlassPtr::base_element_type(int& dims) const {
7219   const Type* elem = this->elem();
7220   dims = 1;
7221   while (elem->isa_aryklassptr()) {
7222     elem = elem->is_aryklassptr()->elem();
7223     dims++;
7224   }
7225   return elem;
7226 }
7227 
7228 //=============================================================================
7229 // Convenience common pre-built types.
7230 
7231 //------------------------------make-------------------------------------------
7232 const TypeFunc *TypeFunc::make(const TypeTuple *domain_sig, const TypeTuple* domain_cc,
7233                                const TypeTuple *range_sig, const TypeTuple *range_cc) {
7234   return (TypeFunc*)(new TypeFunc(domain_sig, domain_cc, range_sig, range_cc))->hashcons();
7235 }
7236 
7237 const TypeFunc *TypeFunc::make(const TypeTuple *domain, const TypeTuple *range) {
7238   return make(domain, domain, range, range);
7239 }
7240 
7241 //------------------------------osr_domain-----------------------------
7242 const TypeTuple* osr_domain() {
7243   const Type **fields = TypeTuple::fields(2);
7244   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM;  // address of osr buffer
7245   return TypeTuple::make(TypeFunc::Parms+1, fields);
7246 }
7247 
7248 //------------------------------make-------------------------------------------
7249 const TypeFunc* TypeFunc::make(ciMethod* method, bool is_osr_compilation) {
7250   Compile* C = Compile::current();
7251   const TypeFunc* tf = nullptr;
7252   if (!is_osr_compilation) {
7253     tf = C->last_tf(method); // check cache
7254     if (tf != nullptr)  return tf;  // The hit rate here is almost 50%.
7255   }
7256   // Inline types are not passed/returned by reference, instead each field of
7257   // the inline type is passed/returned as an argument. We maintain two views of
7258   // the argument/return list here: one based on the signature (with an inline
7259   // type argument/return as a single slot), one based on the actual calling
7260   // convention (with an inline type argument/return as a list of its fields).
7261   bool has_scalar_args = method->has_scalarized_args() && !is_osr_compilation;
7262   // Fall back to the non-scalarized calling convention when compiling a call via a mismatching method
7263   if (method != C->method() && method->get_Method()->mismatch()) {
7264     has_scalar_args = false;
7265   }
7266   const TypeTuple* domain_sig = is_osr_compilation ? osr_domain() : TypeTuple::make_domain(method, ignore_interfaces, false);
7267   const TypeTuple* domain_cc = has_scalar_args ? TypeTuple::make_domain(method, ignore_interfaces, true) : domain_sig;
7268   ciSignature* sig = method->signature();
7269   bool has_scalar_ret = !method->is_native() && sig->return_type()->is_inlinetype() && sig->return_type()->as_inline_klass()->can_be_returned_as_fields();
7270   const TypeTuple* range_sig = TypeTuple::make_range(sig, ignore_interfaces, false);
7271   const TypeTuple* range_cc = has_scalar_ret ? TypeTuple::make_range(sig, ignore_interfaces, true) : range_sig;
7272   tf = TypeFunc::make(domain_sig, domain_cc, range_sig, range_cc);
7273   if (!is_osr_compilation) {
7274     C->set_last_tf(method, tf);  // fill cache
7275   }



7276   return tf;
7277 }
7278 
7279 //------------------------------meet-------------------------------------------
7280 // Compute the MEET of two types.  It returns a new Type object.
7281 const Type *TypeFunc::xmeet( const Type *t ) const {
7282   // Perform a fast test for common case; meeting the same types together.
7283   if( this == t ) return this;  // Meeting same type-rep?
7284 
7285   // Current "this->_base" is Func
7286   switch (t->base()) {          // switch on original type
7287 
7288   case Bottom:                  // Ye Olde Default
7289     return t;
7290 
7291   default:                      // All else is a mistake
7292     typerr(t);
7293 
7294   case Top:
7295     break;
7296   }
7297   return this;                  // Return the double constant
7298 }
7299 
7300 //------------------------------xdual------------------------------------------
7301 // Dual: compute field-by-field dual
7302 const Type *TypeFunc::xdual() const {
7303   return this;
7304 }
7305 
7306 //------------------------------eq---------------------------------------------
7307 // Structural equality check for Type representations
7308 bool TypeFunc::eq( const Type *t ) const {
7309   const TypeFunc *a = (const TypeFunc*)t;
7310   return _domain_sig == a->_domain_sig &&
7311     _domain_cc == a->_domain_cc &&
7312     _range_sig == a->_range_sig &&
7313     _range_cc == a->_range_cc;
7314 }
7315 
7316 //------------------------------hash-------------------------------------------
7317 // Type-specific hashing function.
7318 uint TypeFunc::hash(void) const {
7319   return (uint)(intptr_t)_domain_sig + (uint)(intptr_t)_domain_cc + (uint)(intptr_t)_range_sig + (uint)(intptr_t)_range_cc;
7320 }
7321 
7322 //------------------------------dump2------------------------------------------
7323 // Dump Function Type
7324 #ifndef PRODUCT
7325 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
7326   if( _range_sig->cnt() <= Parms )
7327     st->print("void");
7328   else {
7329     uint i;
7330     for (i = Parms; i < _range_sig->cnt()-1; i++) {
7331       _range_sig->field_at(i)->dump2(d,depth,st);
7332       st->print("/");
7333     }
7334     _range_sig->field_at(i)->dump2(d,depth,st);
7335   }
7336   st->print(" ");
7337   st->print("( ");
7338   if( !depth || d[this] ) {     // Check for recursive dump
7339     st->print("...)");
7340     return;
7341   }
7342   d.Insert((void*)this,(void*)this);    // Stop recursion
7343   if (Parms < _domain_sig->cnt())
7344     _domain_sig->field_at(Parms)->dump2(d,depth-1,st);
7345   for (uint i = Parms+1; i < _domain_sig->cnt(); i++) {
7346     st->print(", ");
7347     _domain_sig->field_at(i)->dump2(d,depth-1,st);
7348   }
7349   st->print(" )");
7350 }
7351 #endif
7352 
7353 //------------------------------singleton--------------------------------------
7354 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
7355 // constants (Ldi nodes).  Singletons are integer, float or double constants
7356 // or a single symbol.
7357 bool TypeFunc::singleton(void) const {
7358   return false;                 // Never a singleton
7359 }
7360 
7361 bool TypeFunc::empty(void) const {
7362   return false;                 // Never empty
7363 }
7364 
7365 
7366 BasicType TypeFunc::return_type() const{
7367   if (range_sig()->cnt() == TypeFunc::Parms) {
7368     return T_VOID;
7369   }
7370   return range_sig()->field_at(TypeFunc::Parms)->basic_type();
7371 }
< prev index next >