< prev index next >

src/hotspot/share/opto/type.cpp

Print this page

   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 




  25 #include "ci/ciMethodData.hpp"

  26 #include "ci/ciTypeFlow.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "libadt/dict.hpp"
  32 #include "memory/oopFactory.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "oops/instanceKlass.hpp"
  35 #include "oops/instanceMirrorKlass.hpp"
  36 #include "oops/objArrayKlass.hpp"
  37 #include "oops/typeArrayKlass.hpp"
  38 #include "opto/arraycopynode.hpp"
  39 #include "opto/callnode.hpp"
  40 #include "opto/matcher.hpp"
  41 #include "opto/node.hpp"
  42 #include "opto/opcodes.hpp"
  43 #include "opto/rangeinference.hpp"
  44 #include "opto/runtime.hpp"
  45 #include "opto/type.hpp"

  46 #include "runtime/stubRoutines.hpp"
  47 #include "utilities/checkedCast.hpp"
  48 #include "utilities/debug.hpp"

  49 #include "utilities/ostream.hpp"
  50 #include "utilities/powerOfTwo.hpp"
  51 #include "utilities/stringUtils.hpp"
  52 
  53 // Portions of code courtesy of Clifford Click
  54 
  55 // Optimization - Graph Style
  56 
  57 // Dictionary of types shared among compilations.
  58 Dict* Type::_shared_type_dict = nullptr;













































  59 
  60 // Array which maps compiler types to Basic Types
  61 const Type::TypeInfo Type::_type_info[Type::lastype] = {
  62   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
  63   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
  64   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
  65   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
  66   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
  67   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
  68   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
  69   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
  70   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
  71   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
  72   { Bad,             T_ARRAY,      "interfaces:",   false, Node::NotAMachineReg, relocInfo::none          },  // Interfaces
  73 
  74 #if defined(PPC64)
  75   { Bad,             T_ILLEGAL,    "vectormask:",   false, Op_RegVectMask,       relocInfo::none          },  // VectorMask.
  76   { Bad,             T_ILLEGAL,    "vectora:",      false, Op_VecA,              relocInfo::none          },  // VectorA.
  77   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  78   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD

 217   case ciTypeFlow::StateVector::T_NULL:
 218     assert(type == ciTypeFlow::StateVector::null_type(), "");
 219     return TypePtr::NULL_PTR;
 220 
 221   case ciTypeFlow::StateVector::T_LONG2:
 222     // The ciTypeFlow pass pushes a long, then the half.
 223     // We do the same.
 224     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 225     return TypeInt::TOP;
 226 
 227   case ciTypeFlow::StateVector::T_DOUBLE2:
 228     // The ciTypeFlow pass pushes double, then the half.
 229     // Our convention is the same.
 230     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 231     return Type::TOP;
 232 
 233   case T_ADDRESS:
 234     assert(type->is_return_address(), "");
 235     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 236 



 237   default:
 238     // make sure we did not mix up the cases:
 239     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 240     assert(type != ciTypeFlow::StateVector::top_type(), "");
 241     assert(type != ciTypeFlow::StateVector::null_type(), "");
 242     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 243     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 244     assert(!type->is_return_address(), "");
 245 
 246     return Type::get_const_type(type);
 247   }
 248 }
 249 
 250 
 251 //-----------------------make_from_constant------------------------------------
 252 const Type* Type::make_from_constant(ciConstant constant, bool require_constant,
 253                                      int stable_dimension, bool is_narrow_oop,
 254                                      bool is_autobox_cache) {
 255   switch (constant.basic_type()) {
 256     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());

 306     case T_NARROWOOP: loadbt = T_OBJECT; break;
 307     case T_ARRAY:     loadbt = T_OBJECT; break;
 308     case T_ADDRESS:   loadbt = T_OBJECT; break;
 309     default:                             break;
 310   }
 311   if (conbt == loadbt) {
 312     if (is_unsigned && conbt == T_BYTE) {
 313       // LoadB (T_BYTE) with a small mask (<=8-bit) is converted to LoadUB (T_BYTE).
 314       return ciConstant(T_INT, con.as_int() & 0xFF);
 315     } else {
 316       return con;
 317     }
 318   }
 319   if (conbt == T_SHORT && loadbt == T_CHAR) {
 320     // LoadS (T_SHORT) with a small mask (<=16-bit) is converted to LoadUS (T_CHAR).
 321     return ciConstant(T_INT, con.as_int() & 0xFFFF);
 322   }
 323   return ciConstant(); // T_ILLEGAL
 324 }
 325 
 326 // Try to constant-fold a stable array element.
 327 const Type* Type::make_constant_from_array_element(ciArray* array, int off, int stable_dimension,
 328                                                    BasicType loadbt, bool is_unsigned_load) {
 329   // Decode the results of GraphKit::array_element_address.
 330   ciConstant element_value = array->element_value_by_offset(off);
 331   if (element_value.basic_type() == T_ILLEGAL) {
 332     return nullptr; // wrong offset
 333   }
 334   ciConstant con = check_mismatched_access(element_value, loadbt, is_unsigned_load);
 335 
 336   assert(con.basic_type() != T_ILLEGAL, "elembt=%s; loadbt=%s; unsigned=%d",
 337          type2name(element_value.basic_type()), type2name(loadbt), is_unsigned_load);
 338 
 339   if (con.is_valid() &&          // not a mismatched access
 340       !con.is_null_or_zero()) {  // not a default value
 341     bool is_narrow_oop = (loadbt == T_NARROWOOP);
 342     return Type::make_from_constant(con, /*require_constant=*/true, stable_dimension, is_narrow_oop, /*is_autobox_cache=*/false);
 343   }
 344   return nullptr;
 345 }
 346 





























 347 const Type* Type::make_constant_from_field(ciInstance* holder, int off, bool is_unsigned_load, BasicType loadbt) {
 348   ciField* field;
 349   ciType* type = holder->java_mirror_type();
 350   if (type != nullptr && type->is_instance_klass() && off >= InstanceMirrorKlass::offset_of_static_fields()) {
 351     // Static field
 352     field = type->as_instance_klass()->get_field_by_offset(off, /*is_static=*/true);
 353   } else {
 354     // Instance field
 355     field = holder->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/false);
 356   }
 357   if (field == nullptr) {
 358     return nullptr; // Wrong offset
 359   }
 360   return Type::make_constant_from_field(field, holder, loadbt, is_unsigned_load);
 361 }
 362 
 363 const Type* Type::make_constant_from_field(ciField* field, ciInstance* holder,
 364                                            BasicType loadbt, bool is_unsigned_load) {
 365   if (!field->is_constant()) {
 366     return nullptr; // Non-constant field

 539   const Type **ffalse =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 540   ffalse[0] = Type::CONTROL;
 541   ffalse[1] = Type::TOP;
 542   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 543 
 544   const Type **fneither =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 545   fneither[0] = Type::TOP;
 546   fneither[1] = Type::TOP;
 547   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 548 
 549   const Type **ftrue =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 550   ftrue[0] = Type::TOP;
 551   ftrue[1] = Type::CONTROL;
 552   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 553 
 554   const Type **floop =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 555   floop[0] = Type::CONTROL;
 556   floop[1] = TypeInt::INT;
 557   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 558 
 559   TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, 0);
 560   TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, OffsetBot);
 561   TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, OffsetBot);
 562 
 563   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 564   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 565 
 566   const Type **fmembar = TypeTuple::fields(0);
 567   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 568 
 569   const Type **fsc = (const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 570   fsc[0] = TypeInt::CC;
 571   fsc[1] = Type::MEMORY;
 572   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 573 
 574   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 575   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 576   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 577   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 578                                            false, nullptr, oopDesc::mark_offset_in_bytes());
 579   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 580                                            false, nullptr, oopDesc::klass_offset_in_bytes());
 581   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
 582 
 583   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, nullptr, OffsetBot);
 584 
 585   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 586   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 587 
 588   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 589 
 590   mreg2type[Op_Node] = Type::BOTTOM;
 591   mreg2type[Op_Set ] = nullptr;
 592   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 593   mreg2type[Op_RegI] = TypeInt::INT;
 594   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 595   mreg2type[Op_RegF] = Type::FLOAT;
 596   mreg2type[Op_RegD] = Type::DOUBLE;
 597   mreg2type[Op_RegL] = TypeLong::LONG;
 598   mreg2type[Op_RegFlags] = TypeInt::CC;
 599 
 600   GrowableArray<ciInstanceKlass*> array_interfaces;
 601   array_interfaces.push(current->env()->Cloneable_klass());
 602   array_interfaces.push(current->env()->Serializable_klass());
 603   TypeAryPtr::_array_interfaces = TypeInterfaces::make(&array_interfaces);
 604   TypeAryKlassPtr::_array_interfaces = TypeAryPtr::_array_interfaces;
 605 
 606   TypeAryPtr::BOTTOM = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::BOTTOM, TypeInt::POS), nullptr, false, Type::OffsetBot);
 607   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), nullptr /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
 608 
 609   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), nullptr /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 610 
 611 #ifdef _LP64
 612   if (UseCompressedOops) {
 613     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 614     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 615   } else
 616 #endif
 617   {
 618     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 619     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), nullptr /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 620   }
 621   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
 622   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
 623   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
 624   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
 625   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
 626   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
 627   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);

 628 
 629   // Nobody should ask _array_body_type[T_NARROWOOP]. Use null as assert.
 630   TypeAryPtr::_array_body_type[T_NARROWOOP] = nullptr;
 631   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;

 632   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 633   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 634   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 635   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 636   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 637   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 638   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 639   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 640   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 641 
 642   TypeInstKlassPtr::OBJECT = TypeInstKlassPtr::make(TypePtr::NotNull, current->env()->Object_klass(), 0);
 643   TypeInstKlassPtr::OBJECT_OR_NULL = TypeInstKlassPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), 0);
 644 
 645   const Type **fi2c = TypeTuple::fields(2);
 646   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 647   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 648   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 649 
 650   const Type **intpair = TypeTuple::fields(2);
 651   intpair[0] = TypeInt::INT;
 652   intpair[1] = TypeInt::INT;
 653   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 654 
 655   const Type **longpair = TypeTuple::fields(2);
 656   longpair[0] = TypeLong::LONG;
 657   longpair[1] = TypeLong::LONG;
 658   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 659 
 660   const Type **intccpair = TypeTuple::fields(2);
 661   intccpair[0] = TypeInt::INT;
 662   intccpair[1] = TypeInt::CC;
 663   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 664 
 665   const Type **longccpair = TypeTuple::fields(2);
 666   longccpair[0] = TypeLong::LONG;
 667   longccpair[1] = TypeInt::CC;
 668   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 669 
 670   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 671   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 672   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 673   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 674   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 675   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 676   _const_basic_type[T_INT]         = TypeInt::INT;
 677   _const_basic_type[T_LONG]        = TypeLong::LONG;
 678   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 679   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 680   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 681   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays

 682   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 683   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 684   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 685 
 686   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 687   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 688   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 689   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 690   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 691   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 692   _zero_type[T_INT]         = TypeInt::ZERO;
 693   _zero_type[T_LONG]        = TypeLong::ZERO;
 694   _zero_type[T_FLOAT]       = TypeF::ZERO;
 695   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 696   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 697   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop

 698   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 699   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 700 
 701   // get_zero_type() should not happen for T_CONFLICT
 702   _zero_type[T_CONFLICT]= nullptr;
 703 
 704   TypeVect::VECTMASK = (TypeVect*)(new TypeVectMask(T_BOOLEAN, MaxVectorSize))->hashcons();
 705   mreg2type[Op_RegVectMask] = TypeVect::VECTMASK;
 706 
 707   if (Matcher::supports_scalable_vector()) {
 708     TypeVect::VECTA = TypeVect::make(T_BYTE, Matcher::scalable_vector_reg_size(T_BYTE));
 709   }
 710 
 711   // Vector predefined types, it needs initialized _const_basic_type[].
 712   if (Matcher::vector_size_supported(T_BYTE, 4)) {
 713     TypeVect::VECTS = TypeVect::make(T_BYTE, 4);
 714   }
 715   if (Matcher::vector_size_supported(T_FLOAT, 2)) {
 716     TypeVect::VECTD = TypeVect::make(T_FLOAT, 2);
 717   }

 952   ~VerifyMeet() {
 953     assert(_C->_type_verify->_depth != 0, "");
 954     _C->_type_verify->_depth--;
 955     if (_C->_type_verify->_depth == 0) {
 956       _C->_type_verify->_cache.trunc_to(0);
 957     }
 958   }
 959 
 960   const Type* meet(const Type* t1, const Type* t2) const {
 961     return _C->_type_verify->meet(t1, t2);
 962   }
 963 
 964   void add(const Type* t1, const Type* t2, const Type* res) const {
 965     _C->_type_verify->add(t1, t2, res);
 966   }
 967 };
 968 
 969 void Type::check_symmetrical(const Type* t, const Type* mt, const VerifyMeet& verify) const {
 970   Compile* C = Compile::current();
 971   const Type* mt2 = verify.meet(t, this);



 972   if (mt != mt2) {
 973     tty->print_cr("=== Meet Not Commutative ===");
 974     tty->print("t           = ");   t->dump(); tty->cr();
 975     tty->print("this        = ");      dump(); tty->cr();
 976     tty->print("t meet this = "); mt2->dump(); tty->cr();
 977     tty->print("this meet t = ");  mt->dump(); tty->cr();
 978     fatal("meet not commutative");
 979   }
 980   const Type* dual_join = mt->_dual;
 981   const Type* t2t    = verify.meet(dual_join,t->_dual);
 982   const Type* t2this = verify.meet(dual_join,this->_dual);
 983 
 984   // Interface meet Oop is Not Symmetric:
 985   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
 986   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
 987 









 988   if (t2t != t->_dual || t2this != this->_dual) {
 989     tty->print_cr("=== Meet Not Symmetric ===");
 990     tty->print("t   =                   ");              t->dump(); tty->cr();
 991     tty->print("this=                   ");                 dump(); tty->cr();
 992     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
 993 
 994     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
 995     tty->print("this_dual=              ");          _dual->dump(); tty->cr();
 996     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
 997 

 998     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();

 999     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();









1000 
1001     fatal("meet not symmetric");
1002   }
1003 }
1004 #endif
1005 
1006 //------------------------------meet-------------------------------------------
1007 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
1008 // commutative and the lattice is symmetric.
1009 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
1010   if (isa_narrowoop() && t->isa_narrowoop()) {
1011     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
1012     return result->make_narrowoop();
1013   }
1014   if (isa_narrowklass() && t->isa_narrowklass()) {
1015     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
1016     return result->make_narrowklass();
1017   }
1018 
1019 #ifdef ASSERT
1020   Compile* C = Compile::current();
1021   VerifyMeet verify(C);
1022 #endif
1023 
1024   const Type *this_t = maybe_remove_speculative(include_speculative);
1025   t = t->maybe_remove_speculative(include_speculative);
1026 
1027   const Type *mt = this_t->xmeet(t);
1028 #ifdef ASSERT
1029   verify.add(this_t, t, mt);
1030   if (isa_narrowoop() || t->isa_narrowoop()) {
1031     return mt;
1032   }
1033   if (isa_narrowklass() || t->isa_narrowklass()) {
1034     return mt;
1035   }



1036   this_t->check_symmetrical(t, mt, verify);
1037   const Type *mt_dual = verify.meet(this_t->_dual, t->_dual);
1038   this_t->_dual->check_symmetrical(t->_dual, mt_dual, verify);
1039 #endif
1040   return mt;
1041 }
1042 
1043 //------------------------------xmeet------------------------------------------
1044 // Compute the MEET of two types.  It returns a new Type object.
1045 const Type *Type::xmeet( const Type *t ) const {
1046   // Perform a fast test for common case; meeting the same types together.
1047   if( this == t ) return this;  // Meeting same type-rep?
1048 
1049   // Meeting TOP with anything?
1050   if( _base == Top ) return t;
1051 
1052   // Meeting BOTTOM with anything?
1053   if( _base == Bottom ) return BOTTOM;
1054 
1055   // Current "this->_base" is one of: Bad, Multi, Control, Top,

2046 void TypeLong::dump_verbose() const {
2047   TypeIntHelper::int_type_dump(this, tty, true);
2048 }
2049 #endif
2050 
2051 //=============================================================================
2052 // Convenience common pre-built types.
2053 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
2054 const TypeTuple *TypeTuple::IFFALSE;
2055 const TypeTuple *TypeTuple::IFTRUE;
2056 const TypeTuple *TypeTuple::IFNEITHER;
2057 const TypeTuple *TypeTuple::LOOPBODY;
2058 const TypeTuple *TypeTuple::MEMBAR;
2059 const TypeTuple *TypeTuple::STORECONDITIONAL;
2060 const TypeTuple *TypeTuple::START_I2C;
2061 const TypeTuple *TypeTuple::INT_PAIR;
2062 const TypeTuple *TypeTuple::LONG_PAIR;
2063 const TypeTuple *TypeTuple::INT_CC_PAIR;
2064 const TypeTuple *TypeTuple::LONG_CC_PAIR;
2065 





















2066 //------------------------------make-------------------------------------------
2067 // Make a TypeTuple from the range of a method signature
2068 const TypeTuple *TypeTuple::make_range(ciSignature* sig, InterfaceHandling interface_handling) {
2069   ciType* return_type = sig->return_type();
2070   uint arg_cnt = return_type->size();





2071   const Type **field_array = fields(arg_cnt);
2072   switch (return_type->basic_type()) {
2073   case T_LONG:
2074     field_array[TypeFunc::Parms]   = TypeLong::LONG;
2075     field_array[TypeFunc::Parms+1] = Type::HALF;
2076     break;
2077   case T_DOUBLE:
2078     field_array[TypeFunc::Parms]   = Type::DOUBLE;
2079     field_array[TypeFunc::Parms+1] = Type::HALF;
2080     break;
2081   case T_OBJECT:












2082   case T_ARRAY:
2083   case T_BOOLEAN:
2084   case T_CHAR:
2085   case T_FLOAT:
2086   case T_BYTE:
2087   case T_SHORT:
2088   case T_INT:
2089     field_array[TypeFunc::Parms] = get_const_type(return_type, interface_handling);
2090     break;
2091   case T_VOID:
2092     break;
2093   default:
2094     ShouldNotReachHere();
2095   }
2096   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2097 }
2098 
2099 // Make a TypeTuple from the domain of a method signature
2100 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig, InterfaceHandling interface_handling) {
2101   uint arg_cnt = sig->size();








2102 
2103   uint pos = TypeFunc::Parms;
2104   const Type **field_array;
2105   if (recv != nullptr) {
2106     arg_cnt++;
2107     field_array = fields(arg_cnt);
2108     // Use get_const_type here because it respects UseUniqueSubclasses:
2109     field_array[pos++] = get_const_type(recv, interface_handling)->join_speculative(TypePtr::NOTNULL);
2110   } else {
2111     field_array = fields(arg_cnt);
2112   }
2113 
2114   int i = 0;
2115   while (pos < TypeFunc::Parms + arg_cnt) {
2116     ciType* type = sig->type_at(i);

2117 
2118     switch (type->basic_type()) {
2119     case T_LONG:
2120       field_array[pos++] = TypeLong::LONG;
2121       field_array[pos++] = Type::HALF;
2122       break;
2123     case T_DOUBLE:
2124       field_array[pos++] = Type::DOUBLE;
2125       field_array[pos++] = Type::HALF;
2126       break;
2127     case T_OBJECT:








2128     case T_ARRAY:
2129     case T_FLOAT:
2130     case T_INT:
2131       field_array[pos++] = get_const_type(type, interface_handling);
2132       break;
2133     case T_BOOLEAN:
2134     case T_CHAR:
2135     case T_BYTE:
2136     case T_SHORT:
2137       field_array[pos++] = TypeInt::INT;
2138       break;
2139     default:
2140       ShouldNotReachHere();
2141     }
2142     i++;
2143   }

2144 
2145   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2146 }
2147 
2148 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
2149   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
2150 }
2151 
2152 //------------------------------fields-----------------------------------------
2153 // Subroutine call type with space allocated for argument types
2154 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
2155 const Type **TypeTuple::fields( uint arg_cnt ) {
2156   const Type **flds = (const Type **)(Compile::current()->type_arena()->AmallocWords((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
2157   flds[TypeFunc::Control  ] = Type::CONTROL;
2158   flds[TypeFunc::I_O      ] = Type::ABIO;
2159   flds[TypeFunc::Memory   ] = Type::MEMORY;
2160   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
2161   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
2162 
2163   return flds;

2258     if (_fields[i]->empty())  return true;
2259   }
2260   return false;
2261 }
2262 
2263 //=============================================================================
2264 // Convenience common pre-built types.
2265 
2266 inline const TypeInt* normalize_array_size(const TypeInt* size) {
2267   // Certain normalizations keep us sane when comparing types.
2268   // We do not want arrayOop variables to differ only by the wideness
2269   // of their index types.  Pick minimum wideness, since that is the
2270   // forced wideness of small ranges anyway.
2271   if (size->_widen != Type::WidenMin)
2272     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
2273   else
2274     return size;
2275 }
2276 
2277 //------------------------------make-------------------------------------------
2278 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {

2279   if (UseCompressedOops && elem->isa_oopptr()) {
2280     elem = elem->make_narrowoop();
2281   }
2282   size = normalize_array_size(size);
2283   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
2284 }
2285 
2286 //------------------------------meet-------------------------------------------
2287 // Compute the MEET of two types.  It returns a new Type object.
2288 const Type *TypeAry::xmeet( const Type *t ) const {
2289   // Perform a fast test for common case; meeting the same types together.
2290   if( this == t ) return this;  // Meeting same type-rep?
2291 
2292   // Current "this->_base" is Ary
2293   switch (t->base()) {          // switch on original type
2294 
2295   case Bottom:                  // Ye Olde Default
2296     return t;
2297 
2298   default:                      // All else is a mistake
2299     typerr(t);
2300 
2301   case Array: {                 // Meeting 2 arrays?
2302     const TypeAry* a = t->is_ary();
2303     const Type* size = _size->xmeet(a->_size);
2304     const TypeInt* isize = size->isa_int();
2305     if (isize == nullptr) {
2306       assert(size == Type::TOP || size == Type::BOTTOM, "");
2307       return size;
2308     }
2309     return TypeAry::make(_elem->meet_speculative(a->_elem),
2310                          isize, _stable && a->_stable);




2311   }
2312   case Top:
2313     break;
2314   }
2315   return this;                  // Return the double constant
2316 }
2317 
2318 //------------------------------xdual------------------------------------------
2319 // Dual: compute field-by-field dual
2320 const Type *TypeAry::xdual() const {
2321   const TypeInt* size_dual = _size->dual()->is_int();
2322   size_dual = normalize_array_size(size_dual);
2323   return new TypeAry(_elem->dual(), size_dual, !_stable);
2324 }
2325 
2326 //------------------------------eq---------------------------------------------
2327 // Structural equality check for Type representations
2328 bool TypeAry::eq( const Type *t ) const {
2329   const TypeAry *a = (const TypeAry*)t;
2330   return _elem == a->_elem &&
2331     _stable == a->_stable &&
2332     _size == a->_size;





2333 }
2334 
2335 //------------------------------hash-------------------------------------------
2336 // Type-specific hashing function.
2337 uint TypeAry::hash(void) const {
2338   return (uint)(uintptr_t)_elem + (uint)(uintptr_t)_size + (uint)(_stable ? 43 : 0);

2339 }
2340 
2341 /**
2342  * Return same type without a speculative part in the element
2343  */
2344 const TypeAry* TypeAry::remove_speculative() const {
2345   return make(_elem->remove_speculative(), _size, _stable);
2346 }
2347 
2348 /**
2349  * Return same type with cleaned up speculative part of element
2350  */
2351 const Type* TypeAry::cleanup_speculative() const {
2352   return make(_elem->cleanup_speculative(), _size, _stable);
2353 }
2354 
2355 /**
2356  * Return same type but with a different inline depth (used for speculation)
2357  *
2358  * @param depth  depth to meet with
2359  */
2360 const TypePtr* TypePtr::with_inline_depth(int depth) const {
2361   if (!UseInlineDepthForSpeculativeTypes) {
2362     return this;
2363   }
2364   return make(AnyPtr, _ptr, _offset, _speculative, depth);
2365 }
2366 
2367 //------------------------------dump2------------------------------------------
2368 #ifndef PRODUCT
2369 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2370   if (_stable)  st->print("stable:");






2371   _elem->dump2(d, depth, st);
2372   st->print("[");
2373   _size->dump2(d, depth, st);
2374   st->print("]");
2375 }
2376 #endif
2377 
2378 //------------------------------singleton--------------------------------------
2379 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2380 // constants (Ldi nodes).  Singletons are integer, float or double constants
2381 // or a single symbol.
2382 bool TypeAry::singleton(void) const {
2383   return false;                 // Never a singleton
2384 }
2385 
2386 bool TypeAry::empty(void) const {
2387   return _elem->empty() || _size->empty();
2388 }
2389 
2390 //--------------------------ary_must_be_exact----------------------------------
2391 bool TypeAry::ary_must_be_exact() const {
2392   // This logic looks at the element type of an array, and returns true
2393   // if the element type is either a primitive or a final instance class.
2394   // In such cases, an array built on this ary must have no subclasses.
2395   if (_elem == BOTTOM)      return false;  // general array not exact
2396   if (_elem == TOP   )      return false;  // inverted general array not exact
2397   const TypeOopPtr*  toop = nullptr;
2398   if (UseCompressedOops && _elem->isa_narrowoop()) {
2399     toop = _elem->make_ptr()->isa_oopptr();
2400   } else {
2401     toop = _elem->isa_oopptr();
2402   }
2403   if (!toop)                return true;   // a primitive type, like int
2404   if (!toop->is_loaded())   return false;  // unloaded class
2405   const TypeInstPtr* tinst;
2406   if (_elem->isa_narrowoop())
2407     tinst = _elem->make_ptr()->isa_instptr();
2408   else
2409     tinst = _elem->isa_instptr();
2410   if (tinst)
2411     return tinst->instance_klass()->is_final();











2412   const TypeAryPtr*  tap;
2413   if (_elem->isa_narrowoop())
2414     tap = _elem->make_ptr()->isa_aryptr();
2415   else
2416     tap = _elem->isa_aryptr();
2417   if (tap)
2418     return tap->ary()->ary_must_be_exact();
2419   return false;
2420 }
2421 
2422 //==============================TypeVect=======================================
2423 // Convenience common pre-built types.
2424 const TypeVect* TypeVect::VECTA = nullptr; // vector length agnostic
2425 const TypeVect* TypeVect::VECTS = nullptr; //  32-bit vectors
2426 const TypeVect* TypeVect::VECTD = nullptr; //  64-bit vectors
2427 const TypeVect* TypeVect::VECTX = nullptr; // 128-bit vectors
2428 const TypeVect* TypeVect::VECTY = nullptr; // 256-bit vectors
2429 const TypeVect* TypeVect::VECTZ = nullptr; // 512-bit vectors
2430 const TypeVect* TypeVect::VECTMASK = nullptr; // predicate/mask vector
2431 

2572 
2573 //=============================================================================
2574 // Convenience common pre-built types.
2575 const TypePtr *TypePtr::NULL_PTR;
2576 const TypePtr *TypePtr::NOTNULL;
2577 const TypePtr *TypePtr::BOTTOM;
2578 
2579 //------------------------------meet-------------------------------------------
2580 // Meet over the PTR enum
2581 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2582   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2583   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2584   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2585   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2586   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2587   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2588   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2589 };
2590 
2591 //------------------------------make-------------------------------------------
2592 const TypePtr *TypePtr::make(TYPES t, enum PTR ptr, int offset, const TypePtr* speculative, int inline_depth) {
2593   return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2594 }
2595 
2596 //------------------------------cast_to_ptr_type-------------------------------
2597 const TypePtr* TypePtr::cast_to_ptr_type(PTR ptr) const {
2598   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2599   if( ptr == _ptr ) return this;
2600   return make(_base, ptr, _offset, _speculative, _inline_depth);
2601 }
2602 
2603 //------------------------------get_con----------------------------------------
2604 intptr_t TypePtr::get_con() const {
2605   assert( _ptr == Null, "" );
2606   return _offset;
2607 }
2608 
2609 //------------------------------meet-------------------------------------------
2610 // Compute the MEET of two types.  It returns a new Type object.
2611 const Type *TypePtr::xmeet(const Type *t) const {
2612   const Type* res = xmeet_helper(t);
2613   if (res->isa_ptr() == nullptr) {
2614     return res;
2615   }
2616 
2617   const TypePtr* res_ptr = res->is_ptr();
2618   if (res_ptr->speculative() != nullptr) {
2619     // type->speculative() is null means that speculation is no better
2620     // than type, i.e. type->speculative() == type. So there are 2
2621     // ways to represent the fact that we have no useful speculative
2622     // data and we should use a single one to be able to test for
2623     // equality between types. Check whether type->speculative() ==
2624     // type and set speculative to null if it is the case.
2625     if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2626       return res_ptr->remove_speculative();

2660     int depth = meet_inline_depth(tp->inline_depth());
2661     return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2662   }
2663   case RawPtr:                  // For these, flip the call around to cut down
2664   case OopPtr:
2665   case InstPtr:                 // on the cases I have to handle.
2666   case AryPtr:
2667   case MetadataPtr:
2668   case KlassPtr:
2669   case InstKlassPtr:
2670   case AryKlassPtr:
2671     return t->xmeet(this);      // Call in reverse direction
2672   default:                      // All else is a mistake
2673     typerr(t);
2674 
2675   }
2676   return this;
2677 }
2678 
2679 //------------------------------meet_offset------------------------------------
2680 int TypePtr::meet_offset( int offset ) const {
2681   // Either is 'TOP' offset?  Return the other offset!
2682   if( _offset == OffsetTop ) return offset;
2683   if( offset == OffsetTop ) return _offset;
2684   // If either is different, return 'BOTTOM' offset
2685   if( _offset != offset ) return OffsetBot;
2686   return _offset;
2687 }
2688 
2689 //------------------------------dual_offset------------------------------------
2690 int TypePtr::dual_offset( ) const {
2691   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
2692   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
2693   return _offset;               // Map everything else into self
2694 }
2695 
2696 //------------------------------xdual------------------------------------------
2697 // Dual: compute field-by-field dual
2698 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2699   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2700 };












2701 const Type *TypePtr::xdual() const {
2702   return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2703 }
2704 
2705 //------------------------------xadd_offset------------------------------------
2706 int TypePtr::xadd_offset( intptr_t offset ) const {
2707   // Adding to 'TOP' offset?  Return 'TOP'!
2708   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
2709   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
2710   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
2711   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
2712   offset += (intptr_t)_offset;
2713   if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
2714 
2715   // assert( _offset >= 0 && _offset+offset >= 0, "" );
2716   // It is possible to construct a negative offset during PhaseCCP
2717 
2718   return (int)offset;        // Sum valid offsets
2719 }
2720 
2721 //------------------------------add_offset-------------------------------------
2722 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2723   return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2724 }
2725 
2726 const TypePtr *TypePtr::with_offset(intptr_t offset) const {
2727   return make(AnyPtr, _ptr, offset, _speculative, _inline_depth);
2728 }
2729 
2730 //------------------------------eq---------------------------------------------
2731 // Structural equality check for Type representations
2732 bool TypePtr::eq( const Type *t ) const {
2733   const TypePtr *a = (const TypePtr*)t;
2734   return _ptr == a->ptr() && _offset == a->offset() && eq_speculative(a) && _inline_depth == a->_inline_depth;
2735 }
2736 
2737 //------------------------------hash-------------------------------------------
2738 // Type-specific hashing function.
2739 uint TypePtr::hash(void) const {
2740   return (uint)_ptr + (uint)_offset + (uint)hash_speculative() + (uint)_inline_depth;
2741 }
2742 
2743 /**
2744  * Return same type without a speculative part
2745  */
2746 const TypePtr* TypePtr::remove_speculative() const {
2747   if (_speculative == nullptr) {
2748     return this;
2749   }
2750   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2751   return make(AnyPtr, _ptr, _offset, nullptr, _inline_depth);
2752 }
2753 
2754 /**
2755  * Return same type but drop speculative part if we know we won't use
2756  * it
2757  */
2758 const Type* TypePtr::cleanup_speculative() const {
2759   if (speculative() == nullptr) {
2760     return this;

2977     return false;
2978   }
2979   // We already know the speculative type cannot be null
2980   if (!speculative_maybe_null()) {
2981     return false;
2982   }
2983   // We already know this is always null
2984   if (this == TypePtr::NULL_PTR) {
2985     return false;
2986   }
2987   // We already know the speculative type is always null
2988   if (speculative_always_null()) {
2989     return false;
2990   }
2991   if (ptr_kind == ProfileAlwaysNull && speculative() != nullptr && speculative()->isa_oopptr()) {
2992     return false;
2993   }
2994   return true;
2995 }
2996 

































2997 //------------------------------dump2------------------------------------------
2998 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
2999   "TopPTR","AnyNull","Constant","null","NotNull","BotPTR"
3000 };
3001 
3002 #ifndef PRODUCT
3003 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3004   st->print("ptr:%s", ptr_msg[_ptr]);
3005   dump_offset(st);
3006   dump_inline_depth(st);
3007   dump_speculative(st);
3008 }
3009 
3010 void TypePtr::dump_offset(outputStream* st) const {
3011   if (_offset == OffsetBot) {
3012     st->print("+bot");
3013   } else if (_offset == OffsetTop) {
3014     st->print("+top");
3015   } else {
3016     st->print("+%d", _offset);
3017   }
3018 }
3019 
3020 /**
3021  *dump the speculative part of the type
3022  */
3023 void TypePtr::dump_speculative(outputStream *st) const {
3024   if (_speculative != nullptr) {
3025     st->print(" (speculative=");
3026     _speculative->dump_on(st);
3027     st->print(")");
3028   }
3029 }
3030 
3031 /**
3032  *dump the inline depth of the type
3033  */
3034 void TypePtr::dump_inline_depth(outputStream *st) const {
3035   if (_inline_depth != InlineDepthBottom) {
3036     if (_inline_depth == InlineDepthTop) {
3037       st->print(" (inline_depth=InlineDepthTop)");
3038     } else {
3039       st->print(" (inline_depth=%d)", _inline_depth);
3040     }
3041   }
3042 }
















3043 #endif
3044 
3045 //------------------------------singleton--------------------------------------
3046 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3047 // constants
3048 bool TypePtr::singleton(void) const {
3049   // TopPTR, Null, AnyNull, Constant are all singletons
3050   return (_offset != OffsetBot) && !below_centerline(_ptr);
3051 }
3052 
3053 bool TypePtr::empty(void) const {
3054   return (_offset == OffsetTop) || above_centerline(_ptr);
3055 }
3056 
3057 //=============================================================================
3058 // Convenience common pre-built types.
3059 const TypeRawPtr *TypeRawPtr::BOTTOM;
3060 const TypeRawPtr *TypeRawPtr::NOTNULL;
3061 
3062 //------------------------------make-------------------------------------------
3063 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
3064   assert( ptr != Constant, "what is the constant?" );
3065   assert( ptr != Null, "Use TypePtr for null" );
3066   return (TypeRawPtr*)(new TypeRawPtr(ptr,nullptr))->hashcons();
3067 }
3068 
3069 const TypeRawPtr *TypeRawPtr::make(address bits) {
3070   assert(bits != nullptr, "Use TypePtr for null");
3071   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
3072 }
3073 
3074 //------------------------------cast_to_ptr_type-------------------------------

3442 #endif
3443 
3444 // Can't be implemented because there's no way to know if the type is above or below the center line.
3445 const Type* TypeInterfaces::xmeet(const Type* t) const {
3446   ShouldNotReachHere();
3447   return Type::xmeet(t);
3448 }
3449 
3450 bool TypeInterfaces::singleton(void) const {
3451   ShouldNotReachHere();
3452   return Type::singleton();
3453 }
3454 
3455 bool TypeInterfaces::has_non_array_interface() const {
3456   assert(TypeAryPtr::_array_interfaces != nullptr, "How come Type::Initialize_shared wasn't called yet?");
3457 
3458   return !TypeAryPtr::_array_interfaces->contains(this);
3459 }
3460 
3461 //------------------------------TypeOopPtr-------------------------------------
3462 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int offset,
3463                        int instance_id, const TypePtr* speculative, int inline_depth)
3464   : TypePtr(t, ptr, offset, speculative, inline_depth),
3465     _const_oop(o), _klass(k),
3466     _interfaces(interfaces),
3467     _klass_is_exact(xk),
3468     _is_ptr_to_narrowoop(false),
3469     _is_ptr_to_narrowklass(false),
3470     _is_ptr_to_boxed_value(false),

3471     _instance_id(instance_id) {
3472 #ifdef ASSERT
3473   if (klass() != nullptr && klass()->is_loaded()) {
3474     interfaces->verify_is_loaded();
3475   }
3476 #endif
3477   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
3478       (offset > 0) && xk && (k != nullptr) && k->is_instance_klass()) {
3479     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);

3480   }









3481 #ifdef _LP64
3482   if (_offset > 0 || _offset == Type::OffsetTop || _offset == Type::OffsetBot) {
3483     if (_offset == oopDesc::klass_offset_in_bytes()) {
3484       _is_ptr_to_narrowklass = UseCompressedClassPointers;
3485     } else if (klass() == nullptr) {
3486       // Array with unknown body type
3487       assert(this->isa_aryptr(), "only arrays without klass");
3488       _is_ptr_to_narrowoop = UseCompressedOops;
3489     } else if (this->isa_aryptr()) {
3490       _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
3491                              _offset != arrayOopDesc::length_offset_in_bytes());














3492     } else if (klass()->is_instance_klass()) {
3493       ciInstanceKlass* ik = klass()->as_instance_klass();
3494       if (this->isa_klassptr()) {
3495         // Perm objects don't use compressed references
3496       } else if (_offset == OffsetBot || _offset == OffsetTop) {
3497         // unsafe access
3498         _is_ptr_to_narrowoop = UseCompressedOops;
3499       } else {
3500         assert(this->isa_instptr(), "must be an instance ptr.");
3501 
3502         if (klass() == ciEnv::current()->Class_klass() &&
3503             (_offset == java_lang_Class::klass_offset() ||
3504              _offset == java_lang_Class::array_klass_offset())) {
3505           // Special hidden fields from the Class.
3506           assert(this->isa_instptr(), "must be an instance ptr.");
3507           _is_ptr_to_narrowoop = false;
3508         } else if (klass() == ciEnv::current()->Class_klass() &&
3509                    _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
3510           // Static fields
3511           BasicType basic_elem_type = T_ILLEGAL;
3512           if (const_oop() != nullptr) {
3513             ciInstanceKlass* k = const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
3514             basic_elem_type = k->get_field_type_by_offset(_offset, true);
3515           }
3516           if (basic_elem_type != T_ILLEGAL) {
3517             _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type);
3518           } else {
3519             // unsafe access
3520             _is_ptr_to_narrowoop = UseCompressedOops;
3521           }
3522         } else {
3523           // Instance fields which contains a compressed oop references.
3524           BasicType basic_elem_type = ik->get_field_type_by_offset(_offset, false);

3525           if (basic_elem_type != T_ILLEGAL) {
3526             _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type);
3527           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
3528             // Compile::find_alias_type() cast exactness on all types to verify
3529             // that it does not affect alias type.
3530             _is_ptr_to_narrowoop = UseCompressedOops;
3531           } else {
3532             // Type for the copy start in LibraryCallKit::inline_native_clone().
3533             _is_ptr_to_narrowoop = UseCompressedOops;
3534           }
3535         }
3536       }
3537     }
3538   }
3539 #endif
3540 }
3541 
3542 //------------------------------make-------------------------------------------
3543 const TypeOopPtr *TypeOopPtr::make(PTR ptr, int offset, int instance_id,
3544                                      const TypePtr* speculative, int inline_depth) {
3545   assert(ptr != Constant, "no constant generic pointers");
3546   ciKlass*  k = Compile::current()->env()->Object_klass();
3547   bool      xk = false;
3548   ciObject* o = nullptr;
3549   const TypeInterfaces* interfaces = TypeInterfaces::make();
3550   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, interfaces, xk, o, offset, instance_id, speculative, inline_depth))->hashcons();
3551 }
3552 
3553 
3554 //------------------------------cast_to_ptr_type-------------------------------
3555 const TypeOopPtr* TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
3556   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
3557   if( ptr == _ptr ) return this;
3558   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
3559 }
3560 
3561 //-----------------------------cast_to_instance_id----------------------------
3562 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
3563   // There are no instances of a general oop.
3564   // Return self unchanged.
3565   return this;
3566 }
3567 
3568 //-----------------------------cast_to_exactness-------------------------------
3569 const TypeOopPtr* TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
3570   // There is no such thing as an exact general oop.
3571   // Return self unchanged.
3572   return this;
3573 }
3574 
3575 
3576 //------------------------------as_klass_type----------------------------------
3577 // Return the klass type corresponding to this instance or array type.
3578 // It is the type that is loaded from an object of this type.
3579 const TypeKlassPtr* TypeOopPtr::as_klass_type(bool try_for_exact) const {
3580   ShouldNotReachHere();
3581   return nullptr;
3582 }
3583 
3584 //------------------------------meet-------------------------------------------
3585 // Compute the MEET of two types.  It returns a new Type object.
3586 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
3587   // Perform a fast test for common case; meeting the same types together.
3588   if( this == t ) return this;  // Meeting same type-rep?
3589 
3590   // Current "this->_base" is OopPtr
3591   switch (t->base()) {          // switch on original type
3592 
3593   case Int:                     // Mixing ints & oops happens when javac
3594   case Long:                    // reuses local variables
3595   case HalfFloatTop:

3604   case NarrowOop:
3605   case NarrowKlass:
3606   case Bottom:                  // Ye Olde Default
3607     return Type::BOTTOM;
3608   case Top:
3609     return this;
3610 
3611   default:                      // All else is a mistake
3612     typerr(t);
3613 
3614   case RawPtr:
3615   case MetadataPtr:
3616   case KlassPtr:
3617   case InstKlassPtr:
3618   case AryKlassPtr:
3619     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3620 
3621   case AnyPtr: {
3622     // Found an AnyPtr type vs self-OopPtr type
3623     const TypePtr *tp = t->is_ptr();
3624     int offset = meet_offset(tp->offset());
3625     PTR ptr = meet_ptr(tp->ptr());
3626     const TypePtr* speculative = xmeet_speculative(tp);
3627     int depth = meet_inline_depth(tp->inline_depth());
3628     switch (tp->ptr()) {
3629     case Null:
3630       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3631       // else fall through:
3632     case TopPTR:
3633     case AnyNull: {
3634       int instance_id = meet_instance_id(InstanceTop);
3635       return make(ptr, offset, instance_id, speculative, depth);
3636     }
3637     case BotPTR:
3638     case NotNull:
3639       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3640     default: typerr(t);
3641     }
3642   }
3643 
3644   case OopPtr: {                 // Meeting to other OopPtrs

3646     int instance_id = meet_instance_id(tp->instance_id());
3647     const TypePtr* speculative = xmeet_speculative(tp);
3648     int depth = meet_inline_depth(tp->inline_depth());
3649     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
3650   }
3651 
3652   case InstPtr:                  // For these, flip the call around to cut down
3653   case AryPtr:
3654     return t->xmeet(this);      // Call in reverse direction
3655 
3656   } // End of switch
3657   return this;                  // Return the double constant
3658 }
3659 
3660 
3661 //------------------------------xdual------------------------------------------
3662 // Dual of a pure heap pointer.  No relevant klass or oop information.
3663 const Type *TypeOopPtr::xdual() const {
3664   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
3665   assert(const_oop() == nullptr,             "no constants here");
3666   return new TypeOopPtr(_base, dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
3667 }
3668 
3669 //--------------------------make_from_klass_common-----------------------------
3670 // Computes the element-type given a klass.
3671 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact, InterfaceHandling interface_handling) {
3672   if (klass->is_instance_klass()) {
3673     Compile* C = Compile::current();
3674     Dependencies* deps = C->dependencies();
3675     assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
3676     // Element is an instance
3677     bool klass_is_exact = false;

3678     if (klass->is_loaded()) {
3679       // Try to set klass_is_exact.
3680       ciInstanceKlass* ik = klass->as_instance_klass();
3681       klass_is_exact = ik->is_final();
3682       if (!klass_is_exact && klass_change
3683           && deps != nullptr && UseUniqueSubclasses) {
3684         ciInstanceKlass* sub = ik->unique_concrete_subklass();
3685         if (sub != nullptr) {
3686           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3687           klass = ik = sub;
3688           klass_is_exact = sub->is_final();
3689         }
3690       }
3691       if (!klass_is_exact && try_for_exact && deps != nullptr &&
3692           !ik->is_interface() && !ik->has_subklass()) {
3693         // Add a dependence; if concrete subclass added we need to recompile
3694         deps->assert_leaf_type(ik);
3695         klass_is_exact = true;
3696       }
3697     }

3698     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
3699     return TypeInstPtr::make(TypePtr::BotPTR, klass, interfaces, klass_is_exact, nullptr, 0);
3700   } else if (klass->is_obj_array_klass()) {
3701     // Element is an object array. Recursively call ourself.
3702     ciKlass* eklass = klass->as_obj_array_klass()->element_klass();
3703     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(eklass, false, try_for_exact, interface_handling);
3704     bool xk = etype->klass_is_exact();
3705     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);































3706     // We used to pass NotNull in here, asserting that the sub-arrays
3707     // are all not-null.  This is not true in generally, as code can
3708     // slam nulls down in the subarrays.
3709     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, nullptr, xk, 0);
3710     return arr;
3711   } else if (klass->is_type_array_klass()) {
3712     // Element is an typeArray
3713     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3714     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);

3715     // We used to pass NotNull in here, asserting that the array pointer
3716     // is not-null. That was not true in general.
3717     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
3718     return arr;
3719   } else {
3720     ShouldNotReachHere();
3721     return nullptr;
3722   }
3723 }
3724 
3725 //------------------------------make_from_constant-----------------------------
3726 // Make a java pointer from an oop constant
3727 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
3728   assert(!o->is_null_object(), "null object not yet handled here.");
3729 
3730   const bool make_constant = require_constant || o->should_be_constant();
3731 
3732   ciKlass* klass = o->klass();
3733   if (klass->is_instance_klass()) {
3734     // Element is an instance
3735     if (make_constant) {
3736       return TypeInstPtr::make(o);
3737     } else {
3738       return TypeInstPtr::make(TypePtr::NotNull, klass, true, nullptr, 0);
3739     }
3740   } else if (klass->is_obj_array_klass()) {
3741     // Element is an object array. Recursively call ourself.
3742     const TypeOopPtr *etype =
3743       TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass(), trust_interfaces);
3744     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));






3745     // We used to pass NotNull in here, asserting that the sub-arrays
3746     // are all not-null.  This is not true in generally, as code can
3747     // slam nulls down in the subarrays.
3748     if (make_constant) {
3749       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3750     } else {
3751       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3752     }
3753   } else if (klass->is_type_array_klass()) {
3754     // Element is an typeArray
3755     const Type* etype =
3756       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3757     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3758     // We used to pass NotNull in here, asserting that the array pointer
3759     // is not-null. That was not true in general.
3760     if (make_constant) {
3761       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3762     } else {
3763       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3764     }
3765   }
3766 
3767   fatal("unhandled object type");
3768   return nullptr;
3769 }
3770 
3771 //------------------------------get_con----------------------------------------
3772 intptr_t TypeOopPtr::get_con() const {
3773   assert( _ptr == Null || _ptr == Constant, "" );
3774   assert( _offset >= 0, "" );
3775 
3776   if (_offset != 0) {
3777     // After being ported to the compiler interface, the compiler no longer
3778     // directly manipulates the addresses of oops.  Rather, it only has a pointer
3779     // to a handle at compile time.  This handle is embedded in the generated
3780     // code and dereferenced at the time the nmethod is made.  Until that time,
3781     // it is not reasonable to do arithmetic with the addresses of oops (we don't
3782     // have access to the addresses!).  This does not seem to currently happen,
3783     // but this assertion here is to help prevent its occurrence.
3784     tty->print_cr("Found oop constant with non-zero offset");
3785     ShouldNotReachHere();
3786   }
3787 
3788   return (intptr_t)const_oop()->constant_encoding();
3789 }
3790 
3791 
3792 //-----------------------------filter------------------------------------------
3793 // Do not allow interface-vs.-noninterface joins to collapse to top.
3794 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
3795 
3796   const Type* ft = join_helper(kills, include_speculative);

3842   dump_speculative(st);
3843 }
3844 
3845 void TypeOopPtr::dump_instance_id(outputStream* st) const {
3846   if (_instance_id == InstanceTop) {
3847     st->print(",iid=top");
3848   } else if (_instance_id == InstanceBot) {
3849     st->print(",iid=bot");
3850   } else {
3851     st->print(",iid=%d", _instance_id);
3852   }
3853 }
3854 #endif
3855 
3856 //------------------------------singleton--------------------------------------
3857 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3858 // constants
3859 bool TypeOopPtr::singleton(void) const {
3860   // detune optimizer to not generate constant oop + constant offset as a constant!
3861   // TopPTR, Null, AnyNull, Constant are all singletons
3862   return (_offset == 0) && !below_centerline(_ptr);
3863 }
3864 
3865 //------------------------------add_offset-------------------------------------
3866 const TypePtr* TypeOopPtr::add_offset(intptr_t offset) const {
3867   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
3868 }
3869 
3870 const TypeOopPtr* TypeOopPtr::with_offset(intptr_t offset) const {
3871   return make(_ptr, offset, _instance_id, with_offset_speculative(offset), _inline_depth);
3872 }
3873 
3874 /**
3875  * Return same type without a speculative part
3876  */
3877 const TypeOopPtr* TypeOopPtr::remove_speculative() const {
3878   if (_speculative == nullptr) {
3879     return this;
3880   }
3881   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3882   return make(_ptr, _offset, _instance_id, nullptr, _inline_depth);
3883 }
3884 
3885 /**
3886  * Return same type but drop speculative part if we know we won't use
3887  * it
3888  */
3889 const Type* TypeOopPtr::cleanup_speculative() const {
3890   // If the klass is exact and the ptr is not null then there's
3891   // nothing that the speculative type can help us with

3964 const TypeInstPtr *TypeInstPtr::BOTTOM;
3965 const TypeInstPtr *TypeInstPtr::MIRROR;
3966 const TypeInstPtr *TypeInstPtr::MARK;
3967 const TypeInstPtr *TypeInstPtr::KLASS;
3968 
3969 // Is there a single ciKlass* that can represent that type?
3970 ciKlass* TypeInstPtr::exact_klass_helper() const {
3971   if (_interfaces->empty()) {
3972     return _klass;
3973   }
3974   if (_klass != ciEnv::current()->Object_klass()) {
3975     if (_interfaces->eq(_klass->as_instance_klass())) {
3976       return _klass;
3977     }
3978     return nullptr;
3979   }
3980   return _interfaces->exact_klass();
3981 }
3982 
3983 //------------------------------TypeInstPtr-------------------------------------
3984 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int off,
3985                          int instance_id, const TypePtr* speculative, int inline_depth)
3986   : TypeOopPtr(InstPtr, ptr, k, interfaces, xk, o, off, instance_id, speculative, inline_depth) {



3987   assert(k == nullptr || !k->is_loaded() || !k->is_interface(), "no interface here");
3988   assert(k != nullptr &&
3989          (k->is_loaded() || o == nullptr),
3990          "cannot have constants with non-loaded klass");
3991 };
3992 
3993 //------------------------------make-------------------------------------------
3994 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
3995                                      ciKlass* k,
3996                                      const TypeInterfaces* interfaces,
3997                                      bool xk,
3998                                      ciObject* o,
3999                                      int offset,

4000                                      int instance_id,
4001                                      const TypePtr* speculative,
4002                                      int inline_depth) {
4003   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
4004   // Either const_oop() is null or else ptr is Constant
4005   assert( (!o && ptr != Constant) || (o && ptr == Constant),
4006           "constant pointers must have a value supplied" );
4007   // Ptr is never Null
4008   assert( ptr != Null, "null pointers are not typed" );
4009 
4010   assert(instance_id <= 0 || xk, "instances are always exactly typed");

4011   if (ptr == Constant) {
4012     // Note:  This case includes meta-object constants, such as methods.
4013     xk = true;
4014   } else if (k->is_loaded()) {
4015     ciInstanceKlass* ik = k->as_instance_klass();
4016     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
4017     assert(!ik->is_interface(), "no interface here");
4018     if (xk && ik->is_interface())  xk = false;  // no exact interface
4019   }
4020 



4021   // Now hash this baby
4022   TypeInstPtr *result =
4023     (TypeInstPtr*)(new TypeInstPtr(ptr, k, interfaces, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
4024 
4025   return result;
4026 }
4027 
4028 const TypeInterfaces* TypePtr::interfaces(ciKlass*& k, bool klass, bool interface, bool array, InterfaceHandling interface_handling) {
4029   if (k->is_instance_klass()) {
4030     if (k->is_loaded()) {
4031       if (k->is_interface() && interface_handling == ignore_interfaces) {
4032         assert(interface, "no interface expected");
4033         k = ciEnv::current()->Object_klass();
4034         const TypeInterfaces* interfaces = TypeInterfaces::make();
4035         return interfaces;
4036       }
4037       GrowableArray<ciInstanceKlass *>* k_interfaces = k->as_instance_klass()->transitive_interfaces();
4038       const TypeInterfaces* interfaces = TypeInterfaces::make(k_interfaces);
4039       if (k->is_interface()) {
4040         assert(interface, "no interface expected");
4041         k = ciEnv::current()->Object_klass();
4042       } else {
4043         assert(klass, "no instance klass expected");

4069   switch (bt) {
4070     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
4071     case T_INT:      return TypeInt::make(constant.as_int());
4072     case T_CHAR:     return TypeInt::make(constant.as_char());
4073     case T_BYTE:     return TypeInt::make(constant.as_byte());
4074     case T_SHORT:    return TypeInt::make(constant.as_short());
4075     case T_FLOAT:    return TypeF::make(constant.as_float());
4076     case T_DOUBLE:   return TypeD::make(constant.as_double());
4077     case T_LONG:     return TypeLong::make(constant.as_long());
4078     default:         break;
4079   }
4080   fatal("Invalid boxed value type '%s'", type2name(bt));
4081   return nullptr;
4082 }
4083 
4084 //------------------------------cast_to_ptr_type-------------------------------
4085 const TypeInstPtr* TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
4086   if( ptr == _ptr ) return this;
4087   // Reconstruct _sig info here since not a problem with later lazy
4088   // construction, _sig will show up on demand.
4089   return make(ptr, klass(), _interfaces, klass_is_exact(), ptr == Constant ? const_oop() : nullptr, _offset, _instance_id, _speculative, _inline_depth);
4090 }
4091 
4092 
4093 //-----------------------------cast_to_exactness-------------------------------
4094 const TypeInstPtr* TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
4095   if( klass_is_exact == _klass_is_exact ) return this;
4096   if (!_klass->is_loaded())  return this;
4097   ciInstanceKlass* ik = _klass->as_instance_klass();
4098   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
4099   assert(!ik->is_interface(), "no interface here");
4100   return make(ptr(), klass(), _interfaces, klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);

4101 }
4102 
4103 //-----------------------------cast_to_instance_id----------------------------
4104 const TypeInstPtr* TypeInstPtr::cast_to_instance_id(int instance_id) const {
4105   if( instance_id == _instance_id ) return this;
4106   return make(_ptr, klass(),  _interfaces, _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
4107 }
4108 
4109 //------------------------------xmeet_unloaded---------------------------------
4110 // Compute the MEET of two InstPtrs when at least one is unloaded.
4111 // Assume classes are different since called after check for same name/class-loader
4112 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst, const TypeInterfaces* interfaces) const {
4113   int off = meet_offset(tinst->offset());
4114   PTR ptr = meet_ptr(tinst->ptr());
4115   int instance_id = meet_instance_id(tinst->instance_id());
4116   const TypePtr* speculative = xmeet_speculative(tinst);
4117   int depth = meet_inline_depth(tinst->inline_depth());
4118 
4119   const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
4120   const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
4121   if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
4122     //
4123     // Meet unloaded class with java/lang/Object
4124     //
4125     // Meet
4126     //          |                     Unloaded Class
4127     //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
4128     //  ===================================================================
4129     //   TOP    | ..........................Unloaded......................|
4130     //  AnyNull |  U-AN    |................Unloaded......................|
4131     // Constant | ... O-NN .................................. |   O-BOT   |
4132     //  NotNull | ... O-NN .................................. |   O-BOT   |
4133     //  BOTTOM  | ........................Object-BOTTOM ..................|
4134     //
4135     assert(loaded->ptr() != TypePtr::Null, "insanity check");
4136     //
4137     if (loaded->ptr() == TypePtr::TopPTR)        { return unloaded->with_speculative(speculative); }
4138     else if (loaded->ptr() == TypePtr::AnyNull)  { return make(ptr, unloaded->klass(), interfaces, false, nullptr, off, instance_id, speculative, depth); }




4139     else if (loaded->ptr() == TypePtr::BotPTR)   { return TypeInstPtr::BOTTOM->with_speculative(speculative); }
4140     else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
4141       if (unloaded->ptr() == TypePtr::BotPTR)    { return TypeInstPtr::BOTTOM->with_speculative(speculative);  }
4142       else                                       { return TypeInstPtr::NOTNULL->with_speculative(speculative); }
4143     }
4144     else if (unloaded->ptr() == TypePtr::TopPTR) { return unloaded->with_speculative(speculative); }
4145 
4146     return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr()->with_speculative(speculative);
4147   }
4148 
4149   // Both are unloaded, not the same class, not Object
4150   // Or meet unloaded with a different loaded class, not java/lang/Object
4151   if (ptr != TypePtr::BotPTR) {
4152     return TypeInstPtr::NOTNULL->with_speculative(speculative);
4153   }
4154   return TypeInstPtr::BOTTOM->with_speculative(speculative);
4155 }
4156 
4157 
4158 //------------------------------meet-------------------------------------------

4182   case Top:
4183     return this;
4184 
4185   default:                      // All else is a mistake
4186     typerr(t);
4187 
4188   case MetadataPtr:
4189   case KlassPtr:
4190   case InstKlassPtr:
4191   case AryKlassPtr:
4192   case RawPtr: return TypePtr::BOTTOM;
4193 
4194   case AryPtr: {                // All arrays inherit from Object class
4195     // Call in reverse direction to avoid duplication
4196     return t->is_aryptr()->xmeet_helper(this);
4197   }
4198 
4199   case OopPtr: {                // Meeting to OopPtrs
4200     // Found a OopPtr type vs self-InstPtr type
4201     const TypeOopPtr *tp = t->is_oopptr();
4202     int offset = meet_offset(tp->offset());
4203     PTR ptr = meet_ptr(tp->ptr());
4204     switch (tp->ptr()) {
4205     case TopPTR:
4206     case AnyNull: {
4207       int instance_id = meet_instance_id(InstanceTop);
4208       const TypePtr* speculative = xmeet_speculative(tp);
4209       int depth = meet_inline_depth(tp->inline_depth());
4210       return make(ptr, klass(), _interfaces, klass_is_exact(),
4211                   (ptr == Constant ? const_oop() : nullptr), offset, instance_id, speculative, depth);
4212     }
4213     case NotNull:
4214     case BotPTR: {
4215       int instance_id = meet_instance_id(tp->instance_id());
4216       const TypePtr* speculative = xmeet_speculative(tp);
4217       int depth = meet_inline_depth(tp->inline_depth());
4218       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4219     }
4220     default: typerr(t);
4221     }
4222   }
4223 
4224   case AnyPtr: {                // Meeting to AnyPtrs
4225     // Found an AnyPtr type vs self-InstPtr type
4226     const TypePtr *tp = t->is_ptr();
4227     int offset = meet_offset(tp->offset());
4228     PTR ptr = meet_ptr(tp->ptr());
4229     int instance_id = meet_instance_id(InstanceTop);
4230     const TypePtr* speculative = xmeet_speculative(tp);
4231     int depth = meet_inline_depth(tp->inline_depth());
4232     switch (tp->ptr()) {
4233     case Null:
4234       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4235       // else fall through to AnyNull
4236     case TopPTR:
4237     case AnyNull: {
4238       return make(ptr, klass(), _interfaces, klass_is_exact(),
4239                   (ptr == Constant ? const_oop() : nullptr), offset, instance_id, speculative, depth);
4240     }
4241     case NotNull:
4242     case BotPTR:
4243       return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
4244     default: typerr(t);
4245     }
4246   }
4247 
4248   /*
4249                  A-top         }
4250                /   |   \       }  Tops
4251            B-top A-any C-top   }
4252               | /  |  \ |      }  Any-nulls
4253            B-any   |   C-any   }
4254               |    |    |
4255            B-con A-con C-con   } constants; not comparable across classes
4256               |    |    |
4257            B-not   |   C-not   }
4258               | \  |  / |      }  not-nulls
4259            B-bot A-not C-bot   }
4260                \   |   /       }  Bottoms
4261                  A-bot         }
4262   */
4263 
4264   case InstPtr: {                // Meeting 2 Oops?
4265     // Found an InstPtr sub-type vs self-InstPtr type
4266     const TypeInstPtr *tinst = t->is_instptr();
4267     int off = meet_offset(tinst->offset());
4268     PTR ptr = meet_ptr(tinst->ptr());
4269     int instance_id = meet_instance_id(tinst->instance_id());
4270     const TypePtr* speculative = xmeet_speculative(tinst);
4271     int depth = meet_inline_depth(tinst->inline_depth());
4272     const TypeInterfaces* interfaces = meet_interfaces(tinst);
4273 
4274     ciKlass* tinst_klass = tinst->klass();
4275     ciKlass* this_klass  = klass();
4276 
4277     ciKlass* res_klass = nullptr;
4278     bool res_xk = false;
4279     const Type* res;
4280     MeetResult kind = meet_instptr(ptr, interfaces, this, tinst, res_klass, res_xk);
4281 
4282     if (kind == UNLOADED) {
4283       // One of these classes has not been loaded
4284       const TypeInstPtr* unloaded_meet = xmeet_unloaded(tinst, interfaces);
4285 #ifndef PRODUCT
4286       if (PrintOpto && Verbose) {
4287         tty->print("meet of unloaded classes resulted in: ");
4288         unloaded_meet->dump();
4289         tty->cr();
4290         tty->print("  this == ");
4291         dump();
4292         tty->cr();
4293         tty->print(" tinst == ");
4294         tinst->dump();
4295         tty->cr();
4296       }
4297 #endif
4298       res = unloaded_meet;
4299     } else {

4300       if (kind == NOT_SUBTYPE && instance_id > 0) {
4301         instance_id = InstanceBot;
4302       } else if (kind == LCA) {
4303         instance_id = InstanceBot;
4304       }
4305       ciObject* o = nullptr;             // Assume not constant when done
4306       ciObject* this_oop = const_oop();
4307       ciObject* tinst_oop = tinst->const_oop();
4308       if (ptr == Constant) {
4309         if (this_oop != nullptr && tinst_oop != nullptr &&
4310             this_oop->equals(tinst_oop))
4311           o = this_oop;
4312         else if (above_centerline(_ptr)) {
4313           assert(!tinst_klass->is_interface(), "");
4314           o = tinst_oop;
4315         } else if (above_centerline(tinst->_ptr)) {
4316           assert(!this_klass->is_interface(), "");
4317           o = this_oop;
4318         } else
4319           ptr = NotNull;
4320       }
4321       res = make(ptr, res_klass, interfaces, res_xk, o, off, instance_id, speculative, depth);
4322     }
4323 
4324     return res;
4325 
4326   } // End of case InstPtr
4327 
4328   } // End of switch
4329   return this;                  // Return the double constant
4330 }
4331 
4332 template<class T> TypePtr::MeetResult TypePtr::meet_instptr(PTR& ptr, const TypeInterfaces*& interfaces, const T* this_type, const T* other_type,
4333                                                             ciKlass*& res_klass, bool& res_xk) {
4334   ciKlass* this_klass = this_type->klass();
4335   ciKlass* other_klass = other_type->klass();

4336   bool this_xk = this_type->klass_is_exact();
4337   bool other_xk = other_type->klass_is_exact();
4338   PTR this_ptr = this_type->ptr();
4339   PTR other_ptr = other_type->ptr();
4340   const TypeInterfaces* this_interfaces = this_type->interfaces();
4341   const TypeInterfaces* other_interfaces = other_type->interfaces();
4342   // Check for easy case; klasses are equal (and perhaps not loaded!)
4343   // If we have constants, then we created oops so classes are loaded
4344   // and we can handle the constants further down.  This case handles
4345   // both-not-loaded or both-loaded classes
4346   if (ptr != Constant && this_klass->equals(other_klass) && this_xk == other_xk) {
4347     res_klass = this_klass;
4348     res_xk = this_xk;
4349     return QUICK;
4350   }
4351 
4352   // Classes require inspection in the Java klass hierarchy.  Must be loaded.
4353   if (!other_klass->is_loaded() || !this_klass->is_loaded()) {
4354     return UNLOADED;
4355   }

4361   // If both are up and they do NOT subtype, "fall hard".
4362   // If both are down and they subtype, take the supertype class.
4363   // If both are down and they do NOT subtype, "fall hard".
4364   // Constants treated as down.
4365 
4366   // Now, reorder the above list; observe that both-down+subtype is also
4367   // "fall hard"; "fall hard" becomes the default case:
4368   // If we split one up & one down AND they subtype, take the down man.
4369   // If both are up and they subtype, take the subtype class.
4370 
4371   // If both are down and they subtype, "fall hard".
4372   // If both are down and they do NOT subtype, "fall hard".
4373   // If both are up and they do NOT subtype, "fall hard".
4374   // If we split one up & one down AND they do NOT subtype, "fall hard".
4375 
4376   // If a proper subtype is exact, and we return it, we return it exactly.
4377   // If a proper supertype is exact, there can be no subtyping relationship!
4378   // If both types are equal to the subtype, exactness is and-ed below the
4379   // centerline and or-ed above it.  (N.B. Constants are always exact.)
4380 
4381   // Check for subtyping:
4382   const T* subtype = nullptr;
4383   bool subtype_exact = false;
4384   if (this_type->is_same_java_type_as(other_type)) {

4385     subtype = this_type;
4386     subtype_exact = below_centerline(ptr) ? (this_xk && other_xk) : (this_xk || other_xk);
4387   } else if (!other_xk && this_type->is_meet_subtype_of(other_type)) {
4388     subtype = this_type;     // Pick subtyping class
4389     subtype_exact = this_xk;
4390   } else if(!this_xk && other_type->is_meet_subtype_of(this_type)) {
4391     subtype = other_type;    // Pick subtyping class
4392     subtype_exact = other_xk;
4393   }
4394 
4395   if (subtype) {
4396     if (above_centerline(ptr)) { // both are up?

4397       this_type = other_type = subtype;
4398       this_xk = other_xk = subtype_exact;
4399     } else if (above_centerline(this_ptr) && !above_centerline(other_ptr)) {
4400       this_type = other_type; // tinst is down; keep down man

4401       this_xk = other_xk;
4402     } else if (above_centerline(other_ptr) && !above_centerline(this_ptr)) {

4403       other_type = this_type; // this is down; keep down man
4404       other_xk = this_xk;
4405     } else {

4406       this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
4407     }
4408   }
4409 
4410   // Check for classes now being equal
4411   if (this_type->is_same_java_type_as(other_type)) {
4412     // If the klasses are equal, the constants may still differ.  Fall to
4413     // NotNull if they do (neither constant is null; that is a special case
4414     // handled elsewhere).
4415     res_klass = this_type->klass();
4416     res_xk = this_xk;
4417     return SUBTYPE;
4418   } // Else classes are not equal
4419 
4420   // Since klasses are different, we require a LCA in the Java
4421   // class hierarchy - which means we have to fall to at least NotNull.
4422   if (ptr == TopPTR || ptr == AnyNull || ptr == Constant) {
4423     ptr = NotNull;
4424   }
4425 
4426   interfaces = this_interfaces->intersection_with(other_interfaces);
4427 
4428   // Now we find the LCA of Java classes
4429   ciKlass* k = this_klass->least_common_ancestor(other_klass);
4430 
4431   res_klass = k;
4432   res_xk = false;
4433 
4434   return LCA;
4435 }
4436 


































4437 //------------------------java_mirror_type--------------------------------------
4438 ciType* TypeInstPtr::java_mirror_type() const {
4439   // must be a singleton type
4440   if( const_oop() == nullptr )  return nullptr;
4441 
4442   // must be of type java.lang.Class
4443   if( klass() != ciEnv::current()->Class_klass() )  return nullptr;
4444 
4445   return const_oop()->as_instance()->java_mirror_type();
4446 }
4447 
4448 
4449 //------------------------------xdual------------------------------------------
4450 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
4451 // inheritance mechanism.
4452 const Type *TypeInstPtr::xdual() const {
4453   return new TypeInstPtr(dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());

4454 }
4455 
4456 //------------------------------eq---------------------------------------------
4457 // Structural equality check for Type representations
4458 bool TypeInstPtr::eq( const Type *t ) const {
4459   const TypeInstPtr *p = t->is_instptr();
4460   return
4461     klass()->equals(p->klass()) &&

4462     _interfaces->eq(p->_interfaces) &&
4463     TypeOopPtr::eq(p);          // Check sub-type stuff
4464 }
4465 
4466 //------------------------------hash-------------------------------------------
4467 // Type-specific hashing function.
4468 uint TypeInstPtr::hash(void) const {
4469   return klass()->hash() + TypeOopPtr::hash() + _interfaces->hash();
4470 }
4471 
4472 bool TypeInstPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4473   return TypePtr::is_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
4474 }
4475 
4476 
4477 bool TypeInstPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const {
4478   return TypePtr::is_same_java_type_as_helper_for_instance(this, other);
4479 }
4480 
4481 bool TypeInstPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4482   return TypePtr::maybe_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
4483 }
4484 
4485 
4486 //------------------------------dump2------------------------------------------
4487 // Dump oop Type
4488 #ifndef PRODUCT
4489 void TypeInstPtr::dump2(Dict &d, uint depth, outputStream* st) const {

4493   _interfaces->dump(st);
4494 
4495   if (_ptr == Constant && (WizardMode || Verbose)) {
4496     ResourceMark rm;
4497     stringStream ss;
4498 
4499     st->print(" ");
4500     const_oop()->print_oop(&ss);
4501     // 'const_oop->print_oop()' may emit newlines('\n') into ss.
4502     // suppress newlines from it so -XX:+Verbose -XX:+PrintIdeal dumps one-liner for each node.
4503     char* buf = ss.as_string(/* c_heap= */false);
4504     StringUtils::replace_no_expand(buf, "\n", "");
4505     st->print_raw(buf);
4506   }
4507 
4508   st->print(":%s", ptr_msg[_ptr]);
4509   if (_klass_is_exact) {
4510     st->print(":exact");
4511   }
4512 


4513   dump_offset(st);
4514   dump_instance_id(st);
4515   dump_inline_depth(st);
4516   dump_speculative(st);

4517 }
4518 #endif
4519 







4520 //------------------------------add_offset-------------------------------------
4521 const TypePtr* TypeInstPtr::add_offset(intptr_t offset) const {
4522   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), xadd_offset(offset),
4523               _instance_id, add_offset_speculative(offset), _inline_depth);
4524 }
4525 
4526 const TypeInstPtr* TypeInstPtr::with_offset(intptr_t offset) const {
4527   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), offset,
4528               _instance_id, with_offset_speculative(offset), _inline_depth);
4529 }
4530 
4531 const TypeInstPtr* TypeInstPtr::remove_speculative() const {
4532   if (_speculative == nullptr) {
4533     return this;
4534   }
4535   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4536   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset,
4537               _instance_id, nullptr, _inline_depth);
4538 }
4539 
4540 const TypeInstPtr* TypeInstPtr::with_speculative(const TypePtr* speculative) const {
4541   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, _instance_id, speculative, _inline_depth);
4542 }
4543 
4544 const TypePtr* TypeInstPtr::with_inline_depth(int depth) const {
4545   if (!UseInlineDepthForSpeculativeTypes) {
4546     return this;
4547   }
4548   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
4549 }
4550 
4551 const TypePtr* TypeInstPtr::with_instance_id(int instance_id) const {
4552   assert(is_known_instance(), "should be known");
4553   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, instance_id, _speculative, _inline_depth);








4554 }
4555 
4556 const TypeKlassPtr* TypeInstPtr::as_klass_type(bool try_for_exact) const {
4557   bool xk = klass_is_exact();
4558   ciInstanceKlass* ik = klass()->as_instance_klass();
4559   if (try_for_exact && !xk && !ik->has_subklass() && !ik->is_final()) {
4560     if (_interfaces->eq(ik)) {
4561       Compile* C = Compile::current();
4562       Dependencies* deps = C->dependencies();
4563       deps->assert_leaf_type(ik);
4564       xk = true;
4565     }
4566   }
4567   return TypeInstKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, klass(), _interfaces, 0);

4568 }
4569 
4570 template <class T1, class T2> bool TypePtr::is_meet_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_xk, bool other_xk) {
4571   static_assert(std::is_base_of<T2, T1>::value, "");
4572 
4573   if (!this_one->is_instance_type(other)) {
4574     return false;
4575   }
4576 
4577   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty()) {
4578     return true;
4579   }
4580 
4581   return this_one->klass()->is_subtype_of(other->klass()) &&
4582          (!this_xk || this_one->_interfaces->contains(other->_interfaces));
4583 }
4584 
4585 
4586 bool TypeInstPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const {
4587   return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk);

4592   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty()) {
4593     return true;
4594   }
4595 
4596   if (this_one->is_instance_type(other)) {
4597     return other->klass() == ciEnv::current()->Object_klass() && this_one->_interfaces->contains(other->_interfaces);
4598   }
4599 
4600   int dummy;
4601   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
4602   if (this_top_or_bottom) {
4603     return false;
4604   }
4605 
4606   const T1* other_ary = this_one->is_array_type(other);
4607   const TypePtr* other_elem = other_ary->elem()->make_ptr();
4608   const TypePtr* this_elem = this_one->elem()->make_ptr();
4609   if (other_elem != nullptr && this_elem != nullptr) {
4610     return this_one->is_reference_type(this_elem)->is_meet_subtype_of_helper(this_one->is_reference_type(other_elem), this_xk, other_xk);
4611   }
4612 
4613   if (other_elem == nullptr && this_elem == nullptr) {
4614     return this_one->klass()->is_subtype_of(other->klass());
4615   }
4616 
4617   return false;
4618 }
4619 
4620 bool TypeAryPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const {
4621   return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk);
4622 }
4623 
4624 bool TypeInstKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const {
4625   return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk);
4626 }
4627 
4628 bool TypeAryKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const {
4629   return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk);
4630 }
4631 
4632 //=============================================================================
4633 // Convenience common pre-built types.
4634 const TypeAryPtr* TypeAryPtr::BOTTOM;
4635 const TypeAryPtr* TypeAryPtr::RANGE;
4636 const TypeAryPtr* TypeAryPtr::OOPS;
4637 const TypeAryPtr* TypeAryPtr::NARROWOOPS;
4638 const TypeAryPtr* TypeAryPtr::BYTES;
4639 const TypeAryPtr* TypeAryPtr::SHORTS;
4640 const TypeAryPtr* TypeAryPtr::CHARS;
4641 const TypeAryPtr* TypeAryPtr::INTS;
4642 const TypeAryPtr* TypeAryPtr::LONGS;
4643 const TypeAryPtr* TypeAryPtr::FLOATS;
4644 const TypeAryPtr* TypeAryPtr::DOUBLES;

4645 
4646 //------------------------------make-------------------------------------------
4647 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset,
4648                                    int instance_id, const TypePtr* speculative, int inline_depth) {
4649   assert(!(k == nullptr && ary->_elem->isa_int()),
4650          "integral arrays must be pre-equipped with a class");
4651   if (!xk)  xk = ary->ary_must_be_exact();
4652   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4653   if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() &&
4654       k->as_obj_array_klass()->base_element_klass()->is_interface()) {
4655     k = nullptr;
4656   }
4657   return (TypeAryPtr*)(new TypeAryPtr(ptr, nullptr, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons();
4658 }
4659 
4660 //------------------------------make-------------------------------------------
4661 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset,
4662                                    int instance_id, const TypePtr* speculative, int inline_depth,
4663                                    bool is_autobox_cache) {
4664   assert(!(k == nullptr && ary->_elem->isa_int()),
4665          "integral arrays must be pre-equipped with a class");
4666   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
4667   if (!xk)  xk = (o != nullptr) || ary->ary_must_be_exact();
4668   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4669   if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() &&
4670       k->as_obj_array_klass()->base_element_klass()->is_interface()) {
4671     k = nullptr;
4672   }
4673   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
4674 }
4675 
4676 //------------------------------cast_to_ptr_type-------------------------------
4677 const TypeAryPtr* TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
4678   if( ptr == _ptr ) return this;
4679   return make(ptr, ptr == Constant ? const_oop() : nullptr, _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4680 }
4681 
4682 
4683 //-----------------------------cast_to_exactness-------------------------------
4684 const TypeAryPtr* TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
4685   if( klass_is_exact == _klass_is_exact ) return this;
4686   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
4687   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
4688 }
4689 
4690 //-----------------------------cast_to_instance_id----------------------------
4691 const TypeAryPtr* TypeAryPtr::cast_to_instance_id(int instance_id) const {
4692   if( instance_id == _instance_id ) return this;
4693   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
4694 }
4695 
4696 
4697 //-----------------------------max_array_length-------------------------------
4698 // A wrapper around arrayOopDesc::max_array_length(etype) with some input normalization.
4699 jint TypeAryPtr::max_array_length(BasicType etype) {
4700   if (!is_java_primitive(etype) && !::is_reference_type(etype)) {
4701     if (etype == T_NARROWOOP) {
4702       etype = T_OBJECT;
4703     } else if (etype == T_ILLEGAL) { // bottom[]
4704       etype = T_BYTE; // will produce conservatively high value
4705     } else {
4706       fatal("not an element type: %s", type2name(etype));
4707     }
4708   }
4709   return arrayOopDesc::max_array_length(etype);
4710 }
4711 
4712 //-----------------------------narrow_size_type-------------------------------
4713 // Narrow the given size type to the index range for the given array base type.

4731     if (size->is_con()) {
4732       lo = hi;
4733     }
4734     chg = true;
4735   }
4736   // Negative length arrays will produce weird intermediate dead fast-path code
4737   if (lo > hi) {
4738     return TypeInt::ZERO;
4739   }
4740   if (!chg) {
4741     return size;
4742   }
4743   return TypeInt::make(lo, hi, Type::WidenMin);
4744 }
4745 
4746 //-------------------------------cast_to_size----------------------------------
4747 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
4748   assert(new_size != nullptr, "");
4749   new_size = narrow_size_type(new_size);
4750   if (new_size == size())  return this;
4751   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
4752   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);

































































































4753 }
4754 
4755 //------------------------------cast_to_stable---------------------------------
4756 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
4757   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
4758     return this;
4759 
4760   const Type* elem = this->elem();
4761   const TypePtr* elem_ptr = elem->make_ptr();
4762 
4763   if (stable_dimension > 1 && elem_ptr != nullptr && elem_ptr->isa_aryptr()) {
4764     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
4765     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
4766   }
4767 
4768   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
4769 
4770   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4771 }
4772 
4773 //-----------------------------stable_dimension--------------------------------
4774 int TypeAryPtr::stable_dimension() const {
4775   if (!is_stable())  return 0;
4776   int dim = 1;
4777   const TypePtr* elem_ptr = elem()->make_ptr();
4778   if (elem_ptr != nullptr && elem_ptr->isa_aryptr())
4779     dim += elem_ptr->is_aryptr()->stable_dimension();
4780   return dim;
4781 }
4782 
4783 //----------------------cast_to_autobox_cache-----------------------------------
4784 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache() const {
4785   if (is_autobox_cache())  return this;
4786   const TypeOopPtr* etype = elem()->make_oopptr();
4787   if (etype == nullptr)  return this;
4788   // The pointers in the autobox arrays are always non-null.
4789   etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4790   const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable());
4791   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth, /*is_autobox_cache=*/true);
4792 }
4793 
4794 //------------------------------eq---------------------------------------------
4795 // Structural equality check for Type representations
4796 bool TypeAryPtr::eq( const Type *t ) const {
4797   const TypeAryPtr *p = t->is_aryptr();
4798   return
4799     _ary == p->_ary &&  // Check array
4800     TypeOopPtr::eq(p);  // Check sub-parts

4801 }
4802 
4803 //------------------------------hash-------------------------------------------
4804 // Type-specific hashing function.
4805 uint TypeAryPtr::hash(void) const {
4806   return (uint)(uintptr_t)_ary + TypeOopPtr::hash();
4807 }
4808 
4809 bool TypeAryPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4810   return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
4811 }
4812 
4813 bool TypeAryPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const {
4814   return TypePtr::is_same_java_type_as_helper_for_array(this, other);
4815 }
4816 
4817 bool TypeAryPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4818   return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
4819 }
4820 //------------------------------meet-------------------------------------------
4821 // Compute the MEET of two types.  It returns a new Type object.
4822 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
4823   // Perform a fast test for common case; meeting the same types together.
4824   if( this == t ) return this;  // Meeting same type-rep?
4825   // Current "this->_base" is Pointer
4826   switch (t->base()) {          // switch on original type

4833   case HalfFloatBot:
4834   case FloatTop:
4835   case FloatCon:
4836   case FloatBot:
4837   case DoubleTop:
4838   case DoubleCon:
4839   case DoubleBot:
4840   case NarrowOop:
4841   case NarrowKlass:
4842   case Bottom:                  // Ye Olde Default
4843     return Type::BOTTOM;
4844   case Top:
4845     return this;
4846 
4847   default:                      // All else is a mistake
4848     typerr(t);
4849 
4850   case OopPtr: {                // Meeting to OopPtrs
4851     // Found a OopPtr type vs self-AryPtr type
4852     const TypeOopPtr *tp = t->is_oopptr();
4853     int offset = meet_offset(tp->offset());
4854     PTR ptr = meet_ptr(tp->ptr());
4855     int depth = meet_inline_depth(tp->inline_depth());
4856     const TypePtr* speculative = xmeet_speculative(tp);
4857     switch (tp->ptr()) {
4858     case TopPTR:
4859     case AnyNull: {
4860       int instance_id = meet_instance_id(InstanceTop);
4861       return make(ptr, (ptr == Constant ? const_oop() : nullptr),
4862                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4863     }
4864     case BotPTR:
4865     case NotNull: {
4866       int instance_id = meet_instance_id(tp->instance_id());
4867       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4868     }
4869     default: ShouldNotReachHere();
4870     }
4871   }
4872 
4873   case AnyPtr: {                // Meeting two AnyPtrs
4874     // Found an AnyPtr type vs self-AryPtr type
4875     const TypePtr *tp = t->is_ptr();
4876     int offset = meet_offset(tp->offset());
4877     PTR ptr = meet_ptr(tp->ptr());
4878     const TypePtr* speculative = xmeet_speculative(tp);
4879     int depth = meet_inline_depth(tp->inline_depth());
4880     switch (tp->ptr()) {
4881     case TopPTR:
4882       return this;
4883     case BotPTR:
4884     case NotNull:
4885       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4886     case Null:
4887       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4888       // else fall through to AnyNull
4889     case AnyNull: {
4890       int instance_id = meet_instance_id(InstanceTop);
4891       return make(ptr, (ptr == Constant ? const_oop() : nullptr),
4892                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4893     }
4894     default: ShouldNotReachHere();
4895     }
4896   }
4897 
4898   case MetadataPtr:
4899   case KlassPtr:
4900   case InstKlassPtr:
4901   case AryKlassPtr:
4902   case RawPtr: return TypePtr::BOTTOM;
4903 
4904   case AryPtr: {                // Meeting 2 references?
4905     const TypeAryPtr *tap = t->is_aryptr();
4906     int off = meet_offset(tap->offset());

4907     const Type* tm = _ary->meet_speculative(tap->_ary);
4908     const TypeAry* tary = tm->isa_ary();
4909     if (tary == nullptr) {
4910       assert(tm == Type::TOP || tm == Type::BOTTOM, "");
4911       return tm;
4912     }
4913     PTR ptr = meet_ptr(tap->ptr());
4914     int instance_id = meet_instance_id(tap->instance_id());
4915     const TypePtr* speculative = xmeet_speculative(tap);
4916     int depth = meet_inline_depth(tap->inline_depth());
4917 
4918     ciKlass* res_klass = nullptr;
4919     bool res_xk = false;




4920     const Type* elem = tary->_elem;
4921     if (meet_aryptr(ptr, elem, this, tap, res_klass, res_xk) == NOT_SUBTYPE) {
4922       instance_id = InstanceBot;














4923     }
4924 
4925     ciObject* o = nullptr;             // Assume not constant when done
4926     ciObject* this_oop = const_oop();
4927     ciObject* tap_oop = tap->const_oop();
4928     if (ptr == Constant) {
4929       if (this_oop != nullptr && tap_oop != nullptr &&
4930           this_oop->equals(tap_oop)) {
4931         o = tap_oop;
4932       } else if (above_centerline(_ptr)) {
4933         o = tap_oop;
4934       } else if (above_centerline(tap->_ptr)) {
4935         o = this_oop;
4936       } else {
4937         ptr = NotNull;
4938       }
4939     }
4940     return make(ptr, o, TypeAry::make(elem, tary->_size, tary->_stable), res_klass, res_xk, off, instance_id, speculative, depth);
4941   }
4942 
4943   // All arrays inherit from Object class
4944   case InstPtr: {
4945     const TypeInstPtr *tp = t->is_instptr();
4946     int offset = meet_offset(tp->offset());
4947     PTR ptr = meet_ptr(tp->ptr());
4948     int instance_id = meet_instance_id(tp->instance_id());
4949     const TypePtr* speculative = xmeet_speculative(tp);
4950     int depth = meet_inline_depth(tp->inline_depth());
4951     const TypeInterfaces* interfaces = meet_interfaces(tp);
4952     const TypeInterfaces* tp_interfaces = tp->_interfaces;
4953     const TypeInterfaces* this_interfaces = _interfaces;
4954 
4955     switch (ptr) {
4956     case TopPTR:
4957     case AnyNull:                // Fall 'down' to dual of object klass
4958       // For instances when a subclass meets a superclass we fall
4959       // below the centerline when the superclass is exact. We need to
4960       // do the same here.
4961       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) && !tp->klass_is_exact()) {
4962         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);












4963       } else {
4964         // cannot subclass, so the meet has to fall badly below the centerline
4965         ptr = NotNull;
4966         instance_id = InstanceBot;
4967         interfaces = this_interfaces->intersection_with(tp_interfaces);
4968         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr,offset, instance_id, speculative, depth);

4969       }
4970     case Constant:
4971     case NotNull:
4972     case BotPTR:                // Fall down to object klass
4973       // LCA is object_klass, but if we subclass from the top we can do better
4974       if (above_centerline(tp->ptr())) {
4975         // If 'tp'  is above the centerline and it is Object class
4976         // then we can subclass in the Java class hierarchy.
4977         // For instances when a subclass meets a superclass we fall
4978         // below the centerline when the superclass is exact. We need
4979         // to do the same here.
4980         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) && !tp->klass_is_exact()) {



4981           // that is, my array type is a subtype of 'tp' klass
4982           return make(ptr, (ptr == Constant ? const_oop() : nullptr),
4983                       _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4984         }
4985       }
4986       // The other case cannot happen, since t cannot be a subtype of an array.
4987       // The meet falls down to Object class below centerline.
4988       if (ptr == Constant) {
4989          ptr = NotNull;
4990       }
4991       if (instance_id > 0) {
4992         instance_id = InstanceBot;
4993       }


4994       interfaces = this_interfaces->intersection_with(tp_interfaces);
4995       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr, offset, instance_id, speculative, depth);


4996     default: typerr(t);
4997     }
4998   }
4999   }
5000   return this;                  // Lint noise
5001 }
5002 
5003 
5004 template<class T> TypePtr::MeetResult TypePtr::meet_aryptr(PTR& ptr, const Type*& elem, const T* this_ary,
5005                                                            const T* other_ary, ciKlass*& res_klass, bool& res_xk) {
5006   int dummy;
5007   bool this_top_or_bottom = (this_ary->base_element_type(dummy) == Type::TOP || this_ary->base_element_type(dummy) == Type::BOTTOM);
5008   bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
5009   ciKlass* this_klass = this_ary->klass();
5010   ciKlass* other_klass = other_ary->klass();
5011   bool this_xk = this_ary->klass_is_exact();
5012   bool other_xk = other_ary->klass_is_exact();
5013   PTR this_ptr = this_ary->ptr();
5014   PTR other_ptr = other_ary->ptr();









5015   res_klass = nullptr;
5016   MeetResult result = SUBTYPE;






5017   if (elem->isa_int()) {
5018     // Integral array element types have irrelevant lattice relations.
5019     // It is the klass that determines array layout, not the element type.
5020     if (this_top_or_bottom)
5021       res_klass = other_klass;
5022     else if (other_top_or_bottom || other_klass == this_klass) {
5023       res_klass = this_klass;
5024     } else {
5025       // Something like byte[int+] meets char[int+].
5026       // This must fall to bottom, not (int[-128..65535])[int+].
5027       // instance_id = InstanceBot;
5028       elem = Type::BOTTOM;
5029       result = NOT_SUBTYPE;
5030       if (above_centerline(ptr) || ptr == Constant) {
5031         ptr = NotNull;
5032         res_xk = false;
5033         return NOT_SUBTYPE;
5034       }
5035     }
5036   } else {// Non integral arrays.
5037     // Must fall to bottom if exact klasses in upper lattice
5038     // are not equal or super klass is exact.
5039     if ((above_centerline(ptr) || ptr == Constant) && !this_ary->is_same_java_type_as(other_ary) &&
5040         // meet with top[] and bottom[] are processed further down:
5041         !this_top_or_bottom && !other_top_or_bottom &&
5042         // both are exact and not equal:

5044          // 'tap'  is exact and super or unrelated:
5045          (other_xk && !other_ary->is_meet_subtype_of(this_ary)) ||
5046          // 'this' is exact and super or unrelated:
5047          (this_xk && !this_ary->is_meet_subtype_of(other_ary)))) {
5048       if (above_centerline(ptr) || (elem->make_ptr() && above_centerline(elem->make_ptr()->_ptr))) {
5049         elem = Type::BOTTOM;
5050       }
5051       ptr = NotNull;
5052       res_xk = false;
5053       return NOT_SUBTYPE;
5054     }
5055   }
5056 
5057   res_xk = false;
5058   switch (other_ptr) {
5059     case AnyNull:
5060     case TopPTR:
5061       // Compute new klass on demand, do not use tap->_klass
5062       if (below_centerline(this_ptr)) {
5063         res_xk = this_xk;



5064       } else {
5065         res_xk = (other_xk || this_xk);
5066       }
5067       return result;
5068     case Constant: {
5069       if (this_ptr == Constant) {


5070         res_xk = true;
5071       } else if(above_centerline(this_ptr)) {
5072         res_xk = true;
5073       } else {
5074         // Only precise for identical arrays
5075         res_xk = this_xk && (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom));






5076       }
5077       return result;
5078     }
5079     case NotNull:
5080     case BotPTR:
5081       // Compute new klass on demand, do not use tap->_klass
5082       if (above_centerline(this_ptr)) {
5083         res_xk = other_xk;



5084       } else {
5085         res_xk = (other_xk && this_xk) &&
5086                  (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom)); // Only precise for identical arrays






5087       }
5088       return result;
5089     default:  {
5090       ShouldNotReachHere();
5091       return result;
5092     }
5093   }
5094   return result;
5095 }
5096 
5097 
5098 //------------------------------xdual------------------------------------------
5099 // Dual: compute field-by-field dual
5100 const Type *TypeAryPtr::xdual() const {
5101   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());










5102 }
5103 
5104 //------------------------------dump2------------------------------------------
5105 #ifndef PRODUCT
5106 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5107   st->print("aryptr:");
5108   _ary->dump2(d, depth, st);
5109   _interfaces->dump(st);
5110 
5111   if (_ptr == Constant) {
5112     const_oop()->print(st);
5113   }
5114 
5115   st->print(":%s", ptr_msg[_ptr]);
5116   if (_klass_is_exact) {
5117     st->print(":exact");
5118   }
5119 
5120   if( _offset != 0 ) {






















5121     BasicType basic_elem_type = elem()->basic_type();
5122     int header_size = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5123     if( _offset == OffsetTop )       st->print("+undefined");
5124     else if( _offset == OffsetBot )  st->print("+any");
5125     else if( _offset < header_size ) st->print("+%d", _offset);
5126     else {
5127       if (basic_elem_type == T_ILLEGAL) {
5128         st->print("+any");
5129       } else {
5130         int elem_size = type2aelembytes(basic_elem_type);
5131         st->print("[%d]", (_offset - header_size)/elem_size);
5132       }
5133     }
5134   }
5135 
5136   dump_instance_id(st);
5137   dump_inline_depth(st);
5138   dump_speculative(st);
5139 }
5140 #endif
5141 
5142 bool TypeAryPtr::empty(void) const {
5143   if (_ary->empty())       return true;




5144   return TypeOopPtr::empty();
5145 }
5146 
5147 //------------------------------add_offset-------------------------------------
5148 const TypePtr* TypeAryPtr::add_offset(intptr_t offset) const {
5149   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
5150 }
5151 
5152 const TypeAryPtr* TypeAryPtr::with_offset(intptr_t offset) const {
5153   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, offset, _instance_id, with_offset_speculative(offset), _inline_depth);
5154 }
5155 
5156 const TypeAryPtr* TypeAryPtr::with_ary(const TypeAry* ary) const {
5157   return make(_ptr, _const_oop, ary, _klass, _klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
5158 }
5159 
5160 const TypeAryPtr* TypeAryPtr::remove_speculative() const {
5161   if (_speculative == nullptr) {
5162     return this;
5163   }
5164   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
5165   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, nullptr, _inline_depth);













5166 }
5167 
5168 const TypePtr* TypeAryPtr::with_inline_depth(int depth) const {
5169   if (!UseInlineDepthForSpeculativeTypes) {
5170     return this;
5171   }
5172   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth);











































5173 }
5174 
5175 const TypePtr* TypeAryPtr::with_instance_id(int instance_id) const {
5176   assert(is_known_instance(), "should be known");
5177   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
5178 }
5179 
5180 //=============================================================================
5181 

5182 //------------------------------hash-------------------------------------------
5183 // Type-specific hashing function.
5184 uint TypeNarrowPtr::hash(void) const {
5185   return _ptrtype->hash() + 7;
5186 }
5187 
5188 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
5189   return _ptrtype->singleton();
5190 }
5191 
5192 bool TypeNarrowPtr::empty(void) const {
5193   return _ptrtype->empty();
5194 }
5195 
5196 intptr_t TypeNarrowPtr::get_con() const {
5197   return _ptrtype->get_con();
5198 }
5199 
5200 bool TypeNarrowPtr::eq( const Type *t ) const {
5201   const TypeNarrowPtr* tc = isa_same_narrowptr(t);

5255   case HalfFloatTop:
5256   case HalfFloatCon:
5257   case HalfFloatBot:
5258   case FloatTop:
5259   case FloatCon:
5260   case FloatBot:
5261   case DoubleTop:
5262   case DoubleCon:
5263   case DoubleBot:
5264   case AnyPtr:
5265   case RawPtr:
5266   case OopPtr:
5267   case InstPtr:
5268   case AryPtr:
5269   case MetadataPtr:
5270   case KlassPtr:
5271   case InstKlassPtr:
5272   case AryKlassPtr:
5273   case NarrowOop:
5274   case NarrowKlass:
5275 
5276   case Bottom:                  // Ye Olde Default
5277     return Type::BOTTOM;
5278   case Top:
5279     return this;
5280 
5281   default:                      // All else is a mistake
5282     typerr(t);
5283 
5284   } // End of switch
5285 
5286   return this;
5287 }
5288 
5289 #ifndef PRODUCT
5290 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5291   _ptrtype->dump2(d, depth, st);
5292 }
5293 #endif
5294 
5295 const TypeNarrowOop *TypeNarrowOop::BOTTOM;

5339     return (one == two) && TypePtr::eq(t);
5340   } else {
5341     return one->equals(two) && TypePtr::eq(t);
5342   }
5343 }
5344 
5345 //------------------------------hash-------------------------------------------
5346 // Type-specific hashing function.
5347 uint TypeMetadataPtr::hash(void) const {
5348   return
5349     (metadata() ? metadata()->hash() : 0) +
5350     TypePtr::hash();
5351 }
5352 
5353 //------------------------------singleton--------------------------------------
5354 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5355 // constants
5356 bool TypeMetadataPtr::singleton(void) const {
5357   // detune optimizer to not generate constant metadata + constant offset as a constant!
5358   // TopPTR, Null, AnyNull, Constant are all singletons
5359   return (_offset == 0) && !below_centerline(_ptr);
5360 }
5361 
5362 //------------------------------add_offset-------------------------------------
5363 const TypePtr* TypeMetadataPtr::add_offset( intptr_t offset ) const {
5364   return make( _ptr, _metadata, xadd_offset(offset));
5365 }
5366 
5367 //-----------------------------filter------------------------------------------
5368 // Do not allow interface-vs.-noninterface joins to collapse to top.
5369 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
5370   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
5371   if (ft == nullptr || ft->empty())
5372     return Type::TOP;           // Canonical empty value
5373   return ft;
5374 }
5375 
5376  //------------------------------get_con----------------------------------------
5377 intptr_t TypeMetadataPtr::get_con() const {
5378   assert( _ptr == Null || _ptr == Constant, "" );
5379   assert( _offset >= 0, "" );
5380 
5381   if (_offset != 0) {
5382     // After being ported to the compiler interface, the compiler no longer
5383     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5384     // to a handle at compile time.  This handle is embedded in the generated
5385     // code and dereferenced at the time the nmethod is made.  Until that time,
5386     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5387     // have access to the addresses!).  This does not seem to currently happen,
5388     // but this assertion here is to help prevent its occurrence.
5389     tty->print_cr("Found oop constant with non-zero offset");
5390     ShouldNotReachHere();
5391   }
5392 
5393   return (intptr_t)metadata()->constant_encoding();
5394 }
5395 
5396 //------------------------------cast_to_ptr_type-------------------------------
5397 const TypeMetadataPtr* TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
5398   if( ptr == _ptr ) return this;
5399   return make(ptr, metadata(), _offset);
5400 }
5401 

5415   case HalfFloatBot:
5416   case FloatTop:
5417   case FloatCon:
5418   case FloatBot:
5419   case DoubleTop:
5420   case DoubleCon:
5421   case DoubleBot:
5422   case NarrowOop:
5423   case NarrowKlass:
5424   case Bottom:                  // Ye Olde Default
5425     return Type::BOTTOM;
5426   case Top:
5427     return this;
5428 
5429   default:                      // All else is a mistake
5430     typerr(t);
5431 
5432   case AnyPtr: {
5433     // Found an AnyPtr type vs self-OopPtr type
5434     const TypePtr *tp = t->is_ptr();
5435     int offset = meet_offset(tp->offset());
5436     PTR ptr = meet_ptr(tp->ptr());
5437     switch (tp->ptr()) {
5438     case Null:
5439       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5440       // else fall through:
5441     case TopPTR:
5442     case AnyNull: {
5443       return make(ptr, _metadata, offset);
5444     }
5445     case BotPTR:
5446     case NotNull:
5447       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5448     default: typerr(t);
5449     }
5450   }
5451 
5452   case RawPtr:
5453   case KlassPtr:
5454   case InstKlassPtr:
5455   case AryKlassPtr:
5456   case OopPtr:
5457   case InstPtr:
5458   case AryPtr:
5459     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
5460 
5461   case MetadataPtr: {
5462     const TypeMetadataPtr *tp = t->is_metadataptr();
5463     int offset = meet_offset(tp->offset());
5464     PTR tptr = tp->ptr();
5465     PTR ptr = meet_ptr(tptr);
5466     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
5467     if (tptr == TopPTR || _ptr == TopPTR ||
5468         metadata()->equals(tp->metadata())) {
5469       return make(ptr, md, offset);
5470     }
5471     // metadata is different
5472     if( ptr == Constant ) {  // Cannot be equal constants, so...
5473       if( tptr == Constant && _ptr != Constant)  return t;
5474       if( _ptr == Constant && tptr != Constant)  return this;
5475       ptr = NotNull;            // Fall down in lattice
5476     }
5477     return make(ptr, nullptr, offset);
5478     break;
5479   }
5480   } // End of switch
5481   return this;                  // Return the double constant
5482 }
5483 

5487 const Type *TypeMetadataPtr::xdual() const {
5488   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
5489 }
5490 
5491 //------------------------------dump2------------------------------------------
5492 #ifndef PRODUCT
5493 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5494   st->print("metadataptr:%s", ptr_msg[_ptr]);
5495   if (metadata() != nullptr) {
5496     st->print(":" INTPTR_FORMAT, p2i(metadata()));
5497   }
5498   dump_offset(st);
5499 }
5500 #endif
5501 
5502 
5503 //=============================================================================
5504 // Convenience common pre-built type.
5505 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
5506 
5507 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
5508   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
5509 }
5510 
5511 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
5512   return make(Constant, m, 0);
5513 }
5514 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
5515   return make(Constant, m, 0);
5516 }
5517 
5518 //------------------------------make-------------------------------------------
5519 // Create a meta data constant
5520 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
5521   assert(m == nullptr || !m->is_klass(), "wrong type");
5522   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
5523 }
5524 
5525 
5526 const TypeKlassPtr* TypeAryPtr::as_klass_type(bool try_for_exact) const {
5527   const Type* elem = _ary->_elem;
5528   bool xk = klass_is_exact();

5529   if (elem->make_oopptr() != nullptr) {

5530     elem = elem->make_oopptr()->as_klass_type(try_for_exact);
5531     if (elem->is_klassptr()->klass_is_exact()) {
5532       xk = true;









5533     }
5534   }
5535   return TypeAryKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, elem, klass(), 0);
5536 }
5537 
5538 const TypeKlassPtr* TypeKlassPtr::make(ciKlass *klass, InterfaceHandling interface_handling) {
5539   if (klass->is_instance_klass()) {
5540     return TypeInstKlassPtr::make(klass, interface_handling);
5541   }
5542   return TypeAryKlassPtr::make(klass, interface_handling);
5543 }
5544 
5545 const TypeKlassPtr* TypeKlassPtr::make(PTR ptr, ciKlass* klass, int offset, InterfaceHandling interface_handling) {
5546   if (klass->is_instance_klass()) {
5547     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
5548     return TypeInstKlassPtr::make(ptr, klass, interfaces, offset);
5549   }
5550   return TypeAryKlassPtr::make(ptr, klass, offset, interface_handling);
5551 }
5552 
5553 
5554 //------------------------------TypeKlassPtr-----------------------------------
5555 TypeKlassPtr::TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, int offset)
5556   : TypePtr(t, ptr, offset), _klass(klass), _interfaces(interfaces) {
5557   assert(klass == nullptr || !klass->is_loaded() || (klass->is_instance_klass() && !klass->is_interface()) ||
5558          klass->is_type_array_klass() || !klass->as_obj_array_klass()->base_element_klass()->is_interface(), "no interface here");
5559 }
5560 
5561 // Is there a single ciKlass* that can represent that type?
5562 ciKlass* TypeKlassPtr::exact_klass_helper() const {
5563   assert(_klass->is_instance_klass() && !_klass->is_interface(), "No interface");
5564   if (_interfaces->empty()) {
5565     return _klass;
5566   }
5567   if (_klass != ciEnv::current()->Object_klass()) {
5568     if (_interfaces->eq(_klass->as_instance_klass())) {
5569       return _klass;
5570     }
5571     return nullptr;
5572   }
5573   return _interfaces->exact_klass();
5574 }
5575 
5576 //------------------------------eq---------------------------------------------
5577 // Structural equality check for Type representations
5578 bool TypeKlassPtr::eq(const Type *t) const {
5579   const TypeKlassPtr *p = t->is_klassptr();
5580   return
5581     _interfaces->eq(p->_interfaces) &&
5582     TypePtr::eq(p);
5583 }
5584 
5585 //------------------------------hash-------------------------------------------
5586 // Type-specific hashing function.
5587 uint TypeKlassPtr::hash(void) const {
5588   return TypePtr::hash() + _interfaces->hash();
5589 }
5590 
5591 //------------------------------singleton--------------------------------------
5592 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5593 // constants
5594 bool TypeKlassPtr::singleton(void) const {
5595   // detune optimizer to not generate constant klass + constant offset as a constant!
5596   // TopPTR, Null, AnyNull, Constant are all singletons
5597   return (_offset == 0) && !below_centerline(_ptr);
5598 }
5599 
5600 // Do not allow interface-vs.-noninterface joins to collapse to top.
5601 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
5602   // logic here mirrors the one from TypeOopPtr::filter. See comments
5603   // there.
5604   const Type* ft = join_helper(kills, include_speculative);
5605 
5606   if (ft->empty()) {
5607     return Type::TOP;           // Canonical empty value
5608   }
5609 
5610   return ft;
5611 }
5612 
5613 const TypeInterfaces* TypeKlassPtr::meet_interfaces(const TypeKlassPtr* other) const {
5614   if (above_centerline(_ptr) && above_centerline(other->_ptr)) {
5615     return _interfaces->union_with(other->_interfaces);
5616   } else if (above_centerline(_ptr) && !above_centerline(other->_ptr)) {
5617     return other->_interfaces;
5618   } else if (above_centerline(other->_ptr) && !above_centerline(_ptr)) {
5619     return _interfaces;
5620   }
5621   return _interfaces->intersection_with(other->_interfaces);
5622 }
5623 
5624 //------------------------------get_con----------------------------------------
5625 intptr_t TypeKlassPtr::get_con() const {
5626   assert( _ptr == Null || _ptr == Constant, "" );
5627   assert( _offset >= 0, "" );
5628 
5629   if (_offset != 0) {
5630     // After being ported to the compiler interface, the compiler no longer
5631     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5632     // to a handle at compile time.  This handle is embedded in the generated
5633     // code and dereferenced at the time the nmethod is made.  Until that time,
5634     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5635     // have access to the addresses!).  This does not seem to currently happen,
5636     // but this assertion here is to help prevent its occurrence.
5637     tty->print_cr("Found oop constant with non-zero offset");
5638     ShouldNotReachHere();
5639   }
5640 
5641   ciKlass* k = exact_klass();
5642 
5643   return (intptr_t)k->constant_encoding();
5644 }
5645 
5646 //=============================================================================
5647 // Convenience common pre-built types.
5648 
5649 // Not-null object klass or below
5650 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT;
5651 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT_OR_NULL;
5652 
5653 bool TypeInstKlassPtr::eq(const Type *t) const {
5654   const TypeKlassPtr *p = t->is_klassptr();
5655   return
5656     klass()->equals(p->klass()) &&

5657     TypeKlassPtr::eq(p);
5658 }
5659 
5660 uint TypeInstKlassPtr::hash(void) const {
5661   return klass()->hash() + TypeKlassPtr::hash();
5662 }
5663 
5664 const TypeInstKlassPtr *TypeInstKlassPtr::make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, int offset) {



5665   TypeInstKlassPtr *r =
5666     (TypeInstKlassPtr*)(new TypeInstKlassPtr(ptr, k, interfaces, offset))->hashcons();
5667 
5668   return r;
5669 }
5670 







5671 //------------------------------add_offset-------------------------------------
5672 // Access internals of klass object
5673 const TypePtr* TypeInstKlassPtr::add_offset( intptr_t offset ) const {
5674   return make( _ptr, klass(), _interfaces, xadd_offset(offset) );
5675 }
5676 
5677 const TypeInstKlassPtr* TypeInstKlassPtr::with_offset(intptr_t offset) const {
5678   return make(_ptr, klass(), _interfaces, offset);
5679 }
5680 
5681 //------------------------------cast_to_ptr_type-------------------------------
5682 const TypeInstKlassPtr* TypeInstKlassPtr::cast_to_ptr_type(PTR ptr) const {
5683   assert(_base == InstKlassPtr, "subclass must override cast_to_ptr_type");
5684   if( ptr == _ptr ) return this;
5685   return make(ptr, _klass, _interfaces, _offset);
5686 }
5687 
5688 
5689 bool TypeInstKlassPtr::must_be_exact() const {
5690   if (!_klass->is_loaded())  return false;
5691   ciInstanceKlass* ik = _klass->as_instance_klass();
5692   if (ik->is_final())  return true;  // cannot clear xk
5693   return false;
5694 }
5695 
5696 //-----------------------------cast_to_exactness-------------------------------
5697 const TypeKlassPtr* TypeInstKlassPtr::cast_to_exactness(bool klass_is_exact) const {
5698   if (klass_is_exact == (_ptr == Constant)) return this;
5699   if (must_be_exact()) return this;
5700   ciKlass* k = klass();
5701   return make(klass_is_exact ? Constant : NotNull, k, _interfaces, _offset);

5702 }
5703 
5704 
5705 //-----------------------------as_instance_type--------------------------------
5706 // Corresponding type for an instance of the given class.
5707 // It will be NotNull, and exact if and only if the klass type is exact.
5708 const TypeOopPtr* TypeInstKlassPtr::as_instance_type(bool klass_change) const {
5709   ciKlass* k = klass();
5710   bool xk = klass_is_exact();
5711   Compile* C = Compile::current();
5712   Dependencies* deps = C->dependencies();
5713   assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
5714   // Element is an instance
5715   bool klass_is_exact = false;
5716   const TypeInterfaces* interfaces = _interfaces;

5717   if (k->is_loaded()) {
5718     // Try to set klass_is_exact.
5719     ciInstanceKlass* ik = k->as_instance_klass();
5720     klass_is_exact = ik->is_final();
5721     if (!klass_is_exact && klass_change
5722         && deps != nullptr && UseUniqueSubclasses) {
5723       ciInstanceKlass* sub = ik->unique_concrete_subklass();
5724       if (sub != nullptr) {
5725         if (_interfaces->eq(sub)) {
5726           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
5727           k = ik = sub;
5728           xk = sub->is_final();
5729         }
5730       }
5731     }
5732   }
5733   return TypeInstPtr::make(TypePtr::BotPTR, k, interfaces, xk, nullptr, 0);


5734 }
5735 
5736 //------------------------------xmeet------------------------------------------
5737 // Compute the MEET of two types, return a new Type object.
5738 const Type    *TypeInstKlassPtr::xmeet( const Type *t ) const {
5739   // Perform a fast test for common case; meeting the same types together.
5740   if( this == t ) return this;  // Meeting same type-rep?
5741 
5742   // Current "this->_base" is Pointer
5743   switch (t->base()) {          // switch on original type
5744 
5745   case Int:                     // Mixing ints & oops happens when javac
5746   case Long:                    // reuses local variables
5747   case HalfFloatTop:
5748   case HalfFloatCon:
5749   case HalfFloatBot:
5750   case FloatTop:
5751   case FloatCon:
5752   case FloatBot:
5753   case DoubleTop:
5754   case DoubleCon:
5755   case DoubleBot:
5756   case NarrowOop:
5757   case NarrowKlass:
5758   case Bottom:                  // Ye Olde Default
5759     return Type::BOTTOM;
5760   case Top:
5761     return this;
5762 
5763   default:                      // All else is a mistake
5764     typerr(t);
5765 
5766   case AnyPtr: {                // Meeting to AnyPtrs
5767     // Found an AnyPtr type vs self-KlassPtr type
5768     const TypePtr *tp = t->is_ptr();
5769     int offset = meet_offset(tp->offset());
5770     PTR ptr = meet_ptr(tp->ptr());
5771     switch (tp->ptr()) {
5772     case TopPTR:
5773       return this;
5774     case Null:
5775       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5776     case AnyNull:
5777       return make( ptr, klass(), _interfaces, offset );
5778     case BotPTR:
5779     case NotNull:
5780       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5781     default: typerr(t);
5782     }
5783   }
5784 
5785   case RawPtr:
5786   case MetadataPtr:
5787   case OopPtr:
5788   case AryPtr:                  // Meet with AryPtr
5789   case InstPtr:                 // Meet with InstPtr
5790     return TypePtr::BOTTOM;
5791 
5792   //
5793   //             A-top         }
5794   //           /   |   \       }  Tops
5795   //       B-top A-any C-top   }
5796   //          | /  |  \ |      }  Any-nulls
5797   //       B-any   |   C-any   }
5798   //          |    |    |
5799   //       B-con A-con C-con   } constants; not comparable across classes
5800   //          |    |    |
5801   //       B-not   |   C-not   }
5802   //          | \  |  / |      }  not-nulls
5803   //       B-bot A-not C-bot   }
5804   //           \   |   /       }  Bottoms
5805   //             A-bot         }
5806   //
5807 
5808   case InstKlassPtr: {  // Meet two KlassPtr types
5809     const TypeInstKlassPtr *tkls = t->is_instklassptr();
5810     int  off     = meet_offset(tkls->offset());
5811     PTR  ptr     = meet_ptr(tkls->ptr());
5812     const TypeInterfaces* interfaces = meet_interfaces(tkls);
5813 
5814     ciKlass* res_klass = nullptr;
5815     bool res_xk = false;
5816     switch(meet_instptr(ptr, interfaces, this, tkls, res_klass, res_xk)) {

5817       case UNLOADED:
5818         ShouldNotReachHere();
5819       case SUBTYPE:
5820       case NOT_SUBTYPE:
5821       case LCA:
5822       case QUICK: {
5823         assert(res_xk == (ptr == Constant), "");
5824         const Type* res = make(ptr, res_klass, interfaces, off);
5825         return res;
5826       }
5827       default:
5828         ShouldNotReachHere();
5829     }
5830   } // End of case KlassPtr
5831   case AryKlassPtr: {                // All arrays inherit from Object class
5832     const TypeAryKlassPtr *tp = t->is_aryklassptr();
5833     int offset = meet_offset(tp->offset());
5834     PTR ptr = meet_ptr(tp->ptr());
5835     const TypeInterfaces* interfaces = meet_interfaces(tp);
5836     const TypeInterfaces* tp_interfaces = tp->_interfaces;
5837     const TypeInterfaces* this_interfaces = _interfaces;
5838 
5839     switch (ptr) {
5840     case TopPTR:
5841     case AnyNull:                // Fall 'down' to dual of object klass
5842       // For instances when a subclass meets a superclass we fall
5843       // below the centerline when the superclass is exact. We need to
5844       // do the same here.
5845       if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces->contains(this_interfaces) && !klass_is_exact()) {
5846         return TypeAryKlassPtr::make(ptr, tp->elem(), tp->klass(), offset);



5847       } else {
5848         // cannot subclass, so the meet has to fall badly below the centerline
5849         ptr = NotNull;
5850         interfaces = _interfaces->intersection_with(tp->_interfaces);
5851         return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset);

5852       }
5853     case Constant:
5854     case NotNull:
5855     case BotPTR:                // Fall down to object klass
5856       // LCA is object_klass, but if we subclass from the top we can do better
5857       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
5858         // If 'this' (InstPtr) is above the centerline and it is Object class
5859         // then we can subclass in the Java class hierarchy.
5860         // For instances when a subclass meets a superclass we fall
5861         // below the centerline when the superclass is exact. We need
5862         // to do the same here.
5863         if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces->contains(this_interfaces) && !klass_is_exact()) {



5864           // that is, tp's array type is a subtype of my klass
5865           return TypeAryKlassPtr::make(ptr,
5866                                        tp->elem(), tp->klass(), offset);
5867         }
5868       }
5869       // The other case cannot happen, since I cannot be a subtype of an array.
5870       // The meet falls down to Object class below centerline.
5871       if( ptr == Constant )
5872          ptr = NotNull;
5873       interfaces = this_interfaces->intersection_with(tp_interfaces);
5874       return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset);


5875     default: typerr(t);
5876     }
5877   }
5878 
5879   } // End of switch
5880   return this;                  // Return the double constant
5881 }
5882 
5883 //------------------------------xdual------------------------------------------
5884 // Dual: compute field-by-field dual
5885 const Type    *TypeInstKlassPtr::xdual() const {
5886   return new TypeInstKlassPtr(dual_ptr(), klass(), _interfaces, dual_offset());
5887 }
5888 
5889 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
5890   static_assert(std::is_base_of<T2, T1>::value, "");
5891   if (!this_one->is_loaded() || !other->is_loaded()) {
5892     return false;
5893   }
5894   if (!this_one->is_instance_type(other)) {
5895     return false;
5896   }
5897 
5898   if (!other_exact) {
5899     return false;
5900   }
5901 
5902   if (other->klass()->equals(ciEnv::current()->Object_klass()) && other->_interfaces->empty()) {
5903     return true;
5904   }
5905 
5906   return this_one->klass()->is_subtype_of(other->klass()) && this_one->_interfaces->contains(other->_interfaces);

5960 
5961   if (this_exact) {
5962     return this_one->klass()->is_subtype_of(other->klass()) && this_one->_interfaces->contains(other->_interfaces);
5963   }
5964 
5965   return true;
5966 }
5967 
5968 bool TypeInstKlassPtr::maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
5969   return TypePtr::maybe_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
5970 }
5971 
5972 const TypeKlassPtr* TypeInstKlassPtr::try_improve() const {
5973   if (!UseUniqueSubclasses) {
5974     return this;
5975   }
5976   ciKlass* k = klass();
5977   Compile* C = Compile::current();
5978   Dependencies* deps = C->dependencies();
5979   assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
5980   const TypeInterfaces* interfaces = _interfaces;
5981   if (k->is_loaded()) {
5982     ciInstanceKlass* ik = k->as_instance_klass();
5983     bool klass_is_exact = ik->is_final();
5984     if (!klass_is_exact &&
5985         deps != nullptr) {
5986       ciInstanceKlass* sub = ik->unique_concrete_subklass();
5987       if (sub != nullptr) {
5988         if (_interfaces->eq(sub)) {


5989           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
5990           k = ik = sub;
5991           klass_is_exact = sub->is_final();
5992           return TypeKlassPtr::make(klass_is_exact ? Constant : _ptr, k, _offset);
5993         }
5994       }
5995     }
5996   }
5997   return this;
5998 }
5999 




6000 #ifndef PRODUCT
6001 void TypeInstKlassPtr::dump2(Dict& d, uint depth, outputStream* st) const {
6002   st->print("instklassptr:");
6003   klass()->print_name_on(st);
6004   _interfaces->dump(st);
6005   st->print(":%s", ptr_msg[_ptr]);
6006   dump_offset(st);

6007 }
6008 #endif // PRODUCT
6009 
6010 const TypeAryKlassPtr *TypeAryKlassPtr::make(PTR ptr, const Type* elem, ciKlass* k, int offset) {
6011   return (TypeAryKlassPtr*)(new TypeAryKlassPtr(ptr, elem, k, offset))->hashcons();












6012 }
6013 
6014 const TypeAryKlassPtr *TypeAryKlassPtr::make(PTR ptr, ciKlass* k, int offset, InterfaceHandling interface_handling) {

6015   if (k->is_obj_array_klass()) {
6016     // Element is an object array. Recursively call ourself.
6017     ciKlass* eklass = k->as_obj_array_klass()->element_klass();
6018     const TypeKlassPtr *etype = TypeKlassPtr::make(eklass, interface_handling)->cast_to_exactness(false);
6019     return TypeAryKlassPtr::make(ptr, etype, nullptr, offset);
6020   } else if (k->is_type_array_klass()) {
6021     // Element is an typeArray
6022     const Type* etype = get_const_basic_type(k->as_type_array_klass()->element_type());
6023     return TypeAryKlassPtr::make(ptr, etype, k, offset);
6024   } else {
6025     ShouldNotReachHere();
6026     return nullptr;
6027   }


6028 }
6029 
6030 const TypeAryKlassPtr* TypeAryKlassPtr::make(ciKlass* klass, InterfaceHandling interface_handling) {
6031   return TypeAryKlassPtr::make(Constant, klass, 0, interface_handling);



























6032 }
6033 
6034 //------------------------------eq---------------------------------------------
6035 // Structural equality check for Type representations
6036 bool TypeAryKlassPtr::eq(const Type *t) const {
6037   const TypeAryKlassPtr *p = t->is_aryklassptr();
6038   return
6039     _elem == p->_elem &&  // Check array






6040     TypeKlassPtr::eq(p);  // Check sub-parts
6041 }
6042 
6043 //------------------------------hash-------------------------------------------
6044 // Type-specific hashing function.
6045 uint TypeAryKlassPtr::hash(void) const {
6046   return (uint)(uintptr_t)_elem + TypeKlassPtr::hash();

6047 }
6048 
6049 //----------------------compute_klass------------------------------------------
6050 // Compute the defining klass for this class
6051 ciKlass* TypeAryPtr::compute_klass() const {
6052   // Compute _klass based on element type.
6053   ciKlass* k_ary = nullptr;
6054   const TypeInstPtr *tinst;
6055   const TypeAryPtr *tary;
6056   const Type* el = elem();
6057   if (el->isa_narrowoop()) {
6058     el = el->make_ptr();
6059   }
6060 
6061   // Get element klass
6062   if ((tinst = el->isa_instptr()) != nullptr) {
6063     // Leave k_ary at null.
6064   } else if ((tary = el->isa_aryptr()) != nullptr) {
6065     // Leave k_ary at null.
6066   } else if ((el->base() == Type::Top) ||
6067              (el->base() == Type::Bottom)) {
6068     // element type of Bottom occurs from meet of basic type
6069     // and object; Top occurs when doing join on Bottom.
6070     // Leave k_ary at null.
6071   } else {
6072     assert(!el->isa_int(), "integral arrays must be pre-equipped with a class");
6073     // Compute array klass directly from basic type
6074     k_ary = ciTypeArrayKlass::make(el->basic_type());
6075   }
6076   return k_ary;
6077 }
6078 
6079 //------------------------------klass------------------------------------------
6080 // Return the defining klass for this class
6081 ciKlass* TypeAryPtr::klass() const {
6082   if( _klass ) return _klass;   // Return cached value, if possible
6083 
6084   // Oops, need to compute _klass and cache it
6085   ciKlass* k_ary = compute_klass();

6093     // type TypeAryPtr::OOPS.  This Type is shared between all
6094     // active compilations.  However, the ciKlass which represents
6095     // this Type is *not* shared between compilations, so caching
6096     // this value would result in fetching a dangling pointer.
6097     //
6098     // Recomputing the underlying ciKlass for each request is
6099     // a bit less efficient than caching, but calls to
6100     // TypeAryPtr::OOPS->klass() are not common enough to matter.
6101     ((TypeAryPtr*)this)->_klass = k_ary;
6102   }
6103   return k_ary;
6104 }
6105 
6106 // Is there a single ciKlass* that can represent that type?
6107 ciKlass* TypeAryPtr::exact_klass_helper() const {
6108   if (_ary->_elem->make_ptr() && _ary->_elem->make_ptr()->isa_oopptr()) {
6109     ciKlass* k = _ary->_elem->make_ptr()->is_oopptr()->exact_klass_helper();
6110     if (k == nullptr) {
6111       return nullptr;
6112     }
6113     k = ciObjArrayKlass::make(k);
6114     return k;








6115   }
6116 
6117   return klass();
6118 }
6119 
6120 const Type* TypeAryPtr::base_element_type(int& dims) const {
6121   const Type* elem = this->elem();
6122   dims = 1;
6123   while (elem->make_ptr() && elem->make_ptr()->isa_aryptr()) {
6124     elem = elem->make_ptr()->is_aryptr()->elem();
6125     dims++;
6126   }
6127   return elem;
6128 }
6129 
6130 //------------------------------add_offset-------------------------------------
6131 // Access internals of klass object
6132 const TypePtr* TypeAryKlassPtr::add_offset(intptr_t offset) const {
6133   return make(_ptr, elem(), klass(), xadd_offset(offset));
6134 }
6135 
6136 const TypeAryKlassPtr* TypeAryKlassPtr::with_offset(intptr_t offset) const {
6137   return make(_ptr, elem(), klass(), offset);
6138 }
6139 
6140 //------------------------------cast_to_ptr_type-------------------------------
6141 const TypeAryKlassPtr* TypeAryKlassPtr::cast_to_ptr_type(PTR ptr) const {
6142   assert(_base == AryKlassPtr, "subclass must override cast_to_ptr_type");
6143   if (ptr == _ptr) return this;
6144   return make(ptr, elem(), _klass, _offset);
6145 }
6146 
6147 bool TypeAryKlassPtr::must_be_exact() const {
6148   if (_elem == Type::BOTTOM) return false;
6149   if (_elem == Type::TOP   ) return false;
6150   const TypeKlassPtr*  tk = _elem->isa_klassptr();
6151   if (!tk)             return true;   // a primitive type, like int
6152   return tk->must_be_exact();
6153 }



6154 



6155 
6156 //-----------------------------cast_to_exactness-------------------------------
6157 const TypeKlassPtr *TypeAryKlassPtr::cast_to_exactness(bool klass_is_exact) const {
6158   if (must_be_exact()) return this;  // cannot clear xk
6159   ciKlass* k = _klass;




6160   const Type* elem = this->elem();
6161   if (elem->isa_klassptr() && !klass_is_exact) {
6162     elem = elem->is_klassptr()->cast_to_exactness(klass_is_exact);
6163   }
6164   return make(klass_is_exact ? Constant : NotNull, elem, k, _offset);
6165 }
6166 















6167 
6168 //-----------------------------as_instance_type--------------------------------
6169 // Corresponding type for an instance of the given class.
6170 // It will be NotNull, and exact if and only if the klass type is exact.
6171 const TypeOopPtr* TypeAryKlassPtr::as_instance_type(bool klass_change) const {
6172   ciKlass* k = klass();
6173   bool    xk = klass_is_exact();
6174   const Type* el = nullptr;
6175   if (elem()->isa_klassptr()) {
6176     el = elem()->is_klassptr()->as_instance_type(false)->cast_to_exactness(false);
6177     k = nullptr;
6178   } else {
6179     el = elem();
6180   }
6181   return TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(el, TypeInt::POS), k, xk, 0);




6182 }
6183 
6184 
6185 //------------------------------xmeet------------------------------------------
6186 // Compute the MEET of two types, return a new Type object.
6187 const Type    *TypeAryKlassPtr::xmeet( const Type *t ) const {
6188   // Perform a fast test for common case; meeting the same types together.
6189   if( this == t ) return this;  // Meeting same type-rep?
6190 
6191   // Current "this->_base" is Pointer
6192   switch (t->base()) {          // switch on original type
6193 
6194   case Int:                     // Mixing ints & oops happens when javac
6195   case Long:                    // reuses local variables
6196   case HalfFloatTop:
6197   case HalfFloatCon:
6198   case HalfFloatBot:
6199   case FloatTop:
6200   case FloatCon:
6201   case FloatBot:
6202   case DoubleTop:
6203   case DoubleCon:
6204   case DoubleBot:
6205   case NarrowOop:
6206   case NarrowKlass:
6207   case Bottom:                  // Ye Olde Default
6208     return Type::BOTTOM;
6209   case Top:
6210     return this;
6211 
6212   default:                      // All else is a mistake
6213     typerr(t);
6214 
6215   case AnyPtr: {                // Meeting to AnyPtrs
6216     // Found an AnyPtr type vs self-KlassPtr type
6217     const TypePtr *tp = t->is_ptr();
6218     int offset = meet_offset(tp->offset());
6219     PTR ptr = meet_ptr(tp->ptr());
6220     switch (tp->ptr()) {
6221     case TopPTR:
6222       return this;
6223     case Null:
6224       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6225     case AnyNull:
6226       return make( ptr, _elem, klass(), offset );
6227     case BotPTR:
6228     case NotNull:
6229       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6230     default: typerr(t);
6231     }
6232   }
6233 
6234   case RawPtr:
6235   case MetadataPtr:
6236   case OopPtr:
6237   case AryPtr:                  // Meet with AryPtr
6238   case InstPtr:                 // Meet with InstPtr
6239     return TypePtr::BOTTOM;
6240 
6241   //
6242   //             A-top         }
6243   //           /   |   \       }  Tops
6244   //       B-top A-any C-top   }
6245   //          | /  |  \ |      }  Any-nulls
6246   //       B-any   |   C-any   }
6247   //          |    |    |
6248   //       B-con A-con C-con   } constants; not comparable across classes
6249   //          |    |    |
6250   //       B-not   |   C-not   }
6251   //          | \  |  / |      }  not-nulls
6252   //       B-bot A-not C-bot   }
6253   //           \   |   /       }  Bottoms
6254   //             A-bot         }
6255   //
6256 
6257   case AryKlassPtr: {  // Meet two KlassPtr types
6258     const TypeAryKlassPtr *tap = t->is_aryklassptr();
6259     int off = meet_offset(tap->offset());
6260     const Type* elem = _elem->meet(tap->_elem);
6261 
6262     PTR ptr = meet_ptr(tap->ptr());
6263     ciKlass* res_klass = nullptr;
6264     bool res_xk = false;
6265     meet_aryptr(ptr, elem, this, tap, res_klass, res_xk);





6266     assert(res_xk == (ptr == Constant), "");
6267     return make(ptr, elem, res_klass, off);
































6268   } // End of case KlassPtr
6269   case InstKlassPtr: {
6270     const TypeInstKlassPtr *tp = t->is_instklassptr();
6271     int offset = meet_offset(tp->offset());
6272     PTR ptr = meet_ptr(tp->ptr());
6273     const TypeInterfaces* interfaces = meet_interfaces(tp);
6274     const TypeInterfaces* tp_interfaces = tp->_interfaces;
6275     const TypeInterfaces* this_interfaces = _interfaces;
6276 
6277     switch (ptr) {
6278     case TopPTR:
6279     case AnyNull:                // Fall 'down' to dual of object klass
6280       // For instances when a subclass meets a superclass we fall
6281       // below the centerline when the superclass is exact. We need to
6282       // do the same here.


6283       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) &&
6284           !tp->klass_is_exact()) {
6285         return TypeAryKlassPtr::make(ptr, _elem, _klass, offset);
6286       } else {
6287         // cannot subclass, so the meet has to fall badly below the centerline
6288         ptr = NotNull;
6289         interfaces = this_interfaces->intersection_with(tp->_interfaces);
6290         return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset);

6291       }
6292     case Constant:
6293     case NotNull:
6294     case BotPTR:                // Fall down to object klass
6295       // LCA is object_klass, but if we subclass from the top we can do better
6296       if (above_centerline(tp->ptr())) {
6297         // If 'tp'  is above the centerline and it is Object class
6298         // then we can subclass in the Java class hierarchy.
6299         // For instances when a subclass meets a superclass we fall
6300         // below the centerline when the superclass is exact. We need
6301         // to do the same here.


6302         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) &&
6303             !tp->klass_is_exact()) {
6304           // that is, my array type is a subtype of 'tp' klass
6305           return make(ptr, _elem, _klass, offset);
6306         }
6307       }
6308       // The other case cannot happen, since t cannot be a subtype of an array.
6309       // The meet falls down to Object class below centerline.
6310       if (ptr == Constant)
6311          ptr = NotNull;
6312       interfaces = this_interfaces->intersection_with(tp_interfaces);
6313       return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset);


6314     default: typerr(t);
6315     }
6316   }
6317 
6318   } // End of switch
6319   return this;                  // Return the double constant
6320 }
6321 
6322 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
6323   static_assert(std::is_base_of<T2, T1>::value, "");
6324 
6325   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty() && other_exact) {
6326     return true;
6327   }
6328 
6329   int dummy;
6330   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
6331 
6332   if (!this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) {
6333     return false;
6334   }
6335 
6336   if (this_one->is_instance_type(other)) {
6337     return other->klass() == ciEnv::current()->Object_klass() && this_one->_interfaces->contains(other->_interfaces) &&
6338            other_exact;
6339   }
6340 
6341   assert(this_one->is_array_type(other), "");
6342   const T1* other_ary = this_one->is_array_type(other);
6343   bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
6344   if (other_top_or_bottom) {
6345     return false;
6346   }
6347 
6348   const TypePtr* other_elem = other_ary->elem()->make_ptr();
6349   const TypePtr* this_elem = this_one->elem()->make_ptr();
6350   if (this_elem != nullptr && other_elem != nullptr) {



6351     return this_one->is_reference_type(this_elem)->is_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact);
6352   }
6353   if (this_elem == nullptr && other_elem == nullptr) {
6354     return this_one->klass()->is_subtype_of(other->klass());
6355   }
6356   return false;
6357 }
6358 
6359 bool TypeAryKlassPtr::is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
6360   return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
6361 }
6362 
6363 template <class T1, class T2> bool TypePtr::is_same_java_type_as_helper_for_array(const T1* this_one, const T2* other) {
6364   static_assert(std::is_base_of<T2, T1>::value, "");
6365 
6366   int dummy;
6367   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
6368 
6369   if (!this_one->is_array_type(other) ||
6370       !this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) {

6423   }
6424 
6425   const TypePtr* this_elem = this_one->elem()->make_ptr();
6426   const TypePtr* other_elem = other_ary->elem()->make_ptr();
6427   if (other_elem != nullptr && this_elem != nullptr) {
6428     return this_one->is_reference_type(this_elem)->maybe_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact);
6429   }
6430   if (other_elem == nullptr && this_elem == nullptr) {
6431     return this_one->klass()->is_subtype_of(other->klass());
6432   }
6433   return false;
6434 }
6435 
6436 bool TypeAryKlassPtr::maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
6437   return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
6438 }
6439 
6440 //------------------------------xdual------------------------------------------
6441 // Dual: compute field-by-field dual
6442 const Type    *TypeAryKlassPtr::xdual() const {
6443   return new TypeAryKlassPtr(dual_ptr(), elem()->dual(), klass(), dual_offset());
6444 }
6445 
6446 // Is there a single ciKlass* that can represent that type?
6447 ciKlass* TypeAryKlassPtr::exact_klass_helper() const {
6448   if (elem()->isa_klassptr()) {
6449     ciKlass* k = elem()->is_klassptr()->exact_klass_helper();
6450     if (k == nullptr) {
6451       return nullptr;
6452     }
6453     k = ciObjArrayKlass::make(k);

6454     return k;
6455   }
6456 
6457   return klass();
6458 }
6459 
6460 ciKlass* TypeAryKlassPtr::klass() const {
6461   if (_klass != nullptr) {
6462     return _klass;
6463   }
6464   ciKlass* k = nullptr;
6465   if (elem()->isa_klassptr()) {
6466     // leave null
6467   } else if ((elem()->base() == Type::Top) ||
6468              (elem()->base() == Type::Bottom)) {
6469   } else {
6470     k = ciTypeArrayKlass::make(elem()->basic_type());
6471     ((TypeAryKlassPtr*)this)->_klass = k;
6472   }
6473   return k;
6474 }
6475 
6476 //------------------------------dump2------------------------------------------
6477 // Dump Klass Type
6478 #ifndef PRODUCT
6479 void TypeAryKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
6480   st->print("aryklassptr:[");
6481   _elem->dump2(d, depth, st);
6482   _interfaces->dump(st);
6483   st->print(":%s", ptr_msg[_ptr]);








6484   dump_offset(st);
6485 }
6486 #endif
6487 
6488 const Type* TypeAryKlassPtr::base_element_type(int& dims) const {
6489   const Type* elem = this->elem();
6490   dims = 1;
6491   while (elem->isa_aryklassptr()) {
6492     elem = elem->is_aryklassptr()->elem();
6493     dims++;
6494   }
6495   return elem;
6496 }
6497 
6498 //=============================================================================
6499 // Convenience common pre-built types.
6500 
6501 //------------------------------make-------------------------------------------
6502 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
6503   return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();












6504 }
6505 
6506 //------------------------------make-------------------------------------------
6507 const TypeFunc *TypeFunc::make(ciMethod* method) {
6508   Compile* C = Compile::current();
6509   const TypeFunc* tf = C->last_tf(method); // check cache
6510   if (tf != nullptr)  return tf;  // The hit rate here is almost 50%.
6511   const TypeTuple *domain;
6512   if (method->is_static()) {
6513     domain = TypeTuple::make_domain(nullptr, method->signature(), ignore_interfaces);
6514   } else {
6515     domain = TypeTuple::make_domain(method->holder(), method->signature(), ignore_interfaces);

















6516   }
6517   const TypeTuple *range  = TypeTuple::make_range(method->signature(), ignore_interfaces);
6518   tf = TypeFunc::make(domain, range);
6519   C->set_last_tf(method, tf);  // fill cache
6520   return tf;
6521 }
6522 
6523 //------------------------------meet-------------------------------------------
6524 // Compute the MEET of two types.  It returns a new Type object.
6525 const Type *TypeFunc::xmeet( const Type *t ) const {
6526   // Perform a fast test for common case; meeting the same types together.
6527   if( this == t ) return this;  // Meeting same type-rep?
6528 
6529   // Current "this->_base" is Func
6530   switch (t->base()) {          // switch on original type
6531 
6532   case Bottom:                  // Ye Olde Default
6533     return t;
6534 
6535   default:                      // All else is a mistake
6536     typerr(t);
6537 
6538   case Top:
6539     break;
6540   }
6541   return this;                  // Return the double constant
6542 }
6543 
6544 //------------------------------xdual------------------------------------------
6545 // Dual: compute field-by-field dual
6546 const Type *TypeFunc::xdual() const {
6547   return this;
6548 }
6549 
6550 //------------------------------eq---------------------------------------------
6551 // Structural equality check for Type representations
6552 bool TypeFunc::eq( const Type *t ) const {
6553   const TypeFunc *a = (const TypeFunc*)t;
6554   return _domain == a->_domain &&
6555     _range == a->_range;


6556 }
6557 
6558 //------------------------------hash-------------------------------------------
6559 // Type-specific hashing function.
6560 uint TypeFunc::hash(void) const {
6561   return (uint)(uintptr_t)_domain + (uint)(uintptr_t)_range;
6562 }
6563 
6564 //------------------------------dump2------------------------------------------
6565 // Dump Function Type
6566 #ifndef PRODUCT
6567 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
6568   if( _range->cnt() <= Parms )
6569     st->print("void");
6570   else {
6571     uint i;
6572     for (i = Parms; i < _range->cnt()-1; i++) {
6573       _range->field_at(i)->dump2(d,depth,st);
6574       st->print("/");
6575     }
6576     _range->field_at(i)->dump2(d,depth,st);
6577   }
6578   st->print(" ");
6579   st->print("( ");
6580   if( !depth || d[this] ) {     // Check for recursive dump
6581     st->print("...)");
6582     return;
6583   }
6584   d.Insert((void*)this,(void*)this);    // Stop recursion
6585   if (Parms < _domain->cnt())
6586     _domain->field_at(Parms)->dump2(d,depth-1,st);
6587   for (uint i = Parms+1; i < _domain->cnt(); i++) {
6588     st->print(", ");
6589     _domain->field_at(i)->dump2(d,depth-1,st);
6590   }
6591   st->print(" )");
6592 }
6593 #endif
6594 
6595 //------------------------------singleton--------------------------------------
6596 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
6597 // constants (Ldi nodes).  Singletons are integer, float or double constants
6598 // or a single symbol.
6599 bool TypeFunc::singleton(void) const {
6600   return false;                 // Never a singleton
6601 }
6602 
6603 bool TypeFunc::empty(void) const {
6604   return false;                 // Never empty
6605 }
6606 
6607 
6608 BasicType TypeFunc::return_type() const{
6609   if (range()->cnt() == TypeFunc::Parms) {
6610     return T_VOID;
6611   }
6612   return range()->field_at(TypeFunc::Parms)->basic_type();
6613 }

   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "ci/ciField.hpp"
  26 #include "ci/ciFlatArray.hpp"
  27 #include "ci/ciFlatArrayKlass.hpp"
  28 #include "ci/ciInlineKlass.hpp"
  29 #include "ci/ciMethodData.hpp"
  30 #include "ci/ciObjArrayKlass.hpp"
  31 #include "ci/ciTypeFlow.hpp"
  32 #include "classfile/javaClasses.hpp"
  33 #include "classfile/symbolTable.hpp"
  34 #include "classfile/vmSymbols.hpp"
  35 #include "compiler/compileLog.hpp"
  36 #include "libadt/dict.hpp"
  37 #include "memory/oopFactory.hpp"
  38 #include "memory/resourceArea.hpp"
  39 #include "oops/instanceKlass.hpp"
  40 #include "oops/instanceMirrorKlass.hpp"
  41 #include "oops/objArrayKlass.hpp"
  42 #include "oops/typeArrayKlass.hpp"
  43 #include "opto/arraycopynode.hpp"
  44 #include "opto/callnode.hpp"
  45 #include "opto/matcher.hpp"
  46 #include "opto/node.hpp"
  47 #include "opto/opcodes.hpp"
  48 #include "opto/rangeinference.hpp"
  49 #include "opto/runtime.hpp"
  50 #include "opto/type.hpp"
  51 #include "runtime/globals.hpp"
  52 #include "runtime/stubRoutines.hpp"
  53 #include "utilities/checkedCast.hpp"
  54 #include "utilities/debug.hpp"
  55 #include "utilities/globalDefinitions.hpp"
  56 #include "utilities/ostream.hpp"
  57 #include "utilities/powerOfTwo.hpp"
  58 #include "utilities/stringUtils.hpp"
  59 
  60 // Portions of code courtesy of Clifford Click
  61 
  62 // Optimization - Graph Style
  63 
  64 // Dictionary of types shared among compilations.
  65 Dict* Type::_shared_type_dict = nullptr;
  66 const Type::Offset Type::Offset::top(Type::OffsetTop);
  67 const Type::Offset Type::Offset::bottom(Type::OffsetBot);
  68 
  69 const Type::Offset Type::Offset::meet(const Type::Offset other) const {
  70   // Either is 'TOP' offset?  Return the other offset!
  71   if (_offset == OffsetTop) return other;
  72   if (other._offset == OffsetTop) return *this;
  73   // If either is different, return 'BOTTOM' offset
  74   if (_offset != other._offset) return bottom;
  75   return Offset(_offset);
  76 }
  77 
  78 const Type::Offset Type::Offset::dual() const {
  79   if (_offset == OffsetTop) return bottom;// Map 'TOP' into 'BOTTOM'
  80   if (_offset == OffsetBot) return top;// Map 'BOTTOM' into 'TOP'
  81   return Offset(_offset);               // Map everything else into self
  82 }
  83 
  84 const Type::Offset Type::Offset::add(intptr_t offset) const {
  85   // Adding to 'TOP' offset?  Return 'TOP'!
  86   if (_offset == OffsetTop || offset == OffsetTop) return top;
  87   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
  88   if (_offset == OffsetBot || offset == OffsetBot) return bottom;
  89   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
  90   offset += (intptr_t)_offset;
  91   if (offset != (int)offset || offset == OffsetTop) return bottom;
  92 
  93   // assert( _offset >= 0 && _offset+offset >= 0, "" );
  94   // It is possible to construct a negative offset during PhaseCCP
  95 
  96   return Offset((int)offset);        // Sum valid offsets
  97 }
  98 
  99 void Type::Offset::dump2(outputStream *st) const {
 100   if (_offset == 0) {
 101     return;
 102   } else if (_offset == OffsetTop) {
 103     st->print("+top");
 104   }
 105   else if (_offset == OffsetBot) {
 106     st->print("+bot");
 107   } else if (_offset) {
 108     st->print("+%d", _offset);
 109   }
 110 }
 111 
 112 // Array which maps compiler types to Basic Types
 113 const Type::TypeInfo Type::_type_info[Type::lastype] = {
 114   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
 115   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
 116   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
 117   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
 118   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
 119   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
 120   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
 121   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
 122   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
 123   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
 124   { Bad,             T_ARRAY,      "interfaces:",   false, Node::NotAMachineReg, relocInfo::none          },  // Interfaces
 125 
 126 #if defined(PPC64)
 127   { Bad,             T_ILLEGAL,    "vectormask:",   false, Op_RegVectMask,       relocInfo::none          },  // VectorMask.
 128   { Bad,             T_ILLEGAL,    "vectora:",      false, Op_VecA,              relocInfo::none          },  // VectorA.
 129   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
 130   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD

 269   case ciTypeFlow::StateVector::T_NULL:
 270     assert(type == ciTypeFlow::StateVector::null_type(), "");
 271     return TypePtr::NULL_PTR;
 272 
 273   case ciTypeFlow::StateVector::T_LONG2:
 274     // The ciTypeFlow pass pushes a long, then the half.
 275     // We do the same.
 276     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 277     return TypeInt::TOP;
 278 
 279   case ciTypeFlow::StateVector::T_DOUBLE2:
 280     // The ciTypeFlow pass pushes double, then the half.
 281     // Our convention is the same.
 282     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 283     return Type::TOP;
 284 
 285   case T_ADDRESS:
 286     assert(type->is_return_address(), "");
 287     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 288 
 289   case T_OBJECT:
 290     return Type::get_const_type(type->unwrap())->join_speculative(type->is_null_free() ? TypePtr::NOTNULL : TypePtr::BOTTOM);
 291 
 292   default:
 293     // make sure we did not mix up the cases:
 294     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 295     assert(type != ciTypeFlow::StateVector::top_type(), "");
 296     assert(type != ciTypeFlow::StateVector::null_type(), "");
 297     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 298     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 299     assert(!type->is_return_address(), "");
 300 
 301     return Type::get_const_type(type);
 302   }
 303 }
 304 
 305 
 306 //-----------------------make_from_constant------------------------------------
 307 const Type* Type::make_from_constant(ciConstant constant, bool require_constant,
 308                                      int stable_dimension, bool is_narrow_oop,
 309                                      bool is_autobox_cache) {
 310   switch (constant.basic_type()) {
 311     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());

 361     case T_NARROWOOP: loadbt = T_OBJECT; break;
 362     case T_ARRAY:     loadbt = T_OBJECT; break;
 363     case T_ADDRESS:   loadbt = T_OBJECT; break;
 364     default:                             break;
 365   }
 366   if (conbt == loadbt) {
 367     if (is_unsigned && conbt == T_BYTE) {
 368       // LoadB (T_BYTE) with a small mask (<=8-bit) is converted to LoadUB (T_BYTE).
 369       return ciConstant(T_INT, con.as_int() & 0xFF);
 370     } else {
 371       return con;
 372     }
 373   }
 374   if (conbt == T_SHORT && loadbt == T_CHAR) {
 375     // LoadS (T_SHORT) with a small mask (<=16-bit) is converted to LoadUS (T_CHAR).
 376     return ciConstant(T_INT, con.as_int() & 0xFFFF);
 377   }
 378   return ciConstant(); // T_ILLEGAL
 379 }
 380 
 381 static const Type* make_constant_from_non_flat_array_element(ciArray* array, int off, int stable_dimension,

 382                                                    BasicType loadbt, bool is_unsigned_load) {
 383   // Decode the results of GraphKit::array_element_address.
 384   ciConstant element_value = array->element_value_by_offset(off);
 385   if (element_value.basic_type() == T_ILLEGAL) {
 386     return nullptr; // wrong offset
 387   }
 388   ciConstant con = check_mismatched_access(element_value, loadbt, is_unsigned_load);
 389 
 390   assert(con.basic_type() != T_ILLEGAL, "elembt=%s; loadbt=%s; unsigned=%d",
 391          type2name(element_value.basic_type()), type2name(loadbt), is_unsigned_load);
 392 
 393   if (con.is_valid() &&          // not a mismatched access
 394       !con.is_null_or_zero()) {  // not a default value
 395     bool is_narrow_oop = (loadbt == T_NARROWOOP);
 396     return Type::make_from_constant(con, /*require_constant=*/true, stable_dimension, is_narrow_oop, /*is_autobox_cache=*/false);
 397   }
 398   return nullptr;
 399 }
 400 
 401 static const Type* make_constant_from_flat_array_element(ciFlatArray* array, int off, int field_offset, int stable_dimension,
 402                                                          BasicType loadbt, bool is_unsigned_load) {
 403   // Decode the results of GraphKit::array_element_address.
 404   ciConstant element_value = array->field_value_by_offset(off + field_offset);
 405   if (element_value.basic_type() == T_ILLEGAL) {
 406     return nullptr; // wrong offset
 407   }
 408   ciConstant con = check_mismatched_access(element_value, loadbt, is_unsigned_load);
 409 
 410   assert(con.basic_type() != T_ILLEGAL, "elembt=%s; loadbt=%s; unsigned=%d",
 411          type2name(element_value.basic_type()), type2name(loadbt), is_unsigned_load);
 412 
 413   if (con.is_valid() &&          // not a mismatched access
 414       !con.is_null_or_zero()) {  // not a default value
 415     bool is_narrow_oop = (loadbt == T_NARROWOOP);
 416     return Type::make_from_constant(con, /*require_constant=*/true, stable_dimension, is_narrow_oop, /*is_autobox_cache=*/false);
 417   }
 418   return nullptr;
 419 }
 420 
 421 // Try to constant-fold a stable array element.
 422 const Type* Type::make_constant_from_array_element(ciArray* array, int off, int field_offset, int stable_dimension,
 423                                                    BasicType loadbt, bool is_unsigned_load) {
 424   if (array->is_flat()) {
 425     return make_constant_from_flat_array_element(array->as_flat_array(), off, field_offset, stable_dimension, loadbt, is_unsigned_load);
 426   }
 427   return make_constant_from_non_flat_array_element(array, off, stable_dimension, loadbt, is_unsigned_load);
 428 }
 429 
 430 const Type* Type::make_constant_from_field(ciInstance* holder, int off, bool is_unsigned_load, BasicType loadbt) {
 431   ciField* field;
 432   ciType* type = holder->java_mirror_type();
 433   if (type != nullptr && type->is_instance_klass() && off >= InstanceMirrorKlass::offset_of_static_fields()) {
 434     // Static field
 435     field = type->as_instance_klass()->get_field_by_offset(off, /*is_static=*/true);
 436   } else {
 437     // Instance field
 438     field = holder->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/false);
 439   }
 440   if (field == nullptr) {
 441     return nullptr; // Wrong offset
 442   }
 443   return Type::make_constant_from_field(field, holder, loadbt, is_unsigned_load);
 444 }
 445 
 446 const Type* Type::make_constant_from_field(ciField* field, ciInstance* holder,
 447                                            BasicType loadbt, bool is_unsigned_load) {
 448   if (!field->is_constant()) {
 449     return nullptr; // Non-constant field

 622   const Type **ffalse =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 623   ffalse[0] = Type::CONTROL;
 624   ffalse[1] = Type::TOP;
 625   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 626 
 627   const Type **fneither =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 628   fneither[0] = Type::TOP;
 629   fneither[1] = Type::TOP;
 630   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 631 
 632   const Type **ftrue =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 633   ftrue[0] = Type::TOP;
 634   ftrue[1] = Type::CONTROL;
 635   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 636 
 637   const Type **floop =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 638   floop[0] = Type::CONTROL;
 639   floop[1] = TypeInt::INT;
 640   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 641 
 642   TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, Offset(0));
 643   TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, Offset::bottom);
 644   TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, Offset::bottom);
 645 
 646   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 647   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 648 
 649   const Type **fmembar = TypeTuple::fields(0);
 650   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 651 
 652   const Type **fsc = (const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 653   fsc[0] = TypeInt::CC;
 654   fsc[1] = Type::MEMORY;
 655   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 656 
 657   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 658   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 659   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 660   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 661                                            false, nullptr, Offset(oopDesc::mark_offset_in_bytes()));
 662   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 663                                            false, nullptr, Offset(oopDesc::klass_offset_in_bytes()));
 664   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, Offset::bottom, TypeOopPtr::InstanceBot);
 665 
 666   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, nullptr, Offset::bottom);
 667 
 668   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 669   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 670 
 671   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 672 
 673   mreg2type[Op_Node] = Type::BOTTOM;
 674   mreg2type[Op_Set ] = nullptr;
 675   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 676   mreg2type[Op_RegI] = TypeInt::INT;
 677   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 678   mreg2type[Op_RegF] = Type::FLOAT;
 679   mreg2type[Op_RegD] = Type::DOUBLE;
 680   mreg2type[Op_RegL] = TypeLong::LONG;
 681   mreg2type[Op_RegFlags] = TypeInt::CC;
 682 
 683   GrowableArray<ciInstanceKlass*> array_interfaces;
 684   array_interfaces.push(current->env()->Cloneable_klass());
 685   array_interfaces.push(current->env()->Serializable_klass());
 686   TypeAryPtr::_array_interfaces = TypeInterfaces::make(&array_interfaces);
 687   TypeAryKlassPtr::_array_interfaces = TypeAryPtr::_array_interfaces;
 688 
 689   TypeAryPtr::BOTTOM = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::BOTTOM, TypeInt::POS, false, false, false, false, false), nullptr, false, Offset::bottom);
 690   TypeAryPtr::RANGE   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS, false, false, false, false, false), nullptr /* current->env()->Object_klass() */, false, Offset(arrayOopDesc::length_offset_in_bytes()));
 691 
 692   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS, false, false, false, false, false), nullptr /*ciArrayKlass::make(o)*/,  false,  Offset::bottom);
 693 
 694 #ifdef _LP64
 695   if (UseCompressedOops) {
 696     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 697     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 698   } else
 699 #endif
 700   {
 701     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 702     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS, false, false, false, false, false), nullptr /*ciArrayKlass::make(o)*/,  false,  Offset::bottom);
 703   }
 704   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS, false, false, true, true, true), ciTypeArrayKlass::make(T_BYTE),   true,  Offset::bottom);
 705   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS, false, false, true, true, true), ciTypeArrayKlass::make(T_SHORT),  true,  Offset::bottom);
 706   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS, false, false, true, true, true), ciTypeArrayKlass::make(T_CHAR),   true,  Offset::bottom);
 707   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS, false, false, true, true, true), ciTypeArrayKlass::make(T_INT),    true,  Offset::bottom);
 708   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS, false, false, true, true, true), ciTypeArrayKlass::make(T_LONG),   true,  Offset::bottom);
 709   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS, false, false, true, true, true), ciTypeArrayKlass::make(T_FLOAT),  true,  Offset::bottom);
 710   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS, false, false, true, true, true), ciTypeArrayKlass::make(T_DOUBLE), true,  Offset::bottom);
 711   TypeAryPtr::INLINES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS, /* stable= */ false, /* flat= */ true, false, false, false), nullptr, false, Offset::bottom);
 712 
 713   // Nobody should ask _array_body_type[T_NARROWOOP]. Use null as assert.
 714   TypeAryPtr::_array_body_type[T_NARROWOOP] = nullptr;
 715   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 716   TypeAryPtr::_array_body_type[T_FLAT_ELEMENT] = TypeAryPtr::OOPS;
 717   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 718   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 719   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 720   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 721   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 722   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 723   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 724   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 725   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 726 
 727   TypeInstKlassPtr::OBJECT = TypeInstKlassPtr::make(TypePtr::NotNull, current->env()->Object_klass(), Offset(0));
 728   TypeInstKlassPtr::OBJECT_OR_NULL = TypeInstKlassPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), Offset(0));
 729 
 730   const Type **fi2c = TypeTuple::fields(2);
 731   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 732   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 733   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 734 
 735   const Type **intpair = TypeTuple::fields(2);
 736   intpair[0] = TypeInt::INT;
 737   intpair[1] = TypeInt::INT;
 738   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 739 
 740   const Type **longpair = TypeTuple::fields(2);
 741   longpair[0] = TypeLong::LONG;
 742   longpair[1] = TypeLong::LONG;
 743   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 744 
 745   const Type **intccpair = TypeTuple::fields(2);
 746   intccpair[0] = TypeInt::INT;
 747   intccpair[1] = TypeInt::CC;
 748   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 749 
 750   const Type **longccpair = TypeTuple::fields(2);
 751   longccpair[0] = TypeLong::LONG;
 752   longccpair[1] = TypeInt::CC;
 753   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 754 
 755   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 756   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 757   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 758   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 759   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 760   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 761   _const_basic_type[T_INT]         = TypeInt::INT;
 762   _const_basic_type[T_LONG]        = TypeLong::LONG;
 763   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 764   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 765   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 766   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 767   _const_basic_type[T_FLAT_ELEMENT] = TypeInstPtr::BOTTOM;
 768   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 769   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 770   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 771 
 772   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 773   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 774   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 775   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 776   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 777   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 778   _zero_type[T_INT]         = TypeInt::ZERO;
 779   _zero_type[T_LONG]        = TypeLong::ZERO;
 780   _zero_type[T_FLOAT]       = TypeF::ZERO;
 781   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 782   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 783   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
 784   _zero_type[T_FLAT_ELEMENT] = TypePtr::NULL_PTR;
 785   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 786   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 787 
 788   // get_zero_type() should not happen for T_CONFLICT
 789   _zero_type[T_CONFLICT]= nullptr;
 790 
 791   TypeVect::VECTMASK = (TypeVect*)(new TypeVectMask(T_BOOLEAN, MaxVectorSize))->hashcons();
 792   mreg2type[Op_RegVectMask] = TypeVect::VECTMASK;
 793 
 794   if (Matcher::supports_scalable_vector()) {
 795     TypeVect::VECTA = TypeVect::make(T_BYTE, Matcher::scalable_vector_reg_size(T_BYTE));
 796   }
 797 
 798   // Vector predefined types, it needs initialized _const_basic_type[].
 799   if (Matcher::vector_size_supported(T_BYTE, 4)) {
 800     TypeVect::VECTS = TypeVect::make(T_BYTE, 4);
 801   }
 802   if (Matcher::vector_size_supported(T_FLOAT, 2)) {
 803     TypeVect::VECTD = TypeVect::make(T_FLOAT, 2);
 804   }

1039   ~VerifyMeet() {
1040     assert(_C->_type_verify->_depth != 0, "");
1041     _C->_type_verify->_depth--;
1042     if (_C->_type_verify->_depth == 0) {
1043       _C->_type_verify->_cache.trunc_to(0);
1044     }
1045   }
1046 
1047   const Type* meet(const Type* t1, const Type* t2) const {
1048     return _C->_type_verify->meet(t1, t2);
1049   }
1050 
1051   void add(const Type* t1, const Type* t2, const Type* res) const {
1052     _C->_type_verify->add(t1, t2, res);
1053   }
1054 };
1055 
1056 void Type::check_symmetrical(const Type* t, const Type* mt, const VerifyMeet& verify) const {
1057   Compile* C = Compile::current();
1058   const Type* mt2 = verify.meet(t, this);
1059 
1060   // Verify that:
1061   //      this meet t == t meet this
1062   if (mt != mt2) {
1063     tty->print_cr("=== Meet Not Commutative ===");
1064     tty->print("t           = ");   t->dump(); tty->cr();
1065     tty->print("this        = ");      dump(); tty->cr();
1066     tty->print("t meet this = "); mt2->dump(); tty->cr();
1067     tty->print("this meet t = ");  mt->dump(); tty->cr();
1068     fatal("meet not commutative");
1069   }
1070   const Type* dual_join = mt->_dual;
1071   const Type* t2t    = verify.meet(dual_join,t->_dual);
1072   const Type* t2this = verify.meet(dual_join,this->_dual);
1073 
1074   // Interface meet Oop is Not Symmetric:
1075   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
1076   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
1077 
1078   // Verify that:
1079   // 1)     mt_dual meet t_dual    == t_dual
1080   //    which corresponds to
1081   //       !(t meet this)  meet !t ==
1082   //       (!t join !this) meet !t == !t
1083   // 2)    mt_dual meet this_dual     == this_dual
1084   //    which corresponds to
1085   //       !(t meet this)  meet !this ==
1086   //       (!t join !this) meet !this == !this
1087   if (t2t != t->_dual || t2this != this->_dual) {
1088     tty->print_cr("=== Meet Not Symmetric ===");
1089     tty->print("t   =                   ");              t->dump(); tty->cr();
1090     tty->print("this=                   ");                 dump(); tty->cr();
1091     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
1092 
1093     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
1094     tty->print("this_dual=              ");          _dual->dump(); tty->cr();
1095     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
1096 
1097     // 1)
1098     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
1099     // 2)
1100     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
1101     tty->cr();
1102     tty->print_cr("Fail: ");
1103     if (t2t != t->_dual) {
1104       tty->print_cr("- mt_dual meet t_dual != t_dual");
1105     }
1106     if (t2this != this->_dual) {
1107       tty->print_cr("- mt_dual meet this_dual != this_dual");
1108     }
1109     tty->cr();
1110 
1111     fatal("meet not symmetric");
1112   }
1113 }
1114 #endif
1115 
1116 //------------------------------meet-------------------------------------------
1117 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
1118 // commutative and the lattice is symmetric.
1119 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
1120   if (isa_narrowoop() && t->isa_narrowoop()) {
1121     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
1122     return result->make_narrowoop();
1123   }
1124   if (isa_narrowklass() && t->isa_narrowklass()) {
1125     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
1126     return result->make_narrowklass();
1127   }
1128 
1129 #ifdef ASSERT
1130   Compile* C = Compile::current();
1131   VerifyMeet verify(C);
1132 #endif
1133 
1134   const Type *this_t = maybe_remove_speculative(include_speculative);
1135   t = t->maybe_remove_speculative(include_speculative);
1136 
1137   const Type *mt = this_t->xmeet(t);
1138 #ifdef ASSERT
1139   verify.add(this_t, t, mt);
1140   if (isa_narrowoop() || t->isa_narrowoop()) {
1141     return mt;
1142   }
1143   if (isa_narrowklass() || t->isa_narrowklass()) {
1144     return mt;
1145   }
1146   // TODO 8350865 This currently triggers a verification failure, the code around "// Even though MyValue is final" needs adjustments
1147   if ((this_t->isa_ptr() && this_t->is_ptr()->is_not_flat()) ||
1148       (this_t->_dual->isa_ptr() && this_t->_dual->is_ptr()->is_not_flat())) return mt;
1149   this_t->check_symmetrical(t, mt, verify);
1150   const Type *mt_dual = verify.meet(this_t->_dual, t->_dual);
1151   this_t->_dual->check_symmetrical(t->_dual, mt_dual, verify);
1152 #endif
1153   return mt;
1154 }
1155 
1156 //------------------------------xmeet------------------------------------------
1157 // Compute the MEET of two types.  It returns a new Type object.
1158 const Type *Type::xmeet( const Type *t ) const {
1159   // Perform a fast test for common case; meeting the same types together.
1160   if( this == t ) return this;  // Meeting same type-rep?
1161 
1162   // Meeting TOP with anything?
1163   if( _base == Top ) return t;
1164 
1165   // Meeting BOTTOM with anything?
1166   if( _base == Bottom ) return BOTTOM;
1167 
1168   // Current "this->_base" is one of: Bad, Multi, Control, Top,

2159 void TypeLong::dump_verbose() const {
2160   TypeIntHelper::int_type_dump(this, tty, true);
2161 }
2162 #endif
2163 
2164 //=============================================================================
2165 // Convenience common pre-built types.
2166 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
2167 const TypeTuple *TypeTuple::IFFALSE;
2168 const TypeTuple *TypeTuple::IFTRUE;
2169 const TypeTuple *TypeTuple::IFNEITHER;
2170 const TypeTuple *TypeTuple::LOOPBODY;
2171 const TypeTuple *TypeTuple::MEMBAR;
2172 const TypeTuple *TypeTuple::STORECONDITIONAL;
2173 const TypeTuple *TypeTuple::START_I2C;
2174 const TypeTuple *TypeTuple::INT_PAIR;
2175 const TypeTuple *TypeTuple::LONG_PAIR;
2176 const TypeTuple *TypeTuple::INT_CC_PAIR;
2177 const TypeTuple *TypeTuple::LONG_CC_PAIR;
2178 
2179 static void collect_inline_fields(ciInlineKlass* vk, const Type** field_array, uint& pos) {
2180   for (int i = 0; i < vk->nof_declared_nonstatic_fields(); i++) {
2181     ciField* field = vk->declared_nonstatic_field_at(i);
2182     if (field->is_flat()) {
2183       collect_inline_fields(field->type()->as_inline_klass(), field_array, pos);
2184       if (!field->is_null_free()) {
2185         // Use T_INT instead of T_BOOLEAN here because the upper bits can contain garbage if the holder
2186         // is null and C2 will only zero them for T_INT assuming that T_BOOLEAN is already canonicalized.
2187         field_array[pos++] = Type::get_const_basic_type(T_INT);
2188       }
2189     } else {
2190       BasicType bt = field->type()->basic_type();
2191       const Type* ft = Type::get_const_type(field->type());
2192       field_array[pos++] = ft;
2193       if (type2size[bt] == 2) {
2194         field_array[pos++] = Type::HALF;
2195       }
2196     }
2197   }
2198 }
2199 
2200 //------------------------------make-------------------------------------------
2201 // Make a TypeTuple from the range of a method signature
2202 const TypeTuple *TypeTuple::make_range(ciSignature* sig, InterfaceHandling interface_handling, bool ret_vt_fields) {
2203   ciType* return_type = sig->return_type();
2204   uint arg_cnt = return_type->size();
2205   if (ret_vt_fields) {
2206     arg_cnt = return_type->as_inline_klass()->inline_arg_slots() + 1;
2207     // InlineTypeNode::NullMarker field used for null checking
2208     arg_cnt++;
2209   }
2210   const Type **field_array = fields(arg_cnt);
2211   switch (return_type->basic_type()) {
2212   case T_LONG:
2213     field_array[TypeFunc::Parms]   = TypeLong::LONG;
2214     field_array[TypeFunc::Parms+1] = Type::HALF;
2215     break;
2216   case T_DOUBLE:
2217     field_array[TypeFunc::Parms]   = Type::DOUBLE;
2218     field_array[TypeFunc::Parms+1] = Type::HALF;
2219     break;
2220   case T_OBJECT:
2221     if (return_type->is_inlinetype() && ret_vt_fields) {
2222       uint pos = TypeFunc::Parms;
2223       field_array[pos++] = get_const_type(return_type); // Oop might be null when returning as fields
2224       collect_inline_fields(return_type->as_inline_klass(), field_array, pos);
2225       // InlineTypeNode::NullMarker field used for null checking
2226       field_array[pos++] = get_const_basic_type(T_BOOLEAN);
2227       assert(pos == (TypeFunc::Parms + arg_cnt), "out of bounds");
2228       break;
2229     } else {
2230       field_array[TypeFunc::Parms] = get_const_type(return_type, interface_handling)->join_speculative(TypePtr::BOTTOM);
2231     }
2232     break;
2233   case T_ARRAY:
2234   case T_BOOLEAN:
2235   case T_CHAR:
2236   case T_FLOAT:
2237   case T_BYTE:
2238   case T_SHORT:
2239   case T_INT:
2240     field_array[TypeFunc::Parms] = get_const_type(return_type, interface_handling);
2241     break;
2242   case T_VOID:
2243     break;
2244   default:
2245     ShouldNotReachHere();
2246   }
2247   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2248 }
2249 
2250 // Make a TypeTuple from the domain of a method signature
2251 const TypeTuple *TypeTuple::make_domain(ciMethod* method, InterfaceHandling interface_handling, bool vt_fields_as_args) {
2252   ciSignature* sig = method->signature();
2253   uint arg_cnt = sig->size() + (method->is_static() ? 0 : 1);
2254   if (vt_fields_as_args) {
2255     arg_cnt = 0;
2256     assert(method->get_sig_cc() != nullptr, "Should have scalarized signature");
2257     for (ExtendedSignature sig_cc = ExtendedSignature(method->get_sig_cc(), SigEntryFilter()); !sig_cc.at_end(); ++sig_cc) {
2258       arg_cnt += type2size[(*sig_cc)._bt];
2259     }
2260   }
2261 
2262   uint pos = TypeFunc::Parms;
2263   const Type** field_array = fields(arg_cnt);
2264   if (!method->is_static()) {
2265     ciInstanceKlass* recv = method->holder();
2266     if (vt_fields_as_args && recv->is_inlinetype() && recv->as_inline_klass()->can_be_passed_as_fields() && method->is_scalarized_arg(0)) {
2267       collect_inline_fields(recv->as_inline_klass(), field_array, pos);
2268     } else {
2269       field_array[pos++] = get_const_type(recv, interface_handling)->join_speculative(TypePtr::NOTNULL);
2270     }
2271   }
2272 
2273   int i = 0;
2274   while (pos < TypeFunc::Parms + arg_cnt) {
2275     ciType* type = sig->type_at(i);
2276     BasicType bt = type->basic_type();
2277 
2278     switch (bt) {
2279     case T_LONG:
2280       field_array[pos++] = TypeLong::LONG;
2281       field_array[pos++] = Type::HALF;
2282       break;
2283     case T_DOUBLE:
2284       field_array[pos++] = Type::DOUBLE;
2285       field_array[pos++] = Type::HALF;
2286       break;
2287     case T_OBJECT:
2288       if (type->is_inlinetype() && vt_fields_as_args && method->is_scalarized_arg(i + (method->is_static() ? 0 : 1))) {
2289         // InlineTypeNode::NullMarker field used for null checking
2290         field_array[pos++] = get_const_basic_type(T_BOOLEAN);
2291         collect_inline_fields(type->as_inline_klass(), field_array, pos);
2292       } else {
2293         field_array[pos++] = get_const_type(type, interface_handling);
2294       }
2295       break;
2296     case T_ARRAY:
2297     case T_FLOAT:
2298     case T_INT:
2299       field_array[pos++] = get_const_type(type, interface_handling);
2300       break;
2301     case T_BOOLEAN:
2302     case T_CHAR:
2303     case T_BYTE:
2304     case T_SHORT:
2305       field_array[pos++] = TypeInt::INT;
2306       break;
2307     default:
2308       ShouldNotReachHere();
2309     }
2310     i++;
2311   }
2312   assert(pos == TypeFunc::Parms + arg_cnt, "wrong number of arguments");
2313 
2314   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2315 }
2316 
2317 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
2318   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
2319 }
2320 
2321 //------------------------------fields-----------------------------------------
2322 // Subroutine call type with space allocated for argument types
2323 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
2324 const Type **TypeTuple::fields( uint arg_cnt ) {
2325   const Type **flds = (const Type **)(Compile::current()->type_arena()->AmallocWords((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
2326   flds[TypeFunc::Control  ] = Type::CONTROL;
2327   flds[TypeFunc::I_O      ] = Type::ABIO;
2328   flds[TypeFunc::Memory   ] = Type::MEMORY;
2329   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
2330   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
2331 
2332   return flds;

2427     if (_fields[i]->empty())  return true;
2428   }
2429   return false;
2430 }
2431 
2432 //=============================================================================
2433 // Convenience common pre-built types.
2434 
2435 inline const TypeInt* normalize_array_size(const TypeInt* size) {
2436   // Certain normalizations keep us sane when comparing types.
2437   // We do not want arrayOop variables to differ only by the wideness
2438   // of their index types.  Pick minimum wideness, since that is the
2439   // forced wideness of small ranges anyway.
2440   if (size->_widen != Type::WidenMin)
2441     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
2442   else
2443     return size;
2444 }
2445 
2446 //------------------------------make-------------------------------------------
2447 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable,
2448                              bool flat, bool not_flat, bool not_null_free, bool atomic) {
2449   if (UseCompressedOops && elem->isa_oopptr()) {
2450     elem = elem->make_narrowoop();
2451   }
2452   size = normalize_array_size(size);
2453   return (TypeAry*)(new TypeAry(elem, size, stable, flat, not_flat, not_null_free, atomic))->hashcons();
2454 }
2455 
2456 //------------------------------meet-------------------------------------------
2457 // Compute the MEET of two types.  It returns a new Type object.
2458 const Type *TypeAry::xmeet( const Type *t ) const {
2459   // Perform a fast test for common case; meeting the same types together.
2460   if( this == t ) return this;  // Meeting same type-rep?
2461 
2462   // Current "this->_base" is Ary
2463   switch (t->base()) {          // switch on original type
2464 
2465   case Bottom:                  // Ye Olde Default
2466     return t;
2467 
2468   default:                      // All else is a mistake
2469     typerr(t);
2470 
2471   case Array: {                 // Meeting 2 arrays?
2472     const TypeAry* a = t->is_ary();
2473     const Type* size = _size->xmeet(a->_size);
2474     const TypeInt* isize = size->isa_int();
2475     if (isize == nullptr) {
2476       assert(size == Type::TOP || size == Type::BOTTOM, "");
2477       return size;
2478     }
2479     return TypeAry::make(_elem->meet_speculative(a->_elem),
2480                          isize, _stable && a->_stable,
2481                          _flat && a->_flat,
2482                          _not_flat && a->_not_flat,
2483                          _not_null_free && a->_not_null_free,
2484                          _atomic && a->_atomic);
2485   }
2486   case Top:
2487     break;
2488   }
2489   return this;                  // Return the double constant
2490 }
2491 
2492 //------------------------------xdual------------------------------------------
2493 // Dual: compute field-by-field dual
2494 const Type *TypeAry::xdual() const {
2495   const TypeInt* size_dual = _size->dual()->is_int();
2496   size_dual = normalize_array_size(size_dual);
2497   return new TypeAry(_elem->dual(), size_dual, !_stable, !_flat, !_not_flat, !_not_null_free, !_atomic);
2498 }
2499 
2500 //------------------------------eq---------------------------------------------
2501 // Structural equality check for Type representations
2502 bool TypeAry::eq( const Type *t ) const {
2503   const TypeAry *a = (const TypeAry*)t;
2504   return _elem == a->_elem &&
2505     _stable == a->_stable &&
2506     _size == a->_size &&
2507     _flat == a->_flat &&
2508     _not_flat == a->_not_flat &&
2509     _not_null_free == a->_not_null_free &&
2510     _atomic == a->_atomic;
2511 
2512 }
2513 
2514 //------------------------------hash-------------------------------------------
2515 // Type-specific hashing function.
2516 uint TypeAry::hash(void) const {
2517   return (uint)(uintptr_t)_elem + (uint)(uintptr_t)_size + (uint)(_stable ? 43 : 0) +
2518       (uint)(_flat ? 44 : 0) + (uint)(_not_flat ? 45 : 0) + (uint)(_not_null_free ? 46 : 0) + (uint)(_atomic ? 47 : 0);
2519 }
2520 
2521 /**
2522  * Return same type without a speculative part in the element
2523  */
2524 const TypeAry* TypeAry::remove_speculative() const {
2525   return make(_elem->remove_speculative(), _size, _stable, _flat, _not_flat, _not_null_free, _atomic);
2526 }
2527 
2528 /**
2529  * Return same type with cleaned up speculative part of element
2530  */
2531 const Type* TypeAry::cleanup_speculative() const {
2532   return make(_elem->cleanup_speculative(), _size, _stable, _flat, _not_flat, _not_null_free, _atomic);
2533 }
2534 
2535 /**
2536  * Return same type but with a different inline depth (used for speculation)
2537  *
2538  * @param depth  depth to meet with
2539  */
2540 const TypePtr* TypePtr::with_inline_depth(int depth) const {
2541   if (!UseInlineDepthForSpeculativeTypes) {
2542     return this;
2543   }
2544   return make(AnyPtr, _ptr, _offset, _speculative, depth);
2545 }
2546 
2547 //------------------------------dump2------------------------------------------
2548 #ifndef PRODUCT
2549 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2550   if (_stable)  st->print("stable:");
2551   if (_flat) st->print("flat:");
2552   if (Verbose) {
2553     if (_not_flat) st->print("not flat:");
2554     if (_not_null_free) st->print("not null free:");
2555   }
2556   if (_atomic) st->print("atomic:");
2557   _elem->dump2(d, depth, st);
2558   st->print("[");
2559   _size->dump2(d, depth, st);
2560   st->print("]");
2561 }
2562 #endif
2563 
2564 //------------------------------singleton--------------------------------------
2565 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2566 // constants (Ldi nodes).  Singletons are integer, float or double constants
2567 // or a single symbol.
2568 bool TypeAry::singleton(void) const {
2569   return false;                 // Never a singleton
2570 }
2571 
2572 bool TypeAry::empty(void) const {
2573   return _elem->empty() || _size->empty();
2574 }
2575 
2576 //--------------------------ary_must_be_exact----------------------------------
2577 bool TypeAry::ary_must_be_exact() const {
2578   // This logic looks at the element type of an array, and returns true
2579   // if the element type is either a primitive or a final instance class.
2580   // In such cases, an array built on this ary must have no subclasses.
2581   if (_elem == BOTTOM)      return false;  // general array not exact
2582   if (_elem == TOP   )      return false;  // inverted general array not exact
2583   const TypeOopPtr*  toop = nullptr;
2584   if (UseCompressedOops && _elem->isa_narrowoop()) {
2585     toop = _elem->make_ptr()->isa_oopptr();
2586   } else {
2587     toop = _elem->isa_oopptr();
2588   }
2589   if (!toop)                return true;   // a primitive type, like int
2590   if (!toop->is_loaded())   return false;  // unloaded class
2591   const TypeInstPtr* tinst;
2592   if (_elem->isa_narrowoop())
2593     tinst = _elem->make_ptr()->isa_instptr();
2594   else
2595     tinst = _elem->isa_instptr();
2596   if (tinst) {
2597     if (tinst->instance_klass()->is_final()) {
2598       // Even though MyValue is final, [LMyValue is only exact if the array
2599       // is (not) null-free due to null-free [LMyValue <: null-able [LMyValue.
2600       // TODO 8350865 If we know that the array can't be null-free, it's allowed to be exact, right?
2601       // If so, we should add '&& !_not_null_free'
2602       if (tinst->is_inlinetypeptr() && (tinst->ptr() != TypePtr::NotNull)) {
2603         return false;
2604       }
2605       return true;
2606     }
2607     return false;
2608   }
2609   const TypeAryPtr*  tap;
2610   if (_elem->isa_narrowoop())
2611     tap = _elem->make_ptr()->isa_aryptr();
2612   else
2613     tap = _elem->isa_aryptr();
2614   if (tap)
2615     return tap->ary()->ary_must_be_exact();
2616   return false;
2617 }
2618 
2619 //==============================TypeVect=======================================
2620 // Convenience common pre-built types.
2621 const TypeVect* TypeVect::VECTA = nullptr; // vector length agnostic
2622 const TypeVect* TypeVect::VECTS = nullptr; //  32-bit vectors
2623 const TypeVect* TypeVect::VECTD = nullptr; //  64-bit vectors
2624 const TypeVect* TypeVect::VECTX = nullptr; // 128-bit vectors
2625 const TypeVect* TypeVect::VECTY = nullptr; // 256-bit vectors
2626 const TypeVect* TypeVect::VECTZ = nullptr; // 512-bit vectors
2627 const TypeVect* TypeVect::VECTMASK = nullptr; // predicate/mask vector
2628 

2769 
2770 //=============================================================================
2771 // Convenience common pre-built types.
2772 const TypePtr *TypePtr::NULL_PTR;
2773 const TypePtr *TypePtr::NOTNULL;
2774 const TypePtr *TypePtr::BOTTOM;
2775 
2776 //------------------------------meet-------------------------------------------
2777 // Meet over the PTR enum
2778 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2779   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2780   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2781   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2782   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2783   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2784   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2785   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2786 };
2787 
2788 //------------------------------make-------------------------------------------
2789 const TypePtr* TypePtr::make(TYPES t, enum PTR ptr, Offset offset, const TypePtr* speculative, int inline_depth) {
2790   return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2791 }
2792 
2793 //------------------------------cast_to_ptr_type-------------------------------
2794 const TypePtr* TypePtr::cast_to_ptr_type(PTR ptr) const {
2795   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2796   if( ptr == _ptr ) return this;
2797   return make(_base, ptr, _offset, _speculative, _inline_depth);
2798 }
2799 
2800 //------------------------------get_con----------------------------------------
2801 intptr_t TypePtr::get_con() const {
2802   assert( _ptr == Null, "" );
2803   return offset();
2804 }
2805 
2806 //------------------------------meet-------------------------------------------
2807 // Compute the MEET of two types.  It returns a new Type object.
2808 const Type *TypePtr::xmeet(const Type *t) const {
2809   const Type* res = xmeet_helper(t);
2810   if (res->isa_ptr() == nullptr) {
2811     return res;
2812   }
2813 
2814   const TypePtr* res_ptr = res->is_ptr();
2815   if (res_ptr->speculative() != nullptr) {
2816     // type->speculative() is null means that speculation is no better
2817     // than type, i.e. type->speculative() == type. So there are 2
2818     // ways to represent the fact that we have no useful speculative
2819     // data and we should use a single one to be able to test for
2820     // equality between types. Check whether type->speculative() ==
2821     // type and set speculative to null if it is the case.
2822     if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2823       return res_ptr->remove_speculative();

2857     int depth = meet_inline_depth(tp->inline_depth());
2858     return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2859   }
2860   case RawPtr:                  // For these, flip the call around to cut down
2861   case OopPtr:
2862   case InstPtr:                 // on the cases I have to handle.
2863   case AryPtr:
2864   case MetadataPtr:
2865   case KlassPtr:
2866   case InstKlassPtr:
2867   case AryKlassPtr:
2868     return t->xmeet(this);      // Call in reverse direction
2869   default:                      // All else is a mistake
2870     typerr(t);
2871 
2872   }
2873   return this;
2874 }
2875 
2876 //------------------------------meet_offset------------------------------------
2877 Type::Offset TypePtr::meet_offset(int offset) const {
2878   return _offset.meet(Offset(offset));





2879 }
2880 
2881 //------------------------------dual_offset------------------------------------
2882 Type::Offset TypePtr::dual_offset() const {
2883   return _offset.dual();


2884 }
2885 
2886 //------------------------------xdual------------------------------------------
2887 // Dual: compute field-by-field dual
2888 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2889   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2890 };
2891 
2892 const TypePtr::FlatInArray TypePtr::flat_in_array_dual[Uninitialized] = {
2893   /* TopFlat   -> */ MaybeFlat,
2894   /* Flat      -> */ NotFlat,
2895   /* NotFlat   -> */ Flat,
2896   /* MaybeFlat -> */ TopFlat
2897 };
2898 
2899 const char* const TypePtr::flat_in_array_msg[Uninitialized] = {
2900   "TOP flat in array", "flat in array", "not flat in array", "maybe flat in array"
2901 };
2902 
2903 const Type *TypePtr::xdual() const {
2904   return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2905 }
2906 
2907 //------------------------------xadd_offset------------------------------------
2908 Type::Offset TypePtr::xadd_offset(intptr_t offset) const {
2909   return _offset.add(offset);











2910 }
2911 
2912 //------------------------------add_offset-------------------------------------
2913 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2914   return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2915 }
2916 
2917 const TypePtr *TypePtr::with_offset(intptr_t offset) const {
2918   return make(AnyPtr, _ptr, Offset(offset), _speculative, _inline_depth);
2919 }
2920 
2921 //------------------------------eq---------------------------------------------
2922 // Structural equality check for Type representations
2923 bool TypePtr::eq( const Type *t ) const {
2924   const TypePtr *a = (const TypePtr*)t;
2925   return _ptr == a->ptr() && _offset == a->_offset && eq_speculative(a) && _inline_depth == a->_inline_depth;
2926 }
2927 
2928 //------------------------------hash-------------------------------------------
2929 // Type-specific hashing function.
2930 uint TypePtr::hash(void) const {
2931   return (uint)_ptr + (uint)offset() + (uint)hash_speculative() + (uint)_inline_depth;
2932 }
2933 
2934 /**
2935  * Return same type without a speculative part
2936  */
2937 const TypePtr* TypePtr::remove_speculative() const {
2938   if (_speculative == nullptr) {
2939     return this;
2940   }
2941   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2942   return make(AnyPtr, _ptr, _offset, nullptr, _inline_depth);
2943 }
2944 
2945 /**
2946  * Return same type but drop speculative part if we know we won't use
2947  * it
2948  */
2949 const Type* TypePtr::cleanup_speculative() const {
2950   if (speculative() == nullptr) {
2951     return this;

3168     return false;
3169   }
3170   // We already know the speculative type cannot be null
3171   if (!speculative_maybe_null()) {
3172     return false;
3173   }
3174   // We already know this is always null
3175   if (this == TypePtr::NULL_PTR) {
3176     return false;
3177   }
3178   // We already know the speculative type is always null
3179   if (speculative_always_null()) {
3180     return false;
3181   }
3182   if (ptr_kind == ProfileAlwaysNull && speculative() != nullptr && speculative()->isa_oopptr()) {
3183     return false;
3184   }
3185   return true;
3186 }
3187 
3188 TypePtr::FlatInArray TypePtr::compute_flat_in_array(ciInstanceKlass* instance_klass, bool is_exact) {
3189   if (!instance_klass->can_be_inline_klass(is_exact)) {
3190     // Definitely not a value class and thus never flat in an array.
3191     return NotFlat;
3192   }
3193   if (instance_klass->is_inlinetype() && instance_klass->as_inline_klass()->is_always_flat_in_array()) {
3194     return Flat;
3195   }
3196   // We don't know.
3197   return MaybeFlat;
3198 }
3199 
3200 // Compute flat in array property if we don't know anything about it (i.e. old_flat_in_array == MaybeFlat).
3201 TypePtr::FlatInArray TypePtr::compute_flat_in_array_if_unknown(ciInstanceKlass* instance_klass, bool is_exact,
3202   FlatInArray old_flat_in_array) const {
3203   switch (old_flat_in_array) {
3204     case Flat:
3205       assert(can_be_inline_type(), "only value objects can be flat in array");
3206       assert(!instance_klass->is_inlinetype() || instance_klass->as_inline_klass()->is_always_flat_in_array(),
3207              "a value object is only marked flat in array if it's proven to be always flat in array");
3208       break;
3209     case NotFlat:
3210       assert(!instance_klass->maybe_flat_in_array(), "cannot be flat");
3211       break;
3212     case MaybeFlat:
3213       return compute_flat_in_array(instance_klass, is_exact);
3214       break;
3215     default:
3216       break;
3217   }
3218   return old_flat_in_array;
3219 }
3220 
3221 //------------------------------dump2------------------------------------------
3222 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
3223   "TopPTR","AnyNull","Constant","null","NotNull","BotPTR"
3224 };
3225 
3226 #ifndef PRODUCT
3227 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3228   st->print("ptr:%s", ptr_msg[_ptr]);
3229   dump_offset(st);
3230   dump_inline_depth(st);
3231   dump_speculative(st);
3232 }
3233 
3234 void TypePtr::dump_offset(outputStream* st) const {
3235   _offset.dump2(st);






3236 }
3237 
3238 /**
3239  *dump the speculative part of the type
3240  */
3241 void TypePtr::dump_speculative(outputStream *st) const {
3242   if (_speculative != nullptr) {
3243     st->print(" (speculative=");
3244     _speculative->dump_on(st);
3245     st->print(")");
3246   }
3247 }
3248 
3249 /**
3250  *dump the inline depth of the type
3251  */
3252 void TypePtr::dump_inline_depth(outputStream *st) const {
3253   if (_inline_depth != InlineDepthBottom) {
3254     if (_inline_depth == InlineDepthTop) {
3255       st->print(" (inline_depth=InlineDepthTop)");
3256     } else {
3257       st->print(" (inline_depth=%d)", _inline_depth);
3258     }
3259   }
3260 }
3261 
3262 void TypePtr::dump_flat_in_array(FlatInArray flat_in_array, outputStream* st) {
3263   switch (flat_in_array) {
3264     case MaybeFlat:
3265     case NotFlat:
3266       if (!Verbose) {
3267         break;
3268       }
3269     case TopFlat:
3270     case Flat:
3271       st->print(" (%s)", flat_in_array_msg[flat_in_array]);
3272       break;
3273     default:
3274       ShouldNotReachHere();
3275   }
3276 }
3277 #endif
3278 
3279 //------------------------------singleton--------------------------------------
3280 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3281 // constants
3282 bool TypePtr::singleton(void) const {
3283   // TopPTR, Null, AnyNull, Constant are all singletons
3284   return (_offset != Offset::bottom) && !below_centerline(_ptr);
3285 }
3286 
3287 bool TypePtr::empty(void) const {
3288   return (_offset == Offset::top) || above_centerline(_ptr);
3289 }
3290 
3291 //=============================================================================
3292 // Convenience common pre-built types.
3293 const TypeRawPtr *TypeRawPtr::BOTTOM;
3294 const TypeRawPtr *TypeRawPtr::NOTNULL;
3295 
3296 //------------------------------make-------------------------------------------
3297 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
3298   assert( ptr != Constant, "what is the constant?" );
3299   assert( ptr != Null, "Use TypePtr for null" );
3300   return (TypeRawPtr*)(new TypeRawPtr(ptr,nullptr))->hashcons();
3301 }
3302 
3303 const TypeRawPtr *TypeRawPtr::make(address bits) {
3304   assert(bits != nullptr, "Use TypePtr for null");
3305   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
3306 }
3307 
3308 //------------------------------cast_to_ptr_type-------------------------------

3676 #endif
3677 
3678 // Can't be implemented because there's no way to know if the type is above or below the center line.
3679 const Type* TypeInterfaces::xmeet(const Type* t) const {
3680   ShouldNotReachHere();
3681   return Type::xmeet(t);
3682 }
3683 
3684 bool TypeInterfaces::singleton(void) const {
3685   ShouldNotReachHere();
3686   return Type::singleton();
3687 }
3688 
3689 bool TypeInterfaces::has_non_array_interface() const {
3690   assert(TypeAryPtr::_array_interfaces != nullptr, "How come Type::Initialize_shared wasn't called yet?");
3691 
3692   return !TypeAryPtr::_array_interfaces->contains(this);
3693 }
3694 
3695 //------------------------------TypeOopPtr-------------------------------------
3696 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset offset, Offset field_offset,
3697                        int instance_id, const TypePtr* speculative, int inline_depth)
3698   : TypePtr(t, ptr, offset, speculative, inline_depth),
3699     _const_oop(o), _klass(k),
3700     _interfaces(interfaces),
3701     _klass_is_exact(xk),
3702     _is_ptr_to_narrowoop(false),
3703     _is_ptr_to_narrowklass(false),
3704     _is_ptr_to_boxed_value(false),
3705     _is_ptr_to_strict_final_field(false),
3706     _instance_id(instance_id) {
3707 #ifdef ASSERT
3708   if (klass() != nullptr && klass()->is_loaded()) {
3709     interfaces->verify_is_loaded();
3710   }
3711 #endif
3712   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
3713       (offset.get() > 0) && xk && (k != nullptr) && k->is_instance_klass()) {
3714     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset.get());
3715     _is_ptr_to_strict_final_field = _is_ptr_to_boxed_value;
3716   }
3717 
3718   if (klass() != nullptr && klass()->is_instance_klass() && klass()->is_loaded() &&
3719       this->offset() != Type::OffsetBot && this->offset() != Type::OffsetTop) {
3720     ciField* field = klass()->as_instance_klass()->get_field_by_offset(this->offset(), false);
3721     if (field != nullptr && field->is_strict() && field->is_final()) {
3722       _is_ptr_to_strict_final_field = true;
3723     }
3724   }
3725 
3726 #ifdef _LP64
3727   if (this->offset() > 0 || this->offset() == Type::OffsetTop || this->offset() == Type::OffsetBot) {
3728     if (this->offset() == oopDesc::klass_offset_in_bytes()) {
3729       _is_ptr_to_narrowklass = UseCompressedClassPointers;
3730     } else if (klass() == nullptr) {
3731       // Array with unknown body type
3732       assert(this->isa_aryptr(), "only arrays without klass");
3733       _is_ptr_to_narrowoop = UseCompressedOops;
3734     } else if (UseCompressedOops && this->isa_aryptr() && this->offset() != arrayOopDesc::length_offset_in_bytes()) {
3735       if (klass()->is_flat_array_klass() && field_offset != Offset::top && field_offset != Offset::bottom) {
3736         // Check if the field of the inline type array element contains oops
3737         ciInlineKlass* vk = klass()->as_flat_array_klass()->element_klass()->as_inline_klass();
3738         int foffset = field_offset.get() + vk->payload_offset();
3739         BasicType field_bt;
3740         ciField* field = vk->get_field_by_offset(foffset, false);
3741         if (field != nullptr) {
3742           field_bt = field->layout_type();
3743         } else {
3744           assert(field_offset.get() == vk->null_marker_offset_in_payload(), "no field or null marker of %s at offset %d", vk->name()->as_utf8(), foffset);
3745           field_bt = T_BOOLEAN;
3746         }
3747         _is_ptr_to_narrowoop = ::is_reference_type(field_bt);
3748       } else if (klass()->is_obj_array_klass()) {
3749         _is_ptr_to_narrowoop = true;
3750       }
3751     } else if (klass()->is_instance_klass()) {

3752       if (this->isa_klassptr()) {
3753         // Perm objects don't use compressed references
3754       } else if (_offset == Offset::bottom || _offset == Offset::top) {
3755         // unsafe access
3756         _is_ptr_to_narrowoop = UseCompressedOops;
3757       } else {
3758         assert(this->isa_instptr(), "must be an instance ptr.");

3759         if (klass() == ciEnv::current()->Class_klass() &&
3760             (this->offset() == java_lang_Class::klass_offset() ||
3761              this->offset() == java_lang_Class::array_klass_offset())) {
3762           // Special hidden fields from the Class.
3763           assert(this->isa_instptr(), "must be an instance ptr.");
3764           _is_ptr_to_narrowoop = false;
3765         } else if (klass() == ciEnv::current()->Class_klass() &&
3766                    this->offset() >= InstanceMirrorKlass::offset_of_static_fields()) {
3767           // Static fields
3768           BasicType basic_elem_type = T_ILLEGAL;
3769           if (const_oop() != nullptr) {
3770             ciInstanceKlass* k = const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
3771             basic_elem_type = k->get_field_type_by_offset(this->offset(), true);
3772           }
3773           if (basic_elem_type != T_ILLEGAL) {
3774             _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type);
3775           } else {
3776             // unsafe access
3777             _is_ptr_to_narrowoop = UseCompressedOops;
3778           }
3779         } else {
3780           // Instance fields which contains a compressed oop references.
3781           ciInstanceKlass* ik = klass()->as_instance_klass();
3782           BasicType basic_elem_type = ik->get_field_type_by_offset(this->offset(), false);
3783           if (basic_elem_type != T_ILLEGAL) {
3784             _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type);
3785           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
3786             // Compile::find_alias_type() cast exactness on all types to verify
3787             // that it does not affect alias type.
3788             _is_ptr_to_narrowoop = UseCompressedOops;
3789           } else {
3790             // Type for the copy start in LibraryCallKit::inline_native_clone().
3791             _is_ptr_to_narrowoop = UseCompressedOops;
3792           }
3793         }
3794       }
3795     }
3796   }
3797 #endif // _LP64
3798 }
3799 
3800 //------------------------------make-------------------------------------------
3801 const TypeOopPtr *TypeOopPtr::make(PTR ptr, Offset offset, int instance_id,
3802                                    const TypePtr* speculative, int inline_depth) {
3803   assert(ptr != Constant, "no constant generic pointers");
3804   ciKlass*  k = Compile::current()->env()->Object_klass();
3805   bool      xk = false;
3806   ciObject* o = nullptr;
3807   const TypeInterfaces* interfaces = TypeInterfaces::make();
3808   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, interfaces, xk, o, offset, Offset::bottom, instance_id, speculative, inline_depth))->hashcons();
3809 }
3810 
3811 
3812 //------------------------------cast_to_ptr_type-------------------------------
3813 const TypeOopPtr* TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
3814   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
3815   if( ptr == _ptr ) return this;
3816   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
3817 }
3818 
3819 //-----------------------------cast_to_instance_id----------------------------
3820 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
3821   // There are no instances of a general oop.
3822   // Return self unchanged.
3823   return this;
3824 }
3825 
3826 //-----------------------------cast_to_exactness-------------------------------
3827 const TypeOopPtr* TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
3828   // There is no such thing as an exact general oop.
3829   // Return self unchanged.
3830   return this;
3831 }
3832 

3833 //------------------------------as_klass_type----------------------------------
3834 // Return the klass type corresponding to this instance or array type.
3835 // It is the type that is loaded from an object of this type.
3836 const TypeKlassPtr* TypeOopPtr::as_klass_type(bool try_for_exact) const {
3837   ShouldNotReachHere();
3838   return nullptr;
3839 }
3840 
3841 //------------------------------meet-------------------------------------------
3842 // Compute the MEET of two types.  It returns a new Type object.
3843 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
3844   // Perform a fast test for common case; meeting the same types together.
3845   if( this == t ) return this;  // Meeting same type-rep?
3846 
3847   // Current "this->_base" is OopPtr
3848   switch (t->base()) {          // switch on original type
3849 
3850   case Int:                     // Mixing ints & oops happens when javac
3851   case Long:                    // reuses local variables
3852   case HalfFloatTop:

3861   case NarrowOop:
3862   case NarrowKlass:
3863   case Bottom:                  // Ye Olde Default
3864     return Type::BOTTOM;
3865   case Top:
3866     return this;
3867 
3868   default:                      // All else is a mistake
3869     typerr(t);
3870 
3871   case RawPtr:
3872   case MetadataPtr:
3873   case KlassPtr:
3874   case InstKlassPtr:
3875   case AryKlassPtr:
3876     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3877 
3878   case AnyPtr: {
3879     // Found an AnyPtr type vs self-OopPtr type
3880     const TypePtr *tp = t->is_ptr();
3881     Offset offset = meet_offset(tp->offset());
3882     PTR ptr = meet_ptr(tp->ptr());
3883     const TypePtr* speculative = xmeet_speculative(tp);
3884     int depth = meet_inline_depth(tp->inline_depth());
3885     switch (tp->ptr()) {
3886     case Null:
3887       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3888       // else fall through:
3889     case TopPTR:
3890     case AnyNull: {
3891       int instance_id = meet_instance_id(InstanceTop);
3892       return make(ptr, offset, instance_id, speculative, depth);
3893     }
3894     case BotPTR:
3895     case NotNull:
3896       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3897     default: typerr(t);
3898     }
3899   }
3900 
3901   case OopPtr: {                 // Meeting to other OopPtrs

3903     int instance_id = meet_instance_id(tp->instance_id());
3904     const TypePtr* speculative = xmeet_speculative(tp);
3905     int depth = meet_inline_depth(tp->inline_depth());
3906     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
3907   }
3908 
3909   case InstPtr:                  // For these, flip the call around to cut down
3910   case AryPtr:
3911     return t->xmeet(this);      // Call in reverse direction
3912 
3913   } // End of switch
3914   return this;                  // Return the double constant
3915 }
3916 
3917 
3918 //------------------------------xdual------------------------------------------
3919 // Dual of a pure heap pointer.  No relevant klass or oop information.
3920 const Type *TypeOopPtr::xdual() const {
3921   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
3922   assert(const_oop() == nullptr,             "no constants here");
3923   return new TypeOopPtr(_base, dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), Offset::bottom, dual_instance_id(), dual_speculative(), dual_inline_depth());
3924 }
3925 
3926 //--------------------------make_from_klass_common-----------------------------
3927 // Computes the element-type given a klass.
3928 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact, InterfaceHandling interface_handling) {
3929   if (klass->is_instance_klass() || klass->is_inlinetype()) {
3930     Compile* C = Compile::current();
3931     Dependencies* deps = C->dependencies();
3932     assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
3933     // Element is an instance
3934     bool klass_is_exact = false;
3935     ciInstanceKlass* ik = klass->as_instance_klass();
3936     if (klass->is_loaded()) {
3937       // Try to set klass_is_exact.

3938       klass_is_exact = ik->is_final();
3939       if (!klass_is_exact && klass_change
3940           && deps != nullptr && UseUniqueSubclasses) {
3941         ciInstanceKlass* sub = ik->unique_concrete_subklass();
3942         if (sub != nullptr) {
3943           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3944           klass = ik = sub;
3945           klass_is_exact = sub->is_final();
3946         }
3947       }
3948       if (!klass_is_exact && try_for_exact && deps != nullptr &&
3949           !ik->is_interface() && !ik->has_subklass()) {
3950         // Add a dependence; if concrete subclass added we need to recompile
3951         deps->assert_leaf_type(ik);
3952         klass_is_exact = true;
3953       }
3954     }
3955     FlatInArray flat_in_array = compute_flat_in_array(ik, klass_is_exact);
3956     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
3957     return TypeInstPtr::make(TypePtr::BotPTR, klass, interfaces, klass_is_exact, nullptr, Offset(0), flat_in_array);
3958   } else if (klass->is_obj_array_klass()) {
3959     // Element is an object or inline type array. Recursively call ourself.
3960     ciObjArrayKlass* array_klass = klass->as_obj_array_klass();
3961     const TypeOopPtr* etype = TypeOopPtr::make_from_klass_common(array_klass->element_klass(), /* klass_change= */ false, try_for_exact, interface_handling);
3962     bool xk = array_klass->is_loaded() && array_klass->is_refined();
3963 
3964     // Determine null-free/flat properties
3965     bool flat;
3966     bool not_flat;
3967     bool is_null_free;
3968     bool not_null_free;
3969     bool atomic;
3970     if (xk) {
3971       flat = array_klass->is_flat_array_klass();
3972       not_flat = !flat;
3973       is_null_free = array_klass->is_elem_null_free();
3974       not_null_free = !is_null_free;
3975       atomic = array_klass->is_elem_atomic();
3976 
3977       if (is_null_free) {
3978         etype = etype->join_speculative(NOTNULL)->is_oopptr();
3979       }
3980     } else {
3981       const TypeOopPtr* exact_etype = etype;
3982       if (etype->can_be_inline_type()) {
3983         // Use exact type if element can be an inline type
3984         exact_etype = TypeOopPtr::make_from_klass_common(klass->as_array_klass()->element_klass(), /* klass_change= */ true, /* try_for_exact= */ true, interface_handling);
3985       }
3986 
3987       flat = false;
3988       bool not_inline = !exact_etype->can_be_inline_type();
3989       not_null_free = not_inline;
3990       not_flat = !UseArrayFlattening || not_inline || (exact_etype->is_inlinetypeptr() && !exact_etype->inline_klass()->maybe_flat_in_array());
3991       atomic = not_flat;
3992     }
3993 
3994     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS, /* stable= */ false, flat, not_flat, not_null_free, atomic);
3995     // We used to pass NotNull in here, asserting that the sub-arrays
3996     // are all not-null.  This is not true in generally, as code can
3997     // slam nullptrs down in the subarrays.
3998     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, nullptr, xk, Offset(0));
3999     return arr;
4000   } else if (klass->is_type_array_klass()) {
4001     // Element is an typeArray
4002     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
4003     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS,
4004                                         /* stable= */ false, /* flat= */ false, /* not_flat= */ true, /* not_null_free= */ true, true);
4005     // We used to pass NotNull in here, asserting that the array pointer
4006     // is not-null. That was not true in general.
4007     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, Offset(0));
4008     return arr;
4009   } else {
4010     ShouldNotReachHere();
4011     return nullptr;
4012   }
4013 }
4014 
4015 //------------------------------make_from_constant-----------------------------
4016 // Make a java pointer from an oop constant
4017 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
4018   assert(!o->is_null_object(), "null object not yet handled here.");
4019 
4020   const bool make_constant = require_constant || o->should_be_constant();
4021 
4022   ciKlass* klass = o->klass();
4023   if (klass->is_instance_klass() || klass->is_inlinetype()) {
4024     // Element is an instance or inline type
4025     if (make_constant) {
4026       return TypeInstPtr::make(o);
4027     } else {
4028       return TypeInstPtr::make(TypePtr::NotNull, klass, true, nullptr, Offset(0));
4029     }
4030   } else if (klass->is_obj_array_klass()) {
4031     // Element is an object array. Recursively call ourself.
4032     const TypeOopPtr* etype = TypeOopPtr::make_from_klass_raw(klass->as_array_klass()->element_klass(), trust_interfaces);
4033     bool is_flat = o->as_array()->is_flat();
4034     bool is_null_free = o->as_array()->is_null_free();
4035     if (is_null_free) {
4036       etype = etype->join_speculative(TypePtr::NOTNULL)->is_oopptr();
4037     }
4038     bool is_atomic = o->as_array()->is_atomic();
4039     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()), /* stable= */ false, /* flat= */ is_flat,
4040                                         /* not_flat= */ !is_flat, /* not_null_free= */ !is_null_free, /* atomic= */ is_atomic);
4041     // We used to pass NotNull in here, asserting that the sub-arrays
4042     // are all not-null.  This is not true in generally, as code can
4043     // slam nulls down in the subarrays.
4044     if (make_constant) {
4045       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
4046     } else {
4047       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
4048     }
4049   } else if (klass->is_type_array_klass()) {
4050     // Element is an typeArray
4051     const Type* etype = (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
4052     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()), /* stable= */ false, /* flat= */ false,
4053                                         /* not_flat= */ true, /* not_null_free= */ true, true);
4054     // We used to pass NotNull in here, asserting that the array pointer
4055     // is not-null. That was not true in general.
4056     if (make_constant) {
4057       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
4058     } else {
4059       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
4060     }
4061   }
4062 
4063   fatal("unhandled object type");
4064   return nullptr;
4065 }
4066 
4067 //------------------------------get_con----------------------------------------
4068 intptr_t TypeOopPtr::get_con() const {
4069   assert( _ptr == Null || _ptr == Constant, "" );
4070   assert(offset() >= 0, "");
4071 
4072   if (offset() != 0) {
4073     // After being ported to the compiler interface, the compiler no longer
4074     // directly manipulates the addresses of oops.  Rather, it only has a pointer
4075     // to a handle at compile time.  This handle is embedded in the generated
4076     // code and dereferenced at the time the nmethod is made.  Until that time,
4077     // it is not reasonable to do arithmetic with the addresses of oops (we don't
4078     // have access to the addresses!).  This does not seem to currently happen,
4079     // but this assertion here is to help prevent its occurrence.
4080     tty->print_cr("Found oop constant with non-zero offset");
4081     ShouldNotReachHere();
4082   }
4083 
4084   return (intptr_t)const_oop()->constant_encoding();
4085 }
4086 
4087 
4088 //-----------------------------filter------------------------------------------
4089 // Do not allow interface-vs.-noninterface joins to collapse to top.
4090 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
4091 
4092   const Type* ft = join_helper(kills, include_speculative);

4138   dump_speculative(st);
4139 }
4140 
4141 void TypeOopPtr::dump_instance_id(outputStream* st) const {
4142   if (_instance_id == InstanceTop) {
4143     st->print(",iid=top");
4144   } else if (_instance_id == InstanceBot) {
4145     st->print(",iid=bot");
4146   } else {
4147     st->print(",iid=%d", _instance_id);
4148   }
4149 }
4150 #endif
4151 
4152 //------------------------------singleton--------------------------------------
4153 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4154 // constants
4155 bool TypeOopPtr::singleton(void) const {
4156   // detune optimizer to not generate constant oop + constant offset as a constant!
4157   // TopPTR, Null, AnyNull, Constant are all singletons
4158   return (offset() == 0) && !below_centerline(_ptr);
4159 }
4160 
4161 //------------------------------add_offset-------------------------------------
4162 const TypePtr* TypeOopPtr::add_offset(intptr_t offset) const {
4163   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
4164 }
4165 
4166 const TypeOopPtr* TypeOopPtr::with_offset(intptr_t offset) const {
4167   return make(_ptr, Offset(offset), _instance_id, with_offset_speculative(offset), _inline_depth);
4168 }
4169 
4170 /**
4171  * Return same type without a speculative part
4172  */
4173 const TypeOopPtr* TypeOopPtr::remove_speculative() const {
4174   if (_speculative == nullptr) {
4175     return this;
4176   }
4177   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4178   return make(_ptr, _offset, _instance_id, nullptr, _inline_depth);
4179 }
4180 
4181 /**
4182  * Return same type but drop speculative part if we know we won't use
4183  * it
4184  */
4185 const Type* TypeOopPtr::cleanup_speculative() const {
4186   // If the klass is exact and the ptr is not null then there's
4187   // nothing that the speculative type can help us with

4260 const TypeInstPtr *TypeInstPtr::BOTTOM;
4261 const TypeInstPtr *TypeInstPtr::MIRROR;
4262 const TypeInstPtr *TypeInstPtr::MARK;
4263 const TypeInstPtr *TypeInstPtr::KLASS;
4264 
4265 // Is there a single ciKlass* that can represent that type?
4266 ciKlass* TypeInstPtr::exact_klass_helper() const {
4267   if (_interfaces->empty()) {
4268     return _klass;
4269   }
4270   if (_klass != ciEnv::current()->Object_klass()) {
4271     if (_interfaces->eq(_klass->as_instance_klass())) {
4272       return _klass;
4273     }
4274     return nullptr;
4275   }
4276   return _interfaces->exact_klass();
4277 }
4278 
4279 //------------------------------TypeInstPtr-------------------------------------
4280 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset off,
4281                          FlatInArray flat_in_array, int instance_id, const TypePtr* speculative, int inline_depth)
4282   : TypeOopPtr(InstPtr, ptr, k, interfaces, xk, o, off, Offset::bottom, instance_id, speculative, inline_depth),
4283     _flat_in_array(flat_in_array) {
4284 
4285   assert(flat_in_array != Uninitialized, "must be set now");
4286   assert(k == nullptr || !k->is_loaded() || !k->is_interface(), "no interface here");
4287   assert(k != nullptr &&
4288          (k->is_loaded() || o == nullptr),
4289          "cannot have constants with non-loaded klass");
4290 };
4291 
4292 //------------------------------make-------------------------------------------
4293 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
4294                                      ciKlass* k,
4295                                      const TypeInterfaces* interfaces,
4296                                      bool xk,
4297                                      ciObject* o,
4298                                      Offset offset,
4299                                      FlatInArray flat_in_array,
4300                                      int instance_id,
4301                                      const TypePtr* speculative,
4302                                      int inline_depth) {
4303   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
4304   // Either const_oop() is null or else ptr is Constant
4305   assert( (!o && ptr != Constant) || (o && ptr == Constant),
4306           "constant pointers must have a value supplied" );
4307   // Ptr is never Null
4308   assert( ptr != Null, "null pointers are not typed" );
4309 
4310   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4311   ciInstanceKlass* ik = k->as_instance_klass();
4312   if (ptr == Constant) {
4313     // Note:  This case includes meta-object constants, such as methods.
4314     xk = true;
4315   } else if (k->is_loaded()) {

4316     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
4317     assert(!ik->is_interface(), "no interface here");
4318     if (xk && ik->is_interface())  xk = false;  // no exact interface
4319   }
4320 
4321   if (flat_in_array == Uninitialized) {
4322     flat_in_array = compute_flat_in_array(ik, xk);
4323   }
4324   // Now hash this baby
4325   TypeInstPtr *result =
4326     (TypeInstPtr*)(new TypeInstPtr(ptr, k, interfaces, xk, o, offset, flat_in_array, instance_id, speculative, inline_depth))->hashcons();
4327 
4328   return result;
4329 }
4330 
4331 const TypeInterfaces* TypePtr::interfaces(ciKlass*& k, bool klass, bool interface, bool array, InterfaceHandling interface_handling) {
4332   if (k->is_instance_klass()) {
4333     if (k->is_loaded()) {
4334       if (k->is_interface() && interface_handling == ignore_interfaces) {
4335         assert(interface, "no interface expected");
4336         k = ciEnv::current()->Object_klass();
4337         const TypeInterfaces* interfaces = TypeInterfaces::make();
4338         return interfaces;
4339       }
4340       GrowableArray<ciInstanceKlass *>* k_interfaces = k->as_instance_klass()->transitive_interfaces();
4341       const TypeInterfaces* interfaces = TypeInterfaces::make(k_interfaces);
4342       if (k->is_interface()) {
4343         assert(interface, "no interface expected");
4344         k = ciEnv::current()->Object_klass();
4345       } else {
4346         assert(klass, "no instance klass expected");

4372   switch (bt) {
4373     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
4374     case T_INT:      return TypeInt::make(constant.as_int());
4375     case T_CHAR:     return TypeInt::make(constant.as_char());
4376     case T_BYTE:     return TypeInt::make(constant.as_byte());
4377     case T_SHORT:    return TypeInt::make(constant.as_short());
4378     case T_FLOAT:    return TypeF::make(constant.as_float());
4379     case T_DOUBLE:   return TypeD::make(constant.as_double());
4380     case T_LONG:     return TypeLong::make(constant.as_long());
4381     default:         break;
4382   }
4383   fatal("Invalid boxed value type '%s'", type2name(bt));
4384   return nullptr;
4385 }
4386 
4387 //------------------------------cast_to_ptr_type-------------------------------
4388 const TypeInstPtr* TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
4389   if( ptr == _ptr ) return this;
4390   // Reconstruct _sig info here since not a problem with later lazy
4391   // construction, _sig will show up on demand.
4392   return make(ptr, klass(), _interfaces, klass_is_exact(), ptr == Constant ? const_oop() : nullptr, _offset, _flat_in_array, _instance_id, _speculative, _inline_depth);
4393 }
4394 
4395 
4396 //-----------------------------cast_to_exactness-------------------------------
4397 const TypeInstPtr* TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
4398   if( klass_is_exact == _klass_is_exact ) return this;
4399   if (!_klass->is_loaded())  return this;
4400   ciInstanceKlass* ik = _klass->as_instance_klass();
4401   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
4402   assert(!ik->is_interface(), "no interface here");
4403   FlatInArray flat_in_array = compute_flat_in_array(ik, klass_is_exact);
4404   return make(ptr(), klass(), _interfaces, klass_is_exact, const_oop(), _offset, flat_in_array, _instance_id, _speculative, _inline_depth);
4405 }
4406 
4407 //-----------------------------cast_to_instance_id----------------------------
4408 const TypeInstPtr* TypeInstPtr::cast_to_instance_id(int instance_id) const {
4409   if( instance_id == _instance_id ) return this;
4410   return make(_ptr, klass(), _interfaces, _klass_is_exact, const_oop(), _offset, _flat_in_array, instance_id, _speculative, _inline_depth);
4411 }
4412 
4413 //------------------------------xmeet_unloaded---------------------------------
4414 // Compute the MEET of two InstPtrs when at least one is unloaded.
4415 // Assume classes are different since called after check for same name/class-loader
4416 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst, const TypeInterfaces* interfaces) const {
4417   Offset off = meet_offset(tinst->offset());
4418   PTR ptr = meet_ptr(tinst->ptr());
4419   int instance_id = meet_instance_id(tinst->instance_id());
4420   const TypePtr* speculative = xmeet_speculative(tinst);
4421   int depth = meet_inline_depth(tinst->inline_depth());
4422 
4423   const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
4424   const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
4425   if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
4426     //
4427     // Meet unloaded class with java/lang/Object
4428     //
4429     // Meet
4430     //          |                     Unloaded Class
4431     //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
4432     //  ===================================================================
4433     //   TOP    | ..........................Unloaded......................|
4434     //  AnyNull |  U-AN    |................Unloaded......................|
4435     // Constant | ... O-NN .................................. |   O-BOT   |
4436     //  NotNull | ... O-NN .................................. |   O-BOT   |
4437     //  BOTTOM  | ........................Object-BOTTOM ..................|
4438     //
4439     assert(loaded->ptr() != TypePtr::Null, "insanity check");
4440     //
4441     if (loaded->ptr() == TypePtr::TopPTR)        { return unloaded->with_speculative(speculative); }
4442     else if (loaded->ptr() == TypePtr::AnyNull)  {
4443       FlatInArray flat_in_array = meet_flat_in_array(_flat_in_array, tinst->flat_in_array());
4444       return make(ptr, unloaded->klass(), interfaces, false, nullptr, off, flat_in_array, instance_id,
4445                   speculative, depth);
4446     }
4447     else if (loaded->ptr() == TypePtr::BotPTR)   { return TypeInstPtr::BOTTOM->with_speculative(speculative); }
4448     else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
4449       if (unloaded->ptr() == TypePtr::BotPTR)    { return TypeInstPtr::BOTTOM->with_speculative(speculative);  }
4450       else                                       { return TypeInstPtr::NOTNULL->with_speculative(speculative); }
4451     }
4452     else if (unloaded->ptr() == TypePtr::TopPTR) { return unloaded->with_speculative(speculative); }
4453 
4454     return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr()->with_speculative(speculative);
4455   }
4456 
4457   // Both are unloaded, not the same class, not Object
4458   // Or meet unloaded with a different loaded class, not java/lang/Object
4459   if (ptr != TypePtr::BotPTR) {
4460     return TypeInstPtr::NOTNULL->with_speculative(speculative);
4461   }
4462   return TypeInstPtr::BOTTOM->with_speculative(speculative);
4463 }
4464 
4465 
4466 //------------------------------meet-------------------------------------------

4490   case Top:
4491     return this;
4492 
4493   default:                      // All else is a mistake
4494     typerr(t);
4495 
4496   case MetadataPtr:
4497   case KlassPtr:
4498   case InstKlassPtr:
4499   case AryKlassPtr:
4500   case RawPtr: return TypePtr::BOTTOM;
4501 
4502   case AryPtr: {                // All arrays inherit from Object class
4503     // Call in reverse direction to avoid duplication
4504     return t->is_aryptr()->xmeet_helper(this);
4505   }
4506 
4507   case OopPtr: {                // Meeting to OopPtrs
4508     // Found a OopPtr type vs self-InstPtr type
4509     const TypeOopPtr *tp = t->is_oopptr();
4510     Offset offset = meet_offset(tp->offset());
4511     PTR ptr = meet_ptr(tp->ptr());
4512     switch (tp->ptr()) {
4513     case TopPTR:
4514     case AnyNull: {
4515       int instance_id = meet_instance_id(InstanceTop);
4516       const TypePtr* speculative = xmeet_speculative(tp);
4517       int depth = meet_inline_depth(tp->inline_depth());
4518       return make(ptr, klass(), _interfaces, klass_is_exact(),
4519                   (ptr == Constant ? const_oop() : nullptr), offset, flat_in_array(), instance_id, speculative, depth);
4520     }
4521     case NotNull:
4522     case BotPTR: {
4523       int instance_id = meet_instance_id(tp->instance_id());
4524       const TypePtr* speculative = xmeet_speculative(tp);
4525       int depth = meet_inline_depth(tp->inline_depth());
4526       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4527     }
4528     default: typerr(t);
4529     }
4530   }
4531 
4532   case AnyPtr: {                // Meeting to AnyPtrs
4533     // Found an AnyPtr type vs self-InstPtr type
4534     const TypePtr *tp = t->is_ptr();
4535     Offset offset = meet_offset(tp->offset());
4536     PTR ptr = meet_ptr(tp->ptr());
4537     int instance_id = meet_instance_id(InstanceTop);
4538     const TypePtr* speculative = xmeet_speculative(tp);
4539     int depth = meet_inline_depth(tp->inline_depth());
4540     switch (tp->ptr()) {
4541     case Null:
4542       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4543       // else fall through to AnyNull
4544     case TopPTR:
4545     case AnyNull: {
4546       return make(ptr, klass(), _interfaces, klass_is_exact(),
4547                   (ptr == Constant ? const_oop() : nullptr), offset, flat_in_array(), instance_id, speculative, depth);
4548     }
4549     case NotNull:
4550     case BotPTR:
4551       return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
4552     default: typerr(t);
4553     }
4554   }
4555 
4556   /*
4557                  A-top         }
4558                /   |   \       }  Tops
4559            B-top A-any C-top   }
4560               | /  |  \ |      }  Any-nulls
4561            B-any   |   C-any   }
4562               |    |    |
4563            B-con A-con C-con   } constants; not comparable across classes
4564               |    |    |
4565            B-not   |   C-not   }
4566               | \  |  / |      }  not-nulls
4567            B-bot A-not C-bot   }
4568                \   |   /       }  Bottoms
4569                  A-bot         }
4570   */
4571 
4572   case InstPtr: {                // Meeting 2 Oops?
4573     // Found an InstPtr sub-type vs self-InstPtr type
4574     const TypeInstPtr *tinst = t->is_instptr();
4575     Offset off = meet_offset(tinst->offset());
4576     PTR ptr = meet_ptr(tinst->ptr());
4577     int instance_id = meet_instance_id(tinst->instance_id());
4578     const TypePtr* speculative = xmeet_speculative(tinst);
4579     int depth = meet_inline_depth(tinst->inline_depth());
4580     const TypeInterfaces* interfaces = meet_interfaces(tinst);
4581 
4582     ciKlass* tinst_klass = tinst->klass();
4583     ciKlass* this_klass  = klass();
4584 
4585     ciKlass* res_klass = nullptr;
4586     bool res_xk = false;
4587     const Type* res;
4588     MeetResult kind = meet_instptr(ptr, interfaces, this, tinst, res_klass, res_xk);
4589 
4590     if (kind == UNLOADED) {
4591       // One of these classes has not been loaded
4592       const TypeInstPtr* unloaded_meet = xmeet_unloaded(tinst, interfaces);
4593 #ifndef PRODUCT
4594       if (PrintOpto && Verbose) {
4595         tty->print("meet of unloaded classes resulted in: ");
4596         unloaded_meet->dump();
4597         tty->cr();
4598         tty->print("  this == ");
4599         dump();
4600         tty->cr();
4601         tty->print(" tinst == ");
4602         tinst->dump();
4603         tty->cr();
4604       }
4605 #endif
4606       res = unloaded_meet;
4607     } else {
4608       FlatInArray flat_in_array = meet_flat_in_array(_flat_in_array, tinst->flat_in_array());
4609       if (kind == NOT_SUBTYPE && instance_id > 0) {
4610         instance_id = InstanceBot;
4611       } else if (kind == LCA) {
4612         instance_id = InstanceBot;
4613       }
4614       ciObject* o = nullptr;             // Assume not constant when done
4615       ciObject* this_oop = const_oop();
4616       ciObject* tinst_oop = tinst->const_oop();
4617       if (ptr == Constant) {
4618         if (this_oop != nullptr && tinst_oop != nullptr &&
4619             this_oop->equals(tinst_oop))
4620           o = this_oop;
4621         else if (above_centerline(_ptr)) {
4622           assert(!tinst_klass->is_interface(), "");
4623           o = tinst_oop;
4624         } else if (above_centerline(tinst->_ptr)) {
4625           assert(!this_klass->is_interface(), "");
4626           o = this_oop;
4627         } else
4628           ptr = NotNull;
4629       }
4630       res = make(ptr, res_klass, interfaces, res_xk, o, off, flat_in_array, instance_id, speculative, depth);
4631     }
4632 
4633     return res;
4634 
4635   } // End of case InstPtr
4636 
4637   } // End of switch
4638   return this;                  // Return the double constant
4639 }
4640 
4641 template<class T> TypePtr::MeetResult TypePtr::meet_instptr(PTR& ptr, const TypeInterfaces*& interfaces, const T* this_type, const T* other_type,
4642                                                             ciKlass*& res_klass, bool& res_xk) {
4643   ciKlass* this_klass = this_type->klass();
4644   ciKlass* other_klass = other_type->klass();
4645 
4646   bool this_xk = this_type->klass_is_exact();
4647   bool other_xk = other_type->klass_is_exact();
4648   PTR this_ptr = this_type->ptr();
4649   PTR other_ptr = other_type->ptr();
4650   const TypeInterfaces* this_interfaces = this_type->interfaces();
4651   const TypeInterfaces* other_interfaces = other_type->interfaces();
4652   // Check for easy case; klasses are equal (and perhaps not loaded!)
4653   // If we have constants, then we created oops so classes are loaded
4654   // and we can handle the constants further down.  This case handles
4655   // both-not-loaded or both-loaded classes
4656   if (ptr != Constant && this_klass->equals(other_klass) && this_xk == other_xk) {
4657     res_klass = this_klass;
4658     res_xk = this_xk;
4659     return QUICK;
4660   }
4661 
4662   // Classes require inspection in the Java klass hierarchy.  Must be loaded.
4663   if (!other_klass->is_loaded() || !this_klass->is_loaded()) {
4664     return UNLOADED;
4665   }

4671   // If both are up and they do NOT subtype, "fall hard".
4672   // If both are down and they subtype, take the supertype class.
4673   // If both are down and they do NOT subtype, "fall hard".
4674   // Constants treated as down.
4675 
4676   // Now, reorder the above list; observe that both-down+subtype is also
4677   // "fall hard"; "fall hard" becomes the default case:
4678   // If we split one up & one down AND they subtype, take the down man.
4679   // If both are up and they subtype, take the subtype class.
4680 
4681   // If both are down and they subtype, "fall hard".
4682   // If both are down and they do NOT subtype, "fall hard".
4683   // If both are up and they do NOT subtype, "fall hard".
4684   // If we split one up & one down AND they do NOT subtype, "fall hard".
4685 
4686   // If a proper subtype is exact, and we return it, we return it exactly.
4687   // If a proper supertype is exact, there can be no subtyping relationship!
4688   // If both types are equal to the subtype, exactness is and-ed below the
4689   // centerline and or-ed above it.  (N.B. Constants are always exact.)
4690 

4691   const T* subtype = nullptr;
4692   bool subtype_exact = false;
4693   if (this_type->is_same_java_type_as(other_type)) {
4694     // Same klass
4695     subtype = this_type;
4696     subtype_exact = below_centerline(ptr) ? (this_xk && other_xk) : (this_xk || other_xk);
4697   } else if (!other_xk && this_type->is_meet_subtype_of(other_type)) {
4698     subtype = this_type;     // Pick subtyping class
4699     subtype_exact = this_xk;
4700   } else if (!this_xk && other_type->is_meet_subtype_of(this_type)) {
4701     subtype = other_type;    // Pick subtyping class
4702     subtype_exact = other_xk;
4703   }
4704 
4705   if (subtype != nullptr) {
4706     if (above_centerline(ptr)) {
4707       // Both types are empty.
4708       this_type = other_type = subtype;
4709       this_xk = other_xk = subtype_exact;
4710     } else if (above_centerline(this_ptr) && !above_centerline(other_ptr)) {
4711       // this_type is empty while other_type is not. Take other_type.
4712       this_type = other_type;
4713       this_xk = other_xk;
4714     } else if (above_centerline(other_ptr) && !above_centerline(this_ptr)) {
4715       // other_type is empty while this_type is not. Take this_type.
4716       other_type = this_type; // this is down; keep down man

4717     } else {
4718       // this_type and other_type are both non-empty.
4719       this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
4720     }
4721   }
4722 
4723   // Check for classes now being equal
4724   if (this_type->is_same_java_type_as(other_type)) {
4725     // If the klasses are equal, the constants may still differ.  Fall to
4726     // NotNull if they do (neither constant is null; that is a special case
4727     // handled elsewhere).
4728     res_klass = this_type->klass();
4729     res_xk = this_xk;
4730     return SUBTYPE;
4731   } // Else classes are not equal
4732 
4733   // Since klasses are different, we require a LCA in the Java
4734   // class hierarchy - which means we have to fall to at least NotNull.
4735   if (ptr == TopPTR || ptr == AnyNull || ptr == Constant) {
4736     ptr = NotNull;
4737   }
4738 
4739   interfaces = this_interfaces->intersection_with(other_interfaces);
4740 
4741   // Now we find the LCA of Java classes
4742   ciKlass* k = this_klass->least_common_ancestor(other_klass);
4743 
4744   res_klass = k;
4745   res_xk = false;

4746   return LCA;
4747 }
4748 
4749 //                Top-Flat    Flat        Not-Flat    Maybe-Flat
4750 // -------------------------------------------------------------
4751 //    Top-Flat    Top-Flat    Flat        Not-Flat    Maybe-Flat
4752 //        Flat    Flat        Flat        Maybe-Flat  Maybe-Flat
4753 //    Not-Flat    Not-Flat    Maybe-Flat  Not-Flat    Maybe-Flat
4754 //  Maybe-Flat    Maybe-Flat  Maybe-Flat  Maybe-Flat  Maybe-flat
4755 TypePtr::FlatInArray TypePtr::meet_flat_in_array(const FlatInArray left, const FlatInArray right) {
4756   if (left == TopFlat) {
4757     return right;
4758   }
4759   if (right == TopFlat) {
4760     return left;
4761   }
4762   if (left == MaybeFlat || right == MaybeFlat) {
4763     return MaybeFlat;
4764   }
4765 
4766   switch (left) {
4767     case Flat:
4768       if (right == Flat) {
4769         return Flat;
4770       }
4771       return MaybeFlat;
4772     case NotFlat:
4773       if (right == NotFlat) {
4774         return NotFlat;
4775       }
4776       return MaybeFlat;
4777     default:
4778       ShouldNotReachHere();
4779       return Uninitialized;
4780   }
4781 }
4782 
4783 //------------------------java_mirror_type--------------------------------------
4784 ciType* TypeInstPtr::java_mirror_type() const {
4785   // must be a singleton type
4786   if( const_oop() == nullptr )  return nullptr;
4787 
4788   // must be of type java.lang.Class
4789   if( klass() != ciEnv::current()->Class_klass() )  return nullptr;

4790   return const_oop()->as_instance()->java_mirror_type();
4791 }
4792 
4793 
4794 //------------------------------xdual------------------------------------------
4795 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
4796 // inheritance mechanism.
4797 const Type* TypeInstPtr::xdual() const {
4798   return new TypeInstPtr(dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(),
4799                          dual_flat_in_array(), dual_instance_id(), dual_speculative(), dual_inline_depth());
4800 }
4801 
4802 //------------------------------eq---------------------------------------------
4803 // Structural equality check for Type representations
4804 bool TypeInstPtr::eq( const Type *t ) const {
4805   const TypeInstPtr *p = t->is_instptr();
4806   return
4807     klass()->equals(p->klass()) &&
4808     _flat_in_array == p->_flat_in_array &&
4809     _interfaces->eq(p->_interfaces) &&
4810     TypeOopPtr::eq(p);          // Check sub-type stuff
4811 }
4812 
4813 //------------------------------hash-------------------------------------------
4814 // Type-specific hashing function.
4815 uint TypeInstPtr::hash() const {
4816   return klass()->hash() + TypeOopPtr::hash() + _interfaces->hash() + static_cast<uint>(_flat_in_array);
4817 }
4818 
4819 bool TypeInstPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4820   return TypePtr::is_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
4821 }
4822 
4823 
4824 bool TypeInstPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const {
4825   return TypePtr::is_same_java_type_as_helper_for_instance(this, other);
4826 }
4827 
4828 bool TypeInstPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4829   return TypePtr::maybe_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
4830 }
4831 
4832 
4833 //------------------------------dump2------------------------------------------
4834 // Dump oop Type
4835 #ifndef PRODUCT
4836 void TypeInstPtr::dump2(Dict &d, uint depth, outputStream* st) const {

4840   _interfaces->dump(st);
4841 
4842   if (_ptr == Constant && (WizardMode || Verbose)) {
4843     ResourceMark rm;
4844     stringStream ss;
4845 
4846     st->print(" ");
4847     const_oop()->print_oop(&ss);
4848     // 'const_oop->print_oop()' may emit newlines('\n') into ss.
4849     // suppress newlines from it so -XX:+Verbose -XX:+PrintIdeal dumps one-liner for each node.
4850     char* buf = ss.as_string(/* c_heap= */false);
4851     StringUtils::replace_no_expand(buf, "\n", "");
4852     st->print_raw(buf);
4853   }
4854 
4855   st->print(":%s", ptr_msg[_ptr]);
4856   if (_klass_is_exact) {
4857     st->print(":exact");
4858   }
4859 
4860   st->print(" *");
4861 
4862   dump_offset(st);
4863   dump_instance_id(st);
4864   dump_inline_depth(st);
4865   dump_speculative(st);
4866   dump_flat_in_array(_flat_in_array, st);
4867 }
4868 #endif
4869 
4870 bool TypeInstPtr::empty() const {
4871   if (_flat_in_array == TopFlat) {
4872     return true;
4873   }
4874   return TypeOopPtr::empty();
4875 }
4876 
4877 //------------------------------add_offset-------------------------------------
4878 const TypePtr* TypeInstPtr::add_offset(intptr_t offset) const {
4879   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), xadd_offset(offset), _flat_in_array,
4880               _instance_id, add_offset_speculative(offset), _inline_depth);
4881 }
4882 
4883 const TypeInstPtr* TypeInstPtr::with_offset(intptr_t offset) const {
4884   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), Offset(offset), _flat_in_array,
4885               _instance_id, with_offset_speculative(offset), _inline_depth);
4886 }
4887 
4888 const TypeInstPtr* TypeInstPtr::remove_speculative() const {
4889   if (_speculative == nullptr) {
4890     return this;
4891   }
4892   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4893   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, _flat_in_array,
4894               _instance_id, nullptr, _inline_depth);
4895 }
4896 
4897 const TypeInstPtr* TypeInstPtr::with_speculative(const TypePtr* speculative) const {
4898   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, _flat_in_array, _instance_id, speculative, _inline_depth);
4899 }
4900 
4901 const TypePtr* TypeInstPtr::with_inline_depth(int depth) const {
4902   if (!UseInlineDepthForSpeculativeTypes) {
4903     return this;
4904   }
4905   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, _flat_in_array, _instance_id, _speculative, depth);
4906 }
4907 
4908 const TypePtr* TypeInstPtr::with_instance_id(int instance_id) const {
4909   assert(is_known_instance(), "should be known");
4910   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, _flat_in_array, instance_id, _speculative, _inline_depth);
4911 }
4912 
4913 const TypeInstPtr *TypeInstPtr::cast_to_flat_in_array() const {
4914   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, Flat, _instance_id, _speculative, _inline_depth);
4915 }
4916 
4917 const TypeInstPtr *TypeInstPtr::cast_to_maybe_flat_in_array() const {
4918   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, MaybeFlat, _instance_id, _speculative, _inline_depth);
4919 }
4920 
4921 const TypeKlassPtr* TypeInstPtr::as_klass_type(bool try_for_exact) const {
4922   bool xk = klass_is_exact();
4923   ciInstanceKlass* ik = klass()->as_instance_klass();
4924   if (try_for_exact && !xk && !ik->has_subklass() && !ik->is_final()) {
4925     if (_interfaces->eq(ik)) {
4926       Compile* C = Compile::current();
4927       Dependencies* deps = C->dependencies();
4928       deps->assert_leaf_type(ik);
4929       xk = true;
4930     }
4931   }
4932   FlatInArray flat_in_array = compute_flat_in_array_if_unknown(ik, xk, _flat_in_array);
4933   return TypeInstKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, klass(), _interfaces, Offset(0), flat_in_array);
4934 }
4935 
4936 template <class T1, class T2> bool TypePtr::is_meet_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_xk, bool other_xk) {
4937   static_assert(std::is_base_of<T2, T1>::value, "");
4938 
4939   if (!this_one->is_instance_type(other)) {
4940     return false;
4941   }
4942 
4943   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty()) {
4944     return true;
4945   }
4946 
4947   return this_one->klass()->is_subtype_of(other->klass()) &&
4948          (!this_xk || this_one->_interfaces->contains(other->_interfaces));
4949 }
4950 
4951 
4952 bool TypeInstPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const {
4953   return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk);

4958   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty()) {
4959     return true;
4960   }
4961 
4962   if (this_one->is_instance_type(other)) {
4963     return other->klass() == ciEnv::current()->Object_klass() && this_one->_interfaces->contains(other->_interfaces);
4964   }
4965 
4966   int dummy;
4967   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
4968   if (this_top_or_bottom) {
4969     return false;
4970   }
4971 
4972   const T1* other_ary = this_one->is_array_type(other);
4973   const TypePtr* other_elem = other_ary->elem()->make_ptr();
4974   const TypePtr* this_elem = this_one->elem()->make_ptr();
4975   if (other_elem != nullptr && this_elem != nullptr) {
4976     return this_one->is_reference_type(this_elem)->is_meet_subtype_of_helper(this_one->is_reference_type(other_elem), this_xk, other_xk);
4977   }

4978   if (other_elem == nullptr && this_elem == nullptr) {
4979     return this_one->klass()->is_subtype_of(other->klass());
4980   }
4981 
4982   return false;
4983 }
4984 
4985 bool TypeAryPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const {
4986   return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk);
4987 }
4988 
4989 bool TypeInstKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const {
4990   return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk);
4991 }
4992 
4993 bool TypeAryKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const {
4994   return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk);
4995 }
4996 
4997 //=============================================================================
4998 // Convenience common pre-built types.
4999 const TypeAryPtr* TypeAryPtr::BOTTOM;
5000 const TypeAryPtr *TypeAryPtr::RANGE;
5001 const TypeAryPtr *TypeAryPtr::OOPS;
5002 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
5003 const TypeAryPtr *TypeAryPtr::BYTES;
5004 const TypeAryPtr *TypeAryPtr::SHORTS;
5005 const TypeAryPtr *TypeAryPtr::CHARS;
5006 const TypeAryPtr *TypeAryPtr::INTS;
5007 const TypeAryPtr *TypeAryPtr::LONGS;
5008 const TypeAryPtr *TypeAryPtr::FLOATS;
5009 const TypeAryPtr *TypeAryPtr::DOUBLES;
5010 const TypeAryPtr *TypeAryPtr::INLINES;
5011 
5012 //------------------------------make-------------------------------------------
5013 const TypeAryPtr* TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, Offset offset, Offset field_offset,
5014                                    int instance_id, const TypePtr* speculative, int inline_depth) {
5015   assert(!(k == nullptr && ary->_elem->isa_int()),
5016          "integral arrays must be pre-equipped with a class");
5017   if (!xk)  xk = ary->ary_must_be_exact();
5018   assert(instance_id <= 0 || xk, "instances are always exactly typed");
5019   if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() &&
5020       k->as_obj_array_klass()->base_element_klass()->is_interface()) {
5021     k = nullptr;
5022   }
5023   return (TypeAryPtr*)(new TypeAryPtr(ptr, nullptr, ary, k, xk, offset, field_offset, instance_id, false, speculative, inline_depth))->hashcons();
5024 }
5025 
5026 //------------------------------make-------------------------------------------
5027 const TypeAryPtr* TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, Offset offset, Offset field_offset,
5028                                    int instance_id, const TypePtr* speculative, int inline_depth,
5029                                    bool is_autobox_cache) {
5030   assert(!(k == nullptr && ary->_elem->isa_int()),
5031          "integral arrays must be pre-equipped with a class");
5032   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
5033   if (!xk)  xk = (o != nullptr) || ary->ary_must_be_exact();
5034   assert(instance_id <= 0 || xk, "instances are always exactly typed");
5035   if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() &&
5036       k->as_obj_array_klass()->base_element_klass()->is_interface()) {
5037     k = nullptr;
5038   }
5039   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, field_offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
5040 }
5041 
5042 //------------------------------cast_to_ptr_type-------------------------------
5043 const TypeAryPtr* TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
5044   if( ptr == _ptr ) return this;
5045   return make(ptr, ptr == Constant ? const_oop() : nullptr, _ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5046 }
5047 
5048 
5049 //-----------------------------cast_to_exactness-------------------------------
5050 const TypeAryPtr* TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
5051   if( klass_is_exact == _klass_is_exact ) return this;
5052   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
5053   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5054 }
5055 
5056 //-----------------------------cast_to_instance_id----------------------------
5057 const TypeAryPtr* TypeAryPtr::cast_to_instance_id(int instance_id) const {
5058   if( instance_id == _instance_id ) return this;
5059   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, _field_offset, instance_id, _speculative, _inline_depth, _is_autobox_cache);
5060 }
5061 
5062 
5063 //-----------------------------max_array_length-------------------------------
5064 // A wrapper around arrayOopDesc::max_array_length(etype) with some input normalization.
5065 jint TypeAryPtr::max_array_length(BasicType etype) {
5066   if (!is_java_primitive(etype) && !::is_reference_type(etype)) {
5067     if (etype == T_NARROWOOP) {
5068       etype = T_OBJECT;
5069     } else if (etype == T_ILLEGAL) { // bottom[]
5070       etype = T_BYTE; // will produce conservatively high value
5071     } else {
5072       fatal("not an element type: %s", type2name(etype));
5073     }
5074   }
5075   return arrayOopDesc::max_array_length(etype);
5076 }
5077 
5078 //-----------------------------narrow_size_type-------------------------------
5079 // Narrow the given size type to the index range for the given array base type.

5097     if (size->is_con()) {
5098       lo = hi;
5099     }
5100     chg = true;
5101   }
5102   // Negative length arrays will produce weird intermediate dead fast-path code
5103   if (lo > hi) {
5104     return TypeInt::ZERO;
5105   }
5106   if (!chg) {
5107     return size;
5108   }
5109   return TypeInt::make(lo, hi, Type::WidenMin);
5110 }
5111 
5112 //-------------------------------cast_to_size----------------------------------
5113 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
5114   assert(new_size != nullptr, "");
5115   new_size = narrow_size_type(new_size);
5116   if (new_size == size())  return this;
5117   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable(), is_flat(), is_not_flat(), is_not_null_free(), is_atomic());
5118   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5119 }
5120 
5121 const TypeAryPtr* TypeAryPtr::cast_to_flat(bool flat) const {
5122   if (flat == is_flat()) {
5123     return this;
5124   }
5125   assert(!flat || !is_not_flat(), "inconsistency");
5126   const TypeAry* new_ary = TypeAry::make(elem(), size(), is_stable(), flat, is_not_flat(), is_not_null_free(), is_atomic());
5127   const TypeAryPtr* res = make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5128   if (res->speculative() == res->remove_speculative()) {
5129     return res->remove_speculative();
5130   }
5131   return res;
5132 }
5133 
5134 //-------------------------------cast_to_not_flat------------------------------
5135 const TypeAryPtr* TypeAryPtr::cast_to_not_flat(bool not_flat) const {
5136   if (not_flat == is_not_flat()) {
5137     return this;
5138   }
5139   assert(!not_flat || !is_flat(), "inconsistency");
5140   const TypeAry* new_ary = TypeAry::make(elem(), size(), is_stable(), is_flat(), not_flat, is_not_null_free(), is_atomic());
5141   const TypeAryPtr* res = make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5142   // We keep the speculative part if it contains information about flat-/nullability.
5143   // Make sure it's removed if it's not better than the non-speculative type anymore.
5144   if (res->speculative() == res->remove_speculative()) {
5145     return res->remove_speculative();
5146   }
5147   return res;
5148 }
5149 
5150 const TypeAryPtr* TypeAryPtr::cast_to_null_free(bool null_free) const {
5151   if (null_free == is_null_free()) {
5152     return this;
5153   }
5154   assert(!null_free || !is_not_null_free(), "inconsistency");
5155   const Type* elem = this->elem();
5156   const Type* new_elem = elem->make_ptr();
5157   if (null_free) {
5158     new_elem = new_elem->join_speculative(TypePtr::NOTNULL);
5159   } else {
5160     new_elem = new_elem->meet_speculative(TypePtr::NULL_PTR);
5161   }
5162   new_elem = elem->isa_narrowoop() ? new_elem->make_narrowoop() : new_elem;
5163   const TypeAry* new_ary = TypeAry::make(new_elem, size(), is_stable(), is_flat(), is_not_flat(), is_not_null_free(), is_atomic());
5164   const TypeAryPtr* res = make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5165   if (res->speculative() == res->remove_speculative()) {
5166     return res->remove_speculative();
5167   }
5168   return res;
5169 }
5170 
5171 //-------------------------------cast_to_not_null_free-------------------------
5172 const TypeAryPtr* TypeAryPtr::cast_to_not_null_free(bool not_null_free) const {
5173   if (not_null_free == is_not_null_free()) {
5174     return this;
5175   }
5176   assert(!not_null_free || !is_null_free(), "inconsistency");
5177   const TypeAry* new_ary = TypeAry::make(elem(), size(), is_stable(), is_flat(), is_not_flat(), not_null_free, is_atomic());
5178   const TypeAryPtr* res = make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset,
5179                                _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5180   // We keep the speculative part if it contains information about flat-/nullability.
5181   // Make sure it's removed if it's not better than the non-speculative type anymore.
5182   if (res->speculative() == res->remove_speculative()) {
5183     return res->remove_speculative();
5184   }
5185   return res;
5186 }
5187 
5188 //---------------------------------update_properties---------------------------
5189 const TypeAryPtr* TypeAryPtr::update_properties(const TypeAryPtr* from) const {
5190   if ((from->is_flat()          && is_not_flat()) ||
5191       (from->is_not_flat()      && is_flat()) ||
5192       (from->is_null_free()     && is_not_null_free()) ||
5193       (from->is_not_null_free() && is_null_free())) {
5194     return nullptr; // Inconsistent properties
5195   }
5196   const TypeAryPtr* res = this;
5197   if (from->is_not_null_free()) {
5198     res = res->cast_to_not_null_free();
5199   }
5200   if (from->is_not_flat()) {
5201     res = res->cast_to_not_flat();
5202   }
5203   return res;
5204 }
5205 
5206 jint TypeAryPtr::flat_layout_helper() const {
5207   return exact_klass()->as_flat_array_klass()->layout_helper();
5208 }
5209 
5210 int TypeAryPtr::flat_elem_size() const {
5211   return exact_klass()->as_flat_array_klass()->element_byte_size();
5212 }
5213 
5214 int TypeAryPtr::flat_log_elem_size() const {
5215   return exact_klass()->as_flat_array_klass()->log2_element_size();
5216 }
5217 
5218 //------------------------------cast_to_stable---------------------------------
5219 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
5220   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
5221     return this;
5222 
5223   const Type* elem = this->elem();
5224   const TypePtr* elem_ptr = elem->make_ptr();
5225 
5226   if (stable_dimension > 1 && elem_ptr != nullptr && elem_ptr->isa_aryptr()) {
5227     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
5228     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
5229   }
5230 
5231   const TypeAry* new_ary = TypeAry::make(elem, size(), stable, is_flat(), is_not_flat(), is_not_null_free(), is_atomic());
5232 
5233   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5234 }
5235 
5236 //-----------------------------stable_dimension--------------------------------
5237 int TypeAryPtr::stable_dimension() const {
5238   if (!is_stable())  return 0;
5239   int dim = 1;
5240   const TypePtr* elem_ptr = elem()->make_ptr();
5241   if (elem_ptr != nullptr && elem_ptr->isa_aryptr())
5242     dim += elem_ptr->is_aryptr()->stable_dimension();
5243   return dim;
5244 }
5245 
5246 //----------------------cast_to_autobox_cache-----------------------------------
5247 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache() const {
5248   if (is_autobox_cache())  return this;
5249   const TypeOopPtr* etype = elem()->make_oopptr();
5250   if (etype == nullptr)  return this;
5251   // The pointers in the autobox arrays are always non-null.
5252   etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
5253   const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable(), is_flat(), is_not_flat(), is_not_null_free(), is_atomic());
5254   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, /*is_autobox_cache=*/true);
5255 }
5256 
5257 //------------------------------eq---------------------------------------------
5258 // Structural equality check for Type representations
5259 bool TypeAryPtr::eq( const Type *t ) const {
5260   const TypeAryPtr *p = t->is_aryptr();
5261   return
5262     _ary == p->_ary &&  // Check array
5263     TypeOopPtr::eq(p) &&// Check sub-parts
5264     _field_offset == p->_field_offset;
5265 }
5266 
5267 //------------------------------hash-------------------------------------------
5268 // Type-specific hashing function.
5269 uint TypeAryPtr::hash(void) const {
5270   return (uint)(uintptr_t)_ary + TypeOopPtr::hash() + _field_offset.get();
5271 }
5272 
5273 bool TypeAryPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
5274   return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
5275 }
5276 
5277 bool TypeAryPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const {
5278   return TypePtr::is_same_java_type_as_helper_for_array(this, other);
5279 }
5280 
5281 bool TypeAryPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
5282   return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
5283 }
5284 //------------------------------meet-------------------------------------------
5285 // Compute the MEET of two types.  It returns a new Type object.
5286 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
5287   // Perform a fast test for common case; meeting the same types together.
5288   if( this == t ) return this;  // Meeting same type-rep?
5289   // Current "this->_base" is Pointer
5290   switch (t->base()) {          // switch on original type

5297   case HalfFloatBot:
5298   case FloatTop:
5299   case FloatCon:
5300   case FloatBot:
5301   case DoubleTop:
5302   case DoubleCon:
5303   case DoubleBot:
5304   case NarrowOop:
5305   case NarrowKlass:
5306   case Bottom:                  // Ye Olde Default
5307     return Type::BOTTOM;
5308   case Top:
5309     return this;
5310 
5311   default:                      // All else is a mistake
5312     typerr(t);
5313 
5314   case OopPtr: {                // Meeting to OopPtrs
5315     // Found a OopPtr type vs self-AryPtr type
5316     const TypeOopPtr *tp = t->is_oopptr();
5317     Offset offset = meet_offset(tp->offset());
5318     PTR ptr = meet_ptr(tp->ptr());
5319     int depth = meet_inline_depth(tp->inline_depth());
5320     const TypePtr* speculative = xmeet_speculative(tp);
5321     switch (tp->ptr()) {
5322     case TopPTR:
5323     case AnyNull: {
5324       int instance_id = meet_instance_id(InstanceTop);
5325       return make(ptr, (ptr == Constant ? const_oop() : nullptr),
5326                   _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
5327     }
5328     case BotPTR:
5329     case NotNull: {
5330       int instance_id = meet_instance_id(tp->instance_id());
5331       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
5332     }
5333     default: ShouldNotReachHere();
5334     }
5335   }
5336 
5337   case AnyPtr: {                // Meeting two AnyPtrs
5338     // Found an AnyPtr type vs self-AryPtr type
5339     const TypePtr *tp = t->is_ptr();
5340     Offset offset = meet_offset(tp->offset());
5341     PTR ptr = meet_ptr(tp->ptr());
5342     const TypePtr* speculative = xmeet_speculative(tp);
5343     int depth = meet_inline_depth(tp->inline_depth());
5344     switch (tp->ptr()) {
5345     case TopPTR:
5346       return this;
5347     case BotPTR:
5348     case NotNull:
5349       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
5350     case Null:
5351       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
5352       // else fall through to AnyNull
5353     case AnyNull: {
5354       int instance_id = meet_instance_id(InstanceTop);
5355       return make(ptr, (ptr == Constant ? const_oop() : nullptr),
5356                   _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
5357     }
5358     default: ShouldNotReachHere();
5359     }
5360   }
5361 
5362   case MetadataPtr:
5363   case KlassPtr:
5364   case InstKlassPtr:
5365   case AryKlassPtr:
5366   case RawPtr: return TypePtr::BOTTOM;
5367 
5368   case AryPtr: {                // Meeting 2 references?
5369     const TypeAryPtr *tap = t->is_aryptr();
5370     Offset off = meet_offset(tap->offset());
5371     Offset field_off = meet_field_offset(tap->field_offset());
5372     const Type* tm = _ary->meet_speculative(tap->_ary);
5373     const TypeAry* tary = tm->isa_ary();
5374     if (tary == nullptr) {
5375       assert(tm == Type::TOP || tm == Type::BOTTOM, "");
5376       return tm;
5377     }
5378     PTR ptr = meet_ptr(tap->ptr());
5379     int instance_id = meet_instance_id(tap->instance_id());
5380     const TypePtr* speculative = xmeet_speculative(tap);
5381     int depth = meet_inline_depth(tap->inline_depth());
5382 
5383     ciKlass* res_klass = nullptr;
5384     bool res_xk = false;
5385     bool res_flat = false;
5386     bool res_not_flat = false;
5387     bool res_not_null_free = false;
5388     bool res_atomic = false;
5389     const Type* elem = tary->_elem;
5390     if (meet_aryptr(ptr, elem, this, tap, res_klass, res_xk, res_flat, res_not_flat, res_not_null_free, res_atomic) == NOT_SUBTYPE) {
5391       instance_id = InstanceBot;
5392     } else if (this->is_flat() != tap->is_flat()) {
5393       // Meeting flat inline type array with non-flat array. Adjust (field) offset accordingly.
5394       if (tary->_flat) {
5395         // Result is in a flat representation
5396         off = Offset(is_flat() ? offset() : tap->offset());
5397         field_off = is_flat() ? field_offset() : tap->field_offset();
5398       } else if (below_centerline(ptr)) {
5399         // Result is in a non-flat representation
5400         off = Offset(flat_offset()).meet(Offset(tap->flat_offset()));
5401         field_off = (field_off == Offset::top) ? Offset::top : Offset::bottom;
5402       } else if (flat_offset() == tap->flat_offset()) {
5403         off = Offset(!is_flat() ? offset() : tap->offset());
5404         field_off = !is_flat() ? field_offset() : tap->field_offset();
5405       }
5406     }
5407 
5408     ciObject* o = nullptr;             // Assume not constant when done
5409     ciObject* this_oop = const_oop();
5410     ciObject* tap_oop = tap->const_oop();
5411     if (ptr == Constant) {
5412       if (this_oop != nullptr && tap_oop != nullptr &&
5413           this_oop->equals(tap_oop)) {
5414         o = tap_oop;
5415       } else if (above_centerline(_ptr)) {
5416         o = tap_oop;
5417       } else if (above_centerline(tap->_ptr)) {
5418         o = this_oop;
5419       } else {
5420         ptr = NotNull;
5421       }
5422     }
5423     return make(ptr, o, TypeAry::make(elem, tary->_size, tary->_stable, res_flat, res_not_flat, res_not_null_free, res_atomic), res_klass, res_xk, off, field_off, instance_id, speculative, depth);
5424   }
5425 
5426   // All arrays inherit from Object class
5427   case InstPtr: {
5428     const TypeInstPtr *tp = t->is_instptr();
5429     Offset offset = meet_offset(tp->offset());
5430     PTR ptr = meet_ptr(tp->ptr());
5431     int instance_id = meet_instance_id(tp->instance_id());
5432     const TypePtr* speculative = xmeet_speculative(tp);
5433     int depth = meet_inline_depth(tp->inline_depth());
5434     const TypeInterfaces* interfaces = meet_interfaces(tp);
5435     const TypeInterfaces* tp_interfaces = tp->_interfaces;
5436     const TypeInterfaces* this_interfaces = _interfaces;
5437 
5438     switch (ptr) {
5439     case TopPTR:
5440     case AnyNull:                // Fall 'down' to dual of object klass
5441       // For instances when a subclass meets a superclass we fall
5442       // below the centerline when the superclass is exact. We need to
5443       // do the same here.
5444       //
5445       // Flat in array:
5446       // We do
5447       //   dual(TypeAryPtr) MEET dual(TypeInstPtr)
5448       // If TypeInstPtr is anything else than Object, then the result of the meet is bottom Object (i.e. we could have
5449       // instances or arrays).
5450       // If TypeInstPtr is an Object and either
5451       // - exact
5452       // - inexact AND flat in array == dual(not flat in array) (i.e. not an array type)
5453       // then the result of the meet is bottom Object (i.e. we could have instances or arrays).
5454       // Otherwise, we meet two array pointers and create a new TypeAryPtr.
5455       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) &&
5456           !tp->klass_is_exact() && !tp->is_not_flat_in_array()) {
5457         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
5458       } else {
5459         // cannot subclass, so the meet has to fall badly below the centerline
5460         ptr = NotNull;
5461         instance_id = InstanceBot;
5462         interfaces = this_interfaces->intersection_with(tp_interfaces);
5463         FlatInArray flat_in_array = meet_flat_in_array(NotFlat, tp->flat_in_array());
5464         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr, offset, flat_in_array, instance_id, speculative, depth);
5465       }
5466     case Constant:
5467     case NotNull:
5468     case BotPTR: { // Fall down to object klass
5469       // LCA is object_klass, but if we subclass from the top we can do better
5470       if (above_centerline(tp->ptr())) {
5471         // If 'tp'  is above the centerline and it is Object class
5472         // then we can subclass in the Java class hierarchy.
5473         // For instances when a subclass meets a superclass we fall
5474         // below the centerline when the superclass is exact. We need
5475         // to do the same here.
5476 
5477         // Flat in array: We do TypeAryPtr MEET dual(TypeInstPtr), same applies as above in TopPTR/AnyNull case.
5478         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) &&
5479             !tp->klass_is_exact() && !tp->is_not_flat_in_array()) {
5480           // that is, my array type is a subtype of 'tp' klass
5481           return make(ptr, (ptr == Constant ? const_oop() : nullptr),
5482                       _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
5483         }
5484       }
5485       // The other case cannot happen, since t cannot be a subtype of an array.
5486       // The meet falls down to Object class below centerline.
5487       if (ptr == Constant) {
5488         ptr = NotNull;
5489       }
5490       if (instance_id > 0) {
5491         instance_id = InstanceBot;
5492       }
5493 
5494       FlatInArray flat_in_array = meet_flat_in_array(NotFlat, tp->flat_in_array());
5495       interfaces = this_interfaces->intersection_with(tp_interfaces);
5496       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr, offset,
5497                                flat_in_array, instance_id, speculative, depth);
5498     }
5499     default: typerr(t);
5500     }
5501   }
5502   }
5503   return this;                  // Lint noise
5504 }
5505 
5506 
5507 template<class T> TypePtr::MeetResult TypePtr::meet_aryptr(PTR& ptr, const Type*& elem, const T* this_ary, const T* other_ary,
5508                                                            ciKlass*& res_klass, bool& res_xk, bool &res_flat, bool& res_not_flat, bool& res_not_null_free, bool &res_atomic) {
5509   int dummy;
5510   bool this_top_or_bottom = (this_ary->base_element_type(dummy) == Type::TOP || this_ary->base_element_type(dummy) == Type::BOTTOM);
5511   bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
5512   ciKlass* this_klass = this_ary->klass();
5513   ciKlass* other_klass = other_ary->klass();
5514   bool this_xk = this_ary->klass_is_exact();
5515   bool other_xk = other_ary->klass_is_exact();
5516   PTR this_ptr = this_ary->ptr();
5517   PTR other_ptr = other_ary->ptr();
5518   bool this_flat = this_ary->is_flat();
5519   bool this_not_flat = this_ary->is_not_flat();
5520   bool other_flat = other_ary->is_flat();
5521   bool other_not_flat = other_ary->is_not_flat();
5522   bool this_not_null_free = this_ary->is_not_null_free();
5523   bool other_not_null_free = other_ary->is_not_null_free();
5524   bool this_atomic = this_ary->is_atomic();
5525   bool other_atomic = other_ary->is_atomic();
5526   const bool same_nullness = this_ary->is_null_free() == other_ary->is_null_free();
5527   res_klass = nullptr;
5528   MeetResult result = SUBTYPE;
5529   res_flat = this_flat && other_flat;
5530   bool res_null_free = this_ary->is_null_free() && other_ary->is_null_free();
5531   res_not_flat = this_not_flat && other_not_flat;
5532   res_not_null_free = this_not_null_free && other_not_null_free;
5533   res_atomic = this_atomic && other_atomic;
5534 
5535   if (elem->isa_int()) {
5536     // Integral array element types have irrelevant lattice relations.
5537     // It is the klass that determines array layout, not the element type.
5538       if (this_top_or_bottom) {
5539         res_klass = other_klass;
5540       } else if (other_top_or_bottom || other_klass == this_klass) {
5541       res_klass = this_klass;
5542     } else {
5543       // Something like byte[int+] meets char[int+].
5544       // This must fall to bottom, not (int[-128..65535])[int+].
5545       // instance_id = InstanceBot;
5546       elem = Type::BOTTOM;
5547       result = NOT_SUBTYPE;
5548       if (above_centerline(ptr) || ptr == Constant) {
5549         ptr = NotNull;
5550         res_xk = false;
5551         return NOT_SUBTYPE;
5552       }
5553     }
5554   } else {// Non integral arrays.
5555     // Must fall to bottom if exact klasses in upper lattice
5556     // are not equal or super klass is exact.
5557     if ((above_centerline(ptr) || ptr == Constant) && !this_ary->is_same_java_type_as(other_ary) &&
5558         // meet with top[] and bottom[] are processed further down:
5559         !this_top_or_bottom && !other_top_or_bottom &&
5560         // both are exact and not equal:

5562          // 'tap'  is exact and super or unrelated:
5563          (other_xk && !other_ary->is_meet_subtype_of(this_ary)) ||
5564          // 'this' is exact and super or unrelated:
5565          (this_xk && !this_ary->is_meet_subtype_of(other_ary)))) {
5566       if (above_centerline(ptr) || (elem->make_ptr() && above_centerline(elem->make_ptr()->_ptr))) {
5567         elem = Type::BOTTOM;
5568       }
5569       ptr = NotNull;
5570       res_xk = false;
5571       return NOT_SUBTYPE;
5572     }
5573   }
5574 
5575   res_xk = false;
5576   switch (other_ptr) {
5577     case AnyNull:
5578     case TopPTR:
5579       // Compute new klass on demand, do not use tap->_klass
5580       if (below_centerline(this_ptr)) {
5581         res_xk = this_xk;
5582         if (this_ary->is_flat()) {
5583           elem = this_ary->elem();
5584         }
5585       } else {
5586         res_xk = (other_xk || this_xk);
5587       }
5588       break;
5589     case Constant: {
5590       if (this_ptr == Constant && same_nullness) {
5591         // Only exact if same nullness since:
5592         //     null-free [LMyValue <: nullable [LMyValue.
5593         res_xk = true;
5594       } else if (above_centerline(this_ptr)) {
5595         res_xk = true;
5596       } else {
5597         // Only precise for identical arrays
5598         res_xk = this_xk && (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom));
5599         // Even though MyValue is final, [LMyValue is only exact if the array
5600         // is (not) null-free due to null-free [LMyValue <: null-able [LMyValue.
5601         if (res_xk && !res_null_free && !res_not_null_free) {
5602           ptr = NotNull;
5603           res_xk = false;
5604         }
5605       }
5606       break;
5607     }
5608     case NotNull:
5609     case BotPTR:
5610       // Compute new klass on demand, do not use tap->_klass
5611       if (above_centerline(this_ptr)) {
5612         res_xk = other_xk;
5613         if (other_ary->is_flat()) {
5614           elem = other_ary->elem();
5615         }
5616       } else {
5617         res_xk = (other_xk && this_xk) &&
5618                  (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom)); // Only precise for identical arrays
5619         // Even though MyValue is final, [LMyValue is only exact if the array
5620         // is (not) null-free due to null-free [LMyValue <: null-able [LMyValue.
5621         if (res_xk && !res_null_free && !res_not_null_free) {
5622           ptr = NotNull;
5623           res_xk = false;
5624         }
5625       }
5626       break;
5627     default:  {
5628       ShouldNotReachHere();
5629       return result;
5630     }
5631   }
5632   return result;
5633 }
5634 
5635 
5636 //------------------------------xdual------------------------------------------
5637 // Dual: compute field-by-field dual
5638 const Type *TypeAryPtr::xdual() const {
5639   bool xk = _klass_is_exact;
5640   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(), _klass, xk, dual_offset(), dual_field_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
5641 }
5642 
5643 Type::Offset TypeAryPtr::meet_field_offset(const Type::Offset offset) const {
5644   return _field_offset.meet(offset);
5645 }
5646 
5647 //------------------------------dual_offset------------------------------------
5648 Type::Offset TypeAryPtr::dual_field_offset() const {
5649   return _field_offset.dual();
5650 }
5651 
5652 //------------------------------dump2------------------------------------------
5653 #ifndef PRODUCT
5654 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5655   st->print("aryptr:");
5656   _ary->dump2(d, depth, st);
5657   _interfaces->dump(st);
5658 
5659   if (_ptr == Constant) {
5660     const_oop()->print(st);
5661   }
5662 
5663   st->print(":%s", ptr_msg[_ptr]);
5664   if (_klass_is_exact) {
5665     st->print(":exact");
5666   }
5667 
5668   if (is_flat()) {
5669     st->print(":flat");
5670     st->print("(");
5671     _field_offset.dump2(st);
5672     st->print(")");
5673   } else if (is_not_flat()) {
5674     st->print(":not_flat");
5675   }
5676   if (is_null_free()) {
5677     st->print(":null free");
5678   }
5679   if (is_atomic()) {
5680     st->print(":atomic");
5681   }
5682   if (Verbose) {
5683     if (is_not_flat()) {
5684       st->print(":not flat");
5685     }
5686     if (is_not_null_free()) {
5687       st->print(":nullable");
5688     }
5689   }
5690   if (offset() != 0) {
5691     BasicType basic_elem_type = elem()->basic_type();
5692     int header_size = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5693     if( _offset == Offset::top )       st->print("+undefined");
5694     else if( _offset == Offset::bottom )  st->print("+any");
5695     else if( offset() < header_size ) st->print("+%d", offset());
5696     else {
5697       if (basic_elem_type == T_ILLEGAL) {
5698         st->print("+any");
5699       } else {
5700         int elem_size = type2aelembytes(basic_elem_type);
5701         st->print("[%d]", (offset() - header_size)/elem_size);
5702       }
5703     }
5704   }
5705 
5706   dump_instance_id(st);
5707   dump_inline_depth(st);
5708   dump_speculative(st);
5709 }
5710 #endif
5711 
5712 bool TypeAryPtr::empty(void) const {
5713   if (_ary->empty())       return true;
5714   // FIXME: Does this belong here? Or in the meet code itself?
5715   if (is_flat() && is_not_flat()) {
5716     return true;
5717   }
5718   return TypeOopPtr::empty();
5719 }
5720 
5721 //------------------------------add_offset-------------------------------------
5722 const TypePtr* TypeAryPtr::add_offset(intptr_t offset) const {
5723   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _field_offset, _instance_id, add_offset_speculative(offset), _inline_depth, _is_autobox_cache);
5724 }
5725 
5726 const TypeAryPtr* TypeAryPtr::with_offset(intptr_t offset) const {
5727   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, Offset(offset), _field_offset, _instance_id, with_offset_speculative(offset), _inline_depth, _is_autobox_cache);
5728 }
5729 
5730 const TypeAryPtr* TypeAryPtr::with_ary(const TypeAry* ary) const {
5731   return make(_ptr, _const_oop, ary, _klass, _klass_is_exact, _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5732 }
5733 
5734 const TypeAryPtr* TypeAryPtr::remove_speculative() const {
5735   if (_speculative == nullptr) {
5736     return this;
5737   }
5738   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
5739   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, _instance_id, nullptr, _inline_depth, _is_autobox_cache);
5740 }
5741 
5742 const Type* TypeAryPtr::cleanup_speculative() const {
5743   if (speculative() == nullptr) {
5744     return this;
5745   }
5746   // Keep speculative part if it contains information about flat-/nullability
5747   const TypeAryPtr* spec_aryptr = speculative()->isa_aryptr();
5748   if (spec_aryptr != nullptr && !above_centerline(spec_aryptr->ptr()) &&
5749       (spec_aryptr->is_not_flat() || spec_aryptr->is_not_null_free())) {
5750     return this;
5751   }
5752   return TypeOopPtr::cleanup_speculative();
5753 }
5754 
5755 const TypePtr* TypeAryPtr::with_inline_depth(int depth) const {
5756   if (!UseInlineDepthForSpeculativeTypes) {
5757     return this;
5758   }
5759   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, _instance_id, _speculative, depth, _is_autobox_cache);
5760 }
5761 
5762 const TypeAryPtr* TypeAryPtr::with_field_offset(int offset) const {
5763   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, Offset(offset), _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5764 }
5765 
5766 const TypePtr* TypeAryPtr::add_field_offset_and_offset(intptr_t offset) const {
5767   int adj = 0;
5768   if (is_flat() && klass_is_exact() && offset != Type::OffsetBot && offset != Type::OffsetTop) {
5769     if (_offset.get() != OffsetBot && _offset.get() != OffsetTop) {
5770       adj = _offset.get();
5771       offset += _offset.get();
5772     }
5773     uint header = arrayOopDesc::base_offset_in_bytes(T_FLAT_ELEMENT);
5774     if (_field_offset.get() != OffsetBot && _field_offset.get() != OffsetTop) {
5775       offset += _field_offset.get();
5776       if (_offset.get() == OffsetBot || _offset.get() == OffsetTop) {
5777         offset += header;
5778       }
5779     }
5780     if (elem()->make_oopptr()->is_inlinetypeptr() && (offset >= (intptr_t)header || offset < 0)) {
5781       // Try to get the field of the inline type array element we are pointing to
5782       ciInlineKlass* vk = elem()->inline_klass();
5783       int shift = flat_log_elem_size();
5784       int mask = (1 << shift) - 1;
5785       intptr_t field_offset = ((offset - header) & mask);
5786       ciField* field = vk->get_field_by_offset(field_offset + vk->payload_offset(), false);
5787       if (field != nullptr || field_offset == vk->null_marker_offset_in_payload()) {
5788         return with_field_offset(field_offset)->add_offset(offset - field_offset - adj);
5789       }
5790     }
5791   }
5792   return add_offset(offset - adj);
5793 }
5794 
5795 // Return offset incremented by field_offset for flat inline type arrays
5796 int TypeAryPtr::flat_offset() const {
5797   int offset = _offset.get();
5798   if (offset != Type::OffsetBot && offset != Type::OffsetTop &&
5799       _field_offset != Offset::bottom && _field_offset != Offset::top) {
5800     offset += _field_offset.get();
5801   }
5802   return offset;
5803 }
5804 
5805 const TypePtr* TypeAryPtr::with_instance_id(int instance_id) const {
5806   assert(is_known_instance(), "should be known");
5807   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, instance_id, _speculative, _inline_depth);
5808 }
5809 
5810 //=============================================================================
5811 
5812 
5813 //------------------------------hash-------------------------------------------
5814 // Type-specific hashing function.
5815 uint TypeNarrowPtr::hash(void) const {
5816   return _ptrtype->hash() + 7;
5817 }
5818 
5819 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
5820   return _ptrtype->singleton();
5821 }
5822 
5823 bool TypeNarrowPtr::empty(void) const {
5824   return _ptrtype->empty();
5825 }
5826 
5827 intptr_t TypeNarrowPtr::get_con() const {
5828   return _ptrtype->get_con();
5829 }
5830 
5831 bool TypeNarrowPtr::eq( const Type *t ) const {
5832   const TypeNarrowPtr* tc = isa_same_narrowptr(t);

5886   case HalfFloatTop:
5887   case HalfFloatCon:
5888   case HalfFloatBot:
5889   case FloatTop:
5890   case FloatCon:
5891   case FloatBot:
5892   case DoubleTop:
5893   case DoubleCon:
5894   case DoubleBot:
5895   case AnyPtr:
5896   case RawPtr:
5897   case OopPtr:
5898   case InstPtr:
5899   case AryPtr:
5900   case MetadataPtr:
5901   case KlassPtr:
5902   case InstKlassPtr:
5903   case AryKlassPtr:
5904   case NarrowOop:
5905   case NarrowKlass:

5906   case Bottom:                  // Ye Olde Default
5907     return Type::BOTTOM;
5908   case Top:
5909     return this;
5910 
5911   default:                      // All else is a mistake
5912     typerr(t);
5913 
5914   } // End of switch
5915 
5916   return this;
5917 }
5918 
5919 #ifndef PRODUCT
5920 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5921   _ptrtype->dump2(d, depth, st);
5922 }
5923 #endif
5924 
5925 const TypeNarrowOop *TypeNarrowOop::BOTTOM;

5969     return (one == two) && TypePtr::eq(t);
5970   } else {
5971     return one->equals(two) && TypePtr::eq(t);
5972   }
5973 }
5974 
5975 //------------------------------hash-------------------------------------------
5976 // Type-specific hashing function.
5977 uint TypeMetadataPtr::hash(void) const {
5978   return
5979     (metadata() ? metadata()->hash() : 0) +
5980     TypePtr::hash();
5981 }
5982 
5983 //------------------------------singleton--------------------------------------
5984 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5985 // constants
5986 bool TypeMetadataPtr::singleton(void) const {
5987   // detune optimizer to not generate constant metadata + constant offset as a constant!
5988   // TopPTR, Null, AnyNull, Constant are all singletons
5989   return (offset() == 0) && !below_centerline(_ptr);
5990 }
5991 
5992 //------------------------------add_offset-------------------------------------
5993 const TypePtr* TypeMetadataPtr::add_offset( intptr_t offset ) const {
5994   return make( _ptr, _metadata, xadd_offset(offset));
5995 }
5996 
5997 //-----------------------------filter------------------------------------------
5998 // Do not allow interface-vs.-noninterface joins to collapse to top.
5999 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
6000   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
6001   if (ft == nullptr || ft->empty())
6002     return Type::TOP;           // Canonical empty value
6003   return ft;
6004 }
6005 
6006  //------------------------------get_con----------------------------------------
6007 intptr_t TypeMetadataPtr::get_con() const {
6008   assert( _ptr == Null || _ptr == Constant, "" );
6009   assert(offset() >= 0, "");
6010 
6011   if (offset() != 0) {
6012     // After being ported to the compiler interface, the compiler no longer
6013     // directly manipulates the addresses of oops.  Rather, it only has a pointer
6014     // to a handle at compile time.  This handle is embedded in the generated
6015     // code and dereferenced at the time the nmethod is made.  Until that time,
6016     // it is not reasonable to do arithmetic with the addresses of oops (we don't
6017     // have access to the addresses!).  This does not seem to currently happen,
6018     // but this assertion here is to help prevent its occurrence.
6019     tty->print_cr("Found oop constant with non-zero offset");
6020     ShouldNotReachHere();
6021   }
6022 
6023   return (intptr_t)metadata()->constant_encoding();
6024 }
6025 
6026 //------------------------------cast_to_ptr_type-------------------------------
6027 const TypeMetadataPtr* TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
6028   if( ptr == _ptr ) return this;
6029   return make(ptr, metadata(), _offset);
6030 }
6031 

6045   case HalfFloatBot:
6046   case FloatTop:
6047   case FloatCon:
6048   case FloatBot:
6049   case DoubleTop:
6050   case DoubleCon:
6051   case DoubleBot:
6052   case NarrowOop:
6053   case NarrowKlass:
6054   case Bottom:                  // Ye Olde Default
6055     return Type::BOTTOM;
6056   case Top:
6057     return this;
6058 
6059   default:                      // All else is a mistake
6060     typerr(t);
6061 
6062   case AnyPtr: {
6063     // Found an AnyPtr type vs self-OopPtr type
6064     const TypePtr *tp = t->is_ptr();
6065     Offset offset = meet_offset(tp->offset());
6066     PTR ptr = meet_ptr(tp->ptr());
6067     switch (tp->ptr()) {
6068     case Null:
6069       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6070       // else fall through:
6071     case TopPTR:
6072     case AnyNull: {
6073       return make(ptr, _metadata, offset);
6074     }
6075     case BotPTR:
6076     case NotNull:
6077       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6078     default: typerr(t);
6079     }
6080   }
6081 
6082   case RawPtr:
6083   case KlassPtr:
6084   case InstKlassPtr:
6085   case AryKlassPtr:
6086   case OopPtr:
6087   case InstPtr:
6088   case AryPtr:
6089     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
6090 
6091   case MetadataPtr: {
6092     const TypeMetadataPtr *tp = t->is_metadataptr();
6093     Offset offset = meet_offset(tp->offset());
6094     PTR tptr = tp->ptr();
6095     PTR ptr = meet_ptr(tptr);
6096     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
6097     if (tptr == TopPTR || _ptr == TopPTR ||
6098         metadata()->equals(tp->metadata())) {
6099       return make(ptr, md, offset);
6100     }
6101     // metadata is different
6102     if( ptr == Constant ) {  // Cannot be equal constants, so...
6103       if( tptr == Constant && _ptr != Constant)  return t;
6104       if( _ptr == Constant && tptr != Constant)  return this;
6105       ptr = NotNull;            // Fall down in lattice
6106     }
6107     return make(ptr, nullptr, offset);
6108     break;
6109   }
6110   } // End of switch
6111   return this;                  // Return the double constant
6112 }
6113 

6117 const Type *TypeMetadataPtr::xdual() const {
6118   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
6119 }
6120 
6121 //------------------------------dump2------------------------------------------
6122 #ifndef PRODUCT
6123 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
6124   st->print("metadataptr:%s", ptr_msg[_ptr]);
6125   if (metadata() != nullptr) {
6126     st->print(":" INTPTR_FORMAT, p2i(metadata()));
6127   }
6128   dump_offset(st);
6129 }
6130 #endif
6131 
6132 
6133 //=============================================================================
6134 // Convenience common pre-built type.
6135 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
6136 
6137 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, Offset offset):
6138   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
6139 }
6140 
6141 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
6142   return make(Constant, m, Offset(0));
6143 }
6144 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
6145   return make(Constant, m, Offset(0));
6146 }
6147 
6148 //------------------------------make-------------------------------------------
6149 // Create a meta data constant
6150 const TypeMetadataPtr* TypeMetadataPtr::make(PTR ptr, ciMetadata* m, Offset offset) {
6151   assert(m == nullptr || !m->is_klass(), "wrong type");
6152   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
6153 }
6154 
6155 
6156 const TypeKlassPtr* TypeAryPtr::as_klass_type(bool try_for_exact) const {
6157   const Type* elem = _ary->_elem;
6158   bool xk = klass_is_exact();
6159   bool is_refined = false;
6160   if (elem->make_oopptr() != nullptr) {
6161     is_refined = true;
6162     elem = elem->make_oopptr()->as_klass_type(try_for_exact);
6163     if (elem->isa_aryklassptr()) {
6164       const TypeAryKlassPtr* elem_klass = elem->is_aryklassptr();
6165       if (elem_klass->is_refined_type()) {
6166         elem = elem_klass->cast_to_non_refined();
6167       }
6168     } else {
6169       const TypeInstKlassPtr* elem_klass = elem->is_instklassptr();
6170       if (try_for_exact && !xk && elem_klass->klass_is_exact() &&
6171           !elem_klass->exact_klass()->as_instance_klass()->can_be_inline_klass()) {
6172         xk = true;
6173       }
6174     }
6175   }
6176   return TypeAryKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, elem, klass(), Offset(0), is_not_flat(), is_not_null_free(), is_flat(), is_null_free(), is_atomic(), is_refined);
6177 }
6178 
6179 const TypeKlassPtr* TypeKlassPtr::make(ciKlass* klass, InterfaceHandling interface_handling) {
6180   if (klass->is_instance_klass()) {
6181     return TypeInstKlassPtr::make(klass, interface_handling);
6182   }
6183   return TypeAryKlassPtr::make(klass, interface_handling);
6184 }
6185 
6186 TypeKlassPtr::TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, Offset offset)










6187   : TypePtr(t, ptr, offset), _klass(klass), _interfaces(interfaces) {
6188   assert(klass == nullptr || !klass->is_loaded() || (klass->is_instance_klass() && !klass->is_interface()) ||
6189          klass->is_type_array_klass() || klass->is_flat_array_klass() || !klass->as_obj_array_klass()->base_element_klass()->is_interface(), "no interface here");
6190 }
6191 
6192 // Is there a single ciKlass* that can represent that type?
6193 ciKlass* TypeKlassPtr::exact_klass_helper() const {
6194   assert(_klass->is_instance_klass() && !_klass->is_interface(), "No interface");
6195   if (_interfaces->empty()) {
6196     return _klass;
6197   }
6198   if (_klass != ciEnv::current()->Object_klass()) {
6199     if (_interfaces->eq(_klass->as_instance_klass())) {
6200       return _klass;
6201     }
6202     return nullptr;
6203   }
6204   return _interfaces->exact_klass();
6205 }
6206 
6207 //------------------------------eq---------------------------------------------
6208 // Structural equality check for Type representations
6209 bool TypeKlassPtr::eq(const Type *t) const {
6210   const TypeKlassPtr *p = t->is_klassptr();
6211   return
6212     _interfaces->eq(p->_interfaces) &&
6213     TypePtr::eq(p);
6214 }
6215 
6216 //------------------------------hash-------------------------------------------
6217 // Type-specific hashing function.
6218 uint TypeKlassPtr::hash(void) const {
6219   return TypePtr::hash() + _interfaces->hash();
6220 }
6221 
6222 //------------------------------singleton--------------------------------------
6223 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
6224 // constants
6225 bool TypeKlassPtr::singleton(void) const {
6226   // detune optimizer to not generate constant klass + constant offset as a constant!
6227   // TopPTR, Null, AnyNull, Constant are all singletons
6228   return (offset() == 0) && !below_centerline(_ptr);
6229 }
6230 
6231 // Do not allow interface-vs.-noninterface joins to collapse to top.
6232 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
6233   // logic here mirrors the one from TypeOopPtr::filter. See comments
6234   // there.
6235   const Type* ft = join_helper(kills, include_speculative);
6236 
6237   if (ft->empty()) {
6238     return Type::TOP;           // Canonical empty value
6239   }
6240 
6241   return ft;
6242 }
6243 
6244 const TypeInterfaces* TypeKlassPtr::meet_interfaces(const TypeKlassPtr* other) const {
6245   if (above_centerline(_ptr) && above_centerline(other->_ptr)) {
6246     return _interfaces->union_with(other->_interfaces);
6247   } else if (above_centerline(_ptr) && !above_centerline(other->_ptr)) {
6248     return other->_interfaces;
6249   } else if (above_centerline(other->_ptr) && !above_centerline(_ptr)) {
6250     return _interfaces;
6251   }
6252   return _interfaces->intersection_with(other->_interfaces);
6253 }
6254 
6255 //------------------------------get_con----------------------------------------
6256 intptr_t TypeKlassPtr::get_con() const {
6257   assert( _ptr == Null || _ptr == Constant, "" );
6258   assert( offset() >= 0, "" );
6259 
6260   if (offset() != 0) {
6261     // After being ported to the compiler interface, the compiler no longer
6262     // directly manipulates the addresses of oops.  Rather, it only has a pointer
6263     // to a handle at compile time.  This handle is embedded in the generated
6264     // code and dereferenced at the time the nmethod is made.  Until that time,
6265     // it is not reasonable to do arithmetic with the addresses of oops (we don't
6266     // have access to the addresses!).  This does not seem to currently happen,
6267     // but this assertion here is to help prevent its occurrence.
6268     tty->print_cr("Found oop constant with non-zero offset");
6269     ShouldNotReachHere();
6270   }
6271 
6272   ciKlass* k = exact_klass();
6273 
6274   return (intptr_t)k->constant_encoding();
6275 }
6276 
6277 //=============================================================================
6278 // Convenience common pre-built types.
6279 
6280 // Not-null object klass or below
6281 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT;
6282 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT_OR_NULL;
6283 
6284 bool TypeInstKlassPtr::eq(const Type *t) const {
6285   const TypeInstKlassPtr* p = t->is_instklassptr();
6286   return
6287     klass()->equals(p->klass()) &&
6288     _flat_in_array == p->_flat_in_array &&
6289     TypeKlassPtr::eq(p);
6290 }
6291 
6292 uint TypeInstKlassPtr::hash() const {
6293   return klass()->hash() + TypeKlassPtr::hash() + static_cast<uint>(_flat_in_array);
6294 }
6295 
6296 const TypeInstKlassPtr *TypeInstKlassPtr::make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, Offset offset, FlatInArray flat_in_array) {
6297   if (flat_in_array == Uninitialized) {
6298     flat_in_array = compute_flat_in_array(k->as_instance_klass(), ptr == Constant);
6299   }
6300   TypeInstKlassPtr *r =
6301     (TypeInstKlassPtr*)(new TypeInstKlassPtr(ptr, k, interfaces, offset, flat_in_array))->hashcons();
6302 
6303   return r;
6304 }
6305 
6306 bool TypeInstKlassPtr::empty() const {
6307   if (_flat_in_array == TopFlat) {
6308     return true;
6309   }
6310   return TypeKlassPtr::empty();
6311 }
6312 
6313 //------------------------------add_offset-------------------------------------
6314 // Access internals of klass object
6315 const TypePtr *TypeInstKlassPtr::add_offset( intptr_t offset ) const {
6316   return make(_ptr, klass(), _interfaces, xadd_offset(offset), _flat_in_array);
6317 }
6318 
6319 const TypeInstKlassPtr* TypeInstKlassPtr::with_offset(intptr_t offset) const {
6320   return make(_ptr, klass(), _interfaces, Offset(offset), _flat_in_array);
6321 }
6322 
6323 //------------------------------cast_to_ptr_type-------------------------------
6324 const TypeInstKlassPtr* TypeInstKlassPtr::cast_to_ptr_type(PTR ptr) const {
6325   assert(_base == InstKlassPtr, "subclass must override cast_to_ptr_type");
6326   if( ptr == _ptr ) return this;
6327   return make(ptr, _klass, _interfaces, _offset, _flat_in_array);
6328 }
6329 
6330 
6331 bool TypeInstKlassPtr::must_be_exact() const {
6332   if (!_klass->is_loaded())  return false;
6333   ciInstanceKlass* ik = _klass->as_instance_klass();
6334   if (ik->is_final())  return true;  // cannot clear xk
6335   return false;
6336 }
6337 
6338 //-----------------------------cast_to_exactness-------------------------------
6339 const TypeKlassPtr* TypeInstKlassPtr::cast_to_exactness(bool klass_is_exact) const {
6340   if (klass_is_exact == (_ptr == Constant)) return this;
6341   if (must_be_exact()) return this;
6342   ciKlass* k = klass();
6343   FlatInArray flat_in_array = compute_flat_in_array(k->as_instance_klass(), klass_is_exact);
6344   return make(klass_is_exact ? Constant : NotNull, k, _interfaces, _offset, flat_in_array);
6345 }
6346 
6347 
6348 //-----------------------------as_instance_type--------------------------------
6349 // Corresponding type for an instance of the given class.
6350 // It will be NotNull, and exact if and only if the klass type is exact.
6351 const TypeOopPtr* TypeInstKlassPtr::as_instance_type(bool klass_change) const {
6352   ciKlass* k = klass();
6353   bool xk = klass_is_exact();
6354   Compile* C = Compile::current();
6355   Dependencies* deps = C->dependencies();
6356   assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
6357   // Element is an instance
6358   bool klass_is_exact = false;
6359   const TypeInterfaces* interfaces = _interfaces;
6360   ciInstanceKlass* ik = k->as_instance_klass();
6361   if (k->is_loaded()) {
6362     // Try to set klass_is_exact.

6363     klass_is_exact = ik->is_final();
6364     if (!klass_is_exact && klass_change
6365         && deps != nullptr && UseUniqueSubclasses) {
6366       ciInstanceKlass* sub = ik->unique_concrete_subklass();
6367       if (sub != nullptr) {
6368         if (_interfaces->eq(sub)) {
6369           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
6370           k = ik = sub;
6371           xk = sub->is_final();
6372         }
6373       }
6374     }
6375   }
6376 
6377   FlatInArray flat_in_array = compute_flat_in_array_if_unknown(ik, xk, _flat_in_array);
6378   return TypeInstPtr::make(TypePtr::BotPTR, k, interfaces, xk, nullptr, Offset(0), flat_in_array);
6379 }
6380 
6381 //------------------------------xmeet------------------------------------------
6382 // Compute the MEET of two types, return a new Type object.
6383 const Type    *TypeInstKlassPtr::xmeet( const Type *t ) const {
6384   // Perform a fast test for common case; meeting the same types together.
6385   if( this == t ) return this;  // Meeting same type-rep?
6386 
6387   // Current "this->_base" is Pointer
6388   switch (t->base()) {          // switch on original type
6389 
6390   case Int:                     // Mixing ints & oops happens when javac
6391   case Long:                    // reuses local variables
6392   case HalfFloatTop:
6393   case HalfFloatCon:
6394   case HalfFloatBot:
6395   case FloatTop:
6396   case FloatCon:
6397   case FloatBot:
6398   case DoubleTop:
6399   case DoubleCon:
6400   case DoubleBot:
6401   case NarrowOop:
6402   case NarrowKlass:
6403   case Bottom:                  // Ye Olde Default
6404     return Type::BOTTOM;
6405   case Top:
6406     return this;
6407 
6408   default:                      // All else is a mistake
6409     typerr(t);
6410 
6411   case AnyPtr: {                // Meeting to AnyPtrs
6412     // Found an AnyPtr type vs self-KlassPtr type
6413     const TypePtr *tp = t->is_ptr();
6414     Offset offset = meet_offset(tp->offset());
6415     PTR ptr = meet_ptr(tp->ptr());
6416     switch (tp->ptr()) {
6417     case TopPTR:
6418       return this;
6419     case Null:
6420       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6421     case AnyNull:
6422       return make(ptr, klass(), _interfaces, offset, _flat_in_array);
6423     case BotPTR:
6424     case NotNull:
6425       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6426     default: typerr(t);
6427     }
6428   }
6429 
6430   case RawPtr:
6431   case MetadataPtr:
6432   case OopPtr:
6433   case AryPtr:                  // Meet with AryPtr
6434   case InstPtr:                 // Meet with InstPtr
6435       return TypePtr::BOTTOM;
6436 
6437   //
6438   //             A-top         }
6439   //           /   |   \       }  Tops
6440   //       B-top A-any C-top   }
6441   //          | /  |  \ |      }  Any-nulls
6442   //       B-any   |   C-any   }
6443   //          |    |    |
6444   //       B-con A-con C-con   } constants; not comparable across classes
6445   //          |    |    |
6446   //       B-not   |   C-not   }
6447   //          | \  |  / |      }  not-nulls
6448   //       B-bot A-not C-bot   }
6449   //           \   |   /       }  Bottoms
6450   //             A-bot         }
6451   //
6452 
6453   case InstKlassPtr: {  // Meet two KlassPtr types
6454     const TypeInstKlassPtr *tkls = t->is_instklassptr();
6455     Offset  off     = meet_offset(tkls->offset());
6456     PTR  ptr     = meet_ptr(tkls->ptr());
6457     const TypeInterfaces* interfaces = meet_interfaces(tkls);
6458 
6459     ciKlass* res_klass = nullptr;
6460     bool res_xk = false;
6461     const FlatInArray flat_in_array = meet_flat_in_array(_flat_in_array, tkls->flat_in_array());
6462     switch (meet_instptr(ptr, interfaces, this, tkls, res_klass, res_xk)) {
6463       case UNLOADED:
6464         ShouldNotReachHere();
6465       case SUBTYPE:
6466       case NOT_SUBTYPE:
6467       case LCA:
6468       case QUICK: {
6469         assert(res_xk == (ptr == Constant), "");
6470         const Type* res = make(ptr, res_klass, interfaces, off, flat_in_array);
6471         return res;
6472       }
6473       default:
6474         ShouldNotReachHere();
6475     }
6476   } // End of case KlassPtr
6477   case AryKlassPtr: {                // All arrays inherit from Object class
6478     const TypeAryKlassPtr *tp = t->is_aryklassptr();
6479     Offset offset = meet_offset(tp->offset());
6480     PTR ptr = meet_ptr(tp->ptr());
6481     const TypeInterfaces* interfaces = meet_interfaces(tp);
6482     const TypeInterfaces* tp_interfaces = tp->_interfaces;
6483     const TypeInterfaces* this_interfaces = _interfaces;
6484 
6485     switch (ptr) {
6486     case TopPTR:
6487     case AnyNull:                // Fall 'down' to dual of object klass
6488       // For instances when a subclass meets a superclass we fall
6489       // below the centerline when the superclass is exact. We need to
6490       // do the same here.
6491       //
6492       // Flat in array: See explanation for meet with TypeInstPtr in TypeAryPtr::xmeet_helper().
6493       if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces->contains(this_interfaces) &&
6494           !klass_is_exact() && !is_not_flat_in_array()) {
6495         return TypeAryKlassPtr::make(ptr, tp->elem(), tp->klass(), offset, tp->is_not_flat(), tp->is_not_null_free(), tp->is_flat(), tp->is_null_free(), tp->is_atomic(), tp->is_refined_type());
6496       } else {
6497         // cannot subclass, so the meet has to fall badly below the centerline
6498         ptr = NotNull;
6499         interfaces = _interfaces->intersection_with(tp->_interfaces);
6500         FlatInArray flat_in_array = meet_flat_in_array(_flat_in_array, NotFlat);
6501         return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset, flat_in_array);
6502       }
6503     case Constant:
6504     case NotNull:
6505     case BotPTR: { // Fall down to object klass
6506       // LCA is object_klass, but if we subclass from the top we can do better
6507       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
6508         // If 'this' (InstPtr) is above the centerline and it is Object class
6509         // then we can subclass in the Java class hierarchy.
6510         // For instances when a subclass meets a superclass we fall
6511         // below the centerline when the superclass is exact. We need
6512         // to do the same here.
6513         //
6514         // Flat in array: See explanation for meet with TypeInstPtr in TypeAryPtr::xmeet_helper().
6515         if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces->contains(this_interfaces) &&
6516             !klass_is_exact() && !is_not_flat_in_array()) {
6517           // that is, tp's array type is a subtype of my klass
6518           return TypeAryKlassPtr::make(ptr, tp->elem(), tp->klass(), offset, tp->is_not_flat(), tp->is_not_null_free(), tp->is_flat(), tp->is_null_free(), tp->is_atomic(), tp->is_refined_type());

6519         }
6520       }
6521       // The other case cannot happen, since I cannot be a subtype of an array.
6522       // The meet falls down to Object class below centerline.
6523       if( ptr == Constant )
6524         ptr = NotNull;
6525       interfaces = this_interfaces->intersection_with(tp_interfaces);
6526       FlatInArray flat_in_array = meet_flat_in_array(_flat_in_array, NotFlat);
6527       return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset, flat_in_array);
6528     }
6529     default: typerr(t);
6530     }
6531   }
6532 
6533   } // End of switch
6534   return this;                  // Return the double constant
6535 }
6536 
6537 //------------------------------xdual------------------------------------------
6538 // Dual: compute field-by-field dual
6539 const Type* TypeInstKlassPtr::xdual() const {
6540   return new TypeInstKlassPtr(dual_ptr(), klass(), _interfaces, dual_offset(), dual_flat_in_array());
6541 }
6542 
6543 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
6544   static_assert(std::is_base_of<T2, T1>::value, "");
6545   if (!this_one->is_loaded() || !other->is_loaded()) {
6546     return false;
6547   }
6548   if (!this_one->is_instance_type(other)) {
6549     return false;
6550   }
6551 
6552   if (!other_exact) {
6553     return false;
6554   }
6555 
6556   if (other->klass()->equals(ciEnv::current()->Object_klass()) && other->_interfaces->empty()) {
6557     return true;
6558   }
6559 
6560   return this_one->klass()->is_subtype_of(other->klass()) && this_one->_interfaces->contains(other->_interfaces);

6614 
6615   if (this_exact) {
6616     return this_one->klass()->is_subtype_of(other->klass()) && this_one->_interfaces->contains(other->_interfaces);
6617   }
6618 
6619   return true;
6620 }
6621 
6622 bool TypeInstKlassPtr::maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
6623   return TypePtr::maybe_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
6624 }
6625 
6626 const TypeKlassPtr* TypeInstKlassPtr::try_improve() const {
6627   if (!UseUniqueSubclasses) {
6628     return this;
6629   }
6630   ciKlass* k = klass();
6631   Compile* C = Compile::current();
6632   Dependencies* deps = C->dependencies();
6633   assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");

6634   if (k->is_loaded()) {
6635     ciInstanceKlass* ik = k->as_instance_klass();
6636     if (deps != nullptr) {


6637       ciInstanceKlass* sub = ik->unique_concrete_subklass();
6638       if (sub != nullptr) {
6639         bool improve_to_exact = sub->is_final() && _ptr == NotNull;
6640         const TypeInstKlassPtr* improved = TypeInstKlassPtr::make(improve_to_exact ? Constant : _ptr, sub, _offset);
6641         if (improved->_interfaces->contains(_interfaces)) {
6642           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
6643           return improved;


6644         }
6645       }
6646     }
6647   }
6648   return this;
6649 }
6650 
6651 bool TypeInstKlassPtr::can_be_inline_array() const {
6652   return _klass->equals(ciEnv::current()->Object_klass()) && TypeAryKlassPtr::_array_interfaces->contains(_interfaces);
6653 }
6654 
6655 #ifndef PRODUCT
6656 void TypeInstKlassPtr::dump2(Dict& d, uint depth, outputStream* st) const {
6657   st->print("instklassptr:");
6658   klass()->print_name_on(st);
6659   _interfaces->dump(st);
6660   st->print(":%s", ptr_msg[_ptr]);
6661   dump_offset(st);
6662   dump_flat_in_array(_flat_in_array, st);
6663 }
6664 #endif // PRODUCT
6665 
6666 bool TypeAryKlassPtr::can_be_inline_array() const {
6667   return _elem->isa_instklassptr() && _elem->is_instklassptr()->_klass->can_be_inline_klass();
6668 }
6669 
6670 bool TypeInstPtr::can_be_inline_array() const {
6671   return _klass->equals(ciEnv::current()->Object_klass()) && TypeAryPtr::_array_interfaces->contains(_interfaces);
6672 }
6673 
6674 bool TypeAryPtr::can_be_inline_array() const {
6675   return elem()->make_ptr() && elem()->make_ptr()->isa_instptr() && elem()->make_ptr()->is_instptr()->_klass->can_be_inline_klass();
6676 }
6677 
6678 const TypeAryKlassPtr *TypeAryKlassPtr::make(PTR ptr, const Type* elem, ciKlass* k, Offset offset, bool not_flat, bool not_null_free, bool flat, bool null_free, bool atomic, bool refined_type) {
6679   return (TypeAryKlassPtr*)(new TypeAryKlassPtr(ptr, elem, k, offset, not_flat, not_null_free, flat, null_free, atomic, refined_type))->hashcons();
6680 }
6681 
6682 const TypeAryKlassPtr* TypeAryKlassPtr::make(PTR ptr, ciKlass* k, Offset offset, InterfaceHandling interface_handling, bool not_flat, bool not_null_free, bool flat, bool null_free, bool atomic, bool refined_type) {
6683   const Type* etype;
6684   if (k->is_obj_array_klass()) {
6685     // Element is an object array. Recursively call ourself.
6686     ciKlass* eklass = k->as_obj_array_klass()->element_klass();
6687     etype = TypeKlassPtr::make(eklass, interface_handling)->cast_to_exactness(false);
6688     k = nullptr;
6689   } else if (k->is_type_array_klass()) {
6690     // Element is an typeArray
6691     etype = get_const_basic_type(k->as_type_array_klass()->element_type());

6692   } else {
6693     ShouldNotReachHere();

6694   }
6695 
6696   return TypeAryKlassPtr::make(ptr, etype, k, offset, not_flat, not_null_free, flat, null_free, atomic, refined_type);
6697 }
6698 
6699 const TypeAryKlassPtr* TypeAryKlassPtr::make(ciKlass* klass, InterfaceHandling interface_handling) {
6700   ciArrayKlass* k = klass->as_array_klass();
6701   if (k->is_refined()) {
6702     return TypeAryKlassPtr::make(Constant, k, Offset(0), interface_handling, !k->is_flat_array_klass(), !k->is_elem_null_free(),
6703                                  k->is_flat_array_klass(), k->is_elem_null_free(), k->is_elem_atomic(), true);
6704   } else {
6705     // Use the default combination to canonicalize all non-refined klass pointers
6706     return TypeAryKlassPtr::make(Constant, k, Offset(0), interface_handling, true, true, false, false, true, false);
6707   }
6708 }
6709 
6710 const TypeAryKlassPtr* TypeAryKlassPtr::cast_to_non_refined() const {
6711   assert(is_refined_type(), "must be a refined type");
6712   PTR ptr = _ptr;
6713   // There can be multiple refined array types corresponding to a single unrefined type
6714   if (ptr == NotNull && elem()->is_klassptr()->klass_is_exact()) {
6715     ptr = Constant;
6716   }
6717   return make(ptr, elem(), nullptr, _offset, true, true, false, false, true, false);
6718 }
6719 
6720 // Get the (non-)refined array klass ptr
6721 const TypeAryKlassPtr* TypeAryKlassPtr::cast_to_refined_array_klass_ptr(bool refined) const {
6722   if ((refined == is_refined_type()) || !klass_is_exact() || !exact_klass()->is_obj_array_klass()) {
6723     return this;
6724   }
6725   ciArrayKlass* k = exact_klass()->as_array_klass();
6726   k = ciObjArrayKlass::make(k->element_klass(), refined);
6727   return make(k, trust_interfaces);
6728 }
6729 
6730 //------------------------------eq---------------------------------------------
6731 // Structural equality check for Type representations
6732 bool TypeAryKlassPtr::eq(const Type *t) const {
6733   const TypeAryKlassPtr *p = t->is_aryklassptr();
6734   return
6735     _elem == p->_elem &&  // Check array
6736     _flat == p->_flat &&
6737     _not_flat == p->_not_flat &&
6738     _null_free == p->_null_free &&
6739     _not_null_free == p->_not_null_free &&
6740     _atomic == p->_atomic &&
6741     _refined_type == p->_refined_type &&
6742     TypeKlassPtr::eq(p);  // Check sub-parts
6743 }
6744 
6745 //------------------------------hash-------------------------------------------
6746 // Type-specific hashing function.
6747 uint TypeAryKlassPtr::hash(void) const {
6748   return (uint)(uintptr_t)_elem + TypeKlassPtr::hash() + (uint)(_not_flat ? 43 : 0) +
6749       (uint)(_not_null_free ? 44 : 0) + (uint)(_flat ? 45 : 0) + (uint)(_null_free ? 46 : 0)  + (uint)(_atomic ? 47 : 0) + (uint)(_refined_type ? 48 : 0);
6750 }
6751 
6752 //----------------------compute_klass------------------------------------------
6753 // Compute the defining klass for this class
6754 ciKlass* TypeAryPtr::compute_klass() const {
6755   // Compute _klass based on element type.
6756   ciKlass* k_ary = nullptr;
6757   const TypeInstPtr *tinst;
6758   const TypeAryPtr *tary;
6759   const Type* el = elem();
6760   if (el->isa_narrowoop()) {
6761     el = el->make_ptr();
6762   }
6763 
6764   // Get element klass
6765   if ((tinst = el->isa_instptr()) != nullptr) {
6766     // Leave k_ary at nullptr.
6767   } else if ((tary = el->isa_aryptr()) != nullptr) {
6768     // Leave k_ary at nullptr.
6769   } else if ((el->base() == Type::Top) ||
6770              (el->base() == Type::Bottom)) {
6771     // element type of Bottom occurs from meet of basic type
6772     // and object; Top occurs when doing join on Bottom.
6773     // Leave k_ary at null.
6774   } else {
6775     assert(!el->isa_int(), "integral arrays must be pre-equipped with a class");
6776     // Compute array klass directly from basic type
6777     k_ary = ciTypeArrayKlass::make(el->basic_type());
6778   }
6779   return k_ary;
6780 }
6781 
6782 //------------------------------klass------------------------------------------
6783 // Return the defining klass for this class
6784 ciKlass* TypeAryPtr::klass() const {
6785   if( _klass ) return _klass;   // Return cached value, if possible
6786 
6787   // Oops, need to compute _klass and cache it
6788   ciKlass* k_ary = compute_klass();

6796     // type TypeAryPtr::OOPS.  This Type is shared between all
6797     // active compilations.  However, the ciKlass which represents
6798     // this Type is *not* shared between compilations, so caching
6799     // this value would result in fetching a dangling pointer.
6800     //
6801     // Recomputing the underlying ciKlass for each request is
6802     // a bit less efficient than caching, but calls to
6803     // TypeAryPtr::OOPS->klass() are not common enough to matter.
6804     ((TypeAryPtr*)this)->_klass = k_ary;
6805   }
6806   return k_ary;
6807 }
6808 
6809 // Is there a single ciKlass* that can represent that type?
6810 ciKlass* TypeAryPtr::exact_klass_helper() const {
6811   if (_ary->_elem->make_ptr() && _ary->_elem->make_ptr()->isa_oopptr()) {
6812     ciKlass* k = _ary->_elem->make_ptr()->is_oopptr()->exact_klass_helper();
6813     if (k == nullptr) {
6814       return nullptr;
6815     }
6816     if (k->is_array_klass() && k->as_array_klass()->is_refined()) {
6817       // We have no mechanism to create an array of refined arrays
6818       k = ciObjArrayKlass::make(k->as_array_klass()->element_klass(), false);
6819     }
6820     if (klass_is_exact()) {
6821       return ciObjArrayKlass::make(k, true, is_null_free(), is_atomic());
6822     } else {
6823       // We may reach here if called recursively, must be an unrefined type then
6824       return ciObjArrayKlass::make(k, false);
6825     }
6826   }
6827 
6828   return klass();
6829 }
6830 
6831 const Type* TypeAryPtr::base_element_type(int& dims) const {
6832   const Type* elem = this->elem();
6833   dims = 1;
6834   while (elem->make_ptr() && elem->make_ptr()->isa_aryptr()) {
6835     elem = elem->make_ptr()->is_aryptr()->elem();
6836     dims++;
6837   }
6838   return elem;
6839 }
6840 
6841 //------------------------------add_offset-------------------------------------
6842 // Access internals of klass object
6843 const TypePtr* TypeAryKlassPtr::add_offset(intptr_t offset) const {
6844   return make(_ptr, elem(), klass(), xadd_offset(offset), is_not_flat(), is_not_null_free(), _flat, _null_free, _atomic, _refined_type);
6845 }
6846 
6847 const TypeAryKlassPtr* TypeAryKlassPtr::with_offset(intptr_t offset) const {
6848   return make(_ptr, elem(), klass(), Offset(offset), is_not_flat(), is_not_null_free(), _flat, _null_free, _atomic, _refined_type);
6849 }
6850 
6851 //------------------------------cast_to_ptr_type-------------------------------
6852 const TypeAryKlassPtr* TypeAryKlassPtr::cast_to_ptr_type(PTR ptr) const {
6853   assert(_base == AryKlassPtr, "subclass must override cast_to_ptr_type");
6854   if (ptr == _ptr) return this;
6855   return make(ptr, elem(), _klass, _offset, is_not_flat(), is_not_null_free(), _flat, _null_free, _atomic, _refined_type);
6856 }
6857 
6858 bool TypeAryKlassPtr::must_be_exact() const {
6859   assert(klass_is_exact(), "precondition");
6860   if (_elem == Type::BOTTOM || _elem == Type::TOP) {
6861     return false;
6862   }
6863   const TypeKlassPtr* elem = _elem->isa_klassptr();
6864   if (elem == nullptr) {
6865     // primitive arrays
6866     return true;
6867   }
6868 
6869   // refined types are final
6870   return _refined_type;
6871 }
6872 
6873 //-----------------------------cast_to_exactness-------------------------------
6874 const TypeKlassPtr *TypeAryKlassPtr::cast_to_exactness(bool klass_is_exact) const {
6875   if (klass_is_exact == this->klass_is_exact()) {
6876     return this;
6877   }
6878   if (!klass_is_exact && must_be_exact()) {
6879     return this;
6880   }
6881   const Type* elem = this->elem();
6882   if (elem->isa_klassptr() && !klass_is_exact) {
6883     elem = elem->is_klassptr()->cast_to_exactness(klass_is_exact);
6884   }


6885 
6886   if (klass_is_exact) {
6887     // cast_to_exactness(true) really means get the LCA of all values represented by this
6888     // TypeAryKlassPtr. As a result, it must be an unrefined klass pointer.
6889     return make(Constant, elem, nullptr, _offset, true, true, false, false, true, false);
6890   } else {
6891     // cast_to_exactness(false) means get the TypeAryKlassPtr representing all values that subtype
6892     // this value
6893     bool not_inline = !_elem->isa_instklassptr() || !_elem->is_instklassptr()->instance_klass()->can_be_inline_klass();
6894     bool not_flat = !UseArrayFlattening || not_inline ||
6895                     (_elem->isa_instklassptr() && _elem->is_instklassptr()->instance_klass()->is_inlinetype() && !_elem->is_instklassptr()->instance_klass()->maybe_flat_in_array());
6896     bool not_null_free = not_inline;
6897     bool atomic = not_flat;
6898     return make(NotNull, elem, nullptr, _offset, not_flat, not_null_free, false, false, atomic, false);
6899   }
6900 }
6901 
6902 //-----------------------------as_instance_type--------------------------------
6903 // Corresponding type for an instance of the given class.
6904 // It will be NotNull, and exact if and only if the klass type is exact.
6905 const TypeOopPtr* TypeAryKlassPtr::as_instance_type(bool klass_change) const {
6906   ciKlass* k = klass();
6907   bool    xk = klass_is_exact();
6908   const Type* el = nullptr;
6909   if (elem()->isa_klassptr()) {
6910     el = elem()->is_klassptr()->as_instance_type(false)->cast_to_exactness(false);
6911     k = nullptr;
6912   } else {
6913     el = elem();
6914   }
6915   bool null_free = _null_free;
6916   if (null_free && el->isa_ptr()) {
6917     el = el->is_ptr()->join_speculative(TypePtr::NOTNULL);
6918   }
6919   return TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(el, TypeInt::POS, false, is_flat(), is_not_flat(), is_not_null_free(), is_atomic()), k, xk, Offset(0));
6920 }
6921 
6922 
6923 //------------------------------xmeet------------------------------------------
6924 // Compute the MEET of two types, return a new Type object.
6925 const Type    *TypeAryKlassPtr::xmeet( const Type *t ) const {
6926   // Perform a fast test for common case; meeting the same types together.
6927   if( this == t ) return this;  // Meeting same type-rep?
6928 
6929   // Current "this->_base" is Pointer
6930   switch (t->base()) {          // switch on original type
6931 
6932   case Int:                     // Mixing ints & oops happens when javac
6933   case Long:                    // reuses local variables
6934   case HalfFloatTop:
6935   case HalfFloatCon:
6936   case HalfFloatBot:
6937   case FloatTop:
6938   case FloatCon:
6939   case FloatBot:
6940   case DoubleTop:
6941   case DoubleCon:
6942   case DoubleBot:
6943   case NarrowOop:
6944   case NarrowKlass:
6945   case Bottom:                  // Ye Olde Default
6946     return Type::BOTTOM;
6947   case Top:
6948     return this;
6949 
6950   default:                      // All else is a mistake
6951     typerr(t);
6952 
6953   case AnyPtr: {                // Meeting to AnyPtrs
6954     // Found an AnyPtr type vs self-KlassPtr type
6955     const TypePtr *tp = t->is_ptr();
6956     Offset offset = meet_offset(tp->offset());
6957     PTR ptr = meet_ptr(tp->ptr());
6958     switch (tp->ptr()) {
6959     case TopPTR:
6960       return this;
6961     case Null:
6962       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6963     case AnyNull:
6964       return make(ptr, _elem, klass(), offset, is_not_flat(), is_not_null_free(), is_flat(), is_null_free(), is_atomic(), is_refined_type());
6965     case BotPTR:
6966     case NotNull:
6967       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6968     default: typerr(t);
6969     }
6970   }
6971 
6972   case RawPtr:
6973   case MetadataPtr:
6974   case OopPtr:
6975   case AryPtr:                  // Meet with AryPtr
6976   case InstPtr:                 // Meet with InstPtr
6977     return TypePtr::BOTTOM;
6978 
6979   //
6980   //             A-top         }
6981   //           /   |   \       }  Tops
6982   //       B-top A-any C-top   }
6983   //          | /  |  \ |      }  Any-nulls
6984   //       B-any   |   C-any   }
6985   //          |    |    |
6986   //       B-con A-con C-con   } constants; not comparable across classes
6987   //          |    |    |
6988   //       B-not   |   C-not   }
6989   //          | \  |  / |      }  not-nulls
6990   //       B-bot A-not C-bot   }
6991   //           \   |   /       }  Bottoms
6992   //             A-bot         }
6993   //
6994 
6995   case AryKlassPtr: {  // Meet two KlassPtr types
6996     const TypeAryKlassPtr *tap = t->is_aryklassptr();
6997     Offset off = meet_offset(tap->offset());
6998     const Type* elem = _elem->meet(tap->_elem);

6999     PTR ptr = meet_ptr(tap->ptr());
7000     ciKlass* res_klass = nullptr;
7001     bool res_xk = false;
7002     bool res_flat = false;
7003     bool res_not_flat = false;
7004     bool res_not_null_free = false;
7005     bool res_atomic = false;
7006     MeetResult res = meet_aryptr(ptr, elem, this, tap,
7007                                  res_klass, res_xk, res_flat, res_not_flat, res_not_null_free, res_atomic);
7008     assert(res_xk == (ptr == Constant), "");
7009     bool flat = meet_flat(tap->_flat);
7010     bool null_free = meet_null_free(tap->_null_free);
7011     bool atomic = meet_atomic(tap->_atomic);
7012     bool refined_type = _refined_type && tap->_refined_type;
7013     if (res == NOT_SUBTYPE) {
7014       flat = false;
7015       null_free = false;
7016       atomic = false;
7017       refined_type = false;
7018     } else if (res == SUBTYPE) {
7019       if (above_centerline(tap->ptr()) && !above_centerline(this->ptr())) {
7020         flat = _flat;
7021         null_free = _null_free;
7022         atomic = _atomic;
7023         refined_type = _refined_type;
7024       } else if (above_centerline(this->ptr()) && !above_centerline(tap->ptr())) {
7025         flat = tap->_flat;
7026         null_free = tap->_null_free;
7027         atomic = tap->_atomic;
7028         refined_type = tap->_refined_type;
7029       } else if (above_centerline(this->ptr()) && above_centerline(tap->ptr())) {
7030         flat = _flat || tap->_flat;
7031         null_free = _null_free || tap->_null_free;
7032         atomic = _atomic || tap->_atomic;
7033         refined_type = _refined_type || tap->_refined_type;
7034       } else if (res_xk && _refined_type != tap->_refined_type) {
7035         // This can happen if the phi emitted by LibraryCallKit::load_default_refined_array_klass/load_non_refined_array_klass
7036         // is processed before the typeArray guard is folded. Both inputs are constant but the input corresponding to the
7037         // typeArray will go away. Don't constant fold it yet but wait for the control input to collapse.
7038         ptr = PTR::NotNull;
7039       }
7040     }
7041     return make(ptr, elem, res_klass, off, res_not_flat, res_not_null_free, flat, null_free, atomic, refined_type);
7042   } // End of case KlassPtr
7043   case InstKlassPtr: {
7044     const TypeInstKlassPtr *tp = t->is_instklassptr();
7045     Offset offset = meet_offset(tp->offset());
7046     PTR ptr = meet_ptr(tp->ptr());
7047     const TypeInterfaces* interfaces = meet_interfaces(tp);
7048     const TypeInterfaces* tp_interfaces = tp->_interfaces;
7049     const TypeInterfaces* this_interfaces = _interfaces;
7050 
7051     switch (ptr) {
7052     case TopPTR:
7053     case AnyNull:                // Fall 'down' to dual of object klass
7054       // For instances when a subclass meets a superclass we fall
7055       // below the centerline when the superclass is exact. We need to
7056       // do the same here.
7057       //
7058       // Flat in array: See explanation for meet with TypeInstPtr in TypeAryPtr::xmeet_helper().
7059       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) &&
7060           !tp->klass_is_exact() && !tp->is_not_flat_in_array()) {
7061         return TypeAryKlassPtr::make(ptr, _elem, _klass, offset, is_not_flat(), is_not_null_free(), is_flat(), is_null_free(), is_atomic(), is_refined_type());
7062       } else {
7063         // cannot subclass, so the meet has to fall badly below the centerline
7064         ptr = NotNull;
7065         interfaces = this_interfaces->intersection_with(tp->_interfaces);
7066         FlatInArray flat_in_array = meet_flat_in_array(NotFlat, tp->flat_in_array());
7067         return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset, flat_in_array);
7068       }
7069     case Constant:
7070     case NotNull:
7071     case BotPTR: { // Fall down to object klass
7072       // LCA is object_klass, but if we subclass from the top we can do better
7073       if (above_centerline(tp->ptr())) {
7074         // If 'tp'  is above the centerline and it is Object class
7075         // then we can subclass in the Java class hierarchy.
7076         // For instances when a subclass meets a superclass we fall
7077         // below the centerline when the superclass is exact. We need
7078         // to do the same here.
7079         //
7080         // Flat in array: See explanation for meet with TypeInstPtr in TypeAryPtr::xmeet_helper().
7081         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) &&
7082             !tp->klass_is_exact() && !tp->is_not_flat_in_array()) {
7083           // that is, my array type is a subtype of 'tp' klass
7084           return make(ptr, _elem, _klass, offset, is_not_flat(), is_not_null_free(), is_flat(), is_null_free(), is_atomic(), is_refined_type());
7085         }
7086       }
7087       // The other case cannot happen, since t cannot be a subtype of an array.
7088       // The meet falls down to Object class below centerline.
7089       if (ptr == Constant)
7090         ptr = NotNull;
7091       interfaces = this_interfaces->intersection_with(tp_interfaces);
7092       FlatInArray flat_in_array = meet_flat_in_array(NotFlat, tp->flat_in_array());
7093       return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset, tp->flat_in_array());
7094     }
7095     default: typerr(t);
7096     }
7097   }
7098 
7099   } // End of switch
7100   return this;                  // Return the double constant
7101 }
7102 
7103 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
7104   static_assert(std::is_base_of<T2, T1>::value, "");
7105 
7106   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty() && other_exact) {
7107     return true;
7108   }
7109 
7110   int dummy;
7111   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
7112 
7113   if (!this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) {
7114     return false;
7115   }
7116 
7117   if (this_one->is_instance_type(other)) {
7118     return other->klass() == ciEnv::current()->Object_klass() && this_one->_interfaces->contains(other->_interfaces) &&
7119            other_exact;
7120   }
7121 
7122   assert(this_one->is_array_type(other), "");
7123   const T1* other_ary = this_one->is_array_type(other);
7124   bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
7125   if (other_top_or_bottom) {
7126     return false;
7127   }
7128 
7129   const TypePtr* other_elem = other_ary->elem()->make_ptr();
7130   const TypePtr* this_elem = this_one->elem()->make_ptr();
7131   if (this_elem != nullptr && other_elem != nullptr) {
7132     if (other->is_null_free() && !this_one->is_null_free()) {
7133       return false; // A nullable array can't be a subtype of a null-free array
7134     }
7135     return this_one->is_reference_type(this_elem)->is_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact);
7136   }
7137   if (this_elem == nullptr && other_elem == nullptr) {
7138     return this_one->klass()->is_subtype_of(other->klass());
7139   }
7140   return false;
7141 }
7142 
7143 bool TypeAryKlassPtr::is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
7144   return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
7145 }
7146 
7147 template <class T1, class T2> bool TypePtr::is_same_java_type_as_helper_for_array(const T1* this_one, const T2* other) {
7148   static_assert(std::is_base_of<T2, T1>::value, "");
7149 
7150   int dummy;
7151   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
7152 
7153   if (!this_one->is_array_type(other) ||
7154       !this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) {

7207   }
7208 
7209   const TypePtr* this_elem = this_one->elem()->make_ptr();
7210   const TypePtr* other_elem = other_ary->elem()->make_ptr();
7211   if (other_elem != nullptr && this_elem != nullptr) {
7212     return this_one->is_reference_type(this_elem)->maybe_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact);
7213   }
7214   if (other_elem == nullptr && this_elem == nullptr) {
7215     return this_one->klass()->is_subtype_of(other->klass());
7216   }
7217   return false;
7218 }
7219 
7220 bool TypeAryKlassPtr::maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
7221   return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
7222 }
7223 
7224 //------------------------------xdual------------------------------------------
7225 // Dual: compute field-by-field dual
7226 const Type    *TypeAryKlassPtr::xdual() const {
7227   return new TypeAryKlassPtr(dual_ptr(), elem()->dual(), klass(), dual_offset(), !is_not_flat(), !is_not_null_free(), dual_flat(), dual_null_free(), dual_atomic(), _refined_type);
7228 }
7229 
7230 // Is there a single ciKlass* that can represent that type?
7231 ciKlass* TypeAryKlassPtr::exact_klass_helper() const {
7232   if (elem()->isa_klassptr()) {
7233     ciKlass* k = elem()->is_klassptr()->exact_klass_helper();
7234     if (k == nullptr) {
7235       return nullptr;
7236     }
7237     assert(!k->is_array_klass() || !k->as_array_klass()->is_refined(), "no mechanism to create an array of refined arrays %s", k->name()->as_utf8());
7238     k = ciArrayKlass::make(k, is_null_free(), is_atomic(), _refined_type);
7239     return k;
7240   }
7241 
7242   return klass();
7243 }
7244 
7245 ciKlass* TypeAryKlassPtr::klass() const {
7246   if (_klass != nullptr) {
7247     return _klass;
7248   }
7249   ciKlass* k = nullptr;
7250   if (elem()->isa_klassptr()) {
7251     // leave null
7252   } else if ((elem()->base() == Type::Top) ||
7253              (elem()->base() == Type::Bottom)) {
7254   } else {
7255     k = ciTypeArrayKlass::make(elem()->basic_type());
7256     ((TypeAryKlassPtr*)this)->_klass = k;
7257   }
7258   return k;
7259 }
7260 
7261 //------------------------------dump2------------------------------------------
7262 // Dump Klass Type
7263 #ifndef PRODUCT
7264 void TypeAryKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
7265   st->print("aryklassptr:[");
7266   _elem->dump2(d, depth, st);
7267   _interfaces->dump(st);
7268   st->print(":%s", ptr_msg[_ptr]);
7269   if (_flat) st->print(":flat");
7270   if (_null_free) st->print(":null free");
7271   if (_atomic) st->print(":atomic");
7272   if (_refined_type) st->print(":refined_type");
7273   if (Verbose) {
7274     if (_not_flat) st->print(":not flat");
7275     if (_not_null_free) st->print(":nullable");
7276   }
7277   dump_offset(st);
7278 }
7279 #endif
7280 
7281 const Type* TypeAryKlassPtr::base_element_type(int& dims) const {
7282   const Type* elem = this->elem();
7283   dims = 1;
7284   while (elem->isa_aryklassptr()) {
7285     elem = elem->is_aryklassptr()->elem();
7286     dims++;
7287   }
7288   return elem;
7289 }
7290 
7291 //=============================================================================
7292 // Convenience common pre-built types.
7293 
7294 //------------------------------make-------------------------------------------
7295 const TypeFunc *TypeFunc::make(const TypeTuple *domain_sig, const TypeTuple* domain_cc,
7296                                const TypeTuple *range_sig, const TypeTuple *range_cc) {
7297   return (TypeFunc*)(new TypeFunc(domain_sig, domain_cc, range_sig, range_cc))->hashcons();
7298 }
7299 
7300 const TypeFunc *TypeFunc::make(const TypeTuple *domain, const TypeTuple *range) {
7301   return make(domain, domain, range, range);
7302 }
7303 
7304 //------------------------------osr_domain-----------------------------
7305 const TypeTuple* osr_domain() {
7306   const Type **fields = TypeTuple::fields(2);
7307   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM;  // address of osr buffer
7308   return TypeTuple::make(TypeFunc::Parms+1, fields);
7309 }
7310 
7311 //------------------------------make-------------------------------------------
7312 const TypeFunc* TypeFunc::make(ciMethod* method, bool is_osr_compilation) {
7313   Compile* C = Compile::current();
7314   const TypeFunc* tf = nullptr;
7315   if (!is_osr_compilation) {
7316     tf = C->last_tf(method); // check cache
7317     if (tf != nullptr)  return tf;  // The hit rate here is almost 50%.
7318   }
7319   // Inline types are not passed/returned by reference, instead each field of
7320   // the inline type is passed/returned as an argument. We maintain two views of
7321   // the argument/return list here: one based on the signature (with an inline
7322   // type argument/return as a single slot), one based on the actual calling
7323   // convention (with an inline type argument/return as a list of its fields).
7324   bool has_scalar_args = method->has_scalarized_args() && !is_osr_compilation;
7325   // Fall back to the non-scalarized calling convention when compiling a call via a mismatching method
7326   if (method != C->method() && method->get_Method()->mismatch()) {
7327     has_scalar_args = false;
7328   }
7329   const TypeTuple* domain_sig = is_osr_compilation ? osr_domain() : TypeTuple::make_domain(method, ignore_interfaces, false);
7330   const TypeTuple* domain_cc = has_scalar_args ? TypeTuple::make_domain(method, ignore_interfaces, true) : domain_sig;
7331   ciSignature* sig = method->signature();
7332   bool has_scalar_ret = !method->is_native() && sig->return_type()->is_inlinetype() && sig->return_type()->as_inline_klass()->can_be_returned_as_fields();
7333   const TypeTuple* range_sig = TypeTuple::make_range(sig, ignore_interfaces, false);
7334   const TypeTuple* range_cc = has_scalar_ret ? TypeTuple::make_range(sig, ignore_interfaces, true) : range_sig;
7335   tf = TypeFunc::make(domain_sig, domain_cc, range_sig, range_cc);
7336   if (!is_osr_compilation) {
7337     C->set_last_tf(method, tf);  // fill cache
7338   }



7339   return tf;
7340 }
7341 
7342 //------------------------------meet-------------------------------------------
7343 // Compute the MEET of two types.  It returns a new Type object.
7344 const Type *TypeFunc::xmeet( const Type *t ) const {
7345   // Perform a fast test for common case; meeting the same types together.
7346   if( this == t ) return this;  // Meeting same type-rep?
7347 
7348   // Current "this->_base" is Func
7349   switch (t->base()) {          // switch on original type
7350 
7351   case Bottom:                  // Ye Olde Default
7352     return t;
7353 
7354   default:                      // All else is a mistake
7355     typerr(t);
7356 
7357   case Top:
7358     break;
7359   }
7360   return this;                  // Return the double constant
7361 }
7362 
7363 //------------------------------xdual------------------------------------------
7364 // Dual: compute field-by-field dual
7365 const Type *TypeFunc::xdual() const {
7366   return this;
7367 }
7368 
7369 //------------------------------eq---------------------------------------------
7370 // Structural equality check for Type representations
7371 bool TypeFunc::eq( const Type *t ) const {
7372   const TypeFunc *a = (const TypeFunc*)t;
7373   return _domain_sig == a->_domain_sig &&
7374     _domain_cc == a->_domain_cc &&
7375     _range_sig == a->_range_sig &&
7376     _range_cc == a->_range_cc;
7377 }
7378 
7379 //------------------------------hash-------------------------------------------
7380 // Type-specific hashing function.
7381 uint TypeFunc::hash(void) const {
7382   return (uint)(intptr_t)_domain_sig + (uint)(intptr_t)_domain_cc + (uint)(intptr_t)_range_sig + (uint)(intptr_t)_range_cc;
7383 }
7384 
7385 //------------------------------dump2------------------------------------------
7386 // Dump Function Type
7387 #ifndef PRODUCT
7388 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
7389   if( _range_sig->cnt() <= Parms )
7390     st->print("void");
7391   else {
7392     uint i;
7393     for (i = Parms; i < _range_sig->cnt()-1; i++) {
7394       _range_sig->field_at(i)->dump2(d,depth,st);
7395       st->print("/");
7396     }
7397     _range_sig->field_at(i)->dump2(d,depth,st);
7398   }
7399   st->print(" ");
7400   st->print("( ");
7401   if( !depth || d[this] ) {     // Check for recursive dump
7402     st->print("...)");
7403     return;
7404   }
7405   d.Insert((void*)this,(void*)this);    // Stop recursion
7406   if (Parms < _domain_sig->cnt())
7407     _domain_sig->field_at(Parms)->dump2(d,depth-1,st);
7408   for (uint i = Parms+1; i < _domain_sig->cnt(); i++) {
7409     st->print(", ");
7410     _domain_sig->field_at(i)->dump2(d,depth-1,st);
7411   }
7412   st->print(" )");
7413 }
7414 #endif
7415 
7416 //------------------------------singleton--------------------------------------
7417 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
7418 // constants (Ldi nodes).  Singletons are integer, float or double constants
7419 // or a single symbol.
7420 bool TypeFunc::singleton(void) const {
7421   return false;                 // Never a singleton
7422 }
7423 
7424 bool TypeFunc::empty(void) const {
7425   return false;                 // Never empty
7426 }
7427 
7428 
7429 BasicType TypeFunc::return_type() const{
7430   if (range_sig()->cnt() == TypeFunc::Parms) {
7431     return T_VOID;
7432   }
7433   return range_sig()->field_at(TypeFunc::Parms)->basic_type();
7434 }
< prev index next >