< prev index next >

src/hotspot/share/opto/type.cpp

Print this page

   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"



  26 #include "ci/ciMethodData.hpp"
  27 #include "ci/ciTypeFlow.hpp"
  28 #include "classfile/javaClasses.hpp"
  29 #include "classfile/symbolTable.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "libadt/dict.hpp"
  32 #include "memory/oopFactory.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "oops/instanceKlass.hpp"
  35 #include "oops/instanceMirrorKlass.hpp"
  36 #include "oops/objArrayKlass.hpp"
  37 #include "oops/typeArrayKlass.hpp"
  38 #include "opto/matcher.hpp"
  39 #include "opto/node.hpp"
  40 #include "opto/opcodes.hpp"
  41 #include "opto/type.hpp"
  42 #include "utilities/powerOfTwo.hpp"
  43 #include "utilities/stringUtils.hpp"
  44 
  45 // Portions of code courtesy of Clifford Click
  46 
  47 // Optimization - Graph Style
  48 
  49 // Dictionary of types shared among compilations.
  50 Dict* Type::_shared_type_dict = nullptr;














































  51 
  52 // Array which maps compiler types to Basic Types
  53 const Type::TypeInfo Type::_type_info[Type::lastype] = {
  54   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
  55   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
  56   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
  57   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
  58   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
  59   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
  60   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
  61   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
  62   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
  63   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
  64 
  65 #if defined(PPC64)
  66   { Bad,             T_ILLEGAL,    "vectormask:",   false, Op_RegVectMask,       relocInfo::none          },  // VectorMask.
  67   { Bad,             T_ILLEGAL,    "vectora:",      false, Op_VecA,              relocInfo::none          },  // VectorA.
  68   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  69   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
  70   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX

 204   case ciTypeFlow::StateVector::T_NULL:
 205     assert(type == ciTypeFlow::StateVector::null_type(), "");
 206     return TypePtr::NULL_PTR;
 207 
 208   case ciTypeFlow::StateVector::T_LONG2:
 209     // The ciTypeFlow pass pushes a long, then the half.
 210     // We do the same.
 211     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 212     return TypeInt::TOP;
 213 
 214   case ciTypeFlow::StateVector::T_DOUBLE2:
 215     // The ciTypeFlow pass pushes double, then the half.
 216     // Our convention is the same.
 217     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 218     return Type::TOP;
 219 
 220   case T_ADDRESS:
 221     assert(type->is_return_address(), "");
 222     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 223 





 224   default:
 225     // make sure we did not mix up the cases:
 226     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 227     assert(type != ciTypeFlow::StateVector::top_type(), "");
 228     assert(type != ciTypeFlow::StateVector::null_type(), "");
 229     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 230     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 231     assert(!type->is_return_address(), "");
 232 
 233     return Type::get_const_type(type);
 234   }
 235 }
 236 
 237 
 238 //-----------------------make_from_constant------------------------------------
 239 const Type* Type::make_from_constant(ciConstant constant, bool require_constant,
 240                                      int stable_dimension, bool is_narrow_oop,
 241                                      bool is_autobox_cache) {
 242   switch (constant.basic_type()) {
 243     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
 244     case T_CHAR:     return TypeInt::make(constant.as_char());
 245     case T_BYTE:     return TypeInt::make(constant.as_byte());
 246     case T_SHORT:    return TypeInt::make(constant.as_short());
 247     case T_INT:      return TypeInt::make(constant.as_int());
 248     case T_LONG:     return TypeLong::make(constant.as_long());
 249     case T_FLOAT:    return TypeF::make(constant.as_float());
 250     case T_DOUBLE:   return TypeD::make(constant.as_double());
 251     case T_ARRAY:

 252     case T_OBJECT: {
 253         const Type* con_type = nullptr;
 254         ciObject* oop_constant = constant.as_object();
 255         if (oop_constant->is_null_object()) {
 256           con_type = Type::get_zero_type(T_OBJECT);
 257         } else {
 258           guarantee(require_constant || oop_constant->should_be_constant(), "con_type must get computed");
 259           con_type = TypeOopPtr::make_from_constant(oop_constant, require_constant);
 260           if (Compile::current()->eliminate_boxing() && is_autobox_cache) {
 261             con_type = con_type->is_aryptr()->cast_to_autobox_cache();
 262           }
 263           if (stable_dimension > 0) {
 264             assert(FoldStableValues, "sanity");
 265             assert(!con_type->is_zero_type(), "default value for stable field");
 266             con_type = con_type->is_aryptr()->cast_to_stable(true, stable_dimension);
 267           }
 268         }
 269         if (is_narrow_oop) {
 270           con_type = con_type->make_narrowoop();
 271         }
 272         return con_type;
 273       }
 274     case T_ILLEGAL:
 275       // Invalid ciConstant returned due to OutOfMemoryError in the CI
 276       assert(Compile::current()->env()->failing(), "otherwise should not see this");
 277       return nullptr;
 278     default:
 279       // Fall through to failure
 280       return nullptr;
 281   }
 282 }
 283 
 284 static ciConstant check_mismatched_access(ciConstant con, BasicType loadbt, bool is_unsigned) {
 285   BasicType conbt = con.basic_type();
 286   switch (conbt) {
 287     case T_BOOLEAN: conbt = T_BYTE;   break;
 288     case T_ARRAY:   conbt = T_OBJECT; break;

 289     default:                          break;
 290   }
 291   switch (loadbt) {
 292     case T_BOOLEAN:   loadbt = T_BYTE;   break;
 293     case T_NARROWOOP: loadbt = T_OBJECT; break;
 294     case T_ARRAY:     loadbt = T_OBJECT; break;

 295     case T_ADDRESS:   loadbt = T_OBJECT; break;
 296     default:                             break;
 297   }
 298   if (conbt == loadbt) {
 299     if (is_unsigned && conbt == T_BYTE) {
 300       // LoadB (T_BYTE) with a small mask (<=8-bit) is converted to LoadUB (T_BYTE).
 301       return ciConstant(T_INT, con.as_int() & 0xFF);
 302     } else {
 303       return con;
 304     }
 305   }
 306   if (conbt == T_SHORT && loadbt == T_CHAR) {
 307     // LoadS (T_SHORT) with a small mask (<=16-bit) is converted to LoadUS (T_CHAR).
 308     return ciConstant(T_INT, con.as_int() & 0xFFFF);
 309   }
 310   return ciConstant(); // T_ILLEGAL
 311 }
 312 
 313 // Try to constant-fold a stable array element.
 314 const Type* Type::make_constant_from_array_element(ciArray* array, int off, int stable_dimension,

 510   const Type **ffalse =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 511   ffalse[0] = Type::CONTROL;
 512   ffalse[1] = Type::TOP;
 513   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 514 
 515   const Type **fneither =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 516   fneither[0] = Type::TOP;
 517   fneither[1] = Type::TOP;
 518   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 519 
 520   const Type **ftrue =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 521   ftrue[0] = Type::TOP;
 522   ftrue[1] = Type::CONTROL;
 523   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 524 
 525   const Type **floop =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 526   floop[0] = Type::CONTROL;
 527   floop[1] = TypeInt::INT;
 528   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 529 
 530   TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, 0);
 531   TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, OffsetBot);
 532   TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, OffsetBot);
 533 
 534   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 535   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 536 
 537   const Type **fmembar = TypeTuple::fields(0);
 538   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 539 
 540   const Type **fsc = (const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 541   fsc[0] = TypeInt::CC;
 542   fsc[1] = Type::MEMORY;
 543   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 544 
 545   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 546   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 547   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 548   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 549                                            false, 0, oopDesc::mark_offset_in_bytes());
 550   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 551                                            false, 0, oopDesc::klass_offset_in_bytes());
 552   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
 553 
 554   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, nullptr, OffsetBot);
 555 
 556   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 557   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 558 
 559   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 560 
 561   mreg2type[Op_Node] = Type::BOTTOM;
 562   mreg2type[Op_Set ] = 0;
 563   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 564   mreg2type[Op_RegI] = TypeInt::INT;
 565   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 566   mreg2type[Op_RegF] = Type::FLOAT;
 567   mreg2type[Op_RegD] = Type::DOUBLE;
 568   mreg2type[Op_RegL] = TypeLong::LONG;
 569   mreg2type[Op_RegFlags] = TypeInt::CC;
 570 
 571   GrowableArray<ciInstanceKlass*> array_interfaces;
 572   array_interfaces.push(current->env()->Cloneable_klass());
 573   array_interfaces.push(current->env()->Serializable_klass());
 574   TypeAryPtr::_array_interfaces = new TypePtr::InterfaceSet(&array_interfaces);
 575   TypeAryKlassPtr::_array_interfaces = TypeAryPtr::_array_interfaces;
 576 
 577   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), nullptr /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
 578 
 579   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), nullptr /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 580 
 581 #ifdef _LP64
 582   if (UseCompressedOops) {
 583     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 584     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 585   } else
 586 #endif
 587   {
 588     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 589     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), nullptr /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 590   }
 591   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
 592   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
 593   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
 594   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
 595   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
 596   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
 597   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);

 598 
 599   // Nobody should ask _array_body_type[T_NARROWOOP]. Use null as assert.
 600   TypeAryPtr::_array_body_type[T_NARROWOOP] = nullptr;
 601   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;

 602   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 603   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 604   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 605   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 606   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 607   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 608   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 609   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 610   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 611 
 612   TypeInstKlassPtr::OBJECT = TypeInstKlassPtr::make(TypePtr::NotNull, current->env()->Object_klass(), 0);
 613   TypeInstKlassPtr::OBJECT_OR_NULL = TypeInstKlassPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), 0);
 614 
 615   const Type **fi2c = TypeTuple::fields(2);
 616   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 617   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 618   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 619 
 620   const Type **intpair = TypeTuple::fields(2);
 621   intpair[0] = TypeInt::INT;
 622   intpair[1] = TypeInt::INT;
 623   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 624 
 625   const Type **longpair = TypeTuple::fields(2);
 626   longpair[0] = TypeLong::LONG;
 627   longpair[1] = TypeLong::LONG;
 628   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 629 
 630   const Type **intccpair = TypeTuple::fields(2);
 631   intccpair[0] = TypeInt::INT;
 632   intccpair[1] = TypeInt::CC;
 633   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 634 
 635   const Type **longccpair = TypeTuple::fields(2);
 636   longccpair[0] = TypeLong::LONG;
 637   longccpair[1] = TypeInt::CC;
 638   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 639 
 640   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 641   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 642   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 643   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 644   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 645   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 646   _const_basic_type[T_INT]         = TypeInt::INT;
 647   _const_basic_type[T_LONG]        = TypeLong::LONG;
 648   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 649   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 650   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 651   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays

 652   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 653   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 654   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 655 
 656   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 657   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 658   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 659   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 660   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 661   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 662   _zero_type[T_INT]         = TypeInt::ZERO;
 663   _zero_type[T_LONG]        = TypeLong::ZERO;
 664   _zero_type[T_FLOAT]       = TypeF::ZERO;
 665   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 666   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 667   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop

 668   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 669   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 670 
 671   // get_zero_type() should not happen for T_CONFLICT
 672   _zero_type[T_CONFLICT]= nullptr;
 673 
 674   TypeVect::VECTMASK = (TypeVect*)(new TypeVectMask(TypeInt::BOOL, MaxVectorSize))->hashcons();
 675   mreg2type[Op_RegVectMask] = TypeVect::VECTMASK;
 676 
 677   if (Matcher::supports_scalable_vector()) {
 678     TypeVect::VECTA = TypeVect::make(T_BYTE, Matcher::scalable_vector_reg_size(T_BYTE));
 679   }
 680 
 681   // Vector predefined types, it needs initialized _const_basic_type[].
 682   if (Matcher::vector_size_supported(T_BYTE,4)) {
 683     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
 684   }
 685   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 686     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
 687   }

2104 
2105 bool TypeLong::empty(void) const {
2106   return _lo > _hi;
2107 }
2108 
2109 //=============================================================================
2110 // Convenience common pre-built types.
2111 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
2112 const TypeTuple *TypeTuple::IFFALSE;
2113 const TypeTuple *TypeTuple::IFTRUE;
2114 const TypeTuple *TypeTuple::IFNEITHER;
2115 const TypeTuple *TypeTuple::LOOPBODY;
2116 const TypeTuple *TypeTuple::MEMBAR;
2117 const TypeTuple *TypeTuple::STORECONDITIONAL;
2118 const TypeTuple *TypeTuple::START_I2C;
2119 const TypeTuple *TypeTuple::INT_PAIR;
2120 const TypeTuple *TypeTuple::LONG_PAIR;
2121 const TypeTuple *TypeTuple::INT_CC_PAIR;
2122 const TypeTuple *TypeTuple::LONG_CC_PAIR;
2123 












2124 //------------------------------make-------------------------------------------
2125 // Make a TypeTuple from the range of a method signature
2126 const TypeTuple *TypeTuple::make_range(ciSignature* sig, InterfaceHandling interface_handling) {
2127   ciType* return_type = sig->return_type();
2128   uint arg_cnt = return_type->size();








2129   const Type **field_array = fields(arg_cnt);
2130   switch (return_type->basic_type()) {
2131   case T_LONG:
2132     field_array[TypeFunc::Parms]   = TypeLong::LONG;
2133     field_array[TypeFunc::Parms+1] = Type::HALF;
2134     break;
2135   case T_DOUBLE:
2136     field_array[TypeFunc::Parms]   = Type::DOUBLE;
2137     field_array[TypeFunc::Parms+1] = Type::HALF;
2138     break;
2139   case T_OBJECT:
2140   case T_ARRAY:
2141   case T_BOOLEAN:
2142   case T_CHAR:
2143   case T_FLOAT:
2144   case T_BYTE:
2145   case T_SHORT:
2146   case T_INT:
2147     field_array[TypeFunc::Parms] = get_const_type(return_type, interface_handling);
2148     break;













2149   case T_VOID:
2150     break;
2151   default:
2152     ShouldNotReachHere();
2153   }
2154   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2155 }
2156 
2157 // Make a TypeTuple from the domain of a method signature
2158 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig, InterfaceHandling interface_handling) {
2159   uint arg_cnt = sig->size();








2160 
2161   uint pos = TypeFunc::Parms;
2162   const Type **field_array;
2163   if (recv != nullptr) {
2164     arg_cnt++;
2165     field_array = fields(arg_cnt);
2166     // Use get_const_type here because it respects UseUniqueSubclasses:
2167     field_array[pos++] = get_const_type(recv, interface_handling)->join_speculative(TypePtr::NOTNULL);
2168   } else {
2169     field_array = fields(arg_cnt);
2170   }
2171 
2172   int i = 0;
2173   while (pos < TypeFunc::Parms + arg_cnt) {
2174     ciType* type = sig->type_at(i);

2175 
2176     switch (type->basic_type()) {
2177     case T_LONG:
2178       field_array[pos++] = TypeLong::LONG;
2179       field_array[pos++] = Type::HALF;
2180       break;
2181     case T_DOUBLE:
2182       field_array[pos++] = Type::DOUBLE;
2183       field_array[pos++] = Type::HALF;
2184       break;
2185     case T_OBJECT:
2186     case T_ARRAY:
2187     case T_FLOAT:
2188     case T_INT:
2189       field_array[pos++] = get_const_type(type, interface_handling);
2190       break;
2191     case T_BOOLEAN:
2192     case T_CHAR:
2193     case T_BYTE:
2194     case T_SHORT:
2195       field_array[pos++] = TypeInt::INT;
2196       break;












2197     default:
2198       ShouldNotReachHere();
2199     }
2200     i++;
2201   }

2202 
2203   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2204 }
2205 
2206 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
2207   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
2208 }
2209 
2210 //------------------------------fields-----------------------------------------
2211 // Subroutine call type with space allocated for argument types
2212 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
2213 const Type **TypeTuple::fields( uint arg_cnt ) {
2214   const Type **flds = (const Type **)(Compile::current()->type_arena()->AmallocWords((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
2215   flds[TypeFunc::Control  ] = Type::CONTROL;
2216   flds[TypeFunc::I_O      ] = Type::ABIO;
2217   flds[TypeFunc::Memory   ] = Type::MEMORY;
2218   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
2219   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
2220 
2221   return flds;

2316     if (_fields[i]->empty())  return true;
2317   }
2318   return false;
2319 }
2320 
2321 //=============================================================================
2322 // Convenience common pre-built types.
2323 
2324 inline const TypeInt* normalize_array_size(const TypeInt* size) {
2325   // Certain normalizations keep us sane when comparing types.
2326   // We do not want arrayOop variables to differ only by the wideness
2327   // of their index types.  Pick minimum wideness, since that is the
2328   // forced wideness of small ranges anyway.
2329   if (size->_widen != Type::WidenMin)
2330     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
2331   else
2332     return size;
2333 }
2334 
2335 //------------------------------make-------------------------------------------
2336 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {

2337   if (UseCompressedOops && elem->isa_oopptr()) {
2338     elem = elem->make_narrowoop();
2339   }
2340   size = normalize_array_size(size);
2341   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
2342 }
2343 
2344 //------------------------------meet-------------------------------------------
2345 // Compute the MEET of two types.  It returns a new Type object.
2346 const Type *TypeAry::xmeet( const Type *t ) const {
2347   // Perform a fast test for common case; meeting the same types together.
2348   if( this == t ) return this;  // Meeting same type-rep?
2349 
2350   // Current "this->_base" is Ary
2351   switch (t->base()) {          // switch on original type
2352 
2353   case Bottom:                  // Ye Olde Default
2354     return t;
2355 
2356   default:                      // All else is a mistake
2357     typerr(t);
2358 
2359   case Array: {                 // Meeting 2 arrays?
2360     const TypeAry *a = t->is_ary();
2361     return TypeAry::make(_elem->meet_speculative(a->_elem),
2362                          _size->xmeet(a->_size)->is_int(),
2363                          _stable && a->_stable);



2364   }
2365   case Top:
2366     break;
2367   }
2368   return this;                  // Return the double constant
2369 }
2370 
2371 //------------------------------xdual------------------------------------------
2372 // Dual: compute field-by-field dual
2373 const Type *TypeAry::xdual() const {
2374   const TypeInt* size_dual = _size->dual()->is_int();
2375   size_dual = normalize_array_size(size_dual);
2376   return new TypeAry(_elem->dual(), size_dual, !_stable);
2377 }
2378 
2379 //------------------------------eq---------------------------------------------
2380 // Structural equality check for Type representations
2381 bool TypeAry::eq( const Type *t ) const {
2382   const TypeAry *a = (const TypeAry*)t;
2383   return _elem == a->_elem &&
2384     _stable == a->_stable &&
2385     _size == a->_size;




2386 }
2387 
2388 //------------------------------hash-------------------------------------------
2389 // Type-specific hashing function.
2390 uint TypeAry::hash(void) const {
2391   return (uint)(uintptr_t)_elem + (uint)(uintptr_t)_size + (uint)(_stable ? 43 : 0);

2392 }
2393 
2394 /**
2395  * Return same type without a speculative part in the element
2396  */
2397 const TypeAry* TypeAry::remove_speculative() const {
2398   return make(_elem->remove_speculative(), _size, _stable);
2399 }
2400 
2401 /**
2402  * Return same type with cleaned up speculative part of element
2403  */
2404 const Type* TypeAry::cleanup_speculative() const {
2405   return make(_elem->cleanup_speculative(), _size, _stable);
2406 }
2407 
2408 /**
2409  * Return same type but with a different inline depth (used for speculation)
2410  *
2411  * @param depth  depth to meet with
2412  */
2413 const TypePtr* TypePtr::with_inline_depth(int depth) const {
2414   if (!UseInlineDepthForSpeculativeTypes) {
2415     return this;
2416   }
2417   return make(AnyPtr, _ptr, _offset, _speculative, depth);
2418 }
2419 
2420 //------------------------------dump2------------------------------------------
2421 #ifndef PRODUCT
2422 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2423   if (_stable)  st->print("stable:");





2424   _elem->dump2(d, depth, st);
2425   st->print("[");
2426   _size->dump2(d, depth, st);
2427   st->print("]");
2428 }
2429 #endif
2430 
2431 //------------------------------singleton--------------------------------------
2432 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2433 // constants (Ldi nodes).  Singletons are integer, float or double constants
2434 // or a single symbol.
2435 bool TypeAry::singleton(void) const {
2436   return false;                 // Never a singleton
2437 }
2438 
2439 bool TypeAry::empty(void) const {
2440   return _elem->empty() || _size->empty();
2441 }
2442 
2443 //--------------------------ary_must_be_exact----------------------------------
2444 bool TypeAry::ary_must_be_exact() const {
2445   // This logic looks at the element type of an array, and returns true
2446   // if the element type is either a primitive or a final instance class.
2447   // In such cases, an array built on this ary must have no subclasses.
2448   if (_elem == BOTTOM)      return false;  // general array not exact
2449   if (_elem == TOP   )      return false;  // inverted general array not exact
2450   const TypeOopPtr*  toop = nullptr;
2451   if (UseCompressedOops && _elem->isa_narrowoop()) {
2452     toop = _elem->make_ptr()->isa_oopptr();
2453   } else {
2454     toop = _elem->isa_oopptr();
2455   }
2456   if (!toop)                return true;   // a primitive type, like int
2457   if (!toop->is_loaded())   return false;  // unloaded class
2458   const TypeInstPtr* tinst;
2459   if (_elem->isa_narrowoop())
2460     tinst = _elem->make_ptr()->isa_instptr();
2461   else
2462     tinst = _elem->isa_instptr();
2463   if (tinst)
2464     return tinst->instance_klass()->is_final();








2465   const TypeAryPtr*  tap;
2466   if (_elem->isa_narrowoop())
2467     tap = _elem->make_ptr()->isa_aryptr();
2468   else
2469     tap = _elem->isa_aryptr();
2470   if (tap)
2471     return tap->ary()->ary_must_be_exact();
2472   return false;
2473 }
2474 
2475 //==============================TypeVect=======================================
2476 // Convenience common pre-built types.
2477 const TypeVect *TypeVect::VECTA = nullptr; // vector length agnostic
2478 const TypeVect *TypeVect::VECTS = nullptr; //  32-bit vectors
2479 const TypeVect *TypeVect::VECTD = nullptr; //  64-bit vectors
2480 const TypeVect *TypeVect::VECTX = nullptr; // 128-bit vectors
2481 const TypeVect *TypeVect::VECTY = nullptr; // 256-bit vectors
2482 const TypeVect *TypeVect::VECTZ = nullptr; // 512-bit vectors
2483 const TypeVect *TypeVect::VECTMASK = nullptr; // predicate/mask vector
2484 

2640 
2641 //=============================================================================
2642 // Convenience common pre-built types.
2643 const TypePtr *TypePtr::NULL_PTR;
2644 const TypePtr *TypePtr::NOTNULL;
2645 const TypePtr *TypePtr::BOTTOM;
2646 
2647 //------------------------------meet-------------------------------------------
2648 // Meet over the PTR enum
2649 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2650   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2651   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2652   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2653   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2654   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2655   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2656   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2657 };
2658 
2659 //------------------------------make-------------------------------------------
2660 const TypePtr *TypePtr::make(TYPES t, enum PTR ptr, int offset, const TypePtr* speculative, int inline_depth) {
2661   return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2662 }
2663 
2664 //------------------------------cast_to_ptr_type-------------------------------
2665 const TypePtr* TypePtr::cast_to_ptr_type(PTR ptr) const {
2666   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2667   if( ptr == _ptr ) return this;
2668   return make(_base, ptr, _offset, _speculative, _inline_depth);
2669 }
2670 
2671 //------------------------------get_con----------------------------------------
2672 intptr_t TypePtr::get_con() const {
2673   assert( _ptr == Null, "" );
2674   return _offset;
2675 }
2676 
2677 //------------------------------meet-------------------------------------------
2678 // Compute the MEET of two types.  It returns a new Type object.
2679 const Type *TypePtr::xmeet(const Type *t) const {
2680   const Type* res = xmeet_helper(t);
2681   if (res->isa_ptr() == nullptr) {
2682     return res;
2683   }
2684 
2685   const TypePtr* res_ptr = res->is_ptr();
2686   if (res_ptr->speculative() != nullptr) {
2687     // type->speculative() is null means that speculation is no better
2688     // than type, i.e. type->speculative() == type. So there are 2
2689     // ways to represent the fact that we have no useful speculative
2690     // data and we should use a single one to be able to test for
2691     // equality between types. Check whether type->speculative() ==
2692     // type and set speculative to null if it is the case.
2693     if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2694       return res_ptr->remove_speculative();

2725     int depth = meet_inline_depth(tp->inline_depth());
2726     return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2727   }
2728   case RawPtr:                  // For these, flip the call around to cut down
2729   case OopPtr:
2730   case InstPtr:                 // on the cases I have to handle.
2731   case AryPtr:
2732   case MetadataPtr:
2733   case KlassPtr:
2734   case InstKlassPtr:
2735   case AryKlassPtr:
2736     return t->xmeet(this);      // Call in reverse direction
2737   default:                      // All else is a mistake
2738     typerr(t);
2739 
2740   }
2741   return this;
2742 }
2743 
2744 //------------------------------meet_offset------------------------------------
2745 int TypePtr::meet_offset( int offset ) const {
2746   // Either is 'TOP' offset?  Return the other offset!
2747   if( _offset == OffsetTop ) return offset;
2748   if( offset == OffsetTop ) return _offset;
2749   // If either is different, return 'BOTTOM' offset
2750   if( _offset != offset ) return OffsetBot;
2751   return _offset;
2752 }
2753 
2754 //------------------------------dual_offset------------------------------------
2755 int TypePtr::dual_offset( ) const {
2756   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
2757   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
2758   return _offset;               // Map everything else into self
2759 }
2760 
2761 //------------------------------xdual------------------------------------------
2762 // Dual: compute field-by-field dual
2763 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2764   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2765 };
2766 const Type *TypePtr::xdual() const {
2767   return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2768 }
2769 
2770 //------------------------------xadd_offset------------------------------------
2771 int TypePtr::xadd_offset( intptr_t offset ) const {
2772   // Adding to 'TOP' offset?  Return 'TOP'!
2773   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
2774   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
2775   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
2776   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
2777   offset += (intptr_t)_offset;
2778   if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
2779 
2780   // assert( _offset >= 0 && _offset+offset >= 0, "" );
2781   // It is possible to construct a negative offset during PhaseCCP
2782 
2783   return (int)offset;        // Sum valid offsets
2784 }
2785 
2786 //------------------------------add_offset-------------------------------------
2787 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2788   return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2789 }
2790 
2791 const TypePtr *TypePtr::with_offset(intptr_t offset) const {
2792   return make(AnyPtr, _ptr, offset, _speculative, _inline_depth);
2793 }
2794 
2795 //------------------------------eq---------------------------------------------
2796 // Structural equality check for Type representations
2797 bool TypePtr::eq( const Type *t ) const {
2798   const TypePtr *a = (const TypePtr*)t;
2799   return _ptr == a->ptr() && _offset == a->offset() && eq_speculative(a) && _inline_depth == a->_inline_depth;
2800 }
2801 
2802 //------------------------------hash-------------------------------------------
2803 // Type-specific hashing function.
2804 uint TypePtr::hash(void) const {
2805   return (uint)_ptr + (uint)_offset + (uint)hash_speculative() + (uint)_inline_depth;
2806 }
2807 
2808 /**
2809  * Return same type without a speculative part
2810  */
2811 const TypePtr* TypePtr::remove_speculative() const {
2812   if (_speculative == nullptr) {
2813     return this;
2814   }
2815   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2816   return make(AnyPtr, _ptr, _offset, nullptr, _inline_depth);
2817 }
2818 
2819 /**
2820  * Return same type but drop speculative part if we know we won't use
2821  * it
2822  */
2823 const Type* TypePtr::cleanup_speculative() const {
2824   if (speculative() == nullptr) {
2825     return this;

3051   }
3052   // We already know the speculative type is always null
3053   if (speculative_always_null()) {
3054     return false;
3055   }
3056   if (ptr_kind == ProfileAlwaysNull && speculative() != nullptr && speculative()->isa_oopptr()) {
3057     return false;
3058   }
3059   return true;
3060 }
3061 
3062 //------------------------------dump2------------------------------------------
3063 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
3064   "TopPTR","AnyNull","Constant","null","NotNull","BotPTR"
3065 };
3066 
3067 #ifndef PRODUCT
3068 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3069   if( _ptr == Null ) st->print("null");
3070   else st->print("%s *", ptr_msg[_ptr]);
3071   if( _offset == OffsetTop ) st->print("+top");
3072   else if( _offset == OffsetBot ) st->print("+bot");
3073   else if( _offset ) st->print("+%d", _offset);
3074   dump_inline_depth(st);
3075   dump_speculative(st);
3076 }
3077 
3078 /**
3079  *dump the speculative part of the type
3080  */
3081 void TypePtr::dump_speculative(outputStream *st) const {
3082   if (_speculative != nullptr) {
3083     st->print(" (speculative=");
3084     _speculative->dump_on(st);
3085     st->print(")");
3086   }
3087 }
3088 
3089 /**
3090  *dump the inline depth of the type
3091  */
3092 void TypePtr::dump_inline_depth(outputStream *st) const {
3093   if (_inline_depth != InlineDepthBottom) {
3094     if (_inline_depth == InlineDepthTop) {
3095       st->print(" (inline_depth=InlineDepthTop)");
3096     } else {
3097       st->print(" (inline_depth=%d)", _inline_depth);
3098     }
3099   }
3100 }
3101 #endif
3102 
3103 //------------------------------singleton--------------------------------------
3104 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3105 // constants
3106 bool TypePtr::singleton(void) const {
3107   // TopPTR, Null, AnyNull, Constant are all singletons
3108   return (_offset != OffsetBot) && !below_centerline(_ptr);
3109 }
3110 
3111 bool TypePtr::empty(void) const {
3112   return (_offset == OffsetTop) || above_centerline(_ptr);
3113 }
3114 
3115 //=============================================================================
3116 // Convenience common pre-built types.
3117 const TypeRawPtr *TypeRawPtr::BOTTOM;
3118 const TypeRawPtr *TypeRawPtr::NOTNULL;
3119 
3120 //------------------------------make-------------------------------------------
3121 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
3122   assert( ptr != Constant, "what is the constant?" );
3123   assert( ptr != Null, "Use TypePtr for null" );
3124   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
3125 }
3126 
3127 const TypeRawPtr *TypeRawPtr::make( address bits ) {
3128   assert( bits, "Use TypePtr for null" );
3129   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
3130 }
3131 
3132 //------------------------------cast_to_ptr_type-------------------------------

3468   for (int i = 0; i < _list.length(); i++) {
3469     ciInstanceKlass* interface = _list.at(i)->as_instance_klass();
3470     if (eq(interface)) {
3471       assert(res == nullptr, "");
3472       res = interface;
3473     }
3474   }
3475   _exact_klass = res;
3476 }
3477 
3478 #ifdef ASSERT
3479 void TypePtr::InterfaceSet::verify_is_loaded() const {
3480   for (int i = 0; i < _list.length(); i++) {
3481     ciKlass* interface = _list.at(i);
3482     assert(interface->is_loaded(), "Interface not loaded");
3483   }
3484 }
3485 #endif
3486 
3487 //------------------------------TypeOopPtr-------------------------------------
3488 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, const InterfaceSet& interfaces, bool xk, ciObject* o, int offset,
3489                        int instance_id, const TypePtr* speculative, int inline_depth)
3490   : TypePtr(t, ptr, offset, speculative, inline_depth),
3491     _const_oop(o), _klass(k),
3492     _interfaces(interfaces),
3493     _klass_is_exact(xk),
3494     _is_ptr_to_narrowoop(false),
3495     _is_ptr_to_narrowklass(false),
3496     _is_ptr_to_boxed_value(false),
3497     _instance_id(instance_id) {
3498 #ifdef ASSERT
3499   if (klass() != nullptr && klass()->is_loaded()) {
3500     interfaces.verify_is_loaded();
3501   }
3502 #endif
3503   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
3504       (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
3505     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
3506   }
3507 #ifdef _LP64
3508   if (_offset > 0 || _offset == Type::OffsetTop || _offset == Type::OffsetBot) {
3509     if (_offset == oopDesc::klass_offset_in_bytes()) {
3510       _is_ptr_to_narrowklass = UseCompressedClassPointers;
3511     } else if (klass() == nullptr) {
3512       // Array with unknown body type
3513       assert(this->isa_aryptr(), "only arrays without klass");
3514       _is_ptr_to_narrowoop = UseCompressedOops;
3515     } else if (this->isa_aryptr()) {
3516       _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
3517                              _offset != arrayOopDesc::length_offset_in_bytes());









3518     } else if (klass()->is_instance_klass()) {
3519       ciInstanceKlass* ik = klass()->as_instance_klass();
3520       if (this->isa_klassptr()) {
3521         // Perm objects don't use compressed references
3522       } else if (_offset == OffsetBot || _offset == OffsetTop) {
3523         // unsafe access
3524         _is_ptr_to_narrowoop = UseCompressedOops;
3525       } else {
3526         assert(this->isa_instptr(), "must be an instance ptr.");
3527 
3528         if (klass() == ciEnv::current()->Class_klass() &&
3529             (_offset == java_lang_Class::klass_offset() ||
3530              _offset == java_lang_Class::array_klass_offset())) {
3531           // Special hidden fields from the Class.
3532           assert(this->isa_instptr(), "must be an instance ptr.");
3533           _is_ptr_to_narrowoop = false;
3534         } else if (klass() == ciEnv::current()->Class_klass() &&
3535                    _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
3536           // Static fields
3537           ciField* field = nullptr;
3538           if (const_oop() != nullptr) {
3539             ciInstanceKlass* k = const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
3540             field = k->get_field_by_offset(_offset, true);
3541           }
3542           if (field != nullptr) {
3543             BasicType basic_elem_type = field->layout_type();
3544             _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type);
3545           } else {
3546             // unsafe access
3547             _is_ptr_to_narrowoop = UseCompressedOops;






3548           }
3549         } else {
3550           // Instance fields which contains a compressed oop references.
3551           ciField* field = ik->get_field_by_offset(_offset, false);

3552           if (field != nullptr) {
3553             BasicType basic_elem_type = field->layout_type();
3554             _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type);
3555           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
3556             // Compile::find_alias_type() cast exactness on all types to verify
3557             // that it does not affect alias type.
3558             _is_ptr_to_narrowoop = UseCompressedOops;
3559           } else {
3560             // Type for the copy start in LibraryCallKit::inline_native_clone().
3561             _is_ptr_to_narrowoop = UseCompressedOops;
3562           }
3563         }
3564       }
3565     }
3566   }
3567 #endif
3568 }
3569 
3570 //------------------------------make-------------------------------------------
3571 const TypeOopPtr *TypeOopPtr::make(PTR ptr, int offset, int instance_id,
3572                                      const TypePtr* speculative, int inline_depth) {
3573   assert(ptr != Constant, "no constant generic pointers");
3574   ciKlass*  k = Compile::current()->env()->Object_klass();
3575   bool      xk = false;
3576   ciObject* o = nullptr;
3577   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, InterfaceSet(), xk, o, offset, instance_id, speculative, inline_depth))->hashcons();
3578 }
3579 
3580 
3581 //------------------------------cast_to_ptr_type-------------------------------
3582 const TypeOopPtr* TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
3583   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
3584   if( ptr == _ptr ) return this;
3585   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
3586 }
3587 
3588 //-----------------------------cast_to_instance_id----------------------------
3589 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
3590   // There are no instances of a general oop.
3591   // Return self unchanged.
3592   return this;
3593 }
3594 
3595 //-----------------------------cast_to_exactness-------------------------------
3596 const TypeOopPtr* TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
3597   // There is no such thing as an exact general oop.
3598   // Return self unchanged.
3599   return this;
3600 }
3601 
3602 
3603 //------------------------------as_klass_type----------------------------------
3604 // Return the klass type corresponding to this instance or array type.
3605 // It is the type that is loaded from an object of this type.
3606 const TypeKlassPtr* TypeOopPtr::as_klass_type(bool try_for_exact) const {
3607   ShouldNotReachHere();
3608   return nullptr;
3609 }
3610 
3611 //------------------------------meet-------------------------------------------
3612 // Compute the MEET of two types.  It returns a new Type object.
3613 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
3614   // Perform a fast test for common case; meeting the same types together.
3615   if( this == t ) return this;  // Meeting same type-rep?
3616 
3617   // Current "this->_base" is OopPtr
3618   switch (t->base()) {          // switch on original type
3619 
3620   case Int:                     // Mixing ints & oops happens when javac
3621   case Long:                    // reuses local variables
3622   case FloatTop:

3628   case NarrowOop:
3629   case NarrowKlass:
3630   case Bottom:                  // Ye Olde Default
3631     return Type::BOTTOM;
3632   case Top:
3633     return this;
3634 
3635   default:                      // All else is a mistake
3636     typerr(t);
3637 
3638   case RawPtr:
3639   case MetadataPtr:
3640   case KlassPtr:
3641   case InstKlassPtr:
3642   case AryKlassPtr:
3643     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3644 
3645   case AnyPtr: {
3646     // Found an AnyPtr type vs self-OopPtr type
3647     const TypePtr *tp = t->is_ptr();
3648     int offset = meet_offset(tp->offset());
3649     PTR ptr = meet_ptr(tp->ptr());
3650     const TypePtr* speculative = xmeet_speculative(tp);
3651     int depth = meet_inline_depth(tp->inline_depth());
3652     switch (tp->ptr()) {
3653     case Null:
3654       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3655       // else fall through:
3656     case TopPTR:
3657     case AnyNull: {
3658       int instance_id = meet_instance_id(InstanceTop);
3659       return make(ptr, offset, instance_id, speculative, depth);
3660     }
3661     case BotPTR:
3662     case NotNull:
3663       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3664     default: typerr(t);
3665     }
3666   }
3667 
3668   case OopPtr: {                 // Meeting to other OopPtrs

3670     int instance_id = meet_instance_id(tp->instance_id());
3671     const TypePtr* speculative = xmeet_speculative(tp);
3672     int depth = meet_inline_depth(tp->inline_depth());
3673     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
3674   }
3675 
3676   case InstPtr:                  // For these, flip the call around to cut down
3677   case AryPtr:
3678     return t->xmeet(this);      // Call in reverse direction
3679 
3680   } // End of switch
3681   return this;                  // Return the double constant
3682 }
3683 
3684 
3685 //------------------------------xdual------------------------------------------
3686 // Dual of a pure heap pointer.  No relevant klass or oop information.
3687 const Type *TypeOopPtr::xdual() const {
3688   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
3689   assert(const_oop() == nullptr,             "no constants here");
3690   return new TypeOopPtr(_base, dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
3691 }
3692 
3693 //--------------------------make_from_klass_common-----------------------------
3694 // Computes the element-type given a klass.
3695 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact, InterfaceHandling interface_handling) {
3696   if (klass->is_instance_klass()) {
3697     Compile* C = Compile::current();
3698     Dependencies* deps = C->dependencies();
3699     assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
3700     // Element is an instance
3701     bool klass_is_exact = false;
3702     if (klass->is_loaded()) {
3703       // Try to set klass_is_exact.
3704       ciInstanceKlass* ik = klass->as_instance_klass();
3705       klass_is_exact = ik->is_final();
3706       if (!klass_is_exact && klass_change
3707           && deps != nullptr && UseUniqueSubclasses) {
3708         ciInstanceKlass* sub = ik->unique_concrete_subklass();
3709         if (sub != nullptr) {
3710           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3711           klass = ik = sub;
3712           klass_is_exact = sub->is_final();
3713         }
3714       }
3715       if (!klass_is_exact && try_for_exact && deps != nullptr &&
3716           !ik->is_interface() && !ik->has_subklass()) {
3717         // Add a dependence; if concrete subclass added we need to recompile
3718         deps->assert_leaf_type(ik);
3719         klass_is_exact = true;
3720       }
3721     }
3722     const TypePtr::InterfaceSet interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
3723     return TypeInstPtr::make(TypePtr::BotPTR, klass, interfaces, klass_is_exact, nullptr, 0);
3724   } else if (klass->is_obj_array_klass()) {
3725     // Element is an object array. Recursively call ourself.
3726     ciKlass* eklass = klass->as_obj_array_klass()->element_klass();
3727     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(eklass, false, try_for_exact, interface_handling);
3728     bool xk = etype->klass_is_exact();
3729     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);













3730     // We used to pass NotNull in here, asserting that the sub-arrays
3731     // are all not-null.  This is not true in generally, as code can
3732     // slam nulls down in the subarrays.
3733     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, nullptr, xk, 0);
3734     return arr;
3735   } else if (klass->is_type_array_klass()) {
3736     // Element is an typeArray
3737     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3738     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);

3739     // We used to pass NotNull in here, asserting that the array pointer
3740     // is not-null. That was not true in general.
3741     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);






3742     return arr;
3743   } else {
3744     ShouldNotReachHere();
3745     return nullptr;
3746   }
3747 }
3748 
3749 //------------------------------make_from_constant-----------------------------
3750 // Make a java pointer from an oop constant
3751 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
3752   assert(!o->is_null_object(), "null object not yet handled here.");
3753 
3754   const bool make_constant = require_constant || o->should_be_constant();
3755 
3756   ciKlass* klass = o->klass();
3757   if (klass->is_instance_klass()) {
3758     // Element is an instance
3759     if (make_constant) {
3760       return TypeInstPtr::make(o);
3761     } else {
3762       return TypeInstPtr::make(TypePtr::NotNull, klass, true, nullptr, 0);
3763     }
3764   } else if (klass->is_obj_array_klass()) {
3765     // Element is an object array. Recursively call ourself.
3766     const TypeOopPtr *etype =
3767       TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass(), trust_interfaces);
3768     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));





3769     // We used to pass NotNull in here, asserting that the sub-arrays
3770     // are all not-null.  This is not true in generally, as code can
3771     // slam nulls down in the subarrays.
3772     if (make_constant) {
3773       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3774     } else {
3775       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3776     }
3777   } else if (klass->is_type_array_klass()) {
3778     // Element is an typeArray
3779     const Type* etype =
3780       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3781     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3782     // We used to pass NotNull in here, asserting that the array pointer
3783     // is not-null. That was not true in general.
3784     if (make_constant) {
3785       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);












3786     } else {
3787       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3788     }
3789   }
3790 
3791   fatal("unhandled object type");
3792   return nullptr;
3793 }
3794 
3795 //------------------------------get_con----------------------------------------
3796 intptr_t TypeOopPtr::get_con() const {
3797   assert( _ptr == Null || _ptr == Constant, "" );
3798   assert( _offset >= 0, "" );
3799 
3800   if (_offset != 0) {
3801     // After being ported to the compiler interface, the compiler no longer
3802     // directly manipulates the addresses of oops.  Rather, it only has a pointer
3803     // to a handle at compile time.  This handle is embedded in the generated
3804     // code and dereferenced at the time the nmethod is made.  Until that time,
3805     // it is not reasonable to do arithmetic with the addresses of oops (we don't
3806     // have access to the addresses!).  This does not seem to currently happen,
3807     // but this assertion here is to help prevent its occurrence.
3808     tty->print_cr("Found oop constant with non-zero offset");
3809     ShouldNotReachHere();
3810   }
3811 
3812   return (intptr_t)const_oop()->constant_encoding();
3813 }
3814 
3815 
3816 //-----------------------------filter------------------------------------------
3817 // Do not allow interface-vs.-noninterface joins to collapse to top.
3818 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
3819 
3820   const Type* ft = join_helper(kills, include_speculative);

3841   } else {
3842     return one->equals(two) && TypePtr::eq(t);
3843   }
3844 }
3845 
3846 //------------------------------hash-------------------------------------------
3847 // Type-specific hashing function.
3848 uint TypeOopPtr::hash(void) const {
3849   return
3850     (uint)(const_oop() ? const_oop()->hash() : 0) +
3851     (uint)_klass_is_exact +
3852     (uint)_instance_id + TypePtr::hash();
3853 }
3854 
3855 //------------------------------dump2------------------------------------------
3856 #ifndef PRODUCT
3857 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3858   st->print("oopptr:%s", ptr_msg[_ptr]);
3859   if( _klass_is_exact ) st->print(":exact");
3860   if( const_oop() ) st->print(INTPTR_FORMAT, p2i(const_oop()));
3861   switch( _offset ) {
3862   case OffsetTop: st->print("+top"); break;
3863   case OffsetBot: st->print("+any"); break;
3864   case         0: break;
3865   default:        st->print("+%d",_offset); break;
3866   }
3867   if (_instance_id == InstanceTop)
3868     st->print(",iid=top");
3869   else if (_instance_id != InstanceBot)
3870     st->print(",iid=%d",_instance_id);
3871 
3872   dump_inline_depth(st);
3873   dump_speculative(st);
3874 }
3875 #endif
3876 
3877 //------------------------------singleton--------------------------------------
3878 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3879 // constants
3880 bool TypeOopPtr::singleton(void) const {
3881   // detune optimizer to not generate constant oop + constant offset as a constant!
3882   // TopPTR, Null, AnyNull, Constant are all singletons
3883   return (_offset == 0) && !below_centerline(_ptr);
3884 }
3885 
3886 //------------------------------add_offset-------------------------------------
3887 const TypePtr* TypeOopPtr::add_offset(intptr_t offset) const {
3888   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
3889 }
3890 
3891 const TypeOopPtr* TypeOopPtr::with_offset(intptr_t offset) const {
3892   return make(_ptr, offset, _instance_id, with_offset_speculative(offset), _inline_depth);
3893 }
3894 
3895 /**
3896  * Return same type without a speculative part
3897  */
3898 const TypeOopPtr* TypeOopPtr::remove_speculative() const {
3899   if (_speculative == nullptr) {
3900     return this;
3901   }
3902   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3903   return make(_ptr, _offset, _instance_id, nullptr, _inline_depth);
3904 }
3905 
3906 /**
3907  * Return same type but drop speculative part if we know we won't use
3908  * it
3909  */
3910 const Type* TypeOopPtr::cleanup_speculative() const {
3911   // If the klass is exact and the ptr is not null then there's
3912   // nothing that the speculative type can help us with

3985 const TypeInstPtr *TypeInstPtr::BOTTOM;
3986 const TypeInstPtr *TypeInstPtr::MIRROR;
3987 const TypeInstPtr *TypeInstPtr::MARK;
3988 const TypeInstPtr *TypeInstPtr::KLASS;
3989 
3990 // Is there a single ciKlass* that can represent that type?
3991 ciKlass* TypeInstPtr::exact_klass_helper() const {
3992   if (_interfaces.empty()) {
3993     return _klass;
3994   }
3995   if (_klass != ciEnv::current()->Object_klass()) {
3996     if (_interfaces.eq(_klass->as_instance_klass())) {
3997       return _klass;
3998     }
3999     return nullptr;
4000   }
4001   return _interfaces.exact_klass();
4002 }
4003 
4004 //------------------------------TypeInstPtr-------------------------------------
4005 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, const InterfaceSet& interfaces, bool xk, ciObject* o, int off,
4006                          int instance_id, const TypePtr* speculative, int inline_depth)
4007   : TypeOopPtr(InstPtr, ptr, k, interfaces, xk, o, off, instance_id, speculative, inline_depth) {

4008   assert(k == nullptr || !k->is_loaded() || !k->is_interface(), "no interface here");
4009   assert(k != nullptr &&
4010          (k->is_loaded() || o == nullptr),
4011          "cannot have constants with non-loaded klass");


4012 };
4013 
4014 //------------------------------make-------------------------------------------
4015 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
4016                                      ciKlass* k,
4017                                      const InterfaceSet& interfaces,
4018                                      bool xk,
4019                                      ciObject* o,
4020                                      int offset,

4021                                      int instance_id,
4022                                      const TypePtr* speculative,
4023                                      int inline_depth) {
4024   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
4025   // Either const_oop() is null or else ptr is Constant
4026   assert( (!o && ptr != Constant) || (o && ptr == Constant),
4027           "constant pointers must have a value supplied" );
4028   // Ptr is never Null
4029   assert( ptr != Null, "null pointers are not typed" );
4030 
4031   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4032   if (ptr == Constant) {
4033     // Note:  This case includes meta-object constants, such as methods.
4034     xk = true;
4035   } else if (k->is_loaded()) {
4036     ciInstanceKlass* ik = k->as_instance_klass();
4037     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
4038     assert(!ik->is_interface(), "no interface here");
4039     if (xk && ik->is_interface())  xk = false;  // no exact interface
4040   }
4041 



4042   // Now hash this baby
4043   TypeInstPtr *result =
4044     (TypeInstPtr*)(new TypeInstPtr(ptr, k, interfaces, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
4045 
4046   return result;
4047 }
4048 
4049 TypePtr::InterfaceSet TypePtr::interfaces(ciKlass*& k, bool klass, bool interface, bool array, InterfaceHandling interface_handling) {
4050   if (k->is_instance_klass()) {
4051     if (k->is_loaded()) {
4052       if (k->is_interface() && interface_handling == ignore_interfaces) {
4053         assert(interface, "no interface expected");
4054         k = ciEnv::current()->Object_klass();
4055         InterfaceSet interfaces;
4056         return interfaces;
4057       }
4058       GrowableArray<ciInstanceKlass *>* k_interfaces = k->as_instance_klass()->transitive_interfaces();
4059       InterfaceSet interfaces(k_interfaces);
4060       if (k->is_interface()) {
4061         assert(interface, "no interface expected");
4062         k = ciEnv::current()->Object_klass();
4063       } else {
4064         assert(klass, "no instance klass expected");

4090   switch (bt) {
4091     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
4092     case T_INT:      return TypeInt::make(constant.as_int());
4093     case T_CHAR:     return TypeInt::make(constant.as_char());
4094     case T_BYTE:     return TypeInt::make(constant.as_byte());
4095     case T_SHORT:    return TypeInt::make(constant.as_short());
4096     case T_FLOAT:    return TypeF::make(constant.as_float());
4097     case T_DOUBLE:   return TypeD::make(constant.as_double());
4098     case T_LONG:     return TypeLong::make(constant.as_long());
4099     default:         break;
4100   }
4101   fatal("Invalid boxed value type '%s'", type2name(bt));
4102   return nullptr;
4103 }
4104 
4105 //------------------------------cast_to_ptr_type-------------------------------
4106 const TypeInstPtr* TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
4107   if( ptr == _ptr ) return this;
4108   // Reconstruct _sig info here since not a problem with later lazy
4109   // construction, _sig will show up on demand.
4110   return make(ptr, klass(), _interfaces, klass_is_exact(), ptr == Constant ? const_oop() : nullptr, _offset, _instance_id, _speculative, _inline_depth);
4111 }
4112 
4113 
4114 //-----------------------------cast_to_exactness-------------------------------
4115 const TypeInstPtr* TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
4116   if( klass_is_exact == _klass_is_exact ) return this;
4117   if (!_klass->is_loaded())  return this;
4118   ciInstanceKlass* ik = _klass->as_instance_klass();
4119   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
4120   assert(!ik->is_interface(), "no interface here");
4121   return make(ptr(), klass(), _interfaces, klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
4122 }
4123 
4124 //-----------------------------cast_to_instance_id----------------------------
4125 const TypeInstPtr* TypeInstPtr::cast_to_instance_id(int instance_id) const {
4126   if( instance_id == _instance_id ) return this;
4127   return make(_ptr, klass(),  _interfaces, _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
4128 }
4129 
4130 //------------------------------xmeet_unloaded---------------------------------
4131 // Compute the MEET of two InstPtrs when at least one is unloaded.
4132 // Assume classes are different since called after check for same name/class-loader
4133 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst, const InterfaceSet& interfaces) const {
4134   int off = meet_offset(tinst->offset());
4135   PTR ptr = meet_ptr(tinst->ptr());
4136   int instance_id = meet_instance_id(tinst->instance_id());
4137   const TypePtr* speculative = xmeet_speculative(tinst);
4138   int depth = meet_inline_depth(tinst->inline_depth());
4139 
4140   const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
4141   const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
4142   if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
4143     //
4144     // Meet unloaded class with java/lang/Object
4145     //
4146     // Meet
4147     //          |                     Unloaded Class
4148     //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
4149     //  ===================================================================
4150     //   TOP    | ..........................Unloaded......................|
4151     //  AnyNull |  U-AN    |................Unloaded......................|
4152     // Constant | ... O-NN .................................. |   O-BOT   |
4153     //  NotNull | ... O-NN .................................. |   O-BOT   |
4154     //  BOTTOM  | ........................Object-BOTTOM ..................|
4155     //
4156     assert(loaded->ptr() != TypePtr::Null, "insanity check");
4157     //
4158     if (loaded->ptr() == TypePtr::TopPTR)        { return unloaded; }
4159     else if (loaded->ptr() == TypePtr::AnyNull)  { return make(ptr, unloaded->klass(), interfaces, false, nullptr, off, instance_id, speculative, depth); }
4160     else if (loaded->ptr() == TypePtr::BotPTR)   { return TypeInstPtr::BOTTOM; }
4161     else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
4162       if (unloaded->ptr() == TypePtr::BotPTR)    { return TypeInstPtr::BOTTOM;  }
4163       else                                       { return TypeInstPtr::NOTNULL; }
4164     }
4165     else if (unloaded->ptr() == TypePtr::TopPTR) { return unloaded; }
4166 
4167     return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
4168   }
4169 
4170   // Both are unloaded, not the same class, not Object
4171   // Or meet unloaded with a different loaded class, not java/lang/Object
4172   if (ptr != TypePtr::BotPTR) {
4173     return TypeInstPtr::NOTNULL;
4174   }
4175   return TypeInstPtr::BOTTOM;
4176 }
4177 
4178 
4179 //------------------------------meet-------------------------------------------

4200   case Top:
4201     return this;
4202 
4203   default:                      // All else is a mistake
4204     typerr(t);
4205 
4206   case MetadataPtr:
4207   case KlassPtr:
4208   case InstKlassPtr:
4209   case AryKlassPtr:
4210   case RawPtr: return TypePtr::BOTTOM;
4211 
4212   case AryPtr: {                // All arrays inherit from Object class
4213     // Call in reverse direction to avoid duplication
4214     return t->is_aryptr()->xmeet_helper(this);
4215   }
4216 
4217   case OopPtr: {                // Meeting to OopPtrs
4218     // Found a OopPtr type vs self-InstPtr type
4219     const TypeOopPtr *tp = t->is_oopptr();
4220     int offset = meet_offset(tp->offset());
4221     PTR ptr = meet_ptr(tp->ptr());
4222     switch (tp->ptr()) {
4223     case TopPTR:
4224     case AnyNull: {
4225       int instance_id = meet_instance_id(InstanceTop);
4226       const TypePtr* speculative = xmeet_speculative(tp);
4227       int depth = meet_inline_depth(tp->inline_depth());
4228       return make(ptr, klass(), _interfaces, klass_is_exact(),
4229                   (ptr == Constant ? const_oop() : nullptr), offset, instance_id, speculative, depth);
4230     }
4231     case NotNull:
4232     case BotPTR: {
4233       int instance_id = meet_instance_id(tp->instance_id());
4234       const TypePtr* speculative = xmeet_speculative(tp);
4235       int depth = meet_inline_depth(tp->inline_depth());
4236       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4237     }
4238     default: typerr(t);
4239     }
4240   }
4241 
4242   case AnyPtr: {                // Meeting to AnyPtrs
4243     // Found an AnyPtr type vs self-InstPtr type
4244     const TypePtr *tp = t->is_ptr();
4245     int offset = meet_offset(tp->offset());
4246     PTR ptr = meet_ptr(tp->ptr());
4247     int instance_id = meet_instance_id(InstanceTop);
4248     const TypePtr* speculative = xmeet_speculative(tp);
4249     int depth = meet_inline_depth(tp->inline_depth());
4250     switch (tp->ptr()) {
4251     case Null:
4252       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4253       // else fall through to AnyNull
4254     case TopPTR:
4255     case AnyNull: {
4256       return make(ptr, klass(), _interfaces, klass_is_exact(),
4257                   (ptr == Constant ? const_oop() : nullptr), offset, instance_id, speculative, depth);
4258     }
4259     case NotNull:
4260     case BotPTR:
4261       return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
4262     default: typerr(t);
4263     }
4264   }
4265 
4266   /*
4267                  A-top         }
4268                /   |   \       }  Tops
4269            B-top A-any C-top   }
4270               | /  |  \ |      }  Any-nulls
4271            B-any   |   C-any   }
4272               |    |    |
4273            B-con A-con C-con   } constants; not comparable across classes
4274               |    |    |
4275            B-not   |   C-not   }
4276               | \  |  / |      }  not-nulls
4277            B-bot A-not C-bot   }
4278                \   |   /       }  Bottoms
4279                  A-bot         }
4280   */
4281 
4282   case InstPtr: {                // Meeting 2 Oops?
4283     // Found an InstPtr sub-type vs self-InstPtr type
4284     const TypeInstPtr *tinst = t->is_instptr();
4285     int off = meet_offset(tinst->offset());
4286     PTR ptr = meet_ptr(tinst->ptr());
4287     int instance_id = meet_instance_id(tinst->instance_id());
4288     const TypePtr* speculative = xmeet_speculative(tinst);
4289     int depth = meet_inline_depth(tinst->inline_depth());
4290     InterfaceSet interfaces = meet_interfaces(tinst);
4291 
4292     ciKlass* tinst_klass = tinst->klass();
4293     ciKlass* this_klass  = klass();
4294 
4295     ciKlass* res_klass = nullptr;
4296     bool res_xk = false;

4297     const Type* res;
4298     MeetResult kind = meet_instptr(ptr, interfaces, this, tinst, res_klass, res_xk);
4299 
4300     if (kind == UNLOADED) {
4301       // One of these classes has not been loaded
4302       const TypeInstPtr* unloaded_meet = xmeet_unloaded(tinst, interfaces);
4303 #ifndef PRODUCT
4304       if (PrintOpto && Verbose) {
4305         tty->print("meet of unloaded classes resulted in: ");
4306         unloaded_meet->dump();
4307         tty->cr();
4308         tty->print("  this == ");
4309         dump();
4310         tty->cr();
4311         tty->print(" tinst == ");
4312         tinst->dump();
4313         tty->cr();
4314       }
4315 #endif
4316       res = unloaded_meet;
4317     } else {
4318       if (kind == NOT_SUBTYPE && instance_id > 0) {
4319         instance_id = InstanceBot;
4320       } else if (kind == LCA) {
4321         instance_id = InstanceBot;
4322       }
4323       ciObject* o = nullptr;             // Assume not constant when done
4324       ciObject* this_oop = const_oop();
4325       ciObject* tinst_oop = tinst->const_oop();
4326       if (ptr == Constant) {
4327         if (this_oop != nullptr && tinst_oop != nullptr &&
4328             this_oop->equals(tinst_oop))
4329           o = this_oop;
4330         else if (above_centerline(_ptr)) {
4331           assert(!tinst_klass->is_interface(), "");
4332           o = tinst_oop;
4333         } else if (above_centerline(tinst->_ptr)) {
4334           assert(!this_klass->is_interface(), "");
4335           o = this_oop;
4336         } else
4337           ptr = NotNull;
4338       }
4339       res = make(ptr, res_klass, interfaces, res_xk, o, off, instance_id, speculative, depth);
4340     }
4341 
4342     return res;
4343 
4344   } // End of case InstPtr
4345 
4346   } // End of switch
4347   return this;                  // Return the double constant
4348 }
4349 
4350 template<class T> TypePtr::MeetResult TypePtr::meet_instptr(PTR& ptr, InterfaceSet& interfaces, const T* this_type, const T* other_type,
4351                       ciKlass*& res_klass, bool& res_xk) {
4352   ciKlass* this_klass = this_type->klass();
4353   ciKlass* other_klass = other_type->klass();




4354   bool this_xk = this_type->klass_is_exact();
4355   bool other_xk = other_type->klass_is_exact();
4356   PTR this_ptr = this_type->ptr();
4357   PTR other_ptr = other_type->ptr();
4358   InterfaceSet this_interfaces = this_type->interfaces();
4359   InterfaceSet other_interfaces = other_type->interfaces();
4360   // Check for easy case; klasses are equal (and perhaps not loaded!)
4361   // If we have constants, then we created oops so classes are loaded
4362   // and we can handle the constants further down.  This case handles
4363   // both-not-loaded or both-loaded classes
4364   if (ptr != Constant && this_klass->equals(other_klass) && this_xk == other_xk) {
4365     res_klass = this_klass;
4366     res_xk = this_xk;

4367     return QUICK;
4368   }
4369 
4370   // Classes require inspection in the Java klass hierarchy.  Must be loaded.
4371   if (!other_klass->is_loaded() || !this_klass->is_loaded()) {
4372     return UNLOADED;
4373   }
4374 
4375   // !!! Here's how the symmetry requirement breaks down into invariants:
4376   // If we split one up & one down AND they subtype, take the down man.
4377   // If we split one up & one down AND they do NOT subtype, "fall hard".
4378   // If both are up and they subtype, take the subtype class.
4379   // If both are up and they do NOT subtype, "fall hard".
4380   // If both are down and they subtype, take the supertype class.
4381   // If both are down and they do NOT subtype, "fall hard".
4382   // Constants treated as down.
4383 
4384   // Now, reorder the above list; observe that both-down+subtype is also
4385   // "fall hard"; "fall hard" becomes the default case:
4386   // If we split one up & one down AND they subtype, take the down man.
4387   // If both are up and they subtype, take the subtype class.
4388 
4389   // If both are down and they subtype, "fall hard".
4390   // If both are down and they do NOT subtype, "fall hard".
4391   // If both are up and they do NOT subtype, "fall hard".
4392   // If we split one up & one down AND they do NOT subtype, "fall hard".
4393 
4394   // If a proper subtype is exact, and we return it, we return it exactly.
4395   // If a proper supertype is exact, there can be no subtyping relationship!
4396   // If both types are equal to the subtype, exactness is and-ed below the
4397   // centerline and or-ed above it.  (N.B. Constants are always exact.)
4398 
4399   // Check for subtyping:
4400   const T* subtype = nullptr;
4401   bool subtype_exact = false;

4402   if (this_type->is_same_java_type_as(other_type)) {
4403     subtype = this_type;
4404     subtype_exact = below_centerline(ptr) ? (this_xk && other_xk) : (this_xk || other_xk);
4405   } else if (!other_xk && this_type->is_meet_subtype_of(other_type)) {

4406     subtype = this_type;     // Pick subtyping class
4407     subtype_exact = this_xk;
4408   } else if(!this_xk && other_type->is_meet_subtype_of(this_type)) {

4409     subtype = other_type;    // Pick subtyping class
4410     subtype_exact = other_xk;

4411   }
4412 
4413   if (subtype) {
4414     if (above_centerline(ptr)) { // both are up?
4415       this_type = other_type = subtype;
4416       this_xk = other_xk = subtype_exact;

4417     } else if (above_centerline(this_ptr) && !above_centerline(other_ptr)) {
4418       this_type = other_type; // tinst is down; keep down man
4419       this_xk = other_xk;

4420     } else if (above_centerline(other_ptr) && !above_centerline(this_ptr)) {
4421       other_type = this_type; // this is down; keep down man
4422       other_xk = this_xk;

4423     } else {
4424       this_xk = subtype_exact;  // either they are equal, or we'll do an LCA

4425     }
4426   }
4427 
4428   // Check for classes now being equal
4429   if (this_type->is_same_java_type_as(other_type)) {
4430     // If the klasses are equal, the constants may still differ.  Fall to
4431     // NotNull if they do (neither constant is null; that is a special case
4432     // handled elsewhere).
4433     res_klass = this_type->klass();
4434     res_xk = this_xk;

4435     return SUBTYPE;
4436   } // Else classes are not equal
4437 
4438   // Since klasses are different, we require a LCA in the Java
4439   // class hierarchy - which means we have to fall to at least NotNull.
4440   if (ptr == TopPTR || ptr == AnyNull || ptr == Constant) {
4441     ptr = NotNull;
4442   }
4443 
4444   interfaces = this_interfaces.intersection_with(other_interfaces);
4445 
4446   // Now we find the LCA of Java classes
4447   ciKlass* k = this_klass->least_common_ancestor(other_klass);
4448 
4449   res_klass = k;
4450   res_xk = false;

4451 
4452   return LCA;
4453 }
4454 
4455 //------------------------java_mirror_type--------------------------------------
4456 ciType* TypeInstPtr::java_mirror_type() const {
4457   // must be a singleton type
4458   if( const_oop() == nullptr )  return nullptr;
4459 
4460   // must be of type java.lang.Class
4461   if( klass() != ciEnv::current()->Class_klass() )  return nullptr;
4462 
4463   return const_oop()->as_instance()->java_mirror_type();
4464 }
4465 
4466 
4467 //------------------------------xdual------------------------------------------
4468 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
4469 // inheritance mechanism.
4470 const Type *TypeInstPtr::xdual() const {
4471   return new TypeInstPtr(dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
4472 }
4473 
4474 //------------------------------eq---------------------------------------------
4475 // Structural equality check for Type representations
4476 bool TypeInstPtr::eq( const Type *t ) const {
4477   const TypeInstPtr *p = t->is_instptr();
4478   return
4479     klass()->equals(p->klass()) &&

4480     _interfaces.eq(p->_interfaces) &&
4481     TypeOopPtr::eq(p);          // Check sub-type stuff
4482 }
4483 
4484 //------------------------------hash-------------------------------------------
4485 // Type-specific hashing function.
4486 uint TypeInstPtr::hash(void) const {
4487   return klass()->hash() + TypeOopPtr::hash() + _interfaces.hash();
4488 }
4489 
4490 bool TypeInstPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4491   return TypePtr::is_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
4492 }
4493 
4494 
4495 bool TypeInstPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const {
4496   return TypePtr::is_same_java_type_as_helper_for_instance(this, other);
4497 }
4498 
4499 bool TypeInstPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4500   return TypePtr::maybe_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
4501 }
4502 
4503 
4504 //------------------------------dump2------------------------------------------
4505 // Dump oop Type
4506 #ifndef PRODUCT
4507 void TypeInstPtr::dump2(Dict &d, uint depth, outputStream* st) const {

4521       // suppress newlines from it so -XX:+Verbose -XX:+PrintIdeal dumps one-liner for each node.
4522       char* buf = ss.as_string(/* c_heap= */false);
4523       StringUtils::replace_no_expand(buf, "\n", "");
4524       st->print_raw(buf);
4525     }
4526   case BotPTR:
4527     if (!WizardMode && !Verbose) {
4528       if( _klass_is_exact ) st->print(":exact");
4529       break;
4530     }
4531   case TopPTR:
4532   case AnyNull:
4533   case NotNull:
4534     st->print(":%s", ptr_msg[_ptr]);
4535     if( _klass_is_exact ) st->print(":exact");
4536     break;
4537   default:
4538     break;
4539   }
4540 
4541   if( _offset ) {               // Dump offset, if any
4542     if( _offset == OffsetBot )      st->print("+any");
4543     else if( _offset == OffsetTop ) st->print("+unknown");
4544     else st->print("+%d", _offset);
4545   }
4546 
4547   st->print(" *");





4548   if (_instance_id == InstanceTop)
4549     st->print(",iid=top");
4550   else if (_instance_id != InstanceBot)
4551     st->print(",iid=%d",_instance_id);
4552 
4553   dump_inline_depth(st);
4554   dump_speculative(st);
4555 }
4556 #endif
4557 
4558 //------------------------------add_offset-------------------------------------
4559 const TypePtr* TypeInstPtr::add_offset(intptr_t offset) const {
4560   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), xadd_offset(offset),
4561               _instance_id, add_offset_speculative(offset), _inline_depth);
4562 }
4563 
4564 const TypeInstPtr* TypeInstPtr::with_offset(intptr_t offset) const {
4565   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), offset,
4566               _instance_id, with_offset_speculative(offset), _inline_depth);
4567 }
4568 
4569 const TypeInstPtr* TypeInstPtr::remove_speculative() const {
4570   if (_speculative == nullptr) {
4571     return this;
4572   }
4573   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4574   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset,
4575               _instance_id, nullptr, _inline_depth);
4576 }
4577 
4578 const TypePtr* TypeInstPtr::with_inline_depth(int depth) const {
4579   if (!UseInlineDepthForSpeculativeTypes) {
4580     return this;
4581   }
4582   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
4583 }
4584 
4585 const TypePtr* TypeInstPtr::with_instance_id(int instance_id) const {
4586   assert(is_known_instance(), "should be known");
4587   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, instance_id, _speculative, _inline_depth);




4588 }
4589 
4590 const TypeKlassPtr* TypeInstPtr::as_klass_type(bool try_for_exact) const {
4591   bool xk = klass_is_exact();
4592   ciInstanceKlass* ik = klass()->as_instance_klass();
4593   if (try_for_exact && !xk && !ik->has_subklass() && !ik->is_final()) {
4594     if (_interfaces.eq(ik)) {
4595       Compile* C = Compile::current();
4596       Dependencies* deps = C->dependencies();
4597       deps->assert_leaf_type(ik);
4598       xk = true;
4599     }
4600   }
4601   return TypeInstKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, klass(), _interfaces, 0);
4602 }
4603 
4604 template <class T1, class T2> bool TypePtr::is_meet_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_xk, bool other_xk) {
4605   static_assert(std::is_base_of<T2, T1>::value, "");
4606 
4607   if (!this_one->is_instance_type(other)) {
4608     return false;
4609   }
4610 
4611   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces.empty()) {
4612     return true;
4613   }
4614 
4615   return this_one->klass()->is_subtype_of(other->klass()) &&
4616          (!this_xk || this_one->_interfaces.contains(other->_interfaces));
4617 }
4618 
4619 
4620 bool TypeInstPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const {
4621   return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk);

4626   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces.empty()) {
4627     return true;
4628   }
4629 
4630   if (this_one->is_instance_type(other)) {
4631     return other->klass() == ciEnv::current()->Object_klass() && this_one->_interfaces.contains(other->_interfaces);
4632   }
4633 
4634   int dummy;
4635   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
4636   if (this_top_or_bottom) {
4637     return false;
4638   }
4639 
4640   const T1* other_ary = this_one->is_array_type(other);
4641   const TypePtr* other_elem = other_ary->elem()->make_ptr();
4642   const TypePtr* this_elem = this_one->elem()->make_ptr();
4643   if (other_elem != nullptr && this_elem != nullptr) {
4644     return this_one->is_reference_type(this_elem)->is_meet_subtype_of_helper(this_one->is_reference_type(other_elem), this_xk, other_xk);
4645   }
4646 
4647   if (other_elem == nullptr && this_elem == nullptr) {
4648     return this_one->_klass->is_subtype_of(other->_klass);
4649   }
4650 
4651   return false;
4652 }
4653 
4654 bool TypeAryPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const {
4655   return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk);
4656 }
4657 
4658 bool TypeInstKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const {
4659   return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk);
4660 }
4661 
4662 bool TypeAryKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const {
4663   return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk);
4664 }
4665 
4666 //=============================================================================
4667 // Convenience common pre-built types.
4668 const TypeAryPtr *TypeAryPtr::RANGE;
4669 const TypeAryPtr *TypeAryPtr::OOPS;
4670 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
4671 const TypeAryPtr *TypeAryPtr::BYTES;
4672 const TypeAryPtr *TypeAryPtr::SHORTS;
4673 const TypeAryPtr *TypeAryPtr::CHARS;
4674 const TypeAryPtr *TypeAryPtr::INTS;
4675 const TypeAryPtr *TypeAryPtr::LONGS;
4676 const TypeAryPtr *TypeAryPtr::FLOATS;
4677 const TypeAryPtr *TypeAryPtr::DOUBLES;

4678 
4679 //------------------------------make-------------------------------------------
4680 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset,
4681                                    int instance_id, const TypePtr* speculative, int inline_depth) {
4682   assert(!(k == nullptr && ary->_elem->isa_int()),
4683          "integral arrays must be pre-equipped with a class");
4684   if (!xk)  xk = ary->ary_must_be_exact();
4685   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4686   if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() &&
4687       k->as_obj_array_klass()->base_element_klass()->is_interface()) {
4688     k = nullptr;
4689   }
4690   return (TypeAryPtr*)(new TypeAryPtr(ptr, nullptr, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons();



4691 }
4692 
4693 //------------------------------make-------------------------------------------
4694 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset,
4695                                    int instance_id, const TypePtr* speculative, int inline_depth,
4696                                    bool is_autobox_cache) {
4697   assert(!(k == nullptr && ary->_elem->isa_int()),
4698          "integral arrays must be pre-equipped with a class");
4699   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
4700   if (!xk)  xk = (o != nullptr) || ary->ary_must_be_exact();
4701   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4702   if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() &&
4703       k->as_obj_array_klass()->base_element_klass()->is_interface()) {
4704     k = nullptr;
4705   }
4706   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();



4707 }
4708 
4709 //------------------------------cast_to_ptr_type-------------------------------
4710 const TypeAryPtr* TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
4711   if( ptr == _ptr ) return this;
4712   return make(ptr, ptr == Constant ? const_oop() : nullptr, _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4713 }
4714 
4715 
4716 //-----------------------------cast_to_exactness-------------------------------
4717 const TypeAryPtr* TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
4718   if( klass_is_exact == _klass_is_exact ) return this;
4719   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
4720   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
4721 }
4722 
4723 //-----------------------------cast_to_instance_id----------------------------
4724 const TypeAryPtr* TypeAryPtr::cast_to_instance_id(int instance_id) const {
4725   if( instance_id == _instance_id ) return this;
4726   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
4727 }
4728 
4729 
4730 //-----------------------------max_array_length-------------------------------
4731 // A wrapper around arrayOopDesc::max_array_length(etype) with some input normalization.
4732 jint TypeAryPtr::max_array_length(BasicType etype) {
4733   if (!is_java_primitive(etype) && !::is_reference_type(etype)) {
4734     if (etype == T_NARROWOOP) {
4735       etype = T_OBJECT;
4736     } else if (etype == T_ILLEGAL) { // bottom[]
4737       etype = T_BYTE; // will produce conservatively high value
4738     } else {
4739       fatal("not an element type: %s", type2name(etype));
4740     }
4741   }
4742   return arrayOopDesc::max_array_length(etype);
4743 }
4744 
4745 //-----------------------------narrow_size_type-------------------------------
4746 // Narrow the given size type to the index range for the given array base type.

4762   if (hi > max_hi) {
4763     hi = max_hi;
4764     if (size->is_con()) {
4765       lo = hi;
4766     }
4767     chg = true;
4768   }
4769   // Negative length arrays will produce weird intermediate dead fast-path code
4770   if (lo > hi)
4771     return TypeInt::ZERO;
4772   if (!chg)
4773     return size;
4774   return TypeInt::make(lo, hi, Type::WidenMin);
4775 }
4776 
4777 //-------------------------------cast_to_size----------------------------------
4778 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
4779   assert(new_size != nullptr, "");
4780   new_size = narrow_size_type(new_size);
4781   if (new_size == size())  return this;
4782   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
4783   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);




















































4784 }
4785 
4786 //------------------------------cast_to_stable---------------------------------
4787 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
4788   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
4789     return this;
4790 
4791   const Type* elem = this->elem();
4792   const TypePtr* elem_ptr = elem->make_ptr();
4793 
4794   if (stable_dimension > 1 && elem_ptr != nullptr && elem_ptr->isa_aryptr()) {
4795     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
4796     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
4797   }
4798 
4799   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
4800 
4801   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4802 }
4803 
4804 //-----------------------------stable_dimension--------------------------------
4805 int TypeAryPtr::stable_dimension() const {
4806   if (!is_stable())  return 0;
4807   int dim = 1;
4808   const TypePtr* elem_ptr = elem()->make_ptr();
4809   if (elem_ptr != nullptr && elem_ptr->isa_aryptr())
4810     dim += elem_ptr->is_aryptr()->stable_dimension();
4811   return dim;
4812 }
4813 
4814 //----------------------cast_to_autobox_cache-----------------------------------
4815 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache() const {
4816   if (is_autobox_cache())  return this;
4817   const TypeOopPtr* etype = elem()->make_oopptr();
4818   if (etype == nullptr)  return this;
4819   // The pointers in the autobox arrays are always non-null.
4820   etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4821   const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable());
4822   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth, /*is_autobox_cache=*/true);
4823 }
4824 
4825 //------------------------------eq---------------------------------------------
4826 // Structural equality check for Type representations
4827 bool TypeAryPtr::eq( const Type *t ) const {
4828   const TypeAryPtr *p = t->is_aryptr();
4829   return
4830     _ary == p->_ary &&  // Check array
4831     TypeOopPtr::eq(p);  // Check sub-parts

4832 }
4833 
4834 //------------------------------hash-------------------------------------------
4835 // Type-specific hashing function.
4836 uint TypeAryPtr::hash(void) const {
4837   return (uint)(uintptr_t)_ary + TypeOopPtr::hash();
4838 }
4839 
4840 bool TypeAryPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4841   return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
4842 }
4843 
4844 bool TypeAryPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const {
4845   return TypePtr::is_same_java_type_as_helper_for_array(this, other);
4846 }
4847 
4848 bool TypeAryPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4849   return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
4850 }
4851 //------------------------------meet-------------------------------------------
4852 // Compute the MEET of two types.  It returns a new Type object.
4853 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
4854   // Perform a fast test for common case; meeting the same types together.
4855   if( this == t ) return this;  // Meeting same type-rep?
4856   // Current "this->_base" is Pointer
4857   switch (t->base()) {          // switch on original type

4861   case Long:
4862   case FloatTop:
4863   case FloatCon:
4864   case FloatBot:
4865   case DoubleTop:
4866   case DoubleCon:
4867   case DoubleBot:
4868   case NarrowOop:
4869   case NarrowKlass:
4870   case Bottom:                  // Ye Olde Default
4871     return Type::BOTTOM;
4872   case Top:
4873     return this;
4874 
4875   default:                      // All else is a mistake
4876     typerr(t);
4877 
4878   case OopPtr: {                // Meeting to OopPtrs
4879     // Found a OopPtr type vs self-AryPtr type
4880     const TypeOopPtr *tp = t->is_oopptr();
4881     int offset = meet_offset(tp->offset());
4882     PTR ptr = meet_ptr(tp->ptr());
4883     int depth = meet_inline_depth(tp->inline_depth());
4884     const TypePtr* speculative = xmeet_speculative(tp);
4885     switch (tp->ptr()) {
4886     case TopPTR:
4887     case AnyNull: {
4888       int instance_id = meet_instance_id(InstanceTop);
4889       return make(ptr, (ptr == Constant ? const_oop() : nullptr),
4890                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4891     }
4892     case BotPTR:
4893     case NotNull: {
4894       int instance_id = meet_instance_id(tp->instance_id());
4895       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4896     }
4897     default: ShouldNotReachHere();
4898     }
4899   }
4900 
4901   case AnyPtr: {                // Meeting two AnyPtrs
4902     // Found an AnyPtr type vs self-AryPtr type
4903     const TypePtr *tp = t->is_ptr();
4904     int offset = meet_offset(tp->offset());
4905     PTR ptr = meet_ptr(tp->ptr());
4906     const TypePtr* speculative = xmeet_speculative(tp);
4907     int depth = meet_inline_depth(tp->inline_depth());
4908     switch (tp->ptr()) {
4909     case TopPTR:
4910       return this;
4911     case BotPTR:
4912     case NotNull:
4913       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4914     case Null:
4915       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4916       // else fall through to AnyNull
4917     case AnyNull: {
4918       int instance_id = meet_instance_id(InstanceTop);
4919       return make(ptr, (ptr == Constant ? const_oop() : nullptr),
4920                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4921     }
4922     default: ShouldNotReachHere();
4923     }
4924   }
4925 
4926   case MetadataPtr:
4927   case KlassPtr:
4928   case InstKlassPtr:
4929   case AryKlassPtr:
4930   case RawPtr: return TypePtr::BOTTOM;
4931 
4932   case AryPtr: {                // Meeting 2 references?
4933     const TypeAryPtr *tap = t->is_aryptr();
4934     int off = meet_offset(tap->offset());

4935     const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
4936     PTR ptr = meet_ptr(tap->ptr());
4937     int instance_id = meet_instance_id(tap->instance_id());
4938     const TypePtr* speculative = xmeet_speculative(tap);
4939     int depth = meet_inline_depth(tap->inline_depth());
4940 
4941     ciKlass* res_klass = nullptr;
4942     bool res_xk = false;



4943     const Type* elem = tary->_elem;
4944     if (meet_aryptr(ptr, elem, this, tap, res_klass, res_xk) == NOT_SUBTYPE) {
4945       instance_id = InstanceBot;














4946     }
4947 
4948     ciObject* o = nullptr;             // Assume not constant when done
4949     ciObject* this_oop = const_oop();
4950     ciObject* tap_oop = tap->const_oop();
4951     if (ptr == Constant) {
4952       if (this_oop != nullptr && tap_oop != nullptr &&
4953           this_oop->equals(tap_oop)) {
4954         o = tap_oop;
4955       } else if (above_centerline(_ptr)) {
4956         o = tap_oop;
4957       } else if (above_centerline(tap->_ptr)) {
4958         o = this_oop;
4959       } else {
4960         ptr = NotNull;
4961       }
4962     }
4963     return make(ptr, o, TypeAry::make(elem, tary->_size, tary->_stable), res_klass, res_xk, off, instance_id, speculative, depth);
4964   }
4965 
4966   // All arrays inherit from Object class
4967   case InstPtr: {
4968     const TypeInstPtr *tp = t->is_instptr();
4969     int offset = meet_offset(tp->offset());
4970     PTR ptr = meet_ptr(tp->ptr());
4971     int instance_id = meet_instance_id(tp->instance_id());
4972     const TypePtr* speculative = xmeet_speculative(tp);
4973     int depth = meet_inline_depth(tp->inline_depth());
4974     InterfaceSet interfaces = meet_interfaces(tp);
4975     InterfaceSet tp_interfaces = tp->_interfaces;
4976     InterfaceSet this_interfaces = _interfaces;
4977 
4978     switch (ptr) {
4979     case TopPTR:
4980     case AnyNull:                // Fall 'down' to dual of object klass
4981       // For instances when a subclass meets a superclass we fall
4982       // below the centerline when the superclass is exact. We need to
4983       // do the same here.
4984       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces.contains(tp_interfaces) && !tp->klass_is_exact()) {
4985         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4986       } else {
4987         // cannot subclass, so the meet has to fall badly below the centerline
4988         ptr = NotNull;
4989         instance_id = InstanceBot;
4990         interfaces = this_interfaces.intersection_with(tp_interfaces);
4991         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr,offset, instance_id, speculative, depth);
4992       }
4993     case Constant:
4994     case NotNull:
4995     case BotPTR:                // Fall down to object klass
4996       // LCA is object_klass, but if we subclass from the top we can do better
4997       if (above_centerline(tp->ptr())) {
4998         // If 'tp'  is above the centerline and it is Object class
4999         // then we can subclass in the Java class hierarchy.
5000         // For instances when a subclass meets a superclass we fall
5001         // below the centerline when the superclass is exact. We need
5002         // to do the same here.
5003         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces.contains(tp_interfaces) && !tp->klass_is_exact()) {
5004           // that is, my array type is a subtype of 'tp' klass
5005           return make(ptr, (ptr == Constant ? const_oop() : nullptr),
5006                       _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
5007         }
5008       }
5009       // The other case cannot happen, since t cannot be a subtype of an array.
5010       // The meet falls down to Object class below centerline.
5011       if (ptr == Constant) {
5012          ptr = NotNull;
5013       }
5014       if (instance_id > 0) {
5015         instance_id = InstanceBot;
5016       }
5017       interfaces = this_interfaces.intersection_with(tp_interfaces);
5018       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr, offset, instance_id, speculative, depth);
5019     default: typerr(t);
5020     }
5021   }
5022   }
5023   return this;                  // Lint noise
5024 }
5025 
5026 
5027 template<class T> TypePtr::MeetResult TypePtr::meet_aryptr(PTR& ptr, const Type*& elem, const T* this_ary,
5028                                                            const T* other_ary, ciKlass*& res_klass, bool& res_xk) {
5029   int dummy;
5030   bool this_top_or_bottom = (this_ary->base_element_type(dummy) == Type::TOP || this_ary->base_element_type(dummy) == Type::BOTTOM);
5031   bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
5032   ciKlass* this_klass = this_ary->klass();
5033   ciKlass* other_klass = other_ary->klass();
5034   bool this_xk = this_ary->klass_is_exact();
5035   bool other_xk = other_ary->klass_is_exact();
5036   PTR this_ptr = this_ary->ptr();
5037   PTR other_ptr = other_ary->ptr();






5038   res_klass = nullptr;
5039   MeetResult result = SUBTYPE;




5040   if (elem->isa_int()) {
5041     // Integral array element types have irrelevant lattice relations.
5042     // It is the klass that determines array layout, not the element type.
5043     if (this_top_or_bottom)
5044       res_klass = other_klass;
5045     else if (other_top_or_bottom || other_klass == this_klass) {
5046       res_klass = this_klass;
5047     } else {
5048       // Something like byte[int+] meets char[int+].
5049       // This must fall to bottom, not (int[-128..65535])[int+].
5050       // instance_id = InstanceBot;
5051       elem = Type::BOTTOM;
5052       result = NOT_SUBTYPE;
5053       if (above_centerline(ptr) || ptr == Constant) {
5054         ptr = NotNull;
5055         res_xk = false;
5056         return NOT_SUBTYPE;
5057       }
5058     }
5059   } else {// Non integral arrays.
5060     // Must fall to bottom if exact klasses in upper lattice
5061     // are not equal or super klass is exact.
5062     if ((above_centerline(ptr) || ptr == Constant) && !this_ary->is_same_java_type_as(other_ary) &&
5063         // meet with top[] and bottom[] are processed further down:
5064         !this_top_or_bottom && !other_top_or_bottom &&
5065         // both are exact and not equal:

5067          // 'tap'  is exact and super or unrelated:
5068          (other_xk && !other_ary->is_meet_subtype_of(this_ary)) ||
5069          // 'this' is exact and super or unrelated:
5070          (this_xk && !this_ary->is_meet_subtype_of(other_ary)))) {
5071       if (above_centerline(ptr) || (elem->make_ptr() && above_centerline(elem->make_ptr()->_ptr))) {
5072         elem = Type::BOTTOM;
5073       }
5074       ptr = NotNull;
5075       res_xk = false;
5076       return NOT_SUBTYPE;
5077     }
5078   }
5079 
5080   res_xk = false;
5081   switch (other_ptr) {
5082     case AnyNull:
5083     case TopPTR:
5084       // Compute new klass on demand, do not use tap->_klass
5085       if (below_centerline(this_ptr)) {
5086         res_xk = this_xk;



5087       } else {
5088         res_xk = (other_xk || this_xk);
5089       }
5090       return result;
5091     case Constant: {
5092       if (this_ptr == Constant) {
5093         res_xk = true;
5094       } else if(above_centerline(this_ptr)) {
5095         res_xk = true;
5096       } else {
5097         // Only precise for identical arrays
5098         res_xk = this_xk && (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom));




5099       }
5100       return result;
5101     }
5102     case NotNull:
5103     case BotPTR:
5104       // Compute new klass on demand, do not use tap->_klass
5105       if (above_centerline(this_ptr)) {
5106         res_xk = other_xk;



5107       } else {
5108         res_xk = (other_xk && this_xk) &&
5109                  (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom)); // Only precise for identical arrays




5110       }
5111       return result;
5112     default:  {
5113       ShouldNotReachHere();
5114       return result;
5115     }
5116   }
5117   return result;
5118 }
5119 
5120 
5121 //------------------------------xdual------------------------------------------
5122 // Dual: compute field-by-field dual
5123 const Type *TypeAryPtr::xdual() const {
5124   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());









5125 }
5126 
5127 //------------------------------dump2------------------------------------------
5128 #ifndef PRODUCT
5129 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5130   _ary->dump2(d,depth,st);
5131   _interfaces.dump(st);
5132 
5133   switch( _ptr ) {
5134   case Constant:
5135     const_oop()->print(st);
5136     break;
5137   case BotPTR:
5138     if (!WizardMode && !Verbose) {
5139       if( _klass_is_exact ) st->print(":exact");
5140       break;
5141     }
5142   case TopPTR:
5143   case AnyNull:
5144   case NotNull:
5145     st->print(":%s", ptr_msg[_ptr]);
5146     if( _klass_is_exact ) st->print(":exact");
5147     break;
5148   default:
5149     break;
5150   }
5151 
5152   if( _offset != 0 ) {









5153     int header_size = objArrayOopDesc::header_size() * wordSize;
5154     if( _offset == OffsetTop )       st->print("+undefined");
5155     else if( _offset == OffsetBot )  st->print("+any");
5156     else if( _offset < header_size ) st->print("+%d", _offset);
5157     else {
5158       BasicType basic_elem_type = elem()->basic_type();
5159       if (basic_elem_type == T_ILLEGAL) {
5160         st->print("+any");
5161       } else {
5162         int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5163         int elem_size = type2aelembytes(basic_elem_type);
5164         st->print("[%d]", (_offset - array_base)/elem_size);
5165       }
5166     }
5167   }
5168   st->print(" *");
5169   if (_instance_id == InstanceTop)
5170     st->print(",iid=top");
5171   else if (_instance_id != InstanceBot)
5172     st->print(",iid=%d",_instance_id);
5173 
5174   dump_inline_depth(st);
5175   dump_speculative(st);
5176 }
5177 #endif
5178 
5179 bool TypeAryPtr::empty(void) const {
5180   if (_ary->empty())       return true;




5181   return TypeOopPtr::empty();
5182 }
5183 
5184 //------------------------------add_offset-------------------------------------
5185 const TypePtr* TypeAryPtr::add_offset(intptr_t offset) const {
5186   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
5187 }
5188 
5189 const TypeAryPtr* TypeAryPtr::with_offset(intptr_t offset) const {
5190   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, offset, _instance_id, with_offset_speculative(offset), _inline_depth);
5191 }
5192 
5193 const TypeAryPtr* TypeAryPtr::with_ary(const TypeAry* ary) const {
5194   return make(_ptr, _const_oop, ary, _klass, _klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
5195 }
5196 
5197 const TypeAryPtr* TypeAryPtr::remove_speculative() const {
5198   if (_speculative == nullptr) {
5199     return this;
5200   }
5201   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
5202   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, nullptr, _inline_depth);













5203 }
5204 
5205 const TypePtr* TypeAryPtr::with_inline_depth(int depth) const {
5206   if (!UseInlineDepthForSpeculativeTypes) {
5207     return this;
5208   }
5209   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth);











































5210 }
5211 
5212 const TypePtr* TypeAryPtr::with_instance_id(int instance_id) const {
5213   assert(is_known_instance(), "should be known");
5214   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
5215 }
5216 
5217 //=============================================================================
5218 

5219 //------------------------------hash-------------------------------------------
5220 // Type-specific hashing function.
5221 uint TypeNarrowPtr::hash(void) const {
5222   return _ptrtype->hash() + 7;
5223 }
5224 
5225 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
5226   return _ptrtype->singleton();
5227 }
5228 
5229 bool TypeNarrowPtr::empty(void) const {
5230   return _ptrtype->empty();
5231 }
5232 
5233 intptr_t TypeNarrowPtr::get_con() const {
5234   return _ptrtype->get_con();
5235 }
5236 
5237 bool TypeNarrowPtr::eq( const Type *t ) const {
5238   const TypeNarrowPtr* tc = isa_same_narrowptr(t);

5289 
5290   case Int:                     // Mixing ints & oops happens when javac
5291   case Long:                    // reuses local variables
5292   case FloatTop:
5293   case FloatCon:
5294   case FloatBot:
5295   case DoubleTop:
5296   case DoubleCon:
5297   case DoubleBot:
5298   case AnyPtr:
5299   case RawPtr:
5300   case OopPtr:
5301   case InstPtr:
5302   case AryPtr:
5303   case MetadataPtr:
5304   case KlassPtr:
5305   case InstKlassPtr:
5306   case AryKlassPtr:
5307   case NarrowOop:
5308   case NarrowKlass:
5309 
5310   case Bottom:                  // Ye Olde Default
5311     return Type::BOTTOM;
5312   case Top:
5313     return this;
5314 
5315   default:                      // All else is a mistake
5316     typerr(t);
5317 
5318   } // End of switch
5319 
5320   return this;
5321 }
5322 
5323 #ifndef PRODUCT
5324 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5325   _ptrtype->dump2(d, depth, st);
5326 }
5327 #endif
5328 
5329 const TypeNarrowOop *TypeNarrowOop::BOTTOM;

5373     return (one == two) && TypePtr::eq(t);
5374   } else {
5375     return one->equals(two) && TypePtr::eq(t);
5376   }
5377 }
5378 
5379 //------------------------------hash-------------------------------------------
5380 // Type-specific hashing function.
5381 uint TypeMetadataPtr::hash(void) const {
5382   return
5383     (metadata() ? metadata()->hash() : 0) +
5384     TypePtr::hash();
5385 }
5386 
5387 //------------------------------singleton--------------------------------------
5388 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5389 // constants
5390 bool TypeMetadataPtr::singleton(void) const {
5391   // detune optimizer to not generate constant metadata + constant offset as a constant!
5392   // TopPTR, Null, AnyNull, Constant are all singletons
5393   return (_offset == 0) && !below_centerline(_ptr);
5394 }
5395 
5396 //------------------------------add_offset-------------------------------------
5397 const TypePtr* TypeMetadataPtr::add_offset( intptr_t offset ) const {
5398   return make( _ptr, _metadata, xadd_offset(offset));
5399 }
5400 
5401 //-----------------------------filter------------------------------------------
5402 // Do not allow interface-vs.-noninterface joins to collapse to top.
5403 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
5404   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
5405   if (ft == nullptr || ft->empty())
5406     return Type::TOP;           // Canonical empty value
5407   return ft;
5408 }
5409 
5410  //------------------------------get_con----------------------------------------
5411 intptr_t TypeMetadataPtr::get_con() const {
5412   assert( _ptr == Null || _ptr == Constant, "" );
5413   assert( _offset >= 0, "" );
5414 
5415   if (_offset != 0) {
5416     // After being ported to the compiler interface, the compiler no longer
5417     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5418     // to a handle at compile time.  This handle is embedded in the generated
5419     // code and dereferenced at the time the nmethod is made.  Until that time,
5420     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5421     // have access to the addresses!).  This does not seem to currently happen,
5422     // but this assertion here is to help prevent its occurrence.
5423     tty->print_cr("Found oop constant with non-zero offset");
5424     ShouldNotReachHere();
5425   }
5426 
5427   return (intptr_t)metadata()->constant_encoding();
5428 }
5429 
5430 //------------------------------cast_to_ptr_type-------------------------------
5431 const TypeMetadataPtr* TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
5432   if( ptr == _ptr ) return this;
5433   return make(ptr, metadata(), _offset);
5434 }
5435 

5446   case Long:                    // reuses local variables
5447   case FloatTop:
5448   case FloatCon:
5449   case FloatBot:
5450   case DoubleTop:
5451   case DoubleCon:
5452   case DoubleBot:
5453   case NarrowOop:
5454   case NarrowKlass:
5455   case Bottom:                  // Ye Olde Default
5456     return Type::BOTTOM;
5457   case Top:
5458     return this;
5459 
5460   default:                      // All else is a mistake
5461     typerr(t);
5462 
5463   case AnyPtr: {
5464     // Found an AnyPtr type vs self-OopPtr type
5465     const TypePtr *tp = t->is_ptr();
5466     int offset = meet_offset(tp->offset());
5467     PTR ptr = meet_ptr(tp->ptr());
5468     switch (tp->ptr()) {
5469     case Null:
5470       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5471       // else fall through:
5472     case TopPTR:
5473     case AnyNull: {
5474       return make(ptr, _metadata, offset);
5475     }
5476     case BotPTR:
5477     case NotNull:
5478       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5479     default: typerr(t);
5480     }
5481   }
5482 
5483   case RawPtr:
5484   case KlassPtr:
5485   case InstKlassPtr:
5486   case AryKlassPtr:
5487   case OopPtr:
5488   case InstPtr:
5489   case AryPtr:
5490     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
5491 
5492   case MetadataPtr: {
5493     const TypeMetadataPtr *tp = t->is_metadataptr();
5494     int offset = meet_offset(tp->offset());
5495     PTR tptr = tp->ptr();
5496     PTR ptr = meet_ptr(tptr);
5497     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
5498     if (tptr == TopPTR || _ptr == TopPTR ||
5499         metadata()->equals(tp->metadata())) {
5500       return make(ptr, md, offset);
5501     }
5502     // metadata is different
5503     if( ptr == Constant ) {  // Cannot be equal constants, so...
5504       if( tptr == Constant && _ptr != Constant)  return t;
5505       if( _ptr == Constant && tptr != Constant)  return this;
5506       ptr = NotNull;            // Fall down in lattice
5507     }
5508     return make(ptr, nullptr, offset);
5509     break;
5510   }
5511   } // End of switch
5512   return this;                  // Return the double constant
5513 }
5514 
5515 
5516 //------------------------------xdual------------------------------------------
5517 // Dual of a pure metadata pointer.
5518 const Type *TypeMetadataPtr::xdual() const {
5519   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
5520 }
5521 
5522 //------------------------------dump2------------------------------------------
5523 #ifndef PRODUCT
5524 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5525   st->print("metadataptr:%s", ptr_msg[_ptr]);
5526   if( metadata() ) st->print(INTPTR_FORMAT, p2i(metadata()));
5527   switch( _offset ) {
5528   case OffsetTop: st->print("+top"); break;
5529   case OffsetBot: st->print("+any"); break;
5530   case         0: break;
5531   default:        st->print("+%d",_offset); break;
5532   }
5533 }
5534 #endif
5535 
5536 
5537 //=============================================================================
5538 // Convenience common pre-built type.
5539 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
5540 
5541 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
5542   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
5543 }
5544 
5545 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
5546   return make(Constant, m, 0);
5547 }
5548 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
5549   return make(Constant, m, 0);
5550 }
5551 
5552 //------------------------------make-------------------------------------------
5553 // Create a meta data constant
5554 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
5555   assert(m == nullptr || !m->is_klass(), "wrong type");
5556   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
5557 }
5558 
5559 
5560 const TypeKlassPtr* TypeAryPtr::as_klass_type(bool try_for_exact) const {
5561   const Type* elem = _ary->_elem;
5562   bool xk = klass_is_exact();
5563   if (elem->make_oopptr() != nullptr) {
5564     elem = elem->make_oopptr()->as_klass_type(try_for_exact);
5565     if (elem->is_klassptr()->klass_is_exact()) {


5566       xk = true;
5567     }
5568   }
5569   return TypeAryKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, elem, klass(), 0);
5570 }
5571 
5572 const TypeKlassPtr* TypeKlassPtr::make(ciKlass *klass, InterfaceHandling interface_handling) {
5573   if (klass->is_instance_klass()) {
5574     return TypeInstKlassPtr::make(klass, interface_handling);
5575   }
5576   return TypeAryKlassPtr::make(klass, interface_handling);
5577 }
5578 
5579 const TypeKlassPtr* TypeKlassPtr::make(PTR ptr, ciKlass* klass, int offset, InterfaceHandling interface_handling) {
5580   if (klass->is_instance_klass()) {
5581     const InterfaceSet interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
5582     return TypeInstKlassPtr::make(ptr, klass, interfaces, offset);
5583   }
5584   return TypeAryKlassPtr::make(ptr, klass, offset, interface_handling);
5585 }
5586 
5587 
5588 //------------------------------TypeKlassPtr-----------------------------------
5589 TypeKlassPtr::TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, const InterfaceSet& interfaces, int offset)
5590   : TypePtr(t, ptr, offset), _klass(klass), _interfaces(interfaces) {
5591   assert(klass == nullptr || !klass->is_loaded() || (klass->is_instance_klass() && !klass->is_interface()) ||
5592          klass->is_type_array_klass() || !klass->as_obj_array_klass()->base_element_klass()->is_interface(), "no interface here");
5593 }
5594 
5595 // Is there a single ciKlass* that can represent that type?
5596 ciKlass* TypeKlassPtr::exact_klass_helper() const {
5597   assert(_klass->is_instance_klass() && !_klass->is_interface(), "No interface");
5598   if (_interfaces.empty()) {
5599     return _klass;
5600   }
5601   if (_klass != ciEnv::current()->Object_klass()) {
5602     if (_interfaces.eq(_klass->as_instance_klass())) {
5603       return _klass;
5604     }
5605     return nullptr;
5606   }
5607   return _interfaces.exact_klass();
5608 }
5609 
5610 //------------------------------eq---------------------------------------------
5611 // Structural equality check for Type representations
5612 bool TypeKlassPtr::eq(const Type *t) const {
5613   const TypeKlassPtr *p = t->is_klassptr();
5614   return
5615     _interfaces.eq(p->_interfaces) &&
5616     TypePtr::eq(p);
5617 }
5618 
5619 //------------------------------hash-------------------------------------------
5620 // Type-specific hashing function.
5621 uint TypeKlassPtr::hash(void) const {
5622   return TypePtr::hash() + _interfaces.hash();
5623 }
5624 
5625 //------------------------------singleton--------------------------------------
5626 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5627 // constants
5628 bool TypeKlassPtr::singleton(void) const {
5629   // detune optimizer to not generate constant klass + constant offset as a constant!
5630   // TopPTR, Null, AnyNull, Constant are all singletons
5631   return (_offset == 0) && !below_centerline(_ptr);
5632 }
5633 
5634 // Do not allow interface-vs.-noninterface joins to collapse to top.
5635 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
5636   // logic here mirrors the one from TypeOopPtr::filter. See comments
5637   // there.
5638   const Type* ft = join_helper(kills, include_speculative);
5639   const TypeKlassPtr* ftkp = ft->isa_instklassptr();
5640   const TypeKlassPtr* ktkp = kills->isa_instklassptr();
5641 
5642   if (ft->empty()) {
5643     return Type::TOP;           // Canonical empty value
5644   }
5645 
5646   return ft;
5647 }
5648 
5649 TypePtr::InterfaceSet TypeKlassPtr::meet_interfaces(const TypeKlassPtr* other) const {
5650   if (above_centerline(_ptr) && above_centerline(other->_ptr)) {
5651     return _interfaces.union_with(other->_interfaces);
5652   } else if (above_centerline(_ptr) && !above_centerline(other->_ptr)) {
5653     return other->_interfaces;
5654   } else if (above_centerline(other->_ptr) && !above_centerline(_ptr)) {
5655     return _interfaces;
5656   }
5657   return _interfaces.intersection_with(other->_interfaces);
5658 }
5659 
5660 //------------------------------get_con----------------------------------------
5661 intptr_t TypeKlassPtr::get_con() const {
5662   assert( _ptr == Null || _ptr == Constant, "" );
5663   assert( _offset >= 0, "" );
5664 
5665   if (_offset != 0) {
5666     // After being ported to the compiler interface, the compiler no longer
5667     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5668     // to a handle at compile time.  This handle is embedded in the generated
5669     // code and dereferenced at the time the nmethod is made.  Until that time,
5670     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5671     // have access to the addresses!).  This does not seem to currently happen,
5672     // but this assertion here is to help prevent its occurrence.
5673     tty->print_cr("Found oop constant with non-zero offset");
5674     ShouldNotReachHere();
5675   }
5676 
5677   ciKlass* k = exact_klass();
5678 
5679   return (intptr_t)k->constant_encoding();
5680 }
5681 
5682 //------------------------------dump2------------------------------------------
5683 // Dump Klass Type
5684 #ifndef PRODUCT
5685 void TypeKlassPtr::dump2(Dict & d, uint depth, outputStream *st) const {

5689   case NotNull:
5690     {
5691       const char *name = klass()->name()->as_utf8();
5692       if (name) {
5693         st->print("%s: " INTPTR_FORMAT, name, p2i(klass()));
5694       } else {
5695         ShouldNotReachHere();
5696       }
5697       _interfaces.dump(st);
5698     }
5699   case BotPTR:
5700     if (!WizardMode && !Verbose && _ptr != Constant) break;
5701   case TopPTR:
5702   case AnyNull:
5703     st->print(":%s", ptr_msg[_ptr]);
5704     if (_ptr == Constant) st->print(":exact");
5705     break;
5706   default:
5707     break;
5708   }
5709 
5710   if (_offset) {               // Dump offset, if any
5711     if (_offset == OffsetBot)      { st->print("+any"); }
5712     else if (_offset == OffsetTop) { st->print("+unknown"); }
5713     else                            { st->print("+%d", _offset); }
5714   }
5715 
5716   st->print(" *");
5717 }
5718 #endif
5719 
5720 //=============================================================================
5721 // Convenience common pre-built types.
5722 
5723 // Not-null object klass or below
5724 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT;
5725 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT_OR_NULL;
5726 
5727 bool TypeInstKlassPtr::eq(const Type *t) const {
5728   const TypeKlassPtr *p = t->is_klassptr();
5729   return
5730     klass()->equals(p->klass()) &&

5731     TypeKlassPtr::eq(p);
5732 }
5733 
5734 uint TypeInstKlassPtr::hash(void) const {
5735   return klass()->hash() + TypeKlassPtr::hash();
5736 }
5737 
5738 const TypeInstKlassPtr *TypeInstKlassPtr::make(PTR ptr, ciKlass* k, const InterfaceSet& interfaces, int offset) {


5739   TypeInstKlassPtr *r =
5740     (TypeInstKlassPtr*)(new TypeInstKlassPtr(ptr, k, interfaces, offset))->hashcons();
5741 
5742   return r;
5743 }
5744 
5745 //------------------------------add_offset-------------------------------------
5746 // Access internals of klass object
5747 const TypePtr* TypeInstKlassPtr::add_offset( intptr_t offset ) const {
5748   return make( _ptr, klass(), _interfaces, xadd_offset(offset) );
5749 }
5750 
5751 const TypeInstKlassPtr* TypeInstKlassPtr::with_offset(intptr_t offset) const {
5752   return make(_ptr, klass(), _interfaces, offset);
5753 }
5754 
5755 //------------------------------cast_to_ptr_type-------------------------------
5756 const TypeInstKlassPtr* TypeInstKlassPtr::cast_to_ptr_type(PTR ptr) const {
5757   assert(_base == InstKlassPtr, "subclass must override cast_to_ptr_type");
5758   if( ptr == _ptr ) return this;
5759   return make(ptr, _klass, _interfaces, _offset);
5760 }
5761 
5762 
5763 bool TypeInstKlassPtr::must_be_exact() const {
5764   if (!_klass->is_loaded())  return false;
5765   ciInstanceKlass* ik = _klass->as_instance_klass();
5766   if (ik->is_final())  return true;  // cannot clear xk
5767   return false;
5768 }
5769 
5770 //-----------------------------cast_to_exactness-------------------------------
5771 const TypeKlassPtr* TypeInstKlassPtr::cast_to_exactness(bool klass_is_exact) const {
5772   if (klass_is_exact == (_ptr == Constant)) return this;
5773   if (must_be_exact()) return this;
5774   ciKlass* k = klass();
5775   return make(klass_is_exact ? Constant : NotNull, k, _interfaces, _offset);
5776 }
5777 
5778 
5779 //-----------------------------as_instance_type--------------------------------
5780 // Corresponding type for an instance of the given class.
5781 // It will be NotNull, and exact if and only if the klass type is exact.
5782 const TypeOopPtr* TypeInstKlassPtr::as_instance_type(bool klass_change) const {
5783   ciKlass* k = klass();
5784   bool xk = klass_is_exact();
5785   Compile* C = Compile::current();
5786   Dependencies* deps = C->dependencies();
5787   assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
5788   // Element is an instance
5789   bool klass_is_exact = false;
5790   TypePtr::InterfaceSet interfaces = _interfaces;
5791   if (k->is_loaded()) {
5792     // Try to set klass_is_exact.
5793     ciInstanceKlass* ik = k->as_instance_klass();
5794     klass_is_exact = ik->is_final();
5795     if (!klass_is_exact && klass_change
5796         && deps != nullptr && UseUniqueSubclasses) {
5797       ciInstanceKlass* sub = ik->unique_concrete_subklass();
5798       if (sub != nullptr) {
5799         if (_interfaces.eq(sub)) {
5800           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
5801           k = ik = sub;
5802           xk = sub->is_final();
5803         }
5804       }
5805     }
5806   }
5807   return TypeInstPtr::make(TypePtr::BotPTR, k, interfaces, xk, nullptr, 0);
5808 }
5809 
5810 //------------------------------xmeet------------------------------------------
5811 // Compute the MEET of two types, return a new Type object.
5812 const Type    *TypeInstKlassPtr::xmeet( const Type *t ) const {
5813   // Perform a fast test for common case; meeting the same types together.
5814   if( this == t ) return this;  // Meeting same type-rep?
5815 
5816   // Current "this->_base" is Pointer
5817   switch (t->base()) {          // switch on original type
5818 
5819   case Int:                     // Mixing ints & oops happens when javac
5820   case Long:                    // reuses local variables
5821   case FloatTop:
5822   case FloatCon:
5823   case FloatBot:
5824   case DoubleTop:
5825   case DoubleCon:
5826   case DoubleBot:
5827   case NarrowOop:
5828   case NarrowKlass:
5829   case Bottom:                  // Ye Olde Default
5830     return Type::BOTTOM;
5831   case Top:
5832     return this;
5833 
5834   default:                      // All else is a mistake
5835     typerr(t);
5836 
5837   case AnyPtr: {                // Meeting to AnyPtrs
5838     // Found an AnyPtr type vs self-KlassPtr type
5839     const TypePtr *tp = t->is_ptr();
5840     int offset = meet_offset(tp->offset());
5841     PTR ptr = meet_ptr(tp->ptr());
5842     switch (tp->ptr()) {
5843     case TopPTR:
5844       return this;
5845     case Null:
5846       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5847     case AnyNull:
5848       return make( ptr, klass(), _interfaces, offset );
5849     case BotPTR:
5850     case NotNull:
5851       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5852     default: typerr(t);
5853     }
5854   }
5855 
5856   case RawPtr:
5857   case MetadataPtr:
5858   case OopPtr:
5859   case AryPtr:                  // Meet with AryPtr
5860   case InstPtr:                 // Meet with InstPtr
5861     return TypePtr::BOTTOM;
5862 
5863   //
5864   //             A-top         }
5865   //           /   |   \       }  Tops
5866   //       B-top A-any C-top   }
5867   //          | /  |  \ |      }  Any-nulls
5868   //       B-any   |   C-any   }
5869   //          |    |    |
5870   //       B-con A-con C-con   } constants; not comparable across classes
5871   //          |    |    |
5872   //       B-not   |   C-not   }
5873   //          | \  |  / |      }  not-nulls
5874   //       B-bot A-not C-bot   }
5875   //           \   |   /       }  Bottoms
5876   //             A-bot         }
5877   //
5878 
5879   case InstKlassPtr: {  // Meet two KlassPtr types
5880     const TypeInstKlassPtr *tkls = t->is_instklassptr();
5881     int  off     = meet_offset(tkls->offset());
5882     PTR  ptr     = meet_ptr(tkls->ptr());
5883     InterfaceSet interfaces = meet_interfaces(tkls);
5884 
5885     ciKlass* res_klass = nullptr;
5886     bool res_xk = false;
5887     switch(meet_instptr(ptr, interfaces, this, tkls, res_klass, res_xk)) {

5888       case UNLOADED:
5889         ShouldNotReachHere();
5890       case SUBTYPE:
5891       case NOT_SUBTYPE:
5892       case LCA:
5893       case QUICK: {
5894         assert(res_xk == (ptr == Constant), "");
5895         const Type* res = make(ptr, res_klass, interfaces, off);
5896         return res;
5897       }
5898       default:
5899         ShouldNotReachHere();
5900     }
5901   } // End of case KlassPtr
5902   case AryKlassPtr: {                // All arrays inherit from Object class
5903     const TypeAryKlassPtr *tp = t->is_aryklassptr();
5904     int offset = meet_offset(tp->offset());
5905     PTR ptr = meet_ptr(tp->ptr());
5906     InterfaceSet interfaces = meet_interfaces(tp);
5907     InterfaceSet tp_interfaces = tp->_interfaces;
5908     InterfaceSet this_interfaces = _interfaces;
5909 
5910     switch (ptr) {
5911     case TopPTR:
5912     case AnyNull:                // Fall 'down' to dual of object klass
5913       // For instances when a subclass meets a superclass we fall
5914       // below the centerline when the superclass is exact. We need to
5915       // do the same here.
5916       if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces.contains(this_interfaces) && !klass_is_exact()) {
5917         return TypeAryKlassPtr::make(ptr, tp->elem(), tp->klass(), offset);
5918       } else {
5919         // cannot subclass, so the meet has to fall badly below the centerline
5920         ptr = NotNull;
5921         interfaces = _interfaces.intersection_with(tp->_interfaces);
5922         return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset);
5923       }
5924     case Constant:
5925     case NotNull:
5926     case BotPTR:                // Fall down to object klass
5927       // LCA is object_klass, but if we subclass from the top we can do better
5928       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
5929         // If 'this' (InstPtr) is above the centerline and it is Object class
5930         // then we can subclass in the Java class hierarchy.
5931         // For instances when a subclass meets a superclass we fall
5932         // below the centerline when the superclass is exact. We need
5933         // to do the same here.
5934         if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces.contains(this_interfaces) && !klass_is_exact()) {
5935           // that is, tp's array type is a subtype of my klass
5936           return TypeAryKlassPtr::make(ptr,
5937                                        tp->elem(), tp->klass(), offset);
5938         }
5939       }
5940       // The other case cannot happen, since I cannot be a subtype of an array.
5941       // The meet falls down to Object class below centerline.
5942       if( ptr == Constant )
5943          ptr = NotNull;
5944       interfaces = this_interfaces.intersection_with(tp_interfaces);
5945       return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset);
5946     default: typerr(t);
5947     }
5948   }
5949 
5950   } // End of switch
5951   return this;                  // Return the double constant
5952 }
5953 
5954 //------------------------------xdual------------------------------------------
5955 // Dual: compute field-by-field dual
5956 const Type    *TypeInstKlassPtr::xdual() const {
5957   return new TypeInstKlassPtr(dual_ptr(), klass(), _interfaces, dual_offset());
5958 }
5959 
5960 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
5961   static_assert(std::is_base_of<T2, T1>::value, "");
5962   if (!this_one->is_loaded() || !other->is_loaded()) {
5963     return false;
5964   }
5965   if (!this_one->is_instance_type(other)) {
5966     return false;
5967   }
5968 
5969   if (!other_exact) {
5970     return false;
5971   }
5972 
5973   if (other->klass()->equals(ciEnv::current()->Object_klass()) && other->_interfaces.empty()) {
5974     return true;
5975   }
5976 
5977   return this_one->_klass->is_subtype_of(other->_klass) && this_one->_interfaces.contains(other->_interfaces);

6038   TypePtr::InterfaceSet interfaces = _interfaces;
6039   if (k->is_loaded()) {
6040     ciInstanceKlass* ik = k->as_instance_klass();
6041     bool klass_is_exact = ik->is_final();
6042     if (!klass_is_exact &&
6043         deps != nullptr) {
6044       ciInstanceKlass* sub = ik->unique_concrete_subklass();
6045       if (sub != nullptr) {
6046         if (_interfaces.eq(sub)) {
6047           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
6048           k = ik = sub;
6049           klass_is_exact = sub->is_final();
6050           return TypeKlassPtr::make(klass_is_exact ? Constant : _ptr, k, _offset);
6051         }
6052       }
6053     }
6054   }
6055   return this;
6056 }
6057 







6058 
6059 const TypeAryKlassPtr *TypeAryKlassPtr::make(PTR ptr, const Type* elem, ciKlass* k, int offset) {
6060   return (TypeAryKlassPtr*)(new TypeAryKlassPtr(ptr, elem, k, offset))->hashcons();
6061 }
6062 
6063 const TypeAryKlassPtr *TypeAryKlassPtr::make(PTR ptr, ciKlass* k, int offset, InterfaceHandling interface_handling) {








6064   if (k->is_obj_array_klass()) {
6065     // Element is an object array. Recursively call ourself.
6066     ciKlass* eklass = k->as_obj_array_klass()->element_klass();
6067     const TypeKlassPtr *etype = TypeKlassPtr::make(eklass, interface_handling)->cast_to_exactness(false);
6068     return TypeAryKlassPtr::make(ptr, etype, nullptr, offset);




6069   } else if (k->is_type_array_klass()) {
6070     // Element is an typeArray
6071     const Type* etype = get_const_basic_type(k->as_type_array_klass()->element_type());
6072     return TypeAryKlassPtr::make(ptr, etype, k, offset);




6073   } else {
6074     ShouldNotReachHere();
6075     return nullptr;
6076   }
6077 }
6078 











6079 const TypeAryKlassPtr* TypeAryKlassPtr::make(ciKlass* klass, InterfaceHandling interface_handling) {
6080   return TypeAryKlassPtr::make(Constant, klass, 0, interface_handling);
6081 }
6082 
6083 //------------------------------eq---------------------------------------------
6084 // Structural equality check for Type representations
6085 bool TypeAryKlassPtr::eq(const Type *t) const {
6086   const TypeAryKlassPtr *p = t->is_aryklassptr();
6087   return
6088     _elem == p->_elem &&  // Check array



6089     TypeKlassPtr::eq(p);  // Check sub-parts
6090 }
6091 
6092 //------------------------------hash-------------------------------------------
6093 // Type-specific hashing function.
6094 uint TypeAryKlassPtr::hash(void) const {
6095   return (uint)(uintptr_t)_elem + TypeKlassPtr::hash();

6096 }
6097 
6098 //----------------------compute_klass------------------------------------------
6099 // Compute the defining klass for this class
6100 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
6101   // Compute _klass based on element type.
6102   ciKlass* k_ary = nullptr;
6103   const TypeInstPtr *tinst;
6104   const TypeAryPtr *tary;
6105   const Type* el = elem();
6106   if (el->isa_narrowoop()) {
6107     el = el->make_ptr();
6108   }
6109 
6110   // Get element klass
6111   if ((tinst = el->isa_instptr()) != nullptr) {
6112     // Leave k_ary at null.





6113   } else if ((tary = el->isa_aryptr()) != nullptr) {
6114     // Leave k_ary at null.
6115   } else if ((el->base() == Type::Top) ||
6116              (el->base() == Type::Bottom)) {
6117     // element type of Bottom occurs from meet of basic type
6118     // and object; Top occurs when doing join on Bottom.
6119     // Leave k_ary at null.
6120   } else {
6121     // Cannot compute array klass directly from basic type,
6122     // since subtypes of TypeInt all have basic type T_INT.
6123 #ifdef ASSERT
6124     if (verify && el->isa_int()) {
6125       // Check simple cases when verifying klass.
6126       BasicType bt = T_ILLEGAL;
6127       if (el == TypeInt::BYTE) {
6128         bt = T_BYTE;
6129       } else if (el == TypeInt::SHORT) {
6130         bt = T_SHORT;
6131       } else if (el == TypeInt::CHAR) {
6132         bt = T_CHAR;
6133       } else if (el == TypeInt::INT) {
6134         bt = T_INT;

6163     // type TypeAryPtr::OOPS.  This Type is shared between all
6164     // active compilations.  However, the ciKlass which represents
6165     // this Type is *not* shared between compilations, so caching
6166     // this value would result in fetching a dangling pointer.
6167     //
6168     // Recomputing the underlying ciKlass for each request is
6169     // a bit less efficient than caching, but calls to
6170     // TypeAryPtr::OOPS->klass() are not common enough to matter.
6171     ((TypeAryPtr*)this)->_klass = k_ary;
6172   }
6173   return k_ary;
6174 }
6175 
6176 // Is there a single ciKlass* that can represent that type?
6177 ciKlass* TypeAryPtr::exact_klass_helper() const {
6178   if (_ary->_elem->make_ptr() && _ary->_elem->make_ptr()->isa_oopptr()) {
6179     ciKlass* k = _ary->_elem->make_ptr()->is_oopptr()->exact_klass_helper();
6180     if (k == nullptr) {
6181       return nullptr;
6182     }
6183     k = ciObjArrayKlass::make(k);
6184     return k;
6185   }
6186 
6187   return klass();
6188 }
6189 
6190 const Type* TypeAryPtr::base_element_type(int& dims) const {
6191   const Type* elem = this->elem();
6192   dims = 1;
6193   while (elem->make_ptr() && elem->make_ptr()->isa_aryptr()) {
6194     elem = elem->make_ptr()->is_aryptr()->elem();
6195     dims++;
6196   }
6197   return elem;
6198 }
6199 
6200 //------------------------------add_offset-------------------------------------
6201 // Access internals of klass object
6202 const TypePtr* TypeAryKlassPtr::add_offset(intptr_t offset) const {
6203   return make(_ptr, elem(), klass(), xadd_offset(offset));
6204 }
6205 
6206 const TypeAryKlassPtr* TypeAryKlassPtr::with_offset(intptr_t offset) const {
6207   return make(_ptr, elem(), klass(), offset);
6208 }
6209 
6210 //------------------------------cast_to_ptr_type-------------------------------
6211 const TypeAryKlassPtr* TypeAryKlassPtr::cast_to_ptr_type(PTR ptr) const {
6212   assert(_base == AryKlassPtr, "subclass must override cast_to_ptr_type");
6213   if (ptr == _ptr) return this;
6214   return make(ptr, elem(), _klass, _offset);
6215 }
6216 
6217 bool TypeAryKlassPtr::must_be_exact() const {
6218   if (_elem == Type::BOTTOM) return false;
6219   if (_elem == Type::TOP   ) return false;
6220   const TypeKlassPtr*  tk = _elem->isa_klassptr();
6221   if (!tk)             return true;   // a primitive type, like int




6222   return tk->must_be_exact();
6223 }
6224 
6225 
6226 //-----------------------------cast_to_exactness-------------------------------
6227 const TypeKlassPtr *TypeAryKlassPtr::cast_to_exactness(bool klass_is_exact) const {
6228   if (must_be_exact()) return this;  // cannot clear xk



6229   ciKlass* k = _klass;
6230   const Type* elem = this->elem();
6231   if (elem->isa_klassptr() && !klass_is_exact) {
6232     elem = elem->is_klassptr()->cast_to_exactness(klass_is_exact);
6233   }
6234   return make(klass_is_exact ? Constant : NotNull, elem, k, _offset);















6235 }
6236 
6237 
6238 //-----------------------------as_instance_type--------------------------------
6239 // Corresponding type for an instance of the given class.
6240 // It will be NotNull, and exact if and only if the klass type is exact.
6241 const TypeOopPtr* TypeAryKlassPtr::as_instance_type(bool klass_change) const {
6242   ciKlass* k = klass();
6243   bool    xk = klass_is_exact();
6244   const Type* el = nullptr;
6245   if (elem()->isa_klassptr()) {
6246     el = elem()->is_klassptr()->as_instance_type(false)->cast_to_exactness(false);
6247     k = nullptr;
6248   } else {
6249     el = elem();
6250   }
6251   return TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(el, TypeInt::POS), k, xk, 0);




6252 }
6253 
6254 
6255 //------------------------------xmeet------------------------------------------
6256 // Compute the MEET of two types, return a new Type object.
6257 const Type    *TypeAryKlassPtr::xmeet( const Type *t ) const {
6258   // Perform a fast test for common case; meeting the same types together.
6259   if( this == t ) return this;  // Meeting same type-rep?
6260 
6261   // Current "this->_base" is Pointer
6262   switch (t->base()) {          // switch on original type
6263 
6264   case Int:                     // Mixing ints & oops happens when javac
6265   case Long:                    // reuses local variables
6266   case FloatTop:
6267   case FloatCon:
6268   case FloatBot:
6269   case DoubleTop:
6270   case DoubleCon:
6271   case DoubleBot:
6272   case NarrowOop:
6273   case NarrowKlass:
6274   case Bottom:                  // Ye Olde Default
6275     return Type::BOTTOM;
6276   case Top:
6277     return this;
6278 
6279   default:                      // All else is a mistake
6280     typerr(t);
6281 
6282   case AnyPtr: {                // Meeting to AnyPtrs
6283     // Found an AnyPtr type vs self-KlassPtr type
6284     const TypePtr *tp = t->is_ptr();
6285     int offset = meet_offset(tp->offset());
6286     PTR ptr = meet_ptr(tp->ptr());
6287     switch (tp->ptr()) {
6288     case TopPTR:
6289       return this;
6290     case Null:
6291       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6292     case AnyNull:
6293       return make( ptr, _elem, klass(), offset );
6294     case BotPTR:
6295     case NotNull:
6296       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6297     default: typerr(t);
6298     }
6299   }
6300 
6301   case RawPtr:
6302   case MetadataPtr:
6303   case OopPtr:
6304   case AryPtr:                  // Meet with AryPtr
6305   case InstPtr:                 // Meet with InstPtr
6306     return TypePtr::BOTTOM;
6307 
6308   //
6309   //             A-top         }
6310   //           /   |   \       }  Tops
6311   //       B-top A-any C-top   }
6312   //          | /  |  \ |      }  Any-nulls
6313   //       B-any   |   C-any   }
6314   //          |    |    |
6315   //       B-con A-con C-con   } constants; not comparable across classes
6316   //          |    |    |
6317   //       B-not   |   C-not   }
6318   //          | \  |  / |      }  not-nulls
6319   //       B-bot A-not C-bot   }
6320   //           \   |   /       }  Bottoms
6321   //             A-bot         }
6322   //
6323 
6324   case AryKlassPtr: {  // Meet two KlassPtr types
6325     const TypeAryKlassPtr *tap = t->is_aryklassptr();
6326     int off = meet_offset(tap->offset());
6327     const Type* elem = _elem->meet(tap->_elem);
6328 
6329     PTR ptr = meet_ptr(tap->ptr());
6330     ciKlass* res_klass = nullptr;
6331     bool res_xk = false;
6332     meet_aryptr(ptr, elem, this, tap, res_klass, res_xk);




6333     assert(res_xk == (ptr == Constant), "");
6334     return make(ptr, elem, res_klass, off);












6335   } // End of case KlassPtr
6336   case InstKlassPtr: {
6337     const TypeInstKlassPtr *tp = t->is_instklassptr();
6338     int offset = meet_offset(tp->offset());
6339     PTR ptr = meet_ptr(tp->ptr());
6340     InterfaceSet interfaces = meet_interfaces(tp);
6341     InterfaceSet tp_interfaces = tp->_interfaces;
6342     InterfaceSet this_interfaces = _interfaces;
6343 
6344     switch (ptr) {
6345     case TopPTR:
6346     case AnyNull:                // Fall 'down' to dual of object klass
6347       // For instances when a subclass meets a superclass we fall
6348       // below the centerline when the superclass is exact. We need to
6349       // do the same here.
6350       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces.intersection_with(tp_interfaces).eq(tp_interfaces) && !tp->klass_is_exact()) {
6351         return TypeAryKlassPtr::make(ptr, _elem, _klass, offset);
6352       } else {
6353         // cannot subclass, so the meet has to fall badly below the centerline
6354         ptr = NotNull;
6355         interfaces = this_interfaces.intersection_with(tp->_interfaces);
6356         return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset);
6357       }
6358     case Constant:
6359     case NotNull:
6360     case BotPTR:                // Fall down to object klass
6361       // LCA is object_klass, but if we subclass from the top we can do better
6362       if (above_centerline(tp->ptr())) {
6363         // If 'tp'  is above the centerline and it is Object class
6364         // then we can subclass in the Java class hierarchy.
6365         // For instances when a subclass meets a superclass we fall
6366         // below the centerline when the superclass is exact. We need
6367         // to do the same here.
6368         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces.intersection_with(tp_interfaces).eq(tp_interfaces) && !tp->klass_is_exact()) {
6369           // that is, my array type is a subtype of 'tp' klass
6370           return make(ptr, _elem, _klass, offset);
6371         }
6372       }
6373       // The other case cannot happen, since t cannot be a subtype of an array.
6374       // The meet falls down to Object class below centerline.
6375       if (ptr == Constant)
6376          ptr = NotNull;
6377       interfaces = this_interfaces.intersection_with(tp_interfaces);
6378       return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset);
6379     default: typerr(t);
6380     }
6381   }
6382 
6383   } // End of switch
6384   return this;                  // Return the double constant
6385 }
6386 
6387 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
6388   static_assert(std::is_base_of<T2, T1>::value, "");
6389 
6390   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces.empty() && other_exact) {
6391     return true;
6392   }
6393 
6394   int dummy;
6395   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
6396 
6397   if (!this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) {
6398     return false;
6399   }
6400 
6401   if (this_one->is_instance_type(other)) {
6402     return other->klass() == ciEnv::current()->Object_klass() && other->_interfaces.intersection_with(this_one->_interfaces).eq(other->_interfaces) && other_exact;
6403   }
6404 
6405   assert(this_one->is_array_type(other), "");
6406   const T1* other_ary = this_one->is_array_type(other);
6407   bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
6408   if (other_top_or_bottom) {
6409     return false;
6410   }
6411 
6412   const TypePtr* other_elem = other_ary->elem()->make_ptr();
6413   const TypePtr* this_elem = this_one->elem()->make_ptr();
6414   if (this_elem != nullptr && other_elem != nullptr) {



6415     return this_one->is_reference_type(this_elem)->is_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact);
6416   }
6417   if (this_elem == nullptr && other_elem == nullptr) {
6418     return this_one->_klass->is_subtype_of(other->_klass);
6419   }
6420   return false;
6421 }
6422 
6423 bool TypeAryKlassPtr::is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
6424   return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
6425 }
6426 
6427 template <class T1, class T2> bool TypePtr::is_same_java_type_as_helper_for_array(const T1* this_one, const T2* other) {
6428   static_assert(std::is_base_of<T2, T1>::value, "");
6429 
6430   int dummy;
6431   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
6432 
6433   if (!this_one->is_array_type(other) ||
6434       !this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) {

6482   }
6483 
6484   const TypePtr* this_elem = this_one->elem()->make_ptr();
6485   const TypePtr* other_elem = other_ary->elem()->make_ptr();
6486   if (other_elem != nullptr && this_elem != nullptr) {
6487     return this_one->is_reference_type(this_elem)->maybe_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact);
6488   }
6489   if (other_elem == nullptr && this_elem == nullptr) {
6490     return this_one->_klass->is_subtype_of(other->_klass);
6491   }
6492   return false;
6493 }
6494 
6495 bool TypeAryKlassPtr::maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
6496   return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
6497 }
6498 
6499 //------------------------------xdual------------------------------------------
6500 // Dual: compute field-by-field dual
6501 const Type    *TypeAryKlassPtr::xdual() const {
6502   return new TypeAryKlassPtr(dual_ptr(), elem()->dual(), klass(), dual_offset());
6503 }
6504 
6505 // Is there a single ciKlass* that can represent that type?
6506 ciKlass* TypeAryKlassPtr::exact_klass_helper() const {
6507   if (elem()->isa_klassptr()) {
6508     ciKlass* k = elem()->is_klassptr()->exact_klass_helper();
6509     if (k == nullptr) {
6510       return nullptr;
6511     }
6512     k = ciObjArrayKlass::make(k);
6513     return k;
6514   }
6515 
6516   return klass();
6517 }
6518 
6519 ciKlass* TypeAryKlassPtr::klass() const {
6520   if (_klass != nullptr) {
6521     return _klass;
6522   }
6523   ciKlass* k = nullptr;
6524   if (elem()->isa_klassptr()) {
6525     // leave null
6526   } else if ((elem()->base() == Type::Top) ||
6527              (elem()->base() == Type::Bottom)) {
6528   } else {
6529     k = ciTypeArrayKlass::make(elem()->basic_type());
6530     ((TypeAryKlassPtr*)this)->_klass = k;
6531   }
6532   return k;

6539   switch( _ptr ) {
6540   case Constant:
6541     st->print("precise ");
6542   case NotNull:
6543     {
6544       st->print("[");
6545       _elem->dump2(d, depth, st);
6546       _interfaces.dump(st);
6547       st->print(": ");
6548     }
6549   case BotPTR:
6550     if( !WizardMode && !Verbose && _ptr != Constant ) break;
6551   case TopPTR:
6552   case AnyNull:
6553     st->print(":%s", ptr_msg[_ptr]);
6554     if( _ptr == Constant ) st->print(":exact");
6555     break;
6556   default:
6557     break;
6558   }
6559 
6560   if( _offset ) {               // Dump offset, if any
6561     if( _offset == OffsetBot )      { st->print("+any"); }
6562     else if( _offset == OffsetTop ) { st->print("+unknown"); }
6563     else                            { st->print("+%d", _offset); }
6564   }
6565 


6566   st->print(" *");
6567 }
6568 #endif
6569 
6570 const Type* TypeAryKlassPtr::base_element_type(int& dims) const {
6571   const Type* elem = this->elem();
6572   dims = 1;
6573   while (elem->isa_aryklassptr()) {
6574     elem = elem->is_aryklassptr()->elem();
6575     dims++;
6576   }
6577   return elem;
6578 }
6579 
6580 //=============================================================================
6581 // Convenience common pre-built types.
6582 
6583 //------------------------------make-------------------------------------------
6584 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
6585   return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();












6586 }
6587 
6588 //------------------------------make-------------------------------------------
6589 const TypeFunc *TypeFunc::make(ciMethod* method) {
6590   Compile* C = Compile::current();
6591   const TypeFunc* tf = C->last_tf(method); // check cache
6592   if (tf != nullptr)  return tf;  // The hit rate here is almost 50%.
6593   const TypeTuple *domain;
6594   if (method->is_static()) {
6595     domain = TypeTuple::make_domain(nullptr, method->signature(), ignore_interfaces);
6596   } else {
6597     domain = TypeTuple::make_domain(method->holder(), method->signature(), ignore_interfaces);

















6598   }
6599   const TypeTuple *range  = TypeTuple::make_range(method->signature(), ignore_interfaces);
6600   tf = TypeFunc::make(domain, range);
6601   C->set_last_tf(method, tf);  // fill cache
6602   return tf;
6603 }
6604 
6605 //------------------------------meet-------------------------------------------
6606 // Compute the MEET of two types.  It returns a new Type object.
6607 const Type *TypeFunc::xmeet( const Type *t ) const {
6608   // Perform a fast test for common case; meeting the same types together.
6609   if( this == t ) return this;  // Meeting same type-rep?
6610 
6611   // Current "this->_base" is Func
6612   switch (t->base()) {          // switch on original type
6613 
6614   case Bottom:                  // Ye Olde Default
6615     return t;
6616 
6617   default:                      // All else is a mistake
6618     typerr(t);
6619 
6620   case Top:
6621     break;
6622   }
6623   return this;                  // Return the double constant
6624 }
6625 
6626 //------------------------------xdual------------------------------------------
6627 // Dual: compute field-by-field dual
6628 const Type *TypeFunc::xdual() const {
6629   return this;
6630 }
6631 
6632 //------------------------------eq---------------------------------------------
6633 // Structural equality check for Type representations
6634 bool TypeFunc::eq( const Type *t ) const {
6635   const TypeFunc *a = (const TypeFunc*)t;
6636   return _domain == a->_domain &&
6637     _range == a->_range;


6638 }
6639 
6640 //------------------------------hash-------------------------------------------
6641 // Type-specific hashing function.
6642 uint TypeFunc::hash(void) const {
6643   return (uint)(uintptr_t)_domain + (uint)(uintptr_t)_range;
6644 }
6645 
6646 //------------------------------dump2------------------------------------------
6647 // Dump Function Type
6648 #ifndef PRODUCT
6649 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
6650   if( _range->cnt() <= Parms )
6651     st->print("void");
6652   else {
6653     uint i;
6654     for (i = Parms; i < _range->cnt()-1; i++) {
6655       _range->field_at(i)->dump2(d,depth,st);
6656       st->print("/");
6657     }
6658     _range->field_at(i)->dump2(d,depth,st);
6659   }
6660   st->print(" ");
6661   st->print("( ");
6662   if( !depth || d[this] ) {     // Check for recursive dump
6663     st->print("...)");
6664     return;
6665   }
6666   d.Insert((void*)this,(void*)this);    // Stop recursion
6667   if (Parms < _domain->cnt())
6668     _domain->field_at(Parms)->dump2(d,depth-1,st);
6669   for (uint i = Parms+1; i < _domain->cnt(); i++) {
6670     st->print(", ");
6671     _domain->field_at(i)->dump2(d,depth-1,st);
6672   }
6673   st->print(" )");
6674 }
6675 #endif
6676 
6677 //------------------------------singleton--------------------------------------
6678 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
6679 // constants (Ldi nodes).  Singletons are integer, float or double constants
6680 // or a single symbol.
6681 bool TypeFunc::singleton(void) const {
6682   return false;                 // Never a singleton
6683 }
6684 
6685 bool TypeFunc::empty(void) const {
6686   return false;                 // Never empty
6687 }
6688 
6689 
6690 BasicType TypeFunc::return_type() const{
6691   if (range()->cnt() == TypeFunc::Parms) {
6692     return T_VOID;
6693   }
6694   return range()->field_at(TypeFunc::Parms)->basic_type();
6695 }

   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciFlatArrayKlass.hpp"
  27 #include "ci/ciField.hpp"
  28 #include "ci/ciInlineKlass.hpp"
  29 #include "ci/ciMethodData.hpp"
  30 #include "ci/ciTypeFlow.hpp"
  31 #include "classfile/javaClasses.hpp"
  32 #include "classfile/symbolTable.hpp"
  33 #include "compiler/compileLog.hpp"
  34 #include "libadt/dict.hpp"
  35 #include "memory/oopFactory.hpp"
  36 #include "memory/resourceArea.hpp"
  37 #include "oops/instanceKlass.hpp"
  38 #include "oops/instanceMirrorKlass.hpp"
  39 #include "oops/objArrayKlass.hpp"
  40 #include "oops/typeArrayKlass.hpp"
  41 #include "opto/matcher.hpp"
  42 #include "opto/node.hpp"
  43 #include "opto/opcodes.hpp"
  44 #include "opto/type.hpp"
  45 #include "utilities/powerOfTwo.hpp"
  46 #include "utilities/stringUtils.hpp"
  47 
  48 // Portions of code courtesy of Clifford Click
  49 
  50 // Optimization - Graph Style
  51 
  52 // Dictionary of types shared among compilations.
  53 Dict* Type::_shared_type_dict = nullptr;
  54 const Type::Offset Type::Offset::top(Type::OffsetTop);
  55 const Type::Offset Type::Offset::bottom(Type::OffsetBot);
  56 
  57 const Type::Offset Type::Offset::meet(const Type::Offset other) const {
  58   // Either is 'TOP' offset?  Return the other offset!
  59   int offset = other._offset;
  60   if (_offset == OffsetTop) return Offset(offset);
  61   if (offset == OffsetTop) return Offset(_offset);
  62   // If either is different, return 'BOTTOM' offset
  63   if (_offset != offset) return bottom;
  64   return Offset(_offset);
  65 }
  66 
  67 const Type::Offset Type::Offset::dual() const {
  68   if (_offset == OffsetTop) return bottom;// Map 'TOP' into 'BOTTOM'
  69   if (_offset == OffsetBot) return top;// Map 'BOTTOM' into 'TOP'
  70   return Offset(_offset);               // Map everything else into self
  71 }
  72 
  73 const Type::Offset Type::Offset::add(intptr_t offset) const {
  74   // Adding to 'TOP' offset?  Return 'TOP'!
  75   if (_offset == OffsetTop || offset == OffsetTop) return top;
  76   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
  77   if (_offset == OffsetBot || offset == OffsetBot) return bottom;
  78   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
  79   offset += (intptr_t)_offset;
  80   if (offset != (int)offset || offset == OffsetTop) return bottom;
  81 
  82   // assert( _offset >= 0 && _offset+offset >= 0, "" );
  83   // It is possible to construct a negative offset during PhaseCCP
  84 
  85   return Offset((int)offset);        // Sum valid offsets
  86 }
  87 
  88 void Type::Offset::dump2(outputStream *st) const {
  89   if (_offset == 0) {
  90     return;
  91   } else if (_offset == OffsetTop) {
  92     st->print("+top");
  93   }
  94   else if (_offset == OffsetBot) {
  95     st->print("+bot");
  96   } else if (_offset) {
  97     st->print("+%d", _offset);
  98   }
  99 }
 100 
 101 // Array which maps compiler types to Basic Types
 102 const Type::TypeInfo Type::_type_info[Type::lastype] = {
 103   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
 104   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
 105   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
 106   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
 107   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
 108   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
 109   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
 110   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
 111   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
 112   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
 113 
 114 #if defined(PPC64)
 115   { Bad,             T_ILLEGAL,    "vectormask:",   false, Op_RegVectMask,       relocInfo::none          },  // VectorMask.
 116   { Bad,             T_ILLEGAL,    "vectora:",      false, Op_VecA,              relocInfo::none          },  // VectorA.
 117   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
 118   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
 119   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX

 253   case ciTypeFlow::StateVector::T_NULL:
 254     assert(type == ciTypeFlow::StateVector::null_type(), "");
 255     return TypePtr::NULL_PTR;
 256 
 257   case ciTypeFlow::StateVector::T_LONG2:
 258     // The ciTypeFlow pass pushes a long, then the half.
 259     // We do the same.
 260     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 261     return TypeInt::TOP;
 262 
 263   case ciTypeFlow::StateVector::T_DOUBLE2:
 264     // The ciTypeFlow pass pushes double, then the half.
 265     // Our convention is the same.
 266     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 267     return Type::TOP;
 268 
 269   case T_ADDRESS:
 270     assert(type->is_return_address(), "");
 271     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 272 
 273   case T_PRIMITIVE_OBJECT: {
 274     ciInlineKlass* vk = type->unwrap()->as_inline_klass();
 275     return TypeOopPtr::make_from_klass(vk)->join_speculative(type->is_null_free() ? TypePtr::NOTNULL : TypePtr::BOTTOM);
 276   }
 277 
 278   default:
 279     // make sure we did not mix up the cases:
 280     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 281     assert(type != ciTypeFlow::StateVector::top_type(), "");
 282     assert(type != ciTypeFlow::StateVector::null_type(), "");
 283     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 284     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 285     assert(!type->is_return_address(), "");
 286 
 287     return Type::get_const_type(type);
 288   }
 289 }
 290 
 291 
 292 //-----------------------make_from_constant------------------------------------
 293 const Type* Type::make_from_constant(ciConstant constant, bool require_constant,
 294                                      int stable_dimension, bool is_narrow_oop,
 295                                      bool is_autobox_cache) {
 296   switch (constant.basic_type()) {
 297     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
 298     case T_CHAR:     return TypeInt::make(constant.as_char());
 299     case T_BYTE:     return TypeInt::make(constant.as_byte());
 300     case T_SHORT:    return TypeInt::make(constant.as_short());
 301     case T_INT:      return TypeInt::make(constant.as_int());
 302     case T_LONG:     return TypeLong::make(constant.as_long());
 303     case T_FLOAT:    return TypeF::make(constant.as_float());
 304     case T_DOUBLE:   return TypeD::make(constant.as_double());
 305     case T_ARRAY:
 306     case T_PRIMITIVE_OBJECT:
 307     case T_OBJECT: {
 308         const Type* con_type = nullptr;
 309         ciObject* oop_constant = constant.as_object();
 310         if (oop_constant->is_null_object()) {
 311           con_type = Type::get_zero_type(T_OBJECT);
 312         } else {
 313           guarantee(require_constant || oop_constant->should_be_constant(), "con_type must get computed");
 314           con_type = TypeOopPtr::make_from_constant(oop_constant, require_constant);
 315           if (Compile::current()->eliminate_boxing() && is_autobox_cache) {
 316             con_type = con_type->is_aryptr()->cast_to_autobox_cache();
 317           }
 318           if (stable_dimension > 0) {
 319             assert(FoldStableValues, "sanity");
 320             assert(!con_type->is_zero_type(), "default value for stable field");
 321             con_type = con_type->is_aryptr()->cast_to_stable(true, stable_dimension);
 322           }
 323         }
 324         if (is_narrow_oop) {
 325           con_type = con_type->make_narrowoop();
 326         }
 327         return con_type;
 328       }
 329     case T_ILLEGAL:
 330       // Invalid ciConstant returned due to OutOfMemoryError in the CI
 331       assert(Compile::current()->env()->failing(), "otherwise should not see this");
 332       return nullptr;
 333     default:
 334       // Fall through to failure
 335       return nullptr;
 336   }
 337 }
 338 
 339 static ciConstant check_mismatched_access(ciConstant con, BasicType loadbt, bool is_unsigned) {
 340   BasicType conbt = con.basic_type();
 341   switch (conbt) {
 342     case T_BOOLEAN: conbt = T_BYTE;   break;
 343     case T_ARRAY:   conbt = T_OBJECT; break;
 344     case T_PRIMITIVE_OBJECT: conbt = T_OBJECT; break;
 345     default:                          break;
 346   }
 347   switch (loadbt) {
 348     case T_BOOLEAN:   loadbt = T_BYTE;   break;
 349     case T_NARROWOOP: loadbt = T_OBJECT; break;
 350     case T_ARRAY:     loadbt = T_OBJECT; break;
 351     case T_PRIMITIVE_OBJECT: loadbt = T_OBJECT; break;
 352     case T_ADDRESS:   loadbt = T_OBJECT; break;
 353     default:                             break;
 354   }
 355   if (conbt == loadbt) {
 356     if (is_unsigned && conbt == T_BYTE) {
 357       // LoadB (T_BYTE) with a small mask (<=8-bit) is converted to LoadUB (T_BYTE).
 358       return ciConstant(T_INT, con.as_int() & 0xFF);
 359     } else {
 360       return con;
 361     }
 362   }
 363   if (conbt == T_SHORT && loadbt == T_CHAR) {
 364     // LoadS (T_SHORT) with a small mask (<=16-bit) is converted to LoadUS (T_CHAR).
 365     return ciConstant(T_INT, con.as_int() & 0xFFFF);
 366   }
 367   return ciConstant(); // T_ILLEGAL
 368 }
 369 
 370 // Try to constant-fold a stable array element.
 371 const Type* Type::make_constant_from_array_element(ciArray* array, int off, int stable_dimension,

 567   const Type **ffalse =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 568   ffalse[0] = Type::CONTROL;
 569   ffalse[1] = Type::TOP;
 570   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 571 
 572   const Type **fneither =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 573   fneither[0] = Type::TOP;
 574   fneither[1] = Type::TOP;
 575   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 576 
 577   const Type **ftrue =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 578   ftrue[0] = Type::TOP;
 579   ftrue[1] = Type::CONTROL;
 580   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 581 
 582   const Type **floop =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 583   floop[0] = Type::CONTROL;
 584   floop[1] = TypeInt::INT;
 585   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 586 
 587   TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, Offset(0));
 588   TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, Offset::bottom);
 589   TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, Offset::bottom);
 590 
 591   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 592   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 593 
 594   const Type **fmembar = TypeTuple::fields(0);
 595   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 596 
 597   const Type **fsc = (const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 598   fsc[0] = TypeInt::CC;
 599   fsc[1] = Type::MEMORY;
 600   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 601 
 602   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 603   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 604   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 605   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 606                                            false, 0, Offset(oopDesc::mark_offset_in_bytes()));
 607   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 608                                            false, 0, Offset(oopDesc::klass_offset_in_bytes()));
 609   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, Offset::bottom, TypeOopPtr::InstanceBot);
 610 
 611   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, nullptr, Offset::bottom);
 612 
 613   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 614   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 615 
 616   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 617 
 618   mreg2type[Op_Node] = Type::BOTTOM;
 619   mreg2type[Op_Set ] = 0;
 620   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 621   mreg2type[Op_RegI] = TypeInt::INT;
 622   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 623   mreg2type[Op_RegF] = Type::FLOAT;
 624   mreg2type[Op_RegD] = Type::DOUBLE;
 625   mreg2type[Op_RegL] = TypeLong::LONG;
 626   mreg2type[Op_RegFlags] = TypeInt::CC;
 627 
 628   GrowableArray<ciInstanceKlass*> array_interfaces;
 629   array_interfaces.push(current->env()->Cloneable_klass());
 630   array_interfaces.push(current->env()->Serializable_klass());
 631   TypeAryPtr::_array_interfaces = new TypePtr::InterfaceSet(&array_interfaces);
 632   TypeAryKlassPtr::_array_interfaces = TypeAryPtr::_array_interfaces;
 633 
 634   TypeAryPtr::RANGE   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), nullptr /* current->env()->Object_klass() */, false, Offset(arrayOopDesc::length_offset_in_bytes()));
 635 
 636   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), nullptr /*ciArrayKlass::make(o)*/,  false,  Offset::bottom);
 637 
 638 #ifdef _LP64
 639   if (UseCompressedOops) {
 640     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 641     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 642   } else
 643 #endif
 644   {
 645     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 646     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), nullptr /*ciArrayKlass::make(o)*/,  false,  Offset::bottom);
 647   }
 648   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Offset::bottom);
 649   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Offset::bottom);
 650   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Offset::bottom);
 651   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Offset::bottom);
 652   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Offset::bottom);
 653   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Offset::bottom);
 654   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Offset::bottom);
 655   TypeAryPtr::INLINES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS, /* stable= */ false, /* flat= */ true), nullptr, false, Offset::bottom);
 656 
 657   // Nobody should ask _array_body_type[T_NARROWOOP]. Use null as assert.
 658   TypeAryPtr::_array_body_type[T_NARROWOOP] = nullptr;
 659   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 660   TypeAryPtr::_array_body_type[T_PRIMITIVE_OBJECT] = TypeAryPtr::OOPS;
 661   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 662   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 663   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 664   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 665   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 666   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 667   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 668   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 669   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 670 
 671   TypeInstKlassPtr::OBJECT = TypeInstKlassPtr::make(TypePtr::NotNull, current->env()->Object_klass(), Offset(0));
 672   TypeInstKlassPtr::OBJECT_OR_NULL = TypeInstKlassPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), Offset(0));
 673 
 674   const Type **fi2c = TypeTuple::fields(2);
 675   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 676   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 677   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 678 
 679   const Type **intpair = TypeTuple::fields(2);
 680   intpair[0] = TypeInt::INT;
 681   intpair[1] = TypeInt::INT;
 682   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 683 
 684   const Type **longpair = TypeTuple::fields(2);
 685   longpair[0] = TypeLong::LONG;
 686   longpair[1] = TypeLong::LONG;
 687   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 688 
 689   const Type **intccpair = TypeTuple::fields(2);
 690   intccpair[0] = TypeInt::INT;
 691   intccpair[1] = TypeInt::CC;
 692   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 693 
 694   const Type **longccpair = TypeTuple::fields(2);
 695   longccpair[0] = TypeLong::LONG;
 696   longccpair[1] = TypeInt::CC;
 697   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 698 
 699   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 700   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 701   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 702   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 703   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 704   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 705   _const_basic_type[T_INT]         = TypeInt::INT;
 706   _const_basic_type[T_LONG]        = TypeLong::LONG;
 707   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 708   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 709   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 710   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 711   _const_basic_type[T_PRIMITIVE_OBJECT] = TypeInstPtr::BOTTOM;
 712   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 713   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 714   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 715 
 716   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 717   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 718   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 719   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 720   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 721   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 722   _zero_type[T_INT]         = TypeInt::ZERO;
 723   _zero_type[T_LONG]        = TypeLong::ZERO;
 724   _zero_type[T_FLOAT]       = TypeF::ZERO;
 725   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 726   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 727   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
 728   _zero_type[T_PRIMITIVE_OBJECT] = TypePtr::NULL_PTR;
 729   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 730   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 731 
 732   // get_zero_type() should not happen for T_CONFLICT
 733   _zero_type[T_CONFLICT]= nullptr;
 734 
 735   TypeVect::VECTMASK = (TypeVect*)(new TypeVectMask(TypeInt::BOOL, MaxVectorSize))->hashcons();
 736   mreg2type[Op_RegVectMask] = TypeVect::VECTMASK;
 737 
 738   if (Matcher::supports_scalable_vector()) {
 739     TypeVect::VECTA = TypeVect::make(T_BYTE, Matcher::scalable_vector_reg_size(T_BYTE));
 740   }
 741 
 742   // Vector predefined types, it needs initialized _const_basic_type[].
 743   if (Matcher::vector_size_supported(T_BYTE,4)) {
 744     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
 745   }
 746   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 747     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
 748   }

2165 
2166 bool TypeLong::empty(void) const {
2167   return _lo > _hi;
2168 }
2169 
2170 //=============================================================================
2171 // Convenience common pre-built types.
2172 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
2173 const TypeTuple *TypeTuple::IFFALSE;
2174 const TypeTuple *TypeTuple::IFTRUE;
2175 const TypeTuple *TypeTuple::IFNEITHER;
2176 const TypeTuple *TypeTuple::LOOPBODY;
2177 const TypeTuple *TypeTuple::MEMBAR;
2178 const TypeTuple *TypeTuple::STORECONDITIONAL;
2179 const TypeTuple *TypeTuple::START_I2C;
2180 const TypeTuple *TypeTuple::INT_PAIR;
2181 const TypeTuple *TypeTuple::LONG_PAIR;
2182 const TypeTuple *TypeTuple::INT_CC_PAIR;
2183 const TypeTuple *TypeTuple::LONG_CC_PAIR;
2184 
2185 static void collect_inline_fields(ciInlineKlass* vk, const Type** field_array, uint& pos) {
2186   for (int j = 0; j < vk->nof_nonstatic_fields(); j++) {
2187     ciField* field = vk->nonstatic_field_at(j);
2188     BasicType bt = field->type()->basic_type();
2189     const Type* ft = Type::get_const_type(field->type());
2190     field_array[pos++] = ft;
2191     if (type2size[bt] == 2) {
2192       field_array[pos++] = Type::HALF;
2193     }
2194   }
2195 }
2196 
2197 //------------------------------make-------------------------------------------
2198 // Make a TypeTuple from the range of a method signature
2199 const TypeTuple *TypeTuple::make_range(ciSignature* sig, InterfaceHandling interface_handling, bool ret_vt_fields) {
2200   ciType* return_type = sig->return_type();
2201   uint arg_cnt = return_type->size();
2202   if (ret_vt_fields) {
2203     arg_cnt = return_type->as_inline_klass()->inline_arg_slots() + 1;
2204     if (!sig->returns_null_free_inline_type()) {
2205       // InlineTypeNode::IsInit field used for null checking
2206       arg_cnt++;
2207     }
2208   }
2209 
2210   const Type **field_array = fields(arg_cnt);
2211   switch (return_type->basic_type()) {
2212   case T_LONG:
2213     field_array[TypeFunc::Parms]   = TypeLong::LONG;
2214     field_array[TypeFunc::Parms+1] = Type::HALF;
2215     break;
2216   case T_DOUBLE:
2217     field_array[TypeFunc::Parms]   = Type::DOUBLE;
2218     field_array[TypeFunc::Parms+1] = Type::HALF;
2219     break;
2220   case T_OBJECT:
2221   case T_ARRAY:
2222   case T_BOOLEAN:
2223   case T_CHAR:
2224   case T_FLOAT:
2225   case T_BYTE:
2226   case T_SHORT:
2227   case T_INT:
2228     field_array[TypeFunc::Parms] = get_const_type(return_type, interface_handling);
2229     break;
2230   case T_PRIMITIVE_OBJECT:
2231     if (ret_vt_fields) {
2232       uint pos = TypeFunc::Parms;
2233       field_array[pos++] = get_const_type(return_type); // Oop might be null when returning as fields
2234       collect_inline_fields(return_type->as_inline_klass(), field_array, pos);
2235       if (!sig->returns_null_free_inline_type()) {
2236         // InlineTypeNode::IsInit field used for null checking
2237         field_array[pos++] = get_const_basic_type(T_BOOLEAN);
2238       }
2239     } else {
2240       field_array[TypeFunc::Parms] = get_const_type(return_type)->join_speculative(sig->returns_null_free_inline_type() ? TypePtr::NOTNULL : TypePtr::BOTTOM);
2241     }
2242     break;
2243   case T_VOID:
2244     break;
2245   default:
2246     ShouldNotReachHere();
2247   }
2248   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2249 }
2250 
2251 // Make a TypeTuple from the domain of a method signature
2252 const TypeTuple *TypeTuple::make_domain(ciMethod* method, InterfaceHandling interface_handling, bool vt_fields_as_args) {
2253   ciSignature* sig = method->signature();
2254   uint arg_cnt = sig->size() + (method->is_static() ? 0 : 1);
2255   if (vt_fields_as_args) {
2256     arg_cnt = 0;
2257     assert(method->get_sig_cc() != nullptr, "Should have scalarized signature");
2258     for (ExtendedSignature sig_cc = ExtendedSignature(method->get_sig_cc(), SigEntryFilter()); !sig_cc.at_end(); ++sig_cc) {
2259       arg_cnt += type2size[(*sig_cc)._bt];
2260     }
2261   }
2262 
2263   uint pos = TypeFunc::Parms;
2264   const Type** field_array = fields(arg_cnt);
2265   if (!method->is_static()) {
2266     ciInstanceKlass* recv = method->holder();
2267     if (vt_fields_as_args && recv->is_inlinetype() && recv->as_inline_klass()->can_be_passed_as_fields()) {
2268       collect_inline_fields(recv->as_inline_klass(), field_array, pos);
2269     } else {
2270       field_array[pos++] = get_const_type(recv, interface_handling)->join_speculative(TypePtr::NOTNULL);
2271     }
2272   }
2273 
2274   int i = 0;
2275   while (pos < TypeFunc::Parms + arg_cnt) {
2276     ciType* type = sig->type_at(i);
2277     BasicType bt = type->basic_type();
2278 
2279     switch (bt) {
2280     case T_LONG:
2281       field_array[pos++] = TypeLong::LONG;
2282       field_array[pos++] = Type::HALF;
2283       break;
2284     case T_DOUBLE:
2285       field_array[pos++] = Type::DOUBLE;
2286       field_array[pos++] = Type::HALF;
2287       break;
2288     case T_OBJECT:
2289     case T_ARRAY:
2290     case T_FLOAT:
2291     case T_INT:
2292       field_array[pos++] = get_const_type(type, interface_handling);
2293       break;
2294     case T_BOOLEAN:
2295     case T_CHAR:
2296     case T_BYTE:
2297     case T_SHORT:
2298       field_array[pos++] = TypeInt::INT;
2299       break;
2300     case T_PRIMITIVE_OBJECT: {
2301       if (vt_fields_as_args && method->is_scalarized_arg(i + (method->is_static() ? 0 : 1))) {
2302         if (!sig->is_null_free_at(i)) {
2303           // InlineTypeNode::IsInit field used for null checking
2304           field_array[pos++] = get_const_basic_type(T_BOOLEAN);
2305         }
2306         collect_inline_fields(type->as_inline_klass(), field_array, pos);
2307       } else {
2308         field_array[pos++] = get_const_type(type)->join_speculative(sig->is_null_free_at(i) ? TypePtr::NOTNULL : TypePtr::BOTTOM);
2309       }
2310       break;
2311     }
2312     default:
2313       ShouldNotReachHere();
2314     }
2315     i++;
2316   }
2317   assert(pos == TypeFunc::Parms + arg_cnt, "wrong number of arguments");
2318 
2319   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2320 }
2321 
2322 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
2323   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
2324 }
2325 
2326 //------------------------------fields-----------------------------------------
2327 // Subroutine call type with space allocated for argument types
2328 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
2329 const Type **TypeTuple::fields( uint arg_cnt ) {
2330   const Type **flds = (const Type **)(Compile::current()->type_arena()->AmallocWords((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
2331   flds[TypeFunc::Control  ] = Type::CONTROL;
2332   flds[TypeFunc::I_O      ] = Type::ABIO;
2333   flds[TypeFunc::Memory   ] = Type::MEMORY;
2334   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
2335   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
2336 
2337   return flds;

2432     if (_fields[i]->empty())  return true;
2433   }
2434   return false;
2435 }
2436 
2437 //=============================================================================
2438 // Convenience common pre-built types.
2439 
2440 inline const TypeInt* normalize_array_size(const TypeInt* size) {
2441   // Certain normalizations keep us sane when comparing types.
2442   // We do not want arrayOop variables to differ only by the wideness
2443   // of their index types.  Pick minimum wideness, since that is the
2444   // forced wideness of small ranges anyway.
2445   if (size->_widen != Type::WidenMin)
2446     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
2447   else
2448     return size;
2449 }
2450 
2451 //------------------------------make-------------------------------------------
2452 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable,
2453                              bool flat, bool not_flat, bool not_null_free) {
2454   if (UseCompressedOops && elem->isa_oopptr()) {
2455     elem = elem->make_narrowoop();
2456   }
2457   size = normalize_array_size(size);
2458   return (TypeAry*)(new TypeAry(elem, size, stable, flat, not_flat, not_null_free))->hashcons();
2459 }
2460 
2461 //------------------------------meet-------------------------------------------
2462 // Compute the MEET of two types.  It returns a new Type object.
2463 const Type *TypeAry::xmeet( const Type *t ) const {
2464   // Perform a fast test for common case; meeting the same types together.
2465   if( this == t ) return this;  // Meeting same type-rep?
2466 
2467   // Current "this->_base" is Ary
2468   switch (t->base()) {          // switch on original type
2469 
2470   case Bottom:                  // Ye Olde Default
2471     return t;
2472 
2473   default:                      // All else is a mistake
2474     typerr(t);
2475 
2476   case Array: {                 // Meeting 2 arrays?
2477     const TypeAry *a = t->is_ary();
2478     return TypeAry::make(_elem->meet_speculative(a->_elem),
2479                          _size->xmeet(a->_size)->is_int(),
2480                          _stable && a->_stable,
2481                          _flat && a->_flat,
2482                          _not_flat && a->_not_flat,
2483                          _not_null_free && a->_not_null_free);
2484   }
2485   case Top:
2486     break;
2487   }
2488   return this;                  // Return the double constant
2489 }
2490 
2491 //------------------------------xdual------------------------------------------
2492 // Dual: compute field-by-field dual
2493 const Type *TypeAry::xdual() const {
2494   const TypeInt* size_dual = _size->dual()->is_int();
2495   size_dual = normalize_array_size(size_dual);
2496   return new TypeAry(_elem->dual(), size_dual, !_stable, !_flat, !_not_flat, !_not_null_free);
2497 }
2498 
2499 //------------------------------eq---------------------------------------------
2500 // Structural equality check for Type representations
2501 bool TypeAry::eq( const Type *t ) const {
2502   const TypeAry *a = (const TypeAry*)t;
2503   return _elem == a->_elem &&
2504     _stable == a->_stable &&
2505     _size == a->_size &&
2506     _flat == a->_flat &&
2507     _not_flat == a->_not_flat &&
2508     _not_null_free == a->_not_null_free;
2509 
2510 }
2511 
2512 //------------------------------hash-------------------------------------------
2513 // Type-specific hashing function.
2514 uint TypeAry::hash(void) const {
2515   return (uint)(uintptr_t)_elem + (uint)(uintptr_t)_size + (uint)(_stable ? 43 : 0) +
2516       (uint)(_flat ? 44 : 0) + (uint)(_not_flat ? 45 : 0) + (uint)(_not_null_free ? 46 : 0);
2517 }
2518 
2519 /**
2520  * Return same type without a speculative part in the element
2521  */
2522 const TypeAry* TypeAry::remove_speculative() const {
2523   return make(_elem->remove_speculative(), _size, _stable, _flat, _not_flat, _not_null_free);
2524 }
2525 
2526 /**
2527  * Return same type with cleaned up speculative part of element
2528  */
2529 const Type* TypeAry::cleanup_speculative() const {
2530   return make(_elem->cleanup_speculative(), _size, _stable, _flat, _not_flat, _not_null_free);
2531 }
2532 
2533 /**
2534  * Return same type but with a different inline depth (used for speculation)
2535  *
2536  * @param depth  depth to meet with
2537  */
2538 const TypePtr* TypePtr::with_inline_depth(int depth) const {
2539   if (!UseInlineDepthForSpeculativeTypes) {
2540     return this;
2541   }
2542   return make(AnyPtr, _ptr, _offset, _speculative, depth);
2543 }
2544 
2545 //------------------------------dump2------------------------------------------
2546 #ifndef PRODUCT
2547 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2548   if (_stable)  st->print("stable:");
2549   if (_flat) st->print("flat:");
2550   if (Verbose) {
2551     if (_not_flat) st->print("not flat:");
2552     if (_not_null_free) st->print("not null free:");
2553   }
2554   _elem->dump2(d, depth, st);
2555   st->print("[");
2556   _size->dump2(d, depth, st);
2557   st->print("]");
2558 }
2559 #endif
2560 
2561 //------------------------------singleton--------------------------------------
2562 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2563 // constants (Ldi nodes).  Singletons are integer, float or double constants
2564 // or a single symbol.
2565 bool TypeAry::singleton(void) const {
2566   return false;                 // Never a singleton
2567 }
2568 
2569 bool TypeAry::empty(void) const {
2570   return _elem->empty() || _size->empty();
2571 }
2572 
2573 //--------------------------ary_must_be_exact----------------------------------
2574 bool TypeAry::ary_must_be_exact() const {
2575   // This logic looks at the element type of an array, and returns true
2576   // if the element type is either a primitive or a final instance class.
2577   // In such cases, an array built on this ary must have no subclasses.
2578   if (_elem == BOTTOM)      return false;  // general array not exact
2579   if (_elem == TOP   )      return false;  // inverted general array not exact
2580   const TypeOopPtr*  toop = nullptr;
2581   if (UseCompressedOops && _elem->isa_narrowoop()) {
2582     toop = _elem->make_ptr()->isa_oopptr();
2583   } else {
2584     toop = _elem->isa_oopptr();
2585   }
2586   if (!toop)                return true;   // a primitive type, like int
2587   if (!toop->is_loaded())   return false;  // unloaded class
2588   const TypeInstPtr* tinst;
2589   if (_elem->isa_narrowoop())
2590     tinst = _elem->make_ptr()->isa_instptr();
2591   else
2592     tinst = _elem->isa_instptr();
2593   if (tinst) {
2594     if (tinst->instance_klass()->is_final()) {
2595       // Even if MyValue is exact, [LMyValue is not exact due to [QMyValue <: [LMyValue.
2596       if (tinst->is_inlinetypeptr() && (tinst->ptr() == TypePtr::BotPTR || tinst->ptr() == TypePtr::TopPTR)) {
2597         return false;
2598       }
2599       return true;
2600     }
2601     return false;
2602   }
2603   const TypeAryPtr*  tap;
2604   if (_elem->isa_narrowoop())
2605     tap = _elem->make_ptr()->isa_aryptr();
2606   else
2607     tap = _elem->isa_aryptr();
2608   if (tap)
2609     return tap->ary()->ary_must_be_exact();
2610   return false;
2611 }
2612 
2613 //==============================TypeVect=======================================
2614 // Convenience common pre-built types.
2615 const TypeVect *TypeVect::VECTA = nullptr; // vector length agnostic
2616 const TypeVect *TypeVect::VECTS = nullptr; //  32-bit vectors
2617 const TypeVect *TypeVect::VECTD = nullptr; //  64-bit vectors
2618 const TypeVect *TypeVect::VECTX = nullptr; // 128-bit vectors
2619 const TypeVect *TypeVect::VECTY = nullptr; // 256-bit vectors
2620 const TypeVect *TypeVect::VECTZ = nullptr; // 512-bit vectors
2621 const TypeVect *TypeVect::VECTMASK = nullptr; // predicate/mask vector
2622 

2778 
2779 //=============================================================================
2780 // Convenience common pre-built types.
2781 const TypePtr *TypePtr::NULL_PTR;
2782 const TypePtr *TypePtr::NOTNULL;
2783 const TypePtr *TypePtr::BOTTOM;
2784 
2785 //------------------------------meet-------------------------------------------
2786 // Meet over the PTR enum
2787 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2788   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2789   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2790   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2791   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2792   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2793   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2794   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2795 };
2796 
2797 //------------------------------make-------------------------------------------
2798 const TypePtr* TypePtr::make(TYPES t, enum PTR ptr, Offset offset, const TypePtr* speculative, int inline_depth) {
2799   return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2800 }
2801 
2802 //------------------------------cast_to_ptr_type-------------------------------
2803 const TypePtr* TypePtr::cast_to_ptr_type(PTR ptr) const {
2804   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2805   if( ptr == _ptr ) return this;
2806   return make(_base, ptr, _offset, _speculative, _inline_depth);
2807 }
2808 
2809 //------------------------------get_con----------------------------------------
2810 intptr_t TypePtr::get_con() const {
2811   assert( _ptr == Null, "" );
2812   return offset();
2813 }
2814 
2815 //------------------------------meet-------------------------------------------
2816 // Compute the MEET of two types.  It returns a new Type object.
2817 const Type *TypePtr::xmeet(const Type *t) const {
2818   const Type* res = xmeet_helper(t);
2819   if (res->isa_ptr() == nullptr) {
2820     return res;
2821   }
2822 
2823   const TypePtr* res_ptr = res->is_ptr();
2824   if (res_ptr->speculative() != nullptr) {
2825     // type->speculative() is null means that speculation is no better
2826     // than type, i.e. type->speculative() == type. So there are 2
2827     // ways to represent the fact that we have no useful speculative
2828     // data and we should use a single one to be able to test for
2829     // equality between types. Check whether type->speculative() ==
2830     // type and set speculative to null if it is the case.
2831     if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2832       return res_ptr->remove_speculative();

2863     int depth = meet_inline_depth(tp->inline_depth());
2864     return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2865   }
2866   case RawPtr:                  // For these, flip the call around to cut down
2867   case OopPtr:
2868   case InstPtr:                 // on the cases I have to handle.
2869   case AryPtr:
2870   case MetadataPtr:
2871   case KlassPtr:
2872   case InstKlassPtr:
2873   case AryKlassPtr:
2874     return t->xmeet(this);      // Call in reverse direction
2875   default:                      // All else is a mistake
2876     typerr(t);
2877 
2878   }
2879   return this;
2880 }
2881 
2882 //------------------------------meet_offset------------------------------------
2883 Type::Offset TypePtr::meet_offset(int offset) const {
2884   return _offset.meet(Offset(offset));





2885 }
2886 
2887 //------------------------------dual_offset------------------------------------
2888 Type::Offset TypePtr::dual_offset() const {
2889   return _offset.dual();


2890 }
2891 
2892 //------------------------------xdual------------------------------------------
2893 // Dual: compute field-by-field dual
2894 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2895   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2896 };
2897 const Type *TypePtr::xdual() const {
2898   return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2899 }
2900 
2901 //------------------------------xadd_offset------------------------------------
2902 Type::Offset TypePtr::xadd_offset(intptr_t offset) const {
2903   return _offset.add(offset);











2904 }
2905 
2906 //------------------------------add_offset-------------------------------------
2907 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2908   return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2909 }
2910 
2911 const TypePtr *TypePtr::with_offset(intptr_t offset) const {
2912   return make(AnyPtr, _ptr, Offset(offset), _speculative, _inline_depth);
2913 }
2914 
2915 //------------------------------eq---------------------------------------------
2916 // Structural equality check for Type representations
2917 bool TypePtr::eq( const Type *t ) const {
2918   const TypePtr *a = (const TypePtr*)t;
2919   return _ptr == a->ptr() && _offset == a->_offset && eq_speculative(a) && _inline_depth == a->_inline_depth;
2920 }
2921 
2922 //------------------------------hash-------------------------------------------
2923 // Type-specific hashing function.
2924 uint TypePtr::hash(void) const {
2925   return (uint)_ptr + (uint)offset() + (uint)hash_speculative() + (uint)_inline_depth;
2926 }
2927 
2928 /**
2929  * Return same type without a speculative part
2930  */
2931 const TypePtr* TypePtr::remove_speculative() const {
2932   if (_speculative == nullptr) {
2933     return this;
2934   }
2935   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2936   return make(AnyPtr, _ptr, _offset, nullptr, _inline_depth);
2937 }
2938 
2939 /**
2940  * Return same type but drop speculative part if we know we won't use
2941  * it
2942  */
2943 const Type* TypePtr::cleanup_speculative() const {
2944   if (speculative() == nullptr) {
2945     return this;

3171   }
3172   // We already know the speculative type is always null
3173   if (speculative_always_null()) {
3174     return false;
3175   }
3176   if (ptr_kind == ProfileAlwaysNull && speculative() != nullptr && speculative()->isa_oopptr()) {
3177     return false;
3178   }
3179   return true;
3180 }
3181 
3182 //------------------------------dump2------------------------------------------
3183 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
3184   "TopPTR","AnyNull","Constant","null","NotNull","BotPTR"
3185 };
3186 
3187 #ifndef PRODUCT
3188 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3189   if( _ptr == Null ) st->print("null");
3190   else st->print("%s *", ptr_msg[_ptr]);
3191   _offset.dump2(st);


3192   dump_inline_depth(st);
3193   dump_speculative(st);
3194 }
3195 
3196 /**
3197  *dump the speculative part of the type
3198  */
3199 void TypePtr::dump_speculative(outputStream *st) const {
3200   if (_speculative != nullptr) {
3201     st->print(" (speculative=");
3202     _speculative->dump_on(st);
3203     st->print(")");
3204   }
3205 }
3206 
3207 /**
3208  *dump the inline depth of the type
3209  */
3210 void TypePtr::dump_inline_depth(outputStream *st) const {
3211   if (_inline_depth != InlineDepthBottom) {
3212     if (_inline_depth == InlineDepthTop) {
3213       st->print(" (inline_depth=InlineDepthTop)");
3214     } else {
3215       st->print(" (inline_depth=%d)", _inline_depth);
3216     }
3217   }
3218 }
3219 #endif
3220 
3221 //------------------------------singleton--------------------------------------
3222 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3223 // constants
3224 bool TypePtr::singleton(void) const {
3225   // TopPTR, Null, AnyNull, Constant are all singletons
3226   return (_offset != Offset::bottom) && !below_centerline(_ptr);
3227 }
3228 
3229 bool TypePtr::empty(void) const {
3230   return (_offset == Offset::top) || above_centerline(_ptr);
3231 }
3232 
3233 //=============================================================================
3234 // Convenience common pre-built types.
3235 const TypeRawPtr *TypeRawPtr::BOTTOM;
3236 const TypeRawPtr *TypeRawPtr::NOTNULL;
3237 
3238 //------------------------------make-------------------------------------------
3239 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
3240   assert( ptr != Constant, "what is the constant?" );
3241   assert( ptr != Null, "Use TypePtr for null" );
3242   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
3243 }
3244 
3245 const TypeRawPtr *TypeRawPtr::make( address bits ) {
3246   assert( bits, "Use TypePtr for null" );
3247   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
3248 }
3249 
3250 //------------------------------cast_to_ptr_type-------------------------------

3586   for (int i = 0; i < _list.length(); i++) {
3587     ciInstanceKlass* interface = _list.at(i)->as_instance_klass();
3588     if (eq(interface)) {
3589       assert(res == nullptr, "");
3590       res = interface;
3591     }
3592   }
3593   _exact_klass = res;
3594 }
3595 
3596 #ifdef ASSERT
3597 void TypePtr::InterfaceSet::verify_is_loaded() const {
3598   for (int i = 0; i < _list.length(); i++) {
3599     ciKlass* interface = _list.at(i);
3600     assert(interface->is_loaded(), "Interface not loaded");
3601   }
3602 }
3603 #endif
3604 
3605 //------------------------------TypeOopPtr-------------------------------------
3606 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, const InterfaceSet& interfaces, bool xk, ciObject* o, Offset offset, Offset field_offset,
3607                        int instance_id, const TypePtr* speculative, int inline_depth)
3608   : TypePtr(t, ptr, offset, speculative, inline_depth),
3609     _const_oop(o), _klass(k),
3610     _interfaces(interfaces),
3611     _klass_is_exact(xk),
3612     _is_ptr_to_narrowoop(false),
3613     _is_ptr_to_narrowklass(false),
3614     _is_ptr_to_boxed_value(false),
3615     _instance_id(instance_id) {
3616 #ifdef ASSERT
3617   if (klass() != nullptr && klass()->is_loaded()) {
3618     interfaces.verify_is_loaded();
3619   }
3620 #endif
3621   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
3622       (offset.get() > 0) && xk && (k != 0) && k->is_instance_klass()) {
3623     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset.get());
3624   }
3625 #ifdef _LP64
3626   if (this->offset() > 0 || this->offset() == Type::OffsetTop || this->offset() == Type::OffsetBot) {
3627     if (this->offset() == oopDesc::klass_offset_in_bytes()) {
3628       _is_ptr_to_narrowklass = UseCompressedClassPointers;
3629     } else if (klass() == nullptr) {
3630       // Array with unknown body type
3631       assert(this->isa_aryptr(), "only arrays without klass");
3632       _is_ptr_to_narrowoop = UseCompressedOops;
3633     } else if (UseCompressedOops && this->isa_aryptr() && this->offset() != arrayOopDesc::length_offset_in_bytes()) {
3634       if (klass()->is_obj_array_klass()) {
3635         _is_ptr_to_narrowoop = true;
3636       } else if (klass()->is_flat_array_klass() && field_offset != Offset::top && field_offset != Offset::bottom) {
3637         // Check if the field of the inline type array element contains oops
3638         ciInlineKlass* vk = klass()->as_flat_array_klass()->element_klass()->as_inline_klass();
3639         int foffset = field_offset.get() + vk->first_field_offset();
3640         ciField* field = vk->get_field_by_offset(foffset, false);
3641         assert(field != nullptr, "missing field");
3642         BasicType bt = field->layout_type();
3643         _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(bt);
3644       }
3645     } else if (klass()->is_instance_klass()) {

3646       if (this->isa_klassptr()) {
3647         // Perm objects don't use compressed references
3648       } else if (_offset == Offset::bottom || _offset == Offset::top) {
3649         // unsafe access
3650         _is_ptr_to_narrowoop = UseCompressedOops;
3651       } else {
3652         assert(this->isa_instptr(), "must be an instance ptr.");

3653         if (klass() == ciEnv::current()->Class_klass() &&
3654             (this->offset() == java_lang_Class::klass_offset() ||
3655              this->offset() == java_lang_Class::array_klass_offset())) {
3656           // Special hidden fields from the Class.
3657           assert(this->isa_instptr(), "must be an instance ptr.");
3658           _is_ptr_to_narrowoop = false;
3659         } else if (klass() == ciEnv::current()->Class_klass() &&
3660                    this->offset() >= InstanceMirrorKlass::offset_of_static_fields()) {
3661           // Static fields
3662           ciField* field = nullptr;
3663           if (const_oop() != nullptr) {
3664             ciInstanceKlass* k = const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
3665             if (k->is_inlinetype() && this->offset() == k->as_inline_klass()->default_value_offset()) {
3666               // Special hidden field that contains the oop of the default inline type
3667               // basic_elem_type = T_PRIMITIVE_OBJECT;
3668              _is_ptr_to_narrowoop = UseCompressedOops;
3669             } else {
3670               field = k->get_field_by_offset(this->offset(), true);
3671               if (field != nullptr) {
3672                 BasicType basic_elem_type = field->layout_type();
3673                 _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type);
3674               } else {
3675                 // unsafe access
3676                 _is_ptr_to_narrowoop = UseCompressedOops;
3677               }
3678             }
3679           }
3680         } else {
3681           // Instance fields which contains a compressed oop references.
3682           ciInstanceKlass* ik = klass()->as_instance_klass();
3683           ciField* field = ik->get_field_by_offset(this->offset(), false);
3684           if (field != nullptr) {
3685             BasicType basic_elem_type = field->layout_type();
3686             _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type);
3687           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
3688             // Compile::find_alias_type() cast exactness on all types to verify
3689             // that it does not affect alias type.
3690             _is_ptr_to_narrowoop = UseCompressedOops;
3691           } else {
3692             // Type for the copy start in LibraryCallKit::inline_native_clone().
3693             _is_ptr_to_narrowoop = UseCompressedOops;
3694           }
3695         }
3696       }
3697     }
3698   }
3699 #endif
3700 }
3701 
3702 //------------------------------make-------------------------------------------
3703 const TypeOopPtr *TypeOopPtr::make(PTR ptr, Offset offset, int instance_id,
3704                                    const TypePtr* speculative, int inline_depth) {
3705   assert(ptr != Constant, "no constant generic pointers");
3706   ciKlass*  k = Compile::current()->env()->Object_klass();
3707   bool      xk = false;
3708   ciObject* o = nullptr;
3709   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, InterfaceSet(), xk, o, offset, Offset::bottom, instance_id, speculative, inline_depth))->hashcons();
3710 }
3711 
3712 
3713 //------------------------------cast_to_ptr_type-------------------------------
3714 const TypeOopPtr* TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
3715   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
3716   if( ptr == _ptr ) return this;
3717   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
3718 }
3719 
3720 //-----------------------------cast_to_instance_id----------------------------
3721 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
3722   // There are no instances of a general oop.
3723   // Return self unchanged.
3724   return this;
3725 }
3726 
3727 //-----------------------------cast_to_exactness-------------------------------
3728 const TypeOopPtr* TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
3729   // There is no such thing as an exact general oop.
3730   // Return self unchanged.
3731   return this;
3732 }
3733 

3734 //------------------------------as_klass_type----------------------------------
3735 // Return the klass type corresponding to this instance or array type.
3736 // It is the type that is loaded from an object of this type.
3737 const TypeKlassPtr* TypeOopPtr::as_klass_type(bool try_for_exact) const {
3738   ShouldNotReachHere();
3739   return nullptr;
3740 }
3741 
3742 //------------------------------meet-------------------------------------------
3743 // Compute the MEET of two types.  It returns a new Type object.
3744 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
3745   // Perform a fast test for common case; meeting the same types together.
3746   if( this == t ) return this;  // Meeting same type-rep?
3747 
3748   // Current "this->_base" is OopPtr
3749   switch (t->base()) {          // switch on original type
3750 
3751   case Int:                     // Mixing ints & oops happens when javac
3752   case Long:                    // reuses local variables
3753   case FloatTop:

3759   case NarrowOop:
3760   case NarrowKlass:
3761   case Bottom:                  // Ye Olde Default
3762     return Type::BOTTOM;
3763   case Top:
3764     return this;
3765 
3766   default:                      // All else is a mistake
3767     typerr(t);
3768 
3769   case RawPtr:
3770   case MetadataPtr:
3771   case KlassPtr:
3772   case InstKlassPtr:
3773   case AryKlassPtr:
3774     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3775 
3776   case AnyPtr: {
3777     // Found an AnyPtr type vs self-OopPtr type
3778     const TypePtr *tp = t->is_ptr();
3779     Offset offset = meet_offset(tp->offset());
3780     PTR ptr = meet_ptr(tp->ptr());
3781     const TypePtr* speculative = xmeet_speculative(tp);
3782     int depth = meet_inline_depth(tp->inline_depth());
3783     switch (tp->ptr()) {
3784     case Null:
3785       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3786       // else fall through:
3787     case TopPTR:
3788     case AnyNull: {
3789       int instance_id = meet_instance_id(InstanceTop);
3790       return make(ptr, offset, instance_id, speculative, depth);
3791     }
3792     case BotPTR:
3793     case NotNull:
3794       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3795     default: typerr(t);
3796     }
3797   }
3798 
3799   case OopPtr: {                 // Meeting to other OopPtrs

3801     int instance_id = meet_instance_id(tp->instance_id());
3802     const TypePtr* speculative = xmeet_speculative(tp);
3803     int depth = meet_inline_depth(tp->inline_depth());
3804     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
3805   }
3806 
3807   case InstPtr:                  // For these, flip the call around to cut down
3808   case AryPtr:
3809     return t->xmeet(this);      // Call in reverse direction
3810 
3811   } // End of switch
3812   return this;                  // Return the double constant
3813 }
3814 
3815 
3816 //------------------------------xdual------------------------------------------
3817 // Dual of a pure heap pointer.  No relevant klass or oop information.
3818 const Type *TypeOopPtr::xdual() const {
3819   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
3820   assert(const_oop() == nullptr,             "no constants here");
3821   return new TypeOopPtr(_base, dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), Offset::bottom, dual_instance_id(), dual_speculative(), dual_inline_depth());
3822 }
3823 
3824 //--------------------------make_from_klass_common-----------------------------
3825 // Computes the element-type given a klass.
3826 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact, InterfaceHandling interface_handling) {
3827   if (klass->is_instance_klass() || klass->is_inlinetype()) {
3828     Compile* C = Compile::current();
3829     Dependencies* deps = C->dependencies();
3830     assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
3831     // Element is an instance
3832     bool klass_is_exact = false;
3833     if (klass->is_loaded()) {
3834       // Try to set klass_is_exact.
3835       ciInstanceKlass* ik = klass->as_instance_klass();
3836       klass_is_exact = ik->is_final();
3837       if (!klass_is_exact && klass_change
3838           && deps != nullptr && UseUniqueSubclasses) {
3839         ciInstanceKlass* sub = ik->unique_concrete_subklass();
3840         if (sub != nullptr) {
3841           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3842           klass = ik = sub;
3843           klass_is_exact = sub->is_final();
3844         }
3845       }
3846       if (!klass_is_exact && try_for_exact && deps != nullptr &&
3847           !ik->is_interface() && !ik->has_subklass()) {
3848         // Add a dependence; if concrete subclass added we need to recompile
3849         deps->assert_leaf_type(ik);
3850         klass_is_exact = true;
3851       }
3852     }
3853     const TypePtr::InterfaceSet interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
3854     return TypeInstPtr::make(TypePtr::BotPTR, klass, interfaces, klass_is_exact, nullptr, Offset(0));
3855   } else if (klass->is_obj_array_klass()) {
3856     // Element is an object or inline type array. Recursively call ourself.
3857     const TypeOopPtr* etype = TypeOopPtr::make_from_klass_common(klass->as_array_klass()->element_klass(), /* klass_change= */ false, try_for_exact, interface_handling);
3858     bool null_free = klass->as_array_klass()->is_elem_null_free();
3859     if (null_free) {
3860       etype = etype->join_speculative(TypePtr::NOTNULL)->is_oopptr();
3861     }
3862     // Determine null-free/flat properties
3863     const TypeOopPtr* exact_etype = etype;
3864     if (etype->can_be_inline_type()) {
3865       // Use exact type if element can be an inline type
3866       exact_etype = TypeOopPtr::make_from_klass_common(klass->as_array_klass()->element_klass(), /* klass_change= */ true, /* try_for_exact= */ true, interface_handling);
3867     }
3868     bool not_null_free = !exact_etype->can_be_inline_type();
3869     bool not_flat = !UseFlatArray || not_null_free || (exact_etype->is_inlinetypeptr() && !exact_etype->inline_klass()->flat_array());
3870 
3871     // Even if MyValue is exact, [LMyValue is not exact due to [QMyValue <: [LMyValue.
3872     bool xk = etype->klass_is_exact() && (!etype->is_inlinetypeptr() || null_free);
3873     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS, /* stable= */ false, /* flat= */ false, not_flat, not_null_free);
3874     // We used to pass NotNull in here, asserting that the sub-arrays
3875     // are all not-null.  This is not true in generally, as code can
3876     // slam nullptrs down in the subarrays.
3877     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, nullptr, xk, Offset(0));
3878     return arr;
3879   } else if (klass->is_type_array_klass()) {
3880     // Element is an typeArray
3881     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3882     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS,
3883                                         /* stable= */ false, /* flat= */ false, /* not_flat= */ true, /* not_null_free= */ true);
3884     // We used to pass NotNull in here, asserting that the array pointer
3885     // is not-null. That was not true in general.
3886     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, Offset(0));
3887     return arr;
3888   } else if (klass->is_flat_array_klass()) {
3889     const TypeOopPtr* etype = TypeOopPtr::make_from_klass_raw(klass->as_array_klass()->element_klass(), trust_interfaces);
3890     etype = etype->join_speculative(TypePtr::NOTNULL)->is_oopptr();
3891     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS, /* stable= */ false, /* flat= */ true);
3892     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, Offset(0));
3893     return arr;
3894   } else {
3895     ShouldNotReachHere();
3896     return nullptr;
3897   }
3898 }
3899 
3900 //------------------------------make_from_constant-----------------------------
3901 // Make a java pointer from an oop constant
3902 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
3903   assert(!o->is_null_object(), "null object not yet handled here.");
3904 
3905   const bool make_constant = require_constant || o->should_be_constant();
3906 
3907   ciKlass* klass = o->klass();
3908   if (klass->is_instance_klass() || klass->is_inlinetype()) {
3909     // Element is an instance or inline type
3910     if (make_constant) {
3911       return TypeInstPtr::make(o);
3912     } else {
3913       return TypeInstPtr::make(TypePtr::NotNull, klass, true, nullptr, Offset(0));
3914     }
3915   } else if (klass->is_obj_array_klass()) {
3916     // Element is an object array. Recursively call ourself.
3917     const TypeOopPtr* etype = TypeOopPtr::make_from_klass_raw(klass->as_array_klass()->element_klass(), trust_interfaces);
3918     bool null_free = false;
3919     if (klass->as_array_klass()->is_elem_null_free()) {
3920       null_free = true;
3921       etype = etype->join_speculative(TypePtr::NOTNULL)->is_oopptr();
3922     }
3923     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()),
3924                                         /* stable= */ false, /* flat= */ false, /* not_flat= */ true, /* not_null_free= */ !null_free);
3925     // We used to pass NotNull in here, asserting that the sub-arrays
3926     // are all not-null.  This is not true in generally, as code can
3927     // slam nulls down in the subarrays.
3928     if (make_constant) {
3929       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3930     } else {
3931       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3932     }
3933   } else if (klass->is_type_array_klass()) {
3934     // Element is an typeArray
3935     const Type* etype = (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3936     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()),
3937                                         /* stable= */ false, /* flat= */ false, /* not_flat= */ true, /* not_null_free= */ true);
3938     // We used to pass NotNull in here, asserting that the array pointer
3939     // is not-null. That was not true in general.
3940     if (make_constant) {
3941       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3942     } else {
3943       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3944     }
3945   } else if (klass->is_flat_array_klass()) {
3946     const TypeOopPtr* etype = TypeOopPtr::make_from_klass_raw(klass->as_array_klass()->element_klass(), trust_interfaces);
3947     etype = etype->join_speculative(TypePtr::NOTNULL)->is_oopptr();
3948     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()), /* stable= */ false, /* flat= */ true);
3949     // We used to pass NotNull in here, asserting that the sub-arrays
3950     // are all not-null.  This is not true in generally, as code can
3951     // slam nullptrs down in the subarrays.
3952     if (make_constant) {
3953       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3954     } else {
3955       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3956     }
3957   }
3958 
3959   fatal("unhandled object type");
3960   return nullptr;
3961 }
3962 
3963 //------------------------------get_con----------------------------------------
3964 intptr_t TypeOopPtr::get_con() const {
3965   assert( _ptr == Null || _ptr == Constant, "" );
3966   assert(offset() >= 0, "");
3967 
3968   if (offset() != 0) {
3969     // After being ported to the compiler interface, the compiler no longer
3970     // directly manipulates the addresses of oops.  Rather, it only has a pointer
3971     // to a handle at compile time.  This handle is embedded in the generated
3972     // code and dereferenced at the time the nmethod is made.  Until that time,
3973     // it is not reasonable to do arithmetic with the addresses of oops (we don't
3974     // have access to the addresses!).  This does not seem to currently happen,
3975     // but this assertion here is to help prevent its occurrence.
3976     tty->print_cr("Found oop constant with non-zero offset");
3977     ShouldNotReachHere();
3978   }
3979 
3980   return (intptr_t)const_oop()->constant_encoding();
3981 }
3982 
3983 
3984 //-----------------------------filter------------------------------------------
3985 // Do not allow interface-vs.-noninterface joins to collapse to top.
3986 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
3987 
3988   const Type* ft = join_helper(kills, include_speculative);

4009   } else {
4010     return one->equals(two) && TypePtr::eq(t);
4011   }
4012 }
4013 
4014 //------------------------------hash-------------------------------------------
4015 // Type-specific hashing function.
4016 uint TypeOopPtr::hash(void) const {
4017   return
4018     (uint)(const_oop() ? const_oop()->hash() : 0) +
4019     (uint)_klass_is_exact +
4020     (uint)_instance_id + TypePtr::hash();
4021 }
4022 
4023 //------------------------------dump2------------------------------------------
4024 #ifndef PRODUCT
4025 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4026   st->print("oopptr:%s", ptr_msg[_ptr]);
4027   if( _klass_is_exact ) st->print(":exact");
4028   if( const_oop() ) st->print(INTPTR_FORMAT, p2i(const_oop()));
4029   _offset.dump2(st);





4030   if (_instance_id == InstanceTop)
4031     st->print(",iid=top");
4032   else if (_instance_id != InstanceBot)
4033     st->print(",iid=%d",_instance_id);
4034 
4035   dump_inline_depth(st);
4036   dump_speculative(st);
4037 }
4038 #endif
4039 
4040 //------------------------------singleton--------------------------------------
4041 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4042 // constants
4043 bool TypeOopPtr::singleton(void) const {
4044   // detune optimizer to not generate constant oop + constant offset as a constant!
4045   // TopPTR, Null, AnyNull, Constant are all singletons
4046   return (offset() == 0) && !below_centerline(_ptr);
4047 }
4048 
4049 //------------------------------add_offset-------------------------------------
4050 const TypePtr* TypeOopPtr::add_offset(intptr_t offset) const {
4051   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
4052 }
4053 
4054 const TypeOopPtr* TypeOopPtr::with_offset(intptr_t offset) const {
4055   return make(_ptr, Offset(offset), _instance_id, with_offset_speculative(offset), _inline_depth);
4056 }
4057 
4058 /**
4059  * Return same type without a speculative part
4060  */
4061 const TypeOopPtr* TypeOopPtr::remove_speculative() const {
4062   if (_speculative == nullptr) {
4063     return this;
4064   }
4065   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4066   return make(_ptr, _offset, _instance_id, nullptr, _inline_depth);
4067 }
4068 
4069 /**
4070  * Return same type but drop speculative part if we know we won't use
4071  * it
4072  */
4073 const Type* TypeOopPtr::cleanup_speculative() const {
4074   // If the klass is exact and the ptr is not null then there's
4075   // nothing that the speculative type can help us with

4148 const TypeInstPtr *TypeInstPtr::BOTTOM;
4149 const TypeInstPtr *TypeInstPtr::MIRROR;
4150 const TypeInstPtr *TypeInstPtr::MARK;
4151 const TypeInstPtr *TypeInstPtr::KLASS;
4152 
4153 // Is there a single ciKlass* that can represent that type?
4154 ciKlass* TypeInstPtr::exact_klass_helper() const {
4155   if (_interfaces.empty()) {
4156     return _klass;
4157   }
4158   if (_klass != ciEnv::current()->Object_klass()) {
4159     if (_interfaces.eq(_klass->as_instance_klass())) {
4160       return _klass;
4161     }
4162     return nullptr;
4163   }
4164   return _interfaces.exact_klass();
4165 }
4166 
4167 //------------------------------TypeInstPtr-------------------------------------
4168 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, const InterfaceSet& interfaces, bool xk, ciObject* o, Offset off,
4169                          bool flat_array, int instance_id, const TypePtr* speculative, int inline_depth)
4170   : TypeOopPtr(InstPtr, ptr, k, interfaces, xk, o, off, Offset::bottom, instance_id, speculative, inline_depth),
4171     _flat_array(flat_array) {
4172   assert(k == nullptr || !k->is_loaded() || !k->is_interface(), "no interface here");
4173   assert(k != nullptr &&
4174          (k->is_loaded() || o == nullptr),
4175          "cannot have constants with non-loaded klass");
4176   assert(!klass()->flat_array() || flat_array, "Should be flat in array");
4177   assert(!flat_array || can_be_inline_type(), "Only inline types can be flat in array");
4178 };
4179 
4180 //------------------------------make-------------------------------------------
4181 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
4182                                      ciKlass* k,
4183                                      const InterfaceSet& interfaces,
4184                                      bool xk,
4185                                      ciObject* o,
4186                                      Offset offset,
4187                                      bool flat_array,
4188                                      int instance_id,
4189                                      const TypePtr* speculative,
4190                                      int inline_depth) {
4191   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
4192   // Either const_oop() is null or else ptr is Constant
4193   assert( (!o && ptr != Constant) || (o && ptr == Constant),
4194           "constant pointers must have a value supplied" );
4195   // Ptr is never Null
4196   assert( ptr != Null, "null pointers are not typed" );
4197 
4198   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4199   if (ptr == Constant) {
4200     // Note:  This case includes meta-object constants, such as methods.
4201     xk = true;
4202   } else if (k->is_loaded()) {
4203     ciInstanceKlass* ik = k->as_instance_klass();
4204     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
4205     assert(!ik->is_interface(), "no interface here");
4206     if (xk && ik->is_interface())  xk = false;  // no exact interface
4207   }
4208 
4209   // Check if this type is known to be flat in arrays
4210   flat_array = flat_array || k->flat_array();
4211 
4212   // Now hash this baby
4213   TypeInstPtr *result =
4214     (TypeInstPtr*)(new TypeInstPtr(ptr, k, interfaces, xk, o, offset, flat_array, instance_id, speculative, inline_depth))->hashcons();
4215 
4216   return result;
4217 }
4218 
4219 TypePtr::InterfaceSet TypePtr::interfaces(ciKlass*& k, bool klass, bool interface, bool array, InterfaceHandling interface_handling) {
4220   if (k->is_instance_klass()) {
4221     if (k->is_loaded()) {
4222       if (k->is_interface() && interface_handling == ignore_interfaces) {
4223         assert(interface, "no interface expected");
4224         k = ciEnv::current()->Object_klass();
4225         InterfaceSet interfaces;
4226         return interfaces;
4227       }
4228       GrowableArray<ciInstanceKlass *>* k_interfaces = k->as_instance_klass()->transitive_interfaces();
4229       InterfaceSet interfaces(k_interfaces);
4230       if (k->is_interface()) {
4231         assert(interface, "no interface expected");
4232         k = ciEnv::current()->Object_klass();
4233       } else {
4234         assert(klass, "no instance klass expected");

4260   switch (bt) {
4261     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
4262     case T_INT:      return TypeInt::make(constant.as_int());
4263     case T_CHAR:     return TypeInt::make(constant.as_char());
4264     case T_BYTE:     return TypeInt::make(constant.as_byte());
4265     case T_SHORT:    return TypeInt::make(constant.as_short());
4266     case T_FLOAT:    return TypeF::make(constant.as_float());
4267     case T_DOUBLE:   return TypeD::make(constant.as_double());
4268     case T_LONG:     return TypeLong::make(constant.as_long());
4269     default:         break;
4270   }
4271   fatal("Invalid boxed value type '%s'", type2name(bt));
4272   return nullptr;
4273 }
4274 
4275 //------------------------------cast_to_ptr_type-------------------------------
4276 const TypeInstPtr* TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
4277   if( ptr == _ptr ) return this;
4278   // Reconstruct _sig info here since not a problem with later lazy
4279   // construction, _sig will show up on demand.
4280   return make(ptr, klass(), _interfaces, klass_is_exact(), ptr == Constant ? const_oop() : nullptr, _offset, _flat_array, _instance_id, _speculative, _inline_depth);
4281 }
4282 
4283 
4284 //-----------------------------cast_to_exactness-------------------------------
4285 const TypeInstPtr* TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
4286   if( klass_is_exact == _klass_is_exact ) return this;
4287   if (!_klass->is_loaded())  return this;
4288   ciInstanceKlass* ik = _klass->as_instance_klass();
4289   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
4290   assert(!ik->is_interface(), "no interface here");
4291   return make(ptr(), klass(), _interfaces, klass_is_exact, const_oop(), _offset, _flat_array, _instance_id, _speculative, _inline_depth);
4292 }
4293 
4294 //-----------------------------cast_to_instance_id----------------------------
4295 const TypeInstPtr* TypeInstPtr::cast_to_instance_id(int instance_id) const {
4296   if( instance_id == _instance_id ) return this;
4297   return make(_ptr, klass(), _interfaces, _klass_is_exact, const_oop(), _offset, _flat_array, instance_id, _speculative, _inline_depth);
4298 }
4299 
4300 //------------------------------xmeet_unloaded---------------------------------
4301 // Compute the MEET of two InstPtrs when at least one is unloaded.
4302 // Assume classes are different since called after check for same name/class-loader
4303 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst, const InterfaceSet& interfaces) const {
4304   Offset off = meet_offset(tinst->offset());
4305   PTR ptr = meet_ptr(tinst->ptr());
4306   int instance_id = meet_instance_id(tinst->instance_id());
4307   const TypePtr* speculative = xmeet_speculative(tinst);
4308   int depth = meet_inline_depth(tinst->inline_depth());
4309 
4310   const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
4311   const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
4312   if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
4313     //
4314     // Meet unloaded class with java/lang/Object
4315     //
4316     // Meet
4317     //          |                     Unloaded Class
4318     //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
4319     //  ===================================================================
4320     //   TOP    | ..........................Unloaded......................|
4321     //  AnyNull |  U-AN    |................Unloaded......................|
4322     // Constant | ... O-NN .................................. |   O-BOT   |
4323     //  NotNull | ... O-NN .................................. |   O-BOT   |
4324     //  BOTTOM  | ........................Object-BOTTOM ..................|
4325     //
4326     assert(loaded->ptr() != TypePtr::Null, "insanity check");
4327     //
4328     if (loaded->ptr() == TypePtr::TopPTR)        { return unloaded; }
4329     else if (loaded->ptr() == TypePtr::AnyNull)  { return make(ptr, unloaded->klass(), interfaces, false, nullptr, off, false, instance_id, speculative, depth); }
4330     else if (loaded->ptr() == TypePtr::BotPTR)   { return TypeInstPtr::BOTTOM; }
4331     else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
4332       if (unloaded->ptr() == TypePtr::BotPTR)    { return TypeInstPtr::BOTTOM;  }
4333       else                                       { return TypeInstPtr::NOTNULL; }
4334     }
4335     else if (unloaded->ptr() == TypePtr::TopPTR) { return unloaded; }
4336 
4337     return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
4338   }
4339 
4340   // Both are unloaded, not the same class, not Object
4341   // Or meet unloaded with a different loaded class, not java/lang/Object
4342   if (ptr != TypePtr::BotPTR) {
4343     return TypeInstPtr::NOTNULL;
4344   }
4345   return TypeInstPtr::BOTTOM;
4346 }
4347 
4348 
4349 //------------------------------meet-------------------------------------------

4370   case Top:
4371     return this;
4372 
4373   default:                      // All else is a mistake
4374     typerr(t);
4375 
4376   case MetadataPtr:
4377   case KlassPtr:
4378   case InstKlassPtr:
4379   case AryKlassPtr:
4380   case RawPtr: return TypePtr::BOTTOM;
4381 
4382   case AryPtr: {                // All arrays inherit from Object class
4383     // Call in reverse direction to avoid duplication
4384     return t->is_aryptr()->xmeet_helper(this);
4385   }
4386 
4387   case OopPtr: {                // Meeting to OopPtrs
4388     // Found a OopPtr type vs self-InstPtr type
4389     const TypeOopPtr *tp = t->is_oopptr();
4390     Offset offset = meet_offset(tp->offset());
4391     PTR ptr = meet_ptr(tp->ptr());
4392     switch (tp->ptr()) {
4393     case TopPTR:
4394     case AnyNull: {
4395       int instance_id = meet_instance_id(InstanceTop);
4396       const TypePtr* speculative = xmeet_speculative(tp);
4397       int depth = meet_inline_depth(tp->inline_depth());
4398       return make(ptr, klass(), _interfaces, klass_is_exact(),
4399                   (ptr == Constant ? const_oop() : nullptr), offset, flat_array(), instance_id, speculative, depth);
4400     }
4401     case NotNull:
4402     case BotPTR: {
4403       int instance_id = meet_instance_id(tp->instance_id());
4404       const TypePtr* speculative = xmeet_speculative(tp);
4405       int depth = meet_inline_depth(tp->inline_depth());
4406       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4407     }
4408     default: typerr(t);
4409     }
4410   }
4411 
4412   case AnyPtr: {                // Meeting to AnyPtrs
4413     // Found an AnyPtr type vs self-InstPtr type
4414     const TypePtr *tp = t->is_ptr();
4415     Offset offset = meet_offset(tp->offset());
4416     PTR ptr = meet_ptr(tp->ptr());
4417     int instance_id = meet_instance_id(InstanceTop);
4418     const TypePtr* speculative = xmeet_speculative(tp);
4419     int depth = meet_inline_depth(tp->inline_depth());
4420     switch (tp->ptr()) {
4421     case Null:
4422       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4423       // else fall through to AnyNull
4424     case TopPTR:
4425     case AnyNull: {
4426       return make(ptr, klass(), _interfaces, klass_is_exact(),
4427                   (ptr == Constant ? const_oop() : nullptr), offset, flat_array(), instance_id, speculative, depth);
4428     }
4429     case NotNull:
4430     case BotPTR:
4431       return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
4432     default: typerr(t);
4433     }
4434   }
4435 
4436   /*
4437                  A-top         }
4438                /   |   \       }  Tops
4439            B-top A-any C-top   }
4440               | /  |  \ |      }  Any-nulls
4441            B-any   |   C-any   }
4442               |    |    |
4443            B-con A-con C-con   } constants; not comparable across classes
4444               |    |    |
4445            B-not   |   C-not   }
4446               | \  |  / |      }  not-nulls
4447            B-bot A-not C-bot   }
4448                \   |   /       }  Bottoms
4449                  A-bot         }
4450   */
4451 
4452   case InstPtr: {                // Meeting 2 Oops?
4453     // Found an InstPtr sub-type vs self-InstPtr type
4454     const TypeInstPtr *tinst = t->is_instptr();
4455     Offset off = meet_offset(tinst->offset());
4456     PTR ptr = meet_ptr(tinst->ptr());
4457     int instance_id = meet_instance_id(tinst->instance_id());
4458     const TypePtr* speculative = xmeet_speculative(tinst);
4459     int depth = meet_inline_depth(tinst->inline_depth());
4460     InterfaceSet interfaces = meet_interfaces(tinst);
4461 
4462     ciKlass* tinst_klass = tinst->klass();
4463     ciKlass* this_klass  = klass();
4464 
4465     ciKlass* res_klass = nullptr;
4466     bool res_xk = false;
4467     bool res_flat_array = false;
4468     const Type* res;
4469     MeetResult kind = meet_instptr(ptr, interfaces, this, tinst, res_klass, res_xk, res_flat_array);
4470 
4471     if (kind == UNLOADED) {
4472       // One of these classes has not been loaded
4473       const TypeInstPtr* unloaded_meet = xmeet_unloaded(tinst, interfaces);
4474 #ifndef PRODUCT
4475       if (PrintOpto && Verbose) {
4476         tty->print("meet of unloaded classes resulted in: ");
4477         unloaded_meet->dump();
4478         tty->cr();
4479         tty->print("  this == ");
4480         dump();
4481         tty->cr();
4482         tty->print(" tinst == ");
4483         tinst->dump();
4484         tty->cr();
4485       }
4486 #endif
4487       res = unloaded_meet;
4488     } else {
4489       if (kind == NOT_SUBTYPE && instance_id > 0) {
4490         instance_id = InstanceBot;
4491       } else if (kind == LCA) {
4492         instance_id = InstanceBot;
4493       }
4494       ciObject* o = nullptr;             // Assume not constant when done
4495       ciObject* this_oop = const_oop();
4496       ciObject* tinst_oop = tinst->const_oop();
4497       if (ptr == Constant) {
4498         if (this_oop != nullptr && tinst_oop != nullptr &&
4499             this_oop->equals(tinst_oop))
4500           o = this_oop;
4501         else if (above_centerline(_ptr)) {
4502           assert(!tinst_klass->is_interface(), "");
4503           o = tinst_oop;
4504         } else if (above_centerline(tinst->_ptr)) {
4505           assert(!this_klass->is_interface(), "");
4506           o = this_oop;
4507         } else
4508           ptr = NotNull;
4509       }
4510       res = make(ptr, res_klass, interfaces, res_xk, o, off, res_flat_array, instance_id, speculative, depth);
4511     }
4512 
4513     return res;
4514 
4515   } // End of case InstPtr
4516 
4517   } // End of switch
4518   return this;                  // Return the double constant
4519 }
4520 
4521 template<class T> TypePtr::MeetResult TypePtr::meet_instptr(PTR& ptr, InterfaceSet& interfaces, const T* this_type, const T* other_type,
4522                                                             ciKlass*& res_klass, bool& res_xk, bool& res_flat_array) {
4523   ciKlass* this_klass = this_type->klass();
4524   ciKlass* other_klass = other_type->klass();
4525   bool this_flat_array = this_type->flat_array();
4526   bool other_flat_array = other_type->flat_array();
4527   bool this_flat_array_orig = this_flat_array;
4528   bool other_flat_array_orig = other_flat_array;
4529   bool this_xk = this_type->klass_is_exact();
4530   bool other_xk = other_type->klass_is_exact();
4531   PTR this_ptr = this_type->ptr();
4532   PTR other_ptr = other_type->ptr();
4533   InterfaceSet this_interfaces = this_type->interfaces();
4534   InterfaceSet other_interfaces = other_type->interfaces();
4535   // Check for easy case; klasses are equal (and perhaps not loaded!)
4536   // If we have constants, then we created oops so classes are loaded
4537   // and we can handle the constants further down.  This case handles
4538   // both-not-loaded or both-loaded classes
4539   if (ptr != Constant && this_klass->equals(other_klass) && this_xk == other_xk && this_flat_array == other_flat_array) {
4540     res_klass = this_klass;
4541     res_xk = this_xk;
4542     res_flat_array = this_flat_array;
4543     return QUICK;
4544   }
4545 
4546   // Classes require inspection in the Java klass hierarchy.  Must be loaded.
4547   if (!other_klass->is_loaded() || !this_klass->is_loaded()) {
4548     return UNLOADED;
4549   }
4550 
4551   // !!! Here's how the symmetry requirement breaks down into invariants:
4552   // If we split one up & one down AND they subtype, take the down man.
4553   // If we split one up & one down AND they do NOT subtype, "fall hard".
4554   // If both are up and they subtype, take the subtype class.
4555   // If both are up and they do NOT subtype, "fall hard".
4556   // If both are down and they subtype, take the supertype class.
4557   // If both are down and they do NOT subtype, "fall hard".
4558   // Constants treated as down.
4559 
4560   // Now, reorder the above list; observe that both-down+subtype is also
4561   // "fall hard"; "fall hard" becomes the default case:
4562   // If we split one up & one down AND they subtype, take the down man.
4563   // If both are up and they subtype, take the subtype class.
4564 
4565   // If both are down and they subtype, "fall hard".
4566   // If both are down and they do NOT subtype, "fall hard".
4567   // If both are up and they do NOT subtype, "fall hard".
4568   // If we split one up & one down AND they do NOT subtype, "fall hard".
4569 
4570   // If a proper subtype is exact, and we return it, we return it exactly.
4571   // If a proper supertype is exact, there can be no subtyping relationship!
4572   // If both types are equal to the subtype, exactness is and-ed below the
4573   // centerline and or-ed above it.  (N.B. Constants are always exact.)
4574 
4575   // Check for subtyping:
4576   const T* subtype = nullptr;
4577   bool subtype_exact = false;
4578   bool flat_array = false;
4579   if (this_type->is_same_java_type_as(other_type)) {
4580     subtype = this_type;
4581     subtype_exact = below_centerline(ptr) ? (this_xk && other_xk) : (this_xk || other_xk);
4582     flat_array = below_centerline(ptr) ? (this_flat_array && other_flat_array) : (this_flat_array || other_flat_array);
4583   } else if (!other_xk && this_type->is_meet_subtype_of(other_type) && (!other_flat_array || this_flat_array)) {
4584     subtype = this_type;     // Pick subtyping class
4585     subtype_exact = this_xk;
4586     flat_array = this_flat_array;
4587   } else if (!this_xk && other_type->is_meet_subtype_of(this_type) && (!this_flat_array || other_flat_array)) {
4588     subtype = other_type;    // Pick subtyping class
4589     subtype_exact = other_xk;
4590     flat_array = other_flat_array;
4591   }
4592 
4593   if (subtype) {
4594     if (above_centerline(ptr)) { // both are up?
4595       this_type = other_type = subtype;
4596       this_xk = other_xk = subtype_exact;
4597       this_flat_array = other_flat_array = flat_array;
4598     } else if (above_centerline(this_ptr) && !above_centerline(other_ptr)) {
4599       this_type = other_type; // tinst is down; keep down man
4600       this_xk = other_xk;
4601       this_flat_array = other_flat_array;
4602     } else if (above_centerline(other_ptr) && !above_centerline(this_ptr)) {
4603       other_type = this_type; // this is down; keep down man
4604       other_xk = this_xk;
4605       other_flat_array = this_flat_array;
4606     } else {
4607       this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
4608       this_flat_array = flat_array;
4609     }
4610   }
4611 
4612   // Check for classes now being equal
4613   if (this_type->is_same_java_type_as(other_type)) {
4614     // If the klasses are equal, the constants may still differ.  Fall to
4615     // NotNull if they do (neither constant is null; that is a special case
4616     // handled elsewhere).
4617     res_klass = this_type->klass();
4618     res_xk = this_xk;
4619     res_flat_array = this_flat_array;
4620     return SUBTYPE;
4621   } // Else classes are not equal
4622 
4623   // Since klasses are different, we require a LCA in the Java
4624   // class hierarchy - which means we have to fall to at least NotNull.
4625   if (ptr == TopPTR || ptr == AnyNull || ptr == Constant) {
4626     ptr = NotNull;
4627   }
4628 
4629   interfaces = this_interfaces.intersection_with(other_interfaces);
4630 
4631   // Now we find the LCA of Java classes
4632   ciKlass* k = this_klass->least_common_ancestor(other_klass);
4633 
4634   res_klass = k;
4635   res_xk = false;
4636   res_flat_array = this_flat_array_orig && other_flat_array_orig;
4637 
4638   return LCA;
4639 }
4640 
4641 //------------------------java_mirror_type--------------------------------------
4642 ciType* TypeInstPtr::java_mirror_type(bool* is_val_mirror) const {
4643   // must be a singleton type
4644   if( const_oop() == nullptr )  return nullptr;
4645 
4646   // must be of type java.lang.Class
4647   if( klass() != ciEnv::current()->Class_klass() )  return nullptr;
4648   return const_oop()->as_instance()->java_mirror_type(is_val_mirror);

4649 }
4650 
4651 
4652 //------------------------------xdual------------------------------------------
4653 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
4654 // inheritance mechanism.
4655 const Type *TypeInstPtr::xdual() const {
4656   return new TypeInstPtr(dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), flat_array(), dual_instance_id(), dual_speculative(), dual_inline_depth());
4657 }
4658 
4659 //------------------------------eq---------------------------------------------
4660 // Structural equality check for Type representations
4661 bool TypeInstPtr::eq( const Type *t ) const {
4662   const TypeInstPtr *p = t->is_instptr();
4663   return
4664     klass()->equals(p->klass()) &&
4665     flat_array() == p->flat_array() &&
4666     _interfaces.eq(p->_interfaces) &&
4667     TypeOopPtr::eq(p);          // Check sub-type stuff
4668 }
4669 
4670 //------------------------------hash-------------------------------------------
4671 // Type-specific hashing function.
4672 uint TypeInstPtr::hash(void) const {
4673   return klass()->hash() + TypeOopPtr::hash() + _interfaces.hash() + (uint)flat_array();
4674 }
4675 
4676 bool TypeInstPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4677   return TypePtr::is_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
4678 }
4679 
4680 
4681 bool TypeInstPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const {
4682   return TypePtr::is_same_java_type_as_helper_for_instance(this, other);
4683 }
4684 
4685 bool TypeInstPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4686   return TypePtr::maybe_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
4687 }
4688 
4689 
4690 //------------------------------dump2------------------------------------------
4691 // Dump oop Type
4692 #ifndef PRODUCT
4693 void TypeInstPtr::dump2(Dict &d, uint depth, outputStream* st) const {

4707       // suppress newlines from it so -XX:+Verbose -XX:+PrintIdeal dumps one-liner for each node.
4708       char* buf = ss.as_string(/* c_heap= */false);
4709       StringUtils::replace_no_expand(buf, "\n", "");
4710       st->print_raw(buf);
4711     }
4712   case BotPTR:
4713     if (!WizardMode && !Verbose) {
4714       if( _klass_is_exact ) st->print(":exact");
4715       break;
4716     }
4717   case TopPTR:
4718   case AnyNull:
4719   case NotNull:
4720     st->print(":%s", ptr_msg[_ptr]);
4721     if( _klass_is_exact ) st->print(":exact");
4722     break;
4723   default:
4724     break;
4725   }
4726 
4727   _offset.dump2(st);




4728 
4729   st->print(" *");
4730 
4731   if (flat_array() && !klass()->is_inlinetype()) {
4732     st->print(" (flat array)");
4733   }
4734 
4735   if (_instance_id == InstanceTop)
4736     st->print(",iid=top");
4737   else if (_instance_id != InstanceBot)
4738     st->print(",iid=%d",_instance_id);
4739 
4740   dump_inline_depth(st);
4741   dump_speculative(st);
4742 }
4743 #endif
4744 
4745 //------------------------------add_offset-------------------------------------
4746 const TypePtr* TypeInstPtr::add_offset(intptr_t offset) const {
4747   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), xadd_offset(offset), flat_array(),
4748               _instance_id, add_offset_speculative(offset), _inline_depth);
4749 }
4750 
4751 const TypeInstPtr* TypeInstPtr::with_offset(intptr_t offset) const {
4752   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), Offset(offset), flat_array(),
4753               _instance_id, with_offset_speculative(offset), _inline_depth);
4754 }
4755 
4756 const TypeInstPtr* TypeInstPtr::remove_speculative() const {
4757   if (_speculative == nullptr) {
4758     return this;
4759   }
4760   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4761   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, flat_array(),
4762               _instance_id, nullptr, _inline_depth);
4763 }
4764 
4765 const TypePtr* TypeInstPtr::with_inline_depth(int depth) const {
4766   if (!UseInlineDepthForSpeculativeTypes) {
4767     return this;
4768   }
4769   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, flat_array(), _instance_id, _speculative, depth);
4770 }
4771 
4772 const TypePtr* TypeInstPtr::with_instance_id(int instance_id) const {
4773   assert(is_known_instance(), "should be known");
4774   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, flat_array(), instance_id, _speculative, _inline_depth);
4775 }
4776 
4777 const TypeInstPtr *TypeInstPtr::cast_to_flat_array() const {
4778   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, true, _instance_id, _speculative, _inline_depth);
4779 }
4780 
4781 const TypeKlassPtr* TypeInstPtr::as_klass_type(bool try_for_exact) const {
4782   bool xk = klass_is_exact();
4783   ciInstanceKlass* ik = klass()->as_instance_klass();
4784   if (try_for_exact && !xk && !ik->has_subklass() && !ik->is_final()) {
4785     if (_interfaces.eq(ik)) {
4786       Compile* C = Compile::current();
4787       Dependencies* deps = C->dependencies();
4788       deps->assert_leaf_type(ik);
4789       xk = true;
4790     }
4791   }
4792   return TypeInstKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, klass(), _interfaces, Offset(0), flat_array());
4793 }
4794 
4795 template <class T1, class T2> bool TypePtr::is_meet_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_xk, bool other_xk) {
4796   static_assert(std::is_base_of<T2, T1>::value, "");
4797 
4798   if (!this_one->is_instance_type(other)) {
4799     return false;
4800   }
4801 
4802   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces.empty()) {
4803     return true;
4804   }
4805 
4806   return this_one->klass()->is_subtype_of(other->klass()) &&
4807          (!this_xk || this_one->_interfaces.contains(other->_interfaces));
4808 }
4809 
4810 
4811 bool TypeInstPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const {
4812   return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk);

4817   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces.empty()) {
4818     return true;
4819   }
4820 
4821   if (this_one->is_instance_type(other)) {
4822     return other->klass() == ciEnv::current()->Object_klass() && this_one->_interfaces.contains(other->_interfaces);
4823   }
4824 
4825   int dummy;
4826   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
4827   if (this_top_or_bottom) {
4828     return false;
4829   }
4830 
4831   const T1* other_ary = this_one->is_array_type(other);
4832   const TypePtr* other_elem = other_ary->elem()->make_ptr();
4833   const TypePtr* this_elem = this_one->elem()->make_ptr();
4834   if (other_elem != nullptr && this_elem != nullptr) {
4835     return this_one->is_reference_type(this_elem)->is_meet_subtype_of_helper(this_one->is_reference_type(other_elem), this_xk, other_xk);
4836   }

4837   if (other_elem == nullptr && this_elem == nullptr) {
4838     return this_one->_klass->is_subtype_of(other->_klass);
4839   }
4840 
4841   return false;
4842 }
4843 
4844 bool TypeAryPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const {
4845   return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk);
4846 }
4847 
4848 bool TypeInstKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const {
4849   return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk);
4850 }
4851 
4852 bool TypeAryKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const {
4853   return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk);
4854 }
4855 
4856 //=============================================================================
4857 // Convenience common pre-built types.
4858 const TypeAryPtr *TypeAryPtr::RANGE;
4859 const TypeAryPtr *TypeAryPtr::OOPS;
4860 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
4861 const TypeAryPtr *TypeAryPtr::BYTES;
4862 const TypeAryPtr *TypeAryPtr::SHORTS;
4863 const TypeAryPtr *TypeAryPtr::CHARS;
4864 const TypeAryPtr *TypeAryPtr::INTS;
4865 const TypeAryPtr *TypeAryPtr::LONGS;
4866 const TypeAryPtr *TypeAryPtr::FLOATS;
4867 const TypeAryPtr *TypeAryPtr::DOUBLES;
4868 const TypeAryPtr *TypeAryPtr::INLINES;
4869 
4870 //------------------------------make-------------------------------------------
4871 const TypeAryPtr* TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, Offset offset, Offset field_offset,
4872                                    int instance_id, const TypePtr* speculative, int inline_depth) {
4873   assert(!(k == nullptr && ary->_elem->isa_int()),
4874          "integral arrays must be pre-equipped with a class");
4875   if (!xk)  xk = ary->ary_must_be_exact();
4876   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4877   if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() &&
4878       k->as_obj_array_klass()->base_element_klass()->is_interface()) {
4879     k = nullptr;
4880   }
4881   if (k != nullptr && k->is_flat_array_klass() && !ary->_flat) {
4882     k = nullptr;
4883   }
4884   return (TypeAryPtr*)(new TypeAryPtr(ptr, nullptr, ary, k, xk, offset, field_offset, instance_id, false, speculative, inline_depth))->hashcons();
4885 }
4886 
4887 //------------------------------make-------------------------------------------
4888 const TypeAryPtr* TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, Offset offset, Offset field_offset,
4889                                    int instance_id, const TypePtr* speculative, int inline_depth,
4890                                    bool is_autobox_cache) {
4891   assert(!(k == nullptr && ary->_elem->isa_int()),
4892          "integral arrays must be pre-equipped with a class");
4893   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
4894   if (!xk)  xk = (o != nullptr) || ary->ary_must_be_exact();
4895   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4896   if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() &&
4897       k->as_obj_array_klass()->base_element_klass()->is_interface()) {
4898     k = nullptr;
4899   }
4900   if (k != nullptr && k->is_flat_array_klass() && !ary->_flat) {
4901     k = nullptr;
4902   }
4903   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, field_offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
4904 }
4905 
4906 //------------------------------cast_to_ptr_type-------------------------------
4907 const TypeAryPtr* TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
4908   if( ptr == _ptr ) return this;
4909   return make(ptr, ptr == Constant ? const_oop() : nullptr, _ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4910 }
4911 
4912 
4913 //-----------------------------cast_to_exactness-------------------------------
4914 const TypeAryPtr* TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
4915   if( klass_is_exact == _klass_is_exact ) return this;
4916   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
4917   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4918 }
4919 
4920 //-----------------------------cast_to_instance_id----------------------------
4921 const TypeAryPtr* TypeAryPtr::cast_to_instance_id(int instance_id) const {
4922   if( instance_id == _instance_id ) return this;
4923   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, _field_offset, instance_id, _speculative, _inline_depth, _is_autobox_cache);
4924 }
4925 
4926 
4927 //-----------------------------max_array_length-------------------------------
4928 // A wrapper around arrayOopDesc::max_array_length(etype) with some input normalization.
4929 jint TypeAryPtr::max_array_length(BasicType etype) {
4930   if (!is_java_primitive(etype) && !::is_reference_type(etype)) {
4931     if (etype == T_NARROWOOP) {
4932       etype = T_OBJECT;
4933     } else if (etype == T_ILLEGAL) { // bottom[]
4934       etype = T_BYTE; // will produce conservatively high value
4935     } else {
4936       fatal("not an element type: %s", type2name(etype));
4937     }
4938   }
4939   return arrayOopDesc::max_array_length(etype);
4940 }
4941 
4942 //-----------------------------narrow_size_type-------------------------------
4943 // Narrow the given size type to the index range for the given array base type.

4959   if (hi > max_hi) {
4960     hi = max_hi;
4961     if (size->is_con()) {
4962       lo = hi;
4963     }
4964     chg = true;
4965   }
4966   // Negative length arrays will produce weird intermediate dead fast-path code
4967   if (lo > hi)
4968     return TypeInt::ZERO;
4969   if (!chg)
4970     return size;
4971   return TypeInt::make(lo, hi, Type::WidenMin);
4972 }
4973 
4974 //-------------------------------cast_to_size----------------------------------
4975 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
4976   assert(new_size != nullptr, "");
4977   new_size = narrow_size_type(new_size);
4978   if (new_size == size())  return this;
4979   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable(), is_flat(), is_not_flat(), is_not_null_free());
4980   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4981 }
4982 
4983 //-------------------------------cast_to_not_flat------------------------------
4984 const TypeAryPtr* TypeAryPtr::cast_to_not_flat(bool not_flat) const {
4985   if (not_flat == is_not_flat()) {
4986     return this;
4987   }
4988   assert(!not_flat || !is_flat(), "inconsistency");
4989   const TypeAry* new_ary = TypeAry::make(elem(), size(), is_stable(), is_flat(), not_flat, is_not_null_free());
4990   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4991 }
4992 
4993 //-------------------------------cast_to_not_null_free-------------------------
4994 const TypeAryPtr* TypeAryPtr::cast_to_not_null_free(bool not_null_free) const {
4995   if (not_null_free == is_not_null_free()) {
4996     return this;
4997   }
4998   assert(!not_null_free || !is_flat(), "inconsistency");
4999   const TypeAry* new_ary = TypeAry::make(elem(), size(), is_stable(), is_flat(), /* not_flat= */ not_null_free ? true : is_not_flat(), not_null_free);
5000   const TypeAryPtr* res = make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset,
5001                                _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5002   if (res->speculative() == res->remove_speculative()) {
5003     return res->remove_speculative();
5004   }
5005   return res;
5006 }
5007 
5008 //---------------------------------update_properties---------------------------
5009 const TypeAryPtr* TypeAryPtr::update_properties(const TypeAryPtr* from) const {
5010   if ((from->is_flat()          && is_not_flat()) ||
5011       (from->is_not_flat()      && is_flat()) ||
5012       (from->is_null_free()     && is_not_null_free()) ||
5013       (from->is_not_null_free() && is_null_free())) {
5014     return nullptr; // Inconsistent properties
5015   } else if (from->is_not_null_free()) {
5016     return cast_to_not_null_free(); // Implies not flat
5017   } else if (from->is_not_flat()) {
5018     return cast_to_not_flat();
5019   }
5020   return this;
5021 }
5022 
5023 jint TypeAryPtr::flat_layout_helper() const {
5024   return klass()->as_flat_array_klass()->layout_helper();
5025 }
5026 
5027 int TypeAryPtr::flat_elem_size() const {
5028   return klass()->as_flat_array_klass()->element_byte_size();
5029 }
5030 
5031 int TypeAryPtr::flat_log_elem_size() const {
5032   return klass()->as_flat_array_klass()->log2_element_size();
5033 }
5034 
5035 //------------------------------cast_to_stable---------------------------------
5036 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
5037   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
5038     return this;
5039 
5040   const Type* elem = this->elem();
5041   const TypePtr* elem_ptr = elem->make_ptr();
5042 
5043   if (stable_dimension > 1 && elem_ptr != nullptr && elem_ptr->isa_aryptr()) {
5044     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
5045     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
5046   }
5047 
5048   const TypeAry* new_ary = TypeAry::make(elem, size(), stable, is_flat(), is_not_flat(), is_not_null_free());
5049 
5050   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5051 }
5052 
5053 //-----------------------------stable_dimension--------------------------------
5054 int TypeAryPtr::stable_dimension() const {
5055   if (!is_stable())  return 0;
5056   int dim = 1;
5057   const TypePtr* elem_ptr = elem()->make_ptr();
5058   if (elem_ptr != nullptr && elem_ptr->isa_aryptr())
5059     dim += elem_ptr->is_aryptr()->stable_dimension();
5060   return dim;
5061 }
5062 
5063 //----------------------cast_to_autobox_cache-----------------------------------
5064 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache() const {
5065   if (is_autobox_cache())  return this;
5066   const TypeOopPtr* etype = elem()->make_oopptr();
5067   if (etype == nullptr)  return this;
5068   // The pointers in the autobox arrays are always non-null.
5069   etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
5070   const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable(), is_flat(), is_not_flat(), is_not_null_free());
5071   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, /*is_autobox_cache=*/true);
5072 }
5073 
5074 //------------------------------eq---------------------------------------------
5075 // Structural equality check for Type representations
5076 bool TypeAryPtr::eq( const Type *t ) const {
5077   const TypeAryPtr *p = t->is_aryptr();
5078   return
5079     _ary == p->_ary &&  // Check array
5080     TypeOopPtr::eq(p) &&// Check sub-parts
5081     _field_offset == p->_field_offset;
5082 }
5083 
5084 //------------------------------hash-------------------------------------------
5085 // Type-specific hashing function.
5086 uint TypeAryPtr::hash(void) const {
5087   return (uint)(uintptr_t)_ary + TypeOopPtr::hash() + _field_offset.get();
5088 }
5089 
5090 bool TypeAryPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
5091   return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
5092 }
5093 
5094 bool TypeAryPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const {
5095   return TypePtr::is_same_java_type_as_helper_for_array(this, other);
5096 }
5097 
5098 bool TypeAryPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
5099   return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
5100 }
5101 //------------------------------meet-------------------------------------------
5102 // Compute the MEET of two types.  It returns a new Type object.
5103 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
5104   // Perform a fast test for common case; meeting the same types together.
5105   if( this == t ) return this;  // Meeting same type-rep?
5106   // Current "this->_base" is Pointer
5107   switch (t->base()) {          // switch on original type

5111   case Long:
5112   case FloatTop:
5113   case FloatCon:
5114   case FloatBot:
5115   case DoubleTop:
5116   case DoubleCon:
5117   case DoubleBot:
5118   case NarrowOop:
5119   case NarrowKlass:
5120   case Bottom:                  // Ye Olde Default
5121     return Type::BOTTOM;
5122   case Top:
5123     return this;
5124 
5125   default:                      // All else is a mistake
5126     typerr(t);
5127 
5128   case OopPtr: {                // Meeting to OopPtrs
5129     // Found a OopPtr type vs self-AryPtr type
5130     const TypeOopPtr *tp = t->is_oopptr();
5131     Offset offset = meet_offset(tp->offset());
5132     PTR ptr = meet_ptr(tp->ptr());
5133     int depth = meet_inline_depth(tp->inline_depth());
5134     const TypePtr* speculative = xmeet_speculative(tp);
5135     switch (tp->ptr()) {
5136     case TopPTR:
5137     case AnyNull: {
5138       int instance_id = meet_instance_id(InstanceTop);
5139       return make(ptr, (ptr == Constant ? const_oop() : nullptr),
5140                   _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
5141     }
5142     case BotPTR:
5143     case NotNull: {
5144       int instance_id = meet_instance_id(tp->instance_id());
5145       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
5146     }
5147     default: ShouldNotReachHere();
5148     }
5149   }
5150 
5151   case AnyPtr: {                // Meeting two AnyPtrs
5152     // Found an AnyPtr type vs self-AryPtr type
5153     const TypePtr *tp = t->is_ptr();
5154     Offset offset = meet_offset(tp->offset());
5155     PTR ptr = meet_ptr(tp->ptr());
5156     const TypePtr* speculative = xmeet_speculative(tp);
5157     int depth = meet_inline_depth(tp->inline_depth());
5158     switch (tp->ptr()) {
5159     case TopPTR:
5160       return this;
5161     case BotPTR:
5162     case NotNull:
5163       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
5164     case Null:
5165       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
5166       // else fall through to AnyNull
5167     case AnyNull: {
5168       int instance_id = meet_instance_id(InstanceTop);
5169       return make(ptr, (ptr == Constant ? const_oop() : nullptr),
5170                   _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
5171     }
5172     default: ShouldNotReachHere();
5173     }
5174   }
5175 
5176   case MetadataPtr:
5177   case KlassPtr:
5178   case InstKlassPtr:
5179   case AryKlassPtr:
5180   case RawPtr: return TypePtr::BOTTOM;
5181 
5182   case AryPtr: {                // Meeting 2 references?
5183     const TypeAryPtr *tap = t->is_aryptr();
5184     Offset off = meet_offset(tap->offset());
5185     Offset field_off = meet_field_offset(tap->field_offset());
5186     const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
5187     PTR ptr = meet_ptr(tap->ptr());
5188     int instance_id = meet_instance_id(tap->instance_id());
5189     const TypePtr* speculative = xmeet_speculative(tap);
5190     int depth = meet_inline_depth(tap->inline_depth());
5191 
5192     ciKlass* res_klass = nullptr;
5193     bool res_xk = false;
5194     bool res_flat = false;
5195     bool res_not_flat = false;
5196     bool res_not_null_free = false;
5197     const Type* elem = tary->_elem;
5198     if (meet_aryptr(ptr, elem, this, tap, res_klass, res_xk, res_flat, res_not_flat, res_not_null_free) == NOT_SUBTYPE) {
5199       instance_id = InstanceBot;
5200     } else if (this->is_flat() != tap->is_flat()) {
5201       // Meeting flat inline type array with non-flat array. Adjust (field) offset accordingly.
5202       if (tary->_flat) {
5203         // Result is in a flat representation
5204         off = Offset(is_flat() ? offset() : tap->offset());
5205         field_off = is_flat() ? field_offset() : tap->field_offset();
5206       } else if (below_centerline(ptr)) {
5207         // Result is in a non-flat representation
5208         off = Offset(flat_offset()).meet(Offset(tap->flat_offset()));
5209         field_off = Offset::bottom;
5210       } else if (flat_offset() == tap->flat_offset()) {
5211         off = Offset(!is_flat() ? offset() : tap->offset());
5212         field_off = !is_flat() ? field_offset() : tap->field_offset();
5213       }
5214     }
5215 
5216     ciObject* o = nullptr;             // Assume not constant when done
5217     ciObject* this_oop = const_oop();
5218     ciObject* tap_oop = tap->const_oop();
5219     if (ptr == Constant) {
5220       if (this_oop != nullptr && tap_oop != nullptr &&
5221           this_oop->equals(tap_oop)) {
5222         o = tap_oop;
5223       } else if (above_centerline(_ptr)) {
5224         o = tap_oop;
5225       } else if (above_centerline(tap->_ptr)) {
5226         o = this_oop;
5227       } else {
5228         ptr = NotNull;
5229       }
5230     }
5231     return make(ptr, o, TypeAry::make(elem, tary->_size, tary->_stable, res_flat, res_not_flat, res_not_null_free), res_klass, res_xk, off, field_off, instance_id, speculative, depth);
5232   }
5233 
5234   // All arrays inherit from Object class
5235   case InstPtr: {
5236     const TypeInstPtr *tp = t->is_instptr();
5237     Offset offset = meet_offset(tp->offset());
5238     PTR ptr = meet_ptr(tp->ptr());
5239     int instance_id = meet_instance_id(tp->instance_id());
5240     const TypePtr* speculative = xmeet_speculative(tp);
5241     int depth = meet_inline_depth(tp->inline_depth());
5242     InterfaceSet interfaces = meet_interfaces(tp);
5243     InterfaceSet tp_interfaces = tp->_interfaces;
5244     InterfaceSet this_interfaces = _interfaces;
5245 
5246     switch (ptr) {
5247     case TopPTR:
5248     case AnyNull:                // Fall 'down' to dual of object klass
5249       // For instances when a subclass meets a superclass we fall
5250       // below the centerline when the superclass is exact. We need to
5251       // do the same here.
5252       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces.contains(tp_interfaces) && !tp->klass_is_exact() && !tp->flat_array()) {
5253         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
5254       } else {
5255         // cannot subclass, so the meet has to fall badly below the centerline
5256         ptr = NotNull;
5257         instance_id = InstanceBot;
5258         interfaces = this_interfaces.intersection_with(tp_interfaces);
5259         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr, offset, false, instance_id, speculative, depth);
5260       }
5261     case Constant:
5262     case NotNull:
5263     case BotPTR:                // Fall down to object klass
5264       // LCA is object_klass, but if we subclass from the top we can do better
5265       if (above_centerline(tp->ptr())) {
5266         // If 'tp'  is above the centerline and it is Object class
5267         // then we can subclass in the Java class hierarchy.
5268         // For instances when a subclass meets a superclass we fall
5269         // below the centerline when the superclass is exact. We need
5270         // to do the same here.
5271         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces.contains(tp_interfaces) && !tp->klass_is_exact() && !tp->flat_array()) {
5272           // that is, my array type is a subtype of 'tp' klass
5273           return make(ptr, (ptr == Constant ? const_oop() : nullptr),
5274                       _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
5275         }
5276       }
5277       // The other case cannot happen, since t cannot be a subtype of an array.
5278       // The meet falls down to Object class below centerline.
5279       if (ptr == Constant) {
5280          ptr = NotNull;
5281       }
5282       if (instance_id > 0) {
5283         instance_id = InstanceBot;
5284       }
5285       interfaces = this_interfaces.intersection_with(tp_interfaces);
5286       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr, offset, false, instance_id, speculative, depth);
5287     default: typerr(t);
5288     }
5289   }
5290   }
5291   return this;                  // Lint noise
5292 }
5293 
5294 
5295 template<class T> TypePtr::MeetResult TypePtr::meet_aryptr(PTR& ptr, const Type*& elem, const T* this_ary, const T* other_ary,
5296                                                            ciKlass*& res_klass, bool& res_xk, bool &res_flat, bool& res_not_flat, bool& res_not_null_free) {
5297   int dummy;
5298   bool this_top_or_bottom = (this_ary->base_element_type(dummy) == Type::TOP || this_ary->base_element_type(dummy) == Type::BOTTOM);
5299   bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
5300   ciKlass* this_klass = this_ary->klass();
5301   ciKlass* other_klass = other_ary->klass();
5302   bool this_xk = this_ary->klass_is_exact();
5303   bool other_xk = other_ary->klass_is_exact();
5304   PTR this_ptr = this_ary->ptr();
5305   PTR other_ptr = other_ary->ptr();
5306   bool this_flat = this_ary->is_flat();
5307   bool this_not_flat = this_ary->is_not_flat();
5308   bool other_flat = other_ary->is_flat();
5309   bool other_not_flat = other_ary->is_not_flat();
5310   bool this_not_null_free = this_ary->is_not_null_free();
5311   bool other_not_null_free = other_ary->is_not_null_free();
5312   res_klass = nullptr;
5313   MeetResult result = SUBTYPE;
5314   res_flat = this_flat && other_flat;
5315   res_not_flat = this_not_flat && other_not_flat;
5316   res_not_null_free = this_not_null_free && other_not_null_free;
5317 
5318   if (elem->isa_int()) {
5319     // Integral array element types have irrelevant lattice relations.
5320     // It is the klass that determines array layout, not the element type.
5321       if (this_top_or_bottom) {
5322         res_klass = other_klass;
5323       } else if (other_top_or_bottom || other_klass == this_klass) {
5324       res_klass = this_klass;
5325     } else {
5326       // Something like byte[int+] meets char[int+].
5327       // This must fall to bottom, not (int[-128..65535])[int+].
5328       // instance_id = InstanceBot;
5329       elem = Type::BOTTOM;
5330       result = NOT_SUBTYPE;
5331       if (above_centerline(ptr) || ptr == Constant) {
5332         ptr = NotNull;
5333         res_xk = false;
5334         return NOT_SUBTYPE;
5335       }
5336     }
5337   } else {// Non integral arrays.
5338     // Must fall to bottom if exact klasses in upper lattice
5339     // are not equal or super klass is exact.
5340     if ((above_centerline(ptr) || ptr == Constant) && !this_ary->is_same_java_type_as(other_ary) &&
5341         // meet with top[] and bottom[] are processed further down:
5342         !this_top_or_bottom && !other_top_or_bottom &&
5343         // both are exact and not equal:

5345          // 'tap'  is exact and super or unrelated:
5346          (other_xk && !other_ary->is_meet_subtype_of(this_ary)) ||
5347          // 'this' is exact and super or unrelated:
5348          (this_xk && !this_ary->is_meet_subtype_of(other_ary)))) {
5349       if (above_centerline(ptr) || (elem->make_ptr() && above_centerline(elem->make_ptr()->_ptr))) {
5350         elem = Type::BOTTOM;
5351       }
5352       ptr = NotNull;
5353       res_xk = false;
5354       return NOT_SUBTYPE;
5355     }
5356   }
5357 
5358   res_xk = false;
5359   switch (other_ptr) {
5360     case AnyNull:
5361     case TopPTR:
5362       // Compute new klass on demand, do not use tap->_klass
5363       if (below_centerline(this_ptr)) {
5364         res_xk = this_xk;
5365         if (this_ary->is_flat()) {
5366           elem = this_ary->elem();
5367         }
5368       } else {
5369         res_xk = (other_xk || this_xk);
5370       }
5371       break;
5372     case Constant: {
5373       if (this_ptr == Constant) {
5374         res_xk = true;
5375       } else if (above_centerline(this_ptr)) {
5376         res_xk = true;
5377       } else {
5378         // Only precise for identical arrays
5379         res_xk = this_xk && (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom));
5380         // Even if MyValue is exact, [LMyValue is not exact due to [QMyValue <: [LMyValue.
5381         if (res_xk && !res_not_null_free) {
5382           res_xk = false;
5383         }
5384       }
5385       break;
5386     }
5387     case NotNull:
5388     case BotPTR:
5389       // Compute new klass on demand, do not use tap->_klass
5390       if (above_centerline(this_ptr)) {
5391         res_xk = other_xk;
5392         if (other_ary->is_flat()) {
5393           elem = other_ary->elem();
5394         }
5395       } else {
5396         res_xk = (other_xk && this_xk) &&
5397                  (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom)); // Only precise for identical arrays
5398         // Even if MyValue is exact, [LMyValue is not exact due to [QMyValue <: [LMyValue.
5399         if (res_xk && !res_not_null_free) {
5400           res_xk = false;
5401         }
5402       }
5403       break;
5404     default:  {
5405       ShouldNotReachHere();
5406       return result;
5407     }
5408   }
5409   return result;
5410 }
5411 
5412 
5413 //------------------------------xdual------------------------------------------
5414 // Dual: compute field-by-field dual
5415 const Type *TypeAryPtr::xdual() const {
5416   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(), _klass, _klass_is_exact, dual_offset(), dual_field_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
5417 }
5418 
5419 Type::Offset TypeAryPtr::meet_field_offset(const Type::Offset offset) const {
5420   return _field_offset.meet(offset);
5421 }
5422 
5423 //------------------------------dual_offset------------------------------------
5424 Type::Offset TypeAryPtr::dual_field_offset() const {
5425   return _field_offset.dual();
5426 }
5427 
5428 //------------------------------dump2------------------------------------------
5429 #ifndef PRODUCT
5430 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5431   _ary->dump2(d,depth,st);
5432   _interfaces.dump(st);
5433 
5434   switch( _ptr ) {
5435   case Constant:
5436     const_oop()->print(st);
5437     break;
5438   case BotPTR:
5439     if (!WizardMode && !Verbose) {
5440       if( _klass_is_exact ) st->print(":exact");
5441       break;
5442     }
5443   case TopPTR:
5444   case AnyNull:
5445   case NotNull:
5446     st->print(":%s", ptr_msg[_ptr]);
5447     if( _klass_is_exact ) st->print(":exact");
5448     break;
5449   default:
5450     break;
5451   }
5452 
5453   if (is_flat()) {
5454     st->print(":flat");
5455     st->print("(");
5456     _field_offset.dump2(st);
5457     st->print(")");
5458   }
5459   if (is_null_free()) {
5460     st->print(":null_free");
5461   }
5462   if (offset() != 0) {
5463     int header_size = objArrayOopDesc::header_size() * wordSize;
5464     if( _offset == Offset::top )       st->print("+undefined");
5465     else if( _offset == Offset::bottom )  st->print("+any");
5466     else if( offset() < header_size ) st->print("+%d", offset());
5467     else {
5468       BasicType basic_elem_type = elem()->basic_type();
5469       if (basic_elem_type == T_ILLEGAL) {
5470         st->print("+any");
5471       } else {
5472         int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5473         int elem_size = type2aelembytes(basic_elem_type);
5474         st->print("[%d]", (offset() - array_base)/elem_size);
5475       }
5476     }
5477   }
5478   st->print(" *");
5479   if (_instance_id == InstanceTop)
5480     st->print(",iid=top");
5481   else if (_instance_id != InstanceBot)
5482     st->print(",iid=%d",_instance_id);
5483 
5484   dump_inline_depth(st);
5485   dump_speculative(st);
5486 }
5487 #endif
5488 
5489 bool TypeAryPtr::empty(void) const {
5490   if (_ary->empty())       return true;
5491   // FIXME: Does this belong here? Or in the meet code itself?
5492   if (is_flat() && is_not_flat()) {
5493     return true;
5494   }
5495   return TypeOopPtr::empty();
5496 }
5497 
5498 //------------------------------add_offset-------------------------------------
5499 const TypePtr* TypeAryPtr::add_offset(intptr_t offset) const {
5500   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _field_offset, _instance_id, add_offset_speculative(offset), _inline_depth, _is_autobox_cache);
5501 }
5502 
5503 const TypeAryPtr* TypeAryPtr::with_offset(intptr_t offset) const {
5504   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, Offset(offset), _field_offset, _instance_id, with_offset_speculative(offset), _inline_depth, _is_autobox_cache);
5505 }
5506 
5507 const TypeAryPtr* TypeAryPtr::with_ary(const TypeAry* ary) const {
5508   return make(_ptr, _const_oop, ary, _klass, _klass_is_exact, _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5509 }
5510 
5511 const TypeAryPtr* TypeAryPtr::remove_speculative() const {
5512   if (_speculative == nullptr) {
5513     return this;
5514   }
5515   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
5516   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, _instance_id, nullptr, _inline_depth, _is_autobox_cache);
5517 }
5518 
5519 const Type* TypeAryPtr::cleanup_speculative() const {
5520   if (speculative() == nullptr) {
5521     return this;
5522   }
5523   // Keep speculative part if it contains information about flat-/nullability
5524   const TypeAryPtr* spec_aryptr = speculative()->isa_aryptr();
5525   if (spec_aryptr != nullptr && !above_centerline(spec_aryptr->ptr()) &&
5526       (spec_aryptr->is_not_flat() || spec_aryptr->is_not_null_free())) {
5527     return this;
5528   }
5529   return TypeOopPtr::cleanup_speculative();
5530 }
5531 
5532 const TypePtr* TypeAryPtr::with_inline_depth(int depth) const {
5533   if (!UseInlineDepthForSpeculativeTypes) {
5534     return this;
5535   }
5536   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, _instance_id, _speculative, depth, _is_autobox_cache);
5537 }
5538 
5539 const TypeAryPtr* TypeAryPtr::with_field_offset(int offset) const {
5540   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, Offset(offset), _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5541 }
5542 
5543 const TypePtr* TypeAryPtr::add_field_offset_and_offset(intptr_t offset) const {
5544   int adj = 0;
5545   if (is_flat() && offset != Type::OffsetBot && offset != Type::OffsetTop) {
5546     if (_offset.get() != OffsetBot && _offset.get() != OffsetTop) {
5547       adj = _offset.get();
5548       offset += _offset.get();
5549     }
5550     uint header = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
5551     if (_field_offset.get() != OffsetBot && _field_offset.get() != OffsetTop) {
5552       offset += _field_offset.get();
5553       if (_offset.get() == OffsetBot || _offset.get() == OffsetTop) {
5554         offset += header;
5555       }
5556     }
5557     if (elem()->make_oopptr()->is_inlinetypeptr() && (offset >= (intptr_t)header || offset < 0)) {
5558       // Try to get the field of the inline type array element we are pointing to
5559       ciInlineKlass* vk = elem()->inline_klass();
5560       int shift = flat_log_elem_size();
5561       int mask = (1 << shift) - 1;
5562       intptr_t field_offset = ((offset - header) & mask);
5563       ciField* field = vk->get_field_by_offset(field_offset + vk->first_field_offset(), false);
5564       if (field != nullptr) {
5565         return with_field_offset(field_offset)->add_offset(offset - field_offset - adj);
5566       }
5567     }
5568   }
5569   return add_offset(offset - adj);
5570 }
5571 
5572 // Return offset incremented by field_offset for flat inline type arrays
5573 int TypeAryPtr::flat_offset() const {
5574   int offset = _offset.get();
5575   if (offset != Type::OffsetBot && offset != Type::OffsetTop &&
5576       _field_offset != Offset::bottom && _field_offset != Offset::top) {
5577     offset += _field_offset.get();
5578   }
5579   return offset;
5580 }
5581 
5582 const TypePtr* TypeAryPtr::with_instance_id(int instance_id) const {
5583   assert(is_known_instance(), "should be known");
5584   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, instance_id, _speculative, _inline_depth);
5585 }
5586 
5587 //=============================================================================
5588 
5589 
5590 //------------------------------hash-------------------------------------------
5591 // Type-specific hashing function.
5592 uint TypeNarrowPtr::hash(void) const {
5593   return _ptrtype->hash() + 7;
5594 }
5595 
5596 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
5597   return _ptrtype->singleton();
5598 }
5599 
5600 bool TypeNarrowPtr::empty(void) const {
5601   return _ptrtype->empty();
5602 }
5603 
5604 intptr_t TypeNarrowPtr::get_con() const {
5605   return _ptrtype->get_con();
5606 }
5607 
5608 bool TypeNarrowPtr::eq( const Type *t ) const {
5609   const TypeNarrowPtr* tc = isa_same_narrowptr(t);

5660 
5661   case Int:                     // Mixing ints & oops happens when javac
5662   case Long:                    // reuses local variables
5663   case FloatTop:
5664   case FloatCon:
5665   case FloatBot:
5666   case DoubleTop:
5667   case DoubleCon:
5668   case DoubleBot:
5669   case AnyPtr:
5670   case RawPtr:
5671   case OopPtr:
5672   case InstPtr:
5673   case AryPtr:
5674   case MetadataPtr:
5675   case KlassPtr:
5676   case InstKlassPtr:
5677   case AryKlassPtr:
5678   case NarrowOop:
5679   case NarrowKlass:

5680   case Bottom:                  // Ye Olde Default
5681     return Type::BOTTOM;
5682   case Top:
5683     return this;
5684 
5685   default:                      // All else is a mistake
5686     typerr(t);
5687 
5688   } // End of switch
5689 
5690   return this;
5691 }
5692 
5693 #ifndef PRODUCT
5694 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5695   _ptrtype->dump2(d, depth, st);
5696 }
5697 #endif
5698 
5699 const TypeNarrowOop *TypeNarrowOop::BOTTOM;

5743     return (one == two) && TypePtr::eq(t);
5744   } else {
5745     return one->equals(two) && TypePtr::eq(t);
5746   }
5747 }
5748 
5749 //------------------------------hash-------------------------------------------
5750 // Type-specific hashing function.
5751 uint TypeMetadataPtr::hash(void) const {
5752   return
5753     (metadata() ? metadata()->hash() : 0) +
5754     TypePtr::hash();
5755 }
5756 
5757 //------------------------------singleton--------------------------------------
5758 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5759 // constants
5760 bool TypeMetadataPtr::singleton(void) const {
5761   // detune optimizer to not generate constant metadata + constant offset as a constant!
5762   // TopPTR, Null, AnyNull, Constant are all singletons
5763   return (offset() == 0) && !below_centerline(_ptr);
5764 }
5765 
5766 //------------------------------add_offset-------------------------------------
5767 const TypePtr* TypeMetadataPtr::add_offset( intptr_t offset ) const {
5768   return make( _ptr, _metadata, xadd_offset(offset));
5769 }
5770 
5771 //-----------------------------filter------------------------------------------
5772 // Do not allow interface-vs.-noninterface joins to collapse to top.
5773 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
5774   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
5775   if (ft == nullptr || ft->empty())
5776     return Type::TOP;           // Canonical empty value
5777   return ft;
5778 }
5779 
5780  //------------------------------get_con----------------------------------------
5781 intptr_t TypeMetadataPtr::get_con() const {
5782   assert( _ptr == Null || _ptr == Constant, "" );
5783   assert(offset() >= 0, "");
5784 
5785   if (offset() != 0) {
5786     // After being ported to the compiler interface, the compiler no longer
5787     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5788     // to a handle at compile time.  This handle is embedded in the generated
5789     // code and dereferenced at the time the nmethod is made.  Until that time,
5790     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5791     // have access to the addresses!).  This does not seem to currently happen,
5792     // but this assertion here is to help prevent its occurrence.
5793     tty->print_cr("Found oop constant with non-zero offset");
5794     ShouldNotReachHere();
5795   }
5796 
5797   return (intptr_t)metadata()->constant_encoding();
5798 }
5799 
5800 //------------------------------cast_to_ptr_type-------------------------------
5801 const TypeMetadataPtr* TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
5802   if( ptr == _ptr ) return this;
5803   return make(ptr, metadata(), _offset);
5804 }
5805 

5816   case Long:                    // reuses local variables
5817   case FloatTop:
5818   case FloatCon:
5819   case FloatBot:
5820   case DoubleTop:
5821   case DoubleCon:
5822   case DoubleBot:
5823   case NarrowOop:
5824   case NarrowKlass:
5825   case Bottom:                  // Ye Olde Default
5826     return Type::BOTTOM;
5827   case Top:
5828     return this;
5829 
5830   default:                      // All else is a mistake
5831     typerr(t);
5832 
5833   case AnyPtr: {
5834     // Found an AnyPtr type vs self-OopPtr type
5835     const TypePtr *tp = t->is_ptr();
5836     Offset offset = meet_offset(tp->offset());
5837     PTR ptr = meet_ptr(tp->ptr());
5838     switch (tp->ptr()) {
5839     case Null:
5840       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5841       // else fall through:
5842     case TopPTR:
5843     case AnyNull: {
5844       return make(ptr, _metadata, offset);
5845     }
5846     case BotPTR:
5847     case NotNull:
5848       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5849     default: typerr(t);
5850     }
5851   }
5852 
5853   case RawPtr:
5854   case KlassPtr:
5855   case InstKlassPtr:
5856   case AryKlassPtr:
5857   case OopPtr:
5858   case InstPtr:
5859   case AryPtr:
5860     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
5861 
5862   case MetadataPtr: {
5863     const TypeMetadataPtr *tp = t->is_metadataptr();
5864     Offset offset = meet_offset(tp->offset());
5865     PTR tptr = tp->ptr();
5866     PTR ptr = meet_ptr(tptr);
5867     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
5868     if (tptr == TopPTR || _ptr == TopPTR ||
5869         metadata()->equals(tp->metadata())) {
5870       return make(ptr, md, offset);
5871     }
5872     // metadata is different
5873     if( ptr == Constant ) {  // Cannot be equal constants, so...
5874       if( tptr == Constant && _ptr != Constant)  return t;
5875       if( _ptr == Constant && tptr != Constant)  return this;
5876       ptr = NotNull;            // Fall down in lattice
5877     }
5878     return make(ptr, nullptr, offset);
5879     break;
5880   }
5881   } // End of switch
5882   return this;                  // Return the double constant
5883 }
5884 
5885 
5886 //------------------------------xdual------------------------------------------
5887 // Dual of a pure metadata pointer.
5888 const Type *TypeMetadataPtr::xdual() const {
5889   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
5890 }
5891 
5892 //------------------------------dump2------------------------------------------
5893 #ifndef PRODUCT
5894 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5895   st->print("metadataptr:%s", ptr_msg[_ptr]);
5896   if( metadata() ) st->print(INTPTR_FORMAT, p2i(metadata()));
5897   switch (offset()) {
5898   case OffsetTop: st->print("+top"); break;
5899   case OffsetBot: st->print("+any"); break;
5900   case         0: break;
5901   default:        st->print("+%d",offset()); break;
5902   }
5903 }
5904 #endif
5905 
5906 
5907 //=============================================================================
5908 // Convenience common pre-built type.
5909 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
5910 
5911 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, Offset offset):
5912   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
5913 }
5914 
5915 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
5916   return make(Constant, m, Offset(0));
5917 }
5918 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
5919   return make(Constant, m, Offset(0));
5920 }
5921 
5922 //------------------------------make-------------------------------------------
5923 // Create a meta data constant
5924 const TypeMetadataPtr* TypeMetadataPtr::make(PTR ptr, ciMetadata* m, Offset offset) {
5925   assert(m == nullptr || !m->is_klass(), "wrong type");
5926   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
5927 }
5928 
5929 
5930 const TypeKlassPtr* TypeAryPtr::as_klass_type(bool try_for_exact) const {
5931   const Type* elem = _ary->_elem;
5932   bool xk = klass_is_exact();
5933   if (elem->make_oopptr() != nullptr) {
5934     elem = elem->make_oopptr()->as_klass_type(try_for_exact);
5935     if (elem->is_klassptr()->klass_is_exact() &&
5936         // Even if MyValue is exact, [LMyValue is not exact due to [QMyValue <: [LMyValue.
5937         (is_null_free() || is_flat() || !_ary->_elem->make_oopptr()->is_inlinetypeptr())) {
5938       xk = true;
5939     }
5940   }
5941   return TypeAryKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, elem, klass(), Offset(0), is_not_flat(), is_not_null_free(), is_null_free());
5942 }
5943 
5944 const TypeKlassPtr* TypeKlassPtr::make(ciKlass* klass, InterfaceHandling interface_handling) {
5945   if (klass->is_instance_klass()) {
5946     return TypeInstKlassPtr::make(klass, interface_handling);
5947   }
5948   return TypeAryKlassPtr::make(klass, interface_handling);
5949 }
5950 
5951 const TypeKlassPtr* TypeKlassPtr::make(PTR ptr, ciKlass* klass, Offset offset, InterfaceHandling interface_handling) {
5952   if (klass->is_instance_klass()) {
5953     const InterfaceSet interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
5954     return TypeInstKlassPtr::make(ptr, klass, interfaces, offset);
5955   }
5956   return TypeAryKlassPtr::make(ptr, klass, offset, interface_handling);
5957 }
5958 
5959 TypeKlassPtr::TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, const InterfaceSet& interfaces, Offset offset)


5960   : TypePtr(t, ptr, offset), _klass(klass), _interfaces(interfaces) {
5961   assert(klass == nullptr || !klass->is_loaded() || (klass->is_instance_klass() && !klass->is_interface()) ||
5962          klass->is_type_array_klass() || klass->is_flat_array_klass() || !klass->as_obj_array_klass()->base_element_klass()->is_interface(), "no interface here");
5963 }
5964 
5965 // Is there a single ciKlass* that can represent that type?
5966 ciKlass* TypeKlassPtr::exact_klass_helper() const {
5967   assert(_klass->is_instance_klass() && !_klass->is_interface(), "No interface");
5968   if (_interfaces.empty()) {
5969     return _klass;
5970   }
5971   if (_klass != ciEnv::current()->Object_klass()) {
5972     if (_interfaces.eq(_klass->as_instance_klass())) {
5973       return _klass;
5974     }
5975     return nullptr;
5976   }
5977   return _interfaces.exact_klass();
5978 }
5979 
5980 //------------------------------eq---------------------------------------------
5981 // Structural equality check for Type representations
5982 bool TypeKlassPtr::eq(const Type *t) const {
5983   const TypeKlassPtr *p = t->is_klassptr();
5984   return
5985     _interfaces.eq(p->_interfaces) &&
5986     TypePtr::eq(p);
5987 }
5988 
5989 //------------------------------hash-------------------------------------------
5990 // Type-specific hashing function.
5991 uint TypeKlassPtr::hash(void) const {
5992   return TypePtr::hash() + _interfaces.hash();
5993 }
5994 
5995 //------------------------------singleton--------------------------------------
5996 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5997 // constants
5998 bool TypeKlassPtr::singleton(void) const {
5999   // detune optimizer to not generate constant klass + constant offset as a constant!
6000   // TopPTR, Null, AnyNull, Constant are all singletons
6001   return (offset() == 0) && !below_centerline(_ptr);
6002 }
6003 
6004 // Do not allow interface-vs.-noninterface joins to collapse to top.
6005 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
6006   // logic here mirrors the one from TypeOopPtr::filter. See comments
6007   // there.
6008   const Type* ft = join_helper(kills, include_speculative);
6009   const TypeKlassPtr* ftkp = ft->isa_instklassptr();
6010   const TypeKlassPtr* ktkp = kills->isa_instklassptr();
6011 
6012   if (ft->empty()) {
6013     return Type::TOP;           // Canonical empty value
6014   }
6015 
6016   return ft;
6017 }
6018 
6019 TypePtr::InterfaceSet TypeKlassPtr::meet_interfaces(const TypeKlassPtr* other) const {
6020   if (above_centerline(_ptr) && above_centerline(other->_ptr)) {
6021     return _interfaces.union_with(other->_interfaces);
6022   } else if (above_centerline(_ptr) && !above_centerline(other->_ptr)) {
6023     return other->_interfaces;
6024   } else if (above_centerline(other->_ptr) && !above_centerline(_ptr)) {
6025     return _interfaces;
6026   }
6027   return _interfaces.intersection_with(other->_interfaces);
6028 }
6029 
6030 //------------------------------get_con----------------------------------------
6031 intptr_t TypeKlassPtr::get_con() const {
6032   assert( _ptr == Null || _ptr == Constant, "" );
6033   assert( offset() >= 0, "" );
6034 
6035   if (offset() != 0) {
6036     // After being ported to the compiler interface, the compiler no longer
6037     // directly manipulates the addresses of oops.  Rather, it only has a pointer
6038     // to a handle at compile time.  This handle is embedded in the generated
6039     // code and dereferenced at the time the nmethod is made.  Until that time,
6040     // it is not reasonable to do arithmetic with the addresses of oops (we don't
6041     // have access to the addresses!).  This does not seem to currently happen,
6042     // but this assertion here is to help prevent its occurrence.
6043     tty->print_cr("Found oop constant with non-zero offset");
6044     ShouldNotReachHere();
6045   }
6046 
6047   ciKlass* k = exact_klass();
6048 
6049   return (intptr_t)k->constant_encoding();
6050 }
6051 
6052 //------------------------------dump2------------------------------------------
6053 // Dump Klass Type
6054 #ifndef PRODUCT
6055 void TypeKlassPtr::dump2(Dict & d, uint depth, outputStream *st) const {

6059   case NotNull:
6060     {
6061       const char *name = klass()->name()->as_utf8();
6062       if (name) {
6063         st->print("%s: " INTPTR_FORMAT, name, p2i(klass()));
6064       } else {
6065         ShouldNotReachHere();
6066       }
6067       _interfaces.dump(st);
6068     }
6069   case BotPTR:
6070     if (!WizardMode && !Verbose && _ptr != Constant) break;
6071   case TopPTR:
6072   case AnyNull:
6073     st->print(":%s", ptr_msg[_ptr]);
6074     if (_ptr == Constant) st->print(":exact");
6075     break;
6076   default:
6077     break;
6078   }
6079   if (Verbose) {
6080     if (isa_instklassptr() && is_instklassptr()->flat_array()) st->print(":flat array");



6081   }
6082   _offset.dump2(st);
6083   st->print(" *");
6084 }
6085 #endif
6086 
6087 //=============================================================================
6088 // Convenience common pre-built types.
6089 
6090 // Not-null object klass or below
6091 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT;
6092 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT_OR_NULL;
6093 
6094 bool TypeInstKlassPtr::eq(const Type *t) const {
6095   const TypeKlassPtr *p = t->is_klassptr();
6096   return
6097     klass()->equals(p->klass()) &&
6098     flat_array() == p->flat_array() &&
6099     TypeKlassPtr::eq(p);
6100 }
6101 
6102 uint TypeInstKlassPtr::hash(void) const {
6103   return klass()->hash() + TypeKlassPtr::hash() + (uint)flat_array();
6104 }
6105 
6106 const TypeInstKlassPtr *TypeInstKlassPtr::make(PTR ptr, ciKlass* k, const InterfaceSet& interfaces, Offset offset, bool flat_array) {
6107   flat_array = flat_array || k->flat_array();
6108 
6109   TypeInstKlassPtr *r =
6110     (TypeInstKlassPtr*)(new TypeInstKlassPtr(ptr, k, interfaces, offset, flat_array))->hashcons();
6111 
6112   return r;
6113 }
6114 
6115 //------------------------------add_offset-------------------------------------
6116 // Access internals of klass object
6117 const TypePtr *TypeInstKlassPtr::add_offset( intptr_t offset ) const {
6118   return make(_ptr, klass(), _interfaces, xadd_offset(offset), flat_array());
6119 }
6120 
6121 const TypeInstKlassPtr* TypeInstKlassPtr::with_offset(intptr_t offset) const {
6122   return make(_ptr, klass(), _interfaces, Offset(offset), flat_array());
6123 }
6124 
6125 //------------------------------cast_to_ptr_type-------------------------------
6126 const TypeInstKlassPtr* TypeInstKlassPtr::cast_to_ptr_type(PTR ptr) const {
6127   assert(_base == InstKlassPtr, "subclass must override cast_to_ptr_type");
6128   if( ptr == _ptr ) return this;
6129   return make(ptr, _klass, _interfaces, _offset, flat_array());
6130 }
6131 
6132 
6133 bool TypeInstKlassPtr::must_be_exact() const {
6134   if (!_klass->is_loaded())  return false;
6135   ciInstanceKlass* ik = _klass->as_instance_klass();
6136   if (ik->is_final())  return true;  // cannot clear xk
6137   return false;
6138 }
6139 
6140 //-----------------------------cast_to_exactness-------------------------------
6141 const TypeKlassPtr* TypeInstKlassPtr::cast_to_exactness(bool klass_is_exact) const {
6142   if (klass_is_exact == (_ptr == Constant)) return this;
6143   if (must_be_exact()) return this;
6144   ciKlass* k = klass();
6145   return make(klass_is_exact ? Constant : NotNull, k, _interfaces, _offset, flat_array());
6146 }
6147 
6148 
6149 //-----------------------------as_instance_type--------------------------------
6150 // Corresponding type for an instance of the given class.
6151 // It will be NotNull, and exact if and only if the klass type is exact.
6152 const TypeOopPtr* TypeInstKlassPtr::as_instance_type(bool klass_change) const {
6153   ciKlass* k = klass();
6154   bool xk = klass_is_exact();
6155   Compile* C = Compile::current();
6156   Dependencies* deps = C->dependencies();
6157   assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
6158   // Element is an instance
6159   bool klass_is_exact = false;
6160   TypePtr::InterfaceSet interfaces = _interfaces;
6161   if (k->is_loaded()) {
6162     // Try to set klass_is_exact.
6163     ciInstanceKlass* ik = k->as_instance_klass();
6164     klass_is_exact = ik->is_final();
6165     if (!klass_is_exact && klass_change
6166         && deps != nullptr && UseUniqueSubclasses) {
6167       ciInstanceKlass* sub = ik->unique_concrete_subklass();
6168       if (sub != nullptr) {
6169         if (_interfaces.eq(sub)) {
6170           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
6171           k = ik = sub;
6172           xk = sub->is_final();
6173         }
6174       }
6175     }
6176   }
6177   return TypeInstPtr::make(TypePtr::BotPTR, k, interfaces, xk, nullptr, Offset(0), flat_array() && !klass()->is_inlinetype());
6178 }
6179 
6180 //------------------------------xmeet------------------------------------------
6181 // Compute the MEET of two types, return a new Type object.
6182 const Type    *TypeInstKlassPtr::xmeet( const Type *t ) const {
6183   // Perform a fast test for common case; meeting the same types together.
6184   if( this == t ) return this;  // Meeting same type-rep?
6185 
6186   // Current "this->_base" is Pointer
6187   switch (t->base()) {          // switch on original type
6188 
6189   case Int:                     // Mixing ints & oops happens when javac
6190   case Long:                    // reuses local variables
6191   case FloatTop:
6192   case FloatCon:
6193   case FloatBot:
6194   case DoubleTop:
6195   case DoubleCon:
6196   case DoubleBot:
6197   case NarrowOop:
6198   case NarrowKlass:
6199   case Bottom:                  // Ye Olde Default
6200     return Type::BOTTOM;
6201   case Top:
6202     return this;
6203 
6204   default:                      // All else is a mistake
6205     typerr(t);
6206 
6207   case AnyPtr: {                // Meeting to AnyPtrs
6208     // Found an AnyPtr type vs self-KlassPtr type
6209     const TypePtr *tp = t->is_ptr();
6210     Offset offset = meet_offset(tp->offset());
6211     PTR ptr = meet_ptr(tp->ptr());
6212     switch (tp->ptr()) {
6213     case TopPTR:
6214       return this;
6215     case Null:
6216       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6217     case AnyNull:
6218       return make(ptr, klass(), _interfaces, offset, flat_array());
6219     case BotPTR:
6220     case NotNull:
6221       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6222     default: typerr(t);
6223     }
6224   }
6225 
6226   case RawPtr:
6227   case MetadataPtr:
6228   case OopPtr:
6229   case AryPtr:                  // Meet with AryPtr
6230   case InstPtr:                 // Meet with InstPtr
6231       return TypePtr::BOTTOM;
6232 
6233   //
6234   //             A-top         }
6235   //           /   |   \       }  Tops
6236   //       B-top A-any C-top   }
6237   //          | /  |  \ |      }  Any-nulls
6238   //       B-any   |   C-any   }
6239   //          |    |    |
6240   //       B-con A-con C-con   } constants; not comparable across classes
6241   //          |    |    |
6242   //       B-not   |   C-not   }
6243   //          | \  |  / |      }  not-nulls
6244   //       B-bot A-not C-bot   }
6245   //           \   |   /       }  Bottoms
6246   //             A-bot         }
6247   //
6248 
6249   case InstKlassPtr: {  // Meet two KlassPtr types
6250     const TypeInstKlassPtr *tkls = t->is_instklassptr();
6251     Offset  off     = meet_offset(tkls->offset());
6252     PTR  ptr     = meet_ptr(tkls->ptr());
6253     InterfaceSet interfaces = meet_interfaces(tkls);
6254 
6255     ciKlass* res_klass = nullptr;
6256     bool res_xk = false;
6257     bool res_flat_array = false;
6258     switch(meet_instptr(ptr, interfaces, this, tkls, res_klass, res_xk, res_flat_array)) {
6259       case UNLOADED:
6260         ShouldNotReachHere();
6261       case SUBTYPE:
6262       case NOT_SUBTYPE:
6263       case LCA:
6264       case QUICK: {
6265         assert(res_xk == (ptr == Constant), "");
6266         const Type* res = make(ptr, res_klass, interfaces, off, res_flat_array);
6267         return res;
6268       }
6269       default:
6270         ShouldNotReachHere();
6271     }
6272   } // End of case KlassPtr
6273   case AryKlassPtr: {                // All arrays inherit from Object class
6274     const TypeAryKlassPtr *tp = t->is_aryklassptr();
6275     Offset offset = meet_offset(tp->offset());
6276     PTR ptr = meet_ptr(tp->ptr());
6277     InterfaceSet interfaces = meet_interfaces(tp);
6278     InterfaceSet tp_interfaces = tp->_interfaces;
6279     InterfaceSet this_interfaces = _interfaces;
6280 
6281     switch (ptr) {
6282     case TopPTR:
6283     case AnyNull:                // Fall 'down' to dual of object klass
6284       // For instances when a subclass meets a superclass we fall
6285       // below the centerline when the superclass is exact. We need to
6286       // do the same here.
6287       if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces.contains(this_interfaces) && !klass_is_exact()) {
6288         return TypeAryKlassPtr::make(ptr, tp->elem(), tp->klass(), offset, tp->is_not_flat(), tp->is_not_null_free(), tp->is_null_free());
6289       } else {
6290         // cannot subclass, so the meet has to fall badly below the centerline
6291         ptr = NotNull;
6292         interfaces = _interfaces.intersection_with(tp->_interfaces);
6293         return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset, false);
6294       }
6295     case Constant:
6296     case NotNull:
6297     case BotPTR:                // Fall down to object klass
6298       // LCA is object_klass, but if we subclass from the top we can do better
6299       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
6300         // If 'this' (InstPtr) is above the centerline and it is Object class
6301         // then we can subclass in the Java class hierarchy.
6302         // For instances when a subclass meets a superclass we fall
6303         // below the centerline when the superclass is exact. We need
6304         // to do the same here.
6305         if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces.contains(this_interfaces) && !klass_is_exact()) {
6306           // that is, tp's array type is a subtype of my klass
6307           return TypeAryKlassPtr::make(ptr, tp->elem(), tp->klass(), offset, tp->is_not_flat(), tp->is_not_null_free(), tp->is_null_free());

6308         }
6309       }
6310       // The other case cannot happen, since I cannot be a subtype of an array.
6311       // The meet falls down to Object class below centerline.
6312       if( ptr == Constant )
6313          ptr = NotNull;
6314       interfaces = this_interfaces.intersection_with(tp_interfaces);
6315       return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset, false);
6316     default: typerr(t);
6317     }
6318   }
6319 
6320   } // End of switch
6321   return this;                  // Return the double constant
6322 }
6323 
6324 //------------------------------xdual------------------------------------------
6325 // Dual: compute field-by-field dual
6326 const Type    *TypeInstKlassPtr::xdual() const {
6327   return new TypeInstKlassPtr(dual_ptr(), klass(), _interfaces, dual_offset(), flat_array());
6328 }
6329 
6330 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
6331   static_assert(std::is_base_of<T2, T1>::value, "");
6332   if (!this_one->is_loaded() || !other->is_loaded()) {
6333     return false;
6334   }
6335   if (!this_one->is_instance_type(other)) {
6336     return false;
6337   }
6338 
6339   if (!other_exact) {
6340     return false;
6341   }
6342 
6343   if (other->klass()->equals(ciEnv::current()->Object_klass()) && other->_interfaces.empty()) {
6344     return true;
6345   }
6346 
6347   return this_one->_klass->is_subtype_of(other->_klass) && this_one->_interfaces.contains(other->_interfaces);

6408   TypePtr::InterfaceSet interfaces = _interfaces;
6409   if (k->is_loaded()) {
6410     ciInstanceKlass* ik = k->as_instance_klass();
6411     bool klass_is_exact = ik->is_final();
6412     if (!klass_is_exact &&
6413         deps != nullptr) {
6414       ciInstanceKlass* sub = ik->unique_concrete_subklass();
6415       if (sub != nullptr) {
6416         if (_interfaces.eq(sub)) {
6417           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
6418           k = ik = sub;
6419           klass_is_exact = sub->is_final();
6420           return TypeKlassPtr::make(klass_is_exact ? Constant : _ptr, k, _offset);
6421         }
6422       }
6423     }
6424   }
6425   return this;
6426 }
6427 
6428 bool TypeInstKlassPtr::can_be_inline_array() const {
6429   return _klass->equals(ciEnv::current()->Object_klass()) && TypeAryKlassPtr::_array_interfaces->contains(_interfaces);
6430 }
6431 
6432 bool TypeAryKlassPtr::can_be_inline_array() const {
6433   return _elem->isa_instklassptr() && _elem->is_instklassptr()->_klass->can_be_inline_klass();
6434 }
6435 
6436 bool TypeInstPtr::can_be_inline_array() const {
6437   return _klass->equals(ciEnv::current()->Object_klass()) && TypeAryPtr::_array_interfaces->contains(_interfaces);
6438 }
6439 
6440 bool TypeAryPtr::can_be_inline_array() const {
6441   return elem()->make_ptr() && elem()->make_ptr()->isa_instptr() && elem()->make_ptr()->is_instptr()->_klass->can_be_inline_klass();
6442 }
6443 
6444 const TypeAryKlassPtr *TypeAryKlassPtr::make(PTR ptr, const Type* elem, ciKlass* k, Offset offset, bool not_flat, bool not_null_free, bool null_free) {
6445   return (TypeAryKlassPtr*)(new TypeAryKlassPtr(ptr, elem, k, offset, not_flat, not_null_free, null_free))->hashcons();
6446 }
6447 
6448 const TypeAryKlassPtr* TypeAryKlassPtr::make(PTR ptr, ciKlass* k, Offset offset, InterfaceHandling interface_handling, bool not_flat, bool not_null_free, bool null_free) {
6449   if (k->is_obj_array_klass()) {
6450     // Element is an object array. Recursively call ourself.
6451     ciKlass* eklass = k->as_obj_array_klass()->element_klass();
6452     const TypeKlassPtr* etype = TypeKlassPtr::make(eklass, interface_handling)->cast_to_exactness(false);
6453     // Even if MyValue is exact, [LMyValue is not exact due to [QMyValue <: [LMyValue.
6454     if (etype->klass_is_exact() && etype->isa_instklassptr() && etype->is_instklassptr()->klass()->is_inlinetype() && !null_free) {
6455       etype = TypeInstKlassPtr::make(NotNull, etype->is_instklassptr()->klass(), Offset(etype->is_instklassptr()->offset()));
6456     }
6457     return TypeAryKlassPtr::make(ptr, etype, nullptr, offset, not_flat, not_null_free, null_free);
6458   } else if (k->is_type_array_klass()) {
6459     // Element is an typeArray
6460     const Type* etype = get_const_basic_type(k->as_type_array_klass()->element_type());
6461     return TypeAryKlassPtr::make(ptr, etype, k, offset, not_flat, not_null_free, null_free);
6462   } else if (k->is_flat_array_klass()) {
6463     ciKlass* eklass = k->as_flat_array_klass()->element_klass();
6464     const TypeKlassPtr* etype = TypeKlassPtr::make(eklass);
6465     return TypeAryKlassPtr::make(ptr, etype, k, offset, not_flat, not_null_free, null_free);
6466   } else {
6467     ShouldNotReachHere();
6468     return nullptr;
6469   }
6470 }
6471 
6472 const TypeAryKlassPtr* TypeAryKlassPtr::make(PTR ptr, ciKlass* k, Offset offset, InterfaceHandling interface_handling) {
6473   bool null_free = k->as_array_klass()->is_elem_null_free();
6474   bool not_null_free = (ptr == Constant) ? !null_free : !k->is_flat_array_klass() && (k->is_type_array_klass() || !k->as_array_klass()->element_klass()->can_be_inline_klass(false));
6475 
6476   bool not_flat = !UseFlatArray || not_null_free || (k->as_array_klass()->element_klass() != nullptr &&
6477                                                      k->as_array_klass()->element_klass()->is_inlinetype() &&
6478                                                      !k->as_array_klass()->element_klass()->flat_array());
6479 
6480   return TypeAryKlassPtr::make(ptr, k, offset, interface_handling, not_flat, not_null_free, null_free);
6481 }
6482 
6483 const TypeAryKlassPtr* TypeAryKlassPtr::make(ciKlass* klass, InterfaceHandling interface_handling) {
6484   return TypeAryKlassPtr::make(Constant, klass, Offset(0), interface_handling);
6485 }
6486 
6487 //------------------------------eq---------------------------------------------
6488 // Structural equality check for Type representations
6489 bool TypeAryKlassPtr::eq(const Type *t) const {
6490   const TypeAryKlassPtr *p = t->is_aryklassptr();
6491   return
6492     _elem == p->_elem &&  // Check array
6493     _not_flat == p->_not_flat &&
6494     _not_null_free == p->_not_null_free &&
6495     _null_free == p->_null_free &&
6496     TypeKlassPtr::eq(p);  // Check sub-parts
6497 }
6498 
6499 //------------------------------hash-------------------------------------------
6500 // Type-specific hashing function.
6501 uint TypeAryKlassPtr::hash(void) const {
6502   return (uint)(uintptr_t)_elem + TypeKlassPtr::hash() + (uint)(_not_flat ? 43 : 0) +
6503       (uint)(_not_null_free ? 44 : 0) + (uint)(_null_free ? 45 : 0);
6504 }
6505 
6506 //----------------------compute_klass------------------------------------------
6507 // Compute the defining klass for this class
6508 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
6509   // Compute _klass based on element type.
6510   ciKlass* k_ary = nullptr;
6511   const TypeInstPtr *tinst;
6512   const TypeAryPtr *tary;
6513   const Type* el = elem();
6514   if (el->isa_narrowoop()) {
6515     el = el->make_ptr();
6516   }
6517 
6518   // Get element klass
6519   if (is_flat() && el->is_inlinetypeptr()) {
6520     // Klass is required by TypeAryPtr::flat_layout_helper() and others
6521     if (el->inline_klass() != nullptr) {
6522       k_ary = ciArrayKlass::make(el->inline_klass(), /* null_free */ true);
6523     }
6524   } else if ((tinst = el->isa_instptr()) != nullptr) {
6525     // Leave k_ary at nullptr.
6526   } else if ((tary = el->isa_aryptr()) != nullptr) {
6527     // Leave k_ary at nullptr.
6528   } else if ((el->base() == Type::Top) ||
6529              (el->base() == Type::Bottom)) {
6530     // element type of Bottom occurs from meet of basic type
6531     // and object; Top occurs when doing join on Bottom.
6532     // Leave k_ary at null.
6533   } else {
6534     // Cannot compute array klass directly from basic type,
6535     // since subtypes of TypeInt all have basic type T_INT.
6536 #ifdef ASSERT
6537     if (verify && el->isa_int()) {
6538       // Check simple cases when verifying klass.
6539       BasicType bt = T_ILLEGAL;
6540       if (el == TypeInt::BYTE) {
6541         bt = T_BYTE;
6542       } else if (el == TypeInt::SHORT) {
6543         bt = T_SHORT;
6544       } else if (el == TypeInt::CHAR) {
6545         bt = T_CHAR;
6546       } else if (el == TypeInt::INT) {
6547         bt = T_INT;

6576     // type TypeAryPtr::OOPS.  This Type is shared between all
6577     // active compilations.  However, the ciKlass which represents
6578     // this Type is *not* shared between compilations, so caching
6579     // this value would result in fetching a dangling pointer.
6580     //
6581     // Recomputing the underlying ciKlass for each request is
6582     // a bit less efficient than caching, but calls to
6583     // TypeAryPtr::OOPS->klass() are not common enough to matter.
6584     ((TypeAryPtr*)this)->_klass = k_ary;
6585   }
6586   return k_ary;
6587 }
6588 
6589 // Is there a single ciKlass* that can represent that type?
6590 ciKlass* TypeAryPtr::exact_klass_helper() const {
6591   if (_ary->_elem->make_ptr() && _ary->_elem->make_ptr()->isa_oopptr()) {
6592     ciKlass* k = _ary->_elem->make_ptr()->is_oopptr()->exact_klass_helper();
6593     if (k == nullptr) {
6594       return nullptr;
6595     }
6596     k = ciArrayKlass::make(k, is_null_free());
6597     return k;
6598   }
6599 
6600   return klass();
6601 }
6602 
6603 const Type* TypeAryPtr::base_element_type(int& dims) const {
6604   const Type* elem = this->elem();
6605   dims = 1;
6606   while (elem->make_ptr() && elem->make_ptr()->isa_aryptr()) {
6607     elem = elem->make_ptr()->is_aryptr()->elem();
6608     dims++;
6609   }
6610   return elem;
6611 }
6612 
6613 //------------------------------add_offset-------------------------------------
6614 // Access internals of klass object
6615 const TypePtr* TypeAryKlassPtr::add_offset(intptr_t offset) const {
6616   return make(_ptr, elem(), klass(), xadd_offset(offset), is_not_flat(), is_not_null_free(), _null_free);
6617 }
6618 
6619 const TypeAryKlassPtr* TypeAryKlassPtr::with_offset(intptr_t offset) const {
6620   return make(_ptr, elem(), klass(), Offset(offset), is_not_flat(), is_not_null_free(), _null_free);
6621 }
6622 
6623 //------------------------------cast_to_ptr_type-------------------------------
6624 const TypeAryKlassPtr* TypeAryKlassPtr::cast_to_ptr_type(PTR ptr) const {
6625   assert(_base == AryKlassPtr, "subclass must override cast_to_ptr_type");
6626   if (ptr == _ptr) return this;
6627   return make(ptr, elem(), _klass, _offset, is_not_flat(), is_not_null_free(), _null_free);
6628 }
6629 
6630 bool TypeAryKlassPtr::must_be_exact() const {
6631   if (_elem == Type::BOTTOM) return false;
6632   if (_elem == Type::TOP   ) return false;
6633   const TypeKlassPtr*  tk = _elem->isa_klassptr();
6634   if (!tk)             return true;   // a primitive type, like int
6635   // Even if MyValue is exact, [LMyValue is not exact due to [QMyValue <: [LMyValue.
6636   if (tk->isa_instklassptr() && tk->klass()->is_inlinetype() && !is_null_free()) {
6637     return false;
6638   }
6639   return tk->must_be_exact();
6640 }
6641 
6642 
6643 //-----------------------------cast_to_exactness-------------------------------
6644 const TypeKlassPtr *TypeAryKlassPtr::cast_to_exactness(bool klass_is_exact) const {
6645   if (must_be_exact() && !klass_is_exact) return this;  // cannot clear xk
6646   if (klass_is_exact == this->klass_is_exact()) {
6647     return this;
6648   }
6649   ciKlass* k = _klass;
6650   const Type* elem = this->elem();
6651   if (elem->isa_klassptr() && !klass_is_exact) {
6652     elem = elem->is_klassptr()->cast_to_exactness(klass_is_exact);
6653   }
6654   bool not_flat = is_not_flat();
6655   bool not_null_free = is_not_null_free();
6656   if (_elem->isa_klassptr()) {
6657     if (klass_is_exact || _elem->isa_aryklassptr()) {
6658       assert(!is_null_free() && !is_flat(), "null-free (or flat) inline type arrays should always be exact");
6659       // An array can't be null-free (or flat) if the klass is exact
6660       not_null_free = true;
6661       not_flat = true;
6662     } else {
6663       // Klass is not exact (anymore), re-compute null-free/flat properties
6664       const TypeOopPtr* exact_etype = TypeOopPtr::make_from_klass_unique(_elem->is_instklassptr()->instance_klass());
6665       not_null_free = !exact_etype->can_be_inline_type();
6666       not_flat = !UseFlatArray || not_null_free || (exact_etype->is_inlinetypeptr() && !exact_etype->inline_klass()->flat_array());
6667     }
6668   }
6669   return make(klass_is_exact ? Constant : NotNull, elem, k, _offset, not_flat, not_null_free, _null_free);
6670 }
6671 
6672 
6673 //-----------------------------as_instance_type--------------------------------
6674 // Corresponding type for an instance of the given class.
6675 // It will be NotNull, and exact if and only if the klass type is exact.
6676 const TypeOopPtr* TypeAryKlassPtr::as_instance_type(bool klass_change) const {
6677   ciKlass* k = klass();
6678   bool    xk = klass_is_exact();
6679   const Type* el = nullptr;
6680   if (elem()->isa_klassptr()) {
6681     el = elem()->is_klassptr()->as_instance_type(false)->cast_to_exactness(false);
6682     k = nullptr;
6683   } else {
6684     el = elem();
6685   }
6686   bool null_free = _null_free;
6687   if (null_free && el->isa_ptr()) {
6688     el = el->is_ptr()->join_speculative(TypePtr::NOTNULL);
6689   }
6690   return TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(el, TypeInt::POS, false, is_flat(), is_not_flat(), is_not_null_free()), k, xk, Offset(0));
6691 }
6692 
6693 
6694 //------------------------------xmeet------------------------------------------
6695 // Compute the MEET of two types, return a new Type object.
6696 const Type    *TypeAryKlassPtr::xmeet( const Type *t ) const {
6697   // Perform a fast test for common case; meeting the same types together.
6698   if( this == t ) return this;  // Meeting same type-rep?
6699 
6700   // Current "this->_base" is Pointer
6701   switch (t->base()) {          // switch on original type
6702 
6703   case Int:                     // Mixing ints & oops happens when javac
6704   case Long:                    // reuses local variables
6705   case FloatTop:
6706   case FloatCon:
6707   case FloatBot:
6708   case DoubleTop:
6709   case DoubleCon:
6710   case DoubleBot:
6711   case NarrowOop:
6712   case NarrowKlass:
6713   case Bottom:                  // Ye Olde Default
6714     return Type::BOTTOM;
6715   case Top:
6716     return this;
6717 
6718   default:                      // All else is a mistake
6719     typerr(t);
6720 
6721   case AnyPtr: {                // Meeting to AnyPtrs
6722     // Found an AnyPtr type vs self-KlassPtr type
6723     const TypePtr *tp = t->is_ptr();
6724     Offset offset = meet_offset(tp->offset());
6725     PTR ptr = meet_ptr(tp->ptr());
6726     switch (tp->ptr()) {
6727     case TopPTR:
6728       return this;
6729     case Null:
6730       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6731     case AnyNull:
6732       return make(ptr, _elem, klass(), offset, is_not_flat(), is_not_null_free(), is_null_free());
6733     case BotPTR:
6734     case NotNull:
6735       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6736     default: typerr(t);
6737     }
6738   }
6739 
6740   case RawPtr:
6741   case MetadataPtr:
6742   case OopPtr:
6743   case AryPtr:                  // Meet with AryPtr
6744   case InstPtr:                 // Meet with InstPtr
6745     return TypePtr::BOTTOM;
6746 
6747   //
6748   //             A-top         }
6749   //           /   |   \       }  Tops
6750   //       B-top A-any C-top   }
6751   //          | /  |  \ |      }  Any-nulls
6752   //       B-any   |   C-any   }
6753   //          |    |    |
6754   //       B-con A-con C-con   } constants; not comparable across classes
6755   //          |    |    |
6756   //       B-not   |   C-not   }
6757   //          | \  |  / |      }  not-nulls
6758   //       B-bot A-not C-bot   }
6759   //           \   |   /       }  Bottoms
6760   //             A-bot         }
6761   //
6762 
6763   case AryKlassPtr: {  // Meet two KlassPtr types
6764     const TypeAryKlassPtr *tap = t->is_aryklassptr();
6765     Offset off = meet_offset(tap->offset());
6766     const Type* elem = _elem->meet(tap->_elem);

6767     PTR ptr = meet_ptr(tap->ptr());
6768     ciKlass* res_klass = nullptr;
6769     bool res_xk = false;
6770     bool res_flat = false;
6771     bool res_not_flat = false;
6772     bool res_not_null_free = false;
6773     MeetResult res = meet_aryptr(ptr, elem, this, tap,
6774                                  res_klass, res_xk, res_flat, res_not_flat, res_not_null_free);
6775     assert(res_xk == (ptr == Constant), "");
6776     bool null_free = meet_null_free(tap->_null_free);
6777     if (res == NOT_SUBTYPE) {
6778       null_free = false;
6779     } else if (res == SUBTYPE) {
6780       if (above_centerline(tap->ptr()) && !above_centerline(this->ptr())) {
6781         null_free = _null_free;
6782       } else if (above_centerline(this->ptr()) && !above_centerline(tap->ptr())) {
6783         null_free = tap->_null_free;
6784       } else if (above_centerline(this->ptr()) && above_centerline(tap->ptr())) {
6785         null_free = _null_free || tap->_null_free;
6786       }
6787     }
6788     return make(ptr, elem, res_klass, off, res_not_flat, res_not_null_free, null_free);
6789   } // End of case KlassPtr
6790   case InstKlassPtr: {
6791     const TypeInstKlassPtr *tp = t->is_instklassptr();
6792     Offset offset = meet_offset(tp->offset());
6793     PTR ptr = meet_ptr(tp->ptr());
6794     InterfaceSet interfaces = meet_interfaces(tp);
6795     InterfaceSet tp_interfaces = tp->_interfaces;
6796     InterfaceSet this_interfaces = _interfaces;
6797 
6798     switch (ptr) {
6799     case TopPTR:
6800     case AnyNull:                // Fall 'down' to dual of object klass
6801       // For instances when a subclass meets a superclass we fall
6802       // below the centerline when the superclass is exact. We need to
6803       // do the same here.
6804       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces.intersection_with(tp_interfaces).eq(tp_interfaces) && !tp->klass_is_exact()) {
6805         return TypeAryKlassPtr::make(ptr, _elem, _klass, offset, is_not_flat(), is_not_null_free(), is_null_free());
6806       } else {
6807         // cannot subclass, so the meet has to fall badly below the centerline
6808         ptr = NotNull;
6809         interfaces = this_interfaces.intersection_with(tp->_interfaces);
6810         return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset, false);
6811       }
6812     case Constant:
6813     case NotNull:
6814     case BotPTR:                // Fall down to object klass
6815       // LCA is object_klass, but if we subclass from the top we can do better
6816       if (above_centerline(tp->ptr())) {
6817         // If 'tp'  is above the centerline and it is Object class
6818         // then we can subclass in the Java class hierarchy.
6819         // For instances when a subclass meets a superclass we fall
6820         // below the centerline when the superclass is exact. We need
6821         // to do the same here.
6822         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces.intersection_with(tp_interfaces).eq(tp_interfaces) && !tp->klass_is_exact()) {
6823           // that is, my array type is a subtype of 'tp' klass
6824           return make(ptr, _elem, _klass, offset, is_not_flat(), is_not_null_free(), is_null_free());
6825         }
6826       }
6827       // The other case cannot happen, since t cannot be a subtype of an array.
6828       // The meet falls down to Object class below centerline.
6829       if (ptr == Constant)
6830          ptr = NotNull;
6831       interfaces = this_interfaces.intersection_with(tp_interfaces);
6832       return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset, false);
6833     default: typerr(t);
6834     }
6835   }
6836 
6837   } // End of switch
6838   return this;                  // Return the double constant
6839 }
6840 
6841 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
6842   static_assert(std::is_base_of<T2, T1>::value, "");
6843 
6844   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces.empty() && other_exact) {
6845     return true;
6846   }
6847 
6848   int dummy;
6849   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
6850 
6851   if (!this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) {
6852     return false;
6853   }
6854 
6855   if (this_one->is_instance_type(other)) {
6856     return other->klass() == ciEnv::current()->Object_klass() && other->_interfaces.intersection_with(this_one->_interfaces).eq(other->_interfaces) && other_exact;
6857   }
6858 
6859   assert(this_one->is_array_type(other), "");
6860   const T1* other_ary = this_one->is_array_type(other);
6861   bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
6862   if (other_top_or_bottom) {
6863     return false;
6864   }
6865 
6866   const TypePtr* other_elem = other_ary->elem()->make_ptr();
6867   const TypePtr* this_elem = this_one->elem()->make_ptr();
6868   if (this_elem != nullptr && other_elem != nullptr) {
6869     if (other->is_null_free() && !this_one->is_null_free()) {
6870       return false; // [LMyValue is not a subtype of [QMyValue
6871     }
6872     return this_one->is_reference_type(this_elem)->is_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact);
6873   }
6874   if (this_elem == nullptr && other_elem == nullptr) {
6875     return this_one->_klass->is_subtype_of(other->_klass);
6876   }
6877   return false;
6878 }
6879 
6880 bool TypeAryKlassPtr::is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
6881   return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
6882 }
6883 
6884 template <class T1, class T2> bool TypePtr::is_same_java_type_as_helper_for_array(const T1* this_one, const T2* other) {
6885   static_assert(std::is_base_of<T2, T1>::value, "");
6886 
6887   int dummy;
6888   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
6889 
6890   if (!this_one->is_array_type(other) ||
6891       !this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) {

6939   }
6940 
6941   const TypePtr* this_elem = this_one->elem()->make_ptr();
6942   const TypePtr* other_elem = other_ary->elem()->make_ptr();
6943   if (other_elem != nullptr && this_elem != nullptr) {
6944     return this_one->is_reference_type(this_elem)->maybe_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact);
6945   }
6946   if (other_elem == nullptr && this_elem == nullptr) {
6947     return this_one->_klass->is_subtype_of(other->_klass);
6948   }
6949   return false;
6950 }
6951 
6952 bool TypeAryKlassPtr::maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
6953   return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
6954 }
6955 
6956 //------------------------------xdual------------------------------------------
6957 // Dual: compute field-by-field dual
6958 const Type    *TypeAryKlassPtr::xdual() const {
6959   return new TypeAryKlassPtr(dual_ptr(), elem()->dual(), klass(), dual_offset(), !is_not_flat(), !is_not_null_free(), dual_null_free());
6960 }
6961 
6962 // Is there a single ciKlass* that can represent that type?
6963 ciKlass* TypeAryKlassPtr::exact_klass_helper() const {
6964   if (elem()->isa_klassptr()) {
6965     ciKlass* k = elem()->is_klassptr()->exact_klass_helper();
6966     if (k == nullptr) {
6967       return nullptr;
6968     }
6969     k = ciArrayKlass::make(k, _null_free);
6970     return k;
6971   }
6972 
6973   return klass();
6974 }
6975 
6976 ciKlass* TypeAryKlassPtr::klass() const {
6977   if (_klass != nullptr) {
6978     return _klass;
6979   }
6980   ciKlass* k = nullptr;
6981   if (elem()->isa_klassptr()) {
6982     // leave null
6983   } else if ((elem()->base() == Type::Top) ||
6984              (elem()->base() == Type::Bottom)) {
6985   } else {
6986     k = ciTypeArrayKlass::make(elem()->basic_type());
6987     ((TypeAryKlassPtr*)this)->_klass = k;
6988   }
6989   return k;

6996   switch( _ptr ) {
6997   case Constant:
6998     st->print("precise ");
6999   case NotNull:
7000     {
7001       st->print("[");
7002       _elem->dump2(d, depth, st);
7003       _interfaces.dump(st);
7004       st->print(": ");
7005     }
7006   case BotPTR:
7007     if( !WizardMode && !Verbose && _ptr != Constant ) break;
7008   case TopPTR:
7009   case AnyNull:
7010     st->print(":%s", ptr_msg[_ptr]);
7011     if( _ptr == Constant ) st->print(":exact");
7012     break;
7013   default:
7014     break;
7015   }
7016   if (is_flat()) st->print(":flat");
7017   if (_null_free) st->print(":null free");
7018   if (Verbose) {
7019     if (_not_flat) st->print(":not flat");
7020     if (_not_null_free) st->print(":not null free");
7021   }
7022 
7023   _offset.dump2(st);
7024 
7025   st->print(" *");
7026 }
7027 #endif
7028 
7029 const Type* TypeAryKlassPtr::base_element_type(int& dims) const {
7030   const Type* elem = this->elem();
7031   dims = 1;
7032   while (elem->isa_aryklassptr()) {
7033     elem = elem->is_aryklassptr()->elem();
7034     dims++;
7035   }
7036   return elem;
7037 }
7038 
7039 //=============================================================================
7040 // Convenience common pre-built types.
7041 
7042 //------------------------------make-------------------------------------------
7043 const TypeFunc *TypeFunc::make(const TypeTuple *domain_sig, const TypeTuple* domain_cc,
7044                                const TypeTuple *range_sig, const TypeTuple *range_cc) {
7045   return (TypeFunc*)(new TypeFunc(domain_sig, domain_cc, range_sig, range_cc))->hashcons();
7046 }
7047 
7048 const TypeFunc *TypeFunc::make(const TypeTuple *domain, const TypeTuple *range) {
7049   return make(domain, domain, range, range);
7050 }
7051 
7052 //------------------------------osr_domain-----------------------------
7053 const TypeTuple* osr_domain() {
7054   const Type **fields = TypeTuple::fields(2);
7055   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM;  // address of osr buffer
7056   return TypeTuple::make(TypeFunc::Parms+1, fields);
7057 }
7058 
7059 //------------------------------make-------------------------------------------
7060 const TypeFunc* TypeFunc::make(ciMethod* method, bool is_osr_compilation) {
7061   Compile* C = Compile::current();
7062   const TypeFunc* tf = nullptr;
7063   if (!is_osr_compilation) {
7064     tf = C->last_tf(method); // check cache
7065     if (tf != nullptr)  return tf;  // The hit rate here is almost 50%.
7066   }
7067   // Inline types are not passed/returned by reference, instead each field of
7068   // the inline type is passed/returned as an argument. We maintain two views of
7069   // the argument/return list here: one based on the signature (with an inline
7070   // type argument/return as a single slot), one based on the actual calling
7071   // convention (with an inline type argument/return as a list of its fields).
7072   bool has_scalar_args = method->has_scalarized_args() && !is_osr_compilation;
7073   // Fall back to the non-scalarized calling convention when compiling a call via a mismatching method
7074   if (method != C->method() && method->get_Method()->mismatch()) {
7075     has_scalar_args = false;
7076   }
7077   const TypeTuple* domain_sig = is_osr_compilation ? osr_domain() : TypeTuple::make_domain(method, ignore_interfaces, false);
7078   const TypeTuple* domain_cc = has_scalar_args ? TypeTuple::make_domain(method, ignore_interfaces, true) : domain_sig;
7079   ciSignature* sig = method->signature();
7080   bool has_scalar_ret = sig->return_type()->is_inlinetype() && sig->return_type()->as_inline_klass()->can_be_returned_as_fields();
7081   const TypeTuple* range_sig = TypeTuple::make_range(sig, ignore_interfaces, false);
7082   const TypeTuple* range_cc = has_scalar_ret ? TypeTuple::make_range(sig, ignore_interfaces, true) : range_sig;
7083   tf = TypeFunc::make(domain_sig, domain_cc, range_sig, range_cc);
7084   if (!is_osr_compilation) {
7085     C->set_last_tf(method, tf);  // fill cache
7086   }



7087   return tf;
7088 }
7089 
7090 //------------------------------meet-------------------------------------------
7091 // Compute the MEET of two types.  It returns a new Type object.
7092 const Type *TypeFunc::xmeet( const Type *t ) const {
7093   // Perform a fast test for common case; meeting the same types together.
7094   if( this == t ) return this;  // Meeting same type-rep?
7095 
7096   // Current "this->_base" is Func
7097   switch (t->base()) {          // switch on original type
7098 
7099   case Bottom:                  // Ye Olde Default
7100     return t;
7101 
7102   default:                      // All else is a mistake
7103     typerr(t);
7104 
7105   case Top:
7106     break;
7107   }
7108   return this;                  // Return the double constant
7109 }
7110 
7111 //------------------------------xdual------------------------------------------
7112 // Dual: compute field-by-field dual
7113 const Type *TypeFunc::xdual() const {
7114   return this;
7115 }
7116 
7117 //------------------------------eq---------------------------------------------
7118 // Structural equality check for Type representations
7119 bool TypeFunc::eq( const Type *t ) const {
7120   const TypeFunc *a = (const TypeFunc*)t;
7121   return _domain_sig == a->_domain_sig &&
7122     _domain_cc == a->_domain_cc &&
7123     _range_sig == a->_range_sig &&
7124     _range_cc == a->_range_cc;
7125 }
7126 
7127 //------------------------------hash-------------------------------------------
7128 // Type-specific hashing function.
7129 uint TypeFunc::hash(void) const {
7130   return (uint)(intptr_t)_domain_sig + (uint)(intptr_t)_domain_cc + (uint)(intptr_t)_range_sig + (uint)(intptr_t)_range_cc;
7131 }
7132 
7133 //------------------------------dump2------------------------------------------
7134 // Dump Function Type
7135 #ifndef PRODUCT
7136 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
7137   if( _range_sig->cnt() <= Parms )
7138     st->print("void");
7139   else {
7140     uint i;
7141     for (i = Parms; i < _range_sig->cnt()-1; i++) {
7142       _range_sig->field_at(i)->dump2(d,depth,st);
7143       st->print("/");
7144     }
7145     _range_sig->field_at(i)->dump2(d,depth,st);
7146   }
7147   st->print(" ");
7148   st->print("( ");
7149   if( !depth || d[this] ) {     // Check for recursive dump
7150     st->print("...)");
7151     return;
7152   }
7153   d.Insert((void*)this,(void*)this);    // Stop recursion
7154   if (Parms < _domain_sig->cnt())
7155     _domain_sig->field_at(Parms)->dump2(d,depth-1,st);
7156   for (uint i = Parms+1; i < _domain_sig->cnt(); i++) {
7157     st->print(", ");
7158     _domain_sig->field_at(i)->dump2(d,depth-1,st);
7159   }
7160   st->print(" )");
7161 }
7162 #endif
7163 
7164 //------------------------------singleton--------------------------------------
7165 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
7166 // constants (Ldi nodes).  Singletons are integer, float or double constants
7167 // or a single symbol.
7168 bool TypeFunc::singleton(void) const {
7169   return false;                 // Never a singleton
7170 }
7171 
7172 bool TypeFunc::empty(void) const {
7173   return false;                 // Never empty
7174 }
7175 
7176 
7177 BasicType TypeFunc::return_type() const{
7178   if (range_sig()->cnt() == TypeFunc::Parms) {
7179     return T_VOID;
7180   }
7181   return range_sig()->field_at(TypeFunc::Parms)->basic_type();
7182 }
< prev index next >