< prev index next >

src/hotspot/share/opto/type.cpp

Print this page

   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 



  25 #include "ci/ciMethodData.hpp"

  26 #include "ci/ciTypeFlow.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "libadt/dict.hpp"
  32 #include "memory/oopFactory.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "oops/instanceKlass.hpp"
  35 #include "oops/instanceMirrorKlass.hpp"
  36 #include "oops/objArrayKlass.hpp"
  37 #include "oops/typeArrayKlass.hpp"
  38 #include "opto/arraycopynode.hpp"
  39 #include "opto/callnode.hpp"
  40 #include "opto/matcher.hpp"
  41 #include "opto/node.hpp"
  42 #include "opto/opcodes.hpp"
  43 #include "opto/rangeinference.hpp"
  44 #include "opto/runtime.hpp"
  45 #include "opto/type.hpp"

  46 #include "runtime/stubRoutines.hpp"
  47 #include "utilities/checkedCast.hpp"
  48 #include "utilities/debug.hpp"

  49 #include "utilities/ostream.hpp"
  50 #include "utilities/powerOfTwo.hpp"
  51 #include "utilities/stringUtils.hpp"
  52 
  53 // Portions of code courtesy of Clifford Click
  54 
  55 // Optimization - Graph Style
  56 
  57 // Dictionary of types shared among compilations.
  58 Dict* Type::_shared_type_dict = nullptr;













































  59 
  60 // Array which maps compiler types to Basic Types
  61 const Type::TypeInfo Type::_type_info[Type::lastype] = {
  62   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
  63   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
  64   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
  65   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
  66   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
  67   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
  68   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
  69   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
  70   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
  71   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
  72   { Bad,             T_ARRAY,      "interfaces:",   false, Node::NotAMachineReg, relocInfo::none          },  // Interfaces
  73 
  74 #if defined(PPC64)
  75   { Bad,             T_ILLEGAL,    "vectormask:",   false, Op_RegVectMask,       relocInfo::none          },  // VectorMask.
  76   { Bad,             T_ILLEGAL,    "vectora:",      false, Op_VecA,              relocInfo::none          },  // VectorA.
  77   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  78   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD

 217   case ciTypeFlow::StateVector::T_NULL:
 218     assert(type == ciTypeFlow::StateVector::null_type(), "");
 219     return TypePtr::NULL_PTR;
 220 
 221   case ciTypeFlow::StateVector::T_LONG2:
 222     // The ciTypeFlow pass pushes a long, then the half.
 223     // We do the same.
 224     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 225     return TypeInt::TOP;
 226 
 227   case ciTypeFlow::StateVector::T_DOUBLE2:
 228     // The ciTypeFlow pass pushes double, then the half.
 229     // Our convention is the same.
 230     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 231     return Type::TOP;
 232 
 233   case T_ADDRESS:
 234     assert(type->is_return_address(), "");
 235     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 236 



 237   default:
 238     // make sure we did not mix up the cases:
 239     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 240     assert(type != ciTypeFlow::StateVector::top_type(), "");
 241     assert(type != ciTypeFlow::StateVector::null_type(), "");
 242     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 243     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 244     assert(!type->is_return_address(), "");
 245 
 246     return Type::get_const_type(type);
 247   }
 248 }
 249 
 250 
 251 //-----------------------make_from_constant------------------------------------
 252 const Type* Type::make_from_constant(ciConstant constant, bool require_constant,
 253                                      int stable_dimension, bool is_narrow_oop,
 254                                      bool is_autobox_cache) {
 255   switch (constant.basic_type()) {
 256     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());

 539   const Type **ffalse =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 540   ffalse[0] = Type::CONTROL;
 541   ffalse[1] = Type::TOP;
 542   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 543 
 544   const Type **fneither =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 545   fneither[0] = Type::TOP;
 546   fneither[1] = Type::TOP;
 547   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 548 
 549   const Type **ftrue =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 550   ftrue[0] = Type::TOP;
 551   ftrue[1] = Type::CONTROL;
 552   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 553 
 554   const Type **floop =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 555   floop[0] = Type::CONTROL;
 556   floop[1] = TypeInt::INT;
 557   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 558 
 559   TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, 0);
 560   TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, OffsetBot);
 561   TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, OffsetBot);
 562 
 563   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 564   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 565 
 566   const Type **fmembar = TypeTuple::fields(0);
 567   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 568 
 569   const Type **fsc = (const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 570   fsc[0] = TypeInt::CC;
 571   fsc[1] = Type::MEMORY;
 572   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 573 
 574   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 575   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 576   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 577   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 578                                            false, nullptr, oopDesc::mark_offset_in_bytes());
 579   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 580                                            false, nullptr, oopDesc::klass_offset_in_bytes());
 581   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
 582 
 583   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, nullptr, OffsetBot);
 584 
 585   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 586   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 587 
 588   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 589 
 590   mreg2type[Op_Node] = Type::BOTTOM;
 591   mreg2type[Op_Set ] = nullptr;
 592   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 593   mreg2type[Op_RegI] = TypeInt::INT;
 594   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 595   mreg2type[Op_RegF] = Type::FLOAT;
 596   mreg2type[Op_RegD] = Type::DOUBLE;
 597   mreg2type[Op_RegL] = TypeLong::LONG;
 598   mreg2type[Op_RegFlags] = TypeInt::CC;
 599 
 600   GrowableArray<ciInstanceKlass*> array_interfaces;
 601   array_interfaces.push(current->env()->Cloneable_klass());
 602   array_interfaces.push(current->env()->Serializable_klass());
 603   TypeAryPtr::_array_interfaces = TypeInterfaces::make(&array_interfaces);
 604   TypeAryKlassPtr::_array_interfaces = TypeAryPtr::_array_interfaces;
 605 
 606   TypeAryPtr::BOTTOM = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::BOTTOM, TypeInt::POS), nullptr, false, Type::OffsetBot);
 607   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), nullptr /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
 608 
 609   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), nullptr /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 610 
 611 #ifdef _LP64
 612   if (UseCompressedOops) {
 613     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 614     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 615   } else
 616 #endif
 617   {
 618     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 619     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), nullptr /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 620   }
 621   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
 622   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
 623   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
 624   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
 625   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
 626   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
 627   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);

 628 
 629   // Nobody should ask _array_body_type[T_NARROWOOP]. Use null as assert.
 630   TypeAryPtr::_array_body_type[T_NARROWOOP] = nullptr;
 631   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;

 632   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 633   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 634   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 635   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 636   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 637   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 638   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 639   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 640   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 641 
 642   TypeInstKlassPtr::OBJECT = TypeInstKlassPtr::make(TypePtr::NotNull, current->env()->Object_klass(), 0);
 643   TypeInstKlassPtr::OBJECT_OR_NULL = TypeInstKlassPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), 0);
 644 
 645   const Type **fi2c = TypeTuple::fields(2);
 646   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 647   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 648   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 649 
 650   const Type **intpair = TypeTuple::fields(2);
 651   intpair[0] = TypeInt::INT;
 652   intpair[1] = TypeInt::INT;
 653   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 654 
 655   const Type **longpair = TypeTuple::fields(2);
 656   longpair[0] = TypeLong::LONG;
 657   longpair[1] = TypeLong::LONG;
 658   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 659 
 660   const Type **intccpair = TypeTuple::fields(2);
 661   intccpair[0] = TypeInt::INT;
 662   intccpair[1] = TypeInt::CC;
 663   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 664 
 665   const Type **longccpair = TypeTuple::fields(2);
 666   longccpair[0] = TypeLong::LONG;
 667   longccpair[1] = TypeInt::CC;
 668   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 669 
 670   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 671   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 672   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 673   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 674   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 675   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 676   _const_basic_type[T_INT]         = TypeInt::INT;
 677   _const_basic_type[T_LONG]        = TypeLong::LONG;
 678   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 679   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 680   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 681   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays

 682   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 683   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 684   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 685 
 686   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 687   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 688   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 689   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 690   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 691   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 692   _zero_type[T_INT]         = TypeInt::ZERO;
 693   _zero_type[T_LONG]        = TypeLong::ZERO;
 694   _zero_type[T_FLOAT]       = TypeF::ZERO;
 695   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 696   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 697   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop

 698   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 699   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 700 
 701   // get_zero_type() should not happen for T_CONFLICT
 702   _zero_type[T_CONFLICT]= nullptr;
 703 
 704   TypeVect::VECTMASK = (TypeVect*)(new TypeVectMask(T_BOOLEAN, MaxVectorSize))->hashcons();
 705   mreg2type[Op_RegVectMask] = TypeVect::VECTMASK;
 706 
 707   if (Matcher::supports_scalable_vector()) {
 708     TypeVect::VECTA = TypeVect::make(T_BYTE, Matcher::scalable_vector_reg_size(T_BYTE));
 709   }
 710 
 711   // Vector predefined types, it needs initialized _const_basic_type[].
 712   if (Matcher::vector_size_supported(T_BYTE, 4)) {
 713     TypeVect::VECTS = TypeVect::make(T_BYTE, 4);
 714   }
 715   if (Matcher::vector_size_supported(T_FLOAT, 2)) {
 716     TypeVect::VECTD = TypeVect::make(T_FLOAT, 2);
 717   }

 952   ~VerifyMeet() {
 953     assert(_C->_type_verify->_depth != 0, "");
 954     _C->_type_verify->_depth--;
 955     if (_C->_type_verify->_depth == 0) {
 956       _C->_type_verify->_cache.trunc_to(0);
 957     }
 958   }
 959 
 960   const Type* meet(const Type* t1, const Type* t2) const {
 961     return _C->_type_verify->meet(t1, t2);
 962   }
 963 
 964   void add(const Type* t1, const Type* t2, const Type* res) const {
 965     _C->_type_verify->add(t1, t2, res);
 966   }
 967 };
 968 
 969 void Type::check_symmetrical(const Type* t, const Type* mt, const VerifyMeet& verify) const {
 970   Compile* C = Compile::current();
 971   const Type* mt2 = verify.meet(t, this);



 972   if (mt != mt2) {
 973     tty->print_cr("=== Meet Not Commutative ===");
 974     tty->print("t           = ");   t->dump(); tty->cr();
 975     tty->print("this        = ");      dump(); tty->cr();
 976     tty->print("t meet this = "); mt2->dump(); tty->cr();
 977     tty->print("this meet t = ");  mt->dump(); tty->cr();
 978     fatal("meet not commutative");
 979   }
 980   const Type* dual_join = mt->_dual;
 981   const Type* t2t    = verify.meet(dual_join,t->_dual);
 982   const Type* t2this = verify.meet(dual_join,this->_dual);
 983 
 984   // Interface meet Oop is Not Symmetric:
 985   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
 986   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
 987 









 988   if (t2t != t->_dual || t2this != this->_dual) {
 989     tty->print_cr("=== Meet Not Symmetric ===");
 990     tty->print("t   =                   ");              t->dump(); tty->cr();
 991     tty->print("this=                   ");                 dump(); tty->cr();
 992     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
 993 
 994     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
 995     tty->print("this_dual=              ");          _dual->dump(); tty->cr();
 996     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
 997 

 998     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();

 999     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();









1000 
1001     fatal("meet not symmetric");
1002   }
1003 }
1004 #endif
1005 
1006 //------------------------------meet-------------------------------------------
1007 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
1008 // commutative and the lattice is symmetric.
1009 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
1010   if (isa_narrowoop() && t->isa_narrowoop()) {
1011     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
1012     return result->make_narrowoop();
1013   }
1014   if (isa_narrowklass() && t->isa_narrowklass()) {
1015     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
1016     return result->make_narrowklass();
1017   }
1018 
1019 #ifdef ASSERT
1020   Compile* C = Compile::current();
1021   VerifyMeet verify(C);
1022 #endif
1023 
1024   const Type *this_t = maybe_remove_speculative(include_speculative);
1025   t = t->maybe_remove_speculative(include_speculative);
1026 
1027   const Type *mt = this_t->xmeet(t);
1028 #ifdef ASSERT
1029   verify.add(this_t, t, mt);
1030   if (isa_narrowoop() || t->isa_narrowoop()) {
1031     return mt;
1032   }
1033   if (isa_narrowklass() || t->isa_narrowklass()) {
1034     return mt;
1035   }



1036   this_t->check_symmetrical(t, mt, verify);
1037   const Type *mt_dual = verify.meet(this_t->_dual, t->_dual);
1038   this_t->_dual->check_symmetrical(t->_dual, mt_dual, verify);
1039 #endif
1040   return mt;
1041 }
1042 
1043 //------------------------------xmeet------------------------------------------
1044 // Compute the MEET of two types.  It returns a new Type object.
1045 const Type *Type::xmeet( const Type *t ) const {
1046   // Perform a fast test for common case; meeting the same types together.
1047   if( this == t ) return this;  // Meeting same type-rep?
1048 
1049   // Meeting TOP with anything?
1050   if( _base == Top ) return t;
1051 
1052   // Meeting BOTTOM with anything?
1053   if( _base == Bottom ) return BOTTOM;
1054 
1055   // Current "this->_base" is one of: Bad, Multi, Control, Top,

2032 void TypeLong::dump_verbose() const {
2033   TypeIntHelper::int_type_dump(this, tty, true);
2034 }
2035 #endif
2036 
2037 //=============================================================================
2038 // Convenience common pre-built types.
2039 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
2040 const TypeTuple *TypeTuple::IFFALSE;
2041 const TypeTuple *TypeTuple::IFTRUE;
2042 const TypeTuple *TypeTuple::IFNEITHER;
2043 const TypeTuple *TypeTuple::LOOPBODY;
2044 const TypeTuple *TypeTuple::MEMBAR;
2045 const TypeTuple *TypeTuple::STORECONDITIONAL;
2046 const TypeTuple *TypeTuple::START_I2C;
2047 const TypeTuple *TypeTuple::INT_PAIR;
2048 const TypeTuple *TypeTuple::LONG_PAIR;
2049 const TypeTuple *TypeTuple::INT_CC_PAIR;
2050 const TypeTuple *TypeTuple::LONG_CC_PAIR;
2051 





















2052 //------------------------------make-------------------------------------------
2053 // Make a TypeTuple from the range of a method signature
2054 const TypeTuple *TypeTuple::make_range(ciSignature* sig, InterfaceHandling interface_handling) {
2055   ciType* return_type = sig->return_type();
2056   uint arg_cnt = return_type->size();





2057   const Type **field_array = fields(arg_cnt);
2058   switch (return_type->basic_type()) {
2059   case T_LONG:
2060     field_array[TypeFunc::Parms]   = TypeLong::LONG;
2061     field_array[TypeFunc::Parms+1] = Type::HALF;
2062     break;
2063   case T_DOUBLE:
2064     field_array[TypeFunc::Parms]   = Type::DOUBLE;
2065     field_array[TypeFunc::Parms+1] = Type::HALF;
2066     break;
2067   case T_OBJECT:












2068   case T_ARRAY:
2069   case T_BOOLEAN:
2070   case T_CHAR:
2071   case T_FLOAT:
2072   case T_BYTE:
2073   case T_SHORT:
2074   case T_INT:
2075     field_array[TypeFunc::Parms] = get_const_type(return_type, interface_handling);
2076     break;
2077   case T_VOID:
2078     break;
2079   default:
2080     ShouldNotReachHere();
2081   }
2082   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2083 }
2084 
2085 // Make a TypeTuple from the domain of a method signature
2086 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig, InterfaceHandling interface_handling) {
2087   uint arg_cnt = sig->size();








2088 
2089   uint pos = TypeFunc::Parms;
2090   const Type **field_array;
2091   if (recv != nullptr) {
2092     arg_cnt++;
2093     field_array = fields(arg_cnt);
2094     // Use get_const_type here because it respects UseUniqueSubclasses:
2095     field_array[pos++] = get_const_type(recv, interface_handling)->join_speculative(TypePtr::NOTNULL);
2096   } else {
2097     field_array = fields(arg_cnt);
2098   }
2099 
2100   int i = 0;
2101   while (pos < TypeFunc::Parms + arg_cnt) {
2102     ciType* type = sig->type_at(i);

2103 
2104     switch (type->basic_type()) {
2105     case T_LONG:
2106       field_array[pos++] = TypeLong::LONG;
2107       field_array[pos++] = Type::HALF;
2108       break;
2109     case T_DOUBLE:
2110       field_array[pos++] = Type::DOUBLE;
2111       field_array[pos++] = Type::HALF;
2112       break;
2113     case T_OBJECT:








2114     case T_ARRAY:
2115     case T_FLOAT:
2116     case T_INT:
2117       field_array[pos++] = get_const_type(type, interface_handling);
2118       break;
2119     case T_BOOLEAN:
2120     case T_CHAR:
2121     case T_BYTE:
2122     case T_SHORT:
2123       field_array[pos++] = TypeInt::INT;
2124       break;
2125     default:
2126       ShouldNotReachHere();
2127     }
2128     i++;
2129   }

2130 
2131   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2132 }
2133 
2134 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
2135   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
2136 }
2137 
2138 //------------------------------fields-----------------------------------------
2139 // Subroutine call type with space allocated for argument types
2140 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
2141 const Type **TypeTuple::fields( uint arg_cnt ) {
2142   const Type **flds = (const Type **)(Compile::current()->type_arena()->AmallocWords((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
2143   flds[TypeFunc::Control  ] = Type::CONTROL;
2144   flds[TypeFunc::I_O      ] = Type::ABIO;
2145   flds[TypeFunc::Memory   ] = Type::MEMORY;
2146   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
2147   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
2148 
2149   return flds;

2244     if (_fields[i]->empty())  return true;
2245   }
2246   return false;
2247 }
2248 
2249 //=============================================================================
2250 // Convenience common pre-built types.
2251 
2252 inline const TypeInt* normalize_array_size(const TypeInt* size) {
2253   // Certain normalizations keep us sane when comparing types.
2254   // We do not want arrayOop variables to differ only by the wideness
2255   // of their index types.  Pick minimum wideness, since that is the
2256   // forced wideness of small ranges anyway.
2257   if (size->_widen != Type::WidenMin)
2258     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
2259   else
2260     return size;
2261 }
2262 
2263 //------------------------------make-------------------------------------------
2264 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {

2265   if (UseCompressedOops && elem->isa_oopptr()) {
2266     elem = elem->make_narrowoop();
2267   }
2268   size = normalize_array_size(size);
2269   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
2270 }
2271 
2272 //------------------------------meet-------------------------------------------
2273 // Compute the MEET of two types.  It returns a new Type object.
2274 const Type *TypeAry::xmeet( const Type *t ) const {
2275   // Perform a fast test for common case; meeting the same types together.
2276   if( this == t ) return this;  // Meeting same type-rep?
2277 
2278   // Current "this->_base" is Ary
2279   switch (t->base()) {          // switch on original type
2280 
2281   case Bottom:                  // Ye Olde Default
2282     return t;
2283 
2284   default:                      // All else is a mistake
2285     typerr(t);
2286 
2287   case Array: {                 // Meeting 2 arrays?
2288     const TypeAry* a = t->is_ary();
2289     const Type* size = _size->xmeet(a->_size);
2290     const TypeInt* isize = size->isa_int();
2291     if (isize == nullptr) {
2292       assert(size == Type::TOP || size == Type::BOTTOM, "");
2293       return size;
2294     }
2295     return TypeAry::make(_elem->meet_speculative(a->_elem),
2296                          isize, _stable && a->_stable);




2297   }
2298   case Top:
2299     break;
2300   }
2301   return this;                  // Return the double constant
2302 }
2303 
2304 //------------------------------xdual------------------------------------------
2305 // Dual: compute field-by-field dual
2306 const Type *TypeAry::xdual() const {
2307   const TypeInt* size_dual = _size->dual()->is_int();
2308   size_dual = normalize_array_size(size_dual);
2309   return new TypeAry(_elem->dual(), size_dual, !_stable);
2310 }
2311 
2312 //------------------------------eq---------------------------------------------
2313 // Structural equality check for Type representations
2314 bool TypeAry::eq( const Type *t ) const {
2315   const TypeAry *a = (const TypeAry*)t;
2316   return _elem == a->_elem &&
2317     _stable == a->_stable &&
2318     _size == a->_size;





2319 }
2320 
2321 //------------------------------hash-------------------------------------------
2322 // Type-specific hashing function.
2323 uint TypeAry::hash(void) const {
2324   return (uint)(uintptr_t)_elem + (uint)(uintptr_t)_size + (uint)(_stable ? 43 : 0);

2325 }
2326 
2327 /**
2328  * Return same type without a speculative part in the element
2329  */
2330 const TypeAry* TypeAry::remove_speculative() const {
2331   return make(_elem->remove_speculative(), _size, _stable);
2332 }
2333 
2334 /**
2335  * Return same type with cleaned up speculative part of element
2336  */
2337 const Type* TypeAry::cleanup_speculative() const {
2338   return make(_elem->cleanup_speculative(), _size, _stable);
2339 }
2340 
2341 /**
2342  * Return same type but with a different inline depth (used for speculation)
2343  *
2344  * @param depth  depth to meet with
2345  */
2346 const TypePtr* TypePtr::with_inline_depth(int depth) const {
2347   if (!UseInlineDepthForSpeculativeTypes) {
2348     return this;
2349   }
2350   return make(AnyPtr, _ptr, _offset, _speculative, depth);
2351 }
2352 
2353 //------------------------------dump2------------------------------------------
2354 #ifndef PRODUCT
2355 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2356   if (_stable)  st->print("stable:");






2357   _elem->dump2(d, depth, st);
2358   st->print("[");
2359   _size->dump2(d, depth, st);
2360   st->print("]");
2361 }
2362 #endif
2363 
2364 //------------------------------singleton--------------------------------------
2365 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2366 // constants (Ldi nodes).  Singletons are integer, float or double constants
2367 // or a single symbol.
2368 bool TypeAry::singleton(void) const {
2369   return false;                 // Never a singleton
2370 }
2371 
2372 bool TypeAry::empty(void) const {
2373   return _elem->empty() || _size->empty();
2374 }
2375 
2376 //--------------------------ary_must_be_exact----------------------------------
2377 bool TypeAry::ary_must_be_exact() const {
2378   // This logic looks at the element type of an array, and returns true
2379   // if the element type is either a primitive or a final instance class.
2380   // In such cases, an array built on this ary must have no subclasses.
2381   if (_elem == BOTTOM)      return false;  // general array not exact
2382   if (_elem == TOP   )      return false;  // inverted general array not exact
2383   const TypeOopPtr*  toop = nullptr;
2384   if (UseCompressedOops && _elem->isa_narrowoop()) {
2385     toop = _elem->make_ptr()->isa_oopptr();
2386   } else {
2387     toop = _elem->isa_oopptr();
2388   }
2389   if (!toop)                return true;   // a primitive type, like int
2390   if (!toop->is_loaded())   return false;  // unloaded class
2391   const TypeInstPtr* tinst;
2392   if (_elem->isa_narrowoop())
2393     tinst = _elem->make_ptr()->isa_instptr();
2394   else
2395     tinst = _elem->isa_instptr();
2396   if (tinst)
2397     return tinst->instance_klass()->is_final();











2398   const TypeAryPtr*  tap;
2399   if (_elem->isa_narrowoop())
2400     tap = _elem->make_ptr()->isa_aryptr();
2401   else
2402     tap = _elem->isa_aryptr();
2403   if (tap)
2404     return tap->ary()->ary_must_be_exact();
2405   return false;
2406 }
2407 
2408 //==============================TypeVect=======================================
2409 // Convenience common pre-built types.
2410 const TypeVect* TypeVect::VECTA = nullptr; // vector length agnostic
2411 const TypeVect* TypeVect::VECTS = nullptr; //  32-bit vectors
2412 const TypeVect* TypeVect::VECTD = nullptr; //  64-bit vectors
2413 const TypeVect* TypeVect::VECTX = nullptr; // 128-bit vectors
2414 const TypeVect* TypeVect::VECTY = nullptr; // 256-bit vectors
2415 const TypeVect* TypeVect::VECTZ = nullptr; // 512-bit vectors
2416 const TypeVect* TypeVect::VECTMASK = nullptr; // predicate/mask vector
2417 

2552 
2553 //=============================================================================
2554 // Convenience common pre-built types.
2555 const TypePtr *TypePtr::NULL_PTR;
2556 const TypePtr *TypePtr::NOTNULL;
2557 const TypePtr *TypePtr::BOTTOM;
2558 
2559 //------------------------------meet-------------------------------------------
2560 // Meet over the PTR enum
2561 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2562   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2563   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2564   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2565   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2566   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2567   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2568   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2569 };
2570 
2571 //------------------------------make-------------------------------------------
2572 const TypePtr *TypePtr::make(TYPES t, enum PTR ptr, int offset, const TypePtr* speculative, int inline_depth) {
2573   return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2574 }
2575 
2576 //------------------------------cast_to_ptr_type-------------------------------
2577 const TypePtr* TypePtr::cast_to_ptr_type(PTR ptr) const {
2578   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2579   if( ptr == _ptr ) return this;
2580   return make(_base, ptr, _offset, _speculative, _inline_depth);
2581 }
2582 
2583 //------------------------------get_con----------------------------------------
2584 intptr_t TypePtr::get_con() const {
2585   assert( _ptr == Null, "" );
2586   return _offset;
2587 }
2588 
2589 //------------------------------meet-------------------------------------------
2590 // Compute the MEET of two types.  It returns a new Type object.
2591 const Type *TypePtr::xmeet(const Type *t) const {
2592   const Type* res = xmeet_helper(t);
2593   if (res->isa_ptr() == nullptr) {
2594     return res;
2595   }
2596 
2597   const TypePtr* res_ptr = res->is_ptr();
2598   if (res_ptr->speculative() != nullptr) {
2599     // type->speculative() is null means that speculation is no better
2600     // than type, i.e. type->speculative() == type. So there are 2
2601     // ways to represent the fact that we have no useful speculative
2602     // data and we should use a single one to be able to test for
2603     // equality between types. Check whether type->speculative() ==
2604     // type and set speculative to null if it is the case.
2605     if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2606       return res_ptr->remove_speculative();

2640     int depth = meet_inline_depth(tp->inline_depth());
2641     return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2642   }
2643   case RawPtr:                  // For these, flip the call around to cut down
2644   case OopPtr:
2645   case InstPtr:                 // on the cases I have to handle.
2646   case AryPtr:
2647   case MetadataPtr:
2648   case KlassPtr:
2649   case InstKlassPtr:
2650   case AryKlassPtr:
2651     return t->xmeet(this);      // Call in reverse direction
2652   default:                      // All else is a mistake
2653     typerr(t);
2654 
2655   }
2656   return this;
2657 }
2658 
2659 //------------------------------meet_offset------------------------------------
2660 int TypePtr::meet_offset( int offset ) const {
2661   // Either is 'TOP' offset?  Return the other offset!
2662   if( _offset == OffsetTop ) return offset;
2663   if( offset == OffsetTop ) return _offset;
2664   // If either is different, return 'BOTTOM' offset
2665   if( _offset != offset ) return OffsetBot;
2666   return _offset;
2667 }
2668 
2669 //------------------------------dual_offset------------------------------------
2670 int TypePtr::dual_offset( ) const {
2671   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
2672   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
2673   return _offset;               // Map everything else into self
2674 }
2675 
2676 //------------------------------xdual------------------------------------------
2677 // Dual: compute field-by-field dual
2678 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2679   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2680 };












2681 const Type *TypePtr::xdual() const {
2682   return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2683 }
2684 
2685 //------------------------------xadd_offset------------------------------------
2686 int TypePtr::xadd_offset( intptr_t offset ) const {
2687   // Adding to 'TOP' offset?  Return 'TOP'!
2688   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
2689   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
2690   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
2691   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
2692   offset += (intptr_t)_offset;
2693   if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
2694 
2695   // assert( _offset >= 0 && _offset+offset >= 0, "" );
2696   // It is possible to construct a negative offset during PhaseCCP
2697 
2698   return (int)offset;        // Sum valid offsets
2699 }
2700 
2701 //------------------------------add_offset-------------------------------------
2702 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2703   return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2704 }
2705 
2706 const TypePtr *TypePtr::with_offset(intptr_t offset) const {
2707   return make(AnyPtr, _ptr, offset, _speculative, _inline_depth);
2708 }
2709 
2710 //------------------------------eq---------------------------------------------
2711 // Structural equality check for Type representations
2712 bool TypePtr::eq( const Type *t ) const {
2713   const TypePtr *a = (const TypePtr*)t;
2714   return _ptr == a->ptr() && _offset == a->offset() && eq_speculative(a) && _inline_depth == a->_inline_depth;
2715 }
2716 
2717 //------------------------------hash-------------------------------------------
2718 // Type-specific hashing function.
2719 uint TypePtr::hash(void) const {
2720   return (uint)_ptr + (uint)_offset + (uint)hash_speculative() + (uint)_inline_depth;
2721 }
2722 
2723 /**
2724  * Return same type without a speculative part
2725  */
2726 const TypePtr* TypePtr::remove_speculative() const {
2727   if (_speculative == nullptr) {
2728     return this;
2729   }
2730   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2731   return make(AnyPtr, _ptr, _offset, nullptr, _inline_depth);
2732 }
2733 
2734 /**
2735  * Return same type but drop speculative part if we know we won't use
2736  * it
2737  */
2738 const Type* TypePtr::cleanup_speculative() const {
2739   if (speculative() == nullptr) {
2740     return this;

2957     return false;
2958   }
2959   // We already know the speculative type cannot be null
2960   if (!speculative_maybe_null()) {
2961     return false;
2962   }
2963   // We already know this is always null
2964   if (this == TypePtr::NULL_PTR) {
2965     return false;
2966   }
2967   // We already know the speculative type is always null
2968   if (speculative_always_null()) {
2969     return false;
2970   }
2971   if (ptr_kind == ProfileAlwaysNull && speculative() != nullptr && speculative()->isa_oopptr()) {
2972     return false;
2973   }
2974   return true;
2975 }
2976 

































2977 //------------------------------dump2------------------------------------------
2978 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
2979   "TopPTR","AnyNull","Constant","null","NotNull","BotPTR"
2980 };
2981 
2982 #ifndef PRODUCT
2983 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2984   st->print("ptr:%s", ptr_msg[_ptr]);
2985   dump_offset(st);
2986   dump_inline_depth(st);
2987   dump_speculative(st);
2988 }
2989 
2990 void TypePtr::dump_offset(outputStream* st) const {
2991   if (_offset == OffsetBot) {
2992     st->print("+bot");
2993   } else if (_offset == OffsetTop) {
2994     st->print("+top");
2995   } else {
2996     st->print("+%d", _offset);
2997   }
2998 }
2999 
3000 /**
3001  *dump the speculative part of the type
3002  */
3003 void TypePtr::dump_speculative(outputStream *st) const {
3004   if (_speculative != nullptr) {
3005     st->print(" (speculative=");
3006     _speculative->dump_on(st);
3007     st->print(")");
3008   }
3009 }
3010 
3011 /**
3012  *dump the inline depth of the type
3013  */
3014 void TypePtr::dump_inline_depth(outputStream *st) const {
3015   if (_inline_depth != InlineDepthBottom) {
3016     if (_inline_depth == InlineDepthTop) {
3017       st->print(" (inline_depth=InlineDepthTop)");
3018     } else {
3019       st->print(" (inline_depth=%d)", _inline_depth);
3020     }
3021   }
3022 }
















3023 #endif
3024 
3025 //------------------------------singleton--------------------------------------
3026 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3027 // constants
3028 bool TypePtr::singleton(void) const {
3029   // TopPTR, Null, AnyNull, Constant are all singletons
3030   return (_offset != OffsetBot) && !below_centerline(_ptr);
3031 }
3032 
3033 bool TypePtr::empty(void) const {
3034   return (_offset == OffsetTop) || above_centerline(_ptr);
3035 }
3036 
3037 //=============================================================================
3038 // Convenience common pre-built types.
3039 const TypeRawPtr *TypeRawPtr::BOTTOM;
3040 const TypeRawPtr *TypeRawPtr::NOTNULL;
3041 
3042 //------------------------------make-------------------------------------------
3043 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
3044   assert( ptr != Constant, "what is the constant?" );
3045   assert( ptr != Null, "Use TypePtr for null" );
3046   return (TypeRawPtr*)(new TypeRawPtr(ptr,nullptr))->hashcons();
3047 }
3048 
3049 const TypeRawPtr *TypeRawPtr::make(address bits) {
3050   assert(bits != nullptr, "Use TypePtr for null");
3051   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
3052 }
3053 
3054 //------------------------------cast_to_ptr_type-------------------------------

3422 #endif
3423 
3424 // Can't be implemented because there's no way to know if the type is above or below the center line.
3425 const Type* TypeInterfaces::xmeet(const Type* t) const {
3426   ShouldNotReachHere();
3427   return Type::xmeet(t);
3428 }
3429 
3430 bool TypeInterfaces::singleton(void) const {
3431   ShouldNotReachHere();
3432   return Type::singleton();
3433 }
3434 
3435 bool TypeInterfaces::has_non_array_interface() const {
3436   assert(TypeAryPtr::_array_interfaces != nullptr, "How come Type::Initialize_shared wasn't called yet?");
3437 
3438   return !TypeAryPtr::_array_interfaces->contains(this);
3439 }
3440 
3441 //------------------------------TypeOopPtr-------------------------------------
3442 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int offset,
3443                        int instance_id, const TypePtr* speculative, int inline_depth)
3444   : TypePtr(t, ptr, offset, speculative, inline_depth),
3445     _const_oop(o), _klass(k),
3446     _interfaces(interfaces),
3447     _klass_is_exact(xk),
3448     _is_ptr_to_narrowoop(false),
3449     _is_ptr_to_narrowklass(false),
3450     _is_ptr_to_boxed_value(false),

3451     _instance_id(instance_id) {
3452 #ifdef ASSERT
3453   if (klass() != nullptr && klass()->is_loaded()) {
3454     interfaces->verify_is_loaded();
3455   }
3456 #endif
3457   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
3458       (offset > 0) && xk && (k != nullptr) && k->is_instance_klass()) {
3459     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);

3460   }









3461 #ifdef _LP64
3462   if (_offset > 0 || _offset == Type::OffsetTop || _offset == Type::OffsetBot) {
3463     if (_offset == oopDesc::klass_offset_in_bytes()) {
3464       _is_ptr_to_narrowklass = UseCompressedClassPointers;
3465     } else if (klass() == nullptr) {
3466       // Array with unknown body type
3467       assert(this->isa_aryptr(), "only arrays without klass");
3468       _is_ptr_to_narrowoop = UseCompressedOops;
3469     } else if (this->isa_aryptr()) {
3470       _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
3471                              _offset != arrayOopDesc::length_offset_in_bytes());














3472     } else if (klass()->is_instance_klass()) {
3473       ciInstanceKlass* ik = klass()->as_instance_klass();
3474       if (this->isa_klassptr()) {
3475         // Perm objects don't use compressed references
3476       } else if (_offset == OffsetBot || _offset == OffsetTop) {
3477         // unsafe access
3478         _is_ptr_to_narrowoop = UseCompressedOops;
3479       } else {
3480         assert(this->isa_instptr(), "must be an instance ptr.");
3481 
3482         if (klass() == ciEnv::current()->Class_klass() &&
3483             (_offset == java_lang_Class::klass_offset() ||
3484              _offset == java_lang_Class::array_klass_offset())) {
3485           // Special hidden fields from the Class.
3486           assert(this->isa_instptr(), "must be an instance ptr.");
3487           _is_ptr_to_narrowoop = false;
3488         } else if (klass() == ciEnv::current()->Class_klass() &&
3489                    _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
3490           // Static fields
3491           BasicType basic_elem_type = T_ILLEGAL;
3492           if (const_oop() != nullptr) {
3493             ciInstanceKlass* k = const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
3494             basic_elem_type = k->get_field_type_by_offset(_offset, true);
3495           }
3496           if (basic_elem_type != T_ILLEGAL) {
3497             _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type);
3498           } else {
3499             // unsafe access
3500             _is_ptr_to_narrowoop = UseCompressedOops;
3501           }
3502         } else {
3503           // Instance fields which contains a compressed oop references.
3504           BasicType basic_elem_type = ik->get_field_type_by_offset(_offset, false);

3505           if (basic_elem_type != T_ILLEGAL) {
3506             _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type);
3507           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
3508             // Compile::find_alias_type() cast exactness on all types to verify
3509             // that it does not affect alias type.
3510             _is_ptr_to_narrowoop = UseCompressedOops;
3511           } else {
3512             // Type for the copy start in LibraryCallKit::inline_native_clone().
3513             _is_ptr_to_narrowoop = UseCompressedOops;
3514           }
3515         }
3516       }
3517     }
3518   }
3519 #endif
3520 }
3521 
3522 //------------------------------make-------------------------------------------
3523 const TypeOopPtr *TypeOopPtr::make(PTR ptr, int offset, int instance_id,
3524                                      const TypePtr* speculative, int inline_depth) {
3525   assert(ptr != Constant, "no constant generic pointers");
3526   ciKlass*  k = Compile::current()->env()->Object_klass();
3527   bool      xk = false;
3528   ciObject* o = nullptr;
3529   const TypeInterfaces* interfaces = TypeInterfaces::make();
3530   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, interfaces, xk, o, offset, instance_id, speculative, inline_depth))->hashcons();
3531 }
3532 
3533 
3534 //------------------------------cast_to_ptr_type-------------------------------
3535 const TypeOopPtr* TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
3536   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
3537   if( ptr == _ptr ) return this;
3538   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
3539 }
3540 
3541 //-----------------------------cast_to_instance_id----------------------------
3542 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
3543   // There are no instances of a general oop.
3544   // Return self unchanged.
3545   return this;
3546 }
3547 
3548 //-----------------------------cast_to_exactness-------------------------------
3549 const TypeOopPtr* TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
3550   // There is no such thing as an exact general oop.
3551   // Return self unchanged.
3552   return this;
3553 }
3554 
3555 
3556 //------------------------------as_klass_type----------------------------------
3557 // Return the klass type corresponding to this instance or array type.
3558 // It is the type that is loaded from an object of this type.
3559 const TypeKlassPtr* TypeOopPtr::as_klass_type(bool try_for_exact) const {
3560   ShouldNotReachHere();
3561   return nullptr;
3562 }
3563 
3564 //------------------------------meet-------------------------------------------
3565 // Compute the MEET of two types.  It returns a new Type object.
3566 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
3567   // Perform a fast test for common case; meeting the same types together.
3568   if( this == t ) return this;  // Meeting same type-rep?
3569 
3570   // Current "this->_base" is OopPtr
3571   switch (t->base()) {          // switch on original type
3572 
3573   case Int:                     // Mixing ints & oops happens when javac
3574   case Long:                    // reuses local variables
3575   case HalfFloatTop:

3584   case NarrowOop:
3585   case NarrowKlass:
3586   case Bottom:                  // Ye Olde Default
3587     return Type::BOTTOM;
3588   case Top:
3589     return this;
3590 
3591   default:                      // All else is a mistake
3592     typerr(t);
3593 
3594   case RawPtr:
3595   case MetadataPtr:
3596   case KlassPtr:
3597   case InstKlassPtr:
3598   case AryKlassPtr:
3599     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3600 
3601   case AnyPtr: {
3602     // Found an AnyPtr type vs self-OopPtr type
3603     const TypePtr *tp = t->is_ptr();
3604     int offset = meet_offset(tp->offset());
3605     PTR ptr = meet_ptr(tp->ptr());
3606     const TypePtr* speculative = xmeet_speculative(tp);
3607     int depth = meet_inline_depth(tp->inline_depth());
3608     switch (tp->ptr()) {
3609     case Null:
3610       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3611       // else fall through:
3612     case TopPTR:
3613     case AnyNull: {
3614       int instance_id = meet_instance_id(InstanceTop);
3615       return make(ptr, offset, instance_id, speculative, depth);
3616     }
3617     case BotPTR:
3618     case NotNull:
3619       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3620     default: typerr(t);
3621     }
3622   }
3623 
3624   case OopPtr: {                 // Meeting to other OopPtrs

3626     int instance_id = meet_instance_id(tp->instance_id());
3627     const TypePtr* speculative = xmeet_speculative(tp);
3628     int depth = meet_inline_depth(tp->inline_depth());
3629     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
3630   }
3631 
3632   case InstPtr:                  // For these, flip the call around to cut down
3633   case AryPtr:
3634     return t->xmeet(this);      // Call in reverse direction
3635 
3636   } // End of switch
3637   return this;                  // Return the double constant
3638 }
3639 
3640 
3641 //------------------------------xdual------------------------------------------
3642 // Dual of a pure heap pointer.  No relevant klass or oop information.
3643 const Type *TypeOopPtr::xdual() const {
3644   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
3645   assert(const_oop() == nullptr,             "no constants here");
3646   return new TypeOopPtr(_base, dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
3647 }
3648 
3649 //--------------------------make_from_klass_common-----------------------------
3650 // Computes the element-type given a klass.
3651 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact, InterfaceHandling interface_handling) {
3652   if (klass->is_instance_klass()) {
3653     Compile* C = Compile::current();
3654     Dependencies* deps = C->dependencies();
3655     assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
3656     // Element is an instance
3657     bool klass_is_exact = false;

3658     if (klass->is_loaded()) {
3659       // Try to set klass_is_exact.
3660       ciInstanceKlass* ik = klass->as_instance_klass();
3661       klass_is_exact = ik->is_final();
3662       if (!klass_is_exact && klass_change
3663           && deps != nullptr && UseUniqueSubclasses) {
3664         ciInstanceKlass* sub = ik->unique_concrete_subklass();
3665         if (sub != nullptr) {
3666           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3667           klass = ik = sub;
3668           klass_is_exact = sub->is_final();
3669         }
3670       }
3671       if (!klass_is_exact && try_for_exact && deps != nullptr &&
3672           !ik->is_interface() && !ik->has_subklass()) {
3673         // Add a dependence; if concrete subclass added we need to recompile
3674         deps->assert_leaf_type(ik);
3675         klass_is_exact = true;
3676       }
3677     }

3678     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
3679     return TypeInstPtr::make(TypePtr::BotPTR, klass, interfaces, klass_is_exact, nullptr, 0);
3680   } else if (klass->is_obj_array_klass()) {
3681     // Element is an object array. Recursively call ourself.
3682     ciKlass* eklass = klass->as_obj_array_klass()->element_klass();
3683     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(eklass, false, try_for_exact, interface_handling);
3684     bool xk = etype->klass_is_exact();
3685     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);













3686     // We used to pass NotNull in here, asserting that the sub-arrays
3687     // are all not-null.  This is not true in generally, as code can
3688     // slam nulls down in the subarrays.
3689     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, nullptr, xk, 0);
3690     return arr;
3691   } else if (klass->is_type_array_klass()) {
3692     // Element is an typeArray
3693     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3694     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);

3695     // We used to pass NotNull in here, asserting that the array pointer
3696     // is not-null. That was not true in general.
3697     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);










3698     return arr;
3699   } else {
3700     ShouldNotReachHere();
3701     return nullptr;
3702   }
3703 }
3704 
3705 //------------------------------make_from_constant-----------------------------
3706 // Make a java pointer from an oop constant
3707 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
3708   assert(!o->is_null_object(), "null object not yet handled here.");
3709 
3710   const bool make_constant = require_constant || o->should_be_constant();
3711 
3712   ciKlass* klass = o->klass();
3713   if (klass->is_instance_klass()) {
3714     // Element is an instance
3715     if (make_constant) {
3716       return TypeInstPtr::make(o);
3717     } else {
3718       return TypeInstPtr::make(TypePtr::NotNull, klass, true, nullptr, 0);
3719     }
3720   } else if (klass->is_obj_array_klass()) {
3721     // Element is an object array. Recursively call ourself.
3722     const TypeOopPtr *etype =
3723       TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass(), trust_interfaces);
3724     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));






3725     // We used to pass NotNull in here, asserting that the sub-arrays
3726     // are all not-null.  This is not true in generally, as code can
3727     // slam nulls down in the subarrays.
3728     if (make_constant) {
3729       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3730     } else {
3731       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3732     }
3733   } else if (klass->is_type_array_klass()) {
3734     // Element is an typeArray
3735     const Type* etype =
3736       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3737     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3738     // We used to pass NotNull in here, asserting that the array pointer
3739     // is not-null. That was not true in general.
3740     if (make_constant) {
3741       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);

















3742     } else {
3743       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3744     }
3745   }
3746 
3747   fatal("unhandled object type");
3748   return nullptr;
3749 }
3750 
3751 //------------------------------get_con----------------------------------------
3752 intptr_t TypeOopPtr::get_con() const {
3753   assert( _ptr == Null || _ptr == Constant, "" );
3754   assert( _offset >= 0, "" );
3755 
3756   if (_offset != 0) {
3757     // After being ported to the compiler interface, the compiler no longer
3758     // directly manipulates the addresses of oops.  Rather, it only has a pointer
3759     // to a handle at compile time.  This handle is embedded in the generated
3760     // code and dereferenced at the time the nmethod is made.  Until that time,
3761     // it is not reasonable to do arithmetic with the addresses of oops (we don't
3762     // have access to the addresses!).  This does not seem to currently happen,
3763     // but this assertion here is to help prevent its occurrence.
3764     tty->print_cr("Found oop constant with non-zero offset");
3765     ShouldNotReachHere();
3766   }
3767 
3768   return (intptr_t)const_oop()->constant_encoding();
3769 }
3770 
3771 
3772 //-----------------------------filter------------------------------------------
3773 // Do not allow interface-vs.-noninterface joins to collapse to top.
3774 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
3775 
3776   const Type* ft = join_helper(kills, include_speculative);

3822   dump_speculative(st);
3823 }
3824 
3825 void TypeOopPtr::dump_instance_id(outputStream* st) const {
3826   if (_instance_id == InstanceTop) {
3827     st->print(",iid=top");
3828   } else if (_instance_id == InstanceBot) {
3829     st->print(",iid=bot");
3830   } else {
3831     st->print(",iid=%d", _instance_id);
3832   }
3833 }
3834 #endif
3835 
3836 //------------------------------singleton--------------------------------------
3837 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3838 // constants
3839 bool TypeOopPtr::singleton(void) const {
3840   // detune optimizer to not generate constant oop + constant offset as a constant!
3841   // TopPTR, Null, AnyNull, Constant are all singletons
3842   return (_offset == 0) && !below_centerline(_ptr);
3843 }
3844 
3845 //------------------------------add_offset-------------------------------------
3846 const TypePtr* TypeOopPtr::add_offset(intptr_t offset) const {
3847   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
3848 }
3849 
3850 const TypeOopPtr* TypeOopPtr::with_offset(intptr_t offset) const {
3851   return make(_ptr, offset, _instance_id, with_offset_speculative(offset), _inline_depth);
3852 }
3853 
3854 /**
3855  * Return same type without a speculative part
3856  */
3857 const TypeOopPtr* TypeOopPtr::remove_speculative() const {
3858   if (_speculative == nullptr) {
3859     return this;
3860   }
3861   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3862   return make(_ptr, _offset, _instance_id, nullptr, _inline_depth);
3863 }
3864 
3865 /**
3866  * Return same type but drop speculative part if we know we won't use
3867  * it
3868  */
3869 const Type* TypeOopPtr::cleanup_speculative() const {
3870   // If the klass is exact and the ptr is not null then there's
3871   // nothing that the speculative type can help us with

3944 const TypeInstPtr *TypeInstPtr::BOTTOM;
3945 const TypeInstPtr *TypeInstPtr::MIRROR;
3946 const TypeInstPtr *TypeInstPtr::MARK;
3947 const TypeInstPtr *TypeInstPtr::KLASS;
3948 
3949 // Is there a single ciKlass* that can represent that type?
3950 ciKlass* TypeInstPtr::exact_klass_helper() const {
3951   if (_interfaces->empty()) {
3952     return _klass;
3953   }
3954   if (_klass != ciEnv::current()->Object_klass()) {
3955     if (_interfaces->eq(_klass->as_instance_klass())) {
3956       return _klass;
3957     }
3958     return nullptr;
3959   }
3960   return _interfaces->exact_klass();
3961 }
3962 
3963 //------------------------------TypeInstPtr-------------------------------------
3964 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int off,
3965                          int instance_id, const TypePtr* speculative, int inline_depth)
3966   : TypeOopPtr(InstPtr, ptr, k, interfaces, xk, o, off, instance_id, speculative, inline_depth) {



3967   assert(k == nullptr || !k->is_loaded() || !k->is_interface(), "no interface here");
3968   assert(k != nullptr &&
3969          (k->is_loaded() || o == nullptr),
3970          "cannot have constants with non-loaded klass");
3971 };
3972 
3973 //------------------------------make-------------------------------------------
3974 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
3975                                      ciKlass* k,
3976                                      const TypeInterfaces* interfaces,
3977                                      bool xk,
3978                                      ciObject* o,
3979                                      int offset,

3980                                      int instance_id,
3981                                      const TypePtr* speculative,
3982                                      int inline_depth) {
3983   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
3984   // Either const_oop() is null or else ptr is Constant
3985   assert( (!o && ptr != Constant) || (o && ptr == Constant),
3986           "constant pointers must have a value supplied" );
3987   // Ptr is never Null
3988   assert( ptr != Null, "null pointers are not typed" );
3989 
3990   assert(instance_id <= 0 || xk, "instances are always exactly typed");

3991   if (ptr == Constant) {
3992     // Note:  This case includes meta-object constants, such as methods.
3993     xk = true;
3994   } else if (k->is_loaded()) {
3995     ciInstanceKlass* ik = k->as_instance_klass();
3996     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
3997     assert(!ik->is_interface(), "no interface here");
3998     if (xk && ik->is_interface())  xk = false;  // no exact interface
3999   }
4000 



4001   // Now hash this baby
4002   TypeInstPtr *result =
4003     (TypeInstPtr*)(new TypeInstPtr(ptr, k, interfaces, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
4004 
4005   return result;
4006 }
4007 
4008 const TypeInterfaces* TypePtr::interfaces(ciKlass*& k, bool klass, bool interface, bool array, InterfaceHandling interface_handling) {
4009   if (k->is_instance_klass()) {
4010     if (k->is_loaded()) {
4011       if (k->is_interface() && interface_handling == ignore_interfaces) {
4012         assert(interface, "no interface expected");
4013         k = ciEnv::current()->Object_klass();
4014         const TypeInterfaces* interfaces = TypeInterfaces::make();
4015         return interfaces;
4016       }
4017       GrowableArray<ciInstanceKlass *>* k_interfaces = k->as_instance_klass()->transitive_interfaces();
4018       const TypeInterfaces* interfaces = TypeInterfaces::make(k_interfaces);
4019       if (k->is_interface()) {
4020         assert(interface, "no interface expected");
4021         k = ciEnv::current()->Object_klass();
4022       } else {
4023         assert(klass, "no instance klass expected");

4049   switch (bt) {
4050     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
4051     case T_INT:      return TypeInt::make(constant.as_int());
4052     case T_CHAR:     return TypeInt::make(constant.as_char());
4053     case T_BYTE:     return TypeInt::make(constant.as_byte());
4054     case T_SHORT:    return TypeInt::make(constant.as_short());
4055     case T_FLOAT:    return TypeF::make(constant.as_float());
4056     case T_DOUBLE:   return TypeD::make(constant.as_double());
4057     case T_LONG:     return TypeLong::make(constant.as_long());
4058     default:         break;
4059   }
4060   fatal("Invalid boxed value type '%s'", type2name(bt));
4061   return nullptr;
4062 }
4063 
4064 //------------------------------cast_to_ptr_type-------------------------------
4065 const TypeInstPtr* TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
4066   if( ptr == _ptr ) return this;
4067   // Reconstruct _sig info here since not a problem with later lazy
4068   // construction, _sig will show up on demand.
4069   return make(ptr, klass(), _interfaces, klass_is_exact(), ptr == Constant ? const_oop() : nullptr, _offset, _instance_id, _speculative, _inline_depth);
4070 }
4071 
4072 
4073 //-----------------------------cast_to_exactness-------------------------------
4074 const TypeInstPtr* TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
4075   if( klass_is_exact == _klass_is_exact ) return this;
4076   if (!_klass->is_loaded())  return this;
4077   ciInstanceKlass* ik = _klass->as_instance_klass();
4078   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
4079   assert(!ik->is_interface(), "no interface here");
4080   return make(ptr(), klass(), _interfaces, klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);

4081 }
4082 
4083 //-----------------------------cast_to_instance_id----------------------------
4084 const TypeInstPtr* TypeInstPtr::cast_to_instance_id(int instance_id) const {
4085   if( instance_id == _instance_id ) return this;
4086   return make(_ptr, klass(),  _interfaces, _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
4087 }
4088 
4089 //------------------------------xmeet_unloaded---------------------------------
4090 // Compute the MEET of two InstPtrs when at least one is unloaded.
4091 // Assume classes are different since called after check for same name/class-loader
4092 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst, const TypeInterfaces* interfaces) const {
4093   int off = meet_offset(tinst->offset());
4094   PTR ptr = meet_ptr(tinst->ptr());
4095   int instance_id = meet_instance_id(tinst->instance_id());
4096   const TypePtr* speculative = xmeet_speculative(tinst);
4097   int depth = meet_inline_depth(tinst->inline_depth());
4098 
4099   const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
4100   const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
4101   if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
4102     //
4103     // Meet unloaded class with java/lang/Object
4104     //
4105     // Meet
4106     //          |                     Unloaded Class
4107     //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
4108     //  ===================================================================
4109     //   TOP    | ..........................Unloaded......................|
4110     //  AnyNull |  U-AN    |................Unloaded......................|
4111     // Constant | ... O-NN .................................. |   O-BOT   |
4112     //  NotNull | ... O-NN .................................. |   O-BOT   |
4113     //  BOTTOM  | ........................Object-BOTTOM ..................|
4114     //
4115     assert(loaded->ptr() != TypePtr::Null, "insanity check");
4116     //
4117     if (loaded->ptr() == TypePtr::TopPTR)        { return unloaded->with_speculative(speculative); }
4118     else if (loaded->ptr() == TypePtr::AnyNull)  { return make(ptr, unloaded->klass(), interfaces, false, nullptr, off, instance_id, speculative, depth); }




4119     else if (loaded->ptr() == TypePtr::BotPTR)   { return TypeInstPtr::BOTTOM->with_speculative(speculative); }
4120     else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
4121       if (unloaded->ptr() == TypePtr::BotPTR)    { return TypeInstPtr::BOTTOM->with_speculative(speculative);  }
4122       else                                       { return TypeInstPtr::NOTNULL->with_speculative(speculative); }
4123     }
4124     else if (unloaded->ptr() == TypePtr::TopPTR) { return unloaded->with_speculative(speculative); }
4125 
4126     return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr()->with_speculative(speculative);
4127   }
4128 
4129   // Both are unloaded, not the same class, not Object
4130   // Or meet unloaded with a different loaded class, not java/lang/Object
4131   if (ptr != TypePtr::BotPTR) {
4132     return TypeInstPtr::NOTNULL->with_speculative(speculative);
4133   }
4134   return TypeInstPtr::BOTTOM->with_speculative(speculative);
4135 }
4136 
4137 
4138 //------------------------------meet-------------------------------------------

4162   case Top:
4163     return this;
4164 
4165   default:                      // All else is a mistake
4166     typerr(t);
4167 
4168   case MetadataPtr:
4169   case KlassPtr:
4170   case InstKlassPtr:
4171   case AryKlassPtr:
4172   case RawPtr: return TypePtr::BOTTOM;
4173 
4174   case AryPtr: {                // All arrays inherit from Object class
4175     // Call in reverse direction to avoid duplication
4176     return t->is_aryptr()->xmeet_helper(this);
4177   }
4178 
4179   case OopPtr: {                // Meeting to OopPtrs
4180     // Found a OopPtr type vs self-InstPtr type
4181     const TypeOopPtr *tp = t->is_oopptr();
4182     int offset = meet_offset(tp->offset());
4183     PTR ptr = meet_ptr(tp->ptr());
4184     switch (tp->ptr()) {
4185     case TopPTR:
4186     case AnyNull: {
4187       int instance_id = meet_instance_id(InstanceTop);
4188       const TypePtr* speculative = xmeet_speculative(tp);
4189       int depth = meet_inline_depth(tp->inline_depth());
4190       return make(ptr, klass(), _interfaces, klass_is_exact(),
4191                   (ptr == Constant ? const_oop() : nullptr), offset, instance_id, speculative, depth);
4192     }
4193     case NotNull:
4194     case BotPTR: {
4195       int instance_id = meet_instance_id(tp->instance_id());
4196       const TypePtr* speculative = xmeet_speculative(tp);
4197       int depth = meet_inline_depth(tp->inline_depth());
4198       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4199     }
4200     default: typerr(t);
4201     }
4202   }
4203 
4204   case AnyPtr: {                // Meeting to AnyPtrs
4205     // Found an AnyPtr type vs self-InstPtr type
4206     const TypePtr *tp = t->is_ptr();
4207     int offset = meet_offset(tp->offset());
4208     PTR ptr = meet_ptr(tp->ptr());
4209     int instance_id = meet_instance_id(InstanceTop);
4210     const TypePtr* speculative = xmeet_speculative(tp);
4211     int depth = meet_inline_depth(tp->inline_depth());
4212     switch (tp->ptr()) {
4213     case Null:
4214       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4215       // else fall through to AnyNull
4216     case TopPTR:
4217     case AnyNull: {
4218       return make(ptr, klass(), _interfaces, klass_is_exact(),
4219                   (ptr == Constant ? const_oop() : nullptr), offset, instance_id, speculative, depth);
4220     }
4221     case NotNull:
4222     case BotPTR:
4223       return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
4224     default: typerr(t);
4225     }
4226   }
4227 
4228   /*
4229                  A-top         }
4230                /   |   \       }  Tops
4231            B-top A-any C-top   }
4232               | /  |  \ |      }  Any-nulls
4233            B-any   |   C-any   }
4234               |    |    |
4235            B-con A-con C-con   } constants; not comparable across classes
4236               |    |    |
4237            B-not   |   C-not   }
4238               | \  |  / |      }  not-nulls
4239            B-bot A-not C-bot   }
4240                \   |   /       }  Bottoms
4241                  A-bot         }
4242   */
4243 
4244   case InstPtr: {                // Meeting 2 Oops?
4245     // Found an InstPtr sub-type vs self-InstPtr type
4246     const TypeInstPtr *tinst = t->is_instptr();
4247     int off = meet_offset(tinst->offset());
4248     PTR ptr = meet_ptr(tinst->ptr());
4249     int instance_id = meet_instance_id(tinst->instance_id());
4250     const TypePtr* speculative = xmeet_speculative(tinst);
4251     int depth = meet_inline_depth(tinst->inline_depth());
4252     const TypeInterfaces* interfaces = meet_interfaces(tinst);
4253 
4254     ciKlass* tinst_klass = tinst->klass();
4255     ciKlass* this_klass  = klass();
4256 
4257     ciKlass* res_klass = nullptr;
4258     bool res_xk = false;
4259     const Type* res;
4260     MeetResult kind = meet_instptr(ptr, interfaces, this, tinst, res_klass, res_xk);
4261 
4262     if (kind == UNLOADED) {
4263       // One of these classes has not been loaded
4264       const TypeInstPtr* unloaded_meet = xmeet_unloaded(tinst, interfaces);
4265 #ifndef PRODUCT
4266       if (PrintOpto && Verbose) {
4267         tty->print("meet of unloaded classes resulted in: ");
4268         unloaded_meet->dump();
4269         tty->cr();
4270         tty->print("  this == ");
4271         dump();
4272         tty->cr();
4273         tty->print(" tinst == ");
4274         tinst->dump();
4275         tty->cr();
4276       }
4277 #endif
4278       res = unloaded_meet;
4279     } else {

4280       if (kind == NOT_SUBTYPE && instance_id > 0) {
4281         instance_id = InstanceBot;
4282       } else if (kind == LCA) {
4283         instance_id = InstanceBot;
4284       }
4285       ciObject* o = nullptr;             // Assume not constant when done
4286       ciObject* this_oop = const_oop();
4287       ciObject* tinst_oop = tinst->const_oop();
4288       if (ptr == Constant) {
4289         if (this_oop != nullptr && tinst_oop != nullptr &&
4290             this_oop->equals(tinst_oop))
4291           o = this_oop;
4292         else if (above_centerline(_ptr)) {
4293           assert(!tinst_klass->is_interface(), "");
4294           o = tinst_oop;
4295         } else if (above_centerline(tinst->_ptr)) {
4296           assert(!this_klass->is_interface(), "");
4297           o = this_oop;
4298         } else
4299           ptr = NotNull;
4300       }
4301       res = make(ptr, res_klass, interfaces, res_xk, o, off, instance_id, speculative, depth);
4302     }
4303 
4304     return res;
4305 
4306   } // End of case InstPtr
4307 
4308   } // End of switch
4309   return this;                  // Return the double constant
4310 }
4311 
4312 template<class T> TypePtr::MeetResult TypePtr::meet_instptr(PTR& ptr, const TypeInterfaces*& interfaces, const T* this_type, const T* other_type,
4313                                                             ciKlass*& res_klass, bool& res_xk) {
4314   ciKlass* this_klass = this_type->klass();
4315   ciKlass* other_klass = other_type->klass();

4316   bool this_xk = this_type->klass_is_exact();
4317   bool other_xk = other_type->klass_is_exact();
4318   PTR this_ptr = this_type->ptr();
4319   PTR other_ptr = other_type->ptr();
4320   const TypeInterfaces* this_interfaces = this_type->interfaces();
4321   const TypeInterfaces* other_interfaces = other_type->interfaces();
4322   // Check for easy case; klasses are equal (and perhaps not loaded!)
4323   // If we have constants, then we created oops so classes are loaded
4324   // and we can handle the constants further down.  This case handles
4325   // both-not-loaded or both-loaded classes
4326   if (ptr != Constant && this_klass->equals(other_klass) && this_xk == other_xk) {
4327     res_klass = this_klass;
4328     res_xk = this_xk;
4329     return QUICK;
4330   }
4331 
4332   // Classes require inspection in the Java klass hierarchy.  Must be loaded.
4333   if (!other_klass->is_loaded() || !this_klass->is_loaded()) {
4334     return UNLOADED;
4335   }

4341   // If both are up and they do NOT subtype, "fall hard".
4342   // If both are down and they subtype, take the supertype class.
4343   // If both are down and they do NOT subtype, "fall hard".
4344   // Constants treated as down.
4345 
4346   // Now, reorder the above list; observe that both-down+subtype is also
4347   // "fall hard"; "fall hard" becomes the default case:
4348   // If we split one up & one down AND they subtype, take the down man.
4349   // If both are up and they subtype, take the subtype class.
4350 
4351   // If both are down and they subtype, "fall hard".
4352   // If both are down and they do NOT subtype, "fall hard".
4353   // If both are up and they do NOT subtype, "fall hard".
4354   // If we split one up & one down AND they do NOT subtype, "fall hard".
4355 
4356   // If a proper subtype is exact, and we return it, we return it exactly.
4357   // If a proper supertype is exact, there can be no subtyping relationship!
4358   // If both types are equal to the subtype, exactness is and-ed below the
4359   // centerline and or-ed above it.  (N.B. Constants are always exact.)
4360 
4361   // Check for subtyping:
4362   const T* subtype = nullptr;
4363   bool subtype_exact = false;
4364   if (this_type->is_same_java_type_as(other_type)) {

4365     subtype = this_type;
4366     subtype_exact = below_centerline(ptr) ? (this_xk && other_xk) : (this_xk || other_xk);
4367   } else if (!other_xk && this_type->is_meet_subtype_of(other_type)) {
4368     subtype = this_type;     // Pick subtyping class
4369     subtype_exact = this_xk;
4370   } else if(!this_xk && other_type->is_meet_subtype_of(this_type)) {
4371     subtype = other_type;    // Pick subtyping class
4372     subtype_exact = other_xk;
4373   }
4374 
4375   if (subtype) {
4376     if (above_centerline(ptr)) { // both are up?

4377       this_type = other_type = subtype;
4378       this_xk = other_xk = subtype_exact;
4379     } else if (above_centerline(this_ptr) && !above_centerline(other_ptr)) {
4380       this_type = other_type; // tinst is down; keep down man

4381       this_xk = other_xk;
4382     } else if (above_centerline(other_ptr) && !above_centerline(this_ptr)) {

4383       other_type = this_type; // this is down; keep down man
4384       other_xk = this_xk;
4385     } else {

4386       this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
4387     }
4388   }
4389 
4390   // Check for classes now being equal
4391   if (this_type->is_same_java_type_as(other_type)) {
4392     // If the klasses are equal, the constants may still differ.  Fall to
4393     // NotNull if they do (neither constant is null; that is a special case
4394     // handled elsewhere).
4395     res_klass = this_type->klass();
4396     res_xk = this_xk;
4397     return SUBTYPE;
4398   } // Else classes are not equal
4399 
4400   // Since klasses are different, we require a LCA in the Java
4401   // class hierarchy - which means we have to fall to at least NotNull.
4402   if (ptr == TopPTR || ptr == AnyNull || ptr == Constant) {
4403     ptr = NotNull;
4404   }
4405 
4406   interfaces = this_interfaces->intersection_with(other_interfaces);
4407 
4408   // Now we find the LCA of Java classes
4409   ciKlass* k = this_klass->least_common_ancestor(other_klass);
4410 
4411   res_klass = k;
4412   res_xk = false;
4413 
4414   return LCA;
4415 }
4416 


































4417 //------------------------java_mirror_type--------------------------------------
4418 ciType* TypeInstPtr::java_mirror_type() const {
4419   // must be a singleton type
4420   if( const_oop() == nullptr )  return nullptr;
4421 
4422   // must be of type java.lang.Class
4423   if( klass() != ciEnv::current()->Class_klass() )  return nullptr;
4424 
4425   return const_oop()->as_instance()->java_mirror_type();
4426 }
4427 
4428 
4429 //------------------------------xdual------------------------------------------
4430 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
4431 // inheritance mechanism.
4432 const Type *TypeInstPtr::xdual() const {
4433   return new TypeInstPtr(dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());

4434 }
4435 
4436 //------------------------------eq---------------------------------------------
4437 // Structural equality check for Type representations
4438 bool TypeInstPtr::eq( const Type *t ) const {
4439   const TypeInstPtr *p = t->is_instptr();
4440   return
4441     klass()->equals(p->klass()) &&

4442     _interfaces->eq(p->_interfaces) &&
4443     TypeOopPtr::eq(p);          // Check sub-type stuff
4444 }
4445 
4446 //------------------------------hash-------------------------------------------
4447 // Type-specific hashing function.
4448 uint TypeInstPtr::hash(void) const {
4449   return klass()->hash() + TypeOopPtr::hash() + _interfaces->hash();
4450 }
4451 
4452 bool TypeInstPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4453   return TypePtr::is_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
4454 }
4455 
4456 
4457 bool TypeInstPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const {
4458   return TypePtr::is_same_java_type_as_helper_for_instance(this, other);
4459 }
4460 
4461 bool TypeInstPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4462   return TypePtr::maybe_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
4463 }
4464 
4465 
4466 //------------------------------dump2------------------------------------------
4467 // Dump oop Type
4468 #ifndef PRODUCT
4469 void TypeInstPtr::dump2(Dict &d, uint depth, outputStream* st) const {

4473   _interfaces->dump(st);
4474 
4475   if (_ptr == Constant && (WizardMode || Verbose)) {
4476     ResourceMark rm;
4477     stringStream ss;
4478 
4479     st->print(" ");
4480     const_oop()->print_oop(&ss);
4481     // 'const_oop->print_oop()' may emit newlines('\n') into ss.
4482     // suppress newlines from it so -XX:+Verbose -XX:+PrintIdeal dumps one-liner for each node.
4483     char* buf = ss.as_string(/* c_heap= */false);
4484     StringUtils::replace_no_expand(buf, "\n", "");
4485     st->print_raw(buf);
4486   }
4487 
4488   st->print(":%s", ptr_msg[_ptr]);
4489   if (_klass_is_exact) {
4490     st->print(":exact");
4491   }
4492 


4493   dump_offset(st);
4494   dump_instance_id(st);
4495   dump_inline_depth(st);
4496   dump_speculative(st);

4497 }
4498 #endif
4499 







4500 //------------------------------add_offset-------------------------------------
4501 const TypePtr* TypeInstPtr::add_offset(intptr_t offset) const {
4502   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), xadd_offset(offset),
4503               _instance_id, add_offset_speculative(offset), _inline_depth);
4504 }
4505 
4506 const TypeInstPtr* TypeInstPtr::with_offset(intptr_t offset) const {
4507   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), offset,
4508               _instance_id, with_offset_speculative(offset), _inline_depth);
4509 }
4510 
4511 const TypeInstPtr* TypeInstPtr::remove_speculative() const {
4512   if (_speculative == nullptr) {
4513     return this;
4514   }
4515   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4516   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset,
4517               _instance_id, nullptr, _inline_depth);
4518 }
4519 
4520 const TypeInstPtr* TypeInstPtr::with_speculative(const TypePtr* speculative) const {
4521   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, _instance_id, speculative, _inline_depth);
4522 }
4523 
4524 const TypePtr* TypeInstPtr::with_inline_depth(int depth) const {
4525   if (!UseInlineDepthForSpeculativeTypes) {
4526     return this;
4527   }
4528   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
4529 }
4530 
4531 const TypePtr* TypeInstPtr::with_instance_id(int instance_id) const {
4532   assert(is_known_instance(), "should be known");
4533   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, instance_id, _speculative, _inline_depth);








4534 }
4535 
4536 const TypeKlassPtr* TypeInstPtr::as_klass_type(bool try_for_exact) const {
4537   bool xk = klass_is_exact();
4538   ciInstanceKlass* ik = klass()->as_instance_klass();
4539   if (try_for_exact && !xk && !ik->has_subklass() && !ik->is_final()) {
4540     if (_interfaces->eq(ik)) {
4541       Compile* C = Compile::current();
4542       Dependencies* deps = C->dependencies();
4543       deps->assert_leaf_type(ik);
4544       xk = true;
4545     }
4546   }
4547   return TypeInstKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, klass(), _interfaces, 0);

4548 }
4549 
4550 template <class T1, class T2> bool TypePtr::is_meet_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_xk, bool other_xk) {
4551   static_assert(std::is_base_of<T2, T1>::value, "");
4552 
4553   if (!this_one->is_instance_type(other)) {
4554     return false;
4555   }
4556 
4557   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty()) {
4558     return true;
4559   }
4560 
4561   return this_one->klass()->is_subtype_of(other->klass()) &&
4562          (!this_xk || this_one->_interfaces->contains(other->_interfaces));
4563 }
4564 
4565 
4566 bool TypeInstPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const {
4567   return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk);

4572   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty()) {
4573     return true;
4574   }
4575 
4576   if (this_one->is_instance_type(other)) {
4577     return other->klass() == ciEnv::current()->Object_klass() && this_one->_interfaces->contains(other->_interfaces);
4578   }
4579 
4580   int dummy;
4581   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
4582   if (this_top_or_bottom) {
4583     return false;
4584   }
4585 
4586   const T1* other_ary = this_one->is_array_type(other);
4587   const TypePtr* other_elem = other_ary->elem()->make_ptr();
4588   const TypePtr* this_elem = this_one->elem()->make_ptr();
4589   if (other_elem != nullptr && this_elem != nullptr) {
4590     return this_one->is_reference_type(this_elem)->is_meet_subtype_of_helper(this_one->is_reference_type(other_elem), this_xk, other_xk);
4591   }
4592 
4593   if (other_elem == nullptr && this_elem == nullptr) {
4594     return this_one->klass()->is_subtype_of(other->klass());
4595   }
4596 
4597   return false;
4598 }
4599 
4600 bool TypeAryPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const {
4601   return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk);
4602 }
4603 
4604 bool TypeInstKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const {
4605   return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk);
4606 }
4607 
4608 bool TypeAryKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const {
4609   return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk);
4610 }
4611 
4612 //=============================================================================
4613 // Convenience common pre-built types.
4614 const TypeAryPtr* TypeAryPtr::BOTTOM;
4615 const TypeAryPtr* TypeAryPtr::RANGE;
4616 const TypeAryPtr* TypeAryPtr::OOPS;
4617 const TypeAryPtr* TypeAryPtr::NARROWOOPS;
4618 const TypeAryPtr* TypeAryPtr::BYTES;
4619 const TypeAryPtr* TypeAryPtr::SHORTS;
4620 const TypeAryPtr* TypeAryPtr::CHARS;
4621 const TypeAryPtr* TypeAryPtr::INTS;
4622 const TypeAryPtr* TypeAryPtr::LONGS;
4623 const TypeAryPtr* TypeAryPtr::FLOATS;
4624 const TypeAryPtr* TypeAryPtr::DOUBLES;

4625 
4626 //------------------------------make-------------------------------------------
4627 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset,
4628                                    int instance_id, const TypePtr* speculative, int inline_depth) {
4629   assert(!(k == nullptr && ary->_elem->isa_int()),
4630          "integral arrays must be pre-equipped with a class");
4631   if (!xk)  xk = ary->ary_must_be_exact();
4632   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4633   if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() &&
4634       k->as_obj_array_klass()->base_element_klass()->is_interface()) {
4635     k = nullptr;
4636   }
4637   return (TypeAryPtr*)(new TypeAryPtr(ptr, nullptr, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons();
4638 }
4639 
4640 //------------------------------make-------------------------------------------
4641 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset,
4642                                    int instance_id, const TypePtr* speculative, int inline_depth,
4643                                    bool is_autobox_cache) {
4644   assert(!(k == nullptr && ary->_elem->isa_int()),
4645          "integral arrays must be pre-equipped with a class");
4646   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
4647   if (!xk)  xk = (o != nullptr) || ary->ary_must_be_exact();
4648   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4649   if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() &&
4650       k->as_obj_array_klass()->base_element_klass()->is_interface()) {
4651     k = nullptr;
4652   }
4653   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
4654 }
4655 
4656 //------------------------------cast_to_ptr_type-------------------------------
4657 const TypeAryPtr* TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
4658   if( ptr == _ptr ) return this;
4659   return make(ptr, ptr == Constant ? const_oop() : nullptr, _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4660 }
4661 
4662 
4663 //-----------------------------cast_to_exactness-------------------------------
4664 const TypeAryPtr* TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
4665   if( klass_is_exact == _klass_is_exact ) return this;
4666   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
4667   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
4668 }
4669 
4670 //-----------------------------cast_to_instance_id----------------------------
4671 const TypeAryPtr* TypeAryPtr::cast_to_instance_id(int instance_id) const {
4672   if( instance_id == _instance_id ) return this;
4673   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
4674 }
4675 
4676 
4677 //-----------------------------max_array_length-------------------------------
4678 // A wrapper around arrayOopDesc::max_array_length(etype) with some input normalization.
4679 jint TypeAryPtr::max_array_length(BasicType etype) {
4680   if (!is_java_primitive(etype) && !::is_reference_type(etype)) {
4681     if (etype == T_NARROWOOP) {
4682       etype = T_OBJECT;
4683     } else if (etype == T_ILLEGAL) { // bottom[]
4684       etype = T_BYTE; // will produce conservatively high value
4685     } else {
4686       fatal("not an element type: %s", type2name(etype));
4687     }
4688   }
4689   return arrayOopDesc::max_array_length(etype);
4690 }
4691 
4692 //-----------------------------narrow_size_type-------------------------------
4693 // Narrow the given size type to the index range for the given array base type.

4711     if (size->is_con()) {
4712       lo = hi;
4713     }
4714     chg = true;
4715   }
4716   // Negative length arrays will produce weird intermediate dead fast-path code
4717   if (lo > hi) {
4718     return TypeInt::ZERO;
4719   }
4720   if (!chg) {
4721     return size;
4722   }
4723   return TypeInt::make(lo, hi, Type::WidenMin);
4724 }
4725 
4726 //-------------------------------cast_to_size----------------------------------
4727 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
4728   assert(new_size != nullptr, "");
4729   new_size = narrow_size_type(new_size);
4730   if (new_size == size())  return this;
4731   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
4732   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);

































































































4733 }
4734 
4735 //------------------------------cast_to_stable---------------------------------
4736 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
4737   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
4738     return this;
4739 
4740   const Type* elem = this->elem();
4741   const TypePtr* elem_ptr = elem->make_ptr();
4742 
4743   if (stable_dimension > 1 && elem_ptr != nullptr && elem_ptr->isa_aryptr()) {
4744     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
4745     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
4746   }
4747 
4748   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
4749 
4750   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4751 }
4752 
4753 //-----------------------------stable_dimension--------------------------------
4754 int TypeAryPtr::stable_dimension() const {
4755   if (!is_stable())  return 0;
4756   int dim = 1;
4757   const TypePtr* elem_ptr = elem()->make_ptr();
4758   if (elem_ptr != nullptr && elem_ptr->isa_aryptr())
4759     dim += elem_ptr->is_aryptr()->stable_dimension();
4760   return dim;
4761 }
4762 
4763 //----------------------cast_to_autobox_cache-----------------------------------
4764 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache() const {
4765   if (is_autobox_cache())  return this;
4766   const TypeOopPtr* etype = elem()->make_oopptr();
4767   if (etype == nullptr)  return this;
4768   // The pointers in the autobox arrays are always non-null.
4769   etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4770   const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable());
4771   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth, /*is_autobox_cache=*/true);
4772 }
4773 
4774 //------------------------------eq---------------------------------------------
4775 // Structural equality check for Type representations
4776 bool TypeAryPtr::eq( const Type *t ) const {
4777   const TypeAryPtr *p = t->is_aryptr();
4778   return
4779     _ary == p->_ary &&  // Check array
4780     TypeOopPtr::eq(p);  // Check sub-parts

4781 }
4782 
4783 //------------------------------hash-------------------------------------------
4784 // Type-specific hashing function.
4785 uint TypeAryPtr::hash(void) const {
4786   return (uint)(uintptr_t)_ary + TypeOopPtr::hash();
4787 }
4788 
4789 bool TypeAryPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4790   return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
4791 }
4792 
4793 bool TypeAryPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const {
4794   return TypePtr::is_same_java_type_as_helper_for_array(this, other);
4795 }
4796 
4797 bool TypeAryPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4798   return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
4799 }
4800 //------------------------------meet-------------------------------------------
4801 // Compute the MEET of two types.  It returns a new Type object.
4802 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
4803   // Perform a fast test for common case; meeting the same types together.
4804   if( this == t ) return this;  // Meeting same type-rep?
4805   // Current "this->_base" is Pointer
4806   switch (t->base()) {          // switch on original type

4813   case HalfFloatBot:
4814   case FloatTop:
4815   case FloatCon:
4816   case FloatBot:
4817   case DoubleTop:
4818   case DoubleCon:
4819   case DoubleBot:
4820   case NarrowOop:
4821   case NarrowKlass:
4822   case Bottom:                  // Ye Olde Default
4823     return Type::BOTTOM;
4824   case Top:
4825     return this;
4826 
4827   default:                      // All else is a mistake
4828     typerr(t);
4829 
4830   case OopPtr: {                // Meeting to OopPtrs
4831     // Found a OopPtr type vs self-AryPtr type
4832     const TypeOopPtr *tp = t->is_oopptr();
4833     int offset = meet_offset(tp->offset());
4834     PTR ptr = meet_ptr(tp->ptr());
4835     int depth = meet_inline_depth(tp->inline_depth());
4836     const TypePtr* speculative = xmeet_speculative(tp);
4837     switch (tp->ptr()) {
4838     case TopPTR:
4839     case AnyNull: {
4840       int instance_id = meet_instance_id(InstanceTop);
4841       return make(ptr, (ptr == Constant ? const_oop() : nullptr),
4842                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4843     }
4844     case BotPTR:
4845     case NotNull: {
4846       int instance_id = meet_instance_id(tp->instance_id());
4847       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4848     }
4849     default: ShouldNotReachHere();
4850     }
4851   }
4852 
4853   case AnyPtr: {                // Meeting two AnyPtrs
4854     // Found an AnyPtr type vs self-AryPtr type
4855     const TypePtr *tp = t->is_ptr();
4856     int offset = meet_offset(tp->offset());
4857     PTR ptr = meet_ptr(tp->ptr());
4858     const TypePtr* speculative = xmeet_speculative(tp);
4859     int depth = meet_inline_depth(tp->inline_depth());
4860     switch (tp->ptr()) {
4861     case TopPTR:
4862       return this;
4863     case BotPTR:
4864     case NotNull:
4865       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4866     case Null:
4867       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4868       // else fall through to AnyNull
4869     case AnyNull: {
4870       int instance_id = meet_instance_id(InstanceTop);
4871       return make(ptr, (ptr == Constant ? const_oop() : nullptr),
4872                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4873     }
4874     default: ShouldNotReachHere();
4875     }
4876   }
4877 
4878   case MetadataPtr:
4879   case KlassPtr:
4880   case InstKlassPtr:
4881   case AryKlassPtr:
4882   case RawPtr: return TypePtr::BOTTOM;
4883 
4884   case AryPtr: {                // Meeting 2 references?
4885     const TypeAryPtr *tap = t->is_aryptr();
4886     int off = meet_offset(tap->offset());

4887     const Type* tm = _ary->meet_speculative(tap->_ary);
4888     const TypeAry* tary = tm->isa_ary();
4889     if (tary == nullptr) {
4890       assert(tm == Type::TOP || tm == Type::BOTTOM, "");
4891       return tm;
4892     }
4893     PTR ptr = meet_ptr(tap->ptr());
4894     int instance_id = meet_instance_id(tap->instance_id());
4895     const TypePtr* speculative = xmeet_speculative(tap);
4896     int depth = meet_inline_depth(tap->inline_depth());
4897 
4898     ciKlass* res_klass = nullptr;
4899     bool res_xk = false;




4900     const Type* elem = tary->_elem;
4901     if (meet_aryptr(ptr, elem, this, tap, res_klass, res_xk) == NOT_SUBTYPE) {
4902       instance_id = InstanceBot;














4903     }
4904 
4905     ciObject* o = nullptr;             // Assume not constant when done
4906     ciObject* this_oop = const_oop();
4907     ciObject* tap_oop = tap->const_oop();
4908     if (ptr == Constant) {
4909       if (this_oop != nullptr && tap_oop != nullptr &&
4910           this_oop->equals(tap_oop)) {
4911         o = tap_oop;
4912       } else if (above_centerline(_ptr)) {
4913         o = tap_oop;
4914       } else if (above_centerline(tap->_ptr)) {
4915         o = this_oop;
4916       } else {
4917         ptr = NotNull;
4918       }
4919     }
4920     return make(ptr, o, TypeAry::make(elem, tary->_size, tary->_stable), res_klass, res_xk, off, instance_id, speculative, depth);
4921   }
4922 
4923   // All arrays inherit from Object class
4924   case InstPtr: {
4925     const TypeInstPtr *tp = t->is_instptr();
4926     int offset = meet_offset(tp->offset());
4927     PTR ptr = meet_ptr(tp->ptr());
4928     int instance_id = meet_instance_id(tp->instance_id());
4929     const TypePtr* speculative = xmeet_speculative(tp);
4930     int depth = meet_inline_depth(tp->inline_depth());
4931     const TypeInterfaces* interfaces = meet_interfaces(tp);
4932     const TypeInterfaces* tp_interfaces = tp->_interfaces;
4933     const TypeInterfaces* this_interfaces = _interfaces;
4934 
4935     switch (ptr) {
4936     case TopPTR:
4937     case AnyNull:                // Fall 'down' to dual of object klass
4938       // For instances when a subclass meets a superclass we fall
4939       // below the centerline when the superclass is exact. We need to
4940       // do the same here.
4941       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) && !tp->klass_is_exact()) {
4942         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);












4943       } else {
4944         // cannot subclass, so the meet has to fall badly below the centerline
4945         ptr = NotNull;
4946         instance_id = InstanceBot;
4947         interfaces = this_interfaces->intersection_with(tp_interfaces);
4948         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr,offset, instance_id, speculative, depth);

4949       }
4950     case Constant:
4951     case NotNull:
4952     case BotPTR:                // Fall down to object klass
4953       // LCA is object_klass, but if we subclass from the top we can do better
4954       if (above_centerline(tp->ptr())) {
4955         // If 'tp'  is above the centerline and it is Object class
4956         // then we can subclass in the Java class hierarchy.
4957         // For instances when a subclass meets a superclass we fall
4958         // below the centerline when the superclass is exact. We need
4959         // to do the same here.
4960         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) && !tp->klass_is_exact()) {



4961           // that is, my array type is a subtype of 'tp' klass
4962           return make(ptr, (ptr == Constant ? const_oop() : nullptr),
4963                       _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4964         }
4965       }
4966       // The other case cannot happen, since t cannot be a subtype of an array.
4967       // The meet falls down to Object class below centerline.
4968       if (ptr == Constant) {
4969          ptr = NotNull;
4970       }
4971       if (instance_id > 0) {
4972         instance_id = InstanceBot;
4973       }


4974       interfaces = this_interfaces->intersection_with(tp_interfaces);
4975       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr, offset, instance_id, speculative, depth);


4976     default: typerr(t);
4977     }
4978   }
4979   }
4980   return this;                  // Lint noise
4981 }
4982 
4983 
4984 template<class T> TypePtr::MeetResult TypePtr::meet_aryptr(PTR& ptr, const Type*& elem, const T* this_ary,
4985                                                            const T* other_ary, ciKlass*& res_klass, bool& res_xk) {
4986   int dummy;
4987   bool this_top_or_bottom = (this_ary->base_element_type(dummy) == Type::TOP || this_ary->base_element_type(dummy) == Type::BOTTOM);
4988   bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
4989   ciKlass* this_klass = this_ary->klass();
4990   ciKlass* other_klass = other_ary->klass();
4991   bool this_xk = this_ary->klass_is_exact();
4992   bool other_xk = other_ary->klass_is_exact();
4993   PTR this_ptr = this_ary->ptr();
4994   PTR other_ptr = other_ary->ptr();









4995   res_klass = nullptr;
4996   MeetResult result = SUBTYPE;






4997   if (elem->isa_int()) {
4998     // Integral array element types have irrelevant lattice relations.
4999     // It is the klass that determines array layout, not the element type.
5000     if (this_top_or_bottom)
5001       res_klass = other_klass;
5002     else if (other_top_or_bottom || other_klass == this_klass) {
5003       res_klass = this_klass;
5004     } else {
5005       // Something like byte[int+] meets char[int+].
5006       // This must fall to bottom, not (int[-128..65535])[int+].
5007       // instance_id = InstanceBot;
5008       elem = Type::BOTTOM;
5009       result = NOT_SUBTYPE;
5010       if (above_centerline(ptr) || ptr == Constant) {
5011         ptr = NotNull;
5012         res_xk = false;
5013         return NOT_SUBTYPE;
5014       }
5015     }
5016   } else {// Non integral arrays.
5017     // Must fall to bottom if exact klasses in upper lattice
5018     // are not equal or super klass is exact.
5019     if ((above_centerline(ptr) || ptr == Constant) && !this_ary->is_same_java_type_as(other_ary) &&
5020         // meet with top[] and bottom[] are processed further down:
5021         !this_top_or_bottom && !other_top_or_bottom &&
5022         // both are exact and not equal:

5024          // 'tap'  is exact and super or unrelated:
5025          (other_xk && !other_ary->is_meet_subtype_of(this_ary)) ||
5026          // 'this' is exact and super or unrelated:
5027          (this_xk && !this_ary->is_meet_subtype_of(other_ary)))) {
5028       if (above_centerline(ptr) || (elem->make_ptr() && above_centerline(elem->make_ptr()->_ptr))) {
5029         elem = Type::BOTTOM;
5030       }
5031       ptr = NotNull;
5032       res_xk = false;
5033       return NOT_SUBTYPE;
5034     }
5035   }
5036 
5037   res_xk = false;
5038   switch (other_ptr) {
5039     case AnyNull:
5040     case TopPTR:
5041       // Compute new klass on demand, do not use tap->_klass
5042       if (below_centerline(this_ptr)) {
5043         res_xk = this_xk;



5044       } else {
5045         res_xk = (other_xk || this_xk);
5046       }
5047       return result;
5048     case Constant: {
5049       if (this_ptr == Constant) {


5050         res_xk = true;
5051       } else if(above_centerline(this_ptr)) {
5052         res_xk = true;
5053       } else {
5054         // Only precise for identical arrays
5055         res_xk = this_xk && (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom));






5056       }
5057       return result;
5058     }
5059     case NotNull:
5060     case BotPTR:
5061       // Compute new klass on demand, do not use tap->_klass
5062       if (above_centerline(this_ptr)) {
5063         res_xk = other_xk;



5064       } else {
5065         res_xk = (other_xk && this_xk) &&
5066                  (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom)); // Only precise for identical arrays






5067       }
5068       return result;
5069     default:  {
5070       ShouldNotReachHere();
5071       return result;
5072     }
5073   }
5074   return result;
5075 }
5076 
5077 
5078 //------------------------------xdual------------------------------------------
5079 // Dual: compute field-by-field dual
5080 const Type *TypeAryPtr::xdual() const {
5081   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());










5082 }
5083 
5084 //------------------------------dump2------------------------------------------
5085 #ifndef PRODUCT
5086 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5087   st->print("aryptr:");
5088   _ary->dump2(d, depth, st);
5089   _interfaces->dump(st);
5090 
5091   if (_ptr == Constant) {
5092     const_oop()->print(st);
5093   }
5094 
5095   st->print(":%s", ptr_msg[_ptr]);
5096   if (_klass_is_exact) {
5097     st->print(":exact");
5098   }
5099 
5100   if( _offset != 0 ) {






















5101     BasicType basic_elem_type = elem()->basic_type();
5102     int header_size = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5103     if( _offset == OffsetTop )       st->print("+undefined");
5104     else if( _offset == OffsetBot )  st->print("+any");
5105     else if( _offset < header_size ) st->print("+%d", _offset);
5106     else {
5107       if (basic_elem_type == T_ILLEGAL) {
5108         st->print("+any");
5109       } else {
5110         int elem_size = type2aelembytes(basic_elem_type);
5111         st->print("[%d]", (_offset - header_size)/elem_size);
5112       }
5113     }
5114   }
5115 
5116   dump_instance_id(st);
5117   dump_inline_depth(st);
5118   dump_speculative(st);
5119 }
5120 #endif
5121 
5122 bool TypeAryPtr::empty(void) const {
5123   if (_ary->empty())       return true;




5124   return TypeOopPtr::empty();
5125 }
5126 
5127 //------------------------------add_offset-------------------------------------
5128 const TypePtr* TypeAryPtr::add_offset(intptr_t offset) const {
5129   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
5130 }
5131 
5132 const TypeAryPtr* TypeAryPtr::with_offset(intptr_t offset) const {
5133   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, offset, _instance_id, with_offset_speculative(offset), _inline_depth);
5134 }
5135 
5136 const TypeAryPtr* TypeAryPtr::with_ary(const TypeAry* ary) const {
5137   return make(_ptr, _const_oop, ary, _klass, _klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
5138 }
5139 
5140 const TypeAryPtr* TypeAryPtr::remove_speculative() const {
5141   if (_speculative == nullptr) {
5142     return this;
5143   }
5144   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
5145   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, nullptr, _inline_depth);













5146 }
5147 
5148 const TypePtr* TypeAryPtr::with_inline_depth(int depth) const {
5149   if (!UseInlineDepthForSpeculativeTypes) {
5150     return this;
5151   }
5152   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth);











































5153 }
5154 
5155 const TypePtr* TypeAryPtr::with_instance_id(int instance_id) const {
5156   assert(is_known_instance(), "should be known");
5157   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
5158 }
5159 
5160 //=============================================================================
5161 

5162 //------------------------------hash-------------------------------------------
5163 // Type-specific hashing function.
5164 uint TypeNarrowPtr::hash(void) const {
5165   return _ptrtype->hash() + 7;
5166 }
5167 
5168 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
5169   return _ptrtype->singleton();
5170 }
5171 
5172 bool TypeNarrowPtr::empty(void) const {
5173   return _ptrtype->empty();
5174 }
5175 
5176 intptr_t TypeNarrowPtr::get_con() const {
5177   return _ptrtype->get_con();
5178 }
5179 
5180 bool TypeNarrowPtr::eq( const Type *t ) const {
5181   const TypeNarrowPtr* tc = isa_same_narrowptr(t);

5235   case HalfFloatTop:
5236   case HalfFloatCon:
5237   case HalfFloatBot:
5238   case FloatTop:
5239   case FloatCon:
5240   case FloatBot:
5241   case DoubleTop:
5242   case DoubleCon:
5243   case DoubleBot:
5244   case AnyPtr:
5245   case RawPtr:
5246   case OopPtr:
5247   case InstPtr:
5248   case AryPtr:
5249   case MetadataPtr:
5250   case KlassPtr:
5251   case InstKlassPtr:
5252   case AryKlassPtr:
5253   case NarrowOop:
5254   case NarrowKlass:
5255 
5256   case Bottom:                  // Ye Olde Default
5257     return Type::BOTTOM;
5258   case Top:
5259     return this;
5260 
5261   default:                      // All else is a mistake
5262     typerr(t);
5263 
5264   } // End of switch
5265 
5266   return this;
5267 }
5268 
5269 #ifndef PRODUCT
5270 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5271   _ptrtype->dump2(d, depth, st);
5272 }
5273 #endif
5274 
5275 const TypeNarrowOop *TypeNarrowOop::BOTTOM;

5319     return (one == two) && TypePtr::eq(t);
5320   } else {
5321     return one->equals(two) && TypePtr::eq(t);
5322   }
5323 }
5324 
5325 //------------------------------hash-------------------------------------------
5326 // Type-specific hashing function.
5327 uint TypeMetadataPtr::hash(void) const {
5328   return
5329     (metadata() ? metadata()->hash() : 0) +
5330     TypePtr::hash();
5331 }
5332 
5333 //------------------------------singleton--------------------------------------
5334 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5335 // constants
5336 bool TypeMetadataPtr::singleton(void) const {
5337   // detune optimizer to not generate constant metadata + constant offset as a constant!
5338   // TopPTR, Null, AnyNull, Constant are all singletons
5339   return (_offset == 0) && !below_centerline(_ptr);
5340 }
5341 
5342 //------------------------------add_offset-------------------------------------
5343 const TypePtr* TypeMetadataPtr::add_offset( intptr_t offset ) const {
5344   return make( _ptr, _metadata, xadd_offset(offset));
5345 }
5346 
5347 //-----------------------------filter------------------------------------------
5348 // Do not allow interface-vs.-noninterface joins to collapse to top.
5349 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
5350   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
5351   if (ft == nullptr || ft->empty())
5352     return Type::TOP;           // Canonical empty value
5353   return ft;
5354 }
5355 
5356  //------------------------------get_con----------------------------------------
5357 intptr_t TypeMetadataPtr::get_con() const {
5358   assert( _ptr == Null || _ptr == Constant, "" );
5359   assert( _offset >= 0, "" );
5360 
5361   if (_offset != 0) {
5362     // After being ported to the compiler interface, the compiler no longer
5363     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5364     // to a handle at compile time.  This handle is embedded in the generated
5365     // code and dereferenced at the time the nmethod is made.  Until that time,
5366     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5367     // have access to the addresses!).  This does not seem to currently happen,
5368     // but this assertion here is to help prevent its occurrence.
5369     tty->print_cr("Found oop constant with non-zero offset");
5370     ShouldNotReachHere();
5371   }
5372 
5373   return (intptr_t)metadata()->constant_encoding();
5374 }
5375 
5376 //------------------------------cast_to_ptr_type-------------------------------
5377 const TypeMetadataPtr* TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
5378   if( ptr == _ptr ) return this;
5379   return make(ptr, metadata(), _offset);
5380 }
5381 

5395   case HalfFloatBot:
5396   case FloatTop:
5397   case FloatCon:
5398   case FloatBot:
5399   case DoubleTop:
5400   case DoubleCon:
5401   case DoubleBot:
5402   case NarrowOop:
5403   case NarrowKlass:
5404   case Bottom:                  // Ye Olde Default
5405     return Type::BOTTOM;
5406   case Top:
5407     return this;
5408 
5409   default:                      // All else is a mistake
5410     typerr(t);
5411 
5412   case AnyPtr: {
5413     // Found an AnyPtr type vs self-OopPtr type
5414     const TypePtr *tp = t->is_ptr();
5415     int offset = meet_offset(tp->offset());
5416     PTR ptr = meet_ptr(tp->ptr());
5417     switch (tp->ptr()) {
5418     case Null:
5419       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5420       // else fall through:
5421     case TopPTR:
5422     case AnyNull: {
5423       return make(ptr, _metadata, offset);
5424     }
5425     case BotPTR:
5426     case NotNull:
5427       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5428     default: typerr(t);
5429     }
5430   }
5431 
5432   case RawPtr:
5433   case KlassPtr:
5434   case InstKlassPtr:
5435   case AryKlassPtr:
5436   case OopPtr:
5437   case InstPtr:
5438   case AryPtr:
5439     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
5440 
5441   case MetadataPtr: {
5442     const TypeMetadataPtr *tp = t->is_metadataptr();
5443     int offset = meet_offset(tp->offset());
5444     PTR tptr = tp->ptr();
5445     PTR ptr = meet_ptr(tptr);
5446     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
5447     if (tptr == TopPTR || _ptr == TopPTR ||
5448         metadata()->equals(tp->metadata())) {
5449       return make(ptr, md, offset);
5450     }
5451     // metadata is different
5452     if( ptr == Constant ) {  // Cannot be equal constants, so...
5453       if( tptr == Constant && _ptr != Constant)  return t;
5454       if( _ptr == Constant && tptr != Constant)  return this;
5455       ptr = NotNull;            // Fall down in lattice
5456     }
5457     return make(ptr, nullptr, offset);
5458     break;
5459   }
5460   } // End of switch
5461   return this;                  // Return the double constant
5462 }
5463 

5467 const Type *TypeMetadataPtr::xdual() const {
5468   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
5469 }
5470 
5471 //------------------------------dump2------------------------------------------
5472 #ifndef PRODUCT
5473 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5474   st->print("metadataptr:%s", ptr_msg[_ptr]);
5475   if (metadata() != nullptr) {
5476     st->print(":" INTPTR_FORMAT, p2i(metadata()));
5477   }
5478   dump_offset(st);
5479 }
5480 #endif
5481 
5482 
5483 //=============================================================================
5484 // Convenience common pre-built type.
5485 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
5486 
5487 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
5488   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
5489 }
5490 
5491 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
5492   return make(Constant, m, 0);
5493 }
5494 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
5495   return make(Constant, m, 0);
5496 }
5497 
5498 //------------------------------make-------------------------------------------
5499 // Create a meta data constant
5500 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
5501   assert(m == nullptr || !m->is_klass(), "wrong type");
5502   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
5503 }
5504 
5505 
5506 const TypeKlassPtr* TypeAryPtr::as_klass_type(bool try_for_exact) const {
5507   const Type* elem = _ary->_elem;
5508   bool xk = klass_is_exact();

5509   if (elem->make_oopptr() != nullptr) {

5510     elem = elem->make_oopptr()->as_klass_type(try_for_exact);
5511     if (elem->is_klassptr()->klass_is_exact()) {
5512       xk = true;









5513     }
5514   }
5515   return TypeAryKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, elem, klass(), 0);
5516 }
5517 
5518 const TypeKlassPtr* TypeKlassPtr::make(ciKlass *klass, InterfaceHandling interface_handling) {
5519   if (klass->is_instance_klass()) {
5520     return TypeInstKlassPtr::make(klass, interface_handling);
5521   }
5522   return TypeAryKlassPtr::make(klass, interface_handling);
5523 }
5524 
5525 const TypeKlassPtr* TypeKlassPtr::make(PTR ptr, ciKlass* klass, int offset, InterfaceHandling interface_handling) {
5526   if (klass->is_instance_klass()) {
5527     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
5528     return TypeInstKlassPtr::make(ptr, klass, interfaces, offset);
5529   }
5530   return TypeAryKlassPtr::make(ptr, klass, offset, interface_handling);
5531 }
5532 
5533 
5534 //------------------------------TypeKlassPtr-----------------------------------
5535 TypeKlassPtr::TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, int offset)
5536   : TypePtr(t, ptr, offset), _klass(klass), _interfaces(interfaces) {
5537   assert(klass == nullptr || !klass->is_loaded() || (klass->is_instance_klass() && !klass->is_interface()) ||
5538          klass->is_type_array_klass() || !klass->as_obj_array_klass()->base_element_klass()->is_interface(), "no interface here");
5539 }
5540 
5541 // Is there a single ciKlass* that can represent that type?
5542 ciKlass* TypeKlassPtr::exact_klass_helper() const {
5543   assert(_klass->is_instance_klass() && !_klass->is_interface(), "No interface");
5544   if (_interfaces->empty()) {
5545     return _klass;
5546   }
5547   if (_klass != ciEnv::current()->Object_klass()) {
5548     if (_interfaces->eq(_klass->as_instance_klass())) {
5549       return _klass;
5550     }
5551     return nullptr;
5552   }
5553   return _interfaces->exact_klass();
5554 }
5555 
5556 //------------------------------eq---------------------------------------------
5557 // Structural equality check for Type representations
5558 bool TypeKlassPtr::eq(const Type *t) const {
5559   const TypeKlassPtr *p = t->is_klassptr();
5560   return
5561     _interfaces->eq(p->_interfaces) &&
5562     TypePtr::eq(p);
5563 }
5564 
5565 //------------------------------hash-------------------------------------------
5566 // Type-specific hashing function.
5567 uint TypeKlassPtr::hash(void) const {
5568   return TypePtr::hash() + _interfaces->hash();
5569 }
5570 
5571 //------------------------------singleton--------------------------------------
5572 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5573 // constants
5574 bool TypeKlassPtr::singleton(void) const {
5575   // detune optimizer to not generate constant klass + constant offset as a constant!
5576   // TopPTR, Null, AnyNull, Constant are all singletons
5577   return (_offset == 0) && !below_centerline(_ptr);
5578 }
5579 
5580 // Do not allow interface-vs.-noninterface joins to collapse to top.
5581 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
5582   // logic here mirrors the one from TypeOopPtr::filter. See comments
5583   // there.
5584   const Type* ft = join_helper(kills, include_speculative);
5585 
5586   if (ft->empty()) {
5587     return Type::TOP;           // Canonical empty value
5588   }
5589 
5590   return ft;
5591 }
5592 
5593 const TypeInterfaces* TypeKlassPtr::meet_interfaces(const TypeKlassPtr* other) const {
5594   if (above_centerline(_ptr) && above_centerline(other->_ptr)) {
5595     return _interfaces->union_with(other->_interfaces);
5596   } else if (above_centerline(_ptr) && !above_centerline(other->_ptr)) {
5597     return other->_interfaces;
5598   } else if (above_centerline(other->_ptr) && !above_centerline(_ptr)) {
5599     return _interfaces;
5600   }
5601   return _interfaces->intersection_with(other->_interfaces);
5602 }
5603 
5604 //------------------------------get_con----------------------------------------
5605 intptr_t TypeKlassPtr::get_con() const {
5606   assert( _ptr == Null || _ptr == Constant, "" );
5607   assert( _offset >= 0, "" );
5608 
5609   if (_offset != 0) {
5610     // After being ported to the compiler interface, the compiler no longer
5611     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5612     // to a handle at compile time.  This handle is embedded in the generated
5613     // code and dereferenced at the time the nmethod is made.  Until that time,
5614     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5615     // have access to the addresses!).  This does not seem to currently happen,
5616     // but this assertion here is to help prevent its occurrence.
5617     tty->print_cr("Found oop constant with non-zero offset");
5618     ShouldNotReachHere();
5619   }
5620 
5621   ciKlass* k = exact_klass();
5622 
5623   return (intptr_t)k->constant_encoding();
5624 }
5625 
5626 //=============================================================================
5627 // Convenience common pre-built types.
5628 
5629 // Not-null object klass or below
5630 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT;
5631 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT_OR_NULL;
5632 
5633 bool TypeInstKlassPtr::eq(const Type *t) const {
5634   const TypeKlassPtr *p = t->is_klassptr();
5635   return
5636     klass()->equals(p->klass()) &&

5637     TypeKlassPtr::eq(p);
5638 }
5639 
5640 uint TypeInstKlassPtr::hash(void) const {
5641   return klass()->hash() + TypeKlassPtr::hash();
5642 }
5643 
5644 const TypeInstKlassPtr *TypeInstKlassPtr::make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, int offset) {



5645   TypeInstKlassPtr *r =
5646     (TypeInstKlassPtr*)(new TypeInstKlassPtr(ptr, k, interfaces, offset))->hashcons();
5647 
5648   return r;
5649 }
5650 







5651 //------------------------------add_offset-------------------------------------
5652 // Access internals of klass object
5653 const TypePtr* TypeInstKlassPtr::add_offset( intptr_t offset ) const {
5654   return make( _ptr, klass(), _interfaces, xadd_offset(offset) );
5655 }
5656 
5657 const TypeInstKlassPtr* TypeInstKlassPtr::with_offset(intptr_t offset) const {
5658   return make(_ptr, klass(), _interfaces, offset);
5659 }
5660 
5661 //------------------------------cast_to_ptr_type-------------------------------
5662 const TypeInstKlassPtr* TypeInstKlassPtr::cast_to_ptr_type(PTR ptr) const {
5663   assert(_base == InstKlassPtr, "subclass must override cast_to_ptr_type");
5664   if( ptr == _ptr ) return this;
5665   return make(ptr, _klass, _interfaces, _offset);
5666 }
5667 
5668 
5669 bool TypeInstKlassPtr::must_be_exact() const {
5670   if (!_klass->is_loaded())  return false;
5671   ciInstanceKlass* ik = _klass->as_instance_klass();
5672   if (ik->is_final())  return true;  // cannot clear xk
5673   return false;
5674 }
5675 
5676 //-----------------------------cast_to_exactness-------------------------------
5677 const TypeKlassPtr* TypeInstKlassPtr::cast_to_exactness(bool klass_is_exact) const {
5678   if (klass_is_exact == (_ptr == Constant)) return this;
5679   if (must_be_exact()) return this;
5680   ciKlass* k = klass();
5681   return make(klass_is_exact ? Constant : NotNull, k, _interfaces, _offset);

5682 }
5683 
5684 
5685 //-----------------------------as_instance_type--------------------------------
5686 // Corresponding type for an instance of the given class.
5687 // It will be NotNull, and exact if and only if the klass type is exact.
5688 const TypeOopPtr* TypeInstKlassPtr::as_instance_type(bool klass_change) const {
5689   ciKlass* k = klass();
5690   bool xk = klass_is_exact();
5691   Compile* C = Compile::current();
5692   Dependencies* deps = C->dependencies();
5693   assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
5694   // Element is an instance
5695   bool klass_is_exact = false;
5696   const TypeInterfaces* interfaces = _interfaces;

5697   if (k->is_loaded()) {
5698     // Try to set klass_is_exact.
5699     ciInstanceKlass* ik = k->as_instance_klass();
5700     klass_is_exact = ik->is_final();
5701     if (!klass_is_exact && klass_change
5702         && deps != nullptr && UseUniqueSubclasses) {
5703       ciInstanceKlass* sub = ik->unique_concrete_subklass();
5704       if (sub != nullptr) {
5705         if (_interfaces->eq(sub)) {
5706           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
5707           k = ik = sub;
5708           xk = sub->is_final();
5709         }
5710       }
5711     }
5712   }
5713   return TypeInstPtr::make(TypePtr::BotPTR, k, interfaces, xk, nullptr, 0);


5714 }
5715 
5716 //------------------------------xmeet------------------------------------------
5717 // Compute the MEET of two types, return a new Type object.
5718 const Type    *TypeInstKlassPtr::xmeet( const Type *t ) const {
5719   // Perform a fast test for common case; meeting the same types together.
5720   if( this == t ) return this;  // Meeting same type-rep?
5721 
5722   // Current "this->_base" is Pointer
5723   switch (t->base()) {          // switch on original type
5724 
5725   case Int:                     // Mixing ints & oops happens when javac
5726   case Long:                    // reuses local variables
5727   case HalfFloatTop:
5728   case HalfFloatCon:
5729   case HalfFloatBot:
5730   case FloatTop:
5731   case FloatCon:
5732   case FloatBot:
5733   case DoubleTop:
5734   case DoubleCon:
5735   case DoubleBot:
5736   case NarrowOop:
5737   case NarrowKlass:
5738   case Bottom:                  // Ye Olde Default
5739     return Type::BOTTOM;
5740   case Top:
5741     return this;
5742 
5743   default:                      // All else is a mistake
5744     typerr(t);
5745 
5746   case AnyPtr: {                // Meeting to AnyPtrs
5747     // Found an AnyPtr type vs self-KlassPtr type
5748     const TypePtr *tp = t->is_ptr();
5749     int offset = meet_offset(tp->offset());
5750     PTR ptr = meet_ptr(tp->ptr());
5751     switch (tp->ptr()) {
5752     case TopPTR:
5753       return this;
5754     case Null:
5755       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5756     case AnyNull:
5757       return make( ptr, klass(), _interfaces, offset );
5758     case BotPTR:
5759     case NotNull:
5760       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5761     default: typerr(t);
5762     }
5763   }
5764 
5765   case RawPtr:
5766   case MetadataPtr:
5767   case OopPtr:
5768   case AryPtr:                  // Meet with AryPtr
5769   case InstPtr:                 // Meet with InstPtr
5770     return TypePtr::BOTTOM;
5771 
5772   //
5773   //             A-top         }
5774   //           /   |   \       }  Tops
5775   //       B-top A-any C-top   }
5776   //          | /  |  \ |      }  Any-nulls
5777   //       B-any   |   C-any   }
5778   //          |    |    |
5779   //       B-con A-con C-con   } constants; not comparable across classes
5780   //          |    |    |
5781   //       B-not   |   C-not   }
5782   //          | \  |  / |      }  not-nulls
5783   //       B-bot A-not C-bot   }
5784   //           \   |   /       }  Bottoms
5785   //             A-bot         }
5786   //
5787 
5788   case InstKlassPtr: {  // Meet two KlassPtr types
5789     const TypeInstKlassPtr *tkls = t->is_instklassptr();
5790     int  off     = meet_offset(tkls->offset());
5791     PTR  ptr     = meet_ptr(tkls->ptr());
5792     const TypeInterfaces* interfaces = meet_interfaces(tkls);
5793 
5794     ciKlass* res_klass = nullptr;
5795     bool res_xk = false;
5796     switch(meet_instptr(ptr, interfaces, this, tkls, res_klass, res_xk)) {

5797       case UNLOADED:
5798         ShouldNotReachHere();
5799       case SUBTYPE:
5800       case NOT_SUBTYPE:
5801       case LCA:
5802       case QUICK: {
5803         assert(res_xk == (ptr == Constant), "");
5804         const Type* res = make(ptr, res_klass, interfaces, off);
5805         return res;
5806       }
5807       default:
5808         ShouldNotReachHere();
5809     }
5810   } // End of case KlassPtr
5811   case AryKlassPtr: {                // All arrays inherit from Object class
5812     const TypeAryKlassPtr *tp = t->is_aryklassptr();
5813     int offset = meet_offset(tp->offset());
5814     PTR ptr = meet_ptr(tp->ptr());
5815     const TypeInterfaces* interfaces = meet_interfaces(tp);
5816     const TypeInterfaces* tp_interfaces = tp->_interfaces;
5817     const TypeInterfaces* this_interfaces = _interfaces;
5818 
5819     switch (ptr) {
5820     case TopPTR:
5821     case AnyNull:                // Fall 'down' to dual of object klass
5822       // For instances when a subclass meets a superclass we fall
5823       // below the centerline when the superclass is exact. We need to
5824       // do the same here.
5825       if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces->contains(this_interfaces) && !klass_is_exact()) {
5826         return TypeAryKlassPtr::make(ptr, tp->elem(), tp->klass(), offset);



5827       } else {
5828         // cannot subclass, so the meet has to fall badly below the centerline
5829         ptr = NotNull;
5830         interfaces = _interfaces->intersection_with(tp->_interfaces);
5831         return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset);

5832       }
5833     case Constant:
5834     case NotNull:
5835     case BotPTR:                // Fall down to object klass
5836       // LCA is object_klass, but if we subclass from the top we can do better
5837       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
5838         // If 'this' (InstPtr) is above the centerline and it is Object class
5839         // then we can subclass in the Java class hierarchy.
5840         // For instances when a subclass meets a superclass we fall
5841         // below the centerline when the superclass is exact. We need
5842         // to do the same here.
5843         if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces->contains(this_interfaces) && !klass_is_exact()) {



5844           // that is, tp's array type is a subtype of my klass
5845           return TypeAryKlassPtr::make(ptr,
5846                                        tp->elem(), tp->klass(), offset);
5847         }
5848       }
5849       // The other case cannot happen, since I cannot be a subtype of an array.
5850       // The meet falls down to Object class below centerline.
5851       if( ptr == Constant )
5852          ptr = NotNull;
5853       interfaces = this_interfaces->intersection_with(tp_interfaces);
5854       return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset);


5855     default: typerr(t);
5856     }
5857   }
5858 
5859   } // End of switch
5860   return this;                  // Return the double constant
5861 }
5862 
5863 //------------------------------xdual------------------------------------------
5864 // Dual: compute field-by-field dual
5865 const Type    *TypeInstKlassPtr::xdual() const {
5866   return new TypeInstKlassPtr(dual_ptr(), klass(), _interfaces, dual_offset());
5867 }
5868 
5869 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
5870   static_assert(std::is_base_of<T2, T1>::value, "");
5871   if (!this_one->is_loaded() || !other->is_loaded()) {
5872     return false;
5873   }
5874   if (!this_one->is_instance_type(other)) {
5875     return false;
5876   }
5877 
5878   if (!other_exact) {
5879     return false;
5880   }
5881 
5882   if (other->klass()->equals(ciEnv::current()->Object_klass()) && other->_interfaces->empty()) {
5883     return true;
5884   }
5885 
5886   return this_one->klass()->is_subtype_of(other->klass()) && this_one->_interfaces->contains(other->_interfaces);

5940 
5941   if (this_exact) {
5942     return this_one->klass()->is_subtype_of(other->klass()) && this_one->_interfaces->contains(other->_interfaces);
5943   }
5944 
5945   return true;
5946 }
5947 
5948 bool TypeInstKlassPtr::maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
5949   return TypePtr::maybe_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
5950 }
5951 
5952 const TypeKlassPtr* TypeInstKlassPtr::try_improve() const {
5953   if (!UseUniqueSubclasses) {
5954     return this;
5955   }
5956   ciKlass* k = klass();
5957   Compile* C = Compile::current();
5958   Dependencies* deps = C->dependencies();
5959   assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
5960   const TypeInterfaces* interfaces = _interfaces;
5961   if (k->is_loaded()) {
5962     ciInstanceKlass* ik = k->as_instance_klass();
5963     bool klass_is_exact = ik->is_final();
5964     if (!klass_is_exact &&
5965         deps != nullptr) {
5966       ciInstanceKlass* sub = ik->unique_concrete_subklass();
5967       if (sub != nullptr) {
5968         if (_interfaces->eq(sub)) {


5969           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
5970           k = ik = sub;
5971           klass_is_exact = sub->is_final();
5972           return TypeKlassPtr::make(klass_is_exact ? Constant : _ptr, k, _offset);
5973         }
5974       }
5975     }
5976   }
5977   return this;
5978 }
5979 




5980 #ifndef PRODUCT
5981 void TypeInstKlassPtr::dump2(Dict& d, uint depth, outputStream* st) const {
5982   st->print("instklassptr:");
5983   klass()->print_name_on(st);
5984   _interfaces->dump(st);
5985   st->print(":%s", ptr_msg[_ptr]);
5986   dump_offset(st);

5987 }
5988 #endif // PRODUCT
5989 
5990 const TypeAryKlassPtr *TypeAryKlassPtr::make(PTR ptr, const Type* elem, ciKlass* k, int offset) {
5991   return (TypeAryKlassPtr*)(new TypeAryKlassPtr(ptr, elem, k, offset))->hashcons();




5992 }
5993 
5994 const TypeAryKlassPtr *TypeAryKlassPtr::make(PTR ptr, ciKlass* k, int offset, InterfaceHandling interface_handling) {









5995   if (k->is_obj_array_klass()) {
5996     // Element is an object array. Recursively call ourself.
5997     ciKlass* eklass = k->as_obj_array_klass()->element_klass();
5998     const TypeKlassPtr *etype = TypeKlassPtr::make(eklass, interface_handling)->cast_to_exactness(false);
5999     return TypeAryKlassPtr::make(ptr, etype, nullptr, offset);
6000   } else if (k->is_type_array_klass()) {
6001     // Element is an typeArray
6002     const Type* etype = get_const_basic_type(k->as_type_array_klass()->element_type());
6003     return TypeAryKlassPtr::make(ptr, etype, k, offset);



6004   } else {
6005     ShouldNotReachHere();
6006     return nullptr;
6007   }


6008 }
6009 
6010 const TypeAryKlassPtr* TypeAryKlassPtr::make(ciKlass* klass, InterfaceHandling interface_handling) {
6011   return TypeAryKlassPtr::make(Constant, klass, 0, interface_handling);



























6012 }
6013 
6014 //------------------------------eq---------------------------------------------
6015 // Structural equality check for Type representations
6016 bool TypeAryKlassPtr::eq(const Type *t) const {
6017   const TypeAryKlassPtr *p = t->is_aryklassptr();
6018   return
6019     _elem == p->_elem &&  // Check array






6020     TypeKlassPtr::eq(p);  // Check sub-parts
6021 }
6022 
6023 //------------------------------hash-------------------------------------------
6024 // Type-specific hashing function.
6025 uint TypeAryKlassPtr::hash(void) const {
6026   return (uint)(uintptr_t)_elem + TypeKlassPtr::hash();

6027 }
6028 
6029 //----------------------compute_klass------------------------------------------
6030 // Compute the defining klass for this class
6031 ciKlass* TypeAryPtr::compute_klass() const {
6032   // Compute _klass based on element type.
6033   ciKlass* k_ary = nullptr;
6034   const TypeInstPtr *tinst;
6035   const TypeAryPtr *tary;
6036   const Type* el = elem();
6037   if (el->isa_narrowoop()) {
6038     el = el->make_ptr();
6039   }
6040 
6041   // Get element klass
6042   if ((tinst = el->isa_instptr()) != nullptr) {
6043     // Leave k_ary at null.
6044   } else if ((tary = el->isa_aryptr()) != nullptr) {
6045     // Leave k_ary at null.
6046   } else if ((el->base() == Type::Top) ||
6047              (el->base() == Type::Bottom)) {
6048     // element type of Bottom occurs from meet of basic type
6049     // and object; Top occurs when doing join on Bottom.
6050     // Leave k_ary at null.
6051   } else {
6052     assert(!el->isa_int(), "integral arrays must be pre-equipped with a class");
6053     // Compute array klass directly from basic type
6054     k_ary = ciTypeArrayKlass::make(el->basic_type());
6055   }
6056   return k_ary;
6057 }
6058 
6059 //------------------------------klass------------------------------------------
6060 // Return the defining klass for this class
6061 ciKlass* TypeAryPtr::klass() const {
6062   if( _klass ) return _klass;   // Return cached value, if possible
6063 
6064   // Oops, need to compute _klass and cache it
6065   ciKlass* k_ary = compute_klass();

6073     // type TypeAryPtr::OOPS.  This Type is shared between all
6074     // active compilations.  However, the ciKlass which represents
6075     // this Type is *not* shared between compilations, so caching
6076     // this value would result in fetching a dangling pointer.
6077     //
6078     // Recomputing the underlying ciKlass for each request is
6079     // a bit less efficient than caching, but calls to
6080     // TypeAryPtr::OOPS->klass() are not common enough to matter.
6081     ((TypeAryPtr*)this)->_klass = k_ary;
6082   }
6083   return k_ary;
6084 }
6085 
6086 // Is there a single ciKlass* that can represent that type?
6087 ciKlass* TypeAryPtr::exact_klass_helper() const {
6088   if (_ary->_elem->make_ptr() && _ary->_elem->make_ptr()->isa_oopptr()) {
6089     ciKlass* k = _ary->_elem->make_ptr()->is_oopptr()->exact_klass_helper();
6090     if (k == nullptr) {
6091       return nullptr;
6092     }
6093     k = ciObjArrayKlass::make(k);
6094     return k;








6095   }
6096 
6097   return klass();
6098 }
6099 
6100 const Type* TypeAryPtr::base_element_type(int& dims) const {
6101   const Type* elem = this->elem();
6102   dims = 1;
6103   while (elem->make_ptr() && elem->make_ptr()->isa_aryptr()) {
6104     elem = elem->make_ptr()->is_aryptr()->elem();
6105     dims++;
6106   }
6107   return elem;
6108 }
6109 
6110 //------------------------------add_offset-------------------------------------
6111 // Access internals of klass object
6112 const TypePtr* TypeAryKlassPtr::add_offset(intptr_t offset) const {
6113   return make(_ptr, elem(), klass(), xadd_offset(offset));
6114 }
6115 
6116 const TypeAryKlassPtr* TypeAryKlassPtr::with_offset(intptr_t offset) const {
6117   return make(_ptr, elem(), klass(), offset);
6118 }
6119 
6120 //------------------------------cast_to_ptr_type-------------------------------
6121 const TypeAryKlassPtr* TypeAryKlassPtr::cast_to_ptr_type(PTR ptr) const {
6122   assert(_base == AryKlassPtr, "subclass must override cast_to_ptr_type");
6123   if (ptr == _ptr) return this;
6124   return make(ptr, elem(), _klass, _offset);
6125 }
6126 
6127 bool TypeAryKlassPtr::must_be_exact() const {
6128   if (_elem == Type::BOTTOM) return false;
6129   if (_elem == Type::TOP   ) return false;
6130   const TypeKlassPtr*  tk = _elem->isa_klassptr();
6131   if (!tk)             return true;   // a primitive type, like int
6132   return tk->must_be_exact();
6133 }



6134 



6135 
6136 //-----------------------------cast_to_exactness-------------------------------
6137 const TypeKlassPtr *TypeAryKlassPtr::cast_to_exactness(bool klass_is_exact) const {
6138   if (must_be_exact()) return this;  // cannot clear xk
6139   ciKlass* k = _klass;




6140   const Type* elem = this->elem();
6141   if (elem->isa_klassptr() && !klass_is_exact) {
6142     elem = elem->is_klassptr()->cast_to_exactness(klass_is_exact);
6143   }
6144   return make(klass_is_exact ? Constant : NotNull, elem, k, _offset);
6145 }
6146 















6147 
6148 //-----------------------------as_instance_type--------------------------------
6149 // Corresponding type for an instance of the given class.
6150 // It will be NotNull, and exact if and only if the klass type is exact.
6151 const TypeOopPtr* TypeAryKlassPtr::as_instance_type(bool klass_change) const {
6152   ciKlass* k = klass();
6153   bool    xk = klass_is_exact();
6154   const Type* el = nullptr;
6155   if (elem()->isa_klassptr()) {
6156     el = elem()->is_klassptr()->as_instance_type(false)->cast_to_exactness(false);
6157     k = nullptr;
6158   } else {
6159     el = elem();
6160   }
6161   return TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(el, TypeInt::POS), k, xk, 0);




6162 }
6163 
6164 
6165 //------------------------------xmeet------------------------------------------
6166 // Compute the MEET of two types, return a new Type object.
6167 const Type    *TypeAryKlassPtr::xmeet( const Type *t ) const {
6168   // Perform a fast test for common case; meeting the same types together.
6169   if( this == t ) return this;  // Meeting same type-rep?
6170 
6171   // Current "this->_base" is Pointer
6172   switch (t->base()) {          // switch on original type
6173 
6174   case Int:                     // Mixing ints & oops happens when javac
6175   case Long:                    // reuses local variables
6176   case HalfFloatTop:
6177   case HalfFloatCon:
6178   case HalfFloatBot:
6179   case FloatTop:
6180   case FloatCon:
6181   case FloatBot:
6182   case DoubleTop:
6183   case DoubleCon:
6184   case DoubleBot:
6185   case NarrowOop:
6186   case NarrowKlass:
6187   case Bottom:                  // Ye Olde Default
6188     return Type::BOTTOM;
6189   case Top:
6190     return this;
6191 
6192   default:                      // All else is a mistake
6193     typerr(t);
6194 
6195   case AnyPtr: {                // Meeting to AnyPtrs
6196     // Found an AnyPtr type vs self-KlassPtr type
6197     const TypePtr *tp = t->is_ptr();
6198     int offset = meet_offset(tp->offset());
6199     PTR ptr = meet_ptr(tp->ptr());
6200     switch (tp->ptr()) {
6201     case TopPTR:
6202       return this;
6203     case Null:
6204       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6205     case AnyNull:
6206       return make( ptr, _elem, klass(), offset );
6207     case BotPTR:
6208     case NotNull:
6209       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6210     default: typerr(t);
6211     }
6212   }
6213 
6214   case RawPtr:
6215   case MetadataPtr:
6216   case OopPtr:
6217   case AryPtr:                  // Meet with AryPtr
6218   case InstPtr:                 // Meet with InstPtr
6219     return TypePtr::BOTTOM;
6220 
6221   //
6222   //             A-top         }
6223   //           /   |   \       }  Tops
6224   //       B-top A-any C-top   }
6225   //          | /  |  \ |      }  Any-nulls
6226   //       B-any   |   C-any   }
6227   //          |    |    |
6228   //       B-con A-con C-con   } constants; not comparable across classes
6229   //          |    |    |
6230   //       B-not   |   C-not   }
6231   //          | \  |  / |      }  not-nulls
6232   //       B-bot A-not C-bot   }
6233   //           \   |   /       }  Bottoms
6234   //             A-bot         }
6235   //
6236 
6237   case AryKlassPtr: {  // Meet two KlassPtr types
6238     const TypeAryKlassPtr *tap = t->is_aryklassptr();
6239     int off = meet_offset(tap->offset());
6240     const Type* elem = _elem->meet(tap->_elem);
6241 
6242     PTR ptr = meet_ptr(tap->ptr());
6243     ciKlass* res_klass = nullptr;
6244     bool res_xk = false;
6245     meet_aryptr(ptr, elem, this, tap, res_klass, res_xk);





6246     assert(res_xk == (ptr == Constant), "");
6247     return make(ptr, elem, res_klass, off);
































6248   } // End of case KlassPtr
6249   case InstKlassPtr: {
6250     const TypeInstKlassPtr *tp = t->is_instklassptr();
6251     int offset = meet_offset(tp->offset());
6252     PTR ptr = meet_ptr(tp->ptr());
6253     const TypeInterfaces* interfaces = meet_interfaces(tp);
6254     const TypeInterfaces* tp_interfaces = tp->_interfaces;
6255     const TypeInterfaces* this_interfaces = _interfaces;
6256 
6257     switch (ptr) {
6258     case TopPTR:
6259     case AnyNull:                // Fall 'down' to dual of object klass
6260       // For instances when a subclass meets a superclass we fall
6261       // below the centerline when the superclass is exact. We need to
6262       // do the same here.


6263       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) &&
6264           !tp->klass_is_exact()) {
6265         return TypeAryKlassPtr::make(ptr, _elem, _klass, offset);
6266       } else {
6267         // cannot subclass, so the meet has to fall badly below the centerline
6268         ptr = NotNull;
6269         interfaces = this_interfaces->intersection_with(tp->_interfaces);
6270         return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset);

6271       }
6272     case Constant:
6273     case NotNull:
6274     case BotPTR:                // Fall down to object klass
6275       // LCA is object_klass, but if we subclass from the top we can do better
6276       if (above_centerline(tp->ptr())) {
6277         // If 'tp'  is above the centerline and it is Object class
6278         // then we can subclass in the Java class hierarchy.
6279         // For instances when a subclass meets a superclass we fall
6280         // below the centerline when the superclass is exact. We need
6281         // to do the same here.


6282         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) &&
6283             !tp->klass_is_exact()) {
6284           // that is, my array type is a subtype of 'tp' klass
6285           return make(ptr, _elem, _klass, offset);
6286         }
6287       }
6288       // The other case cannot happen, since t cannot be a subtype of an array.
6289       // The meet falls down to Object class below centerline.
6290       if (ptr == Constant)
6291          ptr = NotNull;
6292       interfaces = this_interfaces->intersection_with(tp_interfaces);
6293       return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset);


6294     default: typerr(t);
6295     }
6296   }
6297 
6298   } // End of switch
6299   return this;                  // Return the double constant
6300 }
6301 
6302 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
6303   static_assert(std::is_base_of<T2, T1>::value, "");
6304 
6305   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty() && other_exact) {
6306     return true;
6307   }
6308 
6309   int dummy;
6310   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
6311 
6312   if (!this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) {
6313     return false;
6314   }
6315 
6316   if (this_one->is_instance_type(other)) {
6317     return other->klass() == ciEnv::current()->Object_klass() && this_one->_interfaces->contains(other->_interfaces) &&
6318            other_exact;
6319   }
6320 
6321   assert(this_one->is_array_type(other), "");
6322   const T1* other_ary = this_one->is_array_type(other);
6323   bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
6324   if (other_top_or_bottom) {
6325     return false;
6326   }
6327 
6328   const TypePtr* other_elem = other_ary->elem()->make_ptr();
6329   const TypePtr* this_elem = this_one->elem()->make_ptr();
6330   if (this_elem != nullptr && other_elem != nullptr) {



6331     return this_one->is_reference_type(this_elem)->is_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact);
6332   }
6333   if (this_elem == nullptr && other_elem == nullptr) {
6334     return this_one->klass()->is_subtype_of(other->klass());
6335   }
6336   return false;
6337 }
6338 
6339 bool TypeAryKlassPtr::is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
6340   return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
6341 }
6342 
6343 template <class T1, class T2> bool TypePtr::is_same_java_type_as_helper_for_array(const T1* this_one, const T2* other) {
6344   static_assert(std::is_base_of<T2, T1>::value, "");
6345 
6346   int dummy;
6347   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
6348 
6349   if (!this_one->is_array_type(other) ||
6350       !this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) {

6403   }
6404 
6405   const TypePtr* this_elem = this_one->elem()->make_ptr();
6406   const TypePtr* other_elem = other_ary->elem()->make_ptr();
6407   if (other_elem != nullptr && this_elem != nullptr) {
6408     return this_one->is_reference_type(this_elem)->maybe_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact);
6409   }
6410   if (other_elem == nullptr && this_elem == nullptr) {
6411     return this_one->klass()->is_subtype_of(other->klass());
6412   }
6413   return false;
6414 }
6415 
6416 bool TypeAryKlassPtr::maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
6417   return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
6418 }
6419 
6420 //------------------------------xdual------------------------------------------
6421 // Dual: compute field-by-field dual
6422 const Type    *TypeAryKlassPtr::xdual() const {
6423   return new TypeAryKlassPtr(dual_ptr(), elem()->dual(), klass(), dual_offset());
6424 }
6425 
6426 // Is there a single ciKlass* that can represent that type?
6427 ciKlass* TypeAryKlassPtr::exact_klass_helper() const {
6428   if (elem()->isa_klassptr()) {
6429     ciKlass* k = elem()->is_klassptr()->exact_klass_helper();
6430     if (k == nullptr) {
6431       return nullptr;
6432     }
6433     k = ciObjArrayKlass::make(k);

6434     return k;
6435   }
6436 
6437   return klass();
6438 }
6439 
6440 ciKlass* TypeAryKlassPtr::klass() const {
6441   if (_klass != nullptr) {
6442     return _klass;
6443   }
6444   ciKlass* k = nullptr;
6445   if (elem()->isa_klassptr()) {
6446     // leave null
6447   } else if ((elem()->base() == Type::Top) ||
6448              (elem()->base() == Type::Bottom)) {
6449   } else {
6450     k = ciTypeArrayKlass::make(elem()->basic_type());
6451     ((TypeAryKlassPtr*)this)->_klass = k;
6452   }
6453   return k;
6454 }
6455 
6456 //------------------------------dump2------------------------------------------
6457 // Dump Klass Type
6458 #ifndef PRODUCT
6459 void TypeAryKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
6460   st->print("aryklassptr:[");
6461   _elem->dump2(d, depth, st);
6462   _interfaces->dump(st);
6463   st->print(":%s", ptr_msg[_ptr]);








6464   dump_offset(st);
6465 }
6466 #endif
6467 
6468 const Type* TypeAryKlassPtr::base_element_type(int& dims) const {
6469   const Type* elem = this->elem();
6470   dims = 1;
6471   while (elem->isa_aryklassptr()) {
6472     elem = elem->is_aryklassptr()->elem();
6473     dims++;
6474   }
6475   return elem;
6476 }
6477 
6478 //=============================================================================
6479 // Convenience common pre-built types.
6480 
6481 //------------------------------make-------------------------------------------
6482 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
6483   return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();












6484 }
6485 
6486 //------------------------------make-------------------------------------------
6487 const TypeFunc *TypeFunc::make(ciMethod* method) {
6488   Compile* C = Compile::current();
6489   const TypeFunc* tf = C->last_tf(method); // check cache
6490   if (tf != nullptr)  return tf;  // The hit rate here is almost 50%.
6491   const TypeTuple *domain;
6492   if (method->is_static()) {
6493     domain = TypeTuple::make_domain(nullptr, method->signature(), ignore_interfaces);
6494   } else {
6495     domain = TypeTuple::make_domain(method->holder(), method->signature(), ignore_interfaces);

















6496   }
6497   const TypeTuple *range  = TypeTuple::make_range(method->signature(), ignore_interfaces);
6498   tf = TypeFunc::make(domain, range);
6499   C->set_last_tf(method, tf);  // fill cache
6500   return tf;
6501 }
6502 
6503 //------------------------------meet-------------------------------------------
6504 // Compute the MEET of two types.  It returns a new Type object.
6505 const Type *TypeFunc::xmeet( const Type *t ) const {
6506   // Perform a fast test for common case; meeting the same types together.
6507   if( this == t ) return this;  // Meeting same type-rep?
6508 
6509   // Current "this->_base" is Func
6510   switch (t->base()) {          // switch on original type
6511 
6512   case Bottom:                  // Ye Olde Default
6513     return t;
6514 
6515   default:                      // All else is a mistake
6516     typerr(t);
6517 
6518   case Top:
6519     break;
6520   }
6521   return this;                  // Return the double constant
6522 }
6523 
6524 //------------------------------xdual------------------------------------------
6525 // Dual: compute field-by-field dual
6526 const Type *TypeFunc::xdual() const {
6527   return this;
6528 }
6529 
6530 //------------------------------eq---------------------------------------------
6531 // Structural equality check for Type representations
6532 bool TypeFunc::eq( const Type *t ) const {
6533   const TypeFunc *a = (const TypeFunc*)t;
6534   return _domain == a->_domain &&
6535     _range == a->_range;


6536 }
6537 
6538 //------------------------------hash-------------------------------------------
6539 // Type-specific hashing function.
6540 uint TypeFunc::hash(void) const {
6541   return (uint)(uintptr_t)_domain + (uint)(uintptr_t)_range;
6542 }
6543 
6544 //------------------------------dump2------------------------------------------
6545 // Dump Function Type
6546 #ifndef PRODUCT
6547 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
6548   if( _range->cnt() <= Parms )
6549     st->print("void");
6550   else {
6551     uint i;
6552     for (i = Parms; i < _range->cnt()-1; i++) {
6553       _range->field_at(i)->dump2(d,depth,st);
6554       st->print("/");
6555     }
6556     _range->field_at(i)->dump2(d,depth,st);
6557   }
6558   st->print(" ");
6559   st->print("( ");
6560   if( !depth || d[this] ) {     // Check for recursive dump
6561     st->print("...)");
6562     return;
6563   }
6564   d.Insert((void*)this,(void*)this);    // Stop recursion
6565   if (Parms < _domain->cnt())
6566     _domain->field_at(Parms)->dump2(d,depth-1,st);
6567   for (uint i = Parms+1; i < _domain->cnt(); i++) {
6568     st->print(", ");
6569     _domain->field_at(i)->dump2(d,depth-1,st);
6570   }
6571   st->print(" )");
6572 }
6573 #endif
6574 
6575 //------------------------------singleton--------------------------------------
6576 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
6577 // constants (Ldi nodes).  Singletons are integer, float or double constants
6578 // or a single symbol.
6579 bool TypeFunc::singleton(void) const {
6580   return false;                 // Never a singleton
6581 }
6582 
6583 bool TypeFunc::empty(void) const {
6584   return false;                 // Never empty
6585 }
6586 
6587 
6588 BasicType TypeFunc::return_type() const{
6589   if (range()->cnt() == TypeFunc::Parms) {
6590     return T_VOID;
6591   }
6592   return range()->field_at(TypeFunc::Parms)->basic_type();
6593 }

   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "ci/ciField.hpp"
  26 #include "ci/ciFlatArrayKlass.hpp"
  27 #include "ci/ciInlineKlass.hpp"
  28 #include "ci/ciMethodData.hpp"
  29 #include "ci/ciObjArrayKlass.hpp"
  30 #include "ci/ciTypeFlow.hpp"
  31 #include "classfile/javaClasses.hpp"
  32 #include "classfile/symbolTable.hpp"
  33 #include "classfile/vmSymbols.hpp"
  34 #include "compiler/compileLog.hpp"
  35 #include "libadt/dict.hpp"
  36 #include "memory/oopFactory.hpp"
  37 #include "memory/resourceArea.hpp"
  38 #include "oops/instanceKlass.hpp"
  39 #include "oops/instanceMirrorKlass.hpp"
  40 #include "oops/objArrayKlass.hpp"
  41 #include "oops/typeArrayKlass.hpp"
  42 #include "opto/arraycopynode.hpp"
  43 #include "opto/callnode.hpp"
  44 #include "opto/matcher.hpp"
  45 #include "opto/node.hpp"
  46 #include "opto/opcodes.hpp"
  47 #include "opto/rangeinference.hpp"
  48 #include "opto/runtime.hpp"
  49 #include "opto/type.hpp"
  50 #include "runtime/globals.hpp"
  51 #include "runtime/stubRoutines.hpp"
  52 #include "utilities/checkedCast.hpp"
  53 #include "utilities/debug.hpp"
  54 #include "utilities/globalDefinitions.hpp"
  55 #include "utilities/ostream.hpp"
  56 #include "utilities/powerOfTwo.hpp"
  57 #include "utilities/stringUtils.hpp"
  58 
  59 // Portions of code courtesy of Clifford Click
  60 
  61 // Optimization - Graph Style
  62 
  63 // Dictionary of types shared among compilations.
  64 Dict* Type::_shared_type_dict = nullptr;
  65 const Type::Offset Type::Offset::top(Type::OffsetTop);
  66 const Type::Offset Type::Offset::bottom(Type::OffsetBot);
  67 
  68 const Type::Offset Type::Offset::meet(const Type::Offset other) const {
  69   // Either is 'TOP' offset?  Return the other offset!
  70   if (_offset == OffsetTop) return other;
  71   if (other._offset == OffsetTop) return *this;
  72   // If either is different, return 'BOTTOM' offset
  73   if (_offset != other._offset) return bottom;
  74   return Offset(_offset);
  75 }
  76 
  77 const Type::Offset Type::Offset::dual() const {
  78   if (_offset == OffsetTop) return bottom;// Map 'TOP' into 'BOTTOM'
  79   if (_offset == OffsetBot) return top;// Map 'BOTTOM' into 'TOP'
  80   return Offset(_offset);               // Map everything else into self
  81 }
  82 
  83 const Type::Offset Type::Offset::add(intptr_t offset) const {
  84   // Adding to 'TOP' offset?  Return 'TOP'!
  85   if (_offset == OffsetTop || offset == OffsetTop) return top;
  86   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
  87   if (_offset == OffsetBot || offset == OffsetBot) return bottom;
  88   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
  89   offset += (intptr_t)_offset;
  90   if (offset != (int)offset || offset == OffsetTop) return bottom;
  91 
  92   // assert( _offset >= 0 && _offset+offset >= 0, "" );
  93   // It is possible to construct a negative offset during PhaseCCP
  94 
  95   return Offset((int)offset);        // Sum valid offsets
  96 }
  97 
  98 void Type::Offset::dump2(outputStream *st) const {
  99   if (_offset == 0) {
 100     return;
 101   } else if (_offset == OffsetTop) {
 102     st->print("+top");
 103   }
 104   else if (_offset == OffsetBot) {
 105     st->print("+bot");
 106   } else if (_offset) {
 107     st->print("+%d", _offset);
 108   }
 109 }
 110 
 111 // Array which maps compiler types to Basic Types
 112 const Type::TypeInfo Type::_type_info[Type::lastype] = {
 113   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
 114   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
 115   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
 116   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
 117   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
 118   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
 119   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
 120   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
 121   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
 122   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
 123   { Bad,             T_ARRAY,      "interfaces:",   false, Node::NotAMachineReg, relocInfo::none          },  // Interfaces
 124 
 125 #if defined(PPC64)
 126   { Bad,             T_ILLEGAL,    "vectormask:",   false, Op_RegVectMask,       relocInfo::none          },  // VectorMask.
 127   { Bad,             T_ILLEGAL,    "vectora:",      false, Op_VecA,              relocInfo::none          },  // VectorA.
 128   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
 129   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD

 268   case ciTypeFlow::StateVector::T_NULL:
 269     assert(type == ciTypeFlow::StateVector::null_type(), "");
 270     return TypePtr::NULL_PTR;
 271 
 272   case ciTypeFlow::StateVector::T_LONG2:
 273     // The ciTypeFlow pass pushes a long, then the half.
 274     // We do the same.
 275     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 276     return TypeInt::TOP;
 277 
 278   case ciTypeFlow::StateVector::T_DOUBLE2:
 279     // The ciTypeFlow pass pushes double, then the half.
 280     // Our convention is the same.
 281     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 282     return Type::TOP;
 283 
 284   case T_ADDRESS:
 285     assert(type->is_return_address(), "");
 286     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 287 
 288   case T_OBJECT:
 289     return Type::get_const_type(type->unwrap())->join_speculative(type->is_null_free() ? TypePtr::NOTNULL : TypePtr::BOTTOM);
 290 
 291   default:
 292     // make sure we did not mix up the cases:
 293     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 294     assert(type != ciTypeFlow::StateVector::top_type(), "");
 295     assert(type != ciTypeFlow::StateVector::null_type(), "");
 296     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 297     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 298     assert(!type->is_return_address(), "");
 299 
 300     return Type::get_const_type(type);
 301   }
 302 }
 303 
 304 
 305 //-----------------------make_from_constant------------------------------------
 306 const Type* Type::make_from_constant(ciConstant constant, bool require_constant,
 307                                      int stable_dimension, bool is_narrow_oop,
 308                                      bool is_autobox_cache) {
 309   switch (constant.basic_type()) {
 310     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());

 593   const Type **ffalse =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 594   ffalse[0] = Type::CONTROL;
 595   ffalse[1] = Type::TOP;
 596   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 597 
 598   const Type **fneither =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 599   fneither[0] = Type::TOP;
 600   fneither[1] = Type::TOP;
 601   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 602 
 603   const Type **ftrue =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 604   ftrue[0] = Type::TOP;
 605   ftrue[1] = Type::CONTROL;
 606   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 607 
 608   const Type **floop =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 609   floop[0] = Type::CONTROL;
 610   floop[1] = TypeInt::INT;
 611   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 612 
 613   TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, Offset(0));
 614   TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, Offset::bottom);
 615   TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, Offset::bottom);
 616 
 617   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 618   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 619 
 620   const Type **fmembar = TypeTuple::fields(0);
 621   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 622 
 623   const Type **fsc = (const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 624   fsc[0] = TypeInt::CC;
 625   fsc[1] = Type::MEMORY;
 626   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 627 
 628   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 629   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 630   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 631   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 632                                            false, nullptr, Offset(oopDesc::mark_offset_in_bytes()));
 633   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 634                                            false, nullptr, Offset(oopDesc::klass_offset_in_bytes()));
 635   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, Offset::bottom, TypeOopPtr::InstanceBot);
 636 
 637   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, nullptr, Offset::bottom);
 638 
 639   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 640   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 641 
 642   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 643 
 644   mreg2type[Op_Node] = Type::BOTTOM;
 645   mreg2type[Op_Set ] = nullptr;
 646   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 647   mreg2type[Op_RegI] = TypeInt::INT;
 648   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 649   mreg2type[Op_RegF] = Type::FLOAT;
 650   mreg2type[Op_RegD] = Type::DOUBLE;
 651   mreg2type[Op_RegL] = TypeLong::LONG;
 652   mreg2type[Op_RegFlags] = TypeInt::CC;
 653 
 654   GrowableArray<ciInstanceKlass*> array_interfaces;
 655   array_interfaces.push(current->env()->Cloneable_klass());
 656   array_interfaces.push(current->env()->Serializable_klass());
 657   TypeAryPtr::_array_interfaces = TypeInterfaces::make(&array_interfaces);
 658   TypeAryKlassPtr::_array_interfaces = TypeAryPtr::_array_interfaces;
 659 
 660   TypeAryPtr::BOTTOM = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::BOTTOM, TypeInt::POS, false, false, false, false, false), nullptr, false, Offset::bottom);
 661   TypeAryPtr::RANGE   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS, false, false, false, false, false), nullptr /* current->env()->Object_klass() */, false, Offset(arrayOopDesc::length_offset_in_bytes()));
 662 
 663   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS, false, false, false, false, false), nullptr /*ciArrayKlass::make(o)*/,  false,  Offset::bottom);
 664 
 665 #ifdef _LP64
 666   if (UseCompressedOops) {
 667     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 668     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 669   } else
 670 #endif
 671   {
 672     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 673     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS, false, false, false, false, false), nullptr /*ciArrayKlass::make(o)*/,  false,  Offset::bottom);
 674   }
 675   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS, false, false, true, true, true), ciTypeArrayKlass::make(T_BYTE),   true,  Offset::bottom);
 676   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS, false, false, true, true, true), ciTypeArrayKlass::make(T_SHORT),  true,  Offset::bottom);
 677   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS, false, false, true, true, true), ciTypeArrayKlass::make(T_CHAR),   true,  Offset::bottom);
 678   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS, false, false, true, true, true), ciTypeArrayKlass::make(T_INT),    true,  Offset::bottom);
 679   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS, false, false, true, true, true), ciTypeArrayKlass::make(T_LONG),   true,  Offset::bottom);
 680   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS, false, false, true, true, true), ciTypeArrayKlass::make(T_FLOAT),  true,  Offset::bottom);
 681   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS, false, false, true, true, true), ciTypeArrayKlass::make(T_DOUBLE), true,  Offset::bottom);
 682   TypeAryPtr::INLINES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS, /* stable= */ false, /* flat= */ true, false, false, false), nullptr, false, Offset::bottom);
 683 
 684   // Nobody should ask _array_body_type[T_NARROWOOP]. Use null as assert.
 685   TypeAryPtr::_array_body_type[T_NARROWOOP] = nullptr;
 686   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 687   TypeAryPtr::_array_body_type[T_FLAT_ELEMENT] = TypeAryPtr::OOPS;
 688   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 689   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 690   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 691   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 692   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 693   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 694   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 695   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 696   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 697 
 698   TypeInstKlassPtr::OBJECT = TypeInstKlassPtr::make(TypePtr::NotNull, current->env()->Object_klass(), Offset(0));
 699   TypeInstKlassPtr::OBJECT_OR_NULL = TypeInstKlassPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), Offset(0));
 700 
 701   const Type **fi2c = TypeTuple::fields(2);
 702   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 703   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 704   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 705 
 706   const Type **intpair = TypeTuple::fields(2);
 707   intpair[0] = TypeInt::INT;
 708   intpair[1] = TypeInt::INT;
 709   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 710 
 711   const Type **longpair = TypeTuple::fields(2);
 712   longpair[0] = TypeLong::LONG;
 713   longpair[1] = TypeLong::LONG;
 714   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 715 
 716   const Type **intccpair = TypeTuple::fields(2);
 717   intccpair[0] = TypeInt::INT;
 718   intccpair[1] = TypeInt::CC;
 719   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 720 
 721   const Type **longccpair = TypeTuple::fields(2);
 722   longccpair[0] = TypeLong::LONG;
 723   longccpair[1] = TypeInt::CC;
 724   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 725 
 726   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 727   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 728   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 729   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 730   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 731   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 732   _const_basic_type[T_INT]         = TypeInt::INT;
 733   _const_basic_type[T_LONG]        = TypeLong::LONG;
 734   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 735   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 736   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 737   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 738   _const_basic_type[T_FLAT_ELEMENT] = TypeInstPtr::BOTTOM;
 739   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 740   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 741   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 742 
 743   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 744   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 745   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 746   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 747   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 748   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 749   _zero_type[T_INT]         = TypeInt::ZERO;
 750   _zero_type[T_LONG]        = TypeLong::ZERO;
 751   _zero_type[T_FLOAT]       = TypeF::ZERO;
 752   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 753   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 754   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
 755   _zero_type[T_FLAT_ELEMENT] = TypePtr::NULL_PTR;
 756   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 757   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 758 
 759   // get_zero_type() should not happen for T_CONFLICT
 760   _zero_type[T_CONFLICT]= nullptr;
 761 
 762   TypeVect::VECTMASK = (TypeVect*)(new TypeVectMask(T_BOOLEAN, MaxVectorSize))->hashcons();
 763   mreg2type[Op_RegVectMask] = TypeVect::VECTMASK;
 764 
 765   if (Matcher::supports_scalable_vector()) {
 766     TypeVect::VECTA = TypeVect::make(T_BYTE, Matcher::scalable_vector_reg_size(T_BYTE));
 767   }
 768 
 769   // Vector predefined types, it needs initialized _const_basic_type[].
 770   if (Matcher::vector_size_supported(T_BYTE, 4)) {
 771     TypeVect::VECTS = TypeVect::make(T_BYTE, 4);
 772   }
 773   if (Matcher::vector_size_supported(T_FLOAT, 2)) {
 774     TypeVect::VECTD = TypeVect::make(T_FLOAT, 2);
 775   }

1010   ~VerifyMeet() {
1011     assert(_C->_type_verify->_depth != 0, "");
1012     _C->_type_verify->_depth--;
1013     if (_C->_type_verify->_depth == 0) {
1014       _C->_type_verify->_cache.trunc_to(0);
1015     }
1016   }
1017 
1018   const Type* meet(const Type* t1, const Type* t2) const {
1019     return _C->_type_verify->meet(t1, t2);
1020   }
1021 
1022   void add(const Type* t1, const Type* t2, const Type* res) const {
1023     _C->_type_verify->add(t1, t2, res);
1024   }
1025 };
1026 
1027 void Type::check_symmetrical(const Type* t, const Type* mt, const VerifyMeet& verify) const {
1028   Compile* C = Compile::current();
1029   const Type* mt2 = verify.meet(t, this);
1030 
1031   // Verify that:
1032   //      this meet t == t meet this
1033   if (mt != mt2) {
1034     tty->print_cr("=== Meet Not Commutative ===");
1035     tty->print("t           = ");   t->dump(); tty->cr();
1036     tty->print("this        = ");      dump(); tty->cr();
1037     tty->print("t meet this = "); mt2->dump(); tty->cr();
1038     tty->print("this meet t = ");  mt->dump(); tty->cr();
1039     fatal("meet not commutative");
1040   }
1041   const Type* dual_join = mt->_dual;
1042   const Type* t2t    = verify.meet(dual_join,t->_dual);
1043   const Type* t2this = verify.meet(dual_join,this->_dual);
1044 
1045   // Interface meet Oop is Not Symmetric:
1046   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
1047   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
1048 
1049   // Verify that:
1050   // 1)     mt_dual meet t_dual    == t_dual
1051   //    which corresponds to
1052   //       !(t meet this)  meet !t ==
1053   //       (!t join !this) meet !t == !t
1054   // 2)    mt_dual meet this_dual     == this_dual
1055   //    which corresponds to
1056   //       !(t meet this)  meet !this ==
1057   //       (!t join !this) meet !this == !this
1058   if (t2t != t->_dual || t2this != this->_dual) {
1059     tty->print_cr("=== Meet Not Symmetric ===");
1060     tty->print("t   =                   ");              t->dump(); tty->cr();
1061     tty->print("this=                   ");                 dump(); tty->cr();
1062     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
1063 
1064     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
1065     tty->print("this_dual=              ");          _dual->dump(); tty->cr();
1066     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
1067 
1068     // 1)
1069     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
1070     // 2)
1071     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
1072     tty->cr();
1073     tty->print_cr("Fail: ");
1074     if (t2t != t->_dual) {
1075       tty->print_cr("- mt_dual meet t_dual != t_dual");
1076     }
1077     if (t2this != this->_dual) {
1078       tty->print_cr("- mt_dual meet this_dual != this_dual");
1079     }
1080     tty->cr();
1081 
1082     fatal("meet not symmetric");
1083   }
1084 }
1085 #endif
1086 
1087 //------------------------------meet-------------------------------------------
1088 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
1089 // commutative and the lattice is symmetric.
1090 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
1091   if (isa_narrowoop() && t->isa_narrowoop()) {
1092     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
1093     return result->make_narrowoop();
1094   }
1095   if (isa_narrowklass() && t->isa_narrowklass()) {
1096     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
1097     return result->make_narrowklass();
1098   }
1099 
1100 #ifdef ASSERT
1101   Compile* C = Compile::current();
1102   VerifyMeet verify(C);
1103 #endif
1104 
1105   const Type *this_t = maybe_remove_speculative(include_speculative);
1106   t = t->maybe_remove_speculative(include_speculative);
1107 
1108   const Type *mt = this_t->xmeet(t);
1109 #ifdef ASSERT
1110   verify.add(this_t, t, mt);
1111   if (isa_narrowoop() || t->isa_narrowoop()) {
1112     return mt;
1113   }
1114   if (isa_narrowklass() || t->isa_narrowklass()) {
1115     return mt;
1116   }
1117   // TODO 8350865 This currently triggers a verification failure, the code around "// Even though MyValue is final" needs adjustments
1118   if ((this_t->isa_ptr() && this_t->is_ptr()->is_not_flat()) ||
1119       (this_t->_dual->isa_ptr() && this_t->_dual->is_ptr()->is_not_flat())) return mt;
1120   this_t->check_symmetrical(t, mt, verify);
1121   const Type *mt_dual = verify.meet(this_t->_dual, t->_dual);
1122   this_t->_dual->check_symmetrical(t->_dual, mt_dual, verify);
1123 #endif
1124   return mt;
1125 }
1126 
1127 //------------------------------xmeet------------------------------------------
1128 // Compute the MEET of two types.  It returns a new Type object.
1129 const Type *Type::xmeet( const Type *t ) const {
1130   // Perform a fast test for common case; meeting the same types together.
1131   if( this == t ) return this;  // Meeting same type-rep?
1132 
1133   // Meeting TOP with anything?
1134   if( _base == Top ) return t;
1135 
1136   // Meeting BOTTOM with anything?
1137   if( _base == Bottom ) return BOTTOM;
1138 
1139   // Current "this->_base" is one of: Bad, Multi, Control, Top,

2116 void TypeLong::dump_verbose() const {
2117   TypeIntHelper::int_type_dump(this, tty, true);
2118 }
2119 #endif
2120 
2121 //=============================================================================
2122 // Convenience common pre-built types.
2123 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
2124 const TypeTuple *TypeTuple::IFFALSE;
2125 const TypeTuple *TypeTuple::IFTRUE;
2126 const TypeTuple *TypeTuple::IFNEITHER;
2127 const TypeTuple *TypeTuple::LOOPBODY;
2128 const TypeTuple *TypeTuple::MEMBAR;
2129 const TypeTuple *TypeTuple::STORECONDITIONAL;
2130 const TypeTuple *TypeTuple::START_I2C;
2131 const TypeTuple *TypeTuple::INT_PAIR;
2132 const TypeTuple *TypeTuple::LONG_PAIR;
2133 const TypeTuple *TypeTuple::INT_CC_PAIR;
2134 const TypeTuple *TypeTuple::LONG_CC_PAIR;
2135 
2136 static void collect_inline_fields(ciInlineKlass* vk, const Type** field_array, uint& pos) {
2137   for (int i = 0; i < vk->nof_declared_nonstatic_fields(); i++) {
2138     ciField* field = vk->declared_nonstatic_field_at(i);
2139     if (field->is_flat()) {
2140       collect_inline_fields(field->type()->as_inline_klass(), field_array, pos);
2141       if (!field->is_null_free()) {
2142         // Use T_INT instead of T_BOOLEAN here because the upper bits can contain garbage if the holder
2143         // is null and C2 will only zero them for T_INT assuming that T_BOOLEAN is already canonicalized.
2144         field_array[pos++] = Type::get_const_basic_type(T_INT);
2145       }
2146     } else {
2147       BasicType bt = field->type()->basic_type();
2148       const Type* ft = Type::get_const_type(field->type());
2149       field_array[pos++] = ft;
2150       if (type2size[bt] == 2) {
2151         field_array[pos++] = Type::HALF;
2152       }
2153     }
2154   }
2155 }
2156 
2157 //------------------------------make-------------------------------------------
2158 // Make a TypeTuple from the range of a method signature
2159 const TypeTuple *TypeTuple::make_range(ciSignature* sig, InterfaceHandling interface_handling, bool ret_vt_fields) {
2160   ciType* return_type = sig->return_type();
2161   uint arg_cnt = return_type->size();
2162   if (ret_vt_fields) {
2163     arg_cnt = return_type->as_inline_klass()->inline_arg_slots() + 1;
2164     // InlineTypeNode::NullMarker field used for null checking
2165     arg_cnt++;
2166   }
2167   const Type **field_array = fields(arg_cnt);
2168   switch (return_type->basic_type()) {
2169   case T_LONG:
2170     field_array[TypeFunc::Parms]   = TypeLong::LONG;
2171     field_array[TypeFunc::Parms+1] = Type::HALF;
2172     break;
2173   case T_DOUBLE:
2174     field_array[TypeFunc::Parms]   = Type::DOUBLE;
2175     field_array[TypeFunc::Parms+1] = Type::HALF;
2176     break;
2177   case T_OBJECT:
2178     if (return_type->is_inlinetype() && ret_vt_fields) {
2179       uint pos = TypeFunc::Parms;
2180       field_array[pos++] = get_const_type(return_type); // Oop might be null when returning as fields
2181       collect_inline_fields(return_type->as_inline_klass(), field_array, pos);
2182       // InlineTypeNode::NullMarker field used for null checking
2183       field_array[pos++] = get_const_basic_type(T_BOOLEAN);
2184       assert(pos == (TypeFunc::Parms + arg_cnt), "out of bounds");
2185       break;
2186     } else {
2187       field_array[TypeFunc::Parms] = get_const_type(return_type, interface_handling)->join_speculative(TypePtr::BOTTOM);
2188     }
2189     break;
2190   case T_ARRAY:
2191   case T_BOOLEAN:
2192   case T_CHAR:
2193   case T_FLOAT:
2194   case T_BYTE:
2195   case T_SHORT:
2196   case T_INT:
2197     field_array[TypeFunc::Parms] = get_const_type(return_type, interface_handling);
2198     break;
2199   case T_VOID:
2200     break;
2201   default:
2202     ShouldNotReachHere();
2203   }
2204   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2205 }
2206 
2207 // Make a TypeTuple from the domain of a method signature
2208 const TypeTuple *TypeTuple::make_domain(ciMethod* method, InterfaceHandling interface_handling, bool vt_fields_as_args) {
2209   ciSignature* sig = method->signature();
2210   uint arg_cnt = sig->size() + (method->is_static() ? 0 : 1);
2211   if (vt_fields_as_args) {
2212     arg_cnt = 0;
2213     assert(method->get_sig_cc() != nullptr, "Should have scalarized signature");
2214     for (ExtendedSignature sig_cc = ExtendedSignature(method->get_sig_cc(), SigEntryFilter()); !sig_cc.at_end(); ++sig_cc) {
2215       arg_cnt += type2size[(*sig_cc)._bt];
2216     }
2217   }
2218 
2219   uint pos = TypeFunc::Parms;
2220   const Type** field_array = fields(arg_cnt);
2221   if (!method->is_static()) {
2222     ciInstanceKlass* recv = method->holder();
2223     if (vt_fields_as_args && recv->is_inlinetype() && recv->as_inline_klass()->can_be_passed_as_fields() && method->is_scalarized_arg(0)) {
2224       collect_inline_fields(recv->as_inline_klass(), field_array, pos);
2225     } else {
2226       field_array[pos++] = get_const_type(recv, interface_handling)->join_speculative(TypePtr::NOTNULL);
2227     }
2228   }
2229 
2230   int i = 0;
2231   while (pos < TypeFunc::Parms + arg_cnt) {
2232     ciType* type = sig->type_at(i);
2233     BasicType bt = type->basic_type();
2234 
2235     switch (bt) {
2236     case T_LONG:
2237       field_array[pos++] = TypeLong::LONG;
2238       field_array[pos++] = Type::HALF;
2239       break;
2240     case T_DOUBLE:
2241       field_array[pos++] = Type::DOUBLE;
2242       field_array[pos++] = Type::HALF;
2243       break;
2244     case T_OBJECT:
2245       if (type->is_inlinetype() && vt_fields_as_args && method->is_scalarized_arg(i + (method->is_static() ? 0 : 1))) {
2246         // InlineTypeNode::NullMarker field used for null checking
2247         field_array[pos++] = get_const_basic_type(T_BOOLEAN);
2248         collect_inline_fields(type->as_inline_klass(), field_array, pos);
2249       } else {
2250         field_array[pos++] = get_const_type(type, interface_handling);
2251       }
2252       break;
2253     case T_ARRAY:
2254     case T_FLOAT:
2255     case T_INT:
2256       field_array[pos++] = get_const_type(type, interface_handling);
2257       break;
2258     case T_BOOLEAN:
2259     case T_CHAR:
2260     case T_BYTE:
2261     case T_SHORT:
2262       field_array[pos++] = TypeInt::INT;
2263       break;
2264     default:
2265       ShouldNotReachHere();
2266     }
2267     i++;
2268   }
2269   assert(pos == TypeFunc::Parms + arg_cnt, "wrong number of arguments");
2270 
2271   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2272 }
2273 
2274 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
2275   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
2276 }
2277 
2278 //------------------------------fields-----------------------------------------
2279 // Subroutine call type with space allocated for argument types
2280 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
2281 const Type **TypeTuple::fields( uint arg_cnt ) {
2282   const Type **flds = (const Type **)(Compile::current()->type_arena()->AmallocWords((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
2283   flds[TypeFunc::Control  ] = Type::CONTROL;
2284   flds[TypeFunc::I_O      ] = Type::ABIO;
2285   flds[TypeFunc::Memory   ] = Type::MEMORY;
2286   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
2287   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
2288 
2289   return flds;

2384     if (_fields[i]->empty())  return true;
2385   }
2386   return false;
2387 }
2388 
2389 //=============================================================================
2390 // Convenience common pre-built types.
2391 
2392 inline const TypeInt* normalize_array_size(const TypeInt* size) {
2393   // Certain normalizations keep us sane when comparing types.
2394   // We do not want arrayOop variables to differ only by the wideness
2395   // of their index types.  Pick minimum wideness, since that is the
2396   // forced wideness of small ranges anyway.
2397   if (size->_widen != Type::WidenMin)
2398     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
2399   else
2400     return size;
2401 }
2402 
2403 //------------------------------make-------------------------------------------
2404 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable,
2405                              bool flat, bool not_flat, bool not_null_free, bool atomic) {
2406   if (UseCompressedOops && elem->isa_oopptr()) {
2407     elem = elem->make_narrowoop();
2408   }
2409   size = normalize_array_size(size);
2410   return (TypeAry*)(new TypeAry(elem, size, stable, flat, not_flat, not_null_free, atomic))->hashcons();
2411 }
2412 
2413 //------------------------------meet-------------------------------------------
2414 // Compute the MEET of two types.  It returns a new Type object.
2415 const Type *TypeAry::xmeet( const Type *t ) const {
2416   // Perform a fast test for common case; meeting the same types together.
2417   if( this == t ) return this;  // Meeting same type-rep?
2418 
2419   // Current "this->_base" is Ary
2420   switch (t->base()) {          // switch on original type
2421 
2422   case Bottom:                  // Ye Olde Default
2423     return t;
2424 
2425   default:                      // All else is a mistake
2426     typerr(t);
2427 
2428   case Array: {                 // Meeting 2 arrays?
2429     const TypeAry* a = t->is_ary();
2430     const Type* size = _size->xmeet(a->_size);
2431     const TypeInt* isize = size->isa_int();
2432     if (isize == nullptr) {
2433       assert(size == Type::TOP || size == Type::BOTTOM, "");
2434       return size;
2435     }
2436     return TypeAry::make(_elem->meet_speculative(a->_elem),
2437                          isize, _stable && a->_stable,
2438                          _flat && a->_flat,
2439                          _not_flat && a->_not_flat,
2440                          _not_null_free && a->_not_null_free,
2441                          _atomic && a->_atomic);
2442   }
2443   case Top:
2444     break;
2445   }
2446   return this;                  // Return the double constant
2447 }
2448 
2449 //------------------------------xdual------------------------------------------
2450 // Dual: compute field-by-field dual
2451 const Type *TypeAry::xdual() const {
2452   const TypeInt* size_dual = _size->dual()->is_int();
2453   size_dual = normalize_array_size(size_dual);
2454   return new TypeAry(_elem->dual(), size_dual, !_stable, !_flat, !_not_flat, !_not_null_free, !_atomic);
2455 }
2456 
2457 //------------------------------eq---------------------------------------------
2458 // Structural equality check for Type representations
2459 bool TypeAry::eq( const Type *t ) const {
2460   const TypeAry *a = (const TypeAry*)t;
2461   return _elem == a->_elem &&
2462     _stable == a->_stable &&
2463     _size == a->_size &&
2464     _flat == a->_flat &&
2465     _not_flat == a->_not_flat &&
2466     _not_null_free == a->_not_null_free &&
2467     _atomic == a->_atomic;
2468 
2469 }
2470 
2471 //------------------------------hash-------------------------------------------
2472 // Type-specific hashing function.
2473 uint TypeAry::hash(void) const {
2474   return (uint)(uintptr_t)_elem + (uint)(uintptr_t)_size + (uint)(_stable ? 43 : 0) +
2475       (uint)(_flat ? 44 : 0) + (uint)(_not_flat ? 45 : 0) + (uint)(_not_null_free ? 46 : 0) + (uint)(_atomic ? 47 : 0);
2476 }
2477 
2478 /**
2479  * Return same type without a speculative part in the element
2480  */
2481 const TypeAry* TypeAry::remove_speculative() const {
2482   return make(_elem->remove_speculative(), _size, _stable, _flat, _not_flat, _not_null_free, _atomic);
2483 }
2484 
2485 /**
2486  * Return same type with cleaned up speculative part of element
2487  */
2488 const Type* TypeAry::cleanup_speculative() const {
2489   return make(_elem->cleanup_speculative(), _size, _stable, _flat, _not_flat, _not_null_free, _atomic);
2490 }
2491 
2492 /**
2493  * Return same type but with a different inline depth (used for speculation)
2494  *
2495  * @param depth  depth to meet with
2496  */
2497 const TypePtr* TypePtr::with_inline_depth(int depth) const {
2498   if (!UseInlineDepthForSpeculativeTypes) {
2499     return this;
2500   }
2501   return make(AnyPtr, _ptr, _offset, _speculative, depth);
2502 }
2503 
2504 //------------------------------dump2------------------------------------------
2505 #ifndef PRODUCT
2506 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2507   if (_stable)  st->print("stable:");
2508   if (_flat) st->print("flat:");
2509   if (Verbose) {
2510     if (_not_flat) st->print("not flat:");
2511     if (_not_null_free) st->print("not null free:");
2512   }
2513   if (_atomic) st->print("atomic:");
2514   _elem->dump2(d, depth, st);
2515   st->print("[");
2516   _size->dump2(d, depth, st);
2517   st->print("]");
2518 }
2519 #endif
2520 
2521 //------------------------------singleton--------------------------------------
2522 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2523 // constants (Ldi nodes).  Singletons are integer, float or double constants
2524 // or a single symbol.
2525 bool TypeAry::singleton(void) const {
2526   return false;                 // Never a singleton
2527 }
2528 
2529 bool TypeAry::empty(void) const {
2530   return _elem->empty() || _size->empty();
2531 }
2532 
2533 //--------------------------ary_must_be_exact----------------------------------
2534 bool TypeAry::ary_must_be_exact() const {
2535   // This logic looks at the element type of an array, and returns true
2536   // if the element type is either a primitive or a final instance class.
2537   // In such cases, an array built on this ary must have no subclasses.
2538   if (_elem == BOTTOM)      return false;  // general array not exact
2539   if (_elem == TOP   )      return false;  // inverted general array not exact
2540   const TypeOopPtr*  toop = nullptr;
2541   if (UseCompressedOops && _elem->isa_narrowoop()) {
2542     toop = _elem->make_ptr()->isa_oopptr();
2543   } else {
2544     toop = _elem->isa_oopptr();
2545   }
2546   if (!toop)                return true;   // a primitive type, like int
2547   if (!toop->is_loaded())   return false;  // unloaded class
2548   const TypeInstPtr* tinst;
2549   if (_elem->isa_narrowoop())
2550     tinst = _elem->make_ptr()->isa_instptr();
2551   else
2552     tinst = _elem->isa_instptr();
2553   if (tinst) {
2554     if (tinst->instance_klass()->is_final()) {
2555       // Even though MyValue is final, [LMyValue is only exact if the array
2556       // is (not) null-free due to null-free [LMyValue <: null-able [LMyValue.
2557       // TODO 8350865 If we know that the array can't be null-free, it's allowed to be exact, right?
2558       // If so, we should add '&& !_not_null_free'
2559       if (tinst->is_inlinetypeptr() && (tinst->ptr() != TypePtr::NotNull)) {
2560         return false;
2561       }
2562       return true;
2563     }
2564     return false;
2565   }
2566   const TypeAryPtr*  tap;
2567   if (_elem->isa_narrowoop())
2568     tap = _elem->make_ptr()->isa_aryptr();
2569   else
2570     tap = _elem->isa_aryptr();
2571   if (tap)
2572     return tap->ary()->ary_must_be_exact();
2573   return false;
2574 }
2575 
2576 //==============================TypeVect=======================================
2577 // Convenience common pre-built types.
2578 const TypeVect* TypeVect::VECTA = nullptr; // vector length agnostic
2579 const TypeVect* TypeVect::VECTS = nullptr; //  32-bit vectors
2580 const TypeVect* TypeVect::VECTD = nullptr; //  64-bit vectors
2581 const TypeVect* TypeVect::VECTX = nullptr; // 128-bit vectors
2582 const TypeVect* TypeVect::VECTY = nullptr; // 256-bit vectors
2583 const TypeVect* TypeVect::VECTZ = nullptr; // 512-bit vectors
2584 const TypeVect* TypeVect::VECTMASK = nullptr; // predicate/mask vector
2585 

2720 
2721 //=============================================================================
2722 // Convenience common pre-built types.
2723 const TypePtr *TypePtr::NULL_PTR;
2724 const TypePtr *TypePtr::NOTNULL;
2725 const TypePtr *TypePtr::BOTTOM;
2726 
2727 //------------------------------meet-------------------------------------------
2728 // Meet over the PTR enum
2729 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2730   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2731   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2732   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2733   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2734   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2735   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2736   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2737 };
2738 
2739 //------------------------------make-------------------------------------------
2740 const TypePtr* TypePtr::make(TYPES t, enum PTR ptr, Offset offset, const TypePtr* speculative, int inline_depth) {
2741   return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2742 }
2743 
2744 //------------------------------cast_to_ptr_type-------------------------------
2745 const TypePtr* TypePtr::cast_to_ptr_type(PTR ptr) const {
2746   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2747   if( ptr == _ptr ) return this;
2748   return make(_base, ptr, _offset, _speculative, _inline_depth);
2749 }
2750 
2751 //------------------------------get_con----------------------------------------
2752 intptr_t TypePtr::get_con() const {
2753   assert( _ptr == Null, "" );
2754   return offset();
2755 }
2756 
2757 //------------------------------meet-------------------------------------------
2758 // Compute the MEET of two types.  It returns a new Type object.
2759 const Type *TypePtr::xmeet(const Type *t) const {
2760   const Type* res = xmeet_helper(t);
2761   if (res->isa_ptr() == nullptr) {
2762     return res;
2763   }
2764 
2765   const TypePtr* res_ptr = res->is_ptr();
2766   if (res_ptr->speculative() != nullptr) {
2767     // type->speculative() is null means that speculation is no better
2768     // than type, i.e. type->speculative() == type. So there are 2
2769     // ways to represent the fact that we have no useful speculative
2770     // data and we should use a single one to be able to test for
2771     // equality between types. Check whether type->speculative() ==
2772     // type and set speculative to null if it is the case.
2773     if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2774       return res_ptr->remove_speculative();

2808     int depth = meet_inline_depth(tp->inline_depth());
2809     return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2810   }
2811   case RawPtr:                  // For these, flip the call around to cut down
2812   case OopPtr:
2813   case InstPtr:                 // on the cases I have to handle.
2814   case AryPtr:
2815   case MetadataPtr:
2816   case KlassPtr:
2817   case InstKlassPtr:
2818   case AryKlassPtr:
2819     return t->xmeet(this);      // Call in reverse direction
2820   default:                      // All else is a mistake
2821     typerr(t);
2822 
2823   }
2824   return this;
2825 }
2826 
2827 //------------------------------meet_offset------------------------------------
2828 Type::Offset TypePtr::meet_offset(int offset) const {
2829   return _offset.meet(Offset(offset));





2830 }
2831 
2832 //------------------------------dual_offset------------------------------------
2833 Type::Offset TypePtr::dual_offset() const {
2834   return _offset.dual();


2835 }
2836 
2837 //------------------------------xdual------------------------------------------
2838 // Dual: compute field-by-field dual
2839 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2840   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2841 };
2842 
2843 const TypePtr::FlatInArray TypePtr::flat_in_array_dual[Uninitialized] = {
2844   /* TopFlat   -> */ MaybeFlat,
2845   /* Flat      -> */ NotFlat,
2846   /* NotFlat   -> */ Flat,
2847   /* MaybeFlat -> */ TopFlat
2848 };
2849 
2850 const char* const TypePtr::flat_in_array_msg[Uninitialized] = {
2851   "TOP flat in array", "flat in array", "not flat in array", "maybe flat in array"
2852 };
2853 
2854 const Type *TypePtr::xdual() const {
2855   return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2856 }
2857 
2858 //------------------------------xadd_offset------------------------------------
2859 Type::Offset TypePtr::xadd_offset(intptr_t offset) const {
2860   return _offset.add(offset);











2861 }
2862 
2863 //------------------------------add_offset-------------------------------------
2864 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2865   return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2866 }
2867 
2868 const TypePtr *TypePtr::with_offset(intptr_t offset) const {
2869   return make(AnyPtr, _ptr, Offset(offset), _speculative, _inline_depth);
2870 }
2871 
2872 //------------------------------eq---------------------------------------------
2873 // Structural equality check for Type representations
2874 bool TypePtr::eq( const Type *t ) const {
2875   const TypePtr *a = (const TypePtr*)t;
2876   return _ptr == a->ptr() && _offset == a->_offset && eq_speculative(a) && _inline_depth == a->_inline_depth;
2877 }
2878 
2879 //------------------------------hash-------------------------------------------
2880 // Type-specific hashing function.
2881 uint TypePtr::hash(void) const {
2882   return (uint)_ptr + (uint)offset() + (uint)hash_speculative() + (uint)_inline_depth;
2883 }
2884 
2885 /**
2886  * Return same type without a speculative part
2887  */
2888 const TypePtr* TypePtr::remove_speculative() const {
2889   if (_speculative == nullptr) {
2890     return this;
2891   }
2892   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2893   return make(AnyPtr, _ptr, _offset, nullptr, _inline_depth);
2894 }
2895 
2896 /**
2897  * Return same type but drop speculative part if we know we won't use
2898  * it
2899  */
2900 const Type* TypePtr::cleanup_speculative() const {
2901   if (speculative() == nullptr) {
2902     return this;

3119     return false;
3120   }
3121   // We already know the speculative type cannot be null
3122   if (!speculative_maybe_null()) {
3123     return false;
3124   }
3125   // We already know this is always null
3126   if (this == TypePtr::NULL_PTR) {
3127     return false;
3128   }
3129   // We already know the speculative type is always null
3130   if (speculative_always_null()) {
3131     return false;
3132   }
3133   if (ptr_kind == ProfileAlwaysNull && speculative() != nullptr && speculative()->isa_oopptr()) {
3134     return false;
3135   }
3136   return true;
3137 }
3138 
3139 TypePtr::FlatInArray TypePtr::compute_flat_in_array(ciInstanceKlass* instance_klass, bool is_exact) {
3140   if (!instance_klass->can_be_inline_klass(is_exact)) {
3141     // Definitely not a value class and thus never flat in an array.
3142     return NotFlat;
3143   }
3144   if (instance_klass->is_inlinetype() && instance_klass->as_inline_klass()->is_always_flat_in_array()) {
3145     return Flat;
3146   }
3147   // We don't know.
3148   return MaybeFlat;
3149 }
3150 
3151 // Compute flat in array property if we don't know anything about it (i.e. old_flat_in_array == MaybeFlat).
3152 TypePtr::FlatInArray TypePtr::compute_flat_in_array_if_unknown(ciInstanceKlass* instance_klass, bool is_exact,
3153   FlatInArray old_flat_in_array) const {
3154   switch (old_flat_in_array) {
3155     case Flat:
3156       assert(can_be_inline_type(), "only value objects can be flat in array");
3157       assert(!instance_klass->is_inlinetype() || instance_klass->as_inline_klass()->is_always_flat_in_array(),
3158              "a value object is only marked flat in array if it's proven to be always flat in array");
3159       break;
3160     case NotFlat:
3161       assert(!instance_klass->maybe_flat_in_array(), "cannot be flat");
3162       break;
3163     case MaybeFlat:
3164       return compute_flat_in_array(instance_klass, is_exact);
3165       break;
3166     default:
3167       break;
3168   }
3169   return old_flat_in_array;
3170 }
3171 
3172 //------------------------------dump2------------------------------------------
3173 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
3174   "TopPTR","AnyNull","Constant","null","NotNull","BotPTR"
3175 };
3176 
3177 #ifndef PRODUCT
3178 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3179   st->print("ptr:%s", ptr_msg[_ptr]);
3180   dump_offset(st);
3181   dump_inline_depth(st);
3182   dump_speculative(st);
3183 }
3184 
3185 void TypePtr::dump_offset(outputStream* st) const {
3186   _offset.dump2(st);






3187 }
3188 
3189 /**
3190  *dump the speculative part of the type
3191  */
3192 void TypePtr::dump_speculative(outputStream *st) const {
3193   if (_speculative != nullptr) {
3194     st->print(" (speculative=");
3195     _speculative->dump_on(st);
3196     st->print(")");
3197   }
3198 }
3199 
3200 /**
3201  *dump the inline depth of the type
3202  */
3203 void TypePtr::dump_inline_depth(outputStream *st) const {
3204   if (_inline_depth != InlineDepthBottom) {
3205     if (_inline_depth == InlineDepthTop) {
3206       st->print(" (inline_depth=InlineDepthTop)");
3207     } else {
3208       st->print(" (inline_depth=%d)", _inline_depth);
3209     }
3210   }
3211 }
3212 
3213 void TypePtr::dump_flat_in_array(FlatInArray flat_in_array, outputStream* st) {
3214   switch (flat_in_array) {
3215     case MaybeFlat:
3216     case NotFlat:
3217       if (!Verbose) {
3218         break;
3219       }
3220     case TopFlat:
3221     case Flat:
3222       st->print(" (%s)", flat_in_array_msg[flat_in_array]);
3223       break;
3224     default:
3225       ShouldNotReachHere();
3226   }
3227 }
3228 #endif
3229 
3230 //------------------------------singleton--------------------------------------
3231 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3232 // constants
3233 bool TypePtr::singleton(void) const {
3234   // TopPTR, Null, AnyNull, Constant are all singletons
3235   return (_offset != Offset::bottom) && !below_centerline(_ptr);
3236 }
3237 
3238 bool TypePtr::empty(void) const {
3239   return (_offset == Offset::top) || above_centerline(_ptr);
3240 }
3241 
3242 //=============================================================================
3243 // Convenience common pre-built types.
3244 const TypeRawPtr *TypeRawPtr::BOTTOM;
3245 const TypeRawPtr *TypeRawPtr::NOTNULL;
3246 
3247 //------------------------------make-------------------------------------------
3248 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
3249   assert( ptr != Constant, "what is the constant?" );
3250   assert( ptr != Null, "Use TypePtr for null" );
3251   return (TypeRawPtr*)(new TypeRawPtr(ptr,nullptr))->hashcons();
3252 }
3253 
3254 const TypeRawPtr *TypeRawPtr::make(address bits) {
3255   assert(bits != nullptr, "Use TypePtr for null");
3256   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
3257 }
3258 
3259 //------------------------------cast_to_ptr_type-------------------------------

3627 #endif
3628 
3629 // Can't be implemented because there's no way to know if the type is above or below the center line.
3630 const Type* TypeInterfaces::xmeet(const Type* t) const {
3631   ShouldNotReachHere();
3632   return Type::xmeet(t);
3633 }
3634 
3635 bool TypeInterfaces::singleton(void) const {
3636   ShouldNotReachHere();
3637   return Type::singleton();
3638 }
3639 
3640 bool TypeInterfaces::has_non_array_interface() const {
3641   assert(TypeAryPtr::_array_interfaces != nullptr, "How come Type::Initialize_shared wasn't called yet?");
3642 
3643   return !TypeAryPtr::_array_interfaces->contains(this);
3644 }
3645 
3646 //------------------------------TypeOopPtr-------------------------------------
3647 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset offset, Offset field_offset,
3648                        int instance_id, const TypePtr* speculative, int inline_depth)
3649   : TypePtr(t, ptr, offset, speculative, inline_depth),
3650     _const_oop(o), _klass(k),
3651     _interfaces(interfaces),
3652     _klass_is_exact(xk),
3653     _is_ptr_to_narrowoop(false),
3654     _is_ptr_to_narrowklass(false),
3655     _is_ptr_to_boxed_value(false),
3656     _is_ptr_to_strict_final_field(false),
3657     _instance_id(instance_id) {
3658 #ifdef ASSERT
3659   if (klass() != nullptr && klass()->is_loaded()) {
3660     interfaces->verify_is_loaded();
3661   }
3662 #endif
3663   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
3664       (offset.get() > 0) && xk && (k != nullptr) && k->is_instance_klass()) {
3665     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset.get());
3666     _is_ptr_to_strict_final_field = _is_ptr_to_boxed_value;
3667   }
3668 
3669   if (klass() != nullptr && klass()->is_instance_klass() && klass()->is_loaded() &&
3670       this->offset() != Type::OffsetBot && this->offset() != Type::OffsetTop) {
3671     ciField* field = klass()->as_instance_klass()->get_field_by_offset(this->offset(), false);
3672     if (field != nullptr && field->is_strict() && field->is_final()) {
3673       _is_ptr_to_strict_final_field = true;
3674     }
3675   }
3676 
3677 #ifdef _LP64
3678   if (this->offset() > 0 || this->offset() == Type::OffsetTop || this->offset() == Type::OffsetBot) {
3679     if (this->offset() == oopDesc::klass_offset_in_bytes()) {
3680       _is_ptr_to_narrowklass = UseCompressedClassPointers;
3681     } else if (klass() == nullptr) {
3682       // Array with unknown body type
3683       assert(this->isa_aryptr(), "only arrays without klass");
3684       _is_ptr_to_narrowoop = UseCompressedOops;
3685     } else if (UseCompressedOops && this->isa_aryptr() && this->offset() != arrayOopDesc::length_offset_in_bytes()) {
3686       if (klass()->is_obj_array_klass()) {
3687         _is_ptr_to_narrowoop = true;
3688       } else if (klass()->is_flat_array_klass() && field_offset != Offset::top && field_offset != Offset::bottom) {
3689         // Check if the field of the inline type array element contains oops
3690         ciInlineKlass* vk = klass()->as_flat_array_klass()->element_klass()->as_inline_klass();
3691         int foffset = field_offset.get() + vk->payload_offset();
3692         BasicType field_bt;
3693         ciField* field = vk->get_field_by_offset(foffset, false);
3694         if (field != nullptr) {
3695           field_bt = field->layout_type();
3696         } else {
3697           assert(field_offset.get() == vk->null_marker_offset_in_payload(), "no field or null marker of %s at offset %d", vk->name()->as_utf8(), foffset);
3698           field_bt = T_BOOLEAN;
3699         }
3700         _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(field_bt);
3701       }
3702     } else if (klass()->is_instance_klass()) {

3703       if (this->isa_klassptr()) {
3704         // Perm objects don't use compressed references
3705       } else if (_offset == Offset::bottom || _offset == Offset::top) {
3706         // unsafe access
3707         _is_ptr_to_narrowoop = UseCompressedOops;
3708       } else {
3709         assert(this->isa_instptr(), "must be an instance ptr.");

3710         if (klass() == ciEnv::current()->Class_klass() &&
3711             (this->offset() == java_lang_Class::klass_offset() ||
3712              this->offset() == java_lang_Class::array_klass_offset())) {
3713           // Special hidden fields from the Class.
3714           assert(this->isa_instptr(), "must be an instance ptr.");
3715           _is_ptr_to_narrowoop = false;
3716         } else if (klass() == ciEnv::current()->Class_klass() &&
3717                    this->offset() >= InstanceMirrorKlass::offset_of_static_fields()) {
3718           // Static fields
3719           BasicType basic_elem_type = T_ILLEGAL;
3720           if (const_oop() != nullptr) {
3721             ciInstanceKlass* k = const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
3722             basic_elem_type = k->get_field_type_by_offset(this->offset(), true);
3723           }
3724           if (basic_elem_type != T_ILLEGAL) {
3725             _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type);
3726           } else {
3727             // unsafe access
3728             _is_ptr_to_narrowoop = UseCompressedOops;
3729           }
3730         } else {
3731           // Instance fields which contains a compressed oop references.
3732           ciInstanceKlass* ik = klass()->as_instance_klass();
3733           BasicType basic_elem_type = ik->get_field_type_by_offset(this->offset(), false);
3734           if (basic_elem_type != T_ILLEGAL) {
3735             _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type);
3736           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
3737             // Compile::find_alias_type() cast exactness on all types to verify
3738             // that it does not affect alias type.
3739             _is_ptr_to_narrowoop = UseCompressedOops;
3740           } else {
3741             // Type for the copy start in LibraryCallKit::inline_native_clone().
3742             _is_ptr_to_narrowoop = UseCompressedOops;
3743           }
3744         }
3745       }
3746     }
3747   }
3748 #endif // _LP64
3749 }
3750 
3751 //------------------------------make-------------------------------------------
3752 const TypeOopPtr *TypeOopPtr::make(PTR ptr, Offset offset, int instance_id,
3753                                    const TypePtr* speculative, int inline_depth) {
3754   assert(ptr != Constant, "no constant generic pointers");
3755   ciKlass*  k = Compile::current()->env()->Object_klass();
3756   bool      xk = false;
3757   ciObject* o = nullptr;
3758   const TypeInterfaces* interfaces = TypeInterfaces::make();
3759   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, interfaces, xk, o, offset, Offset::bottom, instance_id, speculative, inline_depth))->hashcons();
3760 }
3761 
3762 
3763 //------------------------------cast_to_ptr_type-------------------------------
3764 const TypeOopPtr* TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
3765   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
3766   if( ptr == _ptr ) return this;
3767   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
3768 }
3769 
3770 //-----------------------------cast_to_instance_id----------------------------
3771 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
3772   // There are no instances of a general oop.
3773   // Return self unchanged.
3774   return this;
3775 }
3776 
3777 //-----------------------------cast_to_exactness-------------------------------
3778 const TypeOopPtr* TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
3779   // There is no such thing as an exact general oop.
3780   // Return self unchanged.
3781   return this;
3782 }
3783 

3784 //------------------------------as_klass_type----------------------------------
3785 // Return the klass type corresponding to this instance or array type.
3786 // It is the type that is loaded from an object of this type.
3787 const TypeKlassPtr* TypeOopPtr::as_klass_type(bool try_for_exact) const {
3788   ShouldNotReachHere();
3789   return nullptr;
3790 }
3791 
3792 //------------------------------meet-------------------------------------------
3793 // Compute the MEET of two types.  It returns a new Type object.
3794 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
3795   // Perform a fast test for common case; meeting the same types together.
3796   if( this == t ) return this;  // Meeting same type-rep?
3797 
3798   // Current "this->_base" is OopPtr
3799   switch (t->base()) {          // switch on original type
3800 
3801   case Int:                     // Mixing ints & oops happens when javac
3802   case Long:                    // reuses local variables
3803   case HalfFloatTop:

3812   case NarrowOop:
3813   case NarrowKlass:
3814   case Bottom:                  // Ye Olde Default
3815     return Type::BOTTOM;
3816   case Top:
3817     return this;
3818 
3819   default:                      // All else is a mistake
3820     typerr(t);
3821 
3822   case RawPtr:
3823   case MetadataPtr:
3824   case KlassPtr:
3825   case InstKlassPtr:
3826   case AryKlassPtr:
3827     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3828 
3829   case AnyPtr: {
3830     // Found an AnyPtr type vs self-OopPtr type
3831     const TypePtr *tp = t->is_ptr();
3832     Offset offset = meet_offset(tp->offset());
3833     PTR ptr = meet_ptr(tp->ptr());
3834     const TypePtr* speculative = xmeet_speculative(tp);
3835     int depth = meet_inline_depth(tp->inline_depth());
3836     switch (tp->ptr()) {
3837     case Null:
3838       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3839       // else fall through:
3840     case TopPTR:
3841     case AnyNull: {
3842       int instance_id = meet_instance_id(InstanceTop);
3843       return make(ptr, offset, instance_id, speculative, depth);
3844     }
3845     case BotPTR:
3846     case NotNull:
3847       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3848     default: typerr(t);
3849     }
3850   }
3851 
3852   case OopPtr: {                 // Meeting to other OopPtrs

3854     int instance_id = meet_instance_id(tp->instance_id());
3855     const TypePtr* speculative = xmeet_speculative(tp);
3856     int depth = meet_inline_depth(tp->inline_depth());
3857     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
3858   }
3859 
3860   case InstPtr:                  // For these, flip the call around to cut down
3861   case AryPtr:
3862     return t->xmeet(this);      // Call in reverse direction
3863 
3864   } // End of switch
3865   return this;                  // Return the double constant
3866 }
3867 
3868 
3869 //------------------------------xdual------------------------------------------
3870 // Dual of a pure heap pointer.  No relevant klass or oop information.
3871 const Type *TypeOopPtr::xdual() const {
3872   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
3873   assert(const_oop() == nullptr,             "no constants here");
3874   return new TypeOopPtr(_base, dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), Offset::bottom, dual_instance_id(), dual_speculative(), dual_inline_depth());
3875 }
3876 
3877 //--------------------------make_from_klass_common-----------------------------
3878 // Computes the element-type given a klass.
3879 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact, InterfaceHandling interface_handling) {
3880   if (klass->is_instance_klass() || klass->is_inlinetype()) {
3881     Compile* C = Compile::current();
3882     Dependencies* deps = C->dependencies();
3883     assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
3884     // Element is an instance
3885     bool klass_is_exact = false;
3886     ciInstanceKlass* ik = klass->as_instance_klass();
3887     if (klass->is_loaded()) {
3888       // Try to set klass_is_exact.

3889       klass_is_exact = ik->is_final();
3890       if (!klass_is_exact && klass_change
3891           && deps != nullptr && UseUniqueSubclasses) {
3892         ciInstanceKlass* sub = ik->unique_concrete_subklass();
3893         if (sub != nullptr) {
3894           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3895           klass = ik = sub;
3896           klass_is_exact = sub->is_final();
3897         }
3898       }
3899       if (!klass_is_exact && try_for_exact && deps != nullptr &&
3900           !ik->is_interface() && !ik->has_subklass()) {
3901         // Add a dependence; if concrete subclass added we need to recompile
3902         deps->assert_leaf_type(ik);
3903         klass_is_exact = true;
3904       }
3905     }
3906     FlatInArray flat_in_array = compute_flat_in_array(ik, klass_is_exact);
3907     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
3908     return TypeInstPtr::make(TypePtr::BotPTR, klass, interfaces, klass_is_exact, nullptr, Offset(0), flat_in_array);
3909   } else if (klass->is_obj_array_klass()) {
3910     // Element is an object or inline type array. Recursively call ourself.
3911     const TypeOopPtr* etype = TypeOopPtr::make_from_klass_common(klass->as_array_klass()->element_klass(), /* klass_change= */ false, try_for_exact, interface_handling);
3912     bool xk = klass->is_loaded() && klass->as_obj_array_klass()->is_refined();
3913     // Determine null-free/flat properties
3914     const bool is_null_free = xk && klass->as_array_klass()->is_elem_null_free();
3915     if (is_null_free) {
3916       etype = etype->join_speculative(NOTNULL)->is_oopptr();
3917     }
3918     const TypeOopPtr* exact_etype = etype;
3919     if (etype->can_be_inline_type()) {
3920       // Use exact type if element can be an inline type
3921       exact_etype = TypeOopPtr::make_from_klass_common(klass->as_array_klass()->element_klass(), /* klass_change= */ true, /* try_for_exact= */ true, interface_handling);
3922     }
3923     bool not_inline = !exact_etype->can_be_inline_type();
3924     bool not_null_free = xk ? !is_null_free : not_inline;
3925     bool not_flat = xk || !UseArrayFlattening || not_inline || (exact_etype->is_inlinetypeptr() && !exact_etype->inline_klass()->maybe_flat_in_array());
3926     bool atomic = not_flat;
3927     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS, /* stable= */ false, /* flat= */ false, not_flat, not_null_free, atomic);
3928     // We used to pass NotNull in here, asserting that the sub-arrays
3929     // are all not-null.  This is not true in generally, as code can
3930     // slam nullptrs down in the subarrays.
3931     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, nullptr, xk, Offset(0));
3932     return arr;
3933   } else if (klass->is_type_array_klass()) {
3934     // Element is an typeArray
3935     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3936     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS,
3937                                         /* stable= */ false, /* flat= */ false, /* not_flat= */ true, /* not_null_free= */ true, true);
3938     // We used to pass NotNull in here, asserting that the array pointer
3939     // is not-null. That was not true in general.
3940     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, Offset(0));
3941     return arr;
3942   } else if (klass->is_flat_array_klass()) {
3943     const TypeOopPtr* etype = TypeOopPtr::make_from_klass_raw(klass->as_array_klass()->element_klass(), trust_interfaces);
3944     const bool is_null_free = klass->as_array_klass()->is_elem_null_free();
3945     if (is_null_free) {
3946       etype = etype->join_speculative(NOTNULL)->is_oopptr();
3947     }
3948     bool atomic = klass->as_array_klass()->is_elem_atomic();
3949     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS, /* stable= */ false, /* flat= */ true, /* not_flat= */ false, /* not_null_free= */ !is_null_free, atomic);
3950     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, Offset(0));
3951     return arr;
3952   } else {
3953     ShouldNotReachHere();
3954     return nullptr;
3955   }
3956 }
3957 
3958 //------------------------------make_from_constant-----------------------------
3959 // Make a java pointer from an oop constant
3960 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
3961   assert(!o->is_null_object(), "null object not yet handled here.");
3962 
3963   const bool make_constant = require_constant || o->should_be_constant();
3964 
3965   ciKlass* klass = o->klass();
3966   if (klass->is_instance_klass() || klass->is_inlinetype()) {
3967     // Element is an instance or inline type
3968     if (make_constant) {
3969       return TypeInstPtr::make(o);
3970     } else {
3971       return TypeInstPtr::make(TypePtr::NotNull, klass, true, nullptr, Offset(0));
3972     }
3973   } else if (klass->is_obj_array_klass()) {
3974     // Element is an object array. Recursively call ourself.
3975     const TypeOopPtr* etype = TypeOopPtr::make_from_klass_raw(klass->as_array_klass()->element_klass(), trust_interfaces);
3976     bool is_flat = o->as_array()->is_flat();
3977     bool is_null_free = o->as_array()->is_null_free();
3978     if (is_null_free) {
3979       etype = etype->join_speculative(TypePtr::NOTNULL)->is_oopptr();
3980     }
3981     bool is_atomic = o->as_array()->is_atomic();
3982     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()), /* stable= */ false, /* flat= */ false,
3983                                         /* not_flat= */ !is_flat, /* not_null_free= */ !is_null_free, /* atomic= */ is_atomic);
3984     // We used to pass NotNull in here, asserting that the sub-arrays
3985     // are all not-null.  This is not true in generally, as code can
3986     // slam nulls down in the subarrays.
3987     if (make_constant) {
3988       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3989     } else {
3990       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3991     }
3992   } else if (klass->is_type_array_klass()) {
3993     // Element is an typeArray
3994     const Type* etype = (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3995     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()), /* stable= */ false, /* flat= */ false,
3996                                         /* not_flat= */ true, /* not_null_free= */ true, true);
3997     // We used to pass NotNull in here, asserting that the array pointer
3998     // is not-null. That was not true in general.
3999     if (make_constant) {
4000       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
4001     } else {
4002       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
4003     }
4004   } else if (klass->is_flat_array_klass()) {
4005     const TypeOopPtr* etype = TypeOopPtr::make_from_klass_raw(klass->as_array_klass()->element_klass(), trust_interfaces);
4006     bool is_null_free = o->as_array()->is_null_free();
4007     if (is_null_free) {
4008       etype = etype->join_speculative(TypePtr::NOTNULL)->is_oopptr();
4009     }
4010     bool is_atomic = o->as_array()->is_atomic();
4011     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()), /* stable= */ false, /* flat= */ true,
4012                                         /* not_flat= */ false, /* not_null_free= */ !is_null_free, /* atomic= */ is_atomic);
4013     // We used to pass NotNull in here, asserting that the sub-arrays
4014     // are all not-null.  This is not true in generally, as code can
4015     // slam nullptrs down in the subarrays.
4016     if (make_constant) {
4017       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
4018     } else {
4019       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
4020     }
4021   }
4022 
4023   fatal("unhandled object type");
4024   return nullptr;
4025 }
4026 
4027 //------------------------------get_con----------------------------------------
4028 intptr_t TypeOopPtr::get_con() const {
4029   assert( _ptr == Null || _ptr == Constant, "" );
4030   assert(offset() >= 0, "");
4031 
4032   if (offset() != 0) {
4033     // After being ported to the compiler interface, the compiler no longer
4034     // directly manipulates the addresses of oops.  Rather, it only has a pointer
4035     // to a handle at compile time.  This handle is embedded in the generated
4036     // code and dereferenced at the time the nmethod is made.  Until that time,
4037     // it is not reasonable to do arithmetic with the addresses of oops (we don't
4038     // have access to the addresses!).  This does not seem to currently happen,
4039     // but this assertion here is to help prevent its occurrence.
4040     tty->print_cr("Found oop constant with non-zero offset");
4041     ShouldNotReachHere();
4042   }
4043 
4044   return (intptr_t)const_oop()->constant_encoding();
4045 }
4046 
4047 
4048 //-----------------------------filter------------------------------------------
4049 // Do not allow interface-vs.-noninterface joins to collapse to top.
4050 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
4051 
4052   const Type* ft = join_helper(kills, include_speculative);

4098   dump_speculative(st);
4099 }
4100 
4101 void TypeOopPtr::dump_instance_id(outputStream* st) const {
4102   if (_instance_id == InstanceTop) {
4103     st->print(",iid=top");
4104   } else if (_instance_id == InstanceBot) {
4105     st->print(",iid=bot");
4106   } else {
4107     st->print(",iid=%d", _instance_id);
4108   }
4109 }
4110 #endif
4111 
4112 //------------------------------singleton--------------------------------------
4113 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4114 // constants
4115 bool TypeOopPtr::singleton(void) const {
4116   // detune optimizer to not generate constant oop + constant offset as a constant!
4117   // TopPTR, Null, AnyNull, Constant are all singletons
4118   return (offset() == 0) && !below_centerline(_ptr);
4119 }
4120 
4121 //------------------------------add_offset-------------------------------------
4122 const TypePtr* TypeOopPtr::add_offset(intptr_t offset) const {
4123   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
4124 }
4125 
4126 const TypeOopPtr* TypeOopPtr::with_offset(intptr_t offset) const {
4127   return make(_ptr, Offset(offset), _instance_id, with_offset_speculative(offset), _inline_depth);
4128 }
4129 
4130 /**
4131  * Return same type without a speculative part
4132  */
4133 const TypeOopPtr* TypeOopPtr::remove_speculative() const {
4134   if (_speculative == nullptr) {
4135     return this;
4136   }
4137   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4138   return make(_ptr, _offset, _instance_id, nullptr, _inline_depth);
4139 }
4140 
4141 /**
4142  * Return same type but drop speculative part if we know we won't use
4143  * it
4144  */
4145 const Type* TypeOopPtr::cleanup_speculative() const {
4146   // If the klass is exact and the ptr is not null then there's
4147   // nothing that the speculative type can help us with

4220 const TypeInstPtr *TypeInstPtr::BOTTOM;
4221 const TypeInstPtr *TypeInstPtr::MIRROR;
4222 const TypeInstPtr *TypeInstPtr::MARK;
4223 const TypeInstPtr *TypeInstPtr::KLASS;
4224 
4225 // Is there a single ciKlass* that can represent that type?
4226 ciKlass* TypeInstPtr::exact_klass_helper() const {
4227   if (_interfaces->empty()) {
4228     return _klass;
4229   }
4230   if (_klass != ciEnv::current()->Object_klass()) {
4231     if (_interfaces->eq(_klass->as_instance_klass())) {
4232       return _klass;
4233     }
4234     return nullptr;
4235   }
4236   return _interfaces->exact_klass();
4237 }
4238 
4239 //------------------------------TypeInstPtr-------------------------------------
4240 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset off,
4241                          FlatInArray flat_in_array, int instance_id, const TypePtr* speculative, int inline_depth)
4242   : TypeOopPtr(InstPtr, ptr, k, interfaces, xk, o, off, Offset::bottom, instance_id, speculative, inline_depth),
4243     _flat_in_array(flat_in_array) {
4244 
4245   assert(flat_in_array != Uninitialized, "must be set now");
4246   assert(k == nullptr || !k->is_loaded() || !k->is_interface(), "no interface here");
4247   assert(k != nullptr &&
4248          (k->is_loaded() || o == nullptr),
4249          "cannot have constants with non-loaded klass");
4250 };
4251 
4252 //------------------------------make-------------------------------------------
4253 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
4254                                      ciKlass* k,
4255                                      const TypeInterfaces* interfaces,
4256                                      bool xk,
4257                                      ciObject* o,
4258                                      Offset offset,
4259                                      FlatInArray flat_in_array,
4260                                      int instance_id,
4261                                      const TypePtr* speculative,
4262                                      int inline_depth) {
4263   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
4264   // Either const_oop() is null or else ptr is Constant
4265   assert( (!o && ptr != Constant) || (o && ptr == Constant),
4266           "constant pointers must have a value supplied" );
4267   // Ptr is never Null
4268   assert( ptr != Null, "null pointers are not typed" );
4269 
4270   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4271   ciInstanceKlass* ik = k->as_instance_klass();
4272   if (ptr == Constant) {
4273     // Note:  This case includes meta-object constants, such as methods.
4274     xk = true;
4275   } else if (k->is_loaded()) {

4276     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
4277     assert(!ik->is_interface(), "no interface here");
4278     if (xk && ik->is_interface())  xk = false;  // no exact interface
4279   }
4280 
4281   if (flat_in_array == Uninitialized) {
4282     flat_in_array = compute_flat_in_array(ik, xk);
4283   }
4284   // Now hash this baby
4285   TypeInstPtr *result =
4286     (TypeInstPtr*)(new TypeInstPtr(ptr, k, interfaces, xk, o, offset, flat_in_array, instance_id, speculative, inline_depth))->hashcons();
4287 
4288   return result;
4289 }
4290 
4291 const TypeInterfaces* TypePtr::interfaces(ciKlass*& k, bool klass, bool interface, bool array, InterfaceHandling interface_handling) {
4292   if (k->is_instance_klass()) {
4293     if (k->is_loaded()) {
4294       if (k->is_interface() && interface_handling == ignore_interfaces) {
4295         assert(interface, "no interface expected");
4296         k = ciEnv::current()->Object_klass();
4297         const TypeInterfaces* interfaces = TypeInterfaces::make();
4298         return interfaces;
4299       }
4300       GrowableArray<ciInstanceKlass *>* k_interfaces = k->as_instance_klass()->transitive_interfaces();
4301       const TypeInterfaces* interfaces = TypeInterfaces::make(k_interfaces);
4302       if (k->is_interface()) {
4303         assert(interface, "no interface expected");
4304         k = ciEnv::current()->Object_klass();
4305       } else {
4306         assert(klass, "no instance klass expected");

4332   switch (bt) {
4333     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
4334     case T_INT:      return TypeInt::make(constant.as_int());
4335     case T_CHAR:     return TypeInt::make(constant.as_char());
4336     case T_BYTE:     return TypeInt::make(constant.as_byte());
4337     case T_SHORT:    return TypeInt::make(constant.as_short());
4338     case T_FLOAT:    return TypeF::make(constant.as_float());
4339     case T_DOUBLE:   return TypeD::make(constant.as_double());
4340     case T_LONG:     return TypeLong::make(constant.as_long());
4341     default:         break;
4342   }
4343   fatal("Invalid boxed value type '%s'", type2name(bt));
4344   return nullptr;
4345 }
4346 
4347 //------------------------------cast_to_ptr_type-------------------------------
4348 const TypeInstPtr* TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
4349   if( ptr == _ptr ) return this;
4350   // Reconstruct _sig info here since not a problem with later lazy
4351   // construction, _sig will show up on demand.
4352   return make(ptr, klass(), _interfaces, klass_is_exact(), ptr == Constant ? const_oop() : nullptr, _offset, _flat_in_array, _instance_id, _speculative, _inline_depth);
4353 }
4354 
4355 
4356 //-----------------------------cast_to_exactness-------------------------------
4357 const TypeInstPtr* TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
4358   if( klass_is_exact == _klass_is_exact ) return this;
4359   if (!_klass->is_loaded())  return this;
4360   ciInstanceKlass* ik = _klass->as_instance_klass();
4361   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
4362   assert(!ik->is_interface(), "no interface here");
4363   FlatInArray flat_in_array = compute_flat_in_array(ik, klass_is_exact);
4364   return make(ptr(), klass(), _interfaces, klass_is_exact, const_oop(), _offset, flat_in_array, _instance_id, _speculative, _inline_depth);
4365 }
4366 
4367 //-----------------------------cast_to_instance_id----------------------------
4368 const TypeInstPtr* TypeInstPtr::cast_to_instance_id(int instance_id) const {
4369   if( instance_id == _instance_id ) return this;
4370   return make(_ptr, klass(), _interfaces, _klass_is_exact, const_oop(), _offset, _flat_in_array, instance_id, _speculative, _inline_depth);
4371 }
4372 
4373 //------------------------------xmeet_unloaded---------------------------------
4374 // Compute the MEET of two InstPtrs when at least one is unloaded.
4375 // Assume classes are different since called after check for same name/class-loader
4376 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst, const TypeInterfaces* interfaces) const {
4377   Offset off = meet_offset(tinst->offset());
4378   PTR ptr = meet_ptr(tinst->ptr());
4379   int instance_id = meet_instance_id(tinst->instance_id());
4380   const TypePtr* speculative = xmeet_speculative(tinst);
4381   int depth = meet_inline_depth(tinst->inline_depth());
4382 
4383   const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
4384   const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
4385   if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
4386     //
4387     // Meet unloaded class with java/lang/Object
4388     //
4389     // Meet
4390     //          |                     Unloaded Class
4391     //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
4392     //  ===================================================================
4393     //   TOP    | ..........................Unloaded......................|
4394     //  AnyNull |  U-AN    |................Unloaded......................|
4395     // Constant | ... O-NN .................................. |   O-BOT   |
4396     //  NotNull | ... O-NN .................................. |   O-BOT   |
4397     //  BOTTOM  | ........................Object-BOTTOM ..................|
4398     //
4399     assert(loaded->ptr() != TypePtr::Null, "insanity check");
4400     //
4401     if (loaded->ptr() == TypePtr::TopPTR)        { return unloaded->with_speculative(speculative); }
4402     else if (loaded->ptr() == TypePtr::AnyNull)  {
4403       FlatInArray flat_in_array = meet_flat_in_array(_flat_in_array, tinst->flat_in_array());
4404       return make(ptr, unloaded->klass(), interfaces, false, nullptr, off, flat_in_array, instance_id,
4405                   speculative, depth);
4406     }
4407     else if (loaded->ptr() == TypePtr::BotPTR)   { return TypeInstPtr::BOTTOM->with_speculative(speculative); }
4408     else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
4409       if (unloaded->ptr() == TypePtr::BotPTR)    { return TypeInstPtr::BOTTOM->with_speculative(speculative);  }
4410       else                                       { return TypeInstPtr::NOTNULL->with_speculative(speculative); }
4411     }
4412     else if (unloaded->ptr() == TypePtr::TopPTR) { return unloaded->with_speculative(speculative); }
4413 
4414     return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr()->with_speculative(speculative);
4415   }
4416 
4417   // Both are unloaded, not the same class, not Object
4418   // Or meet unloaded with a different loaded class, not java/lang/Object
4419   if (ptr != TypePtr::BotPTR) {
4420     return TypeInstPtr::NOTNULL->with_speculative(speculative);
4421   }
4422   return TypeInstPtr::BOTTOM->with_speculative(speculative);
4423 }
4424 
4425 
4426 //------------------------------meet-------------------------------------------

4450   case Top:
4451     return this;
4452 
4453   default:                      // All else is a mistake
4454     typerr(t);
4455 
4456   case MetadataPtr:
4457   case KlassPtr:
4458   case InstKlassPtr:
4459   case AryKlassPtr:
4460   case RawPtr: return TypePtr::BOTTOM;
4461 
4462   case AryPtr: {                // All arrays inherit from Object class
4463     // Call in reverse direction to avoid duplication
4464     return t->is_aryptr()->xmeet_helper(this);
4465   }
4466 
4467   case OopPtr: {                // Meeting to OopPtrs
4468     // Found a OopPtr type vs self-InstPtr type
4469     const TypeOopPtr *tp = t->is_oopptr();
4470     Offset offset = meet_offset(tp->offset());
4471     PTR ptr = meet_ptr(tp->ptr());
4472     switch (tp->ptr()) {
4473     case TopPTR:
4474     case AnyNull: {
4475       int instance_id = meet_instance_id(InstanceTop);
4476       const TypePtr* speculative = xmeet_speculative(tp);
4477       int depth = meet_inline_depth(tp->inline_depth());
4478       return make(ptr, klass(), _interfaces, klass_is_exact(),
4479                   (ptr == Constant ? const_oop() : nullptr), offset, flat_in_array(), instance_id, speculative, depth);
4480     }
4481     case NotNull:
4482     case BotPTR: {
4483       int instance_id = meet_instance_id(tp->instance_id());
4484       const TypePtr* speculative = xmeet_speculative(tp);
4485       int depth = meet_inline_depth(tp->inline_depth());
4486       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4487     }
4488     default: typerr(t);
4489     }
4490   }
4491 
4492   case AnyPtr: {                // Meeting to AnyPtrs
4493     // Found an AnyPtr type vs self-InstPtr type
4494     const TypePtr *tp = t->is_ptr();
4495     Offset offset = meet_offset(tp->offset());
4496     PTR ptr = meet_ptr(tp->ptr());
4497     int instance_id = meet_instance_id(InstanceTop);
4498     const TypePtr* speculative = xmeet_speculative(tp);
4499     int depth = meet_inline_depth(tp->inline_depth());
4500     switch (tp->ptr()) {
4501     case Null:
4502       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4503       // else fall through to AnyNull
4504     case TopPTR:
4505     case AnyNull: {
4506       return make(ptr, klass(), _interfaces, klass_is_exact(),
4507                   (ptr == Constant ? const_oop() : nullptr), offset, flat_in_array(), instance_id, speculative, depth);
4508     }
4509     case NotNull:
4510     case BotPTR:
4511       return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
4512     default: typerr(t);
4513     }
4514   }
4515 
4516   /*
4517                  A-top         }
4518                /   |   \       }  Tops
4519            B-top A-any C-top   }
4520               | /  |  \ |      }  Any-nulls
4521            B-any   |   C-any   }
4522               |    |    |
4523            B-con A-con C-con   } constants; not comparable across classes
4524               |    |    |
4525            B-not   |   C-not   }
4526               | \  |  / |      }  not-nulls
4527            B-bot A-not C-bot   }
4528                \   |   /       }  Bottoms
4529                  A-bot         }
4530   */
4531 
4532   case InstPtr: {                // Meeting 2 Oops?
4533     // Found an InstPtr sub-type vs self-InstPtr type
4534     const TypeInstPtr *tinst = t->is_instptr();
4535     Offset off = meet_offset(tinst->offset());
4536     PTR ptr = meet_ptr(tinst->ptr());
4537     int instance_id = meet_instance_id(tinst->instance_id());
4538     const TypePtr* speculative = xmeet_speculative(tinst);
4539     int depth = meet_inline_depth(tinst->inline_depth());
4540     const TypeInterfaces* interfaces = meet_interfaces(tinst);
4541 
4542     ciKlass* tinst_klass = tinst->klass();
4543     ciKlass* this_klass  = klass();
4544 
4545     ciKlass* res_klass = nullptr;
4546     bool res_xk = false;
4547     const Type* res;
4548     MeetResult kind = meet_instptr(ptr, interfaces, this, tinst, res_klass, res_xk);
4549 
4550     if (kind == UNLOADED) {
4551       // One of these classes has not been loaded
4552       const TypeInstPtr* unloaded_meet = xmeet_unloaded(tinst, interfaces);
4553 #ifndef PRODUCT
4554       if (PrintOpto && Verbose) {
4555         tty->print("meet of unloaded classes resulted in: ");
4556         unloaded_meet->dump();
4557         tty->cr();
4558         tty->print("  this == ");
4559         dump();
4560         tty->cr();
4561         tty->print(" tinst == ");
4562         tinst->dump();
4563         tty->cr();
4564       }
4565 #endif
4566       res = unloaded_meet;
4567     } else {
4568       FlatInArray flat_in_array = meet_flat_in_array(_flat_in_array, tinst->flat_in_array());
4569       if (kind == NOT_SUBTYPE && instance_id > 0) {
4570         instance_id = InstanceBot;
4571       } else if (kind == LCA) {
4572         instance_id = InstanceBot;
4573       }
4574       ciObject* o = nullptr;             // Assume not constant when done
4575       ciObject* this_oop = const_oop();
4576       ciObject* tinst_oop = tinst->const_oop();
4577       if (ptr == Constant) {
4578         if (this_oop != nullptr && tinst_oop != nullptr &&
4579             this_oop->equals(tinst_oop))
4580           o = this_oop;
4581         else if (above_centerline(_ptr)) {
4582           assert(!tinst_klass->is_interface(), "");
4583           o = tinst_oop;
4584         } else if (above_centerline(tinst->_ptr)) {
4585           assert(!this_klass->is_interface(), "");
4586           o = this_oop;
4587         } else
4588           ptr = NotNull;
4589       }
4590       res = make(ptr, res_klass, interfaces, res_xk, o, off, flat_in_array, instance_id, speculative, depth);
4591     }
4592 
4593     return res;
4594 
4595   } // End of case InstPtr
4596 
4597   } // End of switch
4598   return this;                  // Return the double constant
4599 }
4600 
4601 template<class T> TypePtr::MeetResult TypePtr::meet_instptr(PTR& ptr, const TypeInterfaces*& interfaces, const T* this_type, const T* other_type,
4602                                                             ciKlass*& res_klass, bool& res_xk) {
4603   ciKlass* this_klass = this_type->klass();
4604   ciKlass* other_klass = other_type->klass();
4605 
4606   bool this_xk = this_type->klass_is_exact();
4607   bool other_xk = other_type->klass_is_exact();
4608   PTR this_ptr = this_type->ptr();
4609   PTR other_ptr = other_type->ptr();
4610   const TypeInterfaces* this_interfaces = this_type->interfaces();
4611   const TypeInterfaces* other_interfaces = other_type->interfaces();
4612   // Check for easy case; klasses are equal (and perhaps not loaded!)
4613   // If we have constants, then we created oops so classes are loaded
4614   // and we can handle the constants further down.  This case handles
4615   // both-not-loaded or both-loaded classes
4616   if (ptr != Constant && this_klass->equals(other_klass) && this_xk == other_xk) {
4617     res_klass = this_klass;
4618     res_xk = this_xk;
4619     return QUICK;
4620   }
4621 
4622   // Classes require inspection in the Java klass hierarchy.  Must be loaded.
4623   if (!other_klass->is_loaded() || !this_klass->is_loaded()) {
4624     return UNLOADED;
4625   }

4631   // If both are up and they do NOT subtype, "fall hard".
4632   // If both are down and they subtype, take the supertype class.
4633   // If both are down and they do NOT subtype, "fall hard".
4634   // Constants treated as down.
4635 
4636   // Now, reorder the above list; observe that both-down+subtype is also
4637   // "fall hard"; "fall hard" becomes the default case:
4638   // If we split one up & one down AND they subtype, take the down man.
4639   // If both are up and they subtype, take the subtype class.
4640 
4641   // If both are down and they subtype, "fall hard".
4642   // If both are down and they do NOT subtype, "fall hard".
4643   // If both are up and they do NOT subtype, "fall hard".
4644   // If we split one up & one down AND they do NOT subtype, "fall hard".
4645 
4646   // If a proper subtype is exact, and we return it, we return it exactly.
4647   // If a proper supertype is exact, there can be no subtyping relationship!
4648   // If both types are equal to the subtype, exactness is and-ed below the
4649   // centerline and or-ed above it.  (N.B. Constants are always exact.)
4650 

4651   const T* subtype = nullptr;
4652   bool subtype_exact = false;
4653   if (this_type->is_same_java_type_as(other_type)) {
4654     // Same klass
4655     subtype = this_type;
4656     subtype_exact = below_centerline(ptr) ? (this_xk && other_xk) : (this_xk || other_xk);
4657   } else if (!other_xk && this_type->is_meet_subtype_of(other_type)) {
4658     subtype = this_type;     // Pick subtyping class
4659     subtype_exact = this_xk;
4660   } else if (!this_xk && other_type->is_meet_subtype_of(this_type)) {
4661     subtype = other_type;    // Pick subtyping class
4662     subtype_exact = other_xk;
4663   }
4664 
4665   if (subtype != nullptr) {
4666     if (above_centerline(ptr)) {
4667       // Both types are empty.
4668       this_type = other_type = subtype;
4669       this_xk = other_xk = subtype_exact;
4670     } else if (above_centerline(this_ptr) && !above_centerline(other_ptr)) {
4671       // this_type is empty while other_type is not. Take other_type.
4672       this_type = other_type;
4673       this_xk = other_xk;
4674     } else if (above_centerline(other_ptr) && !above_centerline(this_ptr)) {
4675       // other_type is empty while this_type is not. Take this_type.
4676       other_type = this_type; // this is down; keep down man

4677     } else {
4678       // this_type and other_type are both non-empty.
4679       this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
4680     }
4681   }
4682 
4683   // Check for classes now being equal
4684   if (this_type->is_same_java_type_as(other_type)) {
4685     // If the klasses are equal, the constants may still differ.  Fall to
4686     // NotNull if they do (neither constant is null; that is a special case
4687     // handled elsewhere).
4688     res_klass = this_type->klass();
4689     res_xk = this_xk;
4690     return SUBTYPE;
4691   } // Else classes are not equal
4692 
4693   // Since klasses are different, we require a LCA in the Java
4694   // class hierarchy - which means we have to fall to at least NotNull.
4695   if (ptr == TopPTR || ptr == AnyNull || ptr == Constant) {
4696     ptr = NotNull;
4697   }
4698 
4699   interfaces = this_interfaces->intersection_with(other_interfaces);
4700 
4701   // Now we find the LCA of Java classes
4702   ciKlass* k = this_klass->least_common_ancestor(other_klass);
4703 
4704   res_klass = k;
4705   res_xk = false;

4706   return LCA;
4707 }
4708 
4709 //                Top-Flat    Flat        Not-Flat    Maybe-Flat
4710 // -------------------------------------------------------------
4711 //    Top-Flat    Top-Flat    Flat        Not-Flat    Maybe-Flat
4712 //        Flat    Flat        Flat        Maybe-Flat  Maybe-Flat
4713 //    Not-Flat    Not-Flat    Maybe-Flat  Not-Flat    Maybe-Flat
4714 //  Maybe-Flat    Maybe-Flat  Maybe-Flat  Maybe-Flat  Maybe-flat
4715 TypePtr::FlatInArray TypePtr::meet_flat_in_array(const FlatInArray left, const FlatInArray right) {
4716   if (left == TopFlat) {
4717     return right;
4718   }
4719   if (right == TopFlat) {
4720     return left;
4721   }
4722   if (left == MaybeFlat || right == MaybeFlat) {
4723     return MaybeFlat;
4724   }
4725 
4726   switch (left) {
4727     case Flat:
4728       if (right == Flat) {
4729         return Flat;
4730       }
4731       return MaybeFlat;
4732     case NotFlat:
4733       if (right == NotFlat) {
4734         return NotFlat;
4735       }
4736       return MaybeFlat;
4737     default:
4738       ShouldNotReachHere();
4739       return Uninitialized;
4740   }
4741 }
4742 
4743 //------------------------java_mirror_type--------------------------------------
4744 ciType* TypeInstPtr::java_mirror_type() const {
4745   // must be a singleton type
4746   if( const_oop() == nullptr )  return nullptr;
4747 
4748   // must be of type java.lang.Class
4749   if( klass() != ciEnv::current()->Class_klass() )  return nullptr;

4750   return const_oop()->as_instance()->java_mirror_type();
4751 }
4752 
4753 
4754 //------------------------------xdual------------------------------------------
4755 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
4756 // inheritance mechanism.
4757 const Type* TypeInstPtr::xdual() const {
4758   return new TypeInstPtr(dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(),
4759                          dual_flat_in_array(), dual_instance_id(), dual_speculative(), dual_inline_depth());
4760 }
4761 
4762 //------------------------------eq---------------------------------------------
4763 // Structural equality check for Type representations
4764 bool TypeInstPtr::eq( const Type *t ) const {
4765   const TypeInstPtr *p = t->is_instptr();
4766   return
4767     klass()->equals(p->klass()) &&
4768     _flat_in_array == p->_flat_in_array &&
4769     _interfaces->eq(p->_interfaces) &&
4770     TypeOopPtr::eq(p);          // Check sub-type stuff
4771 }
4772 
4773 //------------------------------hash-------------------------------------------
4774 // Type-specific hashing function.
4775 uint TypeInstPtr::hash() const {
4776   return klass()->hash() + TypeOopPtr::hash() + _interfaces->hash() + static_cast<uint>(_flat_in_array);
4777 }
4778 
4779 bool TypeInstPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4780   return TypePtr::is_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
4781 }
4782 
4783 
4784 bool TypeInstPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const {
4785   return TypePtr::is_same_java_type_as_helper_for_instance(this, other);
4786 }
4787 
4788 bool TypeInstPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4789   return TypePtr::maybe_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
4790 }
4791 
4792 
4793 //------------------------------dump2------------------------------------------
4794 // Dump oop Type
4795 #ifndef PRODUCT
4796 void TypeInstPtr::dump2(Dict &d, uint depth, outputStream* st) const {

4800   _interfaces->dump(st);
4801 
4802   if (_ptr == Constant && (WizardMode || Verbose)) {
4803     ResourceMark rm;
4804     stringStream ss;
4805 
4806     st->print(" ");
4807     const_oop()->print_oop(&ss);
4808     // 'const_oop->print_oop()' may emit newlines('\n') into ss.
4809     // suppress newlines from it so -XX:+Verbose -XX:+PrintIdeal dumps one-liner for each node.
4810     char* buf = ss.as_string(/* c_heap= */false);
4811     StringUtils::replace_no_expand(buf, "\n", "");
4812     st->print_raw(buf);
4813   }
4814 
4815   st->print(":%s", ptr_msg[_ptr]);
4816   if (_klass_is_exact) {
4817     st->print(":exact");
4818   }
4819 
4820   st->print(" *");
4821 
4822   dump_offset(st);
4823   dump_instance_id(st);
4824   dump_inline_depth(st);
4825   dump_speculative(st);
4826   dump_flat_in_array(_flat_in_array, st);
4827 }
4828 #endif
4829 
4830 bool TypeInstPtr::empty() const {
4831   if (_flat_in_array == TopFlat) {
4832     return true;
4833   }
4834   return TypeOopPtr::empty();
4835 }
4836 
4837 //------------------------------add_offset-------------------------------------
4838 const TypePtr* TypeInstPtr::add_offset(intptr_t offset) const {
4839   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), xadd_offset(offset), _flat_in_array,
4840               _instance_id, add_offset_speculative(offset), _inline_depth);
4841 }
4842 
4843 const TypeInstPtr* TypeInstPtr::with_offset(intptr_t offset) const {
4844   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), Offset(offset), _flat_in_array,
4845               _instance_id, with_offset_speculative(offset), _inline_depth);
4846 }
4847 
4848 const TypeInstPtr* TypeInstPtr::remove_speculative() const {
4849   if (_speculative == nullptr) {
4850     return this;
4851   }
4852   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4853   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, _flat_in_array,
4854               _instance_id, nullptr, _inline_depth);
4855 }
4856 
4857 const TypeInstPtr* TypeInstPtr::with_speculative(const TypePtr* speculative) const {
4858   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, _flat_in_array, _instance_id, speculative, _inline_depth);
4859 }
4860 
4861 const TypePtr* TypeInstPtr::with_inline_depth(int depth) const {
4862   if (!UseInlineDepthForSpeculativeTypes) {
4863     return this;
4864   }
4865   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, _flat_in_array, _instance_id, _speculative, depth);
4866 }
4867 
4868 const TypePtr* TypeInstPtr::with_instance_id(int instance_id) const {
4869   assert(is_known_instance(), "should be known");
4870   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, _flat_in_array, instance_id, _speculative, _inline_depth);
4871 }
4872 
4873 const TypeInstPtr *TypeInstPtr::cast_to_flat_in_array() const {
4874   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, Flat, _instance_id, _speculative, _inline_depth);
4875 }
4876 
4877 const TypeInstPtr *TypeInstPtr::cast_to_maybe_flat_in_array() const {
4878   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, MaybeFlat, _instance_id, _speculative, _inline_depth);
4879 }
4880 
4881 const TypeKlassPtr* TypeInstPtr::as_klass_type(bool try_for_exact) const {
4882   bool xk = klass_is_exact();
4883   ciInstanceKlass* ik = klass()->as_instance_klass();
4884   if (try_for_exact && !xk && !ik->has_subklass() && !ik->is_final()) {
4885     if (_interfaces->eq(ik)) {
4886       Compile* C = Compile::current();
4887       Dependencies* deps = C->dependencies();
4888       deps->assert_leaf_type(ik);
4889       xk = true;
4890     }
4891   }
4892   FlatInArray flat_in_array = compute_flat_in_array_if_unknown(ik, xk, _flat_in_array);
4893   return TypeInstKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, klass(), _interfaces, Offset(0), flat_in_array);
4894 }
4895 
4896 template <class T1, class T2> bool TypePtr::is_meet_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_xk, bool other_xk) {
4897   static_assert(std::is_base_of<T2, T1>::value, "");
4898 
4899   if (!this_one->is_instance_type(other)) {
4900     return false;
4901   }
4902 
4903   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty()) {
4904     return true;
4905   }
4906 
4907   return this_one->klass()->is_subtype_of(other->klass()) &&
4908          (!this_xk || this_one->_interfaces->contains(other->_interfaces));
4909 }
4910 
4911 
4912 bool TypeInstPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const {
4913   return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk);

4918   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty()) {
4919     return true;
4920   }
4921 
4922   if (this_one->is_instance_type(other)) {
4923     return other->klass() == ciEnv::current()->Object_klass() && this_one->_interfaces->contains(other->_interfaces);
4924   }
4925 
4926   int dummy;
4927   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
4928   if (this_top_or_bottom) {
4929     return false;
4930   }
4931 
4932   const T1* other_ary = this_one->is_array_type(other);
4933   const TypePtr* other_elem = other_ary->elem()->make_ptr();
4934   const TypePtr* this_elem = this_one->elem()->make_ptr();
4935   if (other_elem != nullptr && this_elem != nullptr) {
4936     return this_one->is_reference_type(this_elem)->is_meet_subtype_of_helper(this_one->is_reference_type(other_elem), this_xk, other_xk);
4937   }

4938   if (other_elem == nullptr && this_elem == nullptr) {
4939     return this_one->klass()->is_subtype_of(other->klass());
4940   }
4941 
4942   return false;
4943 }
4944 
4945 bool TypeAryPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const {
4946   return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk);
4947 }
4948 
4949 bool TypeInstKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const {
4950   return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk);
4951 }
4952 
4953 bool TypeAryKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const {
4954   return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk);
4955 }
4956 
4957 //=============================================================================
4958 // Convenience common pre-built types.
4959 const TypeAryPtr* TypeAryPtr::BOTTOM;
4960 const TypeAryPtr *TypeAryPtr::RANGE;
4961 const TypeAryPtr *TypeAryPtr::OOPS;
4962 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
4963 const TypeAryPtr *TypeAryPtr::BYTES;
4964 const TypeAryPtr *TypeAryPtr::SHORTS;
4965 const TypeAryPtr *TypeAryPtr::CHARS;
4966 const TypeAryPtr *TypeAryPtr::INTS;
4967 const TypeAryPtr *TypeAryPtr::LONGS;
4968 const TypeAryPtr *TypeAryPtr::FLOATS;
4969 const TypeAryPtr *TypeAryPtr::DOUBLES;
4970 const TypeAryPtr *TypeAryPtr::INLINES;
4971 
4972 //------------------------------make-------------------------------------------
4973 const TypeAryPtr* TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, Offset offset, Offset field_offset,
4974                                    int instance_id, const TypePtr* speculative, int inline_depth) {
4975   assert(!(k == nullptr && ary->_elem->isa_int()),
4976          "integral arrays must be pre-equipped with a class");
4977   if (!xk)  xk = ary->ary_must_be_exact();
4978   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4979   if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() &&
4980       k->as_obj_array_klass()->base_element_klass()->is_interface()) {
4981     k = nullptr;
4982   }
4983   return (TypeAryPtr*)(new TypeAryPtr(ptr, nullptr, ary, k, xk, offset, field_offset, instance_id, false, speculative, inline_depth))->hashcons();
4984 }
4985 
4986 //------------------------------make-------------------------------------------
4987 const TypeAryPtr* TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, Offset offset, Offset field_offset,
4988                                    int instance_id, const TypePtr* speculative, int inline_depth,
4989                                    bool is_autobox_cache) {
4990   assert(!(k == nullptr && ary->_elem->isa_int()),
4991          "integral arrays must be pre-equipped with a class");
4992   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
4993   if (!xk)  xk = (o != nullptr) || ary->ary_must_be_exact();
4994   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4995   if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() &&
4996       k->as_obj_array_klass()->base_element_klass()->is_interface()) {
4997     k = nullptr;
4998   }
4999   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, field_offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
5000 }
5001 
5002 //------------------------------cast_to_ptr_type-------------------------------
5003 const TypeAryPtr* TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
5004   if( ptr == _ptr ) return this;
5005   return make(ptr, ptr == Constant ? const_oop() : nullptr, _ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5006 }
5007 
5008 
5009 //-----------------------------cast_to_exactness-------------------------------
5010 const TypeAryPtr* TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
5011   if( klass_is_exact == _klass_is_exact ) return this;
5012   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
5013   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5014 }
5015 
5016 //-----------------------------cast_to_instance_id----------------------------
5017 const TypeAryPtr* TypeAryPtr::cast_to_instance_id(int instance_id) const {
5018   if( instance_id == _instance_id ) return this;
5019   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, _field_offset, instance_id, _speculative, _inline_depth, _is_autobox_cache);
5020 }
5021 
5022 
5023 //-----------------------------max_array_length-------------------------------
5024 // A wrapper around arrayOopDesc::max_array_length(etype) with some input normalization.
5025 jint TypeAryPtr::max_array_length(BasicType etype) {
5026   if (!is_java_primitive(etype) && !::is_reference_type(etype)) {
5027     if (etype == T_NARROWOOP) {
5028       etype = T_OBJECT;
5029     } else if (etype == T_ILLEGAL) { // bottom[]
5030       etype = T_BYTE; // will produce conservatively high value
5031     } else {
5032       fatal("not an element type: %s", type2name(etype));
5033     }
5034   }
5035   return arrayOopDesc::max_array_length(etype);
5036 }
5037 
5038 //-----------------------------narrow_size_type-------------------------------
5039 // Narrow the given size type to the index range for the given array base type.

5057     if (size->is_con()) {
5058       lo = hi;
5059     }
5060     chg = true;
5061   }
5062   // Negative length arrays will produce weird intermediate dead fast-path code
5063   if (lo > hi) {
5064     return TypeInt::ZERO;
5065   }
5066   if (!chg) {
5067     return size;
5068   }
5069   return TypeInt::make(lo, hi, Type::WidenMin);
5070 }
5071 
5072 //-------------------------------cast_to_size----------------------------------
5073 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
5074   assert(new_size != nullptr, "");
5075   new_size = narrow_size_type(new_size);
5076   if (new_size == size())  return this;
5077   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable(), is_flat(), is_not_flat(), is_not_null_free(), is_atomic());
5078   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5079 }
5080 
5081 const TypeAryPtr* TypeAryPtr::cast_to_flat(bool flat) const {
5082   if (flat == is_flat()) {
5083     return this;
5084   }
5085   assert(!flat || !is_not_flat(), "inconsistency");
5086   const TypeAry* new_ary = TypeAry::make(elem(), size(), is_stable(), flat, is_not_flat(), is_not_null_free(), is_atomic());
5087   const TypeAryPtr* res = make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5088   if (res->speculative() == res->remove_speculative()) {
5089     return res->remove_speculative();
5090   }
5091   return res;
5092 }
5093 
5094 //-------------------------------cast_to_not_flat------------------------------
5095 const TypeAryPtr* TypeAryPtr::cast_to_not_flat(bool not_flat) const {
5096   if (not_flat == is_not_flat()) {
5097     return this;
5098   }
5099   assert(!not_flat || !is_flat(), "inconsistency");
5100   const TypeAry* new_ary = TypeAry::make(elem(), size(), is_stable(), is_flat(), not_flat, is_not_null_free(), is_atomic());
5101   const TypeAryPtr* res = make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5102   // We keep the speculative part if it contains information about flat-/nullability.
5103   // Make sure it's removed if it's not better than the non-speculative type anymore.
5104   if (res->speculative() == res->remove_speculative()) {
5105     return res->remove_speculative();
5106   }
5107   return res;
5108 }
5109 
5110 const TypeAryPtr* TypeAryPtr::cast_to_null_free(bool null_free) const {
5111   if (null_free == is_null_free()) {
5112     return this;
5113   }
5114   assert(!null_free || !is_not_null_free(), "inconsistency");
5115   const Type* elem = this->elem();
5116   const Type* new_elem = elem->make_ptr();
5117   if (null_free) {
5118     new_elem = new_elem->join_speculative(TypePtr::NOTNULL);
5119   } else {
5120     new_elem = new_elem->meet_speculative(TypePtr::NULL_PTR);
5121   }
5122   new_elem = elem->isa_narrowoop() ? new_elem->make_narrowoop() : new_elem;
5123   const TypeAry* new_ary = TypeAry::make(new_elem, size(), is_stable(), is_flat(), is_not_flat(), is_not_null_free(), is_atomic());
5124   const TypeAryPtr* res = make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5125   if (res->speculative() == res->remove_speculative()) {
5126     return res->remove_speculative();
5127   }
5128   return res;
5129 }
5130 
5131 //-------------------------------cast_to_not_null_free-------------------------
5132 const TypeAryPtr* TypeAryPtr::cast_to_not_null_free(bool not_null_free) const {
5133   if (not_null_free == is_not_null_free()) {
5134     return this;
5135   }
5136   assert(!not_null_free || !is_null_free(), "inconsistency");
5137   const TypeAry* new_ary = TypeAry::make(elem(), size(), is_stable(), is_flat(), is_not_flat(), not_null_free, is_atomic());
5138   const TypeAryPtr* res = make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset,
5139                                _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5140   // We keep the speculative part if it contains information about flat-/nullability.
5141   // Make sure it's removed if it's not better than the non-speculative type anymore.
5142   if (res->speculative() == res->remove_speculative()) {
5143     return res->remove_speculative();
5144   }
5145   return res;
5146 }
5147 
5148 //---------------------------------update_properties---------------------------
5149 const TypeAryPtr* TypeAryPtr::update_properties(const TypeAryPtr* from) const {
5150   if ((from->is_flat()          && is_not_flat()) ||
5151       (from->is_not_flat()      && is_flat()) ||
5152       (from->is_null_free()     && is_not_null_free()) ||
5153       (from->is_not_null_free() && is_null_free())) {
5154     return nullptr; // Inconsistent properties
5155   }
5156   const TypeAryPtr* res = this;
5157   if (from->is_not_null_free()) {
5158     res = res->cast_to_not_null_free();
5159   }
5160   if (from->is_not_flat()) {
5161     res = res->cast_to_not_flat();
5162   }
5163   return res;
5164 }
5165 
5166 jint TypeAryPtr::flat_layout_helper() const {
5167   return exact_klass()->as_flat_array_klass()->layout_helper();
5168 }
5169 
5170 int TypeAryPtr::flat_elem_size() const {
5171   return exact_klass()->as_flat_array_klass()->element_byte_size();
5172 }
5173 
5174 int TypeAryPtr::flat_log_elem_size() const {
5175   return exact_klass()->as_flat_array_klass()->log2_element_size();
5176 }
5177 
5178 //------------------------------cast_to_stable---------------------------------
5179 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
5180   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
5181     return this;
5182 
5183   const Type* elem = this->elem();
5184   const TypePtr* elem_ptr = elem->make_ptr();
5185 
5186   if (stable_dimension > 1 && elem_ptr != nullptr && elem_ptr->isa_aryptr()) {
5187     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
5188     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
5189   }
5190 
5191   const TypeAry* new_ary = TypeAry::make(elem, size(), stable, is_flat(), is_not_flat(), is_not_null_free(), is_atomic());
5192 
5193   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5194 }
5195 
5196 //-----------------------------stable_dimension--------------------------------
5197 int TypeAryPtr::stable_dimension() const {
5198   if (!is_stable())  return 0;
5199   int dim = 1;
5200   const TypePtr* elem_ptr = elem()->make_ptr();
5201   if (elem_ptr != nullptr && elem_ptr->isa_aryptr())
5202     dim += elem_ptr->is_aryptr()->stable_dimension();
5203   return dim;
5204 }
5205 
5206 //----------------------cast_to_autobox_cache-----------------------------------
5207 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache() const {
5208   if (is_autobox_cache())  return this;
5209   const TypeOopPtr* etype = elem()->make_oopptr();
5210   if (etype == nullptr)  return this;
5211   // The pointers in the autobox arrays are always non-null.
5212   etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
5213   const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable(), is_flat(), is_not_flat(), is_not_null_free(), is_atomic());
5214   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, /*is_autobox_cache=*/true);
5215 }
5216 
5217 //------------------------------eq---------------------------------------------
5218 // Structural equality check for Type representations
5219 bool TypeAryPtr::eq( const Type *t ) const {
5220   const TypeAryPtr *p = t->is_aryptr();
5221   return
5222     _ary == p->_ary &&  // Check array
5223     TypeOopPtr::eq(p) &&// Check sub-parts
5224     _field_offset == p->_field_offset;
5225 }
5226 
5227 //------------------------------hash-------------------------------------------
5228 // Type-specific hashing function.
5229 uint TypeAryPtr::hash(void) const {
5230   return (uint)(uintptr_t)_ary + TypeOopPtr::hash() + _field_offset.get();
5231 }
5232 
5233 bool TypeAryPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
5234   return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
5235 }
5236 
5237 bool TypeAryPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const {
5238   return TypePtr::is_same_java_type_as_helper_for_array(this, other);
5239 }
5240 
5241 bool TypeAryPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
5242   return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
5243 }
5244 //------------------------------meet-------------------------------------------
5245 // Compute the MEET of two types.  It returns a new Type object.
5246 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
5247   // Perform a fast test for common case; meeting the same types together.
5248   if( this == t ) return this;  // Meeting same type-rep?
5249   // Current "this->_base" is Pointer
5250   switch (t->base()) {          // switch on original type

5257   case HalfFloatBot:
5258   case FloatTop:
5259   case FloatCon:
5260   case FloatBot:
5261   case DoubleTop:
5262   case DoubleCon:
5263   case DoubleBot:
5264   case NarrowOop:
5265   case NarrowKlass:
5266   case Bottom:                  // Ye Olde Default
5267     return Type::BOTTOM;
5268   case Top:
5269     return this;
5270 
5271   default:                      // All else is a mistake
5272     typerr(t);
5273 
5274   case OopPtr: {                // Meeting to OopPtrs
5275     // Found a OopPtr type vs self-AryPtr type
5276     const TypeOopPtr *tp = t->is_oopptr();
5277     Offset offset = meet_offset(tp->offset());
5278     PTR ptr = meet_ptr(tp->ptr());
5279     int depth = meet_inline_depth(tp->inline_depth());
5280     const TypePtr* speculative = xmeet_speculative(tp);
5281     switch (tp->ptr()) {
5282     case TopPTR:
5283     case AnyNull: {
5284       int instance_id = meet_instance_id(InstanceTop);
5285       return make(ptr, (ptr == Constant ? const_oop() : nullptr),
5286                   _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
5287     }
5288     case BotPTR:
5289     case NotNull: {
5290       int instance_id = meet_instance_id(tp->instance_id());
5291       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
5292     }
5293     default: ShouldNotReachHere();
5294     }
5295   }
5296 
5297   case AnyPtr: {                // Meeting two AnyPtrs
5298     // Found an AnyPtr type vs self-AryPtr type
5299     const TypePtr *tp = t->is_ptr();
5300     Offset offset = meet_offset(tp->offset());
5301     PTR ptr = meet_ptr(tp->ptr());
5302     const TypePtr* speculative = xmeet_speculative(tp);
5303     int depth = meet_inline_depth(tp->inline_depth());
5304     switch (tp->ptr()) {
5305     case TopPTR:
5306       return this;
5307     case BotPTR:
5308     case NotNull:
5309       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
5310     case Null:
5311       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
5312       // else fall through to AnyNull
5313     case AnyNull: {
5314       int instance_id = meet_instance_id(InstanceTop);
5315       return make(ptr, (ptr == Constant ? const_oop() : nullptr),
5316                   _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
5317     }
5318     default: ShouldNotReachHere();
5319     }
5320   }
5321 
5322   case MetadataPtr:
5323   case KlassPtr:
5324   case InstKlassPtr:
5325   case AryKlassPtr:
5326   case RawPtr: return TypePtr::BOTTOM;
5327 
5328   case AryPtr: {                // Meeting 2 references?
5329     const TypeAryPtr *tap = t->is_aryptr();
5330     Offset off = meet_offset(tap->offset());
5331     Offset field_off = meet_field_offset(tap->field_offset());
5332     const Type* tm = _ary->meet_speculative(tap->_ary);
5333     const TypeAry* tary = tm->isa_ary();
5334     if (tary == nullptr) {
5335       assert(tm == Type::TOP || tm == Type::BOTTOM, "");
5336       return tm;
5337     }
5338     PTR ptr = meet_ptr(tap->ptr());
5339     int instance_id = meet_instance_id(tap->instance_id());
5340     const TypePtr* speculative = xmeet_speculative(tap);
5341     int depth = meet_inline_depth(tap->inline_depth());
5342 
5343     ciKlass* res_klass = nullptr;
5344     bool res_xk = false;
5345     bool res_flat = false;
5346     bool res_not_flat = false;
5347     bool res_not_null_free = false;
5348     bool res_atomic = false;
5349     const Type* elem = tary->_elem;
5350     if (meet_aryptr(ptr, elem, this, tap, res_klass, res_xk, res_flat, res_not_flat, res_not_null_free, res_atomic) == NOT_SUBTYPE) {
5351       instance_id = InstanceBot;
5352     } else if (this->is_flat() != tap->is_flat()) {
5353       // Meeting flat inline type array with non-flat array. Adjust (field) offset accordingly.
5354       if (tary->_flat) {
5355         // Result is in a flat representation
5356         off = Offset(is_flat() ? offset() : tap->offset());
5357         field_off = is_flat() ? field_offset() : tap->field_offset();
5358       } else if (below_centerline(ptr)) {
5359         // Result is in a non-flat representation
5360         off = Offset(flat_offset()).meet(Offset(tap->flat_offset()));
5361         field_off = (field_off == Offset::top) ? Offset::top : Offset::bottom;
5362       } else if (flat_offset() == tap->flat_offset()) {
5363         off = Offset(!is_flat() ? offset() : tap->offset());
5364         field_off = !is_flat() ? field_offset() : tap->field_offset();
5365       }
5366     }
5367 
5368     ciObject* o = nullptr;             // Assume not constant when done
5369     ciObject* this_oop = const_oop();
5370     ciObject* tap_oop = tap->const_oop();
5371     if (ptr == Constant) {
5372       if (this_oop != nullptr && tap_oop != nullptr &&
5373           this_oop->equals(tap_oop)) {
5374         o = tap_oop;
5375       } else if (above_centerline(_ptr)) {
5376         o = tap_oop;
5377       } else if (above_centerline(tap->_ptr)) {
5378         o = this_oop;
5379       } else {
5380         ptr = NotNull;
5381       }
5382     }
5383     return make(ptr, o, TypeAry::make(elem, tary->_size, tary->_stable, res_flat, res_not_flat, res_not_null_free, res_atomic), res_klass, res_xk, off, field_off, instance_id, speculative, depth);
5384   }
5385 
5386   // All arrays inherit from Object class
5387   case InstPtr: {
5388     const TypeInstPtr *tp = t->is_instptr();
5389     Offset offset = meet_offset(tp->offset());
5390     PTR ptr = meet_ptr(tp->ptr());
5391     int instance_id = meet_instance_id(tp->instance_id());
5392     const TypePtr* speculative = xmeet_speculative(tp);
5393     int depth = meet_inline_depth(tp->inline_depth());
5394     const TypeInterfaces* interfaces = meet_interfaces(tp);
5395     const TypeInterfaces* tp_interfaces = tp->_interfaces;
5396     const TypeInterfaces* this_interfaces = _interfaces;
5397 
5398     switch (ptr) {
5399     case TopPTR:
5400     case AnyNull:                // Fall 'down' to dual of object klass
5401       // For instances when a subclass meets a superclass we fall
5402       // below the centerline when the superclass is exact. We need to
5403       // do the same here.
5404       //
5405       // Flat in array:
5406       // We do
5407       //   dual(TypeAryPtr) MEET dual(TypeInstPtr)
5408       // If TypeInstPtr is anything else than Object, then the result of the meet is bottom Object (i.e. we could have
5409       // instances or arrays).
5410       // If TypeInstPtr is an Object and either
5411       // - exact
5412       // - inexact AND flat in array == dual(not flat in array) (i.e. not an array type)
5413       // then the result of the meet is bottom Object (i.e. we could have instances or arrays).
5414       // Otherwise, we meet two array pointers and create a new TypeAryPtr.
5415       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) &&
5416           !tp->klass_is_exact() && !tp->is_not_flat_in_array()) {
5417         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
5418       } else {
5419         // cannot subclass, so the meet has to fall badly below the centerline
5420         ptr = NotNull;
5421         instance_id = InstanceBot;
5422         interfaces = this_interfaces->intersection_with(tp_interfaces);
5423         FlatInArray flat_in_array = meet_flat_in_array(NotFlat, tp->flat_in_array());
5424         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr, offset, flat_in_array, instance_id, speculative, depth);
5425       }
5426     case Constant:
5427     case NotNull:
5428     case BotPTR: { // Fall down to object klass
5429       // LCA is object_klass, but if we subclass from the top we can do better
5430       if (above_centerline(tp->ptr())) {
5431         // If 'tp'  is above the centerline and it is Object class
5432         // then we can subclass in the Java class hierarchy.
5433         // For instances when a subclass meets a superclass we fall
5434         // below the centerline when the superclass is exact. We need
5435         // to do the same here.
5436 
5437         // Flat in array: We do TypeAryPtr MEET dual(TypeInstPtr), same applies as above in TopPTR/AnyNull case.
5438         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) &&
5439             !tp->klass_is_exact() && !tp->is_not_flat_in_array()) {
5440           // that is, my array type is a subtype of 'tp' klass
5441           return make(ptr, (ptr == Constant ? const_oop() : nullptr),
5442                       _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
5443         }
5444       }
5445       // The other case cannot happen, since t cannot be a subtype of an array.
5446       // The meet falls down to Object class below centerline.
5447       if (ptr == Constant) {
5448         ptr = NotNull;
5449       }
5450       if (instance_id > 0) {
5451         instance_id = InstanceBot;
5452       }
5453 
5454       FlatInArray flat_in_array = meet_flat_in_array(NotFlat, tp->flat_in_array());
5455       interfaces = this_interfaces->intersection_with(tp_interfaces);
5456       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr, offset,
5457                                flat_in_array, instance_id, speculative, depth);
5458     }
5459     default: typerr(t);
5460     }
5461   }
5462   }
5463   return this;                  // Lint noise
5464 }
5465 
5466 
5467 template<class T> TypePtr::MeetResult TypePtr::meet_aryptr(PTR& ptr, const Type*& elem, const T* this_ary, const T* other_ary,
5468                                                            ciKlass*& res_klass, bool& res_xk, bool &res_flat, bool& res_not_flat, bool& res_not_null_free, bool &res_atomic) {
5469   int dummy;
5470   bool this_top_or_bottom = (this_ary->base_element_type(dummy) == Type::TOP || this_ary->base_element_type(dummy) == Type::BOTTOM);
5471   bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
5472   ciKlass* this_klass = this_ary->klass();
5473   ciKlass* other_klass = other_ary->klass();
5474   bool this_xk = this_ary->klass_is_exact();
5475   bool other_xk = other_ary->klass_is_exact();
5476   PTR this_ptr = this_ary->ptr();
5477   PTR other_ptr = other_ary->ptr();
5478   bool this_flat = this_ary->is_flat();
5479   bool this_not_flat = this_ary->is_not_flat();
5480   bool other_flat = other_ary->is_flat();
5481   bool other_not_flat = other_ary->is_not_flat();
5482   bool this_not_null_free = this_ary->is_not_null_free();
5483   bool other_not_null_free = other_ary->is_not_null_free();
5484   bool this_atomic = this_ary->is_atomic();
5485   bool other_atomic = other_ary->is_atomic();
5486   const bool same_nullness = this_ary->is_null_free() == other_ary->is_null_free();
5487   res_klass = nullptr;
5488   MeetResult result = SUBTYPE;
5489   res_flat = this_flat && other_flat;
5490   bool res_null_free = this_ary->is_null_free() && other_ary->is_null_free();
5491   res_not_flat = this_not_flat && other_not_flat;
5492   res_not_null_free = this_not_null_free && other_not_null_free;
5493   res_atomic = this_atomic && other_atomic;
5494 
5495   if (elem->isa_int()) {
5496     // Integral array element types have irrelevant lattice relations.
5497     // It is the klass that determines array layout, not the element type.
5498       if (this_top_or_bottom) {
5499         res_klass = other_klass;
5500       } else if (other_top_or_bottom || other_klass == this_klass) {
5501       res_klass = this_klass;
5502     } else {
5503       // Something like byte[int+] meets char[int+].
5504       // This must fall to bottom, not (int[-128..65535])[int+].
5505       // instance_id = InstanceBot;
5506       elem = Type::BOTTOM;
5507       result = NOT_SUBTYPE;
5508       if (above_centerline(ptr) || ptr == Constant) {
5509         ptr = NotNull;
5510         res_xk = false;
5511         return NOT_SUBTYPE;
5512       }
5513     }
5514   } else {// Non integral arrays.
5515     // Must fall to bottom if exact klasses in upper lattice
5516     // are not equal or super klass is exact.
5517     if ((above_centerline(ptr) || ptr == Constant) && !this_ary->is_same_java_type_as(other_ary) &&
5518         // meet with top[] and bottom[] are processed further down:
5519         !this_top_or_bottom && !other_top_or_bottom &&
5520         // both are exact and not equal:

5522          // 'tap'  is exact and super or unrelated:
5523          (other_xk && !other_ary->is_meet_subtype_of(this_ary)) ||
5524          // 'this' is exact and super or unrelated:
5525          (this_xk && !this_ary->is_meet_subtype_of(other_ary)))) {
5526       if (above_centerline(ptr) || (elem->make_ptr() && above_centerline(elem->make_ptr()->_ptr))) {
5527         elem = Type::BOTTOM;
5528       }
5529       ptr = NotNull;
5530       res_xk = false;
5531       return NOT_SUBTYPE;
5532     }
5533   }
5534 
5535   res_xk = false;
5536   switch (other_ptr) {
5537     case AnyNull:
5538     case TopPTR:
5539       // Compute new klass on demand, do not use tap->_klass
5540       if (below_centerline(this_ptr)) {
5541         res_xk = this_xk;
5542         if (this_ary->is_flat()) {
5543           elem = this_ary->elem();
5544         }
5545       } else {
5546         res_xk = (other_xk || this_xk);
5547       }
5548       break;
5549     case Constant: {
5550       if (this_ptr == Constant && same_nullness) {
5551         // Only exact if same nullness since:
5552         //     null-free [LMyValue <: nullable [LMyValue.
5553         res_xk = true;
5554       } else if (above_centerline(this_ptr)) {
5555         res_xk = true;
5556       } else {
5557         // Only precise for identical arrays
5558         res_xk = this_xk && (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom));
5559         // Even though MyValue is final, [LMyValue is only exact if the array
5560         // is (not) null-free due to null-free [LMyValue <: null-able [LMyValue.
5561         if (res_xk && !res_null_free && !res_not_null_free) {
5562           ptr = NotNull;
5563           res_xk = false;
5564         }
5565       }
5566       break;
5567     }
5568     case NotNull:
5569     case BotPTR:
5570       // Compute new klass on demand, do not use tap->_klass
5571       if (above_centerline(this_ptr)) {
5572         res_xk = other_xk;
5573         if (other_ary->is_flat()) {
5574           elem = other_ary->elem();
5575         }
5576       } else {
5577         res_xk = (other_xk && this_xk) &&
5578                  (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom)); // Only precise for identical arrays
5579         // Even though MyValue is final, [LMyValue is only exact if the array
5580         // is (not) null-free due to null-free [LMyValue <: null-able [LMyValue.
5581         if (res_xk && !res_null_free && !res_not_null_free) {
5582           ptr = NotNull;
5583           res_xk = false;
5584         }
5585       }
5586       break;
5587     default:  {
5588       ShouldNotReachHere();
5589       return result;
5590     }
5591   }
5592   return result;
5593 }
5594 
5595 
5596 //------------------------------xdual------------------------------------------
5597 // Dual: compute field-by-field dual
5598 const Type *TypeAryPtr::xdual() const {
5599   bool xk = _klass_is_exact;
5600   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(), _klass, xk, dual_offset(), dual_field_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
5601 }
5602 
5603 Type::Offset TypeAryPtr::meet_field_offset(const Type::Offset offset) const {
5604   return _field_offset.meet(offset);
5605 }
5606 
5607 //------------------------------dual_offset------------------------------------
5608 Type::Offset TypeAryPtr::dual_field_offset() const {
5609   return _field_offset.dual();
5610 }
5611 
5612 //------------------------------dump2------------------------------------------
5613 #ifndef PRODUCT
5614 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5615   st->print("aryptr:");
5616   _ary->dump2(d, depth, st);
5617   _interfaces->dump(st);
5618 
5619   if (_ptr == Constant) {
5620     const_oop()->print(st);
5621   }
5622 
5623   st->print(":%s", ptr_msg[_ptr]);
5624   if (_klass_is_exact) {
5625     st->print(":exact");
5626   }
5627 
5628   if (is_flat()) {
5629     st->print(":flat");
5630     st->print("(");
5631     _field_offset.dump2(st);
5632     st->print(")");
5633   } else if (is_not_flat()) {
5634     st->print(":not_flat");
5635   }
5636   if (is_null_free()) {
5637     st->print(":null free");
5638   }
5639   if (is_atomic()) {
5640     st->print(":atomic");
5641   }
5642   if (Verbose) {
5643     if (is_not_flat()) {
5644       st->print(":not flat");
5645     }
5646     if (is_not_null_free()) {
5647       st->print(":nullable");
5648     }
5649   }
5650   if (offset() != 0) {
5651     BasicType basic_elem_type = elem()->basic_type();
5652     int header_size = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5653     if( _offset == Offset::top )       st->print("+undefined");
5654     else if( _offset == Offset::bottom )  st->print("+any");
5655     else if( offset() < header_size ) st->print("+%d", offset());
5656     else {
5657       if (basic_elem_type == T_ILLEGAL) {
5658         st->print("+any");
5659       } else {
5660         int elem_size = type2aelembytes(basic_elem_type);
5661         st->print("[%d]", (offset() - header_size)/elem_size);
5662       }
5663     }
5664   }
5665 
5666   dump_instance_id(st);
5667   dump_inline_depth(st);
5668   dump_speculative(st);
5669 }
5670 #endif
5671 
5672 bool TypeAryPtr::empty(void) const {
5673   if (_ary->empty())       return true;
5674   // FIXME: Does this belong here? Or in the meet code itself?
5675   if (is_flat() && is_not_flat()) {
5676     return true;
5677   }
5678   return TypeOopPtr::empty();
5679 }
5680 
5681 //------------------------------add_offset-------------------------------------
5682 const TypePtr* TypeAryPtr::add_offset(intptr_t offset) const {
5683   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _field_offset, _instance_id, add_offset_speculative(offset), _inline_depth, _is_autobox_cache);
5684 }
5685 
5686 const TypeAryPtr* TypeAryPtr::with_offset(intptr_t offset) const {
5687   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, Offset(offset), _field_offset, _instance_id, with_offset_speculative(offset), _inline_depth, _is_autobox_cache);
5688 }
5689 
5690 const TypeAryPtr* TypeAryPtr::with_ary(const TypeAry* ary) const {
5691   return make(_ptr, _const_oop, ary, _klass, _klass_is_exact, _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5692 }
5693 
5694 const TypeAryPtr* TypeAryPtr::remove_speculative() const {
5695   if (_speculative == nullptr) {
5696     return this;
5697   }
5698   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
5699   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, _instance_id, nullptr, _inline_depth, _is_autobox_cache);
5700 }
5701 
5702 const Type* TypeAryPtr::cleanup_speculative() const {
5703   if (speculative() == nullptr) {
5704     return this;
5705   }
5706   // Keep speculative part if it contains information about flat-/nullability
5707   const TypeAryPtr* spec_aryptr = speculative()->isa_aryptr();
5708   if (spec_aryptr != nullptr && !above_centerline(spec_aryptr->ptr()) &&
5709       (spec_aryptr->is_not_flat() || spec_aryptr->is_not_null_free())) {
5710     return this;
5711   }
5712   return TypeOopPtr::cleanup_speculative();
5713 }
5714 
5715 const TypePtr* TypeAryPtr::with_inline_depth(int depth) const {
5716   if (!UseInlineDepthForSpeculativeTypes) {
5717     return this;
5718   }
5719   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, _instance_id, _speculative, depth, _is_autobox_cache);
5720 }
5721 
5722 const TypeAryPtr* TypeAryPtr::with_field_offset(int offset) const {
5723   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, Offset(offset), _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5724 }
5725 
5726 const TypePtr* TypeAryPtr::add_field_offset_and_offset(intptr_t offset) const {
5727   int adj = 0;
5728   if (is_flat() && klass_is_exact() && offset != Type::OffsetBot && offset != Type::OffsetTop) {
5729     if (_offset.get() != OffsetBot && _offset.get() != OffsetTop) {
5730       adj = _offset.get();
5731       offset += _offset.get();
5732     }
5733     uint header = arrayOopDesc::base_offset_in_bytes(T_FLAT_ELEMENT);
5734     if (_field_offset.get() != OffsetBot && _field_offset.get() != OffsetTop) {
5735       offset += _field_offset.get();
5736       if (_offset.get() == OffsetBot || _offset.get() == OffsetTop) {
5737         offset += header;
5738       }
5739     }
5740     if (elem()->make_oopptr()->is_inlinetypeptr() && (offset >= (intptr_t)header || offset < 0)) {
5741       // Try to get the field of the inline type array element we are pointing to
5742       ciInlineKlass* vk = elem()->inline_klass();
5743       int shift = flat_log_elem_size();
5744       int mask = (1 << shift) - 1;
5745       intptr_t field_offset = ((offset - header) & mask);
5746       ciField* field = vk->get_field_by_offset(field_offset + vk->payload_offset(), false);
5747       if (field != nullptr || field_offset == vk->null_marker_offset_in_payload()) {
5748         return with_field_offset(field_offset)->add_offset(offset - field_offset - adj);
5749       }
5750     }
5751   }
5752   return add_offset(offset - adj);
5753 }
5754 
5755 // Return offset incremented by field_offset for flat inline type arrays
5756 int TypeAryPtr::flat_offset() const {
5757   int offset = _offset.get();
5758   if (offset != Type::OffsetBot && offset != Type::OffsetTop &&
5759       _field_offset != Offset::bottom && _field_offset != Offset::top) {
5760     offset += _field_offset.get();
5761   }
5762   return offset;
5763 }
5764 
5765 const TypePtr* TypeAryPtr::with_instance_id(int instance_id) const {
5766   assert(is_known_instance(), "should be known");
5767   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, instance_id, _speculative, _inline_depth);
5768 }
5769 
5770 //=============================================================================
5771 
5772 
5773 //------------------------------hash-------------------------------------------
5774 // Type-specific hashing function.
5775 uint TypeNarrowPtr::hash(void) const {
5776   return _ptrtype->hash() + 7;
5777 }
5778 
5779 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
5780   return _ptrtype->singleton();
5781 }
5782 
5783 bool TypeNarrowPtr::empty(void) const {
5784   return _ptrtype->empty();
5785 }
5786 
5787 intptr_t TypeNarrowPtr::get_con() const {
5788   return _ptrtype->get_con();
5789 }
5790 
5791 bool TypeNarrowPtr::eq( const Type *t ) const {
5792   const TypeNarrowPtr* tc = isa_same_narrowptr(t);

5846   case HalfFloatTop:
5847   case HalfFloatCon:
5848   case HalfFloatBot:
5849   case FloatTop:
5850   case FloatCon:
5851   case FloatBot:
5852   case DoubleTop:
5853   case DoubleCon:
5854   case DoubleBot:
5855   case AnyPtr:
5856   case RawPtr:
5857   case OopPtr:
5858   case InstPtr:
5859   case AryPtr:
5860   case MetadataPtr:
5861   case KlassPtr:
5862   case InstKlassPtr:
5863   case AryKlassPtr:
5864   case NarrowOop:
5865   case NarrowKlass:

5866   case Bottom:                  // Ye Olde Default
5867     return Type::BOTTOM;
5868   case Top:
5869     return this;
5870 
5871   default:                      // All else is a mistake
5872     typerr(t);
5873 
5874   } // End of switch
5875 
5876   return this;
5877 }
5878 
5879 #ifndef PRODUCT
5880 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5881   _ptrtype->dump2(d, depth, st);
5882 }
5883 #endif
5884 
5885 const TypeNarrowOop *TypeNarrowOop::BOTTOM;

5929     return (one == two) && TypePtr::eq(t);
5930   } else {
5931     return one->equals(two) && TypePtr::eq(t);
5932   }
5933 }
5934 
5935 //------------------------------hash-------------------------------------------
5936 // Type-specific hashing function.
5937 uint TypeMetadataPtr::hash(void) const {
5938   return
5939     (metadata() ? metadata()->hash() : 0) +
5940     TypePtr::hash();
5941 }
5942 
5943 //------------------------------singleton--------------------------------------
5944 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5945 // constants
5946 bool TypeMetadataPtr::singleton(void) const {
5947   // detune optimizer to not generate constant metadata + constant offset as a constant!
5948   // TopPTR, Null, AnyNull, Constant are all singletons
5949   return (offset() == 0) && !below_centerline(_ptr);
5950 }
5951 
5952 //------------------------------add_offset-------------------------------------
5953 const TypePtr* TypeMetadataPtr::add_offset( intptr_t offset ) const {
5954   return make( _ptr, _metadata, xadd_offset(offset));
5955 }
5956 
5957 //-----------------------------filter------------------------------------------
5958 // Do not allow interface-vs.-noninterface joins to collapse to top.
5959 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
5960   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
5961   if (ft == nullptr || ft->empty())
5962     return Type::TOP;           // Canonical empty value
5963   return ft;
5964 }
5965 
5966  //------------------------------get_con----------------------------------------
5967 intptr_t TypeMetadataPtr::get_con() const {
5968   assert( _ptr == Null || _ptr == Constant, "" );
5969   assert(offset() >= 0, "");
5970 
5971   if (offset() != 0) {
5972     // After being ported to the compiler interface, the compiler no longer
5973     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5974     // to a handle at compile time.  This handle is embedded in the generated
5975     // code and dereferenced at the time the nmethod is made.  Until that time,
5976     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5977     // have access to the addresses!).  This does not seem to currently happen,
5978     // but this assertion here is to help prevent its occurrence.
5979     tty->print_cr("Found oop constant with non-zero offset");
5980     ShouldNotReachHere();
5981   }
5982 
5983   return (intptr_t)metadata()->constant_encoding();
5984 }
5985 
5986 //------------------------------cast_to_ptr_type-------------------------------
5987 const TypeMetadataPtr* TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
5988   if( ptr == _ptr ) return this;
5989   return make(ptr, metadata(), _offset);
5990 }
5991 

6005   case HalfFloatBot:
6006   case FloatTop:
6007   case FloatCon:
6008   case FloatBot:
6009   case DoubleTop:
6010   case DoubleCon:
6011   case DoubleBot:
6012   case NarrowOop:
6013   case NarrowKlass:
6014   case Bottom:                  // Ye Olde Default
6015     return Type::BOTTOM;
6016   case Top:
6017     return this;
6018 
6019   default:                      // All else is a mistake
6020     typerr(t);
6021 
6022   case AnyPtr: {
6023     // Found an AnyPtr type vs self-OopPtr type
6024     const TypePtr *tp = t->is_ptr();
6025     Offset offset = meet_offset(tp->offset());
6026     PTR ptr = meet_ptr(tp->ptr());
6027     switch (tp->ptr()) {
6028     case Null:
6029       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6030       // else fall through:
6031     case TopPTR:
6032     case AnyNull: {
6033       return make(ptr, _metadata, offset);
6034     }
6035     case BotPTR:
6036     case NotNull:
6037       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6038     default: typerr(t);
6039     }
6040   }
6041 
6042   case RawPtr:
6043   case KlassPtr:
6044   case InstKlassPtr:
6045   case AryKlassPtr:
6046   case OopPtr:
6047   case InstPtr:
6048   case AryPtr:
6049     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
6050 
6051   case MetadataPtr: {
6052     const TypeMetadataPtr *tp = t->is_metadataptr();
6053     Offset offset = meet_offset(tp->offset());
6054     PTR tptr = tp->ptr();
6055     PTR ptr = meet_ptr(tptr);
6056     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
6057     if (tptr == TopPTR || _ptr == TopPTR ||
6058         metadata()->equals(tp->metadata())) {
6059       return make(ptr, md, offset);
6060     }
6061     // metadata is different
6062     if( ptr == Constant ) {  // Cannot be equal constants, so...
6063       if( tptr == Constant && _ptr != Constant)  return t;
6064       if( _ptr == Constant && tptr != Constant)  return this;
6065       ptr = NotNull;            // Fall down in lattice
6066     }
6067     return make(ptr, nullptr, offset);
6068     break;
6069   }
6070   } // End of switch
6071   return this;                  // Return the double constant
6072 }
6073 

6077 const Type *TypeMetadataPtr::xdual() const {
6078   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
6079 }
6080 
6081 //------------------------------dump2------------------------------------------
6082 #ifndef PRODUCT
6083 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
6084   st->print("metadataptr:%s", ptr_msg[_ptr]);
6085   if (metadata() != nullptr) {
6086     st->print(":" INTPTR_FORMAT, p2i(metadata()));
6087   }
6088   dump_offset(st);
6089 }
6090 #endif
6091 
6092 
6093 //=============================================================================
6094 // Convenience common pre-built type.
6095 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
6096 
6097 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, Offset offset):
6098   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
6099 }
6100 
6101 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
6102   return make(Constant, m, Offset(0));
6103 }
6104 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
6105   return make(Constant, m, Offset(0));
6106 }
6107 
6108 //------------------------------make-------------------------------------------
6109 // Create a meta data constant
6110 const TypeMetadataPtr* TypeMetadataPtr::make(PTR ptr, ciMetadata* m, Offset offset) {
6111   assert(m == nullptr || !m->is_klass(), "wrong type");
6112   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
6113 }
6114 
6115 
6116 const TypeKlassPtr* TypeAryPtr::as_klass_type(bool try_for_exact) const {
6117   const Type* elem = _ary->_elem;
6118   bool xk = klass_is_exact();
6119   bool is_refined = false;
6120   if (elem->make_oopptr() != nullptr) {
6121     is_refined = true;
6122     elem = elem->make_oopptr()->as_klass_type(try_for_exact);
6123     if (elem->isa_aryklassptr()) {
6124       const TypeAryKlassPtr* elem_klass = elem->is_aryklassptr();
6125       if (elem_klass->is_refined_type()) {
6126         elem = elem_klass->cast_to_non_refined();
6127       }
6128     } else {
6129       const TypeInstKlassPtr* elem_klass = elem->is_instklassptr();
6130       if (try_for_exact && !xk && elem_klass->klass_is_exact() &&
6131           !elem_klass->exact_klass()->as_instance_klass()->can_be_inline_klass()) {
6132         xk = true;
6133       }
6134     }
6135   }
6136   return TypeAryKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, elem, klass(), Offset(0), is_not_flat(), is_not_null_free(), is_flat(), is_null_free(), is_atomic(), is_refined);
6137 }
6138 
6139 const TypeKlassPtr* TypeKlassPtr::make(ciKlass* klass, InterfaceHandling interface_handling) {
6140   if (klass->is_instance_klass()) {
6141     return TypeInstKlassPtr::make(klass, interface_handling);
6142   }
6143   return TypeAryKlassPtr::make(klass, interface_handling);
6144 }
6145 
6146 TypeKlassPtr::TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, Offset offset)










6147   : TypePtr(t, ptr, offset), _klass(klass), _interfaces(interfaces) {
6148   assert(klass == nullptr || !klass->is_loaded() || (klass->is_instance_klass() && !klass->is_interface()) ||
6149          klass->is_type_array_klass() || klass->is_flat_array_klass() || !klass->as_obj_array_klass()->base_element_klass()->is_interface(), "no interface here");
6150 }
6151 
6152 // Is there a single ciKlass* that can represent that type?
6153 ciKlass* TypeKlassPtr::exact_klass_helper() const {
6154   assert(_klass->is_instance_klass() && !_klass->is_interface(), "No interface");
6155   if (_interfaces->empty()) {
6156     return _klass;
6157   }
6158   if (_klass != ciEnv::current()->Object_klass()) {
6159     if (_interfaces->eq(_klass->as_instance_klass())) {
6160       return _klass;
6161     }
6162     return nullptr;
6163   }
6164   return _interfaces->exact_klass();
6165 }
6166 
6167 //------------------------------eq---------------------------------------------
6168 // Structural equality check for Type representations
6169 bool TypeKlassPtr::eq(const Type *t) const {
6170   const TypeKlassPtr *p = t->is_klassptr();
6171   return
6172     _interfaces->eq(p->_interfaces) &&
6173     TypePtr::eq(p);
6174 }
6175 
6176 //------------------------------hash-------------------------------------------
6177 // Type-specific hashing function.
6178 uint TypeKlassPtr::hash(void) const {
6179   return TypePtr::hash() + _interfaces->hash();
6180 }
6181 
6182 //------------------------------singleton--------------------------------------
6183 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
6184 // constants
6185 bool TypeKlassPtr::singleton(void) const {
6186   // detune optimizer to not generate constant klass + constant offset as a constant!
6187   // TopPTR, Null, AnyNull, Constant are all singletons
6188   return (offset() == 0) && !below_centerline(_ptr);
6189 }
6190 
6191 // Do not allow interface-vs.-noninterface joins to collapse to top.
6192 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
6193   // logic here mirrors the one from TypeOopPtr::filter. See comments
6194   // there.
6195   const Type* ft = join_helper(kills, include_speculative);
6196 
6197   if (ft->empty()) {
6198     return Type::TOP;           // Canonical empty value
6199   }
6200 
6201   return ft;
6202 }
6203 
6204 const TypeInterfaces* TypeKlassPtr::meet_interfaces(const TypeKlassPtr* other) const {
6205   if (above_centerline(_ptr) && above_centerline(other->_ptr)) {
6206     return _interfaces->union_with(other->_interfaces);
6207   } else if (above_centerline(_ptr) && !above_centerline(other->_ptr)) {
6208     return other->_interfaces;
6209   } else if (above_centerline(other->_ptr) && !above_centerline(_ptr)) {
6210     return _interfaces;
6211   }
6212   return _interfaces->intersection_with(other->_interfaces);
6213 }
6214 
6215 //------------------------------get_con----------------------------------------
6216 intptr_t TypeKlassPtr::get_con() const {
6217   assert( _ptr == Null || _ptr == Constant, "" );
6218   assert( offset() >= 0, "" );
6219 
6220   if (offset() != 0) {
6221     // After being ported to the compiler interface, the compiler no longer
6222     // directly manipulates the addresses of oops.  Rather, it only has a pointer
6223     // to a handle at compile time.  This handle is embedded in the generated
6224     // code and dereferenced at the time the nmethod is made.  Until that time,
6225     // it is not reasonable to do arithmetic with the addresses of oops (we don't
6226     // have access to the addresses!).  This does not seem to currently happen,
6227     // but this assertion here is to help prevent its occurrence.
6228     tty->print_cr("Found oop constant with non-zero offset");
6229     ShouldNotReachHere();
6230   }
6231 
6232   ciKlass* k = exact_klass();
6233 
6234   return (intptr_t)k->constant_encoding();
6235 }
6236 
6237 //=============================================================================
6238 // Convenience common pre-built types.
6239 
6240 // Not-null object klass or below
6241 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT;
6242 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT_OR_NULL;
6243 
6244 bool TypeInstKlassPtr::eq(const Type *t) const {
6245   const TypeInstKlassPtr* p = t->is_instklassptr();
6246   return
6247     klass()->equals(p->klass()) &&
6248     _flat_in_array == p->_flat_in_array &&
6249     TypeKlassPtr::eq(p);
6250 }
6251 
6252 uint TypeInstKlassPtr::hash() const {
6253   return klass()->hash() + TypeKlassPtr::hash() + static_cast<uint>(_flat_in_array);
6254 }
6255 
6256 const TypeInstKlassPtr *TypeInstKlassPtr::make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, Offset offset, FlatInArray flat_in_array) {
6257   if (flat_in_array == Uninitialized) {
6258     flat_in_array = compute_flat_in_array(k->as_instance_klass(), ptr == Constant);
6259   }
6260   TypeInstKlassPtr *r =
6261     (TypeInstKlassPtr*)(new TypeInstKlassPtr(ptr, k, interfaces, offset, flat_in_array))->hashcons();
6262 
6263   return r;
6264 }
6265 
6266 bool TypeInstKlassPtr::empty() const {
6267   if (_flat_in_array == TopFlat) {
6268     return true;
6269   }
6270   return TypeKlassPtr::empty();
6271 }
6272 
6273 //------------------------------add_offset-------------------------------------
6274 // Access internals of klass object
6275 const TypePtr *TypeInstKlassPtr::add_offset( intptr_t offset ) const {
6276   return make(_ptr, klass(), _interfaces, xadd_offset(offset), _flat_in_array);
6277 }
6278 
6279 const TypeInstKlassPtr* TypeInstKlassPtr::with_offset(intptr_t offset) const {
6280   return make(_ptr, klass(), _interfaces, Offset(offset), _flat_in_array);
6281 }
6282 
6283 //------------------------------cast_to_ptr_type-------------------------------
6284 const TypeInstKlassPtr* TypeInstKlassPtr::cast_to_ptr_type(PTR ptr) const {
6285   assert(_base == InstKlassPtr, "subclass must override cast_to_ptr_type");
6286   if( ptr == _ptr ) return this;
6287   return make(ptr, _klass, _interfaces, _offset, _flat_in_array);
6288 }
6289 
6290 
6291 bool TypeInstKlassPtr::must_be_exact() const {
6292   if (!_klass->is_loaded())  return false;
6293   ciInstanceKlass* ik = _klass->as_instance_klass();
6294   if (ik->is_final())  return true;  // cannot clear xk
6295   return false;
6296 }
6297 
6298 //-----------------------------cast_to_exactness-------------------------------
6299 const TypeKlassPtr* TypeInstKlassPtr::cast_to_exactness(bool klass_is_exact) const {
6300   if (klass_is_exact == (_ptr == Constant)) return this;
6301   if (must_be_exact()) return this;
6302   ciKlass* k = klass();
6303   FlatInArray flat_in_array = compute_flat_in_array(k->as_instance_klass(), klass_is_exact);
6304   return make(klass_is_exact ? Constant : NotNull, k, _interfaces, _offset, flat_in_array);
6305 }
6306 
6307 
6308 //-----------------------------as_instance_type--------------------------------
6309 // Corresponding type for an instance of the given class.
6310 // It will be NotNull, and exact if and only if the klass type is exact.
6311 const TypeOopPtr* TypeInstKlassPtr::as_instance_type(bool klass_change) const {
6312   ciKlass* k = klass();
6313   bool xk = klass_is_exact();
6314   Compile* C = Compile::current();
6315   Dependencies* deps = C->dependencies();
6316   assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
6317   // Element is an instance
6318   bool klass_is_exact = false;
6319   const TypeInterfaces* interfaces = _interfaces;
6320   ciInstanceKlass* ik = k->as_instance_klass();
6321   if (k->is_loaded()) {
6322     // Try to set klass_is_exact.

6323     klass_is_exact = ik->is_final();
6324     if (!klass_is_exact && klass_change
6325         && deps != nullptr && UseUniqueSubclasses) {
6326       ciInstanceKlass* sub = ik->unique_concrete_subklass();
6327       if (sub != nullptr) {
6328         if (_interfaces->eq(sub)) {
6329           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
6330           k = ik = sub;
6331           xk = sub->is_final();
6332         }
6333       }
6334     }
6335   }
6336 
6337   FlatInArray flat_in_array = compute_flat_in_array_if_unknown(ik, xk, _flat_in_array);
6338   return TypeInstPtr::make(TypePtr::BotPTR, k, interfaces, xk, nullptr, Offset(0), flat_in_array);
6339 }
6340 
6341 //------------------------------xmeet------------------------------------------
6342 // Compute the MEET of two types, return a new Type object.
6343 const Type    *TypeInstKlassPtr::xmeet( const Type *t ) const {
6344   // Perform a fast test for common case; meeting the same types together.
6345   if( this == t ) return this;  // Meeting same type-rep?
6346 
6347   // Current "this->_base" is Pointer
6348   switch (t->base()) {          // switch on original type
6349 
6350   case Int:                     // Mixing ints & oops happens when javac
6351   case Long:                    // reuses local variables
6352   case HalfFloatTop:
6353   case HalfFloatCon:
6354   case HalfFloatBot:
6355   case FloatTop:
6356   case FloatCon:
6357   case FloatBot:
6358   case DoubleTop:
6359   case DoubleCon:
6360   case DoubleBot:
6361   case NarrowOop:
6362   case NarrowKlass:
6363   case Bottom:                  // Ye Olde Default
6364     return Type::BOTTOM;
6365   case Top:
6366     return this;
6367 
6368   default:                      // All else is a mistake
6369     typerr(t);
6370 
6371   case AnyPtr: {                // Meeting to AnyPtrs
6372     // Found an AnyPtr type vs self-KlassPtr type
6373     const TypePtr *tp = t->is_ptr();
6374     Offset offset = meet_offset(tp->offset());
6375     PTR ptr = meet_ptr(tp->ptr());
6376     switch (tp->ptr()) {
6377     case TopPTR:
6378       return this;
6379     case Null:
6380       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6381     case AnyNull:
6382       return make(ptr, klass(), _interfaces, offset, _flat_in_array);
6383     case BotPTR:
6384     case NotNull:
6385       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6386     default: typerr(t);
6387     }
6388   }
6389 
6390   case RawPtr:
6391   case MetadataPtr:
6392   case OopPtr:
6393   case AryPtr:                  // Meet with AryPtr
6394   case InstPtr:                 // Meet with InstPtr
6395       return TypePtr::BOTTOM;
6396 
6397   //
6398   //             A-top         }
6399   //           /   |   \       }  Tops
6400   //       B-top A-any C-top   }
6401   //          | /  |  \ |      }  Any-nulls
6402   //       B-any   |   C-any   }
6403   //          |    |    |
6404   //       B-con A-con C-con   } constants; not comparable across classes
6405   //          |    |    |
6406   //       B-not   |   C-not   }
6407   //          | \  |  / |      }  not-nulls
6408   //       B-bot A-not C-bot   }
6409   //           \   |   /       }  Bottoms
6410   //             A-bot         }
6411   //
6412 
6413   case InstKlassPtr: {  // Meet two KlassPtr types
6414     const TypeInstKlassPtr *tkls = t->is_instklassptr();
6415     Offset  off     = meet_offset(tkls->offset());
6416     PTR  ptr     = meet_ptr(tkls->ptr());
6417     const TypeInterfaces* interfaces = meet_interfaces(tkls);
6418 
6419     ciKlass* res_klass = nullptr;
6420     bool res_xk = false;
6421     const FlatInArray flat_in_array = meet_flat_in_array(_flat_in_array, tkls->flat_in_array());
6422     switch (meet_instptr(ptr, interfaces, this, tkls, res_klass, res_xk)) {
6423       case UNLOADED:
6424         ShouldNotReachHere();
6425       case SUBTYPE:
6426       case NOT_SUBTYPE:
6427       case LCA:
6428       case QUICK: {
6429         assert(res_xk == (ptr == Constant), "");
6430         const Type* res = make(ptr, res_klass, interfaces, off, flat_in_array);
6431         return res;
6432       }
6433       default:
6434         ShouldNotReachHere();
6435     }
6436   } // End of case KlassPtr
6437   case AryKlassPtr: {                // All arrays inherit from Object class
6438     const TypeAryKlassPtr *tp = t->is_aryklassptr();
6439     Offset offset = meet_offset(tp->offset());
6440     PTR ptr = meet_ptr(tp->ptr());
6441     const TypeInterfaces* interfaces = meet_interfaces(tp);
6442     const TypeInterfaces* tp_interfaces = tp->_interfaces;
6443     const TypeInterfaces* this_interfaces = _interfaces;
6444 
6445     switch (ptr) {
6446     case TopPTR:
6447     case AnyNull:                // Fall 'down' to dual of object klass
6448       // For instances when a subclass meets a superclass we fall
6449       // below the centerline when the superclass is exact. We need to
6450       // do the same here.
6451       //
6452       // Flat in array: See explanation for meet with TypeInstPtr in TypeAryPtr::xmeet_helper().
6453       if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces->contains(this_interfaces) &&
6454           !klass_is_exact() && !is_not_flat_in_array()) {
6455         return TypeAryKlassPtr::make(ptr, tp->elem(), tp->klass(), offset, tp->is_not_flat(), tp->is_not_null_free(), tp->is_flat(), tp->is_null_free(), tp->is_atomic(), tp->is_refined_type());
6456       } else {
6457         // cannot subclass, so the meet has to fall badly below the centerline
6458         ptr = NotNull;
6459         interfaces = _interfaces->intersection_with(tp->_interfaces);
6460         FlatInArray flat_in_array = meet_flat_in_array(_flat_in_array, NotFlat);
6461         return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset, flat_in_array);
6462       }
6463     case Constant:
6464     case NotNull:
6465     case BotPTR: { // Fall down to object klass
6466       // LCA is object_klass, but if we subclass from the top we can do better
6467       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
6468         // If 'this' (InstPtr) is above the centerline and it is Object class
6469         // then we can subclass in the Java class hierarchy.
6470         // For instances when a subclass meets a superclass we fall
6471         // below the centerline when the superclass is exact. We need
6472         // to do the same here.
6473         //
6474         // Flat in array: See explanation for meet with TypeInstPtr in TypeAryPtr::xmeet_helper().
6475         if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces->contains(this_interfaces) &&
6476             !klass_is_exact() && !is_not_flat_in_array()) {
6477           // that is, tp's array type is a subtype of my klass
6478           return TypeAryKlassPtr::make(ptr, tp->elem(), tp->klass(), offset, tp->is_not_flat(), tp->is_not_null_free(), tp->is_flat(), tp->is_null_free(), tp->is_atomic(), tp->is_refined_type());

6479         }
6480       }
6481       // The other case cannot happen, since I cannot be a subtype of an array.
6482       // The meet falls down to Object class below centerline.
6483       if( ptr == Constant )
6484         ptr = NotNull;
6485       interfaces = this_interfaces->intersection_with(tp_interfaces);
6486       FlatInArray flat_in_array = meet_flat_in_array(_flat_in_array, NotFlat);
6487       return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset, flat_in_array);
6488     }
6489     default: typerr(t);
6490     }
6491   }
6492 
6493   } // End of switch
6494   return this;                  // Return the double constant
6495 }
6496 
6497 //------------------------------xdual------------------------------------------
6498 // Dual: compute field-by-field dual
6499 const Type* TypeInstKlassPtr::xdual() const {
6500   return new TypeInstKlassPtr(dual_ptr(), klass(), _interfaces, dual_offset(), dual_flat_in_array());
6501 }
6502 
6503 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
6504   static_assert(std::is_base_of<T2, T1>::value, "");
6505   if (!this_one->is_loaded() || !other->is_loaded()) {
6506     return false;
6507   }
6508   if (!this_one->is_instance_type(other)) {
6509     return false;
6510   }
6511 
6512   if (!other_exact) {
6513     return false;
6514   }
6515 
6516   if (other->klass()->equals(ciEnv::current()->Object_klass()) && other->_interfaces->empty()) {
6517     return true;
6518   }
6519 
6520   return this_one->klass()->is_subtype_of(other->klass()) && this_one->_interfaces->contains(other->_interfaces);

6574 
6575   if (this_exact) {
6576     return this_one->klass()->is_subtype_of(other->klass()) && this_one->_interfaces->contains(other->_interfaces);
6577   }
6578 
6579   return true;
6580 }
6581 
6582 bool TypeInstKlassPtr::maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
6583   return TypePtr::maybe_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
6584 }
6585 
6586 const TypeKlassPtr* TypeInstKlassPtr::try_improve() const {
6587   if (!UseUniqueSubclasses) {
6588     return this;
6589   }
6590   ciKlass* k = klass();
6591   Compile* C = Compile::current();
6592   Dependencies* deps = C->dependencies();
6593   assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");

6594   if (k->is_loaded()) {
6595     ciInstanceKlass* ik = k->as_instance_klass();
6596     if (deps != nullptr) {


6597       ciInstanceKlass* sub = ik->unique_concrete_subklass();
6598       if (sub != nullptr) {
6599         bool improve_to_exact = sub->is_final() && _ptr == NotNull;
6600         const TypeInstKlassPtr* improved = TypeInstKlassPtr::make(improve_to_exact ? Constant : _ptr, sub, _offset);
6601         if (improved->_interfaces->contains(_interfaces)) {
6602           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
6603           return improved;


6604         }
6605       }
6606     }
6607   }
6608   return this;
6609 }
6610 
6611 bool TypeInstKlassPtr::can_be_inline_array() const {
6612   return _klass->equals(ciEnv::current()->Object_klass()) && TypeAryKlassPtr::_array_interfaces->contains(_interfaces);
6613 }
6614 
6615 #ifndef PRODUCT
6616 void TypeInstKlassPtr::dump2(Dict& d, uint depth, outputStream* st) const {
6617   st->print("instklassptr:");
6618   klass()->print_name_on(st);
6619   _interfaces->dump(st);
6620   st->print(":%s", ptr_msg[_ptr]);
6621   dump_offset(st);
6622   dump_flat_in_array(_flat_in_array, st);
6623 }
6624 #endif // PRODUCT
6625 
6626 bool TypeAryKlassPtr::can_be_inline_array() const {
6627   return _elem->isa_instklassptr() && _elem->is_instklassptr()->_klass->can_be_inline_klass();
6628 }
6629 
6630 bool TypeInstPtr::can_be_inline_array() const {
6631   return _klass->equals(ciEnv::current()->Object_klass()) && TypeAryPtr::_array_interfaces->contains(_interfaces);
6632 }
6633 
6634 bool TypeAryPtr::can_be_inline_array() const {
6635   return elem()->make_ptr() && elem()->make_ptr()->isa_instptr() && elem()->make_ptr()->is_instptr()->_klass->can_be_inline_klass();
6636 }
6637 
6638 const TypeAryKlassPtr *TypeAryKlassPtr::make(PTR ptr, const Type* elem, ciKlass* k, Offset offset, bool not_flat, bool not_null_free, bool flat, bool null_free, bool atomic, bool refined_type) {
6639   return (TypeAryKlassPtr*)(new TypeAryKlassPtr(ptr, elem, k, offset, not_flat, not_null_free, flat, null_free, atomic, refined_type))->hashcons();
6640 }
6641 
6642 const TypeAryKlassPtr* TypeAryKlassPtr::make(PTR ptr, ciKlass* k, Offset offset, InterfaceHandling interface_handling, bool not_flat, bool not_null_free, bool flat, bool null_free, bool atomic, bool refined_type) {
6643   const Type* etype;
6644   if (k->is_obj_array_klass()) {
6645     // Element is an object array. Recursively call ourself.
6646     ciKlass* eklass = k->as_obj_array_klass()->element_klass();
6647     etype = TypeKlassPtr::make(eklass, interface_handling)->cast_to_exactness(false);
6648     k = nullptr;
6649   } else if (k->is_type_array_klass()) {
6650     // Element is an typeArray
6651     etype = get_const_basic_type(k->as_type_array_klass()->element_type());
6652   } else if (k->is_flat_array_klass()) {
6653     ciKlass* eklass = k->as_flat_array_klass()->element_klass();
6654     etype = TypeKlassPtr::make(eklass, interface_handling)->cast_to_exactness(false);
6655     k = nullptr;
6656   } else {
6657     ShouldNotReachHere();

6658   }
6659 
6660   return TypeAryKlassPtr::make(ptr, etype, k, offset, not_flat, not_null_free, flat, null_free, atomic, refined_type);
6661 }
6662 
6663 const TypeAryKlassPtr* TypeAryKlassPtr::make(ciKlass* klass, InterfaceHandling interface_handling) {
6664   ciArrayKlass* k = klass->as_array_klass();
6665   if (k->is_refined()) {
6666     return TypeAryKlassPtr::make(Constant, k, Offset(0), interface_handling, !k->is_flat_array_klass(), !k->is_elem_null_free(),
6667                                  k->is_flat_array_klass(), k->is_elem_null_free(), k->is_elem_atomic(), true);
6668   } else {
6669     // Use the default combination to canonicalize all non-refined klass pointers
6670     return TypeAryKlassPtr::make(Constant, k, Offset(0), interface_handling, true, true, false, false, true, false);
6671   }
6672 }
6673 
6674 const TypeAryKlassPtr* TypeAryKlassPtr::cast_to_non_refined() const {
6675   assert(is_refined_type(), "must be a refined type");
6676   PTR ptr = _ptr;
6677   // There can be multiple refined array types corresponding to a single unrefined type
6678   if (ptr == NotNull && elem()->is_klassptr()->klass_is_exact()) {
6679     ptr = Constant;
6680   }
6681   return make(ptr, elem(), nullptr, _offset, true, true, false, false, true, false);
6682 }
6683 
6684 // Get the (non-)refined array klass ptr
6685 const TypeAryKlassPtr* TypeAryKlassPtr::cast_to_refined_array_klass_ptr(bool refined) const {
6686   if ((refined == is_refined_type()) || !klass_is_exact() || (!exact_klass()->is_obj_array_klass() && !exact_klass()->is_flat_array_klass())) {
6687     return this;
6688   }
6689   ciArrayKlass* k = exact_klass()->as_array_klass();
6690   k = ciObjArrayKlass::make(k->element_klass(), refined);
6691   return make(k, trust_interfaces);
6692 }
6693 
6694 //------------------------------eq---------------------------------------------
6695 // Structural equality check for Type representations
6696 bool TypeAryKlassPtr::eq(const Type *t) const {
6697   const TypeAryKlassPtr *p = t->is_aryklassptr();
6698   return
6699     _elem == p->_elem &&  // Check array
6700     _flat == p->_flat &&
6701     _not_flat == p->_not_flat &&
6702     _null_free == p->_null_free &&
6703     _not_null_free == p->_not_null_free &&
6704     _atomic == p->_atomic &&
6705     _refined_type == p->_refined_type &&
6706     TypeKlassPtr::eq(p);  // Check sub-parts
6707 }
6708 
6709 //------------------------------hash-------------------------------------------
6710 // Type-specific hashing function.
6711 uint TypeAryKlassPtr::hash(void) const {
6712   return (uint)(uintptr_t)_elem + TypeKlassPtr::hash() + (uint)(_not_flat ? 43 : 0) +
6713       (uint)(_not_null_free ? 44 : 0) + (uint)(_flat ? 45 : 0) + (uint)(_null_free ? 46 : 0)  + (uint)(_atomic ? 47 : 0) + (uint)(_refined_type ? 48 : 0);
6714 }
6715 
6716 //----------------------compute_klass------------------------------------------
6717 // Compute the defining klass for this class
6718 ciKlass* TypeAryPtr::compute_klass() const {
6719   // Compute _klass based on element type.
6720   ciKlass* k_ary = nullptr;
6721   const TypeInstPtr *tinst;
6722   const TypeAryPtr *tary;
6723   const Type* el = elem();
6724   if (el->isa_narrowoop()) {
6725     el = el->make_ptr();
6726   }
6727 
6728   // Get element klass
6729   if ((tinst = el->isa_instptr()) != nullptr) {
6730     // Leave k_ary at nullptr.
6731   } else if ((tary = el->isa_aryptr()) != nullptr) {
6732     // Leave k_ary at nullptr.
6733   } else if ((el->base() == Type::Top) ||
6734              (el->base() == Type::Bottom)) {
6735     // element type of Bottom occurs from meet of basic type
6736     // and object; Top occurs when doing join on Bottom.
6737     // Leave k_ary at null.
6738   } else {
6739     assert(!el->isa_int(), "integral arrays must be pre-equipped with a class");
6740     // Compute array klass directly from basic type
6741     k_ary = ciTypeArrayKlass::make(el->basic_type());
6742   }
6743   return k_ary;
6744 }
6745 
6746 //------------------------------klass------------------------------------------
6747 // Return the defining klass for this class
6748 ciKlass* TypeAryPtr::klass() const {
6749   if( _klass ) return _klass;   // Return cached value, if possible
6750 
6751   // Oops, need to compute _klass and cache it
6752   ciKlass* k_ary = compute_klass();

6760     // type TypeAryPtr::OOPS.  This Type is shared between all
6761     // active compilations.  However, the ciKlass which represents
6762     // this Type is *not* shared between compilations, so caching
6763     // this value would result in fetching a dangling pointer.
6764     //
6765     // Recomputing the underlying ciKlass for each request is
6766     // a bit less efficient than caching, but calls to
6767     // TypeAryPtr::OOPS->klass() are not common enough to matter.
6768     ((TypeAryPtr*)this)->_klass = k_ary;
6769   }
6770   return k_ary;
6771 }
6772 
6773 // Is there a single ciKlass* that can represent that type?
6774 ciKlass* TypeAryPtr::exact_klass_helper() const {
6775   if (_ary->_elem->make_ptr() && _ary->_elem->make_ptr()->isa_oopptr()) {
6776     ciKlass* k = _ary->_elem->make_ptr()->is_oopptr()->exact_klass_helper();
6777     if (k == nullptr) {
6778       return nullptr;
6779     }
6780     if (k->is_array_klass() && k->as_array_klass()->is_refined()) {
6781       // We have no mechanism to create an array of refined arrays
6782       k = ciObjArrayKlass::make(k->as_array_klass()->element_klass(), false);
6783     }
6784     if (klass_is_exact()) {
6785       return ciObjArrayKlass::make(k, true, is_null_free(), is_atomic());
6786     } else {
6787       // We may reach here if called recursively, must be an unrefined type then
6788       return ciObjArrayKlass::make(k, false);
6789     }
6790   }
6791 
6792   return klass();
6793 }
6794 
6795 const Type* TypeAryPtr::base_element_type(int& dims) const {
6796   const Type* elem = this->elem();
6797   dims = 1;
6798   while (elem->make_ptr() && elem->make_ptr()->isa_aryptr()) {
6799     elem = elem->make_ptr()->is_aryptr()->elem();
6800     dims++;
6801   }
6802   return elem;
6803 }
6804 
6805 //------------------------------add_offset-------------------------------------
6806 // Access internals of klass object
6807 const TypePtr* TypeAryKlassPtr::add_offset(intptr_t offset) const {
6808   return make(_ptr, elem(), klass(), xadd_offset(offset), is_not_flat(), is_not_null_free(), _flat, _null_free, _atomic, _refined_type);
6809 }
6810 
6811 const TypeAryKlassPtr* TypeAryKlassPtr::with_offset(intptr_t offset) const {
6812   return make(_ptr, elem(), klass(), Offset(offset), is_not_flat(), is_not_null_free(), _flat, _null_free, _atomic, _refined_type);
6813 }
6814 
6815 //------------------------------cast_to_ptr_type-------------------------------
6816 const TypeAryKlassPtr* TypeAryKlassPtr::cast_to_ptr_type(PTR ptr) const {
6817   assert(_base == AryKlassPtr, "subclass must override cast_to_ptr_type");
6818   if (ptr == _ptr) return this;
6819   return make(ptr, elem(), _klass, _offset, is_not_flat(), is_not_null_free(), _flat, _null_free, _atomic, _refined_type);
6820 }
6821 
6822 bool TypeAryKlassPtr::must_be_exact() const {
6823   assert(klass_is_exact(), "precondition");
6824   if (_elem == Type::BOTTOM || _elem == Type::TOP) {
6825     return false;
6826   }
6827   const TypeKlassPtr* elem = _elem->isa_klassptr();
6828   if (elem == nullptr) {
6829     // primitive arrays
6830     return true;
6831   }
6832 
6833   // refined types are final
6834   return _refined_type;
6835 }
6836 
6837 //-----------------------------cast_to_exactness-------------------------------
6838 const TypeKlassPtr *TypeAryKlassPtr::cast_to_exactness(bool klass_is_exact) const {
6839   if (klass_is_exact == this->klass_is_exact()) {
6840     return this;
6841   }
6842   if (!klass_is_exact && must_be_exact()) {
6843     return this;
6844   }
6845   const Type* elem = this->elem();
6846   if (elem->isa_klassptr() && !klass_is_exact) {
6847     elem = elem->is_klassptr()->cast_to_exactness(klass_is_exact);
6848   }


6849 
6850   if (klass_is_exact) {
6851     // cast_to_exactness(true) really means get the LCA of all values represented by this
6852     // TypeAryKlassPtr. As a result, it must be an unrefined klass pointer.
6853     return make(Constant, elem, nullptr, _offset, true, true, false, false, true, false);
6854   } else {
6855     // cast_to_exactness(false) means get the TypeAryKlassPtr representing all values that subtype
6856     // this value
6857     bool not_inline = !_elem->isa_instklassptr() || !_elem->is_instklassptr()->instance_klass()->can_be_inline_klass();
6858     bool not_flat = !UseArrayFlattening || not_inline ||
6859                     (_elem->isa_instklassptr() && _elem->is_instklassptr()->instance_klass()->is_inlinetype() && !_elem->is_instklassptr()->instance_klass()->maybe_flat_in_array());
6860     bool not_null_free = not_inline;
6861     bool atomic = not_flat;
6862     return make(NotNull, elem, nullptr, _offset, not_flat, not_null_free, false, false, atomic, false);
6863   }
6864 }
6865 
6866 //-----------------------------as_instance_type--------------------------------
6867 // Corresponding type for an instance of the given class.
6868 // It will be NotNull, and exact if and only if the klass type is exact.
6869 const TypeOopPtr* TypeAryKlassPtr::as_instance_type(bool klass_change) const {
6870   ciKlass* k = klass();
6871   bool    xk = klass_is_exact();
6872   const Type* el = nullptr;
6873   if (elem()->isa_klassptr()) {
6874     el = elem()->is_klassptr()->as_instance_type(false)->cast_to_exactness(false);
6875     k = nullptr;
6876   } else {
6877     el = elem();
6878   }
6879   bool null_free = _null_free;
6880   if (null_free && el->isa_ptr()) {
6881     el = el->is_ptr()->join_speculative(TypePtr::NOTNULL);
6882   }
6883   return TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(el, TypeInt::POS, false, is_flat(), is_not_flat(), is_not_null_free(), is_atomic()), k, xk, Offset(0));
6884 }
6885 
6886 
6887 //------------------------------xmeet------------------------------------------
6888 // Compute the MEET of two types, return a new Type object.
6889 const Type    *TypeAryKlassPtr::xmeet( const Type *t ) const {
6890   // Perform a fast test for common case; meeting the same types together.
6891   if( this == t ) return this;  // Meeting same type-rep?
6892 
6893   // Current "this->_base" is Pointer
6894   switch (t->base()) {          // switch on original type
6895 
6896   case Int:                     // Mixing ints & oops happens when javac
6897   case Long:                    // reuses local variables
6898   case HalfFloatTop:
6899   case HalfFloatCon:
6900   case HalfFloatBot:
6901   case FloatTop:
6902   case FloatCon:
6903   case FloatBot:
6904   case DoubleTop:
6905   case DoubleCon:
6906   case DoubleBot:
6907   case NarrowOop:
6908   case NarrowKlass:
6909   case Bottom:                  // Ye Olde Default
6910     return Type::BOTTOM;
6911   case Top:
6912     return this;
6913 
6914   default:                      // All else is a mistake
6915     typerr(t);
6916 
6917   case AnyPtr: {                // Meeting to AnyPtrs
6918     // Found an AnyPtr type vs self-KlassPtr type
6919     const TypePtr *tp = t->is_ptr();
6920     Offset offset = meet_offset(tp->offset());
6921     PTR ptr = meet_ptr(tp->ptr());
6922     switch (tp->ptr()) {
6923     case TopPTR:
6924       return this;
6925     case Null:
6926       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6927     case AnyNull:
6928       return make(ptr, _elem, klass(), offset, is_not_flat(), is_not_null_free(), is_flat(), is_null_free(), is_atomic(), is_refined_type());
6929     case BotPTR:
6930     case NotNull:
6931       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6932     default: typerr(t);
6933     }
6934   }
6935 
6936   case RawPtr:
6937   case MetadataPtr:
6938   case OopPtr:
6939   case AryPtr:                  // Meet with AryPtr
6940   case InstPtr:                 // Meet with InstPtr
6941     return TypePtr::BOTTOM;
6942 
6943   //
6944   //             A-top         }
6945   //           /   |   \       }  Tops
6946   //       B-top A-any C-top   }
6947   //          | /  |  \ |      }  Any-nulls
6948   //       B-any   |   C-any   }
6949   //          |    |    |
6950   //       B-con A-con C-con   } constants; not comparable across classes
6951   //          |    |    |
6952   //       B-not   |   C-not   }
6953   //          | \  |  / |      }  not-nulls
6954   //       B-bot A-not C-bot   }
6955   //           \   |   /       }  Bottoms
6956   //             A-bot         }
6957   //
6958 
6959   case AryKlassPtr: {  // Meet two KlassPtr types
6960     const TypeAryKlassPtr *tap = t->is_aryklassptr();
6961     Offset off = meet_offset(tap->offset());
6962     const Type* elem = _elem->meet(tap->_elem);

6963     PTR ptr = meet_ptr(tap->ptr());
6964     ciKlass* res_klass = nullptr;
6965     bool res_xk = false;
6966     bool res_flat = false;
6967     bool res_not_flat = false;
6968     bool res_not_null_free = false;
6969     bool res_atomic = false;
6970     MeetResult res = meet_aryptr(ptr, elem, this, tap,
6971                                  res_klass, res_xk, res_flat, res_not_flat, res_not_null_free, res_atomic);
6972     assert(res_xk == (ptr == Constant), "");
6973     bool flat = meet_flat(tap->_flat);
6974     bool null_free = meet_null_free(tap->_null_free);
6975     bool atomic = meet_atomic(tap->_atomic);
6976     bool refined_type = _refined_type && tap->_refined_type;
6977     if (res == NOT_SUBTYPE) {
6978       flat = false;
6979       null_free = false;
6980       atomic = false;
6981       refined_type = false;
6982     } else if (res == SUBTYPE) {
6983       if (above_centerline(tap->ptr()) && !above_centerline(this->ptr())) {
6984         flat = _flat;
6985         null_free = _null_free;
6986         atomic = _atomic;
6987         refined_type = _refined_type;
6988       } else if (above_centerline(this->ptr()) && !above_centerline(tap->ptr())) {
6989         flat = tap->_flat;
6990         null_free = tap->_null_free;
6991         atomic = tap->_atomic;
6992         refined_type = tap->_refined_type;
6993       } else if (above_centerline(this->ptr()) && above_centerline(tap->ptr())) {
6994         flat = _flat || tap->_flat;
6995         null_free = _null_free || tap->_null_free;
6996         atomic = _atomic || tap->_atomic;
6997         refined_type = _refined_type || tap->_refined_type;
6998       } else if (res_xk && _refined_type != tap->_refined_type) {
6999         // This can happen if the phi emitted by LibraryCallKit::load_default_refined_array_klass/load_non_refined_array_klass
7000         // is processed before the typeArray guard is folded. Both inputs are constant but the input corresponding to the
7001         // typeArray will go away. Don't constant fold it yet but wait for the control input to collapse.
7002         ptr = PTR::NotNull;
7003       }
7004     }
7005     return make(ptr, elem, res_klass, off, res_not_flat, res_not_null_free, flat, null_free, atomic, refined_type);
7006   } // End of case KlassPtr
7007   case InstKlassPtr: {
7008     const TypeInstKlassPtr *tp = t->is_instklassptr();
7009     Offset offset = meet_offset(tp->offset());
7010     PTR ptr = meet_ptr(tp->ptr());
7011     const TypeInterfaces* interfaces = meet_interfaces(tp);
7012     const TypeInterfaces* tp_interfaces = tp->_interfaces;
7013     const TypeInterfaces* this_interfaces = _interfaces;
7014 
7015     switch (ptr) {
7016     case TopPTR:
7017     case AnyNull:                // Fall 'down' to dual of object klass
7018       // For instances when a subclass meets a superclass we fall
7019       // below the centerline when the superclass is exact. We need to
7020       // do the same here.
7021       //
7022       // Flat in array: See explanation for meet with TypeInstPtr in TypeAryPtr::xmeet_helper().
7023       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) &&
7024           !tp->klass_is_exact() && !tp->is_not_flat_in_array()) {
7025         return TypeAryKlassPtr::make(ptr, _elem, _klass, offset, is_not_flat(), is_not_null_free(), is_flat(), is_null_free(), is_atomic(), is_refined_type());
7026       } else {
7027         // cannot subclass, so the meet has to fall badly below the centerline
7028         ptr = NotNull;
7029         interfaces = this_interfaces->intersection_with(tp->_interfaces);
7030         FlatInArray flat_in_array = meet_flat_in_array(NotFlat, tp->flat_in_array());
7031         return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset, flat_in_array);
7032       }
7033     case Constant:
7034     case NotNull:
7035     case BotPTR: { // Fall down to object klass
7036       // LCA is object_klass, but if we subclass from the top we can do better
7037       if (above_centerline(tp->ptr())) {
7038         // If 'tp'  is above the centerline and it is Object class
7039         // then we can subclass in the Java class hierarchy.
7040         // For instances when a subclass meets a superclass we fall
7041         // below the centerline when the superclass is exact. We need
7042         // to do the same here.
7043         //
7044         // Flat in array: See explanation for meet with TypeInstPtr in TypeAryPtr::xmeet_helper().
7045         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) &&
7046             !tp->klass_is_exact() && !tp->is_not_flat_in_array()) {
7047           // that is, my array type is a subtype of 'tp' klass
7048           return make(ptr, _elem, _klass, offset, is_not_flat(), is_not_null_free(), is_flat(), is_null_free(), is_atomic(), is_refined_type());
7049         }
7050       }
7051       // The other case cannot happen, since t cannot be a subtype of an array.
7052       // The meet falls down to Object class below centerline.
7053       if (ptr == Constant)
7054         ptr = NotNull;
7055       interfaces = this_interfaces->intersection_with(tp_interfaces);
7056       FlatInArray flat_in_array = meet_flat_in_array(NotFlat, tp->flat_in_array());
7057       return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset, tp->flat_in_array());
7058     }
7059     default: typerr(t);
7060     }
7061   }
7062 
7063   } // End of switch
7064   return this;                  // Return the double constant
7065 }
7066 
7067 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
7068   static_assert(std::is_base_of<T2, T1>::value, "");
7069 
7070   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty() && other_exact) {
7071     return true;
7072   }
7073 
7074   int dummy;
7075   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
7076 
7077   if (!this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) {
7078     return false;
7079   }
7080 
7081   if (this_one->is_instance_type(other)) {
7082     return other->klass() == ciEnv::current()->Object_klass() && this_one->_interfaces->contains(other->_interfaces) &&
7083            other_exact;
7084   }
7085 
7086   assert(this_one->is_array_type(other), "");
7087   const T1* other_ary = this_one->is_array_type(other);
7088   bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
7089   if (other_top_or_bottom) {
7090     return false;
7091   }
7092 
7093   const TypePtr* other_elem = other_ary->elem()->make_ptr();
7094   const TypePtr* this_elem = this_one->elem()->make_ptr();
7095   if (this_elem != nullptr && other_elem != nullptr) {
7096     if (other->is_null_free() && !this_one->is_null_free()) {
7097       return false; // A nullable array can't be a subtype of a null-free array
7098     }
7099     return this_one->is_reference_type(this_elem)->is_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact);
7100   }
7101   if (this_elem == nullptr && other_elem == nullptr) {
7102     return this_one->klass()->is_subtype_of(other->klass());
7103   }
7104   return false;
7105 }
7106 
7107 bool TypeAryKlassPtr::is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
7108   return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
7109 }
7110 
7111 template <class T1, class T2> bool TypePtr::is_same_java_type_as_helper_for_array(const T1* this_one, const T2* other) {
7112   static_assert(std::is_base_of<T2, T1>::value, "");
7113 
7114   int dummy;
7115   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
7116 
7117   if (!this_one->is_array_type(other) ||
7118       !this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) {

7171   }
7172 
7173   const TypePtr* this_elem = this_one->elem()->make_ptr();
7174   const TypePtr* other_elem = other_ary->elem()->make_ptr();
7175   if (other_elem != nullptr && this_elem != nullptr) {
7176     return this_one->is_reference_type(this_elem)->maybe_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact);
7177   }
7178   if (other_elem == nullptr && this_elem == nullptr) {
7179     return this_one->klass()->is_subtype_of(other->klass());
7180   }
7181   return false;
7182 }
7183 
7184 bool TypeAryKlassPtr::maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
7185   return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
7186 }
7187 
7188 //------------------------------xdual------------------------------------------
7189 // Dual: compute field-by-field dual
7190 const Type    *TypeAryKlassPtr::xdual() const {
7191   return new TypeAryKlassPtr(dual_ptr(), elem()->dual(), klass(), dual_offset(), !is_not_flat(), !is_not_null_free(), dual_flat(), dual_null_free(), dual_atomic(), _refined_type);
7192 }
7193 
7194 // Is there a single ciKlass* that can represent that type?
7195 ciKlass* TypeAryKlassPtr::exact_klass_helper() const {
7196   if (elem()->isa_klassptr()) {
7197     ciKlass* k = elem()->is_klassptr()->exact_klass_helper();
7198     if (k == nullptr) {
7199       return nullptr;
7200     }
7201     assert(!k->is_array_klass() || !k->as_array_klass()->is_refined(), "no mechanism to create an array of refined arrays %s", k->name()->as_utf8());
7202     k = ciArrayKlass::make(k, is_null_free(), is_atomic(), _refined_type);
7203     return k;
7204   }
7205 
7206   return klass();
7207 }
7208 
7209 ciKlass* TypeAryKlassPtr::klass() const {
7210   if (_klass != nullptr) {
7211     return _klass;
7212   }
7213   ciKlass* k = nullptr;
7214   if (elem()->isa_klassptr()) {
7215     // leave null
7216   } else if ((elem()->base() == Type::Top) ||
7217              (elem()->base() == Type::Bottom)) {
7218   } else {
7219     k = ciTypeArrayKlass::make(elem()->basic_type());
7220     ((TypeAryKlassPtr*)this)->_klass = k;
7221   }
7222   return k;
7223 }
7224 
7225 //------------------------------dump2------------------------------------------
7226 // Dump Klass Type
7227 #ifndef PRODUCT
7228 void TypeAryKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
7229   st->print("aryklassptr:[");
7230   _elem->dump2(d, depth, st);
7231   _interfaces->dump(st);
7232   st->print(":%s", ptr_msg[_ptr]);
7233   if (_flat) st->print(":flat");
7234   if (_null_free) st->print(":null free");
7235   if (_atomic) st->print(":atomic");
7236   if (_refined_type) st->print(":refined_type");
7237   if (Verbose) {
7238     if (_not_flat) st->print(":not flat");
7239     if (_not_null_free) st->print(":nullable");
7240   }
7241   dump_offset(st);
7242 }
7243 #endif
7244 
7245 const Type* TypeAryKlassPtr::base_element_type(int& dims) const {
7246   const Type* elem = this->elem();
7247   dims = 1;
7248   while (elem->isa_aryklassptr()) {
7249     elem = elem->is_aryklassptr()->elem();
7250     dims++;
7251   }
7252   return elem;
7253 }
7254 
7255 //=============================================================================
7256 // Convenience common pre-built types.
7257 
7258 //------------------------------make-------------------------------------------
7259 const TypeFunc *TypeFunc::make(const TypeTuple *domain_sig, const TypeTuple* domain_cc,
7260                                const TypeTuple *range_sig, const TypeTuple *range_cc) {
7261   return (TypeFunc*)(new TypeFunc(domain_sig, domain_cc, range_sig, range_cc))->hashcons();
7262 }
7263 
7264 const TypeFunc *TypeFunc::make(const TypeTuple *domain, const TypeTuple *range) {
7265   return make(domain, domain, range, range);
7266 }
7267 
7268 //------------------------------osr_domain-----------------------------
7269 const TypeTuple* osr_domain() {
7270   const Type **fields = TypeTuple::fields(2);
7271   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM;  // address of osr buffer
7272   return TypeTuple::make(TypeFunc::Parms+1, fields);
7273 }
7274 
7275 //------------------------------make-------------------------------------------
7276 const TypeFunc* TypeFunc::make(ciMethod* method, bool is_osr_compilation) {
7277   Compile* C = Compile::current();
7278   const TypeFunc* tf = nullptr;
7279   if (!is_osr_compilation) {
7280     tf = C->last_tf(method); // check cache
7281     if (tf != nullptr)  return tf;  // The hit rate here is almost 50%.
7282   }
7283   // Inline types are not passed/returned by reference, instead each field of
7284   // the inline type is passed/returned as an argument. We maintain two views of
7285   // the argument/return list here: one based on the signature (with an inline
7286   // type argument/return as a single slot), one based on the actual calling
7287   // convention (with an inline type argument/return as a list of its fields).
7288   bool has_scalar_args = method->has_scalarized_args() && !is_osr_compilation;
7289   // Fall back to the non-scalarized calling convention when compiling a call via a mismatching method
7290   if (method != C->method() && method->get_Method()->mismatch()) {
7291     has_scalar_args = false;
7292   }
7293   const TypeTuple* domain_sig = is_osr_compilation ? osr_domain() : TypeTuple::make_domain(method, ignore_interfaces, false);
7294   const TypeTuple* domain_cc = has_scalar_args ? TypeTuple::make_domain(method, ignore_interfaces, true) : domain_sig;
7295   ciSignature* sig = method->signature();
7296   bool has_scalar_ret = !method->is_native() && sig->return_type()->is_inlinetype() && sig->return_type()->as_inline_klass()->can_be_returned_as_fields();
7297   const TypeTuple* range_sig = TypeTuple::make_range(sig, ignore_interfaces, false);
7298   const TypeTuple* range_cc = has_scalar_ret ? TypeTuple::make_range(sig, ignore_interfaces, true) : range_sig;
7299   tf = TypeFunc::make(domain_sig, domain_cc, range_sig, range_cc);
7300   if (!is_osr_compilation) {
7301     C->set_last_tf(method, tf);  // fill cache
7302   }



7303   return tf;
7304 }
7305 
7306 //------------------------------meet-------------------------------------------
7307 // Compute the MEET of two types.  It returns a new Type object.
7308 const Type *TypeFunc::xmeet( const Type *t ) const {
7309   // Perform a fast test for common case; meeting the same types together.
7310   if( this == t ) return this;  // Meeting same type-rep?
7311 
7312   // Current "this->_base" is Func
7313   switch (t->base()) {          // switch on original type
7314 
7315   case Bottom:                  // Ye Olde Default
7316     return t;
7317 
7318   default:                      // All else is a mistake
7319     typerr(t);
7320 
7321   case Top:
7322     break;
7323   }
7324   return this;                  // Return the double constant
7325 }
7326 
7327 //------------------------------xdual------------------------------------------
7328 // Dual: compute field-by-field dual
7329 const Type *TypeFunc::xdual() const {
7330   return this;
7331 }
7332 
7333 //------------------------------eq---------------------------------------------
7334 // Structural equality check for Type representations
7335 bool TypeFunc::eq( const Type *t ) const {
7336   const TypeFunc *a = (const TypeFunc*)t;
7337   return _domain_sig == a->_domain_sig &&
7338     _domain_cc == a->_domain_cc &&
7339     _range_sig == a->_range_sig &&
7340     _range_cc == a->_range_cc;
7341 }
7342 
7343 //------------------------------hash-------------------------------------------
7344 // Type-specific hashing function.
7345 uint TypeFunc::hash(void) const {
7346   return (uint)(intptr_t)_domain_sig + (uint)(intptr_t)_domain_cc + (uint)(intptr_t)_range_sig + (uint)(intptr_t)_range_cc;
7347 }
7348 
7349 //------------------------------dump2------------------------------------------
7350 // Dump Function Type
7351 #ifndef PRODUCT
7352 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
7353   if( _range_sig->cnt() <= Parms )
7354     st->print("void");
7355   else {
7356     uint i;
7357     for (i = Parms; i < _range_sig->cnt()-1; i++) {
7358       _range_sig->field_at(i)->dump2(d,depth,st);
7359       st->print("/");
7360     }
7361     _range_sig->field_at(i)->dump2(d,depth,st);
7362   }
7363   st->print(" ");
7364   st->print("( ");
7365   if( !depth || d[this] ) {     // Check for recursive dump
7366     st->print("...)");
7367     return;
7368   }
7369   d.Insert((void*)this,(void*)this);    // Stop recursion
7370   if (Parms < _domain_sig->cnt())
7371     _domain_sig->field_at(Parms)->dump2(d,depth-1,st);
7372   for (uint i = Parms+1; i < _domain_sig->cnt(); i++) {
7373     st->print(", ");
7374     _domain_sig->field_at(i)->dump2(d,depth-1,st);
7375   }
7376   st->print(" )");
7377 }
7378 #endif
7379 
7380 //------------------------------singleton--------------------------------------
7381 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
7382 // constants (Ldi nodes).  Singletons are integer, float or double constants
7383 // or a single symbol.
7384 bool TypeFunc::singleton(void) const {
7385   return false;                 // Never a singleton
7386 }
7387 
7388 bool TypeFunc::empty(void) const {
7389   return false;                 // Never empty
7390 }
7391 
7392 
7393 BasicType TypeFunc::return_type() const{
7394   if (range_sig()->cnt() == TypeFunc::Parms) {
7395     return T_VOID;
7396   }
7397   return range_sig()->field_at(TypeFunc::Parms)->basic_type();
7398 }
< prev index next >