< prev index next >

src/hotspot/share/opto/type.cpp

Print this page

   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"



  26 #include "ci/ciMethodData.hpp"
  27 #include "ci/ciTypeFlow.hpp"
  28 #include "classfile/javaClasses.hpp"
  29 #include "classfile/symbolTable.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "libadt/dict.hpp"
  32 #include "memory/oopFactory.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "oops/instanceKlass.hpp"
  35 #include "oops/instanceMirrorKlass.hpp"
  36 #include "oops/objArrayKlass.hpp"
  37 #include "oops/typeArrayKlass.hpp"
  38 #include "opto/matcher.hpp"
  39 #include "opto/node.hpp"
  40 #include "opto/opcodes.hpp"
  41 #include "opto/type.hpp"
  42 #include "utilities/checkedCast.hpp"
  43 #include "utilities/powerOfTwo.hpp"
  44 #include "utilities/stringUtils.hpp"
  45 
  46 // Portions of code courtesy of Clifford Click
  47 
  48 // Optimization - Graph Style
  49 
  50 // Dictionary of types shared among compilations.
  51 Dict* Type::_shared_type_dict = nullptr;













































  52 
  53 // Array which maps compiler types to Basic Types
  54 const Type::TypeInfo Type::_type_info[Type::lastype] = {
  55   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
  56   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
  57   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
  58   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
  59   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
  60   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
  61   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
  62   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
  63   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
  64   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
  65   { Bad,             T_ARRAY,      "interfaces:",   false, Node::NotAMachineReg, relocInfo::none          },  // Interfaces
  66 
  67 #if defined(PPC64)
  68   { Bad,             T_ILLEGAL,    "vectormask:",   false, Op_RegVectMask,       relocInfo::none          },  // VectorMask.
  69   { Bad,             T_ILLEGAL,    "vectora:",      false, Op_VecA,              relocInfo::none          },  // VectorA.
  70   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  71   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD

 206   case ciTypeFlow::StateVector::T_NULL:
 207     assert(type == ciTypeFlow::StateVector::null_type(), "");
 208     return TypePtr::NULL_PTR;
 209 
 210   case ciTypeFlow::StateVector::T_LONG2:
 211     // The ciTypeFlow pass pushes a long, then the half.
 212     // We do the same.
 213     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 214     return TypeInt::TOP;
 215 
 216   case ciTypeFlow::StateVector::T_DOUBLE2:
 217     // The ciTypeFlow pass pushes double, then the half.
 218     // Our convention is the same.
 219     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 220     return Type::TOP;
 221 
 222   case T_ADDRESS:
 223     assert(type->is_return_address(), "");
 224     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 225 



 226   default:
 227     // make sure we did not mix up the cases:
 228     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 229     assert(type != ciTypeFlow::StateVector::top_type(), "");
 230     assert(type != ciTypeFlow::StateVector::null_type(), "");
 231     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 232     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 233     assert(!type->is_return_address(), "");
 234 
 235     return Type::get_const_type(type);
 236   }
 237 }
 238 
 239 
 240 //-----------------------make_from_constant------------------------------------
 241 const Type* Type::make_from_constant(ciConstant constant, bool require_constant,
 242                                      int stable_dimension, bool is_narrow_oop,
 243                                      bool is_autobox_cache) {
 244   switch (constant.basic_type()) {
 245     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());

 512   const Type **ffalse =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 513   ffalse[0] = Type::CONTROL;
 514   ffalse[1] = Type::TOP;
 515   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 516 
 517   const Type **fneither =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 518   fneither[0] = Type::TOP;
 519   fneither[1] = Type::TOP;
 520   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 521 
 522   const Type **ftrue =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 523   ftrue[0] = Type::TOP;
 524   ftrue[1] = Type::CONTROL;
 525   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 526 
 527   const Type **floop =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 528   floop[0] = Type::CONTROL;
 529   floop[1] = TypeInt::INT;
 530   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 531 
 532   TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, 0);
 533   TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, OffsetBot);
 534   TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, OffsetBot);
 535 
 536   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 537   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 538 
 539   const Type **fmembar = TypeTuple::fields(0);
 540   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 541 
 542   const Type **fsc = (const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 543   fsc[0] = TypeInt::CC;
 544   fsc[1] = Type::MEMORY;
 545   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 546 
 547   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 548   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 549   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 550   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 551                                            false, 0, oopDesc::mark_offset_in_bytes());
 552   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 553                                            false, 0, oopDesc::klass_offset_in_bytes());
 554   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
 555 
 556   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, nullptr, OffsetBot);
 557 
 558   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 559   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 560 
 561   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 562 
 563   mreg2type[Op_Node] = Type::BOTTOM;
 564   mreg2type[Op_Set ] = 0;
 565   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 566   mreg2type[Op_RegI] = TypeInt::INT;
 567   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 568   mreg2type[Op_RegF] = Type::FLOAT;
 569   mreg2type[Op_RegD] = Type::DOUBLE;
 570   mreg2type[Op_RegL] = TypeLong::LONG;
 571   mreg2type[Op_RegFlags] = TypeInt::CC;
 572 
 573   GrowableArray<ciInstanceKlass*> array_interfaces;
 574   array_interfaces.push(current->env()->Cloneable_klass());
 575   array_interfaces.push(current->env()->Serializable_klass());
 576   TypeAryPtr::_array_interfaces = TypeInterfaces::make(&array_interfaces);
 577   TypeAryKlassPtr::_array_interfaces = TypeAryPtr::_array_interfaces;
 578 
 579   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), nullptr /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
 580 
 581   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), nullptr /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 582 
 583 #ifdef _LP64
 584   if (UseCompressedOops) {
 585     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 586     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 587   } else
 588 #endif
 589   {
 590     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 591     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), nullptr /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 592   }
 593   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
 594   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
 595   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
 596   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
 597   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
 598   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
 599   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);

 600 
 601   // Nobody should ask _array_body_type[T_NARROWOOP]. Use null as assert.
 602   TypeAryPtr::_array_body_type[T_NARROWOOP] = nullptr;
 603   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;

 604   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 605   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 606   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 607   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 608   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 609   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 610   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 611   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 612   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 613 
 614   TypeInstKlassPtr::OBJECT = TypeInstKlassPtr::make(TypePtr::NotNull, current->env()->Object_klass(), 0);
 615   TypeInstKlassPtr::OBJECT_OR_NULL = TypeInstKlassPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), 0);
 616 
 617   const Type **fi2c = TypeTuple::fields(2);
 618   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 619   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 620   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 621 
 622   const Type **intpair = TypeTuple::fields(2);
 623   intpair[0] = TypeInt::INT;
 624   intpair[1] = TypeInt::INT;
 625   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 626 
 627   const Type **longpair = TypeTuple::fields(2);
 628   longpair[0] = TypeLong::LONG;
 629   longpair[1] = TypeLong::LONG;
 630   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 631 
 632   const Type **intccpair = TypeTuple::fields(2);
 633   intccpair[0] = TypeInt::INT;
 634   intccpair[1] = TypeInt::CC;
 635   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 636 
 637   const Type **longccpair = TypeTuple::fields(2);
 638   longccpair[0] = TypeLong::LONG;
 639   longccpair[1] = TypeInt::CC;
 640   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 641 
 642   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 643   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 644   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 645   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 646   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 647   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 648   _const_basic_type[T_INT]         = TypeInt::INT;
 649   _const_basic_type[T_LONG]        = TypeLong::LONG;
 650   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 651   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 652   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 653   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays

 654   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 655   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 656   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 657 
 658   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 659   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 660   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 661   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 662   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 663   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 664   _zero_type[T_INT]         = TypeInt::ZERO;
 665   _zero_type[T_LONG]        = TypeLong::ZERO;
 666   _zero_type[T_FLOAT]       = TypeF::ZERO;
 667   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 668   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 669   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop

 670   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 671   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 672 
 673   // get_zero_type() should not happen for T_CONFLICT
 674   _zero_type[T_CONFLICT]= nullptr;
 675 
 676   TypeVect::VECTMASK = (TypeVect*)(new TypeVectMask(TypeInt::BOOL, MaxVectorSize))->hashcons();
 677   mreg2type[Op_RegVectMask] = TypeVect::VECTMASK;
 678 
 679   if (Matcher::supports_scalable_vector()) {
 680     TypeVect::VECTA = TypeVect::make(T_BYTE, Matcher::scalable_vector_reg_size(T_BYTE));
 681   }
 682 
 683   // Vector predefined types, it needs initialized _const_basic_type[].
 684   if (Matcher::vector_size_supported(T_BYTE,4)) {
 685     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
 686   }
 687   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 688     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
 689   }

 920   ~VerifyMeet() {
 921     assert(_C->_type_verify->_depth != 0, "");
 922     _C->_type_verify->_depth--;
 923     if (_C->_type_verify->_depth == 0) {
 924       _C->_type_verify->_cache.trunc_to(0);
 925     }
 926   }
 927 
 928   const Type* meet(const Type* t1, const Type* t2) const {
 929     return _C->_type_verify->meet(t1, t2);
 930   }
 931 
 932   void add(const Type* t1, const Type* t2, const Type* res) const {
 933     _C->_type_verify->add(t1, t2, res);
 934   }
 935 };
 936 
 937 void Type::check_symmetrical(const Type* t, const Type* mt, const VerifyMeet& verify) const {
 938   Compile* C = Compile::current();
 939   const Type* mt2 = verify.meet(t, this);



 940   if (mt != mt2) {
 941     tty->print_cr("=== Meet Not Commutative ===");
 942     tty->print("t           = ");   t->dump(); tty->cr();
 943     tty->print("this        = ");      dump(); tty->cr();
 944     tty->print("t meet this = "); mt2->dump(); tty->cr();
 945     tty->print("this meet t = ");  mt->dump(); tty->cr();
 946     fatal("meet not commutative");
 947   }
 948   const Type* dual_join = mt->_dual;
 949   const Type* t2t    = verify.meet(dual_join,t->_dual);
 950   const Type* t2this = verify.meet(dual_join,this->_dual);
 951 
 952   // Interface meet Oop is Not Symmetric:
 953   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
 954   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
 955 






 956   if (t2t != t->_dual || t2this != this->_dual) {
 957     tty->print_cr("=== Meet Not Symmetric ===");
 958     tty->print("t   =                   ");              t->dump(); tty->cr();
 959     tty->print("this=                   ");                 dump(); tty->cr();
 960     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
 961 
 962     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
 963     tty->print("this_dual=              ");          _dual->dump(); tty->cr();
 964     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
 965 
 966     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
 967     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
 968 
 969     fatal("meet not symmetric");
 970   }
 971 }
 972 #endif
 973 
 974 //------------------------------meet-------------------------------------------
 975 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is

2106 
2107 bool TypeLong::empty(void) const {
2108   return _lo > _hi;
2109 }
2110 
2111 //=============================================================================
2112 // Convenience common pre-built types.
2113 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
2114 const TypeTuple *TypeTuple::IFFALSE;
2115 const TypeTuple *TypeTuple::IFTRUE;
2116 const TypeTuple *TypeTuple::IFNEITHER;
2117 const TypeTuple *TypeTuple::LOOPBODY;
2118 const TypeTuple *TypeTuple::MEMBAR;
2119 const TypeTuple *TypeTuple::STORECONDITIONAL;
2120 const TypeTuple *TypeTuple::START_I2C;
2121 const TypeTuple *TypeTuple::INT_PAIR;
2122 const TypeTuple *TypeTuple::LONG_PAIR;
2123 const TypeTuple *TypeTuple::INT_CC_PAIR;
2124 const TypeTuple *TypeTuple::LONG_CC_PAIR;
2125 













2126 //------------------------------make-------------------------------------------
2127 // Make a TypeTuple from the range of a method signature
2128 const TypeTuple *TypeTuple::make_range(ciSignature* sig, InterfaceHandling interface_handling) {
2129   ciType* return_type = sig->return_type();
2130   uint arg_cnt = return_type->size();





2131   const Type **field_array = fields(arg_cnt);
2132   switch (return_type->basic_type()) {
2133   case T_LONG:
2134     field_array[TypeFunc::Parms]   = TypeLong::LONG;
2135     field_array[TypeFunc::Parms+1] = Type::HALF;
2136     break;
2137   case T_DOUBLE:
2138     field_array[TypeFunc::Parms]   = Type::DOUBLE;
2139     field_array[TypeFunc::Parms+1] = Type::HALF;
2140     break;
2141   case T_OBJECT:











2142   case T_ARRAY:
2143   case T_BOOLEAN:
2144   case T_CHAR:
2145   case T_FLOAT:
2146   case T_BYTE:
2147   case T_SHORT:
2148   case T_INT:
2149     field_array[TypeFunc::Parms] = get_const_type(return_type, interface_handling);
2150     break;
2151   case T_VOID:
2152     break;
2153   default:
2154     ShouldNotReachHere();
2155   }
2156   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2157 }
2158 
2159 // Make a TypeTuple from the domain of a method signature
2160 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig, InterfaceHandling interface_handling) {
2161   uint arg_cnt = sig->size();








2162 
2163   uint pos = TypeFunc::Parms;
2164   const Type **field_array;
2165   if (recv != nullptr) {
2166     arg_cnt++;
2167     field_array = fields(arg_cnt);
2168     // Use get_const_type here because it respects UseUniqueSubclasses:
2169     field_array[pos++] = get_const_type(recv, interface_handling)->join_speculative(TypePtr::NOTNULL);
2170   } else {
2171     field_array = fields(arg_cnt);
2172   }
2173 
2174   int i = 0;
2175   while (pos < TypeFunc::Parms + arg_cnt) {
2176     ciType* type = sig->type_at(i);

2177 
2178     switch (type->basic_type()) {
2179     case T_LONG:
2180       field_array[pos++] = TypeLong::LONG;
2181       field_array[pos++] = Type::HALF;
2182       break;
2183     case T_DOUBLE:
2184       field_array[pos++] = Type::DOUBLE;
2185       field_array[pos++] = Type::HALF;
2186       break;
2187     case T_OBJECT:








2188     case T_ARRAY:
2189     case T_FLOAT:
2190     case T_INT:
2191       field_array[pos++] = get_const_type(type, interface_handling);
2192       break;
2193     case T_BOOLEAN:
2194     case T_CHAR:
2195     case T_BYTE:
2196     case T_SHORT:
2197       field_array[pos++] = TypeInt::INT;
2198       break;
2199     default:
2200       ShouldNotReachHere();
2201     }
2202     i++;
2203   }

2204 
2205   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2206 }
2207 
2208 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
2209   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
2210 }
2211 
2212 //------------------------------fields-----------------------------------------
2213 // Subroutine call type with space allocated for argument types
2214 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
2215 const Type **TypeTuple::fields( uint arg_cnt ) {
2216   const Type **flds = (const Type **)(Compile::current()->type_arena()->AmallocWords((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
2217   flds[TypeFunc::Control  ] = Type::CONTROL;
2218   flds[TypeFunc::I_O      ] = Type::ABIO;
2219   flds[TypeFunc::Memory   ] = Type::MEMORY;
2220   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
2221   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
2222 
2223   return flds;

2318     if (_fields[i]->empty())  return true;
2319   }
2320   return false;
2321 }
2322 
2323 //=============================================================================
2324 // Convenience common pre-built types.
2325 
2326 inline const TypeInt* normalize_array_size(const TypeInt* size) {
2327   // Certain normalizations keep us sane when comparing types.
2328   // We do not want arrayOop variables to differ only by the wideness
2329   // of their index types.  Pick minimum wideness, since that is the
2330   // forced wideness of small ranges anyway.
2331   if (size->_widen != Type::WidenMin)
2332     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
2333   else
2334     return size;
2335 }
2336 
2337 //------------------------------make-------------------------------------------
2338 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {

2339   if (UseCompressedOops && elem->isa_oopptr()) {
2340     elem = elem->make_narrowoop();
2341   }
2342   size = normalize_array_size(size);
2343   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
2344 }
2345 
2346 //------------------------------meet-------------------------------------------
2347 // Compute the MEET of two types.  It returns a new Type object.
2348 const Type *TypeAry::xmeet( const Type *t ) const {
2349   // Perform a fast test for common case; meeting the same types together.
2350   if( this == t ) return this;  // Meeting same type-rep?
2351 
2352   // Current "this->_base" is Ary
2353   switch (t->base()) {          // switch on original type
2354 
2355   case Bottom:                  // Ye Olde Default
2356     return t;
2357 
2358   default:                      // All else is a mistake
2359     typerr(t);
2360 
2361   case Array: {                 // Meeting 2 arrays?
2362     const TypeAry *a = t->is_ary();
2363     return TypeAry::make(_elem->meet_speculative(a->_elem),
2364                          _size->xmeet(a->_size)->is_int(),
2365                          _stable && a->_stable);



2366   }
2367   case Top:
2368     break;
2369   }
2370   return this;                  // Return the double constant
2371 }
2372 
2373 //------------------------------xdual------------------------------------------
2374 // Dual: compute field-by-field dual
2375 const Type *TypeAry::xdual() const {
2376   const TypeInt* size_dual = _size->dual()->is_int();
2377   size_dual = normalize_array_size(size_dual);
2378   return new TypeAry(_elem->dual(), size_dual, !_stable);
2379 }
2380 
2381 //------------------------------eq---------------------------------------------
2382 // Structural equality check for Type representations
2383 bool TypeAry::eq( const Type *t ) const {
2384   const TypeAry *a = (const TypeAry*)t;
2385   return _elem == a->_elem &&
2386     _stable == a->_stable &&
2387     _size == a->_size;




2388 }
2389 
2390 //------------------------------hash-------------------------------------------
2391 // Type-specific hashing function.
2392 uint TypeAry::hash(void) const {
2393   return (uint)(uintptr_t)_elem + (uint)(uintptr_t)_size + (uint)(_stable ? 43 : 0);

2394 }
2395 
2396 /**
2397  * Return same type without a speculative part in the element
2398  */
2399 const TypeAry* TypeAry::remove_speculative() const {
2400   return make(_elem->remove_speculative(), _size, _stable);
2401 }
2402 
2403 /**
2404  * Return same type with cleaned up speculative part of element
2405  */
2406 const Type* TypeAry::cleanup_speculative() const {
2407   return make(_elem->cleanup_speculative(), _size, _stable);
2408 }
2409 
2410 /**
2411  * Return same type but with a different inline depth (used for speculation)
2412  *
2413  * @param depth  depth to meet with
2414  */
2415 const TypePtr* TypePtr::with_inline_depth(int depth) const {
2416   if (!UseInlineDepthForSpeculativeTypes) {
2417     return this;
2418   }
2419   return make(AnyPtr, _ptr, _offset, _speculative, depth);
2420 }
2421 
2422 //------------------------------dump2------------------------------------------
2423 #ifndef PRODUCT
2424 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2425   if (_stable)  st->print("stable:");





2426   _elem->dump2(d, depth, st);
2427   st->print("[");
2428   _size->dump2(d, depth, st);
2429   st->print("]");
2430 }
2431 #endif
2432 
2433 //------------------------------singleton--------------------------------------
2434 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2435 // constants (Ldi nodes).  Singletons are integer, float or double constants
2436 // or a single symbol.
2437 bool TypeAry::singleton(void) const {
2438   return false;                 // Never a singleton
2439 }
2440 
2441 bool TypeAry::empty(void) const {
2442   return _elem->empty() || _size->empty();
2443 }
2444 
2445 //--------------------------ary_must_be_exact----------------------------------
2446 bool TypeAry::ary_must_be_exact() const {
2447   // This logic looks at the element type of an array, and returns true
2448   // if the element type is either a primitive or a final instance class.
2449   // In such cases, an array built on this ary must have no subclasses.
2450   if (_elem == BOTTOM)      return false;  // general array not exact
2451   if (_elem == TOP   )      return false;  // inverted general array not exact
2452   const TypeOopPtr*  toop = nullptr;
2453   if (UseCompressedOops && _elem->isa_narrowoop()) {
2454     toop = _elem->make_ptr()->isa_oopptr();
2455   } else {
2456     toop = _elem->isa_oopptr();
2457   }
2458   if (!toop)                return true;   // a primitive type, like int
2459   if (!toop->is_loaded())   return false;  // unloaded class
2460   const TypeInstPtr* tinst;
2461   if (_elem->isa_narrowoop())
2462     tinst = _elem->make_ptr()->isa_instptr();
2463   else
2464     tinst = _elem->isa_instptr();
2465   if (tinst)
2466     return tinst->instance_klass()->is_final();









2467   const TypeAryPtr*  tap;
2468   if (_elem->isa_narrowoop())
2469     tap = _elem->make_ptr()->isa_aryptr();
2470   else
2471     tap = _elem->isa_aryptr();
2472   if (tap)
2473     return tap->ary()->ary_must_be_exact();
2474   return false;
2475 }
2476 
2477 //==============================TypeVect=======================================
2478 // Convenience common pre-built types.
2479 const TypeVect *TypeVect::VECTA = nullptr; // vector length agnostic
2480 const TypeVect *TypeVect::VECTS = nullptr; //  32-bit vectors
2481 const TypeVect *TypeVect::VECTD = nullptr; //  64-bit vectors
2482 const TypeVect *TypeVect::VECTX = nullptr; // 128-bit vectors
2483 const TypeVect *TypeVect::VECTY = nullptr; // 256-bit vectors
2484 const TypeVect *TypeVect::VECTZ = nullptr; // 512-bit vectors
2485 const TypeVect *TypeVect::VECTMASK = nullptr; // predicate/mask vector
2486 

2642 
2643 //=============================================================================
2644 // Convenience common pre-built types.
2645 const TypePtr *TypePtr::NULL_PTR;
2646 const TypePtr *TypePtr::NOTNULL;
2647 const TypePtr *TypePtr::BOTTOM;
2648 
2649 //------------------------------meet-------------------------------------------
2650 // Meet over the PTR enum
2651 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2652   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2653   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2654   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2655   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2656   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2657   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2658   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2659 };
2660 
2661 //------------------------------make-------------------------------------------
2662 const TypePtr *TypePtr::make(TYPES t, enum PTR ptr, int offset, const TypePtr* speculative, int inline_depth) {
2663   return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2664 }
2665 
2666 //------------------------------cast_to_ptr_type-------------------------------
2667 const TypePtr* TypePtr::cast_to_ptr_type(PTR ptr) const {
2668   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2669   if( ptr == _ptr ) return this;
2670   return make(_base, ptr, _offset, _speculative, _inline_depth);
2671 }
2672 
2673 //------------------------------get_con----------------------------------------
2674 intptr_t TypePtr::get_con() const {
2675   assert( _ptr == Null, "" );
2676   return _offset;
2677 }
2678 
2679 //------------------------------meet-------------------------------------------
2680 // Compute the MEET of two types.  It returns a new Type object.
2681 const Type *TypePtr::xmeet(const Type *t) const {
2682   const Type* res = xmeet_helper(t);
2683   if (res->isa_ptr() == nullptr) {
2684     return res;
2685   }
2686 
2687   const TypePtr* res_ptr = res->is_ptr();
2688   if (res_ptr->speculative() != nullptr) {
2689     // type->speculative() is null means that speculation is no better
2690     // than type, i.e. type->speculative() == type. So there are 2
2691     // ways to represent the fact that we have no useful speculative
2692     // data and we should use a single one to be able to test for
2693     // equality between types. Check whether type->speculative() ==
2694     // type and set speculative to null if it is the case.
2695     if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2696       return res_ptr->remove_speculative();

2727     int depth = meet_inline_depth(tp->inline_depth());
2728     return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2729   }
2730   case RawPtr:                  // For these, flip the call around to cut down
2731   case OopPtr:
2732   case InstPtr:                 // on the cases I have to handle.
2733   case AryPtr:
2734   case MetadataPtr:
2735   case KlassPtr:
2736   case InstKlassPtr:
2737   case AryKlassPtr:
2738     return t->xmeet(this);      // Call in reverse direction
2739   default:                      // All else is a mistake
2740     typerr(t);
2741 
2742   }
2743   return this;
2744 }
2745 
2746 //------------------------------meet_offset------------------------------------
2747 int TypePtr::meet_offset( int offset ) const {
2748   // Either is 'TOP' offset?  Return the other offset!
2749   if( _offset == OffsetTop ) return offset;
2750   if( offset == OffsetTop ) return _offset;
2751   // If either is different, return 'BOTTOM' offset
2752   if( _offset != offset ) return OffsetBot;
2753   return _offset;
2754 }
2755 
2756 //------------------------------dual_offset------------------------------------
2757 int TypePtr::dual_offset( ) const {
2758   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
2759   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
2760   return _offset;               // Map everything else into self
2761 }
2762 
2763 //------------------------------xdual------------------------------------------
2764 // Dual: compute field-by-field dual
2765 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2766   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2767 };
2768 const Type *TypePtr::xdual() const {
2769   return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2770 }
2771 
2772 //------------------------------xadd_offset------------------------------------
2773 int TypePtr::xadd_offset( intptr_t offset ) const {
2774   // Adding to 'TOP' offset?  Return 'TOP'!
2775   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
2776   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
2777   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
2778   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
2779   offset += (intptr_t)_offset;
2780   if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
2781 
2782   // assert( _offset >= 0 && _offset+offset >= 0, "" );
2783   // It is possible to construct a negative offset during PhaseCCP
2784 
2785   return (int)offset;        // Sum valid offsets
2786 }
2787 
2788 //------------------------------add_offset-------------------------------------
2789 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2790   return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2791 }
2792 
2793 const TypePtr *TypePtr::with_offset(intptr_t offset) const {
2794   return make(AnyPtr, _ptr, offset, _speculative, _inline_depth);
2795 }
2796 
2797 //------------------------------eq---------------------------------------------
2798 // Structural equality check for Type representations
2799 bool TypePtr::eq( const Type *t ) const {
2800   const TypePtr *a = (const TypePtr*)t;
2801   return _ptr == a->ptr() && _offset == a->offset() && eq_speculative(a) && _inline_depth == a->_inline_depth;
2802 }
2803 
2804 //------------------------------hash-------------------------------------------
2805 // Type-specific hashing function.
2806 uint TypePtr::hash(void) const {
2807   return (uint)_ptr + (uint)_offset + (uint)hash_speculative() + (uint)_inline_depth;
2808 }
2809 
2810 /**
2811  * Return same type without a speculative part
2812  */
2813 const TypePtr* TypePtr::remove_speculative() const {
2814   if (_speculative == nullptr) {
2815     return this;
2816   }
2817   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2818   return make(AnyPtr, _ptr, _offset, nullptr, _inline_depth);
2819 }
2820 
2821 /**
2822  * Return same type but drop speculative part if we know we won't use
2823  * it
2824  */
2825 const Type* TypePtr::cleanup_speculative() const {
2826   if (speculative() == nullptr) {
2827     return this;

3053   }
3054   // We already know the speculative type is always null
3055   if (speculative_always_null()) {
3056     return false;
3057   }
3058   if (ptr_kind == ProfileAlwaysNull && speculative() != nullptr && speculative()->isa_oopptr()) {
3059     return false;
3060   }
3061   return true;
3062 }
3063 
3064 //------------------------------dump2------------------------------------------
3065 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
3066   "TopPTR","AnyNull","Constant","null","NotNull","BotPTR"
3067 };
3068 
3069 #ifndef PRODUCT
3070 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3071   if( _ptr == Null ) st->print("null");
3072   else st->print("%s *", ptr_msg[_ptr]);
3073   if( _offset == OffsetTop ) st->print("+top");
3074   else if( _offset == OffsetBot ) st->print("+bot");
3075   else if( _offset ) st->print("+%d", _offset);
3076   dump_inline_depth(st);
3077   dump_speculative(st);
3078 }
3079 
3080 /**
3081  *dump the speculative part of the type
3082  */
3083 void TypePtr::dump_speculative(outputStream *st) const {
3084   if (_speculative != nullptr) {
3085     st->print(" (speculative=");
3086     _speculative->dump_on(st);
3087     st->print(")");
3088   }
3089 }
3090 
3091 /**
3092  *dump the inline depth of the type
3093  */
3094 void TypePtr::dump_inline_depth(outputStream *st) const {
3095   if (_inline_depth != InlineDepthBottom) {
3096     if (_inline_depth == InlineDepthTop) {
3097       st->print(" (inline_depth=InlineDepthTop)");
3098     } else {
3099       st->print(" (inline_depth=%d)", _inline_depth);
3100     }
3101   }
3102 }
3103 #endif
3104 
3105 //------------------------------singleton--------------------------------------
3106 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3107 // constants
3108 bool TypePtr::singleton(void) const {
3109   // TopPTR, Null, AnyNull, Constant are all singletons
3110   return (_offset != OffsetBot) && !below_centerline(_ptr);
3111 }
3112 
3113 bool TypePtr::empty(void) const {
3114   return (_offset == OffsetTop) || above_centerline(_ptr);
3115 }
3116 
3117 //=============================================================================
3118 // Convenience common pre-built types.
3119 const TypeRawPtr *TypeRawPtr::BOTTOM;
3120 const TypeRawPtr *TypeRawPtr::NOTNULL;
3121 
3122 //------------------------------make-------------------------------------------
3123 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
3124   assert( ptr != Constant, "what is the constant?" );
3125   assert( ptr != Null, "Use TypePtr for null" );
3126   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
3127 }
3128 
3129 const TypeRawPtr *TypeRawPtr::make( address bits ) {
3130   assert( bits, "Use TypePtr for null" );
3131   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
3132 }
3133 
3134 //------------------------------cast_to_ptr_type-------------------------------

3486 void TypeInterfaces::verify_is_loaded() const {
3487   for (int i = 0; i < _list.length(); i++) {
3488     ciKlass* interface = _list.at(i);
3489     assert(interface->is_loaded(), "Interface not loaded");
3490   }
3491 }
3492 #endif
3493 
3494 // Can't be implemented because there's no way to know if the type is above or below the center line.
3495 const Type* TypeInterfaces::xmeet(const Type* t) const {
3496   ShouldNotReachHere();
3497   return Type::xmeet(t);
3498 }
3499 
3500 bool TypeInterfaces::singleton(void) const {
3501   ShouldNotReachHere();
3502   return Type::singleton();
3503 }
3504 
3505 //------------------------------TypeOopPtr-------------------------------------
3506 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int offset,
3507                        int instance_id, const TypePtr* speculative, int inline_depth)
3508   : TypePtr(t, ptr, offset, speculative, inline_depth),
3509     _const_oop(o), _klass(k),
3510     _interfaces(interfaces),
3511     _klass_is_exact(xk),
3512     _is_ptr_to_narrowoop(false),
3513     _is_ptr_to_narrowklass(false),
3514     _is_ptr_to_boxed_value(false),
3515     _instance_id(instance_id) {
3516 #ifdef ASSERT
3517   if (klass() != nullptr && klass()->is_loaded()) {
3518     interfaces->verify_is_loaded();
3519   }
3520 #endif
3521   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
3522       (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
3523     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
3524   }
3525 #ifdef _LP64
3526   if (_offset > 0 || _offset == Type::OffsetTop || _offset == Type::OffsetBot) {
3527     if (_offset == oopDesc::klass_offset_in_bytes()) {
3528       _is_ptr_to_narrowklass = UseCompressedClassPointers;
3529     } else if (klass() == nullptr) {
3530       // Array with unknown body type
3531       assert(this->isa_aryptr(), "only arrays without klass");
3532       _is_ptr_to_narrowoop = UseCompressedOops;
3533     } else if (this->isa_aryptr()) {
3534       _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
3535                              _offset != arrayOopDesc::length_offset_in_bytes());









3536     } else if (klass()->is_instance_klass()) {
3537       ciInstanceKlass* ik = klass()->as_instance_klass();
3538       if (this->isa_klassptr()) {
3539         // Perm objects don't use compressed references
3540       } else if (_offset == OffsetBot || _offset == OffsetTop) {
3541         // unsafe access
3542         _is_ptr_to_narrowoop = UseCompressedOops;
3543       } else {
3544         assert(this->isa_instptr(), "must be an instance ptr.");
3545 
3546         if (klass() == ciEnv::current()->Class_klass() &&
3547             (_offset == java_lang_Class::klass_offset() ||
3548              _offset == java_lang_Class::array_klass_offset())) {
3549           // Special hidden fields from the Class.
3550           assert(this->isa_instptr(), "must be an instance ptr.");
3551           _is_ptr_to_narrowoop = false;
3552         } else if (klass() == ciEnv::current()->Class_klass() &&
3553                    _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
3554           // Static fields
3555           ciField* field = nullptr;
3556           if (const_oop() != nullptr) {
3557             ciInstanceKlass* k = const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
3558             field = k->get_field_by_offset(_offset, true);
3559           }
3560           if (field != nullptr) {
3561             BasicType basic_elem_type = field->layout_type();
3562             _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type);
3563           } else {
3564             // unsafe access
3565             _is_ptr_to_narrowoop = UseCompressedOops;







3566           }
3567         } else {
3568           // Instance fields which contains a compressed oop references.
3569           ciField* field = ik->get_field_by_offset(_offset, false);

3570           if (field != nullptr) {
3571             BasicType basic_elem_type = field->layout_type();
3572             _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type);
3573           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
3574             // Compile::find_alias_type() cast exactness on all types to verify
3575             // that it does not affect alias type.
3576             _is_ptr_to_narrowoop = UseCompressedOops;
3577           } else {
3578             // Type for the copy start in LibraryCallKit::inline_native_clone().
3579             _is_ptr_to_narrowoop = UseCompressedOops;
3580           }
3581         }
3582       }
3583     }
3584   }
3585 #endif
3586 }
3587 
3588 //------------------------------make-------------------------------------------
3589 const TypeOopPtr *TypeOopPtr::make(PTR ptr, int offset, int instance_id,
3590                                      const TypePtr* speculative, int inline_depth) {
3591   assert(ptr != Constant, "no constant generic pointers");
3592   ciKlass*  k = Compile::current()->env()->Object_klass();
3593   bool      xk = false;
3594   ciObject* o = nullptr;
3595   const TypeInterfaces* interfaces = TypeInterfaces::make();
3596   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, interfaces, xk, o, offset, instance_id, speculative, inline_depth))->hashcons();
3597 }
3598 
3599 
3600 //------------------------------cast_to_ptr_type-------------------------------
3601 const TypeOopPtr* TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
3602   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
3603   if( ptr == _ptr ) return this;
3604   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
3605 }
3606 
3607 //-----------------------------cast_to_instance_id----------------------------
3608 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
3609   // There are no instances of a general oop.
3610   // Return self unchanged.
3611   return this;
3612 }
3613 
3614 //-----------------------------cast_to_exactness-------------------------------
3615 const TypeOopPtr* TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
3616   // There is no such thing as an exact general oop.
3617   // Return self unchanged.
3618   return this;
3619 }
3620 
3621 
3622 //------------------------------as_klass_type----------------------------------
3623 // Return the klass type corresponding to this instance or array type.
3624 // It is the type that is loaded from an object of this type.
3625 const TypeKlassPtr* TypeOopPtr::as_klass_type(bool try_for_exact) const {
3626   ShouldNotReachHere();
3627   return nullptr;
3628 }
3629 
3630 //------------------------------meet-------------------------------------------
3631 // Compute the MEET of two types.  It returns a new Type object.
3632 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
3633   // Perform a fast test for common case; meeting the same types together.
3634   if( this == t ) return this;  // Meeting same type-rep?
3635 
3636   // Current "this->_base" is OopPtr
3637   switch (t->base()) {          // switch on original type
3638 
3639   case Int:                     // Mixing ints & oops happens when javac
3640   case Long:                    // reuses local variables
3641   case FloatTop:

3647   case NarrowOop:
3648   case NarrowKlass:
3649   case Bottom:                  // Ye Olde Default
3650     return Type::BOTTOM;
3651   case Top:
3652     return this;
3653 
3654   default:                      // All else is a mistake
3655     typerr(t);
3656 
3657   case RawPtr:
3658   case MetadataPtr:
3659   case KlassPtr:
3660   case InstKlassPtr:
3661   case AryKlassPtr:
3662     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3663 
3664   case AnyPtr: {
3665     // Found an AnyPtr type vs self-OopPtr type
3666     const TypePtr *tp = t->is_ptr();
3667     int offset = meet_offset(tp->offset());
3668     PTR ptr = meet_ptr(tp->ptr());
3669     const TypePtr* speculative = xmeet_speculative(tp);
3670     int depth = meet_inline_depth(tp->inline_depth());
3671     switch (tp->ptr()) {
3672     case Null:
3673       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3674       // else fall through:
3675     case TopPTR:
3676     case AnyNull: {
3677       int instance_id = meet_instance_id(InstanceTop);
3678       return make(ptr, offset, instance_id, speculative, depth);
3679     }
3680     case BotPTR:
3681     case NotNull:
3682       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3683     default: typerr(t);
3684     }
3685   }
3686 
3687   case OopPtr: {                 // Meeting to other OopPtrs

3689     int instance_id = meet_instance_id(tp->instance_id());
3690     const TypePtr* speculative = xmeet_speculative(tp);
3691     int depth = meet_inline_depth(tp->inline_depth());
3692     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
3693   }
3694 
3695   case InstPtr:                  // For these, flip the call around to cut down
3696   case AryPtr:
3697     return t->xmeet(this);      // Call in reverse direction
3698 
3699   } // End of switch
3700   return this;                  // Return the double constant
3701 }
3702 
3703 
3704 //------------------------------xdual------------------------------------------
3705 // Dual of a pure heap pointer.  No relevant klass or oop information.
3706 const Type *TypeOopPtr::xdual() const {
3707   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
3708   assert(const_oop() == nullptr,             "no constants here");
3709   return new TypeOopPtr(_base, dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
3710 }
3711 
3712 //--------------------------make_from_klass_common-----------------------------
3713 // Computes the element-type given a klass.
3714 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact, InterfaceHandling interface_handling) {
3715   if (klass->is_instance_klass()) {
3716     Compile* C = Compile::current();
3717     Dependencies* deps = C->dependencies();
3718     assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
3719     // Element is an instance
3720     bool klass_is_exact = false;
3721     if (klass->is_loaded()) {
3722       // Try to set klass_is_exact.
3723       ciInstanceKlass* ik = klass->as_instance_klass();
3724       klass_is_exact = ik->is_final();
3725       if (!klass_is_exact && klass_change
3726           && deps != nullptr && UseUniqueSubclasses) {
3727         ciInstanceKlass* sub = ik->unique_concrete_subklass();
3728         if (sub != nullptr) {
3729           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3730           klass = ik = sub;
3731           klass_is_exact = sub->is_final();
3732         }
3733       }
3734       if (!klass_is_exact && try_for_exact && deps != nullptr &&
3735           !ik->is_interface() && !ik->has_subklass()) {
3736         // Add a dependence; if concrete subclass added we need to recompile
3737         deps->assert_leaf_type(ik);
3738         klass_is_exact = true;
3739       }
3740     }
3741     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
3742     return TypeInstPtr::make(TypePtr::BotPTR, klass, interfaces, klass_is_exact, nullptr, 0);
3743   } else if (klass->is_obj_array_klass()) {
3744     // Element is an object array. Recursively call ourself.
3745     ciKlass* eklass = klass->as_obj_array_klass()->element_klass();
3746     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(eklass, false, try_for_exact, interface_handling);
3747     bool xk = etype->klass_is_exact();
3748     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);










3749     // We used to pass NotNull in here, asserting that the sub-arrays
3750     // are all not-null.  This is not true in generally, as code can
3751     // slam nulls down in the subarrays.
3752     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, nullptr, xk, 0);
3753     return arr;
3754   } else if (klass->is_type_array_klass()) {
3755     // Element is an typeArray
3756     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3757     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);

3758     // We used to pass NotNull in here, asserting that the array pointer
3759     // is not-null. That was not true in general.
3760     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);






3761     return arr;
3762   } else {
3763     ShouldNotReachHere();
3764     return nullptr;
3765   }
3766 }
3767 
3768 //------------------------------make_from_constant-----------------------------
3769 // Make a java pointer from an oop constant
3770 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
3771   assert(!o->is_null_object(), "null object not yet handled here.");
3772 
3773   const bool make_constant = require_constant || o->should_be_constant();
3774 
3775   ciKlass* klass = o->klass();
3776   if (klass->is_instance_klass()) {
3777     // Element is an instance
3778     if (make_constant) {
3779       return TypeInstPtr::make(o);
3780     } else {
3781       return TypeInstPtr::make(TypePtr::NotNull, klass, true, nullptr, 0);
3782     }
3783   } else if (klass->is_obj_array_klass()) {
3784     // Element is an object array. Recursively call ourself.
3785     const TypeOopPtr *etype =
3786       TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass(), trust_interfaces);
3787     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));





3788     // We used to pass NotNull in here, asserting that the sub-arrays
3789     // are all not-null.  This is not true in generally, as code can
3790     // slam nulls down in the subarrays.
3791     if (make_constant) {
3792       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3793     } else {
3794       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3795     }
3796   } else if (klass->is_type_array_klass()) {
3797     // Element is an typeArray
3798     const Type* etype =
3799       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3800     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3801     // We used to pass NotNull in here, asserting that the array pointer
3802     // is not-null. That was not true in general.
3803     if (make_constant) {
3804       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);












3805     } else {
3806       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3807     }
3808   }
3809 
3810   fatal("unhandled object type");
3811   return nullptr;
3812 }
3813 
3814 //------------------------------get_con----------------------------------------
3815 intptr_t TypeOopPtr::get_con() const {
3816   assert( _ptr == Null || _ptr == Constant, "" );
3817   assert( _offset >= 0, "" );
3818 
3819   if (_offset != 0) {
3820     // After being ported to the compiler interface, the compiler no longer
3821     // directly manipulates the addresses of oops.  Rather, it only has a pointer
3822     // to a handle at compile time.  This handle is embedded in the generated
3823     // code and dereferenced at the time the nmethod is made.  Until that time,
3824     // it is not reasonable to do arithmetic with the addresses of oops (we don't
3825     // have access to the addresses!).  This does not seem to currently happen,
3826     // but this assertion here is to help prevent its occurrence.
3827     tty->print_cr("Found oop constant with non-zero offset");
3828     ShouldNotReachHere();
3829   }
3830 
3831   return (intptr_t)const_oop()->constant_encoding();
3832 }
3833 
3834 
3835 //-----------------------------filter------------------------------------------
3836 // Do not allow interface-vs.-noninterface joins to collapse to top.
3837 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
3838 
3839   const Type* ft = join_helper(kills, include_speculative);

3860   } else {
3861     return one->equals(two) && TypePtr::eq(t);
3862   }
3863 }
3864 
3865 //------------------------------hash-------------------------------------------
3866 // Type-specific hashing function.
3867 uint TypeOopPtr::hash(void) const {
3868   return
3869     (uint)(const_oop() ? const_oop()->hash() : 0) +
3870     (uint)_klass_is_exact +
3871     (uint)_instance_id + TypePtr::hash();
3872 }
3873 
3874 //------------------------------dump2------------------------------------------
3875 #ifndef PRODUCT
3876 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3877   st->print("oopptr:%s", ptr_msg[_ptr]);
3878   if( _klass_is_exact ) st->print(":exact");
3879   if( const_oop() ) st->print(INTPTR_FORMAT, p2i(const_oop()));
3880   switch( _offset ) {
3881   case OffsetTop: st->print("+top"); break;
3882   case OffsetBot: st->print("+any"); break;
3883   case         0: break;
3884   default:        st->print("+%d",_offset); break;
3885   }
3886   if (_instance_id == InstanceTop)
3887     st->print(",iid=top");
3888   else if (_instance_id != InstanceBot)
3889     st->print(",iid=%d",_instance_id);
3890 
3891   dump_inline_depth(st);
3892   dump_speculative(st);
3893 }
3894 #endif
3895 
3896 //------------------------------singleton--------------------------------------
3897 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3898 // constants
3899 bool TypeOopPtr::singleton(void) const {
3900   // detune optimizer to not generate constant oop + constant offset as a constant!
3901   // TopPTR, Null, AnyNull, Constant are all singletons
3902   return (_offset == 0) && !below_centerline(_ptr);
3903 }
3904 
3905 //------------------------------add_offset-------------------------------------
3906 const TypePtr* TypeOopPtr::add_offset(intptr_t offset) const {
3907   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
3908 }
3909 
3910 const TypeOopPtr* TypeOopPtr::with_offset(intptr_t offset) const {
3911   return make(_ptr, offset, _instance_id, with_offset_speculative(offset), _inline_depth);
3912 }
3913 
3914 /**
3915  * Return same type without a speculative part
3916  */
3917 const TypeOopPtr* TypeOopPtr::remove_speculative() const {
3918   if (_speculative == nullptr) {
3919     return this;
3920   }
3921   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3922   return make(_ptr, _offset, _instance_id, nullptr, _inline_depth);
3923 }
3924 
3925 /**
3926  * Return same type but drop speculative part if we know we won't use
3927  * it
3928  */
3929 const Type* TypeOopPtr::cleanup_speculative() const {
3930   // If the klass is exact and the ptr is not null then there's
3931   // nothing that the speculative type can help us with

4004 const TypeInstPtr *TypeInstPtr::BOTTOM;
4005 const TypeInstPtr *TypeInstPtr::MIRROR;
4006 const TypeInstPtr *TypeInstPtr::MARK;
4007 const TypeInstPtr *TypeInstPtr::KLASS;
4008 
4009 // Is there a single ciKlass* that can represent that type?
4010 ciKlass* TypeInstPtr::exact_klass_helper() const {
4011   if (_interfaces->empty()) {
4012     return _klass;
4013   }
4014   if (_klass != ciEnv::current()->Object_klass()) {
4015     if (_interfaces->eq(_klass->as_instance_klass())) {
4016       return _klass;
4017     }
4018     return nullptr;
4019   }
4020   return _interfaces->exact_klass();
4021 }
4022 
4023 //------------------------------TypeInstPtr-------------------------------------
4024 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int off,
4025                          int instance_id, const TypePtr* speculative, int inline_depth)
4026   : TypeOopPtr(InstPtr, ptr, k, interfaces, xk, o, off, instance_id, speculative, inline_depth) {

4027   assert(k == nullptr || !k->is_loaded() || !k->is_interface(), "no interface here");
4028   assert(k != nullptr &&
4029          (k->is_loaded() || o == nullptr),
4030          "cannot have constants with non-loaded klass");


4031 };
4032 
4033 //------------------------------make-------------------------------------------
4034 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
4035                                      ciKlass* k,
4036                                      const TypeInterfaces* interfaces,
4037                                      bool xk,
4038                                      ciObject* o,
4039                                      int offset,

4040                                      int instance_id,
4041                                      const TypePtr* speculative,
4042                                      int inline_depth) {
4043   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
4044   // Either const_oop() is null or else ptr is Constant
4045   assert( (!o && ptr != Constant) || (o && ptr == Constant),
4046           "constant pointers must have a value supplied" );
4047   // Ptr is never Null
4048   assert( ptr != Null, "null pointers are not typed" );
4049 
4050   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4051   if (ptr == Constant) {
4052     // Note:  This case includes meta-object constants, such as methods.
4053     xk = true;
4054   } else if (k->is_loaded()) {
4055     ciInstanceKlass* ik = k->as_instance_klass();
4056     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
4057     assert(!ik->is_interface(), "no interface here");
4058     if (xk && ik->is_interface())  xk = false;  // no exact interface
4059   }
4060 



4061   // Now hash this baby
4062   TypeInstPtr *result =
4063     (TypeInstPtr*)(new TypeInstPtr(ptr, k, interfaces, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
4064 
4065   return result;
4066 }
4067 
4068 const TypeInterfaces* TypePtr::interfaces(ciKlass*& k, bool klass, bool interface, bool array, InterfaceHandling interface_handling) {
4069   if (k->is_instance_klass()) {
4070     if (k->is_loaded()) {
4071       if (k->is_interface() && interface_handling == ignore_interfaces) {
4072         assert(interface, "no interface expected");
4073         k = ciEnv::current()->Object_klass();
4074         const TypeInterfaces* interfaces = TypeInterfaces::make();
4075         return interfaces;
4076       }
4077       GrowableArray<ciInstanceKlass *>* k_interfaces = k->as_instance_klass()->transitive_interfaces();
4078       const TypeInterfaces* interfaces = TypeInterfaces::make(k_interfaces);
4079       if (k->is_interface()) {
4080         assert(interface, "no interface expected");
4081         k = ciEnv::current()->Object_klass();
4082       } else {
4083         assert(klass, "no instance klass expected");

4109   switch (bt) {
4110     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
4111     case T_INT:      return TypeInt::make(constant.as_int());
4112     case T_CHAR:     return TypeInt::make(constant.as_char());
4113     case T_BYTE:     return TypeInt::make(constant.as_byte());
4114     case T_SHORT:    return TypeInt::make(constant.as_short());
4115     case T_FLOAT:    return TypeF::make(constant.as_float());
4116     case T_DOUBLE:   return TypeD::make(constant.as_double());
4117     case T_LONG:     return TypeLong::make(constant.as_long());
4118     default:         break;
4119   }
4120   fatal("Invalid boxed value type '%s'", type2name(bt));
4121   return nullptr;
4122 }
4123 
4124 //------------------------------cast_to_ptr_type-------------------------------
4125 const TypeInstPtr* TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
4126   if( ptr == _ptr ) return this;
4127   // Reconstruct _sig info here since not a problem with later lazy
4128   // construction, _sig will show up on demand.
4129   return make(ptr, klass(), _interfaces, klass_is_exact(), ptr == Constant ? const_oop() : nullptr, _offset, _instance_id, _speculative, _inline_depth);
4130 }
4131 
4132 
4133 //-----------------------------cast_to_exactness-------------------------------
4134 const TypeInstPtr* TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
4135   if( klass_is_exact == _klass_is_exact ) return this;
4136   if (!_klass->is_loaded())  return this;
4137   ciInstanceKlass* ik = _klass->as_instance_klass();
4138   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
4139   assert(!ik->is_interface(), "no interface here");
4140   return make(ptr(), klass(), _interfaces, klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
4141 }
4142 
4143 //-----------------------------cast_to_instance_id----------------------------
4144 const TypeInstPtr* TypeInstPtr::cast_to_instance_id(int instance_id) const {
4145   if( instance_id == _instance_id ) return this;
4146   return make(_ptr, klass(),  _interfaces, _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
4147 }
4148 
4149 //------------------------------xmeet_unloaded---------------------------------
4150 // Compute the MEET of two InstPtrs when at least one is unloaded.
4151 // Assume classes are different since called after check for same name/class-loader
4152 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst, const TypeInterfaces* interfaces) const {
4153   int off = meet_offset(tinst->offset());
4154   PTR ptr = meet_ptr(tinst->ptr());
4155   int instance_id = meet_instance_id(tinst->instance_id());
4156   const TypePtr* speculative = xmeet_speculative(tinst);
4157   int depth = meet_inline_depth(tinst->inline_depth());
4158 
4159   const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
4160   const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
4161   if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
4162     //
4163     // Meet unloaded class with java/lang/Object
4164     //
4165     // Meet
4166     //          |                     Unloaded Class
4167     //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
4168     //  ===================================================================
4169     //   TOP    | ..........................Unloaded......................|
4170     //  AnyNull |  U-AN    |................Unloaded......................|
4171     // Constant | ... O-NN .................................. |   O-BOT   |
4172     //  NotNull | ... O-NN .................................. |   O-BOT   |
4173     //  BOTTOM  | ........................Object-BOTTOM ..................|
4174     //
4175     assert(loaded->ptr() != TypePtr::Null, "insanity check");
4176     //
4177     if (loaded->ptr() == TypePtr::TopPTR)        { return unloaded; }
4178     else if (loaded->ptr() == TypePtr::AnyNull)  { return make(ptr, unloaded->klass(), interfaces, false, nullptr, off, instance_id, speculative, depth); }
4179     else if (loaded->ptr() == TypePtr::BotPTR)   { return TypeInstPtr::BOTTOM; }
4180     else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
4181       if (unloaded->ptr() == TypePtr::BotPTR)    { return TypeInstPtr::BOTTOM;  }
4182       else                                       { return TypeInstPtr::NOTNULL; }
4183     }
4184     else if (unloaded->ptr() == TypePtr::TopPTR) { return unloaded; }
4185 
4186     return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
4187   }
4188 
4189   // Both are unloaded, not the same class, not Object
4190   // Or meet unloaded with a different loaded class, not java/lang/Object
4191   if (ptr != TypePtr::BotPTR) {
4192     return TypeInstPtr::NOTNULL;
4193   }
4194   return TypeInstPtr::BOTTOM;
4195 }
4196 
4197 
4198 //------------------------------meet-------------------------------------------

4219   case Top:
4220     return this;
4221 
4222   default:                      // All else is a mistake
4223     typerr(t);
4224 
4225   case MetadataPtr:
4226   case KlassPtr:
4227   case InstKlassPtr:
4228   case AryKlassPtr:
4229   case RawPtr: return TypePtr::BOTTOM;
4230 
4231   case AryPtr: {                // All arrays inherit from Object class
4232     // Call in reverse direction to avoid duplication
4233     return t->is_aryptr()->xmeet_helper(this);
4234   }
4235 
4236   case OopPtr: {                // Meeting to OopPtrs
4237     // Found a OopPtr type vs self-InstPtr type
4238     const TypeOopPtr *tp = t->is_oopptr();
4239     int offset = meet_offset(tp->offset());
4240     PTR ptr = meet_ptr(tp->ptr());
4241     switch (tp->ptr()) {
4242     case TopPTR:
4243     case AnyNull: {
4244       int instance_id = meet_instance_id(InstanceTop);
4245       const TypePtr* speculative = xmeet_speculative(tp);
4246       int depth = meet_inline_depth(tp->inline_depth());
4247       return make(ptr, klass(), _interfaces, klass_is_exact(),
4248                   (ptr == Constant ? const_oop() : nullptr), offset, instance_id, speculative, depth);
4249     }
4250     case NotNull:
4251     case BotPTR: {
4252       int instance_id = meet_instance_id(tp->instance_id());
4253       const TypePtr* speculative = xmeet_speculative(tp);
4254       int depth = meet_inline_depth(tp->inline_depth());
4255       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4256     }
4257     default: typerr(t);
4258     }
4259   }
4260 
4261   case AnyPtr: {                // Meeting to AnyPtrs
4262     // Found an AnyPtr type vs self-InstPtr type
4263     const TypePtr *tp = t->is_ptr();
4264     int offset = meet_offset(tp->offset());
4265     PTR ptr = meet_ptr(tp->ptr());
4266     int instance_id = meet_instance_id(InstanceTop);
4267     const TypePtr* speculative = xmeet_speculative(tp);
4268     int depth = meet_inline_depth(tp->inline_depth());
4269     switch (tp->ptr()) {
4270     case Null:
4271       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4272       // else fall through to AnyNull
4273     case TopPTR:
4274     case AnyNull: {
4275       return make(ptr, klass(), _interfaces, klass_is_exact(),
4276                   (ptr == Constant ? const_oop() : nullptr), offset, instance_id, speculative, depth);
4277     }
4278     case NotNull:
4279     case BotPTR:
4280       return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
4281     default: typerr(t);
4282     }
4283   }
4284 
4285   /*
4286                  A-top         }
4287                /   |   \       }  Tops
4288            B-top A-any C-top   }
4289               | /  |  \ |      }  Any-nulls
4290            B-any   |   C-any   }
4291               |    |    |
4292            B-con A-con C-con   } constants; not comparable across classes
4293               |    |    |
4294            B-not   |   C-not   }
4295               | \  |  / |      }  not-nulls
4296            B-bot A-not C-bot   }
4297                \   |   /       }  Bottoms
4298                  A-bot         }
4299   */
4300 
4301   case InstPtr: {                // Meeting 2 Oops?
4302     // Found an InstPtr sub-type vs self-InstPtr type
4303     const TypeInstPtr *tinst = t->is_instptr();
4304     int off = meet_offset(tinst->offset());
4305     PTR ptr = meet_ptr(tinst->ptr());
4306     int instance_id = meet_instance_id(tinst->instance_id());
4307     const TypePtr* speculative = xmeet_speculative(tinst);
4308     int depth = meet_inline_depth(tinst->inline_depth());
4309     const TypeInterfaces* interfaces = meet_interfaces(tinst);
4310 
4311     ciKlass* tinst_klass = tinst->klass();
4312     ciKlass* this_klass  = klass();
4313 
4314     ciKlass* res_klass = nullptr;
4315     bool res_xk = false;

4316     const Type* res;
4317     MeetResult kind = meet_instptr(ptr, interfaces, this, tinst, res_klass, res_xk);
4318 
4319     if (kind == UNLOADED) {
4320       // One of these classes has not been loaded
4321       const TypeInstPtr* unloaded_meet = xmeet_unloaded(tinst, interfaces);
4322 #ifndef PRODUCT
4323       if (PrintOpto && Verbose) {
4324         tty->print("meet of unloaded classes resulted in: ");
4325         unloaded_meet->dump();
4326         tty->cr();
4327         tty->print("  this == ");
4328         dump();
4329         tty->cr();
4330         tty->print(" tinst == ");
4331         tinst->dump();
4332         tty->cr();
4333       }
4334 #endif
4335       res = unloaded_meet;
4336     } else {
4337       if (kind == NOT_SUBTYPE && instance_id > 0) {
4338         instance_id = InstanceBot;
4339       } else if (kind == LCA) {
4340         instance_id = InstanceBot;
4341       }
4342       ciObject* o = nullptr;             // Assume not constant when done
4343       ciObject* this_oop = const_oop();
4344       ciObject* tinst_oop = tinst->const_oop();
4345       if (ptr == Constant) {
4346         if (this_oop != nullptr && tinst_oop != nullptr &&
4347             this_oop->equals(tinst_oop))
4348           o = this_oop;
4349         else if (above_centerline(_ptr)) {
4350           assert(!tinst_klass->is_interface(), "");
4351           o = tinst_oop;
4352         } else if (above_centerline(tinst->_ptr)) {
4353           assert(!this_klass->is_interface(), "");
4354           o = this_oop;
4355         } else
4356           ptr = NotNull;
4357       }
4358       res = make(ptr, res_klass, interfaces, res_xk, o, off, instance_id, speculative, depth);
4359     }
4360 
4361     return res;
4362 
4363   } // End of case InstPtr
4364 
4365   } // End of switch
4366   return this;                  // Return the double constant
4367 }
4368 
4369 template<class T> TypePtr::MeetResult TypePtr::meet_instptr(PTR& ptr, const TypeInterfaces*& interfaces, const T* this_type, const T* other_type,
4370                                                             ciKlass*& res_klass, bool& res_xk) {
4371   ciKlass* this_klass = this_type->klass();
4372   ciKlass* other_klass = other_type->klass();





4373   bool this_xk = this_type->klass_is_exact();
4374   bool other_xk = other_type->klass_is_exact();
4375   PTR this_ptr = this_type->ptr();
4376   PTR other_ptr = other_type->ptr();
4377   const TypeInterfaces* this_interfaces = this_type->interfaces();
4378   const TypeInterfaces* other_interfaces = other_type->interfaces();
4379   // Check for easy case; klasses are equal (and perhaps not loaded!)
4380   // If we have constants, then we created oops so classes are loaded
4381   // and we can handle the constants further down.  This case handles
4382   // both-not-loaded or both-loaded classes
4383   if (ptr != Constant && this_klass->equals(other_klass) && this_xk == other_xk) {
4384     res_klass = this_klass;
4385     res_xk = this_xk;

4386     return QUICK;
4387   }
4388 
4389   // Classes require inspection in the Java klass hierarchy.  Must be loaded.
4390   if (!other_klass->is_loaded() || !this_klass->is_loaded()) {
4391     return UNLOADED;
4392   }
4393 
4394   // !!! Here's how the symmetry requirement breaks down into invariants:
4395   // If we split one up & one down AND they subtype, take the down man.
4396   // If we split one up & one down AND they do NOT subtype, "fall hard".
4397   // If both are up and they subtype, take the subtype class.
4398   // If both are up and they do NOT subtype, "fall hard".
4399   // If both are down and they subtype, take the supertype class.
4400   // If both are down and they do NOT subtype, "fall hard".
4401   // Constants treated as down.
4402 
4403   // Now, reorder the above list; observe that both-down+subtype is also
4404   // "fall hard"; "fall hard" becomes the default case:
4405   // If we split one up & one down AND they subtype, take the down man.
4406   // If both are up and they subtype, take the subtype class.
4407 
4408   // If both are down and they subtype, "fall hard".
4409   // If both are down and they do NOT subtype, "fall hard".
4410   // If both are up and they do NOT subtype, "fall hard".
4411   // If we split one up & one down AND they do NOT subtype, "fall hard".
4412 
4413   // If a proper subtype is exact, and we return it, we return it exactly.
4414   // If a proper supertype is exact, there can be no subtyping relationship!
4415   // If both types are equal to the subtype, exactness is and-ed below the
4416   // centerline and or-ed above it.  (N.B. Constants are always exact.)
4417 
4418   // Check for subtyping:









4419   const T* subtype = nullptr;
4420   bool subtype_exact = false;

4421   if (this_type->is_same_java_type_as(other_type)) {
4422     subtype = this_type;
4423     subtype_exact = below_centerline(ptr) ? (this_xk && other_xk) : (this_xk || other_xk);
4424   } else if (!other_xk && this_type->is_meet_subtype_of(other_type)) {

4425     subtype = this_type;     // Pick subtyping class
4426     subtype_exact = this_xk;
4427   } else if(!this_xk && other_type->is_meet_subtype_of(this_type)) {


4428     subtype = other_type;    // Pick subtyping class
4429     subtype_exact = other_xk;


4430   }
4431 
4432   if (subtype) {
4433     if (above_centerline(ptr)) { // both are up?

4434       this_type = other_type = subtype;
4435       this_xk = other_xk = subtype_exact;
4436     } else if (above_centerline(this_ptr) && !above_centerline(other_ptr)) {
4437       this_type = other_type; // tinst is down; keep down man

4438       this_xk = other_xk;

4439     } else if (above_centerline(other_ptr) && !above_centerline(this_ptr)) {

4440       other_type = this_type; // this is down; keep down man
4441       other_xk = this_xk;
4442     } else {

4443       this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
4444     }
4445   }
4446 
4447   // Check for classes now being equal
4448   if (this_type->is_same_java_type_as(other_type)) {
4449     // If the klasses are equal, the constants may still differ.  Fall to
4450     // NotNull if they do (neither constant is null; that is a special case
4451     // handled elsewhere).
4452     res_klass = this_type->klass();
4453     res_xk = this_xk;

4454     return SUBTYPE;
4455   } // Else classes are not equal
4456 
4457   // Since klasses are different, we require a LCA in the Java
4458   // class hierarchy - which means we have to fall to at least NotNull.
4459   if (ptr == TopPTR || ptr == AnyNull || ptr == Constant) {
4460     ptr = NotNull;
4461   }
4462 
4463   interfaces = this_interfaces->intersection_with(other_interfaces);
4464 
4465   // Now we find the LCA of Java classes
4466   ciKlass* k = this_klass->least_common_ancestor(other_klass);
4467 
4468   res_klass = k;
4469   res_xk = false;

4470 
4471   return LCA;
4472 }
4473 




4474 //------------------------java_mirror_type--------------------------------------
4475 ciType* TypeInstPtr::java_mirror_type() const {
4476   // must be a singleton type
4477   if( const_oop() == nullptr )  return nullptr;
4478 
4479   // must be of type java.lang.Class
4480   if( klass() != ciEnv::current()->Class_klass() )  return nullptr;
4481 
4482   return const_oop()->as_instance()->java_mirror_type();
4483 }
4484 
4485 
4486 //------------------------------xdual------------------------------------------
4487 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
4488 // inheritance mechanism.
4489 const Type *TypeInstPtr::xdual() const {
4490   return new TypeInstPtr(dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
4491 }
4492 
4493 //------------------------------eq---------------------------------------------
4494 // Structural equality check for Type representations
4495 bool TypeInstPtr::eq( const Type *t ) const {
4496   const TypeInstPtr *p = t->is_instptr();
4497   return
4498     klass()->equals(p->klass()) &&

4499     _interfaces->eq(p->_interfaces) &&
4500     TypeOopPtr::eq(p);          // Check sub-type stuff
4501 }
4502 
4503 //------------------------------hash-------------------------------------------
4504 // Type-specific hashing function.
4505 uint TypeInstPtr::hash(void) const {
4506   return klass()->hash() + TypeOopPtr::hash() + _interfaces->hash();
4507 }
4508 
4509 bool TypeInstPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4510   return TypePtr::is_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
4511 }
4512 
4513 
4514 bool TypeInstPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const {
4515   return TypePtr::is_same_java_type_as_helper_for_instance(this, other);
4516 }
4517 
4518 bool TypeInstPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4519   return TypePtr::maybe_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
4520 }
4521 
4522 
4523 //------------------------------dump2------------------------------------------
4524 // Dump oop Type
4525 #ifndef PRODUCT
4526 void TypeInstPtr::dump2(Dict &d, uint depth, outputStream* st) const {

4540       // suppress newlines from it so -XX:+Verbose -XX:+PrintIdeal dumps one-liner for each node.
4541       char* buf = ss.as_string(/* c_heap= */false);
4542       StringUtils::replace_no_expand(buf, "\n", "");
4543       st->print_raw(buf);
4544     }
4545   case BotPTR:
4546     if (!WizardMode && !Verbose) {
4547       if( _klass_is_exact ) st->print(":exact");
4548       break;
4549     }
4550   case TopPTR:
4551   case AnyNull:
4552   case NotNull:
4553     st->print(":%s", ptr_msg[_ptr]);
4554     if( _klass_is_exact ) st->print(":exact");
4555     break;
4556   default:
4557     break;
4558   }
4559 
4560   if( _offset ) {               // Dump offset, if any
4561     if( _offset == OffsetBot )      st->print("+any");
4562     else if( _offset == OffsetTop ) st->print("+unknown");
4563     else st->print("+%d", _offset);
4564   }
4565 
4566   st->print(" *");





4567   if (_instance_id == InstanceTop)
4568     st->print(",iid=top");
4569   else if (_instance_id != InstanceBot)
4570     st->print(",iid=%d",_instance_id);
4571 
4572   dump_inline_depth(st);
4573   dump_speculative(st);
4574 }
4575 #endif
4576 
4577 //------------------------------add_offset-------------------------------------
4578 const TypePtr* TypeInstPtr::add_offset(intptr_t offset) const {
4579   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), xadd_offset(offset),
4580               _instance_id, add_offset_speculative(offset), _inline_depth);
4581 }
4582 
4583 const TypeInstPtr* TypeInstPtr::with_offset(intptr_t offset) const {
4584   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), offset,
4585               _instance_id, with_offset_speculative(offset), _inline_depth);
4586 }
4587 
4588 const TypeInstPtr* TypeInstPtr::remove_speculative() const {
4589   if (_speculative == nullptr) {
4590     return this;
4591   }
4592   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4593   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset,
4594               _instance_id, nullptr, _inline_depth);
4595 }
4596 
4597 const TypePtr* TypeInstPtr::with_inline_depth(int depth) const {
4598   if (!UseInlineDepthForSpeculativeTypes) {
4599     return this;
4600   }
4601   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
4602 }
4603 
4604 const TypePtr* TypeInstPtr::with_instance_id(int instance_id) const {
4605   assert(is_known_instance(), "should be known");
4606   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, instance_id, _speculative, _inline_depth);




4607 }
4608 
4609 const TypeKlassPtr* TypeInstPtr::as_klass_type(bool try_for_exact) const {
4610   bool xk = klass_is_exact();
4611   ciInstanceKlass* ik = klass()->as_instance_klass();
4612   if (try_for_exact && !xk && !ik->has_subklass() && !ik->is_final()) {
4613     if (_interfaces->eq(ik)) {
4614       Compile* C = Compile::current();
4615       Dependencies* deps = C->dependencies();
4616       deps->assert_leaf_type(ik);
4617       xk = true;
4618     }
4619   }
4620   return TypeInstKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, klass(), _interfaces, 0);
4621 }
4622 
4623 template <class T1, class T2> bool TypePtr::is_meet_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_xk, bool other_xk) {
4624   static_assert(std::is_base_of<T2, T1>::value, "");
4625 
4626   if (!this_one->is_instance_type(other)) {
4627     return false;
4628   }
4629 
4630   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty()) {
4631     return true;
4632   }
4633 
4634   return this_one->klass()->is_subtype_of(other->klass()) &&
4635          (!this_xk || this_one->_interfaces->contains(other->_interfaces));
4636 }
4637 
4638 
4639 bool TypeInstPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const {
4640   return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk);

4645   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty()) {
4646     return true;
4647   }
4648 
4649   if (this_one->is_instance_type(other)) {
4650     return other->klass() == ciEnv::current()->Object_klass() && this_one->_interfaces->contains(other->_interfaces);
4651   }
4652 
4653   int dummy;
4654   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
4655   if (this_top_or_bottom) {
4656     return false;
4657   }
4658 
4659   const T1* other_ary = this_one->is_array_type(other);
4660   const TypePtr* other_elem = other_ary->elem()->make_ptr();
4661   const TypePtr* this_elem = this_one->elem()->make_ptr();
4662   if (other_elem != nullptr && this_elem != nullptr) {
4663     return this_one->is_reference_type(this_elem)->is_meet_subtype_of_helper(this_one->is_reference_type(other_elem), this_xk, other_xk);
4664   }
4665 
4666   if (other_elem == nullptr && this_elem == nullptr) {
4667     return this_one->klass()->is_subtype_of(other->klass());
4668   }
4669 
4670   return false;
4671 }
4672 
4673 bool TypeAryPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const {
4674   return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk);
4675 }
4676 
4677 bool TypeInstKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const {
4678   return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk);
4679 }
4680 
4681 bool TypeAryKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const {
4682   return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk);
4683 }
4684 
4685 //=============================================================================
4686 // Convenience common pre-built types.
4687 const TypeAryPtr *TypeAryPtr::RANGE;
4688 const TypeAryPtr *TypeAryPtr::OOPS;
4689 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
4690 const TypeAryPtr *TypeAryPtr::BYTES;
4691 const TypeAryPtr *TypeAryPtr::SHORTS;
4692 const TypeAryPtr *TypeAryPtr::CHARS;
4693 const TypeAryPtr *TypeAryPtr::INTS;
4694 const TypeAryPtr *TypeAryPtr::LONGS;
4695 const TypeAryPtr *TypeAryPtr::FLOATS;
4696 const TypeAryPtr *TypeAryPtr::DOUBLES;

4697 
4698 //------------------------------make-------------------------------------------
4699 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset,
4700                                    int instance_id, const TypePtr* speculative, int inline_depth) {
4701   assert(!(k == nullptr && ary->_elem->isa_int()),
4702          "integral arrays must be pre-equipped with a class");
4703   if (!xk)  xk = ary->ary_must_be_exact();
4704   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4705   if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() &&
4706       k->as_obj_array_klass()->base_element_klass()->is_interface()) {
4707     k = nullptr;
4708   }
4709   return (TypeAryPtr*)(new TypeAryPtr(ptr, nullptr, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons();



4710 }
4711 
4712 //------------------------------make-------------------------------------------
4713 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset,
4714                                    int instance_id, const TypePtr* speculative, int inline_depth,
4715                                    bool is_autobox_cache) {
4716   assert(!(k == nullptr && ary->_elem->isa_int()),
4717          "integral arrays must be pre-equipped with a class");
4718   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
4719   if (!xk)  xk = (o != nullptr) || ary->ary_must_be_exact();
4720   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4721   if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() &&
4722       k->as_obj_array_klass()->base_element_klass()->is_interface()) {
4723     k = nullptr;
4724   }
4725   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();



4726 }
4727 
4728 //------------------------------cast_to_ptr_type-------------------------------
4729 const TypeAryPtr* TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
4730   if( ptr == _ptr ) return this;
4731   return make(ptr, ptr == Constant ? const_oop() : nullptr, _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4732 }
4733 
4734 
4735 //-----------------------------cast_to_exactness-------------------------------
4736 const TypeAryPtr* TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
4737   if( klass_is_exact == _klass_is_exact ) return this;
4738   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
4739   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
4740 }
4741 
4742 //-----------------------------cast_to_instance_id----------------------------
4743 const TypeAryPtr* TypeAryPtr::cast_to_instance_id(int instance_id) const {
4744   if( instance_id == _instance_id ) return this;
4745   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
4746 }
4747 
4748 
4749 //-----------------------------max_array_length-------------------------------
4750 // A wrapper around arrayOopDesc::max_array_length(etype) with some input normalization.
4751 jint TypeAryPtr::max_array_length(BasicType etype) {
4752   if (!is_java_primitive(etype) && !::is_reference_type(etype)) {
4753     if (etype == T_NARROWOOP) {
4754       etype = T_OBJECT;
4755     } else if (etype == T_ILLEGAL) { // bottom[]
4756       etype = T_BYTE; // will produce conservatively high value
4757     } else {
4758       fatal("not an element type: %s", type2name(etype));
4759     }
4760   }
4761   return arrayOopDesc::max_array_length(etype);
4762 }
4763 
4764 //-----------------------------narrow_size_type-------------------------------
4765 // Narrow the given size type to the index range for the given array base type.

4781   if (hi > max_hi) {
4782     hi = max_hi;
4783     if (size->is_con()) {
4784       lo = hi;
4785     }
4786     chg = true;
4787   }
4788   // Negative length arrays will produce weird intermediate dead fast-path code
4789   if (lo > hi)
4790     return TypeInt::ZERO;
4791   if (!chg)
4792     return size;
4793   return TypeInt::make(lo, hi, Type::WidenMin);
4794 }
4795 
4796 //-------------------------------cast_to_size----------------------------------
4797 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
4798   assert(new_size != nullptr, "");
4799   new_size = narrow_size_type(new_size);
4800   if (new_size == size())  return this;
4801   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
4802   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);




























































4803 }
4804 
4805 //------------------------------cast_to_stable---------------------------------
4806 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
4807   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
4808     return this;
4809 
4810   const Type* elem = this->elem();
4811   const TypePtr* elem_ptr = elem->make_ptr();
4812 
4813   if (stable_dimension > 1 && elem_ptr != nullptr && elem_ptr->isa_aryptr()) {
4814     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
4815     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
4816   }
4817 
4818   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
4819 
4820   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4821 }
4822 
4823 //-----------------------------stable_dimension--------------------------------
4824 int TypeAryPtr::stable_dimension() const {
4825   if (!is_stable())  return 0;
4826   int dim = 1;
4827   const TypePtr* elem_ptr = elem()->make_ptr();
4828   if (elem_ptr != nullptr && elem_ptr->isa_aryptr())
4829     dim += elem_ptr->is_aryptr()->stable_dimension();
4830   return dim;
4831 }
4832 
4833 //----------------------cast_to_autobox_cache-----------------------------------
4834 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache() const {
4835   if (is_autobox_cache())  return this;
4836   const TypeOopPtr* etype = elem()->make_oopptr();
4837   if (etype == nullptr)  return this;
4838   // The pointers in the autobox arrays are always non-null.
4839   etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4840   const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable());
4841   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth, /*is_autobox_cache=*/true);
4842 }
4843 
4844 //------------------------------eq---------------------------------------------
4845 // Structural equality check for Type representations
4846 bool TypeAryPtr::eq( const Type *t ) const {
4847   const TypeAryPtr *p = t->is_aryptr();
4848   return
4849     _ary == p->_ary &&  // Check array
4850     TypeOopPtr::eq(p);  // Check sub-parts

4851 }
4852 
4853 //------------------------------hash-------------------------------------------
4854 // Type-specific hashing function.
4855 uint TypeAryPtr::hash(void) const {
4856   return (uint)(uintptr_t)_ary + TypeOopPtr::hash();
4857 }
4858 
4859 bool TypeAryPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4860   return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
4861 }
4862 
4863 bool TypeAryPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const {
4864   return TypePtr::is_same_java_type_as_helper_for_array(this, other);
4865 }
4866 
4867 bool TypeAryPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4868   return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
4869 }
4870 //------------------------------meet-------------------------------------------
4871 // Compute the MEET of two types.  It returns a new Type object.
4872 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
4873   // Perform a fast test for common case; meeting the same types together.
4874   if( this == t ) return this;  // Meeting same type-rep?
4875   // Current "this->_base" is Pointer
4876   switch (t->base()) {          // switch on original type

4880   case Long:
4881   case FloatTop:
4882   case FloatCon:
4883   case FloatBot:
4884   case DoubleTop:
4885   case DoubleCon:
4886   case DoubleBot:
4887   case NarrowOop:
4888   case NarrowKlass:
4889   case Bottom:                  // Ye Olde Default
4890     return Type::BOTTOM;
4891   case Top:
4892     return this;
4893 
4894   default:                      // All else is a mistake
4895     typerr(t);
4896 
4897   case OopPtr: {                // Meeting to OopPtrs
4898     // Found a OopPtr type vs self-AryPtr type
4899     const TypeOopPtr *tp = t->is_oopptr();
4900     int offset = meet_offset(tp->offset());
4901     PTR ptr = meet_ptr(tp->ptr());
4902     int depth = meet_inline_depth(tp->inline_depth());
4903     const TypePtr* speculative = xmeet_speculative(tp);
4904     switch (tp->ptr()) {
4905     case TopPTR:
4906     case AnyNull: {
4907       int instance_id = meet_instance_id(InstanceTop);
4908       return make(ptr, (ptr == Constant ? const_oop() : nullptr),
4909                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4910     }
4911     case BotPTR:
4912     case NotNull: {
4913       int instance_id = meet_instance_id(tp->instance_id());
4914       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4915     }
4916     default: ShouldNotReachHere();
4917     }
4918   }
4919 
4920   case AnyPtr: {                // Meeting two AnyPtrs
4921     // Found an AnyPtr type vs self-AryPtr type
4922     const TypePtr *tp = t->is_ptr();
4923     int offset = meet_offset(tp->offset());
4924     PTR ptr = meet_ptr(tp->ptr());
4925     const TypePtr* speculative = xmeet_speculative(tp);
4926     int depth = meet_inline_depth(tp->inline_depth());
4927     switch (tp->ptr()) {
4928     case TopPTR:
4929       return this;
4930     case BotPTR:
4931     case NotNull:
4932       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4933     case Null:
4934       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4935       // else fall through to AnyNull
4936     case AnyNull: {
4937       int instance_id = meet_instance_id(InstanceTop);
4938       return make(ptr, (ptr == Constant ? const_oop() : nullptr),
4939                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4940     }
4941     default: ShouldNotReachHere();
4942     }
4943   }
4944 
4945   case MetadataPtr:
4946   case KlassPtr:
4947   case InstKlassPtr:
4948   case AryKlassPtr:
4949   case RawPtr: return TypePtr::BOTTOM;
4950 
4951   case AryPtr: {                // Meeting 2 references?
4952     const TypeAryPtr *tap = t->is_aryptr();
4953     int off = meet_offset(tap->offset());

4954     const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
4955     PTR ptr = meet_ptr(tap->ptr());
4956     int instance_id = meet_instance_id(tap->instance_id());
4957     const TypePtr* speculative = xmeet_speculative(tap);
4958     int depth = meet_inline_depth(tap->inline_depth());
4959 
4960     ciKlass* res_klass = nullptr;
4961     bool res_xk = false;



4962     const Type* elem = tary->_elem;
4963     if (meet_aryptr(ptr, elem, this, tap, res_klass, res_xk) == NOT_SUBTYPE) {
4964       instance_id = InstanceBot;














4965     }
4966 
4967     ciObject* o = nullptr;             // Assume not constant when done
4968     ciObject* this_oop = const_oop();
4969     ciObject* tap_oop = tap->const_oop();
4970     if (ptr == Constant) {
4971       if (this_oop != nullptr && tap_oop != nullptr &&
4972           this_oop->equals(tap_oop)) {
4973         o = tap_oop;
4974       } else if (above_centerline(_ptr)) {
4975         o = tap_oop;
4976       } else if (above_centerline(tap->_ptr)) {
4977         o = this_oop;
4978       } else {
4979         ptr = NotNull;
4980       }
4981     }
4982     return make(ptr, o, TypeAry::make(elem, tary->_size, tary->_stable), res_klass, res_xk, off, instance_id, speculative, depth);
4983   }
4984 
4985   // All arrays inherit from Object class
4986   case InstPtr: {
4987     const TypeInstPtr *tp = t->is_instptr();
4988     int offset = meet_offset(tp->offset());
4989     PTR ptr = meet_ptr(tp->ptr());
4990     int instance_id = meet_instance_id(tp->instance_id());
4991     const TypePtr* speculative = xmeet_speculative(tp);
4992     int depth = meet_inline_depth(tp->inline_depth());
4993     const TypeInterfaces* interfaces = meet_interfaces(tp);
4994     const TypeInterfaces* tp_interfaces = tp->_interfaces;
4995     const TypeInterfaces* this_interfaces = _interfaces;
4996 
4997     switch (ptr) {
4998     case TopPTR:
4999     case AnyNull:                // Fall 'down' to dual of object klass
5000       // For instances when a subclass meets a superclass we fall
5001       // below the centerline when the superclass is exact. We need to
5002       // do the same here.
5003       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) && !tp->klass_is_exact()) {
5004         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
5005       } else {
5006         // cannot subclass, so the meet has to fall badly below the centerline
5007         ptr = NotNull;
5008         instance_id = InstanceBot;
5009         interfaces = this_interfaces->intersection_with(tp_interfaces);
5010         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr,offset, instance_id, speculative, depth);
5011       }
5012     case Constant:
5013     case NotNull:
5014     case BotPTR:                // Fall down to object klass
5015       // LCA is object_klass, but if we subclass from the top we can do better
5016       if (above_centerline(tp->ptr())) {
5017         // If 'tp'  is above the centerline and it is Object class
5018         // then we can subclass in the Java class hierarchy.
5019         // For instances when a subclass meets a superclass we fall
5020         // below the centerline when the superclass is exact. We need
5021         // to do the same here.
5022         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) && !tp->klass_is_exact()) {
5023           // that is, my array type is a subtype of 'tp' klass
5024           return make(ptr, (ptr == Constant ? const_oop() : nullptr),
5025                       _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
5026         }
5027       }
5028       // The other case cannot happen, since t cannot be a subtype of an array.
5029       // The meet falls down to Object class below centerline.
5030       if (ptr == Constant) {
5031          ptr = NotNull;
5032       }
5033       if (instance_id > 0) {
5034         instance_id = InstanceBot;
5035       }
5036       interfaces = this_interfaces->intersection_with(tp_interfaces);
5037       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr, offset, instance_id, speculative, depth);
5038     default: typerr(t);
5039     }
5040   }
5041   }
5042   return this;                  // Lint noise
5043 }
5044 
5045 
5046 template<class T> TypePtr::MeetResult TypePtr::meet_aryptr(PTR& ptr, const Type*& elem, const T* this_ary,
5047                                                            const T* other_ary, ciKlass*& res_klass, bool& res_xk) {
5048   int dummy;
5049   bool this_top_or_bottom = (this_ary->base_element_type(dummy) == Type::TOP || this_ary->base_element_type(dummy) == Type::BOTTOM);
5050   bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
5051   ciKlass* this_klass = this_ary->klass();
5052   ciKlass* other_klass = other_ary->klass();
5053   bool this_xk = this_ary->klass_is_exact();
5054   bool other_xk = other_ary->klass_is_exact();
5055   PTR this_ptr = this_ary->ptr();
5056   PTR other_ptr = other_ary->ptr();






5057   res_klass = nullptr;
5058   MeetResult result = SUBTYPE;




5059   if (elem->isa_int()) {
5060     // Integral array element types have irrelevant lattice relations.
5061     // It is the klass that determines array layout, not the element type.
5062     if (this_top_or_bottom)
5063       res_klass = other_klass;
5064     else if (other_top_or_bottom || other_klass == this_klass) {
5065       res_klass = this_klass;
5066     } else {
5067       // Something like byte[int+] meets char[int+].
5068       // This must fall to bottom, not (int[-128..65535])[int+].
5069       // instance_id = InstanceBot;
5070       elem = Type::BOTTOM;
5071       result = NOT_SUBTYPE;
5072       if (above_centerline(ptr) || ptr == Constant) {
5073         ptr = NotNull;
5074         res_xk = false;
5075         return NOT_SUBTYPE;
5076       }
5077     }
5078   } else {// Non integral arrays.
5079     // Must fall to bottom if exact klasses in upper lattice
5080     // are not equal or super klass is exact.
5081     if ((above_centerline(ptr) || ptr == Constant) && !this_ary->is_same_java_type_as(other_ary) &&
5082         // meet with top[] and bottom[] are processed further down:
5083         !this_top_or_bottom && !other_top_or_bottom &&
5084         // both are exact and not equal:

5086          // 'tap'  is exact and super or unrelated:
5087          (other_xk && !other_ary->is_meet_subtype_of(this_ary)) ||
5088          // 'this' is exact and super or unrelated:
5089          (this_xk && !this_ary->is_meet_subtype_of(other_ary)))) {
5090       if (above_centerline(ptr) || (elem->make_ptr() && above_centerline(elem->make_ptr()->_ptr))) {
5091         elem = Type::BOTTOM;
5092       }
5093       ptr = NotNull;
5094       res_xk = false;
5095       return NOT_SUBTYPE;
5096     }
5097   }
5098 
5099   res_xk = false;
5100   switch (other_ptr) {
5101     case AnyNull:
5102     case TopPTR:
5103       // Compute new klass on demand, do not use tap->_klass
5104       if (below_centerline(this_ptr)) {
5105         res_xk = this_xk;



5106       } else {
5107         res_xk = (other_xk || this_xk);
5108       }
5109       return result;
5110     case Constant: {
5111       if (this_ptr == Constant) {
5112         res_xk = true;
5113       } else if(above_centerline(this_ptr)) {
5114         res_xk = true;
5115       } else {
5116         // Only precise for identical arrays
5117         res_xk = this_xk && (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom));





5118       }
5119       return result;
5120     }
5121     case NotNull:
5122     case BotPTR:
5123       // Compute new klass on demand, do not use tap->_klass
5124       if (above_centerline(this_ptr)) {
5125         res_xk = other_xk;



5126       } else {
5127         res_xk = (other_xk && this_xk) &&
5128                  (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom)); // Only precise for identical arrays





5129       }
5130       return result;
5131     default:  {
5132       ShouldNotReachHere();
5133       return result;
5134     }
5135   }
5136   return result;
5137 }
5138 
5139 
5140 //------------------------------xdual------------------------------------------
5141 // Dual: compute field-by-field dual
5142 const Type *TypeAryPtr::xdual() const {
5143   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());









5144 }
5145 
5146 //------------------------------dump2------------------------------------------
5147 #ifndef PRODUCT
5148 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5149   _ary->dump2(d,depth,st);
5150   _interfaces->dump(st);
5151 
5152   switch( _ptr ) {
5153   case Constant:
5154     const_oop()->print(st);
5155     break;
5156   case BotPTR:
5157     if (!WizardMode && !Verbose) {
5158       if( _klass_is_exact ) st->print(":exact");
5159       break;
5160     }
5161   case TopPTR:
5162   case AnyNull:
5163   case NotNull:
5164     st->print(":%s", ptr_msg[_ptr]);
5165     if( _klass_is_exact ) st->print(":exact");
5166     break;
5167   default:
5168     break;
5169   }
5170 
5171   if( _offset != 0 ) {









5172     int header_size = objArrayOopDesc::header_size() * wordSize;
5173     if( _offset == OffsetTop )       st->print("+undefined");
5174     else if( _offset == OffsetBot )  st->print("+any");
5175     else if( _offset < header_size ) st->print("+%d", _offset);
5176     else {
5177       BasicType basic_elem_type = elem()->basic_type();
5178       if (basic_elem_type == T_ILLEGAL) {
5179         st->print("+any");
5180       } else {
5181         int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5182         int elem_size = type2aelembytes(basic_elem_type);
5183         st->print("[%d]", (_offset - array_base)/elem_size);
5184       }
5185     }
5186   }
5187   st->print(" *");
5188   if (_instance_id == InstanceTop)
5189     st->print(",iid=top");
5190   else if (_instance_id != InstanceBot)
5191     st->print(",iid=%d",_instance_id);
5192 
5193   dump_inline_depth(st);
5194   dump_speculative(st);
5195 }
5196 #endif
5197 
5198 bool TypeAryPtr::empty(void) const {
5199   if (_ary->empty())       return true;




5200   return TypeOopPtr::empty();
5201 }
5202 
5203 //------------------------------add_offset-------------------------------------
5204 const TypePtr* TypeAryPtr::add_offset(intptr_t offset) const {
5205   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
5206 }
5207 
5208 const TypeAryPtr* TypeAryPtr::with_offset(intptr_t offset) const {
5209   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, offset, _instance_id, with_offset_speculative(offset), _inline_depth);
5210 }
5211 
5212 const TypeAryPtr* TypeAryPtr::with_ary(const TypeAry* ary) const {
5213   return make(_ptr, _const_oop, ary, _klass, _klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
5214 }
5215 
5216 const TypeAryPtr* TypeAryPtr::remove_speculative() const {
5217   if (_speculative == nullptr) {
5218     return this;
5219   }
5220   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
5221   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, nullptr, _inline_depth);













5222 }
5223 
5224 const TypePtr* TypeAryPtr::with_inline_depth(int depth) const {
5225   if (!UseInlineDepthForSpeculativeTypes) {
5226     return this;
5227   }
5228   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth);











































5229 }
5230 
5231 const TypePtr* TypeAryPtr::with_instance_id(int instance_id) const {
5232   assert(is_known_instance(), "should be known");
5233   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
5234 }
5235 
5236 //=============================================================================
5237 

5238 //------------------------------hash-------------------------------------------
5239 // Type-specific hashing function.
5240 uint TypeNarrowPtr::hash(void) const {
5241   return _ptrtype->hash() + 7;
5242 }
5243 
5244 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
5245   return _ptrtype->singleton();
5246 }
5247 
5248 bool TypeNarrowPtr::empty(void) const {
5249   return _ptrtype->empty();
5250 }
5251 
5252 intptr_t TypeNarrowPtr::get_con() const {
5253   return _ptrtype->get_con();
5254 }
5255 
5256 bool TypeNarrowPtr::eq( const Type *t ) const {
5257   const TypeNarrowPtr* tc = isa_same_narrowptr(t);

5308 
5309   case Int:                     // Mixing ints & oops happens when javac
5310   case Long:                    // reuses local variables
5311   case FloatTop:
5312   case FloatCon:
5313   case FloatBot:
5314   case DoubleTop:
5315   case DoubleCon:
5316   case DoubleBot:
5317   case AnyPtr:
5318   case RawPtr:
5319   case OopPtr:
5320   case InstPtr:
5321   case AryPtr:
5322   case MetadataPtr:
5323   case KlassPtr:
5324   case InstKlassPtr:
5325   case AryKlassPtr:
5326   case NarrowOop:
5327   case NarrowKlass:
5328 
5329   case Bottom:                  // Ye Olde Default
5330     return Type::BOTTOM;
5331   case Top:
5332     return this;
5333 
5334   default:                      // All else is a mistake
5335     typerr(t);
5336 
5337   } // End of switch
5338 
5339   return this;
5340 }
5341 
5342 #ifndef PRODUCT
5343 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5344   _ptrtype->dump2(d, depth, st);
5345 }
5346 #endif
5347 
5348 const TypeNarrowOop *TypeNarrowOop::BOTTOM;

5392     return (one == two) && TypePtr::eq(t);
5393   } else {
5394     return one->equals(two) && TypePtr::eq(t);
5395   }
5396 }
5397 
5398 //------------------------------hash-------------------------------------------
5399 // Type-specific hashing function.
5400 uint TypeMetadataPtr::hash(void) const {
5401   return
5402     (metadata() ? metadata()->hash() : 0) +
5403     TypePtr::hash();
5404 }
5405 
5406 //------------------------------singleton--------------------------------------
5407 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5408 // constants
5409 bool TypeMetadataPtr::singleton(void) const {
5410   // detune optimizer to not generate constant metadata + constant offset as a constant!
5411   // TopPTR, Null, AnyNull, Constant are all singletons
5412   return (_offset == 0) && !below_centerline(_ptr);
5413 }
5414 
5415 //------------------------------add_offset-------------------------------------
5416 const TypePtr* TypeMetadataPtr::add_offset( intptr_t offset ) const {
5417   return make( _ptr, _metadata, xadd_offset(offset));
5418 }
5419 
5420 //-----------------------------filter------------------------------------------
5421 // Do not allow interface-vs.-noninterface joins to collapse to top.
5422 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
5423   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
5424   if (ft == nullptr || ft->empty())
5425     return Type::TOP;           // Canonical empty value
5426   return ft;
5427 }
5428 
5429  //------------------------------get_con----------------------------------------
5430 intptr_t TypeMetadataPtr::get_con() const {
5431   assert( _ptr == Null || _ptr == Constant, "" );
5432   assert( _offset >= 0, "" );
5433 
5434   if (_offset != 0) {
5435     // After being ported to the compiler interface, the compiler no longer
5436     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5437     // to a handle at compile time.  This handle is embedded in the generated
5438     // code and dereferenced at the time the nmethod is made.  Until that time,
5439     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5440     // have access to the addresses!).  This does not seem to currently happen,
5441     // but this assertion here is to help prevent its occurrence.
5442     tty->print_cr("Found oop constant with non-zero offset");
5443     ShouldNotReachHere();
5444   }
5445 
5446   return (intptr_t)metadata()->constant_encoding();
5447 }
5448 
5449 //------------------------------cast_to_ptr_type-------------------------------
5450 const TypeMetadataPtr* TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
5451   if( ptr == _ptr ) return this;
5452   return make(ptr, metadata(), _offset);
5453 }
5454 

5465   case Long:                    // reuses local variables
5466   case FloatTop:
5467   case FloatCon:
5468   case FloatBot:
5469   case DoubleTop:
5470   case DoubleCon:
5471   case DoubleBot:
5472   case NarrowOop:
5473   case NarrowKlass:
5474   case Bottom:                  // Ye Olde Default
5475     return Type::BOTTOM;
5476   case Top:
5477     return this;
5478 
5479   default:                      // All else is a mistake
5480     typerr(t);
5481 
5482   case AnyPtr: {
5483     // Found an AnyPtr type vs self-OopPtr type
5484     const TypePtr *tp = t->is_ptr();
5485     int offset = meet_offset(tp->offset());
5486     PTR ptr = meet_ptr(tp->ptr());
5487     switch (tp->ptr()) {
5488     case Null:
5489       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5490       // else fall through:
5491     case TopPTR:
5492     case AnyNull: {
5493       return make(ptr, _metadata, offset);
5494     }
5495     case BotPTR:
5496     case NotNull:
5497       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5498     default: typerr(t);
5499     }
5500   }
5501 
5502   case RawPtr:
5503   case KlassPtr:
5504   case InstKlassPtr:
5505   case AryKlassPtr:
5506   case OopPtr:
5507   case InstPtr:
5508   case AryPtr:
5509     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
5510 
5511   case MetadataPtr: {
5512     const TypeMetadataPtr *tp = t->is_metadataptr();
5513     int offset = meet_offset(tp->offset());
5514     PTR tptr = tp->ptr();
5515     PTR ptr = meet_ptr(tptr);
5516     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
5517     if (tptr == TopPTR || _ptr == TopPTR ||
5518         metadata()->equals(tp->metadata())) {
5519       return make(ptr, md, offset);
5520     }
5521     // metadata is different
5522     if( ptr == Constant ) {  // Cannot be equal constants, so...
5523       if( tptr == Constant && _ptr != Constant)  return t;
5524       if( _ptr == Constant && tptr != Constant)  return this;
5525       ptr = NotNull;            // Fall down in lattice
5526     }
5527     return make(ptr, nullptr, offset);
5528     break;
5529   }
5530   } // End of switch
5531   return this;                  // Return the double constant
5532 }
5533 
5534 
5535 //------------------------------xdual------------------------------------------
5536 // Dual of a pure metadata pointer.
5537 const Type *TypeMetadataPtr::xdual() const {
5538   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
5539 }
5540 
5541 //------------------------------dump2------------------------------------------
5542 #ifndef PRODUCT
5543 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5544   st->print("metadataptr:%s", ptr_msg[_ptr]);
5545   if( metadata() ) st->print(INTPTR_FORMAT, p2i(metadata()));
5546   switch( _offset ) {
5547   case OffsetTop: st->print("+top"); break;
5548   case OffsetBot: st->print("+any"); break;
5549   case         0: break;
5550   default:        st->print("+%d",_offset); break;
5551   }
5552 }
5553 #endif
5554 
5555 
5556 //=============================================================================
5557 // Convenience common pre-built type.
5558 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
5559 
5560 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
5561   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
5562 }
5563 
5564 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
5565   return make(Constant, m, 0);
5566 }
5567 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
5568   return make(Constant, m, 0);
5569 }
5570 
5571 //------------------------------make-------------------------------------------
5572 // Create a meta data constant
5573 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
5574   assert(m == nullptr || !m->is_klass(), "wrong type");
5575   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
5576 }
5577 
5578 
5579 const TypeKlassPtr* TypeAryPtr::as_klass_type(bool try_for_exact) const {
5580   const Type* elem = _ary->_elem;
5581   bool xk = klass_is_exact();
5582   if (elem->make_oopptr() != nullptr) {
5583     elem = elem->make_oopptr()->as_klass_type(try_for_exact);
5584     if (elem->is_klassptr()->klass_is_exact()) {



5585       xk = true;
5586     }
5587   }
5588   return TypeAryKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, elem, klass(), 0);
5589 }
5590 
5591 const TypeKlassPtr* TypeKlassPtr::make(ciKlass *klass, InterfaceHandling interface_handling) {
5592   if (klass->is_instance_klass()) {
5593     return TypeInstKlassPtr::make(klass, interface_handling);
5594   }
5595   return TypeAryKlassPtr::make(klass, interface_handling);
5596 }
5597 
5598 const TypeKlassPtr* TypeKlassPtr::make(PTR ptr, ciKlass* klass, int offset, InterfaceHandling interface_handling) {
5599   if (klass->is_instance_klass()) {
5600     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
5601     return TypeInstKlassPtr::make(ptr, klass, interfaces, offset);
5602   }
5603   return TypeAryKlassPtr::make(ptr, klass, offset, interface_handling);
5604 }
5605 
5606 
5607 //------------------------------TypeKlassPtr-----------------------------------
5608 TypeKlassPtr::TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, int offset)
5609   : TypePtr(t, ptr, offset), _klass(klass), _interfaces(interfaces) {
5610   assert(klass == nullptr || !klass->is_loaded() || (klass->is_instance_klass() && !klass->is_interface()) ||
5611          klass->is_type_array_klass() || !klass->as_obj_array_klass()->base_element_klass()->is_interface(), "no interface here");
5612 }
5613 
5614 // Is there a single ciKlass* that can represent that type?
5615 ciKlass* TypeKlassPtr::exact_klass_helper() const {
5616   assert(_klass->is_instance_klass() && !_klass->is_interface(), "No interface");
5617   if (_interfaces->empty()) {
5618     return _klass;
5619   }
5620   if (_klass != ciEnv::current()->Object_klass()) {
5621     if (_interfaces->eq(_klass->as_instance_klass())) {
5622       return _klass;
5623     }
5624     return nullptr;
5625   }
5626   return _interfaces->exact_klass();
5627 }
5628 
5629 //------------------------------eq---------------------------------------------
5630 // Structural equality check for Type representations
5631 bool TypeKlassPtr::eq(const Type *t) const {
5632   const TypeKlassPtr *p = t->is_klassptr();
5633   return
5634     _interfaces->eq(p->_interfaces) &&
5635     TypePtr::eq(p);
5636 }
5637 
5638 //------------------------------hash-------------------------------------------
5639 // Type-specific hashing function.
5640 uint TypeKlassPtr::hash(void) const {
5641   return TypePtr::hash() + _interfaces->hash();
5642 }
5643 
5644 //------------------------------singleton--------------------------------------
5645 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5646 // constants
5647 bool TypeKlassPtr::singleton(void) const {
5648   // detune optimizer to not generate constant klass + constant offset as a constant!
5649   // TopPTR, Null, AnyNull, Constant are all singletons
5650   return (_offset == 0) && !below_centerline(_ptr);
5651 }
5652 
5653 // Do not allow interface-vs.-noninterface joins to collapse to top.
5654 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
5655   // logic here mirrors the one from TypeOopPtr::filter. See comments
5656   // there.
5657   const Type* ft = join_helper(kills, include_speculative);
5658   const TypeKlassPtr* ftkp = ft->isa_instklassptr();
5659   const TypeKlassPtr* ktkp = kills->isa_instklassptr();
5660 
5661   if (ft->empty()) {
5662     return Type::TOP;           // Canonical empty value
5663   }
5664 
5665   return ft;
5666 }
5667 
5668 const TypeInterfaces* TypeKlassPtr::meet_interfaces(const TypeKlassPtr* other) const {
5669   if (above_centerline(_ptr) && above_centerline(other->_ptr)) {
5670     return _interfaces->union_with(other->_interfaces);
5671   } else if (above_centerline(_ptr) && !above_centerline(other->_ptr)) {
5672     return other->_interfaces;
5673   } else if (above_centerline(other->_ptr) && !above_centerline(_ptr)) {
5674     return _interfaces;
5675   }
5676   return _interfaces->intersection_with(other->_interfaces);
5677 }
5678 
5679 //------------------------------get_con----------------------------------------
5680 intptr_t TypeKlassPtr::get_con() const {
5681   assert( _ptr == Null || _ptr == Constant, "" );
5682   assert( _offset >= 0, "" );
5683 
5684   if (_offset != 0) {
5685     // After being ported to the compiler interface, the compiler no longer
5686     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5687     // to a handle at compile time.  This handle is embedded in the generated
5688     // code and dereferenced at the time the nmethod is made.  Until that time,
5689     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5690     // have access to the addresses!).  This does not seem to currently happen,
5691     // but this assertion here is to help prevent its occurrence.
5692     tty->print_cr("Found oop constant with non-zero offset");
5693     ShouldNotReachHere();
5694   }
5695 
5696   ciKlass* k = exact_klass();
5697 
5698   return (intptr_t)k->constant_encoding();
5699 }
5700 
5701 //------------------------------dump2------------------------------------------
5702 // Dump Klass Type
5703 #ifndef PRODUCT
5704 void TypeKlassPtr::dump2(Dict & d, uint depth, outputStream *st) const {

5708   case NotNull:
5709     {
5710       const char *name = klass()->name()->as_utf8();
5711       if (name) {
5712         st->print("%s: " INTPTR_FORMAT, name, p2i(klass()));
5713       } else {
5714         ShouldNotReachHere();
5715       }
5716       _interfaces->dump(st);
5717     }
5718   case BotPTR:
5719     if (!WizardMode && !Verbose && _ptr != Constant) break;
5720   case TopPTR:
5721   case AnyNull:
5722     st->print(":%s", ptr_msg[_ptr]);
5723     if (_ptr == Constant) st->print(":exact");
5724     break;
5725   default:
5726     break;
5727   }
5728 
5729   if (_offset) {               // Dump offset, if any
5730     if (_offset == OffsetBot)      { st->print("+any"); }
5731     else if (_offset == OffsetTop) { st->print("+unknown"); }
5732     else                            { st->print("+%d", _offset); }
5733   }
5734 
5735   st->print(" *");
5736 }
5737 #endif
5738 
5739 //=============================================================================
5740 // Convenience common pre-built types.
5741 
5742 // Not-null object klass or below
5743 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT;
5744 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT_OR_NULL;
5745 
5746 bool TypeInstKlassPtr::eq(const Type *t) const {
5747   const TypeKlassPtr *p = t->is_klassptr();
5748   return
5749     klass()->equals(p->klass()) &&

5750     TypeKlassPtr::eq(p);
5751 }
5752 
5753 uint TypeInstKlassPtr::hash(void) const {
5754   return klass()->hash() + TypeKlassPtr::hash();
5755 }
5756 
5757 const TypeInstKlassPtr *TypeInstKlassPtr::make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, int offset) {


5758   TypeInstKlassPtr *r =
5759     (TypeInstKlassPtr*)(new TypeInstKlassPtr(ptr, k, interfaces, offset))->hashcons();
5760 
5761   return r;
5762 }
5763 
5764 //------------------------------add_offset-------------------------------------
5765 // Access internals of klass object
5766 const TypePtr* TypeInstKlassPtr::add_offset( intptr_t offset ) const {
5767   return make( _ptr, klass(), _interfaces, xadd_offset(offset) );
5768 }
5769 
5770 const TypeInstKlassPtr* TypeInstKlassPtr::with_offset(intptr_t offset) const {
5771   return make(_ptr, klass(), _interfaces, offset);
5772 }
5773 
5774 //------------------------------cast_to_ptr_type-------------------------------
5775 const TypeInstKlassPtr* TypeInstKlassPtr::cast_to_ptr_type(PTR ptr) const {
5776   assert(_base == InstKlassPtr, "subclass must override cast_to_ptr_type");
5777   if( ptr == _ptr ) return this;
5778   return make(ptr, _klass, _interfaces, _offset);
5779 }
5780 
5781 
5782 bool TypeInstKlassPtr::must_be_exact() const {
5783   if (!_klass->is_loaded())  return false;
5784   ciInstanceKlass* ik = _klass->as_instance_klass();
5785   if (ik->is_final())  return true;  // cannot clear xk
5786   return false;
5787 }
5788 
5789 //-----------------------------cast_to_exactness-------------------------------
5790 const TypeKlassPtr* TypeInstKlassPtr::cast_to_exactness(bool klass_is_exact) const {
5791   if (klass_is_exact == (_ptr == Constant)) return this;
5792   if (must_be_exact()) return this;
5793   ciKlass* k = klass();
5794   return make(klass_is_exact ? Constant : NotNull, k, _interfaces, _offset);
5795 }
5796 
5797 
5798 //-----------------------------as_instance_type--------------------------------
5799 // Corresponding type for an instance of the given class.
5800 // It will be NotNull, and exact if and only if the klass type is exact.
5801 const TypeOopPtr* TypeInstKlassPtr::as_instance_type(bool klass_change) const {
5802   ciKlass* k = klass();
5803   bool xk = klass_is_exact();
5804   Compile* C = Compile::current();
5805   Dependencies* deps = C->dependencies();
5806   assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
5807   // Element is an instance
5808   bool klass_is_exact = false;
5809   const TypeInterfaces* interfaces = _interfaces;
5810   if (k->is_loaded()) {
5811     // Try to set klass_is_exact.
5812     ciInstanceKlass* ik = k->as_instance_klass();
5813     klass_is_exact = ik->is_final();
5814     if (!klass_is_exact && klass_change
5815         && deps != nullptr && UseUniqueSubclasses) {
5816       ciInstanceKlass* sub = ik->unique_concrete_subklass();
5817       if (sub != nullptr) {
5818         if (_interfaces->eq(sub)) {
5819           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
5820           k = ik = sub;
5821           xk = sub->is_final();
5822         }
5823       }
5824     }
5825   }
5826   return TypeInstPtr::make(TypePtr::BotPTR, k, interfaces, xk, nullptr, 0);
5827 }
5828 
5829 //------------------------------xmeet------------------------------------------
5830 // Compute the MEET of two types, return a new Type object.
5831 const Type    *TypeInstKlassPtr::xmeet( const Type *t ) const {
5832   // Perform a fast test for common case; meeting the same types together.
5833   if( this == t ) return this;  // Meeting same type-rep?
5834 
5835   // Current "this->_base" is Pointer
5836   switch (t->base()) {          // switch on original type
5837 
5838   case Int:                     // Mixing ints & oops happens when javac
5839   case Long:                    // reuses local variables
5840   case FloatTop:
5841   case FloatCon:
5842   case FloatBot:
5843   case DoubleTop:
5844   case DoubleCon:
5845   case DoubleBot:
5846   case NarrowOop:
5847   case NarrowKlass:
5848   case Bottom:                  // Ye Olde Default
5849     return Type::BOTTOM;
5850   case Top:
5851     return this;
5852 
5853   default:                      // All else is a mistake
5854     typerr(t);
5855 
5856   case AnyPtr: {                // Meeting to AnyPtrs
5857     // Found an AnyPtr type vs self-KlassPtr type
5858     const TypePtr *tp = t->is_ptr();
5859     int offset = meet_offset(tp->offset());
5860     PTR ptr = meet_ptr(tp->ptr());
5861     switch (tp->ptr()) {
5862     case TopPTR:
5863       return this;
5864     case Null:
5865       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5866     case AnyNull:
5867       return make( ptr, klass(), _interfaces, offset );
5868     case BotPTR:
5869     case NotNull:
5870       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5871     default: typerr(t);
5872     }
5873   }
5874 
5875   case RawPtr:
5876   case MetadataPtr:
5877   case OopPtr:
5878   case AryPtr:                  // Meet with AryPtr
5879   case InstPtr:                 // Meet with InstPtr
5880     return TypePtr::BOTTOM;
5881 
5882   //
5883   //             A-top         }
5884   //           /   |   \       }  Tops
5885   //       B-top A-any C-top   }
5886   //          | /  |  \ |      }  Any-nulls
5887   //       B-any   |   C-any   }
5888   //          |    |    |
5889   //       B-con A-con C-con   } constants; not comparable across classes
5890   //          |    |    |
5891   //       B-not   |   C-not   }
5892   //          | \  |  / |      }  not-nulls
5893   //       B-bot A-not C-bot   }
5894   //           \   |   /       }  Bottoms
5895   //             A-bot         }
5896   //
5897 
5898   case InstKlassPtr: {  // Meet two KlassPtr types
5899     const TypeInstKlassPtr *tkls = t->is_instklassptr();
5900     int  off     = meet_offset(tkls->offset());
5901     PTR  ptr     = meet_ptr(tkls->ptr());
5902     const TypeInterfaces* interfaces = meet_interfaces(tkls);
5903 
5904     ciKlass* res_klass = nullptr;
5905     bool res_xk = false;
5906     switch(meet_instptr(ptr, interfaces, this, tkls, res_klass, res_xk)) {

5907       case UNLOADED:
5908         ShouldNotReachHere();
5909       case SUBTYPE:
5910       case NOT_SUBTYPE:
5911       case LCA:
5912       case QUICK: {
5913         assert(res_xk == (ptr == Constant), "");
5914         const Type* res = make(ptr, res_klass, interfaces, off);
5915         return res;
5916       }
5917       default:
5918         ShouldNotReachHere();
5919     }
5920   } // End of case KlassPtr
5921   case AryKlassPtr: {                // All arrays inherit from Object class
5922     const TypeAryKlassPtr *tp = t->is_aryklassptr();
5923     int offset = meet_offset(tp->offset());
5924     PTR ptr = meet_ptr(tp->ptr());
5925     const TypeInterfaces* interfaces = meet_interfaces(tp);
5926     const TypeInterfaces* tp_interfaces = tp->_interfaces;
5927     const TypeInterfaces* this_interfaces = _interfaces;
5928 
5929     switch (ptr) {
5930     case TopPTR:
5931     case AnyNull:                // Fall 'down' to dual of object klass
5932       // For instances when a subclass meets a superclass we fall
5933       // below the centerline when the superclass is exact. We need to
5934       // do the same here.
5935       if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces->contains(this_interfaces) && !klass_is_exact()) {
5936         return TypeAryKlassPtr::make(ptr, tp->elem(), tp->klass(), offset);
5937       } else {
5938         // cannot subclass, so the meet has to fall badly below the centerline
5939         ptr = NotNull;
5940         interfaces = _interfaces->intersection_with(tp->_interfaces);
5941         return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset);
5942       }
5943     case Constant:
5944     case NotNull:
5945     case BotPTR:                // Fall down to object klass
5946       // LCA is object_klass, but if we subclass from the top we can do better
5947       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
5948         // If 'this' (InstPtr) is above the centerline and it is Object class
5949         // then we can subclass in the Java class hierarchy.
5950         // For instances when a subclass meets a superclass we fall
5951         // below the centerline when the superclass is exact. We need
5952         // to do the same here.
5953         if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces->contains(this_interfaces) && !klass_is_exact()) {
5954           // that is, tp's array type is a subtype of my klass
5955           return TypeAryKlassPtr::make(ptr,
5956                                        tp->elem(), tp->klass(), offset);
5957         }
5958       }
5959       // The other case cannot happen, since I cannot be a subtype of an array.
5960       // The meet falls down to Object class below centerline.
5961       if( ptr == Constant )
5962          ptr = NotNull;
5963       interfaces = this_interfaces->intersection_with(tp_interfaces);
5964       return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset);
5965     default: typerr(t);
5966     }
5967   }
5968 
5969   } // End of switch
5970   return this;                  // Return the double constant
5971 }
5972 
5973 //------------------------------xdual------------------------------------------
5974 // Dual: compute field-by-field dual
5975 const Type    *TypeInstKlassPtr::xdual() const {
5976   return new TypeInstKlassPtr(dual_ptr(), klass(), _interfaces, dual_offset());
5977 }
5978 
5979 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
5980   static_assert(std::is_base_of<T2, T1>::value, "");
5981   if (!this_one->is_loaded() || !other->is_loaded()) {
5982     return false;
5983   }
5984   if (!this_one->is_instance_type(other)) {
5985     return false;
5986   }
5987 
5988   if (!other_exact) {
5989     return false;
5990   }
5991 
5992   if (other->klass()->equals(ciEnv::current()->Object_klass()) && other->_interfaces->empty()) {
5993     return true;
5994   }
5995 
5996   return this_one->klass()->is_subtype_of(other->klass()) && this_one->_interfaces->contains(other->_interfaces);

6057   const TypeInterfaces* interfaces = _interfaces;
6058   if (k->is_loaded()) {
6059     ciInstanceKlass* ik = k->as_instance_klass();
6060     bool klass_is_exact = ik->is_final();
6061     if (!klass_is_exact &&
6062         deps != nullptr) {
6063       ciInstanceKlass* sub = ik->unique_concrete_subklass();
6064       if (sub != nullptr) {
6065         if (_interfaces->eq(sub)) {
6066           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
6067           k = ik = sub;
6068           klass_is_exact = sub->is_final();
6069           return TypeKlassPtr::make(klass_is_exact ? Constant : _ptr, k, _offset);
6070         }
6071       }
6072     }
6073   }
6074   return this;
6075 }
6076 







6077 
6078 const TypeAryKlassPtr *TypeAryKlassPtr::make(PTR ptr, const Type* elem, ciKlass* k, int offset) {
6079   return (TypeAryKlassPtr*)(new TypeAryKlassPtr(ptr, elem, k, offset))->hashcons();
6080 }
6081 
6082 const TypeAryKlassPtr *TypeAryKlassPtr::make(PTR ptr, ciKlass* k, int offset, InterfaceHandling interface_handling) {








6083   if (k->is_obj_array_klass()) {
6084     // Element is an object array. Recursively call ourself.
6085     ciKlass* eklass = k->as_obj_array_klass()->element_klass();
6086     const TypeKlassPtr *etype = TypeKlassPtr::make(eklass, interface_handling)->cast_to_exactness(false);
6087     return TypeAryKlassPtr::make(ptr, etype, nullptr, offset);





6088   } else if (k->is_type_array_klass()) {
6089     // Element is an typeArray
6090     const Type* etype = get_const_basic_type(k->as_type_array_klass()->element_type());
6091     return TypeAryKlassPtr::make(ptr, etype, k, offset);




6092   } else {
6093     ShouldNotReachHere();
6094     return nullptr;
6095   }
6096 }
6097 











6098 const TypeAryKlassPtr* TypeAryKlassPtr::make(ciKlass* klass, InterfaceHandling interface_handling) {
6099   return TypeAryKlassPtr::make(Constant, klass, 0, interface_handling);
6100 }
6101 
6102 //------------------------------eq---------------------------------------------
6103 // Structural equality check for Type representations
6104 bool TypeAryKlassPtr::eq(const Type *t) const {
6105   const TypeAryKlassPtr *p = t->is_aryklassptr();
6106   return
6107     _elem == p->_elem &&  // Check array



6108     TypeKlassPtr::eq(p);  // Check sub-parts
6109 }
6110 
6111 //------------------------------hash-------------------------------------------
6112 // Type-specific hashing function.
6113 uint TypeAryKlassPtr::hash(void) const {
6114   return (uint)(uintptr_t)_elem + TypeKlassPtr::hash();

6115 }
6116 
6117 //----------------------compute_klass------------------------------------------
6118 // Compute the defining klass for this class
6119 ciKlass* TypeAryPtr::compute_klass() const {
6120   // Compute _klass based on element type.
6121   ciKlass* k_ary = nullptr;
6122   const TypeInstPtr *tinst;
6123   const TypeAryPtr *tary;
6124   const Type* el = elem();
6125   if (el->isa_narrowoop()) {
6126     el = el->make_ptr();
6127   }
6128 
6129   // Get element klass
6130   if ((tinst = el->isa_instptr()) != nullptr) {
6131     // Leave k_ary at null.





6132   } else if ((tary = el->isa_aryptr()) != nullptr) {
6133     // Leave k_ary at null.
6134   } else if ((el->base() == Type::Top) ||
6135              (el->base() == Type::Bottom)) {
6136     // element type of Bottom occurs from meet of basic type
6137     // and object; Top occurs when doing join on Bottom.
6138     // Leave k_ary at null.
6139   } else {
6140     assert(!el->isa_int(), "integral arrays must be pre-equipped with a class");
6141     // Compute array klass directly from basic type
6142     k_ary = ciTypeArrayKlass::make(el->basic_type());
6143   }
6144   return k_ary;
6145 }
6146 
6147 //------------------------------klass------------------------------------------
6148 // Return the defining klass for this class
6149 ciKlass* TypeAryPtr::klass() const {
6150   if( _klass ) return _klass;   // Return cached value, if possible
6151 
6152   // Oops, need to compute _klass and cache it
6153   ciKlass* k_ary = compute_klass();

6161     // type TypeAryPtr::OOPS.  This Type is shared between all
6162     // active compilations.  However, the ciKlass which represents
6163     // this Type is *not* shared between compilations, so caching
6164     // this value would result in fetching a dangling pointer.
6165     //
6166     // Recomputing the underlying ciKlass for each request is
6167     // a bit less efficient than caching, but calls to
6168     // TypeAryPtr::OOPS->klass() are not common enough to matter.
6169     ((TypeAryPtr*)this)->_klass = k_ary;
6170   }
6171   return k_ary;
6172 }
6173 
6174 // Is there a single ciKlass* that can represent that type?
6175 ciKlass* TypeAryPtr::exact_klass_helper() const {
6176   if (_ary->_elem->make_ptr() && _ary->_elem->make_ptr()->isa_oopptr()) {
6177     ciKlass* k = _ary->_elem->make_ptr()->is_oopptr()->exact_klass_helper();
6178     if (k == nullptr) {
6179       return nullptr;
6180     }
6181     k = ciObjArrayKlass::make(k);
6182     return k;
6183   }
6184 
6185   return klass();
6186 }
6187 
6188 const Type* TypeAryPtr::base_element_type(int& dims) const {
6189   const Type* elem = this->elem();
6190   dims = 1;
6191   while (elem->make_ptr() && elem->make_ptr()->isa_aryptr()) {
6192     elem = elem->make_ptr()->is_aryptr()->elem();
6193     dims++;
6194   }
6195   return elem;
6196 }
6197 
6198 //------------------------------add_offset-------------------------------------
6199 // Access internals of klass object
6200 const TypePtr* TypeAryKlassPtr::add_offset(intptr_t offset) const {
6201   return make(_ptr, elem(), klass(), xadd_offset(offset));
6202 }
6203 
6204 const TypeAryKlassPtr* TypeAryKlassPtr::with_offset(intptr_t offset) const {
6205   return make(_ptr, elem(), klass(), offset);
6206 }
6207 
6208 //------------------------------cast_to_ptr_type-------------------------------
6209 const TypeAryKlassPtr* TypeAryKlassPtr::cast_to_ptr_type(PTR ptr) const {
6210   assert(_base == AryKlassPtr, "subclass must override cast_to_ptr_type");
6211   if (ptr == _ptr) return this;
6212   return make(ptr, elem(), _klass, _offset);
6213 }
6214 
6215 bool TypeAryKlassPtr::must_be_exact() const {
6216   if (_elem == Type::BOTTOM) return false;
6217   if (_elem == Type::TOP   ) return false;
6218   const TypeKlassPtr*  tk = _elem->isa_klassptr();
6219   if (!tk)             return true;   // a primitive type, like int





6220   return tk->must_be_exact();
6221 }
6222 
6223 
6224 //-----------------------------cast_to_exactness-------------------------------
6225 const TypeKlassPtr *TypeAryKlassPtr::cast_to_exactness(bool klass_is_exact) const {
6226   if (must_be_exact()) return this;  // cannot clear xk



6227   ciKlass* k = _klass;
6228   const Type* elem = this->elem();
6229   if (elem->isa_klassptr() && !klass_is_exact) {
6230     elem = elem->is_klassptr()->cast_to_exactness(klass_is_exact);
6231   }
6232   return make(klass_is_exact ? Constant : NotNull, elem, k, _offset);
















6233 }
6234 



6235 
6236 //-----------------------------as_instance_type--------------------------------
6237 // Corresponding type for an instance of the given class.
6238 // It will be NotNull, and exact if and only if the klass type is exact.
6239 const TypeOopPtr* TypeAryKlassPtr::as_instance_type(bool klass_change) const {
6240   ciKlass* k = klass();
6241   bool    xk = klass_is_exact();
6242   const Type* el = nullptr;
6243   if (elem()->isa_klassptr()) {
6244     el = elem()->is_klassptr()->as_instance_type(false)->cast_to_exactness(false);
6245     k = nullptr;
6246   } else {
6247     el = elem();
6248   }
6249   return TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(el, TypeInt::POS), k, xk, 0);




6250 }
6251 
6252 
6253 //------------------------------xmeet------------------------------------------
6254 // Compute the MEET of two types, return a new Type object.
6255 const Type    *TypeAryKlassPtr::xmeet( const Type *t ) const {
6256   // Perform a fast test for common case; meeting the same types together.
6257   if( this == t ) return this;  // Meeting same type-rep?
6258 
6259   // Current "this->_base" is Pointer
6260   switch (t->base()) {          // switch on original type
6261 
6262   case Int:                     // Mixing ints & oops happens when javac
6263   case Long:                    // reuses local variables
6264   case FloatTop:
6265   case FloatCon:
6266   case FloatBot:
6267   case DoubleTop:
6268   case DoubleCon:
6269   case DoubleBot:
6270   case NarrowOop:
6271   case NarrowKlass:
6272   case Bottom:                  // Ye Olde Default
6273     return Type::BOTTOM;
6274   case Top:
6275     return this;
6276 
6277   default:                      // All else is a mistake
6278     typerr(t);
6279 
6280   case AnyPtr: {                // Meeting to AnyPtrs
6281     // Found an AnyPtr type vs self-KlassPtr type
6282     const TypePtr *tp = t->is_ptr();
6283     int offset = meet_offset(tp->offset());
6284     PTR ptr = meet_ptr(tp->ptr());
6285     switch (tp->ptr()) {
6286     case TopPTR:
6287       return this;
6288     case Null:
6289       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6290     case AnyNull:
6291       return make( ptr, _elem, klass(), offset );
6292     case BotPTR:
6293     case NotNull:
6294       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6295     default: typerr(t);
6296     }
6297   }
6298 
6299   case RawPtr:
6300   case MetadataPtr:
6301   case OopPtr:
6302   case AryPtr:                  // Meet with AryPtr
6303   case InstPtr:                 // Meet with InstPtr
6304     return TypePtr::BOTTOM;
6305 
6306   //
6307   //             A-top         }
6308   //           /   |   \       }  Tops
6309   //       B-top A-any C-top   }
6310   //          | /  |  \ |      }  Any-nulls
6311   //       B-any   |   C-any   }
6312   //          |    |    |
6313   //       B-con A-con C-con   } constants; not comparable across classes
6314   //          |    |    |
6315   //       B-not   |   C-not   }
6316   //          | \  |  / |      }  not-nulls
6317   //       B-bot A-not C-bot   }
6318   //           \   |   /       }  Bottoms
6319   //             A-bot         }
6320   //
6321 
6322   case AryKlassPtr: {  // Meet two KlassPtr types
6323     const TypeAryKlassPtr *tap = t->is_aryklassptr();
6324     int off = meet_offset(tap->offset());
6325     const Type* elem = _elem->meet(tap->_elem);
6326 
6327     PTR ptr = meet_ptr(tap->ptr());
6328     ciKlass* res_klass = nullptr;
6329     bool res_xk = false;
6330     meet_aryptr(ptr, elem, this, tap, res_klass, res_xk);




6331     assert(res_xk == (ptr == Constant), "");
6332     return make(ptr, elem, res_klass, off);












6333   } // End of case KlassPtr
6334   case InstKlassPtr: {
6335     const TypeInstKlassPtr *tp = t->is_instklassptr();
6336     int offset = meet_offset(tp->offset());
6337     PTR ptr = meet_ptr(tp->ptr());
6338     const TypeInterfaces* interfaces = meet_interfaces(tp);
6339     const TypeInterfaces* tp_interfaces = tp->_interfaces;
6340     const TypeInterfaces* this_interfaces = _interfaces;
6341 
6342     switch (ptr) {
6343     case TopPTR:
6344     case AnyNull:                // Fall 'down' to dual of object klass
6345       // For instances when a subclass meets a superclass we fall
6346       // below the centerline when the superclass is exact. We need to
6347       // do the same here.
6348       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->intersection_with(tp_interfaces)->eq(tp_interfaces) && !tp->klass_is_exact()) {
6349         return TypeAryKlassPtr::make(ptr, _elem, _klass, offset);
6350       } else {
6351         // cannot subclass, so the meet has to fall badly below the centerline
6352         ptr = NotNull;
6353         interfaces = this_interfaces->intersection_with(tp->_interfaces);
6354         return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset);
6355       }
6356     case Constant:
6357     case NotNull:
6358     case BotPTR:                // Fall down to object klass
6359       // LCA is object_klass, but if we subclass from the top we can do better
6360       if (above_centerline(tp->ptr())) {
6361         // If 'tp'  is above the centerline and it is Object class
6362         // then we can subclass in the Java class hierarchy.
6363         // For instances when a subclass meets a superclass we fall
6364         // below the centerline when the superclass is exact. We need
6365         // to do the same here.
6366         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->intersection_with(tp_interfaces)->eq(tp_interfaces) && !tp->klass_is_exact()) {
6367           // that is, my array type is a subtype of 'tp' klass
6368           return make(ptr, _elem, _klass, offset);
6369         }
6370       }
6371       // The other case cannot happen, since t cannot be a subtype of an array.
6372       // The meet falls down to Object class below centerline.
6373       if (ptr == Constant)
6374          ptr = NotNull;
6375       interfaces = this_interfaces->intersection_with(tp_interfaces);
6376       return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset);
6377     default: typerr(t);
6378     }
6379   }
6380 
6381   } // End of switch
6382   return this;                  // Return the double constant
6383 }
6384 
6385 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
6386   static_assert(std::is_base_of<T2, T1>::value, "");
6387 
6388   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty() && other_exact) {
6389     return true;
6390   }
6391 
6392   int dummy;
6393   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
6394 
6395   if (!this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) {
6396     return false;
6397   }
6398 
6399   if (this_one->is_instance_type(other)) {
6400     return other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->intersection_with(this_one->_interfaces)->eq(other->_interfaces) && other_exact;
6401   }
6402 
6403   assert(this_one->is_array_type(other), "");
6404   const T1* other_ary = this_one->is_array_type(other);
6405   bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
6406   if (other_top_or_bottom) {
6407     return false;
6408   }
6409 
6410   const TypePtr* other_elem = other_ary->elem()->make_ptr();
6411   const TypePtr* this_elem = this_one->elem()->make_ptr();
6412   if (this_elem != nullptr && other_elem != nullptr) {




6413     return this_one->is_reference_type(this_elem)->is_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact);
6414   }
6415   if (this_elem == nullptr && other_elem == nullptr) {
6416     return this_one->klass()->is_subtype_of(other->klass());
6417   }
6418   return false;
6419 }
6420 
6421 bool TypeAryKlassPtr::is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
6422   return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
6423 }
6424 
6425 template <class T1, class T2> bool TypePtr::is_same_java_type_as_helper_for_array(const T1* this_one, const T2* other) {
6426   static_assert(std::is_base_of<T2, T1>::value, "");
6427 
6428   int dummy;
6429   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
6430 
6431   if (!this_one->is_array_type(other) ||
6432       !this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) {

6479   }
6480 
6481   const TypePtr* this_elem = this_one->elem()->make_ptr();
6482   const TypePtr* other_elem = other_ary->elem()->make_ptr();
6483   if (other_elem != nullptr && this_elem != nullptr) {
6484     return this_one->is_reference_type(this_elem)->maybe_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact);
6485   }
6486   if (other_elem == nullptr && this_elem == nullptr) {
6487     return this_one->klass()->is_subtype_of(other->klass());
6488   }
6489   return false;
6490 }
6491 
6492 bool TypeAryKlassPtr::maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
6493   return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
6494 }
6495 
6496 //------------------------------xdual------------------------------------------
6497 // Dual: compute field-by-field dual
6498 const Type    *TypeAryKlassPtr::xdual() const {
6499   return new TypeAryKlassPtr(dual_ptr(), elem()->dual(), klass(), dual_offset());
6500 }
6501 
6502 // Is there a single ciKlass* that can represent that type?
6503 ciKlass* TypeAryKlassPtr::exact_klass_helper() const {
6504   if (elem()->isa_klassptr()) {
6505     ciKlass* k = elem()->is_klassptr()->exact_klass_helper();
6506     if (k == nullptr) {
6507       return nullptr;
6508     }
6509     k = ciObjArrayKlass::make(k);
6510     return k;
6511   }
6512 
6513   return klass();
6514 }
6515 
6516 ciKlass* TypeAryKlassPtr::klass() const {
6517   if (_klass != nullptr) {
6518     return _klass;
6519   }
6520   ciKlass* k = nullptr;
6521   if (elem()->isa_klassptr()) {
6522     // leave null
6523   } else if ((elem()->base() == Type::Top) ||
6524              (elem()->base() == Type::Bottom)) {
6525   } else {
6526     k = ciTypeArrayKlass::make(elem()->basic_type());
6527     ((TypeAryKlassPtr*)this)->_klass = k;
6528   }
6529   return k;

6536   switch( _ptr ) {
6537   case Constant:
6538     st->print("precise ");
6539   case NotNull:
6540     {
6541       st->print("[");
6542       _elem->dump2(d, depth, st);
6543       _interfaces->dump(st);
6544       st->print(": ");
6545     }
6546   case BotPTR:
6547     if( !WizardMode && !Verbose && _ptr != Constant ) break;
6548   case TopPTR:
6549   case AnyNull:
6550     st->print(":%s", ptr_msg[_ptr]);
6551     if( _ptr == Constant ) st->print(":exact");
6552     break;
6553   default:
6554     break;
6555   }
6556 
6557   if( _offset ) {               // Dump offset, if any
6558     if( _offset == OffsetBot )      { st->print("+any"); }
6559     else if( _offset == OffsetTop ) { st->print("+unknown"); }
6560     else                            { st->print("+%d", _offset); }
6561   }
6562 


6563   st->print(" *");
6564 }
6565 #endif
6566 
6567 const Type* TypeAryKlassPtr::base_element_type(int& dims) const {
6568   const Type* elem = this->elem();
6569   dims = 1;
6570   while (elem->isa_aryklassptr()) {
6571     elem = elem->is_aryklassptr()->elem();
6572     dims++;
6573   }
6574   return elem;
6575 }
6576 
6577 //=============================================================================
6578 // Convenience common pre-built types.
6579 
6580 //------------------------------make-------------------------------------------
6581 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
6582   return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();












6583 }
6584 
6585 //------------------------------make-------------------------------------------
6586 const TypeFunc *TypeFunc::make(ciMethod* method) {
6587   Compile* C = Compile::current();
6588   const TypeFunc* tf = C->last_tf(method); // check cache
6589   if (tf != nullptr)  return tf;  // The hit rate here is almost 50%.
6590   const TypeTuple *domain;
6591   if (method->is_static()) {
6592     domain = TypeTuple::make_domain(nullptr, method->signature(), ignore_interfaces);
6593   } else {
6594     domain = TypeTuple::make_domain(method->holder(), method->signature(), ignore_interfaces);

















6595   }
6596   const TypeTuple *range  = TypeTuple::make_range(method->signature(), ignore_interfaces);
6597   tf = TypeFunc::make(domain, range);
6598   C->set_last_tf(method, tf);  // fill cache
6599   return tf;
6600 }
6601 
6602 //------------------------------meet-------------------------------------------
6603 // Compute the MEET of two types.  It returns a new Type object.
6604 const Type *TypeFunc::xmeet( const Type *t ) const {
6605   // Perform a fast test for common case; meeting the same types together.
6606   if( this == t ) return this;  // Meeting same type-rep?
6607 
6608   // Current "this->_base" is Func
6609   switch (t->base()) {          // switch on original type
6610 
6611   case Bottom:                  // Ye Olde Default
6612     return t;
6613 
6614   default:                      // All else is a mistake
6615     typerr(t);
6616 
6617   case Top:
6618     break;
6619   }
6620   return this;                  // Return the double constant
6621 }
6622 
6623 //------------------------------xdual------------------------------------------
6624 // Dual: compute field-by-field dual
6625 const Type *TypeFunc::xdual() const {
6626   return this;
6627 }
6628 
6629 //------------------------------eq---------------------------------------------
6630 // Structural equality check for Type representations
6631 bool TypeFunc::eq( const Type *t ) const {
6632   const TypeFunc *a = (const TypeFunc*)t;
6633   return _domain == a->_domain &&
6634     _range == a->_range;


6635 }
6636 
6637 //------------------------------hash-------------------------------------------
6638 // Type-specific hashing function.
6639 uint TypeFunc::hash(void) const {
6640   return (uint)(uintptr_t)_domain + (uint)(uintptr_t)_range;
6641 }
6642 
6643 //------------------------------dump2------------------------------------------
6644 // Dump Function Type
6645 #ifndef PRODUCT
6646 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
6647   if( _range->cnt() <= Parms )
6648     st->print("void");
6649   else {
6650     uint i;
6651     for (i = Parms; i < _range->cnt()-1; i++) {
6652       _range->field_at(i)->dump2(d,depth,st);
6653       st->print("/");
6654     }
6655     _range->field_at(i)->dump2(d,depth,st);
6656   }
6657   st->print(" ");
6658   st->print("( ");
6659   if( !depth || d[this] ) {     // Check for recursive dump
6660     st->print("...)");
6661     return;
6662   }
6663   d.Insert((void*)this,(void*)this);    // Stop recursion
6664   if (Parms < _domain->cnt())
6665     _domain->field_at(Parms)->dump2(d,depth-1,st);
6666   for (uint i = Parms+1; i < _domain->cnt(); i++) {
6667     st->print(", ");
6668     _domain->field_at(i)->dump2(d,depth-1,st);
6669   }
6670   st->print(" )");
6671 }
6672 #endif
6673 
6674 //------------------------------singleton--------------------------------------
6675 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
6676 // constants (Ldi nodes).  Singletons are integer, float or double constants
6677 // or a single symbol.
6678 bool TypeFunc::singleton(void) const {
6679   return false;                 // Never a singleton
6680 }
6681 
6682 bool TypeFunc::empty(void) const {
6683   return false;                 // Never empty
6684 }
6685 
6686 
6687 BasicType TypeFunc::return_type() const{
6688   if (range()->cnt() == TypeFunc::Parms) {
6689     return T_VOID;
6690   }
6691   return range()->field_at(TypeFunc::Parms)->basic_type();
6692 }

   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciFlatArrayKlass.hpp"
  27 #include "ci/ciField.hpp"
  28 #include "ci/ciInlineKlass.hpp"
  29 #include "ci/ciMethodData.hpp"
  30 #include "ci/ciTypeFlow.hpp"
  31 #include "classfile/javaClasses.hpp"
  32 #include "classfile/symbolTable.hpp"
  33 #include "compiler/compileLog.hpp"
  34 #include "libadt/dict.hpp"
  35 #include "memory/oopFactory.hpp"
  36 #include "memory/resourceArea.hpp"
  37 #include "oops/instanceKlass.hpp"
  38 #include "oops/instanceMirrorKlass.hpp"
  39 #include "oops/objArrayKlass.hpp"
  40 #include "oops/typeArrayKlass.hpp"
  41 #include "opto/matcher.hpp"
  42 #include "opto/node.hpp"
  43 #include "opto/opcodes.hpp"
  44 #include "opto/type.hpp"
  45 #include "utilities/checkedCast.hpp"
  46 #include "utilities/powerOfTwo.hpp"
  47 #include "utilities/stringUtils.hpp"
  48 
  49 // Portions of code courtesy of Clifford Click
  50 
  51 // Optimization - Graph Style
  52 
  53 // Dictionary of types shared among compilations.
  54 Dict* Type::_shared_type_dict = nullptr;
  55 const Type::Offset Type::Offset::top(Type::OffsetTop);
  56 const Type::Offset Type::Offset::bottom(Type::OffsetBot);
  57 
  58 const Type::Offset Type::Offset::meet(const Type::Offset other) const {
  59   // Either is 'TOP' offset?  Return the other offset!
  60   if (_offset == OffsetTop) return other;
  61   if (other._offset == OffsetTop) return *this;
  62   // If either is different, return 'BOTTOM' offset
  63   if (_offset != other._offset) return bottom;
  64   return Offset(_offset);
  65 }
  66 
  67 const Type::Offset Type::Offset::dual() const {
  68   if (_offset == OffsetTop) return bottom;// Map 'TOP' into 'BOTTOM'
  69   if (_offset == OffsetBot) return top;// Map 'BOTTOM' into 'TOP'
  70   return Offset(_offset);               // Map everything else into self
  71 }
  72 
  73 const Type::Offset Type::Offset::add(intptr_t offset) const {
  74   // Adding to 'TOP' offset?  Return 'TOP'!
  75   if (_offset == OffsetTop || offset == OffsetTop) return top;
  76   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
  77   if (_offset == OffsetBot || offset == OffsetBot) return bottom;
  78   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
  79   offset += (intptr_t)_offset;
  80   if (offset != (int)offset || offset == OffsetTop) return bottom;
  81 
  82   // assert( _offset >= 0 && _offset+offset >= 0, "" );
  83   // It is possible to construct a negative offset during PhaseCCP
  84 
  85   return Offset((int)offset);        // Sum valid offsets
  86 }
  87 
  88 void Type::Offset::dump2(outputStream *st) const {
  89   if (_offset == 0) {
  90     return;
  91   } else if (_offset == OffsetTop) {
  92     st->print("+top");
  93   }
  94   else if (_offset == OffsetBot) {
  95     st->print("+bot");
  96   } else if (_offset) {
  97     st->print("+%d", _offset);
  98   }
  99 }
 100 
 101 // Array which maps compiler types to Basic Types
 102 const Type::TypeInfo Type::_type_info[Type::lastype] = {
 103   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
 104   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
 105   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
 106   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
 107   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
 108   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
 109   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
 110   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
 111   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
 112   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
 113   { Bad,             T_ARRAY,      "interfaces:",   false, Node::NotAMachineReg, relocInfo::none          },  // Interfaces
 114 
 115 #if defined(PPC64)
 116   { Bad,             T_ILLEGAL,    "vectormask:",   false, Op_RegVectMask,       relocInfo::none          },  // VectorMask.
 117   { Bad,             T_ILLEGAL,    "vectora:",      false, Op_VecA,              relocInfo::none          },  // VectorA.
 118   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
 119   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD

 254   case ciTypeFlow::StateVector::T_NULL:
 255     assert(type == ciTypeFlow::StateVector::null_type(), "");
 256     return TypePtr::NULL_PTR;
 257 
 258   case ciTypeFlow::StateVector::T_LONG2:
 259     // The ciTypeFlow pass pushes a long, then the half.
 260     // We do the same.
 261     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 262     return TypeInt::TOP;
 263 
 264   case ciTypeFlow::StateVector::T_DOUBLE2:
 265     // The ciTypeFlow pass pushes double, then the half.
 266     // Our convention is the same.
 267     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 268     return Type::TOP;
 269 
 270   case T_ADDRESS:
 271     assert(type->is_return_address(), "");
 272     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 273 
 274   case T_OBJECT:
 275     return Type::get_const_type(type->unwrap())->join_speculative(type->is_null_free() ? TypePtr::NOTNULL : TypePtr::BOTTOM);
 276 
 277   default:
 278     // make sure we did not mix up the cases:
 279     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 280     assert(type != ciTypeFlow::StateVector::top_type(), "");
 281     assert(type != ciTypeFlow::StateVector::null_type(), "");
 282     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 283     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 284     assert(!type->is_return_address(), "");
 285 
 286     return Type::get_const_type(type);
 287   }
 288 }
 289 
 290 
 291 //-----------------------make_from_constant------------------------------------
 292 const Type* Type::make_from_constant(ciConstant constant, bool require_constant,
 293                                      int stable_dimension, bool is_narrow_oop,
 294                                      bool is_autobox_cache) {
 295   switch (constant.basic_type()) {
 296     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());

 563   const Type **ffalse =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 564   ffalse[0] = Type::CONTROL;
 565   ffalse[1] = Type::TOP;
 566   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 567 
 568   const Type **fneither =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 569   fneither[0] = Type::TOP;
 570   fneither[1] = Type::TOP;
 571   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 572 
 573   const Type **ftrue =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 574   ftrue[0] = Type::TOP;
 575   ftrue[1] = Type::CONTROL;
 576   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 577 
 578   const Type **floop =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 579   floop[0] = Type::CONTROL;
 580   floop[1] = TypeInt::INT;
 581   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 582 
 583   TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, Offset(0));
 584   TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, Offset::bottom);
 585   TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, Offset::bottom);
 586 
 587   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 588   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 589 
 590   const Type **fmembar = TypeTuple::fields(0);
 591   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 592 
 593   const Type **fsc = (const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 594   fsc[0] = TypeInt::CC;
 595   fsc[1] = Type::MEMORY;
 596   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 597 
 598   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 599   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 600   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 601   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 602                                            false, 0, Offset(oopDesc::mark_offset_in_bytes()));
 603   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 604                                            false, 0, Offset(oopDesc::klass_offset_in_bytes()));
 605   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, Offset::bottom, TypeOopPtr::InstanceBot);
 606 
 607   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, nullptr, Offset::bottom);
 608 
 609   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 610   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 611 
 612   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 613 
 614   mreg2type[Op_Node] = Type::BOTTOM;
 615   mreg2type[Op_Set ] = 0;
 616   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 617   mreg2type[Op_RegI] = TypeInt::INT;
 618   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 619   mreg2type[Op_RegF] = Type::FLOAT;
 620   mreg2type[Op_RegD] = Type::DOUBLE;
 621   mreg2type[Op_RegL] = TypeLong::LONG;
 622   mreg2type[Op_RegFlags] = TypeInt::CC;
 623 
 624   GrowableArray<ciInstanceKlass*> array_interfaces;
 625   array_interfaces.push(current->env()->Cloneable_klass());
 626   array_interfaces.push(current->env()->Serializable_klass());
 627   TypeAryPtr::_array_interfaces = TypeInterfaces::make(&array_interfaces);
 628   TypeAryKlassPtr::_array_interfaces = TypeAryPtr::_array_interfaces;
 629 
 630   TypeAryPtr::RANGE   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), nullptr /* current->env()->Object_klass() */, false, Offset(arrayOopDesc::length_offset_in_bytes()));
 631 
 632   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), nullptr /*ciArrayKlass::make(o)*/,  false,  Offset::bottom);
 633 
 634 #ifdef _LP64
 635   if (UseCompressedOops) {
 636     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 637     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 638   } else
 639 #endif
 640   {
 641     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 642     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), nullptr /*ciArrayKlass::make(o)*/,  false,  Offset::bottom);
 643   }
 644   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Offset::bottom);
 645   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Offset::bottom);
 646   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Offset::bottom);
 647   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Offset::bottom);
 648   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Offset::bottom);
 649   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Offset::bottom);
 650   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Offset::bottom);
 651   TypeAryPtr::INLINES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS, /* stable= */ false, /* flat= */ true), nullptr, false, Offset::bottom);
 652 
 653   // Nobody should ask _array_body_type[T_NARROWOOP]. Use null as assert.
 654   TypeAryPtr::_array_body_type[T_NARROWOOP] = nullptr;
 655   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 656   TypeAryPtr::_array_body_type[T_PRIMITIVE_OBJECT] = TypeAryPtr::OOPS;
 657   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 658   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 659   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 660   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 661   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 662   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 663   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 664   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 665   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 666 
 667   TypeInstKlassPtr::OBJECT = TypeInstKlassPtr::make(TypePtr::NotNull, current->env()->Object_klass(), Offset(0));
 668   TypeInstKlassPtr::OBJECT_OR_NULL = TypeInstKlassPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), Offset(0));
 669 
 670   const Type **fi2c = TypeTuple::fields(2);
 671   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 672   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 673   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 674 
 675   const Type **intpair = TypeTuple::fields(2);
 676   intpair[0] = TypeInt::INT;
 677   intpair[1] = TypeInt::INT;
 678   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 679 
 680   const Type **longpair = TypeTuple::fields(2);
 681   longpair[0] = TypeLong::LONG;
 682   longpair[1] = TypeLong::LONG;
 683   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 684 
 685   const Type **intccpair = TypeTuple::fields(2);
 686   intccpair[0] = TypeInt::INT;
 687   intccpair[1] = TypeInt::CC;
 688   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 689 
 690   const Type **longccpair = TypeTuple::fields(2);
 691   longccpair[0] = TypeLong::LONG;
 692   longccpair[1] = TypeInt::CC;
 693   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 694 
 695   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 696   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 697   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 698   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 699   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 700   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 701   _const_basic_type[T_INT]         = TypeInt::INT;
 702   _const_basic_type[T_LONG]        = TypeLong::LONG;
 703   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 704   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 705   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 706   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 707   _const_basic_type[T_PRIMITIVE_OBJECT] = TypeInstPtr::BOTTOM;
 708   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 709   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 710   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 711 
 712   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 713   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 714   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 715   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 716   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 717   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 718   _zero_type[T_INT]         = TypeInt::ZERO;
 719   _zero_type[T_LONG]        = TypeLong::ZERO;
 720   _zero_type[T_FLOAT]       = TypeF::ZERO;
 721   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 722   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 723   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
 724   _zero_type[T_PRIMITIVE_OBJECT] = TypePtr::NULL_PTR;
 725   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 726   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 727 
 728   // get_zero_type() should not happen for T_CONFLICT
 729   _zero_type[T_CONFLICT]= nullptr;
 730 
 731   TypeVect::VECTMASK = (TypeVect*)(new TypeVectMask(TypeInt::BOOL, MaxVectorSize))->hashcons();
 732   mreg2type[Op_RegVectMask] = TypeVect::VECTMASK;
 733 
 734   if (Matcher::supports_scalable_vector()) {
 735     TypeVect::VECTA = TypeVect::make(T_BYTE, Matcher::scalable_vector_reg_size(T_BYTE));
 736   }
 737 
 738   // Vector predefined types, it needs initialized _const_basic_type[].
 739   if (Matcher::vector_size_supported(T_BYTE,4)) {
 740     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
 741   }
 742   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 743     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
 744   }

 975   ~VerifyMeet() {
 976     assert(_C->_type_verify->_depth != 0, "");
 977     _C->_type_verify->_depth--;
 978     if (_C->_type_verify->_depth == 0) {
 979       _C->_type_verify->_cache.trunc_to(0);
 980     }
 981   }
 982 
 983   const Type* meet(const Type* t1, const Type* t2) const {
 984     return _C->_type_verify->meet(t1, t2);
 985   }
 986 
 987   void add(const Type* t1, const Type* t2, const Type* res) const {
 988     _C->_type_verify->add(t1, t2, res);
 989   }
 990 };
 991 
 992 void Type::check_symmetrical(const Type* t, const Type* mt, const VerifyMeet& verify) const {
 993   Compile* C = Compile::current();
 994   const Type* mt2 = verify.meet(t, this);
 995 
 996   // Verify that:
 997   //      this meet t == t meet this
 998   if (mt != mt2) {
 999     tty->print_cr("=== Meet Not Commutative ===");
1000     tty->print("t           = ");   t->dump(); tty->cr();
1001     tty->print("this        = ");      dump(); tty->cr();
1002     tty->print("t meet this = "); mt2->dump(); tty->cr();
1003     tty->print("this meet t = ");  mt->dump(); tty->cr();
1004     fatal("meet not commutative");
1005   }
1006   const Type* dual_join = mt->_dual;
1007   const Type* t2t    = verify.meet(dual_join,t->_dual);
1008   const Type* t2this = verify.meet(dual_join,this->_dual);
1009 
1010   // Interface meet Oop is Not Symmetric:
1011   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
1012   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
1013 
1014   // Verify that:
1015   //      !(t meet this)  meet !t ==
1016   //      (!t join !this) meet !t == !t
1017   // and
1018   //      !(t meet this)  meet !this ==
1019   //      (!t join !this) meet !this == !this
1020   if (t2t != t->_dual || t2this != this->_dual) {
1021     tty->print_cr("=== Meet Not Symmetric ===");
1022     tty->print("t   =                   ");              t->dump(); tty->cr();
1023     tty->print("this=                   ");                 dump(); tty->cr();
1024     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
1025 
1026     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
1027     tty->print("this_dual=              ");          _dual->dump(); tty->cr();
1028     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
1029 
1030     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
1031     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
1032 
1033     fatal("meet not symmetric");
1034   }
1035 }
1036 #endif
1037 
1038 //------------------------------meet-------------------------------------------
1039 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is

2170 
2171 bool TypeLong::empty(void) const {
2172   return _lo > _hi;
2173 }
2174 
2175 //=============================================================================
2176 // Convenience common pre-built types.
2177 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
2178 const TypeTuple *TypeTuple::IFFALSE;
2179 const TypeTuple *TypeTuple::IFTRUE;
2180 const TypeTuple *TypeTuple::IFNEITHER;
2181 const TypeTuple *TypeTuple::LOOPBODY;
2182 const TypeTuple *TypeTuple::MEMBAR;
2183 const TypeTuple *TypeTuple::STORECONDITIONAL;
2184 const TypeTuple *TypeTuple::START_I2C;
2185 const TypeTuple *TypeTuple::INT_PAIR;
2186 const TypeTuple *TypeTuple::LONG_PAIR;
2187 const TypeTuple *TypeTuple::INT_CC_PAIR;
2188 const TypeTuple *TypeTuple::LONG_CC_PAIR;
2189 
2190 static void collect_inline_fields(ciInlineKlass* vk, const Type** field_array, uint& pos) {
2191   for (int j = 0; j < vk->nof_nonstatic_fields(); j++) {
2192     ciField* field = vk->nonstatic_field_at(j);
2193     // TODO 8325106 The field could be null free, right? Shouldn't we set the type to null-free here?
2194     BasicType bt = field->type()->basic_type();
2195     const Type* ft = Type::get_const_type(field->type());
2196     field_array[pos++] = ft;
2197     if (type2size[bt] == 2) {
2198       field_array[pos++] = Type::HALF;
2199     }
2200   }
2201 }
2202 
2203 //------------------------------make-------------------------------------------
2204 // Make a TypeTuple from the range of a method signature
2205 const TypeTuple *TypeTuple::make_range(ciSignature* sig, InterfaceHandling interface_handling, bool ret_vt_fields) {
2206   ciType* return_type = sig->return_type();
2207   uint arg_cnt = return_type->size();
2208   if (ret_vt_fields) {
2209     arg_cnt = return_type->as_inline_klass()->inline_arg_slots() + 1;
2210     // InlineTypeNode::IsInit field used for null checking
2211     arg_cnt++;
2212   }
2213   const Type **field_array = fields(arg_cnt);
2214   switch (return_type->basic_type()) {
2215   case T_LONG:
2216     field_array[TypeFunc::Parms]   = TypeLong::LONG;
2217     field_array[TypeFunc::Parms+1] = Type::HALF;
2218     break;
2219   case T_DOUBLE:
2220     field_array[TypeFunc::Parms]   = Type::DOUBLE;
2221     field_array[TypeFunc::Parms+1] = Type::HALF;
2222     break;
2223   case T_OBJECT:
2224     if (return_type->is_inlinetype() && ret_vt_fields) {
2225       uint pos = TypeFunc::Parms;
2226       field_array[pos++] = get_const_type(return_type); // Oop might be null when returning as fields
2227       collect_inline_fields(return_type->as_inline_klass(), field_array, pos);
2228       // InlineTypeNode::IsInit field used for null checking
2229       field_array[pos++] = get_const_basic_type(T_BOOLEAN);
2230       break;
2231     } else {
2232       field_array[TypeFunc::Parms] = get_const_type(return_type, interface_handling)->join_speculative(TypePtr::BOTTOM);
2233     }
2234     break;
2235   case T_ARRAY:
2236   case T_BOOLEAN:
2237   case T_CHAR:
2238   case T_FLOAT:
2239   case T_BYTE:
2240   case T_SHORT:
2241   case T_INT:
2242     field_array[TypeFunc::Parms] = get_const_type(return_type, interface_handling);
2243     break;
2244   case T_VOID:
2245     break;
2246   default:
2247     ShouldNotReachHere();
2248   }
2249   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2250 }
2251 
2252 // Make a TypeTuple from the domain of a method signature
2253 const TypeTuple *TypeTuple::make_domain(ciMethod* method, InterfaceHandling interface_handling, bool vt_fields_as_args) {
2254   ciSignature* sig = method->signature();
2255   uint arg_cnt = sig->size() + (method->is_static() ? 0 : 1);
2256   if (vt_fields_as_args) {
2257     arg_cnt = 0;
2258     assert(method->get_sig_cc() != nullptr, "Should have scalarized signature");
2259     for (ExtendedSignature sig_cc = ExtendedSignature(method->get_sig_cc(), SigEntryFilter()); !sig_cc.at_end(); ++sig_cc) {
2260       arg_cnt += type2size[(*sig_cc)._bt];
2261     }
2262   }
2263 
2264   uint pos = TypeFunc::Parms;
2265   const Type** field_array = fields(arg_cnt);
2266   if (!method->is_static()) {
2267     ciInstanceKlass* recv = method->holder();
2268     if (vt_fields_as_args && recv->is_inlinetype() && recv->as_inline_klass()->can_be_passed_as_fields() && method->is_scalarized_arg(0)) {
2269       collect_inline_fields(recv->as_inline_klass(), field_array, pos);
2270     } else {
2271       field_array[pos++] = get_const_type(recv, interface_handling)->join_speculative(TypePtr::NOTNULL);
2272     }
2273   }
2274 
2275   int i = 0;
2276   while (pos < TypeFunc::Parms + arg_cnt) {
2277     ciType* type = sig->type_at(i);
2278     BasicType bt = type->basic_type();
2279 
2280     switch (bt) {
2281     case T_LONG:
2282       field_array[pos++] = TypeLong::LONG;
2283       field_array[pos++] = Type::HALF;
2284       break;
2285     case T_DOUBLE:
2286       field_array[pos++] = Type::DOUBLE;
2287       field_array[pos++] = Type::HALF;
2288       break;
2289     case T_OBJECT:
2290       if (type->is_inlinetype() && vt_fields_as_args && method->is_scalarized_arg(i + (method->is_static() ? 0 : 1))) {
2291         // InlineTypeNode::IsInit field used for null checking
2292         field_array[pos++] = get_const_basic_type(T_BOOLEAN);
2293         collect_inline_fields(type->as_inline_klass(), field_array, pos);
2294       } else {
2295         field_array[pos++] = get_const_type(type, interface_handling);
2296       }
2297       break;
2298     case T_ARRAY:
2299     case T_FLOAT:
2300     case T_INT:
2301       field_array[pos++] = get_const_type(type, interface_handling);
2302       break;
2303     case T_BOOLEAN:
2304     case T_CHAR:
2305     case T_BYTE:
2306     case T_SHORT:
2307       field_array[pos++] = TypeInt::INT;
2308       break;
2309     default:
2310       ShouldNotReachHere();
2311     }
2312     i++;
2313   }
2314   assert(pos == TypeFunc::Parms + arg_cnt, "wrong number of arguments");
2315 
2316   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2317 }
2318 
2319 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
2320   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
2321 }
2322 
2323 //------------------------------fields-----------------------------------------
2324 // Subroutine call type with space allocated for argument types
2325 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
2326 const Type **TypeTuple::fields( uint arg_cnt ) {
2327   const Type **flds = (const Type **)(Compile::current()->type_arena()->AmallocWords((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
2328   flds[TypeFunc::Control  ] = Type::CONTROL;
2329   flds[TypeFunc::I_O      ] = Type::ABIO;
2330   flds[TypeFunc::Memory   ] = Type::MEMORY;
2331   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
2332   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
2333 
2334   return flds;

2429     if (_fields[i]->empty())  return true;
2430   }
2431   return false;
2432 }
2433 
2434 //=============================================================================
2435 // Convenience common pre-built types.
2436 
2437 inline const TypeInt* normalize_array_size(const TypeInt* size) {
2438   // Certain normalizations keep us sane when comparing types.
2439   // We do not want arrayOop variables to differ only by the wideness
2440   // of their index types.  Pick minimum wideness, since that is the
2441   // forced wideness of small ranges anyway.
2442   if (size->_widen != Type::WidenMin)
2443     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
2444   else
2445     return size;
2446 }
2447 
2448 //------------------------------make-------------------------------------------
2449 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable,
2450                              bool flat, bool not_flat, bool not_null_free) {
2451   if (UseCompressedOops && elem->isa_oopptr()) {
2452     elem = elem->make_narrowoop();
2453   }
2454   size = normalize_array_size(size);
2455   return (TypeAry*)(new TypeAry(elem, size, stable, flat, not_flat, not_null_free))->hashcons();
2456 }
2457 
2458 //------------------------------meet-------------------------------------------
2459 // Compute the MEET of two types.  It returns a new Type object.
2460 const Type *TypeAry::xmeet( const Type *t ) const {
2461   // Perform a fast test for common case; meeting the same types together.
2462   if( this == t ) return this;  // Meeting same type-rep?
2463 
2464   // Current "this->_base" is Ary
2465   switch (t->base()) {          // switch on original type
2466 
2467   case Bottom:                  // Ye Olde Default
2468     return t;
2469 
2470   default:                      // All else is a mistake
2471     typerr(t);
2472 
2473   case Array: {                 // Meeting 2 arrays?
2474     const TypeAry *a = t->is_ary();
2475     return TypeAry::make(_elem->meet_speculative(a->_elem),
2476                          _size->xmeet(a->_size)->is_int(),
2477                          _stable && a->_stable,
2478                          _flat && a->_flat,
2479                          _not_flat && a->_not_flat,
2480                          _not_null_free && a->_not_null_free);
2481   }
2482   case Top:
2483     break;
2484   }
2485   return this;                  // Return the double constant
2486 }
2487 
2488 //------------------------------xdual------------------------------------------
2489 // Dual: compute field-by-field dual
2490 const Type *TypeAry::xdual() const {
2491   const TypeInt* size_dual = _size->dual()->is_int();
2492   size_dual = normalize_array_size(size_dual);
2493   return new TypeAry(_elem->dual(), size_dual, !_stable, !_flat, !_not_flat, !_not_null_free);
2494 }
2495 
2496 //------------------------------eq---------------------------------------------
2497 // Structural equality check for Type representations
2498 bool TypeAry::eq( const Type *t ) const {
2499   const TypeAry *a = (const TypeAry*)t;
2500   return _elem == a->_elem &&
2501     _stable == a->_stable &&
2502     _size == a->_size &&
2503     _flat == a->_flat &&
2504     _not_flat == a->_not_flat &&
2505     _not_null_free == a->_not_null_free;
2506 
2507 }
2508 
2509 //------------------------------hash-------------------------------------------
2510 // Type-specific hashing function.
2511 uint TypeAry::hash(void) const {
2512   return (uint)(uintptr_t)_elem + (uint)(uintptr_t)_size + (uint)(_stable ? 43 : 0) +
2513       (uint)(_flat ? 44 : 0) + (uint)(_not_flat ? 45 : 0) + (uint)(_not_null_free ? 46 : 0);
2514 }
2515 
2516 /**
2517  * Return same type without a speculative part in the element
2518  */
2519 const TypeAry* TypeAry::remove_speculative() const {
2520   return make(_elem->remove_speculative(), _size, _stable, _flat, _not_flat, _not_null_free);
2521 }
2522 
2523 /**
2524  * Return same type with cleaned up speculative part of element
2525  */
2526 const Type* TypeAry::cleanup_speculative() const {
2527   return make(_elem->cleanup_speculative(), _size, _stable, _flat, _not_flat, _not_null_free);
2528 }
2529 
2530 /**
2531  * Return same type but with a different inline depth (used for speculation)
2532  *
2533  * @param depth  depth to meet with
2534  */
2535 const TypePtr* TypePtr::with_inline_depth(int depth) const {
2536   if (!UseInlineDepthForSpeculativeTypes) {
2537     return this;
2538   }
2539   return make(AnyPtr, _ptr, _offset, _speculative, depth);
2540 }
2541 
2542 //------------------------------dump2------------------------------------------
2543 #ifndef PRODUCT
2544 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2545   if (_stable)  st->print("stable:");
2546   if (_flat) st->print("flat:");
2547   if (Verbose) {
2548     if (_not_flat) st->print("not flat:");
2549     if (_not_null_free) st->print("not null free:");
2550   }
2551   _elem->dump2(d, depth, st);
2552   st->print("[");
2553   _size->dump2(d, depth, st);
2554   st->print("]");
2555 }
2556 #endif
2557 
2558 //------------------------------singleton--------------------------------------
2559 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2560 // constants (Ldi nodes).  Singletons are integer, float or double constants
2561 // or a single symbol.
2562 bool TypeAry::singleton(void) const {
2563   return false;                 // Never a singleton
2564 }
2565 
2566 bool TypeAry::empty(void) const {
2567   return _elem->empty() || _size->empty();
2568 }
2569 
2570 //--------------------------ary_must_be_exact----------------------------------
2571 bool TypeAry::ary_must_be_exact() const {
2572   // This logic looks at the element type of an array, and returns true
2573   // if the element type is either a primitive or a final instance class.
2574   // In such cases, an array built on this ary must have no subclasses.
2575   if (_elem == BOTTOM)      return false;  // general array not exact
2576   if (_elem == TOP   )      return false;  // inverted general array not exact
2577   const TypeOopPtr*  toop = nullptr;
2578   if (UseCompressedOops && _elem->isa_narrowoop()) {
2579     toop = _elem->make_ptr()->isa_oopptr();
2580   } else {
2581     toop = _elem->isa_oopptr();
2582   }
2583   if (!toop)                return true;   // a primitive type, like int
2584   if (!toop->is_loaded())   return false;  // unloaded class
2585   const TypeInstPtr* tinst;
2586   if (_elem->isa_narrowoop())
2587     tinst = _elem->make_ptr()->isa_instptr();
2588   else
2589     tinst = _elem->isa_instptr();
2590   if (tinst) {
2591     if (tinst->instance_klass()->is_final()) {
2592       // TODO 8325106 Fix comment
2593       // Even if MyValue is exact, [LMyValue is not exact due to [QMyValue <: [LMyValue.
2594       if (tinst->is_inlinetypeptr() && (tinst->ptr() == TypePtr::BotPTR || tinst->ptr() == TypePtr::TopPTR)) {
2595         return false;
2596       }
2597       return true;
2598     }
2599     return false;
2600   }
2601   const TypeAryPtr*  tap;
2602   if (_elem->isa_narrowoop())
2603     tap = _elem->make_ptr()->isa_aryptr();
2604   else
2605     tap = _elem->isa_aryptr();
2606   if (tap)
2607     return tap->ary()->ary_must_be_exact();
2608   return false;
2609 }
2610 
2611 //==============================TypeVect=======================================
2612 // Convenience common pre-built types.
2613 const TypeVect *TypeVect::VECTA = nullptr; // vector length agnostic
2614 const TypeVect *TypeVect::VECTS = nullptr; //  32-bit vectors
2615 const TypeVect *TypeVect::VECTD = nullptr; //  64-bit vectors
2616 const TypeVect *TypeVect::VECTX = nullptr; // 128-bit vectors
2617 const TypeVect *TypeVect::VECTY = nullptr; // 256-bit vectors
2618 const TypeVect *TypeVect::VECTZ = nullptr; // 512-bit vectors
2619 const TypeVect *TypeVect::VECTMASK = nullptr; // predicate/mask vector
2620 

2776 
2777 //=============================================================================
2778 // Convenience common pre-built types.
2779 const TypePtr *TypePtr::NULL_PTR;
2780 const TypePtr *TypePtr::NOTNULL;
2781 const TypePtr *TypePtr::BOTTOM;
2782 
2783 //------------------------------meet-------------------------------------------
2784 // Meet over the PTR enum
2785 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2786   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2787   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2788   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2789   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2790   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2791   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2792   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2793 };
2794 
2795 //------------------------------make-------------------------------------------
2796 const TypePtr* TypePtr::make(TYPES t, enum PTR ptr, Offset offset, const TypePtr* speculative, int inline_depth) {
2797   return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2798 }
2799 
2800 //------------------------------cast_to_ptr_type-------------------------------
2801 const TypePtr* TypePtr::cast_to_ptr_type(PTR ptr) const {
2802   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2803   if( ptr == _ptr ) return this;
2804   return make(_base, ptr, _offset, _speculative, _inline_depth);
2805 }
2806 
2807 //------------------------------get_con----------------------------------------
2808 intptr_t TypePtr::get_con() const {
2809   assert( _ptr == Null, "" );
2810   return offset();
2811 }
2812 
2813 //------------------------------meet-------------------------------------------
2814 // Compute the MEET of two types.  It returns a new Type object.
2815 const Type *TypePtr::xmeet(const Type *t) const {
2816   const Type* res = xmeet_helper(t);
2817   if (res->isa_ptr() == nullptr) {
2818     return res;
2819   }
2820 
2821   const TypePtr* res_ptr = res->is_ptr();
2822   if (res_ptr->speculative() != nullptr) {
2823     // type->speculative() is null means that speculation is no better
2824     // than type, i.e. type->speculative() == type. So there are 2
2825     // ways to represent the fact that we have no useful speculative
2826     // data and we should use a single one to be able to test for
2827     // equality between types. Check whether type->speculative() ==
2828     // type and set speculative to null if it is the case.
2829     if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2830       return res_ptr->remove_speculative();

2861     int depth = meet_inline_depth(tp->inline_depth());
2862     return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2863   }
2864   case RawPtr:                  // For these, flip the call around to cut down
2865   case OopPtr:
2866   case InstPtr:                 // on the cases I have to handle.
2867   case AryPtr:
2868   case MetadataPtr:
2869   case KlassPtr:
2870   case InstKlassPtr:
2871   case AryKlassPtr:
2872     return t->xmeet(this);      // Call in reverse direction
2873   default:                      // All else is a mistake
2874     typerr(t);
2875 
2876   }
2877   return this;
2878 }
2879 
2880 //------------------------------meet_offset------------------------------------
2881 Type::Offset TypePtr::meet_offset(int offset) const {
2882   return _offset.meet(Offset(offset));





2883 }
2884 
2885 //------------------------------dual_offset------------------------------------
2886 Type::Offset TypePtr::dual_offset() const {
2887   return _offset.dual();


2888 }
2889 
2890 //------------------------------xdual------------------------------------------
2891 // Dual: compute field-by-field dual
2892 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2893   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2894 };
2895 const Type *TypePtr::xdual() const {
2896   return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2897 }
2898 
2899 //------------------------------xadd_offset------------------------------------
2900 Type::Offset TypePtr::xadd_offset(intptr_t offset) const {
2901   return _offset.add(offset);











2902 }
2903 
2904 //------------------------------add_offset-------------------------------------
2905 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2906   return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2907 }
2908 
2909 const TypePtr *TypePtr::with_offset(intptr_t offset) const {
2910   return make(AnyPtr, _ptr, Offset(offset), _speculative, _inline_depth);
2911 }
2912 
2913 //------------------------------eq---------------------------------------------
2914 // Structural equality check for Type representations
2915 bool TypePtr::eq( const Type *t ) const {
2916   const TypePtr *a = (const TypePtr*)t;
2917   return _ptr == a->ptr() && _offset == a->_offset && eq_speculative(a) && _inline_depth == a->_inline_depth;
2918 }
2919 
2920 //------------------------------hash-------------------------------------------
2921 // Type-specific hashing function.
2922 uint TypePtr::hash(void) const {
2923   return (uint)_ptr + (uint)offset() + (uint)hash_speculative() + (uint)_inline_depth;
2924 }
2925 
2926 /**
2927  * Return same type without a speculative part
2928  */
2929 const TypePtr* TypePtr::remove_speculative() const {
2930   if (_speculative == nullptr) {
2931     return this;
2932   }
2933   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2934   return make(AnyPtr, _ptr, _offset, nullptr, _inline_depth);
2935 }
2936 
2937 /**
2938  * Return same type but drop speculative part if we know we won't use
2939  * it
2940  */
2941 const Type* TypePtr::cleanup_speculative() const {
2942   if (speculative() == nullptr) {
2943     return this;

3169   }
3170   // We already know the speculative type is always null
3171   if (speculative_always_null()) {
3172     return false;
3173   }
3174   if (ptr_kind == ProfileAlwaysNull && speculative() != nullptr && speculative()->isa_oopptr()) {
3175     return false;
3176   }
3177   return true;
3178 }
3179 
3180 //------------------------------dump2------------------------------------------
3181 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
3182   "TopPTR","AnyNull","Constant","null","NotNull","BotPTR"
3183 };
3184 
3185 #ifndef PRODUCT
3186 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3187   if( _ptr == Null ) st->print("null");
3188   else st->print("%s *", ptr_msg[_ptr]);
3189   _offset.dump2(st);


3190   dump_inline_depth(st);
3191   dump_speculative(st);
3192 }
3193 
3194 /**
3195  *dump the speculative part of the type
3196  */
3197 void TypePtr::dump_speculative(outputStream *st) const {
3198   if (_speculative != nullptr) {
3199     st->print(" (speculative=");
3200     _speculative->dump_on(st);
3201     st->print(")");
3202   }
3203 }
3204 
3205 /**
3206  *dump the inline depth of the type
3207  */
3208 void TypePtr::dump_inline_depth(outputStream *st) const {
3209   if (_inline_depth != InlineDepthBottom) {
3210     if (_inline_depth == InlineDepthTop) {
3211       st->print(" (inline_depth=InlineDepthTop)");
3212     } else {
3213       st->print(" (inline_depth=%d)", _inline_depth);
3214     }
3215   }
3216 }
3217 #endif
3218 
3219 //------------------------------singleton--------------------------------------
3220 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3221 // constants
3222 bool TypePtr::singleton(void) const {
3223   // TopPTR, Null, AnyNull, Constant are all singletons
3224   return (_offset != Offset::bottom) && !below_centerline(_ptr);
3225 }
3226 
3227 bool TypePtr::empty(void) const {
3228   return (_offset == Offset::top) || above_centerline(_ptr);
3229 }
3230 
3231 //=============================================================================
3232 // Convenience common pre-built types.
3233 const TypeRawPtr *TypeRawPtr::BOTTOM;
3234 const TypeRawPtr *TypeRawPtr::NOTNULL;
3235 
3236 //------------------------------make-------------------------------------------
3237 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
3238   assert( ptr != Constant, "what is the constant?" );
3239   assert( ptr != Null, "Use TypePtr for null" );
3240   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
3241 }
3242 
3243 const TypeRawPtr *TypeRawPtr::make( address bits ) {
3244   assert( bits, "Use TypePtr for null" );
3245   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
3246 }
3247 
3248 //------------------------------cast_to_ptr_type-------------------------------

3600 void TypeInterfaces::verify_is_loaded() const {
3601   for (int i = 0; i < _list.length(); i++) {
3602     ciKlass* interface = _list.at(i);
3603     assert(interface->is_loaded(), "Interface not loaded");
3604   }
3605 }
3606 #endif
3607 
3608 // Can't be implemented because there's no way to know if the type is above or below the center line.
3609 const Type* TypeInterfaces::xmeet(const Type* t) const {
3610   ShouldNotReachHere();
3611   return Type::xmeet(t);
3612 }
3613 
3614 bool TypeInterfaces::singleton(void) const {
3615   ShouldNotReachHere();
3616   return Type::singleton();
3617 }
3618 
3619 //------------------------------TypeOopPtr-------------------------------------
3620 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset offset, Offset field_offset,
3621                        int instance_id, const TypePtr* speculative, int inline_depth)
3622   : TypePtr(t, ptr, offset, speculative, inline_depth),
3623     _const_oop(o), _klass(k),
3624     _interfaces(interfaces),
3625     _klass_is_exact(xk),
3626     _is_ptr_to_narrowoop(false),
3627     _is_ptr_to_narrowklass(false),
3628     _is_ptr_to_boxed_value(false),
3629     _instance_id(instance_id) {
3630 #ifdef ASSERT
3631   if (klass() != nullptr && klass()->is_loaded()) {
3632     interfaces->verify_is_loaded();
3633   }
3634 #endif
3635   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
3636       (offset.get() > 0) && xk && (k != 0) && k->is_instance_klass()) {
3637     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset.get());
3638   }
3639 #ifdef _LP64
3640   if (this->offset() > 0 || this->offset() == Type::OffsetTop || this->offset() == Type::OffsetBot) {
3641     if (this->offset() == oopDesc::klass_offset_in_bytes()) {
3642       _is_ptr_to_narrowklass = UseCompressedClassPointers;
3643     } else if (klass() == nullptr) {
3644       // Array with unknown body type
3645       assert(this->isa_aryptr(), "only arrays without klass");
3646       _is_ptr_to_narrowoop = UseCompressedOops;
3647     } else if (UseCompressedOops && this->isa_aryptr() && this->offset() != arrayOopDesc::length_offset_in_bytes()) {
3648       if (klass()->is_obj_array_klass()) {
3649         _is_ptr_to_narrowoop = true;
3650       } else if (klass()->is_flat_array_klass() && field_offset != Offset::top && field_offset != Offset::bottom) {
3651         // Check if the field of the inline type array element contains oops
3652         ciInlineKlass* vk = klass()->as_flat_array_klass()->element_klass()->as_inline_klass();
3653         int foffset = field_offset.get() + vk->first_field_offset();
3654         ciField* field = vk->get_field_by_offset(foffset, false);
3655         assert(field != nullptr, "missing field");
3656         BasicType bt = field->layout_type();
3657         _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(bt);
3658       }
3659     } else if (klass()->is_instance_klass()) {

3660       if (this->isa_klassptr()) {
3661         // Perm objects don't use compressed references
3662       } else if (_offset == Offset::bottom || _offset == Offset::top) {
3663         // unsafe access
3664         _is_ptr_to_narrowoop = UseCompressedOops;
3665       } else {
3666         assert(this->isa_instptr(), "must be an instance ptr.");

3667         if (klass() == ciEnv::current()->Class_klass() &&
3668             (this->offset() == java_lang_Class::klass_offset() ||
3669              this->offset() == java_lang_Class::array_klass_offset())) {
3670           // Special hidden fields from the Class.
3671           assert(this->isa_instptr(), "must be an instance ptr.");
3672           _is_ptr_to_narrowoop = false;
3673         } else if (klass() == ciEnv::current()->Class_klass() &&
3674                    this->offset() >= InstanceMirrorKlass::offset_of_static_fields()) {
3675           // Static fields
3676           ciField* field = nullptr;
3677           if (const_oop() != nullptr) {
3678             ciInstanceKlass* k = const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
3679             // TODO 8325106 remove?
3680             if (k->is_inlinetype() && this->offset() == k->as_inline_klass()->default_value_offset()) {
3681               // Special hidden field that contains the oop of the default inline type
3682               // basic_elem_type = T_PRIMITIVE_OBJECT;
3683              _is_ptr_to_narrowoop = UseCompressedOops;
3684             } else {
3685               field = k->get_field_by_offset(this->offset(), true);
3686               if (field != nullptr) {
3687                 BasicType basic_elem_type = field->layout_type();
3688                 _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type);
3689               } else {
3690                 // unsafe access
3691                 _is_ptr_to_narrowoop = UseCompressedOops;
3692               }
3693             }
3694           }
3695         } else {
3696           // Instance fields which contains a compressed oop references.
3697           ciInstanceKlass* ik = klass()->as_instance_klass();
3698           ciField* field = ik->get_field_by_offset(this->offset(), false);
3699           if (field != nullptr) {
3700             BasicType basic_elem_type = field->layout_type();
3701             _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type);
3702           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
3703             // Compile::find_alias_type() cast exactness on all types to verify
3704             // that it does not affect alias type.
3705             _is_ptr_to_narrowoop = UseCompressedOops;
3706           } else {
3707             // Type for the copy start in LibraryCallKit::inline_native_clone().
3708             _is_ptr_to_narrowoop = UseCompressedOops;
3709           }
3710         }
3711       }
3712     }
3713   }
3714 #endif
3715 }
3716 
3717 //------------------------------make-------------------------------------------
3718 const TypeOopPtr *TypeOopPtr::make(PTR ptr, Offset offset, int instance_id,
3719                                    const TypePtr* speculative, int inline_depth) {
3720   assert(ptr != Constant, "no constant generic pointers");
3721   ciKlass*  k = Compile::current()->env()->Object_klass();
3722   bool      xk = false;
3723   ciObject* o = nullptr;
3724   const TypeInterfaces* interfaces = TypeInterfaces::make();
3725   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, interfaces, xk, o, offset, Offset::bottom, instance_id, speculative, inline_depth))->hashcons();
3726 }
3727 
3728 
3729 //------------------------------cast_to_ptr_type-------------------------------
3730 const TypeOopPtr* TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
3731   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
3732   if( ptr == _ptr ) return this;
3733   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
3734 }
3735 
3736 //-----------------------------cast_to_instance_id----------------------------
3737 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
3738   // There are no instances of a general oop.
3739   // Return self unchanged.
3740   return this;
3741 }
3742 
3743 //-----------------------------cast_to_exactness-------------------------------
3744 const TypeOopPtr* TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
3745   // There is no such thing as an exact general oop.
3746   // Return self unchanged.
3747   return this;
3748 }
3749 

3750 //------------------------------as_klass_type----------------------------------
3751 // Return the klass type corresponding to this instance or array type.
3752 // It is the type that is loaded from an object of this type.
3753 const TypeKlassPtr* TypeOopPtr::as_klass_type(bool try_for_exact) const {
3754   ShouldNotReachHere();
3755   return nullptr;
3756 }
3757 
3758 //------------------------------meet-------------------------------------------
3759 // Compute the MEET of two types.  It returns a new Type object.
3760 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
3761   // Perform a fast test for common case; meeting the same types together.
3762   if( this == t ) return this;  // Meeting same type-rep?
3763 
3764   // Current "this->_base" is OopPtr
3765   switch (t->base()) {          // switch on original type
3766 
3767   case Int:                     // Mixing ints & oops happens when javac
3768   case Long:                    // reuses local variables
3769   case FloatTop:

3775   case NarrowOop:
3776   case NarrowKlass:
3777   case Bottom:                  // Ye Olde Default
3778     return Type::BOTTOM;
3779   case Top:
3780     return this;
3781 
3782   default:                      // All else is a mistake
3783     typerr(t);
3784 
3785   case RawPtr:
3786   case MetadataPtr:
3787   case KlassPtr:
3788   case InstKlassPtr:
3789   case AryKlassPtr:
3790     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3791 
3792   case AnyPtr: {
3793     // Found an AnyPtr type vs self-OopPtr type
3794     const TypePtr *tp = t->is_ptr();
3795     Offset offset = meet_offset(tp->offset());
3796     PTR ptr = meet_ptr(tp->ptr());
3797     const TypePtr* speculative = xmeet_speculative(tp);
3798     int depth = meet_inline_depth(tp->inline_depth());
3799     switch (tp->ptr()) {
3800     case Null:
3801       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3802       // else fall through:
3803     case TopPTR:
3804     case AnyNull: {
3805       int instance_id = meet_instance_id(InstanceTop);
3806       return make(ptr, offset, instance_id, speculative, depth);
3807     }
3808     case BotPTR:
3809     case NotNull:
3810       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3811     default: typerr(t);
3812     }
3813   }
3814 
3815   case OopPtr: {                 // Meeting to other OopPtrs

3817     int instance_id = meet_instance_id(tp->instance_id());
3818     const TypePtr* speculative = xmeet_speculative(tp);
3819     int depth = meet_inline_depth(tp->inline_depth());
3820     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
3821   }
3822 
3823   case InstPtr:                  // For these, flip the call around to cut down
3824   case AryPtr:
3825     return t->xmeet(this);      // Call in reverse direction
3826 
3827   } // End of switch
3828   return this;                  // Return the double constant
3829 }
3830 
3831 
3832 //------------------------------xdual------------------------------------------
3833 // Dual of a pure heap pointer.  No relevant klass or oop information.
3834 const Type *TypeOopPtr::xdual() const {
3835   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
3836   assert(const_oop() == nullptr,             "no constants here");
3837   return new TypeOopPtr(_base, dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), Offset::bottom, dual_instance_id(), dual_speculative(), dual_inline_depth());
3838 }
3839 
3840 //--------------------------make_from_klass_common-----------------------------
3841 // Computes the element-type given a klass.
3842 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact, InterfaceHandling interface_handling) {
3843   if (klass->is_instance_klass() || klass->is_inlinetype()) {
3844     Compile* C = Compile::current();
3845     Dependencies* deps = C->dependencies();
3846     assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
3847     // Element is an instance
3848     bool klass_is_exact = false;
3849     if (klass->is_loaded()) {
3850       // Try to set klass_is_exact.
3851       ciInstanceKlass* ik = klass->as_instance_klass();
3852       klass_is_exact = ik->is_final();
3853       if (!klass_is_exact && klass_change
3854           && deps != nullptr && UseUniqueSubclasses) {
3855         ciInstanceKlass* sub = ik->unique_concrete_subklass();
3856         if (sub != nullptr) {
3857           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3858           klass = ik = sub;
3859           klass_is_exact = sub->is_final();
3860         }
3861       }
3862       if (!klass_is_exact && try_for_exact && deps != nullptr &&
3863           !ik->is_interface() && !ik->has_subklass()) {
3864         // Add a dependence; if concrete subclass added we need to recompile
3865         deps->assert_leaf_type(ik);
3866         klass_is_exact = true;
3867       }
3868     }
3869     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
3870     return TypeInstPtr::make(TypePtr::BotPTR, klass, interfaces, klass_is_exact, nullptr, Offset(0));
3871   } else if (klass->is_obj_array_klass()) {
3872     // Element is an object or inline type array. Recursively call ourself.
3873     const TypeOopPtr* etype = TypeOopPtr::make_from_klass_common(klass->as_array_klass()->element_klass(), /* klass_change= */ false, try_for_exact, interface_handling);
3874     // Determine null-free/flat properties
3875     const TypeOopPtr* exact_etype = etype;
3876     if (etype->can_be_inline_type()) {
3877       // Use exact type if element can be an inline type
3878       exact_etype = TypeOopPtr::make_from_klass_common(klass->as_array_klass()->element_klass(), /* klass_change= */ true, /* try_for_exact= */ true, interface_handling);
3879     }
3880     bool not_null_free = !exact_etype->can_be_inline_type();
3881     bool not_flat = !UseFlatArray || not_null_free || (exact_etype->is_inlinetypeptr() && !exact_etype->inline_klass()->flat_in_array());
3882 
3883     // TODO 8325106 Fix comment
3884     // Even if MyValue is exact, [LMyValue is not exact due to [QMyValue <: [LMyValue.
3885     bool xk = etype->klass_is_exact() && !etype->is_inlinetypeptr();
3886     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS, /* stable= */ false, /* flat= */ false, not_flat, not_null_free);
3887     // We used to pass NotNull in here, asserting that the sub-arrays
3888     // are all not-null.  This is not true in generally, as code can
3889     // slam nullptrs down in the subarrays.
3890     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, nullptr, xk, Offset(0));
3891     return arr;
3892   } else if (klass->is_type_array_klass()) {
3893     // Element is an typeArray
3894     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3895     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS,
3896                                         /* stable= */ false, /* flat= */ false, /* not_flat= */ true, /* not_null_free= */ true);
3897     // We used to pass NotNull in here, asserting that the array pointer
3898     // is not-null. That was not true in general.
3899     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, Offset(0));
3900     return arr;
3901   } else if (klass->is_flat_array_klass()) {
3902     const TypeOopPtr* etype = TypeOopPtr::make_from_klass_raw(klass->as_array_klass()->element_klass(), trust_interfaces);
3903     etype = etype->join_speculative(TypePtr::NOTNULL)->is_oopptr();
3904     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS, /* stable= */ false, /* flat= */ true);
3905     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, Offset(0));
3906     return arr;
3907   } else {
3908     ShouldNotReachHere();
3909     return nullptr;
3910   }
3911 }
3912 
3913 //------------------------------make_from_constant-----------------------------
3914 // Make a java pointer from an oop constant
3915 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
3916   assert(!o->is_null_object(), "null object not yet handled here.");
3917 
3918   const bool make_constant = require_constant || o->should_be_constant();
3919 
3920   ciKlass* klass = o->klass();
3921   if (klass->is_instance_klass() || klass->is_inlinetype()) {
3922     // Element is an instance or inline type
3923     if (make_constant) {
3924       return TypeInstPtr::make(o);
3925     } else {
3926       return TypeInstPtr::make(TypePtr::NotNull, klass, true, nullptr, Offset(0));
3927     }
3928   } else if (klass->is_obj_array_klass()) {
3929     // Element is an object array. Recursively call ourself.
3930     const TypeOopPtr* etype = TypeOopPtr::make_from_klass_raw(klass->as_array_klass()->element_klass(), trust_interfaces);
3931     bool is_flat = o->as_obj_array()->is_flat();
3932     bool is_null_free = o->as_obj_array()->is_null_free();
3933     if (is_null_free) {
3934       etype = etype->join_speculative(TypePtr::NOTNULL)->is_oopptr();
3935     }
3936     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()),
3937                                         /* stable= */ false, /* flat= */ false, /* not_flat= */ !is_flat, /* not_null_free= */ !is_null_free);
3938     // We used to pass NotNull in here, asserting that the sub-arrays
3939     // are all not-null.  This is not true in generally, as code can
3940     // slam nulls down in the subarrays.
3941     if (make_constant) {
3942       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3943     } else {
3944       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3945     }
3946   } else if (klass->is_type_array_klass()) {
3947     // Element is an typeArray
3948     const Type* etype = (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3949     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()),
3950                                         /* stable= */ false, /* flat= */ false, /* not_flat= */ true, /* not_null_free= */ true);
3951     // We used to pass NotNull in here, asserting that the array pointer
3952     // is not-null. That was not true in general.
3953     if (make_constant) {
3954       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3955     } else {
3956       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3957     }
3958   } else if (klass->is_flat_array_klass()) {
3959     const TypeOopPtr* etype = TypeOopPtr::make_from_klass_raw(klass->as_array_klass()->element_klass(), trust_interfaces);
3960     etype = etype->join_speculative(TypePtr::NOTNULL)->is_oopptr();
3961     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()), /* stable= */ false, /* flat= */ true);
3962     // We used to pass NotNull in here, asserting that the sub-arrays
3963     // are all not-null.  This is not true in generally, as code can
3964     // slam nullptrs down in the subarrays.
3965     if (make_constant) {
3966       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3967     } else {
3968       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3969     }
3970   }
3971 
3972   fatal("unhandled object type");
3973   return nullptr;
3974 }
3975 
3976 //------------------------------get_con----------------------------------------
3977 intptr_t TypeOopPtr::get_con() const {
3978   assert( _ptr == Null || _ptr == Constant, "" );
3979   assert(offset() >= 0, "");
3980 
3981   if (offset() != 0) {
3982     // After being ported to the compiler interface, the compiler no longer
3983     // directly manipulates the addresses of oops.  Rather, it only has a pointer
3984     // to a handle at compile time.  This handle is embedded in the generated
3985     // code and dereferenced at the time the nmethod is made.  Until that time,
3986     // it is not reasonable to do arithmetic with the addresses of oops (we don't
3987     // have access to the addresses!).  This does not seem to currently happen,
3988     // but this assertion here is to help prevent its occurrence.
3989     tty->print_cr("Found oop constant with non-zero offset");
3990     ShouldNotReachHere();
3991   }
3992 
3993   return (intptr_t)const_oop()->constant_encoding();
3994 }
3995 
3996 
3997 //-----------------------------filter------------------------------------------
3998 // Do not allow interface-vs.-noninterface joins to collapse to top.
3999 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
4000 
4001   const Type* ft = join_helper(kills, include_speculative);

4022   } else {
4023     return one->equals(two) && TypePtr::eq(t);
4024   }
4025 }
4026 
4027 //------------------------------hash-------------------------------------------
4028 // Type-specific hashing function.
4029 uint TypeOopPtr::hash(void) const {
4030   return
4031     (uint)(const_oop() ? const_oop()->hash() : 0) +
4032     (uint)_klass_is_exact +
4033     (uint)_instance_id + TypePtr::hash();
4034 }
4035 
4036 //------------------------------dump2------------------------------------------
4037 #ifndef PRODUCT
4038 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4039   st->print("oopptr:%s", ptr_msg[_ptr]);
4040   if( _klass_is_exact ) st->print(":exact");
4041   if( const_oop() ) st->print(INTPTR_FORMAT, p2i(const_oop()));
4042   _offset.dump2(st);





4043   if (_instance_id == InstanceTop)
4044     st->print(",iid=top");
4045   else if (_instance_id != InstanceBot)
4046     st->print(",iid=%d",_instance_id);
4047 
4048   dump_inline_depth(st);
4049   dump_speculative(st);
4050 }
4051 #endif
4052 
4053 //------------------------------singleton--------------------------------------
4054 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4055 // constants
4056 bool TypeOopPtr::singleton(void) const {
4057   // detune optimizer to not generate constant oop + constant offset as a constant!
4058   // TopPTR, Null, AnyNull, Constant are all singletons
4059   return (offset() == 0) && !below_centerline(_ptr);
4060 }
4061 
4062 //------------------------------add_offset-------------------------------------
4063 const TypePtr* TypeOopPtr::add_offset(intptr_t offset) const {
4064   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
4065 }
4066 
4067 const TypeOopPtr* TypeOopPtr::with_offset(intptr_t offset) const {
4068   return make(_ptr, Offset(offset), _instance_id, with_offset_speculative(offset), _inline_depth);
4069 }
4070 
4071 /**
4072  * Return same type without a speculative part
4073  */
4074 const TypeOopPtr* TypeOopPtr::remove_speculative() const {
4075   if (_speculative == nullptr) {
4076     return this;
4077   }
4078   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4079   return make(_ptr, _offset, _instance_id, nullptr, _inline_depth);
4080 }
4081 
4082 /**
4083  * Return same type but drop speculative part if we know we won't use
4084  * it
4085  */
4086 const Type* TypeOopPtr::cleanup_speculative() const {
4087   // If the klass is exact and the ptr is not null then there's
4088   // nothing that the speculative type can help us with

4161 const TypeInstPtr *TypeInstPtr::BOTTOM;
4162 const TypeInstPtr *TypeInstPtr::MIRROR;
4163 const TypeInstPtr *TypeInstPtr::MARK;
4164 const TypeInstPtr *TypeInstPtr::KLASS;
4165 
4166 // Is there a single ciKlass* that can represent that type?
4167 ciKlass* TypeInstPtr::exact_klass_helper() const {
4168   if (_interfaces->empty()) {
4169     return _klass;
4170   }
4171   if (_klass != ciEnv::current()->Object_klass()) {
4172     if (_interfaces->eq(_klass->as_instance_klass())) {
4173       return _klass;
4174     }
4175     return nullptr;
4176   }
4177   return _interfaces->exact_klass();
4178 }
4179 
4180 //------------------------------TypeInstPtr-------------------------------------
4181 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset off,
4182                          bool flat_in_array, int instance_id, const TypePtr* speculative, int inline_depth)
4183   : TypeOopPtr(InstPtr, ptr, k, interfaces, xk, o, off, Offset::bottom, instance_id, speculative, inline_depth),
4184     _flat_in_array(flat_in_array) {
4185   assert(k == nullptr || !k->is_loaded() || !k->is_interface(), "no interface here");
4186   assert(k != nullptr &&
4187          (k->is_loaded() || o == nullptr),
4188          "cannot have constants with non-loaded klass");
4189   assert(!klass()->flat_in_array() || flat_in_array, "Should be flat in array");
4190   assert(!flat_in_array || can_be_inline_type(), "Only inline types can be flat in array");
4191 };
4192 
4193 //------------------------------make-------------------------------------------
4194 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
4195                                      ciKlass* k,
4196                                      const TypeInterfaces* interfaces,
4197                                      bool xk,
4198                                      ciObject* o,
4199                                      Offset offset,
4200                                      bool flat_in_array,
4201                                      int instance_id,
4202                                      const TypePtr* speculative,
4203                                      int inline_depth) {
4204   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
4205   // Either const_oop() is null or else ptr is Constant
4206   assert( (!o && ptr != Constant) || (o && ptr == Constant),
4207           "constant pointers must have a value supplied" );
4208   // Ptr is never Null
4209   assert( ptr != Null, "null pointers are not typed" );
4210 
4211   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4212   if (ptr == Constant) {
4213     // Note:  This case includes meta-object constants, such as methods.
4214     xk = true;
4215   } else if (k->is_loaded()) {
4216     ciInstanceKlass* ik = k->as_instance_klass();
4217     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
4218     assert(!ik->is_interface(), "no interface here");
4219     if (xk && ik->is_interface())  xk = false;  // no exact interface
4220   }
4221 
4222   // Check if this type is known to be flat in arrays
4223   flat_in_array = flat_in_array || k->flat_in_array();
4224 
4225   // Now hash this baby
4226   TypeInstPtr *result =
4227     (TypeInstPtr*)(new TypeInstPtr(ptr, k, interfaces, xk, o, offset, flat_in_array, instance_id, speculative, inline_depth))->hashcons();
4228 
4229   return result;
4230 }
4231 
4232 const TypeInterfaces* TypePtr::interfaces(ciKlass*& k, bool klass, bool interface, bool array, InterfaceHandling interface_handling) {
4233   if (k->is_instance_klass()) {
4234     if (k->is_loaded()) {
4235       if (k->is_interface() && interface_handling == ignore_interfaces) {
4236         assert(interface, "no interface expected");
4237         k = ciEnv::current()->Object_klass();
4238         const TypeInterfaces* interfaces = TypeInterfaces::make();
4239         return interfaces;
4240       }
4241       GrowableArray<ciInstanceKlass *>* k_interfaces = k->as_instance_klass()->transitive_interfaces();
4242       const TypeInterfaces* interfaces = TypeInterfaces::make(k_interfaces);
4243       if (k->is_interface()) {
4244         assert(interface, "no interface expected");
4245         k = ciEnv::current()->Object_klass();
4246       } else {
4247         assert(klass, "no instance klass expected");

4273   switch (bt) {
4274     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
4275     case T_INT:      return TypeInt::make(constant.as_int());
4276     case T_CHAR:     return TypeInt::make(constant.as_char());
4277     case T_BYTE:     return TypeInt::make(constant.as_byte());
4278     case T_SHORT:    return TypeInt::make(constant.as_short());
4279     case T_FLOAT:    return TypeF::make(constant.as_float());
4280     case T_DOUBLE:   return TypeD::make(constant.as_double());
4281     case T_LONG:     return TypeLong::make(constant.as_long());
4282     default:         break;
4283   }
4284   fatal("Invalid boxed value type '%s'", type2name(bt));
4285   return nullptr;
4286 }
4287 
4288 //------------------------------cast_to_ptr_type-------------------------------
4289 const TypeInstPtr* TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
4290   if( ptr == _ptr ) return this;
4291   // Reconstruct _sig info here since not a problem with later lazy
4292   // construction, _sig will show up on demand.
4293   return make(ptr, klass(), _interfaces, klass_is_exact(), ptr == Constant ? const_oop() : nullptr, _offset, _flat_in_array, _instance_id, _speculative, _inline_depth);
4294 }
4295 
4296 
4297 //-----------------------------cast_to_exactness-------------------------------
4298 const TypeInstPtr* TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
4299   if( klass_is_exact == _klass_is_exact ) return this;
4300   if (!_klass->is_loaded())  return this;
4301   ciInstanceKlass* ik = _klass->as_instance_klass();
4302   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
4303   assert(!ik->is_interface(), "no interface here");
4304   return make(ptr(), klass(), _interfaces, klass_is_exact, const_oop(), _offset, _flat_in_array, _instance_id, _speculative, _inline_depth);
4305 }
4306 
4307 //-----------------------------cast_to_instance_id----------------------------
4308 const TypeInstPtr* TypeInstPtr::cast_to_instance_id(int instance_id) const {
4309   if( instance_id == _instance_id ) return this;
4310   return make(_ptr, klass(), _interfaces, _klass_is_exact, const_oop(), _offset, _flat_in_array, instance_id, _speculative, _inline_depth);
4311 }
4312 
4313 //------------------------------xmeet_unloaded---------------------------------
4314 // Compute the MEET of two InstPtrs when at least one is unloaded.
4315 // Assume classes are different since called after check for same name/class-loader
4316 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst, const TypeInterfaces* interfaces) const {
4317   Offset off = meet_offset(tinst->offset());
4318   PTR ptr = meet_ptr(tinst->ptr());
4319   int instance_id = meet_instance_id(tinst->instance_id());
4320   const TypePtr* speculative = xmeet_speculative(tinst);
4321   int depth = meet_inline_depth(tinst->inline_depth());
4322 
4323   const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
4324   const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
4325   if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
4326     //
4327     // Meet unloaded class with java/lang/Object
4328     //
4329     // Meet
4330     //          |                     Unloaded Class
4331     //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
4332     //  ===================================================================
4333     //   TOP    | ..........................Unloaded......................|
4334     //  AnyNull |  U-AN    |................Unloaded......................|
4335     // Constant | ... O-NN .................................. |   O-BOT   |
4336     //  NotNull | ... O-NN .................................. |   O-BOT   |
4337     //  BOTTOM  | ........................Object-BOTTOM ..................|
4338     //
4339     assert(loaded->ptr() != TypePtr::Null, "insanity check");
4340     //
4341     if (loaded->ptr() == TypePtr::TopPTR)        { return unloaded; }
4342     else if (loaded->ptr() == TypePtr::AnyNull)  { return make(ptr, unloaded->klass(), interfaces, false, nullptr, off, false, instance_id, speculative, depth); }
4343     else if (loaded->ptr() == TypePtr::BotPTR)   { return TypeInstPtr::BOTTOM; }
4344     else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
4345       if (unloaded->ptr() == TypePtr::BotPTR)    { return TypeInstPtr::BOTTOM;  }
4346       else                                       { return TypeInstPtr::NOTNULL; }
4347     }
4348     else if (unloaded->ptr() == TypePtr::TopPTR) { return unloaded; }
4349 
4350     return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
4351   }
4352 
4353   // Both are unloaded, not the same class, not Object
4354   // Or meet unloaded with a different loaded class, not java/lang/Object
4355   if (ptr != TypePtr::BotPTR) {
4356     return TypeInstPtr::NOTNULL;
4357   }
4358   return TypeInstPtr::BOTTOM;
4359 }
4360 
4361 
4362 //------------------------------meet-------------------------------------------

4383   case Top:
4384     return this;
4385 
4386   default:                      // All else is a mistake
4387     typerr(t);
4388 
4389   case MetadataPtr:
4390   case KlassPtr:
4391   case InstKlassPtr:
4392   case AryKlassPtr:
4393   case RawPtr: return TypePtr::BOTTOM;
4394 
4395   case AryPtr: {                // All arrays inherit from Object class
4396     // Call in reverse direction to avoid duplication
4397     return t->is_aryptr()->xmeet_helper(this);
4398   }
4399 
4400   case OopPtr: {                // Meeting to OopPtrs
4401     // Found a OopPtr type vs self-InstPtr type
4402     const TypeOopPtr *tp = t->is_oopptr();
4403     Offset offset = meet_offset(tp->offset());
4404     PTR ptr = meet_ptr(tp->ptr());
4405     switch (tp->ptr()) {
4406     case TopPTR:
4407     case AnyNull: {
4408       int instance_id = meet_instance_id(InstanceTop);
4409       const TypePtr* speculative = xmeet_speculative(tp);
4410       int depth = meet_inline_depth(tp->inline_depth());
4411       return make(ptr, klass(), _interfaces, klass_is_exact(),
4412                   (ptr == Constant ? const_oop() : nullptr), offset, flat_in_array(), instance_id, speculative, depth);
4413     }
4414     case NotNull:
4415     case BotPTR: {
4416       int instance_id = meet_instance_id(tp->instance_id());
4417       const TypePtr* speculative = xmeet_speculative(tp);
4418       int depth = meet_inline_depth(tp->inline_depth());
4419       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4420     }
4421     default: typerr(t);
4422     }
4423   }
4424 
4425   case AnyPtr: {                // Meeting to AnyPtrs
4426     // Found an AnyPtr type vs self-InstPtr type
4427     const TypePtr *tp = t->is_ptr();
4428     Offset offset = meet_offset(tp->offset());
4429     PTR ptr = meet_ptr(tp->ptr());
4430     int instance_id = meet_instance_id(InstanceTop);
4431     const TypePtr* speculative = xmeet_speculative(tp);
4432     int depth = meet_inline_depth(tp->inline_depth());
4433     switch (tp->ptr()) {
4434     case Null:
4435       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4436       // else fall through to AnyNull
4437     case TopPTR:
4438     case AnyNull: {
4439       return make(ptr, klass(), _interfaces, klass_is_exact(),
4440                   (ptr == Constant ? const_oop() : nullptr), offset, flat_in_array(), instance_id, speculative, depth);
4441     }
4442     case NotNull:
4443     case BotPTR:
4444       return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
4445     default: typerr(t);
4446     }
4447   }
4448 
4449   /*
4450                  A-top         }
4451                /   |   \       }  Tops
4452            B-top A-any C-top   }
4453               | /  |  \ |      }  Any-nulls
4454            B-any   |   C-any   }
4455               |    |    |
4456            B-con A-con C-con   } constants; not comparable across classes
4457               |    |    |
4458            B-not   |   C-not   }
4459               | \  |  / |      }  not-nulls
4460            B-bot A-not C-bot   }
4461                \   |   /       }  Bottoms
4462                  A-bot         }
4463   */
4464 
4465   case InstPtr: {                // Meeting 2 Oops?
4466     // Found an InstPtr sub-type vs self-InstPtr type
4467     const TypeInstPtr *tinst = t->is_instptr();
4468     Offset off = meet_offset(tinst->offset());
4469     PTR ptr = meet_ptr(tinst->ptr());
4470     int instance_id = meet_instance_id(tinst->instance_id());
4471     const TypePtr* speculative = xmeet_speculative(tinst);
4472     int depth = meet_inline_depth(tinst->inline_depth());
4473     const TypeInterfaces* interfaces = meet_interfaces(tinst);
4474 
4475     ciKlass* tinst_klass = tinst->klass();
4476     ciKlass* this_klass  = klass();
4477 
4478     ciKlass* res_klass = nullptr;
4479     bool res_xk = false;
4480     bool res_flat_in_array = false;
4481     const Type* res;
4482     MeetResult kind = meet_instptr(ptr, interfaces, this, tinst, res_klass, res_xk, res_flat_in_array);
4483 
4484     if (kind == UNLOADED) {
4485       // One of these classes has not been loaded
4486       const TypeInstPtr* unloaded_meet = xmeet_unloaded(tinst, interfaces);
4487 #ifndef PRODUCT
4488       if (PrintOpto && Verbose) {
4489         tty->print("meet of unloaded classes resulted in: ");
4490         unloaded_meet->dump();
4491         tty->cr();
4492         tty->print("  this == ");
4493         dump();
4494         tty->cr();
4495         tty->print(" tinst == ");
4496         tinst->dump();
4497         tty->cr();
4498       }
4499 #endif
4500       res = unloaded_meet;
4501     } else {
4502       if (kind == NOT_SUBTYPE && instance_id > 0) {
4503         instance_id = InstanceBot;
4504       } else if (kind == LCA) {
4505         instance_id = InstanceBot;
4506       }
4507       ciObject* o = nullptr;             // Assume not constant when done
4508       ciObject* this_oop = const_oop();
4509       ciObject* tinst_oop = tinst->const_oop();
4510       if (ptr == Constant) {
4511         if (this_oop != nullptr && tinst_oop != nullptr &&
4512             this_oop->equals(tinst_oop))
4513           o = this_oop;
4514         else if (above_centerline(_ptr)) {
4515           assert(!tinst_klass->is_interface(), "");
4516           o = tinst_oop;
4517         } else if (above_centerline(tinst->_ptr)) {
4518           assert(!this_klass->is_interface(), "");
4519           o = this_oop;
4520         } else
4521           ptr = NotNull;
4522       }
4523       res = make(ptr, res_klass, interfaces, res_xk, o, off, res_flat_in_array, instance_id, speculative, depth);
4524     }
4525 
4526     return res;
4527 
4528   } // End of case InstPtr
4529 
4530   } // End of switch
4531   return this;                  // Return the double constant
4532 }
4533 
4534 template<class T> TypePtr::MeetResult TypePtr::meet_instptr(PTR& ptr, const TypeInterfaces*& interfaces, const T* this_type, const T* other_type,
4535                                                             ciKlass*& res_klass, bool& res_xk, bool& res_flat_in_array) {
4536   ciKlass* this_klass = this_type->klass();
4537   ciKlass* other_klass = other_type->klass();
4538   const bool this_flat_in_array = this_type->flat_in_array();
4539   const bool other_flat_in_array = other_type->flat_in_array();
4540   const bool this_not_flat_in_array = this_type->not_flat_in_array();
4541   const bool other_not_flat_in_array = other_type->not_flat_in_array();
4542 
4543   bool this_xk = this_type->klass_is_exact();
4544   bool other_xk = other_type->klass_is_exact();
4545   PTR this_ptr = this_type->ptr();
4546   PTR other_ptr = other_type->ptr();
4547   const TypeInterfaces* this_interfaces = this_type->interfaces();
4548   const TypeInterfaces* other_interfaces = other_type->interfaces();
4549   // Check for easy case; klasses are equal (and perhaps not loaded!)
4550   // If we have constants, then we created oops so classes are loaded
4551   // and we can handle the constants further down.  This case handles
4552   // both-not-loaded or both-loaded classes
4553   if (ptr != Constant && this_klass->equals(other_klass) && this_xk == other_xk && this_flat_in_array == other_flat_in_array) {
4554     res_klass = this_klass;
4555     res_xk = this_xk;
4556     res_flat_in_array = this_flat_in_array;
4557     return QUICK;
4558   }
4559 
4560   // Classes require inspection in the Java klass hierarchy.  Must be loaded.
4561   if (!other_klass->is_loaded() || !this_klass->is_loaded()) {
4562     return UNLOADED;
4563   }
4564 
4565   // !!! Here's how the symmetry requirement breaks down into invariants:
4566   // If we split one up & one down AND they subtype, take the down man.
4567   // If we split one up & one down AND they do NOT subtype, "fall hard".
4568   // If both are up and they subtype, take the subtype class.
4569   // If both are up and they do NOT subtype, "fall hard".
4570   // If both are down and they subtype, take the supertype class.
4571   // If both are down and they do NOT subtype, "fall hard".
4572   // Constants treated as down.
4573 
4574   // Now, reorder the above list; observe that both-down+subtype is also
4575   // "fall hard"; "fall hard" becomes the default case:
4576   // If we split one up & one down AND they subtype, take the down man.
4577   // If both are up and they subtype, take the subtype class.
4578 
4579   // If both are down and they subtype, "fall hard".
4580   // If both are down and they do NOT subtype, "fall hard".
4581   // If both are up and they do NOT subtype, "fall hard".
4582   // If we split one up & one down AND they do NOT subtype, "fall hard".
4583 
4584   // If a proper subtype is exact, and we return it, we return it exactly.
4585   // If a proper supertype is exact, there can be no subtyping relationship!
4586   // If both types are equal to the subtype, exactness is and-ed below the
4587   // centerline and or-ed above it.  (N.B. Constants are always exact.)
4588 
4589   // Check for subtyping:
4590   // Flat in array matrix, yes = y, no = n, maybe = m, top/empty = T:
4591   //        yes maybe no   -> Super Klass
4592   //   yes   y    y    y
4593   // maybe   y    m    m
4594   //    no   T    n    n
4595   //    |
4596   //    v
4597   // Sub Klass
4598 
4599   const T* subtype = nullptr;
4600   bool subtype_exact = false;
4601   bool flat_in_array = false;
4602   if (this_type->is_same_java_type_as(other_type)) {
4603     subtype = this_type;
4604     subtype_exact = below_centerline(ptr) ? (this_xk && other_xk) : (this_xk || other_xk);
4605     flat_in_array = below_centerline(ptr) ? (this_flat_in_array && other_flat_in_array) : (this_flat_in_array || other_flat_in_array);
4606   } else if (!other_xk && is_meet_subtype_of(this_type, other_type)) {
4607     subtype = this_type;     // Pick subtyping class
4608     subtype_exact = this_xk;
4609     bool other_flat_this_maybe_flat = other_flat_in_array && (!this_flat_in_array && !this_not_flat_in_array);
4610     flat_in_array = this_flat_in_array || other_flat_this_maybe_flat;
4611   } else if (!this_xk && is_meet_subtype_of(other_type, this_type)) {
4612     subtype = other_type;    // Pick subtyping class
4613     subtype_exact = other_xk;
4614     bool this_flat_other_maybe_flat = this_flat_in_array && (!other_flat_in_array && !other_not_flat_in_array);
4615     flat_in_array = other_flat_in_array || this_flat_other_maybe_flat;
4616   }
4617 
4618   if (subtype) {
4619     if (above_centerline(ptr)) {
4620       // Both types are empty.
4621       this_type = other_type = subtype;
4622       this_xk = other_xk = subtype_exact;
4623     } else if (above_centerline(this_ptr) && !above_centerline(other_ptr)) {
4624       // this_type is empty while other_type is not. Take other_type.
4625       this_type = other_type;
4626       this_xk = other_xk;
4627       flat_in_array = other_flat_in_array;
4628     } else if (above_centerline(other_ptr) && !above_centerline(this_ptr)) {
4629       // other_type is empty while this_type is not. Take this_type.
4630       other_type = this_type; // this is down; keep down man
4631       flat_in_array = this_flat_in_array;
4632     } else {
4633       // this_type and other_type are both non-empty.
4634       this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
4635     }
4636   }
4637 
4638   // Check for classes now being equal
4639   if (this_type->is_same_java_type_as(other_type)) {
4640     // If the klasses are equal, the constants may still differ.  Fall to
4641     // NotNull if they do (neither constant is null; that is a special case
4642     // handled elsewhere).
4643     res_klass = this_type->klass();
4644     res_xk = this_xk;
4645     res_flat_in_array = subtype ? flat_in_array : this_flat_in_array;
4646     return SUBTYPE;
4647   } // Else classes are not equal
4648 
4649   // Since klasses are different, we require a LCA in the Java
4650   // class hierarchy - which means we have to fall to at least NotNull.
4651   if (ptr == TopPTR || ptr == AnyNull || ptr == Constant) {
4652     ptr = NotNull;
4653   }
4654 
4655   interfaces = this_interfaces->intersection_with(other_interfaces);
4656 
4657   // Now we find the LCA of Java classes
4658   ciKlass* k = this_klass->least_common_ancestor(other_klass);
4659 
4660   res_klass = k;
4661   res_xk = false;
4662   res_flat_in_array = this_flat_in_array && other_flat_in_array;
4663 
4664   return LCA;
4665 }
4666 
4667 template<class T> bool TypePtr::is_meet_subtype_of(const T* sub_type, const T* super_type) {
4668   return sub_type->is_meet_subtype_of(super_type) && !(super_type->flat_in_array() && sub_type->not_flat_in_array());
4669 }
4670 
4671 //------------------------java_mirror_type--------------------------------------
4672 ciType* TypeInstPtr::java_mirror_type(bool* is_null_free_array) const {
4673   // must be a singleton type
4674   if( const_oop() == nullptr )  return nullptr;
4675 
4676   // must be of type java.lang.Class
4677   if( klass() != ciEnv::current()->Class_klass() )  return nullptr;
4678   return const_oop()->as_instance()->java_mirror_type(is_null_free_array);

4679 }
4680 
4681 
4682 //------------------------------xdual------------------------------------------
4683 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
4684 // inheritance mechanism.
4685 const Type *TypeInstPtr::xdual() const {
4686   return new TypeInstPtr(dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), flat_in_array(), dual_instance_id(), dual_speculative(), dual_inline_depth());
4687 }
4688 
4689 //------------------------------eq---------------------------------------------
4690 // Structural equality check for Type representations
4691 bool TypeInstPtr::eq( const Type *t ) const {
4692   const TypeInstPtr *p = t->is_instptr();
4693   return
4694     klass()->equals(p->klass()) &&
4695     flat_in_array() == p->flat_in_array() &&
4696     _interfaces->eq(p->_interfaces) &&
4697     TypeOopPtr::eq(p);          // Check sub-type stuff
4698 }
4699 
4700 //------------------------------hash-------------------------------------------
4701 // Type-specific hashing function.
4702 uint TypeInstPtr::hash(void) const {
4703   return klass()->hash() + TypeOopPtr::hash() + _interfaces->hash() + (uint)flat_in_array();
4704 }
4705 
4706 bool TypeInstPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4707   return TypePtr::is_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
4708 }
4709 
4710 
4711 bool TypeInstPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const {
4712   return TypePtr::is_same_java_type_as_helper_for_instance(this, other);
4713 }
4714 
4715 bool TypeInstPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4716   return TypePtr::maybe_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
4717 }
4718 
4719 
4720 //------------------------------dump2------------------------------------------
4721 // Dump oop Type
4722 #ifndef PRODUCT
4723 void TypeInstPtr::dump2(Dict &d, uint depth, outputStream* st) const {

4737       // suppress newlines from it so -XX:+Verbose -XX:+PrintIdeal dumps one-liner for each node.
4738       char* buf = ss.as_string(/* c_heap= */false);
4739       StringUtils::replace_no_expand(buf, "\n", "");
4740       st->print_raw(buf);
4741     }
4742   case BotPTR:
4743     if (!WizardMode && !Verbose) {
4744       if( _klass_is_exact ) st->print(":exact");
4745       break;
4746     }
4747   case TopPTR:
4748   case AnyNull:
4749   case NotNull:
4750     st->print(":%s", ptr_msg[_ptr]);
4751     if( _klass_is_exact ) st->print(":exact");
4752     break;
4753   default:
4754     break;
4755   }
4756 
4757   _offset.dump2(st);




4758 
4759   st->print(" *");
4760 
4761   if (flat_in_array() && !klass()->is_inlinetype()) {
4762     st->print(" (flat in array)");
4763   }
4764 
4765   if (_instance_id == InstanceTop)
4766     st->print(",iid=top");
4767   else if (_instance_id != InstanceBot)
4768     st->print(",iid=%d",_instance_id);
4769 
4770   dump_inline_depth(st);
4771   dump_speculative(st);
4772 }
4773 #endif
4774 
4775 //------------------------------add_offset-------------------------------------
4776 const TypePtr* TypeInstPtr::add_offset(intptr_t offset) const {
4777   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), xadd_offset(offset), flat_in_array(),
4778               _instance_id, add_offset_speculative(offset), _inline_depth);
4779 }
4780 
4781 const TypeInstPtr* TypeInstPtr::with_offset(intptr_t offset) const {
4782   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), Offset(offset), flat_in_array(),
4783               _instance_id, with_offset_speculative(offset), _inline_depth);
4784 }
4785 
4786 const TypeInstPtr* TypeInstPtr::remove_speculative() const {
4787   if (_speculative == nullptr) {
4788     return this;
4789   }
4790   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4791   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, flat_in_array(),
4792               _instance_id, nullptr, _inline_depth);
4793 }
4794 
4795 const TypePtr* TypeInstPtr::with_inline_depth(int depth) const {
4796   if (!UseInlineDepthForSpeculativeTypes) {
4797     return this;
4798   }
4799   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, flat_in_array(), _instance_id, _speculative, depth);
4800 }
4801 
4802 const TypePtr* TypeInstPtr::with_instance_id(int instance_id) const {
4803   assert(is_known_instance(), "should be known");
4804   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, flat_in_array(), instance_id, _speculative, _inline_depth);
4805 }
4806 
4807 const TypeInstPtr *TypeInstPtr::cast_to_flat_in_array() const {
4808   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, true, _instance_id, _speculative, _inline_depth);
4809 }
4810 
4811 const TypeKlassPtr* TypeInstPtr::as_klass_type(bool try_for_exact) const {
4812   bool xk = klass_is_exact();
4813   ciInstanceKlass* ik = klass()->as_instance_klass();
4814   if (try_for_exact && !xk && !ik->has_subklass() && !ik->is_final()) {
4815     if (_interfaces->eq(ik)) {
4816       Compile* C = Compile::current();
4817       Dependencies* deps = C->dependencies();
4818       deps->assert_leaf_type(ik);
4819       xk = true;
4820     }
4821   }
4822   return TypeInstKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, klass(), _interfaces, Offset(0), flat_in_array());
4823 }
4824 
4825 template <class T1, class T2> bool TypePtr::is_meet_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_xk, bool other_xk) {
4826   static_assert(std::is_base_of<T2, T1>::value, "");
4827 
4828   if (!this_one->is_instance_type(other)) {
4829     return false;
4830   }
4831 
4832   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty()) {
4833     return true;
4834   }
4835 
4836   return this_one->klass()->is_subtype_of(other->klass()) &&
4837          (!this_xk || this_one->_interfaces->contains(other->_interfaces));
4838 }
4839 
4840 
4841 bool TypeInstPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const {
4842   return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk);

4847   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty()) {
4848     return true;
4849   }
4850 
4851   if (this_one->is_instance_type(other)) {
4852     return other->klass() == ciEnv::current()->Object_klass() && this_one->_interfaces->contains(other->_interfaces);
4853   }
4854 
4855   int dummy;
4856   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
4857   if (this_top_or_bottom) {
4858     return false;
4859   }
4860 
4861   const T1* other_ary = this_one->is_array_type(other);
4862   const TypePtr* other_elem = other_ary->elem()->make_ptr();
4863   const TypePtr* this_elem = this_one->elem()->make_ptr();
4864   if (other_elem != nullptr && this_elem != nullptr) {
4865     return this_one->is_reference_type(this_elem)->is_meet_subtype_of_helper(this_one->is_reference_type(other_elem), this_xk, other_xk);
4866   }

4867   if (other_elem == nullptr && this_elem == nullptr) {
4868     return this_one->klass()->is_subtype_of(other->klass());
4869   }
4870 
4871   return false;
4872 }
4873 
4874 bool TypeAryPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const {
4875   return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk);
4876 }
4877 
4878 bool TypeInstKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const {
4879   return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk);
4880 }
4881 
4882 bool TypeAryKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const {
4883   return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk);
4884 }
4885 
4886 //=============================================================================
4887 // Convenience common pre-built types.
4888 const TypeAryPtr *TypeAryPtr::RANGE;
4889 const TypeAryPtr *TypeAryPtr::OOPS;
4890 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
4891 const TypeAryPtr *TypeAryPtr::BYTES;
4892 const TypeAryPtr *TypeAryPtr::SHORTS;
4893 const TypeAryPtr *TypeAryPtr::CHARS;
4894 const TypeAryPtr *TypeAryPtr::INTS;
4895 const TypeAryPtr *TypeAryPtr::LONGS;
4896 const TypeAryPtr *TypeAryPtr::FLOATS;
4897 const TypeAryPtr *TypeAryPtr::DOUBLES;
4898 const TypeAryPtr *TypeAryPtr::INLINES;
4899 
4900 //------------------------------make-------------------------------------------
4901 const TypeAryPtr* TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, Offset offset, Offset field_offset,
4902                                    int instance_id, const TypePtr* speculative, int inline_depth) {
4903   assert(!(k == nullptr && ary->_elem->isa_int()),
4904          "integral arrays must be pre-equipped with a class");
4905   if (!xk)  xk = ary->ary_must_be_exact();
4906   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4907   if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() &&
4908       k->as_obj_array_klass()->base_element_klass()->is_interface()) {
4909     k = nullptr;
4910   }
4911   if (k != nullptr && k->is_flat_array_klass() && !ary->_flat) {
4912     k = nullptr;
4913   }
4914   return (TypeAryPtr*)(new TypeAryPtr(ptr, nullptr, ary, k, xk, offset, field_offset, instance_id, false, speculative, inline_depth))->hashcons();
4915 }
4916 
4917 //------------------------------make-------------------------------------------
4918 const TypeAryPtr* TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, Offset offset, Offset field_offset,
4919                                    int instance_id, const TypePtr* speculative, int inline_depth,
4920                                    bool is_autobox_cache) {
4921   assert(!(k == nullptr && ary->_elem->isa_int()),
4922          "integral arrays must be pre-equipped with a class");
4923   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
4924   if (!xk)  xk = (o != nullptr) || ary->ary_must_be_exact();
4925   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4926   if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() &&
4927       k->as_obj_array_klass()->base_element_klass()->is_interface()) {
4928     k = nullptr;
4929   }
4930   if (k != nullptr && k->is_flat_array_klass() && !ary->_flat) {
4931     k = nullptr;
4932   }
4933   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, field_offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
4934 }
4935 
4936 //------------------------------cast_to_ptr_type-------------------------------
4937 const TypeAryPtr* TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
4938   if( ptr == _ptr ) return this;
4939   return make(ptr, ptr == Constant ? const_oop() : nullptr, _ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4940 }
4941 
4942 
4943 //-----------------------------cast_to_exactness-------------------------------
4944 const TypeAryPtr* TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
4945   if( klass_is_exact == _klass_is_exact ) return this;
4946   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
4947   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4948 }
4949 
4950 //-----------------------------cast_to_instance_id----------------------------
4951 const TypeAryPtr* TypeAryPtr::cast_to_instance_id(int instance_id) const {
4952   if( instance_id == _instance_id ) return this;
4953   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, _field_offset, instance_id, _speculative, _inline_depth, _is_autobox_cache);
4954 }
4955 
4956 
4957 //-----------------------------max_array_length-------------------------------
4958 // A wrapper around arrayOopDesc::max_array_length(etype) with some input normalization.
4959 jint TypeAryPtr::max_array_length(BasicType etype) {
4960   if (!is_java_primitive(etype) && !::is_reference_type(etype)) {
4961     if (etype == T_NARROWOOP) {
4962       etype = T_OBJECT;
4963     } else if (etype == T_ILLEGAL) { // bottom[]
4964       etype = T_BYTE; // will produce conservatively high value
4965     } else {
4966       fatal("not an element type: %s", type2name(etype));
4967     }
4968   }
4969   return arrayOopDesc::max_array_length(etype);
4970 }
4971 
4972 //-----------------------------narrow_size_type-------------------------------
4973 // Narrow the given size type to the index range for the given array base type.

4989   if (hi > max_hi) {
4990     hi = max_hi;
4991     if (size->is_con()) {
4992       lo = hi;
4993     }
4994     chg = true;
4995   }
4996   // Negative length arrays will produce weird intermediate dead fast-path code
4997   if (lo > hi)
4998     return TypeInt::ZERO;
4999   if (!chg)
5000     return size;
5001   return TypeInt::make(lo, hi, Type::WidenMin);
5002 }
5003 
5004 //-------------------------------cast_to_size----------------------------------
5005 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
5006   assert(new_size != nullptr, "");
5007   new_size = narrow_size_type(new_size);
5008   if (new_size == size())  return this;
5009   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable(), is_flat(), is_not_flat(), is_not_null_free());
5010   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5011 }
5012 
5013 //-------------------------------cast_to_not_flat------------------------------
5014 const TypeAryPtr* TypeAryPtr::cast_to_not_flat(bool not_flat) const {
5015   if (not_flat == is_not_flat()) {
5016     return this;
5017   }
5018   assert(!not_flat || !is_flat(), "inconsistency");
5019   const TypeAry* new_ary = TypeAry::make(elem(), size(), is_stable(), is_flat(), not_flat, is_not_null_free());
5020   const TypeAryPtr* res = make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5021   // We keep the speculative part if it contains information about flat-/nullability.
5022   // Make sure it's removed if it's not better than the non-speculative type anymore.
5023   if (res->speculative() == res->remove_speculative()) {
5024     return res->remove_speculative();
5025   }
5026   return res;
5027 }
5028 
5029 //-------------------------------cast_to_not_null_free-------------------------
5030 const TypeAryPtr* TypeAryPtr::cast_to_not_null_free(bool not_null_free) const {
5031   if (not_null_free == is_not_null_free()) {
5032     return this;
5033   }
5034   assert(!not_null_free || !is_flat(), "inconsistency");
5035   const TypeAry* new_ary = TypeAry::make(elem(), size(), is_stable(), is_flat(), /* not_flat= */ not_null_free ? true : is_not_flat(), not_null_free);
5036   const TypeAryPtr* res = make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset,
5037                                _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5038   // We keep the speculative part if it contains information about flat-/nullability.
5039   // Make sure it's removed if it's not better than the non-speculative type anymore.
5040   if (res->speculative() == res->remove_speculative()) {
5041     return res->remove_speculative();
5042   }
5043   return res;
5044 }
5045 
5046 //---------------------------------update_properties---------------------------
5047 const TypeAryPtr* TypeAryPtr::update_properties(const TypeAryPtr* from) const {
5048   if ((from->is_flat()          && is_not_flat()) ||
5049       (from->is_not_flat()      && is_flat()) ||
5050       (from->is_null_free()     && is_not_null_free()) ||
5051       (from->is_not_null_free() && is_null_free())) {
5052     return nullptr; // Inconsistent properties
5053   } else if (from->is_not_null_free()) {
5054     return cast_to_not_null_free(); // Implies not flat
5055   } else if (from->is_not_flat()) {
5056     return cast_to_not_flat();
5057   }
5058   return this;
5059 }
5060 
5061 jint TypeAryPtr::flat_layout_helper() const {
5062   return klass()->as_flat_array_klass()->layout_helper();
5063 }
5064 
5065 int TypeAryPtr::flat_elem_size() const {
5066   return klass()->as_flat_array_klass()->element_byte_size();
5067 }
5068 
5069 int TypeAryPtr::flat_log_elem_size() const {
5070   return klass()->as_flat_array_klass()->log2_element_size();
5071 }
5072 
5073 //------------------------------cast_to_stable---------------------------------
5074 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
5075   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
5076     return this;
5077 
5078   const Type* elem = this->elem();
5079   const TypePtr* elem_ptr = elem->make_ptr();
5080 
5081   if (stable_dimension > 1 && elem_ptr != nullptr && elem_ptr->isa_aryptr()) {
5082     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
5083     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
5084   }
5085 
5086   const TypeAry* new_ary = TypeAry::make(elem, size(), stable, is_flat(), is_not_flat(), is_not_null_free());
5087 
5088   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5089 }
5090 
5091 //-----------------------------stable_dimension--------------------------------
5092 int TypeAryPtr::stable_dimension() const {
5093   if (!is_stable())  return 0;
5094   int dim = 1;
5095   const TypePtr* elem_ptr = elem()->make_ptr();
5096   if (elem_ptr != nullptr && elem_ptr->isa_aryptr())
5097     dim += elem_ptr->is_aryptr()->stable_dimension();
5098   return dim;
5099 }
5100 
5101 //----------------------cast_to_autobox_cache-----------------------------------
5102 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache() const {
5103   if (is_autobox_cache())  return this;
5104   const TypeOopPtr* etype = elem()->make_oopptr();
5105   if (etype == nullptr)  return this;
5106   // The pointers in the autobox arrays are always non-null.
5107   etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
5108   const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable(), is_flat(), is_not_flat(), is_not_null_free());
5109   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, /*is_autobox_cache=*/true);
5110 }
5111 
5112 //------------------------------eq---------------------------------------------
5113 // Structural equality check for Type representations
5114 bool TypeAryPtr::eq( const Type *t ) const {
5115   const TypeAryPtr *p = t->is_aryptr();
5116   return
5117     _ary == p->_ary &&  // Check array
5118     TypeOopPtr::eq(p) &&// Check sub-parts
5119     _field_offset == p->_field_offset;
5120 }
5121 
5122 //------------------------------hash-------------------------------------------
5123 // Type-specific hashing function.
5124 uint TypeAryPtr::hash(void) const {
5125   return (uint)(uintptr_t)_ary + TypeOopPtr::hash() + _field_offset.get();
5126 }
5127 
5128 bool TypeAryPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
5129   return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
5130 }
5131 
5132 bool TypeAryPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const {
5133   return TypePtr::is_same_java_type_as_helper_for_array(this, other);
5134 }
5135 
5136 bool TypeAryPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
5137   return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
5138 }
5139 //------------------------------meet-------------------------------------------
5140 // Compute the MEET of two types.  It returns a new Type object.
5141 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
5142   // Perform a fast test for common case; meeting the same types together.
5143   if( this == t ) return this;  // Meeting same type-rep?
5144   // Current "this->_base" is Pointer
5145   switch (t->base()) {          // switch on original type

5149   case Long:
5150   case FloatTop:
5151   case FloatCon:
5152   case FloatBot:
5153   case DoubleTop:
5154   case DoubleCon:
5155   case DoubleBot:
5156   case NarrowOop:
5157   case NarrowKlass:
5158   case Bottom:                  // Ye Olde Default
5159     return Type::BOTTOM;
5160   case Top:
5161     return this;
5162 
5163   default:                      // All else is a mistake
5164     typerr(t);
5165 
5166   case OopPtr: {                // Meeting to OopPtrs
5167     // Found a OopPtr type vs self-AryPtr type
5168     const TypeOopPtr *tp = t->is_oopptr();
5169     Offset offset = meet_offset(tp->offset());
5170     PTR ptr = meet_ptr(tp->ptr());
5171     int depth = meet_inline_depth(tp->inline_depth());
5172     const TypePtr* speculative = xmeet_speculative(tp);
5173     switch (tp->ptr()) {
5174     case TopPTR:
5175     case AnyNull: {
5176       int instance_id = meet_instance_id(InstanceTop);
5177       return make(ptr, (ptr == Constant ? const_oop() : nullptr),
5178                   _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
5179     }
5180     case BotPTR:
5181     case NotNull: {
5182       int instance_id = meet_instance_id(tp->instance_id());
5183       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
5184     }
5185     default: ShouldNotReachHere();
5186     }
5187   }
5188 
5189   case AnyPtr: {                // Meeting two AnyPtrs
5190     // Found an AnyPtr type vs self-AryPtr type
5191     const TypePtr *tp = t->is_ptr();
5192     Offset offset = meet_offset(tp->offset());
5193     PTR ptr = meet_ptr(tp->ptr());
5194     const TypePtr* speculative = xmeet_speculative(tp);
5195     int depth = meet_inline_depth(tp->inline_depth());
5196     switch (tp->ptr()) {
5197     case TopPTR:
5198       return this;
5199     case BotPTR:
5200     case NotNull:
5201       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
5202     case Null:
5203       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
5204       // else fall through to AnyNull
5205     case AnyNull: {
5206       int instance_id = meet_instance_id(InstanceTop);
5207       return make(ptr, (ptr == Constant ? const_oop() : nullptr),
5208                   _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
5209     }
5210     default: ShouldNotReachHere();
5211     }
5212   }
5213 
5214   case MetadataPtr:
5215   case KlassPtr:
5216   case InstKlassPtr:
5217   case AryKlassPtr:
5218   case RawPtr: return TypePtr::BOTTOM;
5219 
5220   case AryPtr: {                // Meeting 2 references?
5221     const TypeAryPtr *tap = t->is_aryptr();
5222     Offset off = meet_offset(tap->offset());
5223     Offset field_off = meet_field_offset(tap->field_offset());
5224     const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
5225     PTR ptr = meet_ptr(tap->ptr());
5226     int instance_id = meet_instance_id(tap->instance_id());
5227     const TypePtr* speculative = xmeet_speculative(tap);
5228     int depth = meet_inline_depth(tap->inline_depth());
5229 
5230     ciKlass* res_klass = nullptr;
5231     bool res_xk = false;
5232     bool res_flat = false;
5233     bool res_not_flat = false;
5234     bool res_not_null_free = false;
5235     const Type* elem = tary->_elem;
5236     if (meet_aryptr(ptr, elem, this, tap, res_klass, res_xk, res_flat, res_not_flat, res_not_null_free) == NOT_SUBTYPE) {
5237       instance_id = InstanceBot;
5238     } else if (this->is_flat() != tap->is_flat()) {
5239       // Meeting flat inline type array with non-flat array. Adjust (field) offset accordingly.
5240       if (tary->_flat) {
5241         // Result is in a flat representation
5242         off = Offset(is_flat() ? offset() : tap->offset());
5243         field_off = is_flat() ? field_offset() : tap->field_offset();
5244       } else if (below_centerline(ptr)) {
5245         // Result is in a non-flat representation
5246         off = Offset(flat_offset()).meet(Offset(tap->flat_offset()));
5247         field_off = (field_off == Offset::top) ? Offset::top : Offset::bottom;
5248       } else if (flat_offset() == tap->flat_offset()) {
5249         off = Offset(!is_flat() ? offset() : tap->offset());
5250         field_off = !is_flat() ? field_offset() : tap->field_offset();
5251       }
5252     }
5253 
5254     ciObject* o = nullptr;             // Assume not constant when done
5255     ciObject* this_oop = const_oop();
5256     ciObject* tap_oop = tap->const_oop();
5257     if (ptr == Constant) {
5258       if (this_oop != nullptr && tap_oop != nullptr &&
5259           this_oop->equals(tap_oop)) {
5260         o = tap_oop;
5261       } else if (above_centerline(_ptr)) {
5262         o = tap_oop;
5263       } else if (above_centerline(tap->_ptr)) {
5264         o = this_oop;
5265       } else {
5266         ptr = NotNull;
5267       }
5268     }
5269     return make(ptr, o, TypeAry::make(elem, tary->_size, tary->_stable, res_flat, res_not_flat, res_not_null_free), res_klass, res_xk, off, field_off, instance_id, speculative, depth);
5270   }
5271 
5272   // All arrays inherit from Object class
5273   case InstPtr: {
5274     const TypeInstPtr *tp = t->is_instptr();
5275     Offset offset = meet_offset(tp->offset());
5276     PTR ptr = meet_ptr(tp->ptr());
5277     int instance_id = meet_instance_id(tp->instance_id());
5278     const TypePtr* speculative = xmeet_speculative(tp);
5279     int depth = meet_inline_depth(tp->inline_depth());
5280     const TypeInterfaces* interfaces = meet_interfaces(tp);
5281     const TypeInterfaces* tp_interfaces = tp->_interfaces;
5282     const TypeInterfaces* this_interfaces = _interfaces;
5283 
5284     switch (ptr) {
5285     case TopPTR:
5286     case AnyNull:                // Fall 'down' to dual of object klass
5287       // For instances when a subclass meets a superclass we fall
5288       // below the centerline when the superclass is exact. We need to
5289       // do the same here.
5290       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) && !tp->klass_is_exact() && !tp->flat_in_array()) {
5291         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
5292       } else {
5293         // cannot subclass, so the meet has to fall badly below the centerline
5294         ptr = NotNull;
5295         instance_id = InstanceBot;
5296         interfaces = this_interfaces->intersection_with(tp_interfaces);
5297         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr, offset, false, instance_id, speculative, depth);
5298       }
5299     case Constant:
5300     case NotNull:
5301     case BotPTR:                // Fall down to object klass
5302       // LCA is object_klass, but if we subclass from the top we can do better
5303       if (above_centerline(tp->ptr())) {
5304         // If 'tp'  is above the centerline and it is Object class
5305         // then we can subclass in the Java class hierarchy.
5306         // For instances when a subclass meets a superclass we fall
5307         // below the centerline when the superclass is exact. We need
5308         // to do the same here.
5309         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) && !tp->klass_is_exact() && !tp->flat_in_array()) {
5310           // that is, my array type is a subtype of 'tp' klass
5311           return make(ptr, (ptr == Constant ? const_oop() : nullptr),
5312                       _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
5313         }
5314       }
5315       // The other case cannot happen, since t cannot be a subtype of an array.
5316       // The meet falls down to Object class below centerline.
5317       if (ptr == Constant) {
5318          ptr = NotNull;
5319       }
5320       if (instance_id > 0) {
5321         instance_id = InstanceBot;
5322       }
5323       interfaces = this_interfaces->intersection_with(tp_interfaces);
5324       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr, offset, false, instance_id, speculative, depth);
5325     default: typerr(t);
5326     }
5327   }
5328   }
5329   return this;                  // Lint noise
5330 }
5331 
5332 
5333 template<class T> TypePtr::MeetResult TypePtr::meet_aryptr(PTR& ptr, const Type*& elem, const T* this_ary, const T* other_ary,
5334                                                            ciKlass*& res_klass, bool& res_xk, bool &res_flat, bool& res_not_flat, bool& res_not_null_free) {
5335   int dummy;
5336   bool this_top_or_bottom = (this_ary->base_element_type(dummy) == Type::TOP || this_ary->base_element_type(dummy) == Type::BOTTOM);
5337   bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
5338   ciKlass* this_klass = this_ary->klass();
5339   ciKlass* other_klass = other_ary->klass();
5340   bool this_xk = this_ary->klass_is_exact();
5341   bool other_xk = other_ary->klass_is_exact();
5342   PTR this_ptr = this_ary->ptr();
5343   PTR other_ptr = other_ary->ptr();
5344   bool this_flat = this_ary->is_flat();
5345   bool this_not_flat = this_ary->is_not_flat();
5346   bool other_flat = other_ary->is_flat();
5347   bool other_not_flat = other_ary->is_not_flat();
5348   bool this_not_null_free = this_ary->is_not_null_free();
5349   bool other_not_null_free = other_ary->is_not_null_free();
5350   res_klass = nullptr;
5351   MeetResult result = SUBTYPE;
5352   res_flat = this_flat && other_flat;
5353   res_not_flat = this_not_flat && other_not_flat;
5354   res_not_null_free = this_not_null_free && other_not_null_free;
5355 
5356   if (elem->isa_int()) {
5357     // Integral array element types have irrelevant lattice relations.
5358     // It is the klass that determines array layout, not the element type.
5359       if (this_top_or_bottom) {
5360         res_klass = other_klass;
5361       } else if (other_top_or_bottom || other_klass == this_klass) {
5362       res_klass = this_klass;
5363     } else {
5364       // Something like byte[int+] meets char[int+].
5365       // This must fall to bottom, not (int[-128..65535])[int+].
5366       // instance_id = InstanceBot;
5367       elem = Type::BOTTOM;
5368       result = NOT_SUBTYPE;
5369       if (above_centerline(ptr) || ptr == Constant) {
5370         ptr = NotNull;
5371         res_xk = false;
5372         return NOT_SUBTYPE;
5373       }
5374     }
5375   } else {// Non integral arrays.
5376     // Must fall to bottom if exact klasses in upper lattice
5377     // are not equal or super klass is exact.
5378     if ((above_centerline(ptr) || ptr == Constant) && !this_ary->is_same_java_type_as(other_ary) &&
5379         // meet with top[] and bottom[] are processed further down:
5380         !this_top_or_bottom && !other_top_or_bottom &&
5381         // both are exact and not equal:

5383          // 'tap'  is exact and super or unrelated:
5384          (other_xk && !other_ary->is_meet_subtype_of(this_ary)) ||
5385          // 'this' is exact and super or unrelated:
5386          (this_xk && !this_ary->is_meet_subtype_of(other_ary)))) {
5387       if (above_centerline(ptr) || (elem->make_ptr() && above_centerline(elem->make_ptr()->_ptr))) {
5388         elem = Type::BOTTOM;
5389       }
5390       ptr = NotNull;
5391       res_xk = false;
5392       return NOT_SUBTYPE;
5393     }
5394   }
5395 
5396   res_xk = false;
5397   switch (other_ptr) {
5398     case AnyNull:
5399     case TopPTR:
5400       // Compute new klass on demand, do not use tap->_klass
5401       if (below_centerline(this_ptr)) {
5402         res_xk = this_xk;
5403         if (this_ary->is_flat()) {
5404           elem = this_ary->elem();
5405         }
5406       } else {
5407         res_xk = (other_xk || this_xk);
5408       }
5409       break;
5410     case Constant: {
5411       if (this_ptr == Constant) {
5412         res_xk = true;
5413       } else if (above_centerline(this_ptr)) {
5414         res_xk = true;
5415       } else {
5416         // Only precise for identical arrays
5417         res_xk = this_xk && (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom));
5418         // TODO 8325106 Fix comment
5419         // Even if MyValue is exact, [LMyValue is not exact due to [QMyValue <: [LMyValue.
5420         if (res_xk && !res_not_null_free) {
5421           res_xk = false;
5422         }
5423       }
5424       break;
5425     }
5426     case NotNull:
5427     case BotPTR:
5428       // Compute new klass on demand, do not use tap->_klass
5429       if (above_centerline(this_ptr)) {
5430         res_xk = other_xk;
5431         if (other_ary->is_flat()) {
5432           elem = other_ary->elem();
5433         }
5434       } else {
5435         res_xk = (other_xk && this_xk) &&
5436                  (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom)); // Only precise for identical arrays
5437         // TODO 8325106 Fix comment
5438         // Even if MyValue is exact, [LMyValue is not exact due to [QMyValue <: [LMyValue.
5439         if (res_xk && !res_not_null_free) {
5440           res_xk = false;
5441         }
5442       }
5443       break;
5444     default:  {
5445       ShouldNotReachHere();
5446       return result;
5447     }
5448   }
5449   return result;
5450 }
5451 
5452 
5453 //------------------------------xdual------------------------------------------
5454 // Dual: compute field-by-field dual
5455 const Type *TypeAryPtr::xdual() const {
5456   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(), _klass, _klass_is_exact, dual_offset(), dual_field_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
5457 }
5458 
5459 Type::Offset TypeAryPtr::meet_field_offset(const Type::Offset offset) const {
5460   return _field_offset.meet(offset);
5461 }
5462 
5463 //------------------------------dual_offset------------------------------------
5464 Type::Offset TypeAryPtr::dual_field_offset() const {
5465   return _field_offset.dual();
5466 }
5467 
5468 //------------------------------dump2------------------------------------------
5469 #ifndef PRODUCT
5470 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5471   _ary->dump2(d,depth,st);
5472   _interfaces->dump(st);
5473 
5474   switch( _ptr ) {
5475   case Constant:
5476     const_oop()->print(st);
5477     break;
5478   case BotPTR:
5479     if (!WizardMode && !Verbose) {
5480       if( _klass_is_exact ) st->print(":exact");
5481       break;
5482     }
5483   case TopPTR:
5484   case AnyNull:
5485   case NotNull:
5486     st->print(":%s", ptr_msg[_ptr]);
5487     if( _klass_is_exact ) st->print(":exact");
5488     break;
5489   default:
5490     break;
5491   }
5492 
5493   if (is_flat()) {
5494     st->print(":flat");
5495     st->print("(");
5496     _field_offset.dump2(st);
5497     st->print(")");
5498   }
5499   if (is_null_free()) {
5500     st->print(":null_free");
5501   }
5502   if (offset() != 0) {
5503     int header_size = objArrayOopDesc::header_size() * wordSize;
5504     if( _offset == Offset::top )       st->print("+undefined");
5505     else if( _offset == Offset::bottom )  st->print("+any");
5506     else if( offset() < header_size ) st->print("+%d", offset());
5507     else {
5508       BasicType basic_elem_type = elem()->basic_type();
5509       if (basic_elem_type == T_ILLEGAL) {
5510         st->print("+any");
5511       } else {
5512         int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5513         int elem_size = type2aelembytes(basic_elem_type);
5514         st->print("[%d]", (offset() - array_base)/elem_size);
5515       }
5516     }
5517   }
5518   st->print(" *");
5519   if (_instance_id == InstanceTop)
5520     st->print(",iid=top");
5521   else if (_instance_id != InstanceBot)
5522     st->print(",iid=%d",_instance_id);
5523 
5524   dump_inline_depth(st);
5525   dump_speculative(st);
5526 }
5527 #endif
5528 
5529 bool TypeAryPtr::empty(void) const {
5530   if (_ary->empty())       return true;
5531   // FIXME: Does this belong here? Or in the meet code itself?
5532   if (is_flat() && is_not_flat()) {
5533     return true;
5534   }
5535   return TypeOopPtr::empty();
5536 }
5537 
5538 //------------------------------add_offset-------------------------------------
5539 const TypePtr* TypeAryPtr::add_offset(intptr_t offset) const {
5540   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _field_offset, _instance_id, add_offset_speculative(offset), _inline_depth, _is_autobox_cache);
5541 }
5542 
5543 const TypeAryPtr* TypeAryPtr::with_offset(intptr_t offset) const {
5544   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, Offset(offset), _field_offset, _instance_id, with_offset_speculative(offset), _inline_depth, _is_autobox_cache);
5545 }
5546 
5547 const TypeAryPtr* TypeAryPtr::with_ary(const TypeAry* ary) const {
5548   return make(_ptr, _const_oop, ary, _klass, _klass_is_exact, _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5549 }
5550 
5551 const TypeAryPtr* TypeAryPtr::remove_speculative() const {
5552   if (_speculative == nullptr) {
5553     return this;
5554   }
5555   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
5556   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, _instance_id, nullptr, _inline_depth, _is_autobox_cache);
5557 }
5558 
5559 const Type* TypeAryPtr::cleanup_speculative() const {
5560   if (speculative() == nullptr) {
5561     return this;
5562   }
5563   // Keep speculative part if it contains information about flat-/nullability
5564   const TypeAryPtr* spec_aryptr = speculative()->isa_aryptr();
5565   if (spec_aryptr != nullptr && !above_centerline(spec_aryptr->ptr()) &&
5566       (spec_aryptr->is_not_flat() || spec_aryptr->is_not_null_free())) {
5567     return this;
5568   }
5569   return TypeOopPtr::cleanup_speculative();
5570 }
5571 
5572 const TypePtr* TypeAryPtr::with_inline_depth(int depth) const {
5573   if (!UseInlineDepthForSpeculativeTypes) {
5574     return this;
5575   }
5576   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, _instance_id, _speculative, depth, _is_autobox_cache);
5577 }
5578 
5579 const TypeAryPtr* TypeAryPtr::with_field_offset(int offset) const {
5580   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, Offset(offset), _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5581 }
5582 
5583 const TypePtr* TypeAryPtr::add_field_offset_and_offset(intptr_t offset) const {
5584   int adj = 0;
5585   if (is_flat() && offset != Type::OffsetBot && offset != Type::OffsetTop) {
5586     if (_offset.get() != OffsetBot && _offset.get() != OffsetTop) {
5587       adj = _offset.get();
5588       offset += _offset.get();
5589     }
5590     uint header = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
5591     if (_field_offset.get() != OffsetBot && _field_offset.get() != OffsetTop) {
5592       offset += _field_offset.get();
5593       if (_offset.get() == OffsetBot || _offset.get() == OffsetTop) {
5594         offset += header;
5595       }
5596     }
5597     if (elem()->make_oopptr()->is_inlinetypeptr() && (offset >= (intptr_t)header || offset < 0)) {
5598       // Try to get the field of the inline type array element we are pointing to
5599       ciInlineKlass* vk = elem()->inline_klass();
5600       int shift = flat_log_elem_size();
5601       int mask = (1 << shift) - 1;
5602       intptr_t field_offset = ((offset - header) & mask);
5603       ciField* field = vk->get_field_by_offset(field_offset + vk->first_field_offset(), false);
5604       if (field != nullptr) {
5605         return with_field_offset(field_offset)->add_offset(offset - field_offset - adj);
5606       }
5607     }
5608   }
5609   return add_offset(offset - adj);
5610 }
5611 
5612 // Return offset incremented by field_offset for flat inline type arrays
5613 int TypeAryPtr::flat_offset() const {
5614   int offset = _offset.get();
5615   if (offset != Type::OffsetBot && offset != Type::OffsetTop &&
5616       _field_offset != Offset::bottom && _field_offset != Offset::top) {
5617     offset += _field_offset.get();
5618   }
5619   return offset;
5620 }
5621 
5622 const TypePtr* TypeAryPtr::with_instance_id(int instance_id) const {
5623   assert(is_known_instance(), "should be known");
5624   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, instance_id, _speculative, _inline_depth);
5625 }
5626 
5627 //=============================================================================
5628 
5629 
5630 //------------------------------hash-------------------------------------------
5631 // Type-specific hashing function.
5632 uint TypeNarrowPtr::hash(void) const {
5633   return _ptrtype->hash() + 7;
5634 }
5635 
5636 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
5637   return _ptrtype->singleton();
5638 }
5639 
5640 bool TypeNarrowPtr::empty(void) const {
5641   return _ptrtype->empty();
5642 }
5643 
5644 intptr_t TypeNarrowPtr::get_con() const {
5645   return _ptrtype->get_con();
5646 }
5647 
5648 bool TypeNarrowPtr::eq( const Type *t ) const {
5649   const TypeNarrowPtr* tc = isa_same_narrowptr(t);

5700 
5701   case Int:                     // Mixing ints & oops happens when javac
5702   case Long:                    // reuses local variables
5703   case FloatTop:
5704   case FloatCon:
5705   case FloatBot:
5706   case DoubleTop:
5707   case DoubleCon:
5708   case DoubleBot:
5709   case AnyPtr:
5710   case RawPtr:
5711   case OopPtr:
5712   case InstPtr:
5713   case AryPtr:
5714   case MetadataPtr:
5715   case KlassPtr:
5716   case InstKlassPtr:
5717   case AryKlassPtr:
5718   case NarrowOop:
5719   case NarrowKlass:

5720   case Bottom:                  // Ye Olde Default
5721     return Type::BOTTOM;
5722   case Top:
5723     return this;
5724 
5725   default:                      // All else is a mistake
5726     typerr(t);
5727 
5728   } // End of switch
5729 
5730   return this;
5731 }
5732 
5733 #ifndef PRODUCT
5734 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5735   _ptrtype->dump2(d, depth, st);
5736 }
5737 #endif
5738 
5739 const TypeNarrowOop *TypeNarrowOop::BOTTOM;

5783     return (one == two) && TypePtr::eq(t);
5784   } else {
5785     return one->equals(two) && TypePtr::eq(t);
5786   }
5787 }
5788 
5789 //------------------------------hash-------------------------------------------
5790 // Type-specific hashing function.
5791 uint TypeMetadataPtr::hash(void) const {
5792   return
5793     (metadata() ? metadata()->hash() : 0) +
5794     TypePtr::hash();
5795 }
5796 
5797 //------------------------------singleton--------------------------------------
5798 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5799 // constants
5800 bool TypeMetadataPtr::singleton(void) const {
5801   // detune optimizer to not generate constant metadata + constant offset as a constant!
5802   // TopPTR, Null, AnyNull, Constant are all singletons
5803   return (offset() == 0) && !below_centerline(_ptr);
5804 }
5805 
5806 //------------------------------add_offset-------------------------------------
5807 const TypePtr* TypeMetadataPtr::add_offset( intptr_t offset ) const {
5808   return make( _ptr, _metadata, xadd_offset(offset));
5809 }
5810 
5811 //-----------------------------filter------------------------------------------
5812 // Do not allow interface-vs.-noninterface joins to collapse to top.
5813 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
5814   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
5815   if (ft == nullptr || ft->empty())
5816     return Type::TOP;           // Canonical empty value
5817   return ft;
5818 }
5819 
5820  //------------------------------get_con----------------------------------------
5821 intptr_t TypeMetadataPtr::get_con() const {
5822   assert( _ptr == Null || _ptr == Constant, "" );
5823   assert(offset() >= 0, "");
5824 
5825   if (offset() != 0) {
5826     // After being ported to the compiler interface, the compiler no longer
5827     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5828     // to a handle at compile time.  This handle is embedded in the generated
5829     // code and dereferenced at the time the nmethod is made.  Until that time,
5830     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5831     // have access to the addresses!).  This does not seem to currently happen,
5832     // but this assertion here is to help prevent its occurrence.
5833     tty->print_cr("Found oop constant with non-zero offset");
5834     ShouldNotReachHere();
5835   }
5836 
5837   return (intptr_t)metadata()->constant_encoding();
5838 }
5839 
5840 //------------------------------cast_to_ptr_type-------------------------------
5841 const TypeMetadataPtr* TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
5842   if( ptr == _ptr ) return this;
5843   return make(ptr, metadata(), _offset);
5844 }
5845 

5856   case Long:                    // reuses local variables
5857   case FloatTop:
5858   case FloatCon:
5859   case FloatBot:
5860   case DoubleTop:
5861   case DoubleCon:
5862   case DoubleBot:
5863   case NarrowOop:
5864   case NarrowKlass:
5865   case Bottom:                  // Ye Olde Default
5866     return Type::BOTTOM;
5867   case Top:
5868     return this;
5869 
5870   default:                      // All else is a mistake
5871     typerr(t);
5872 
5873   case AnyPtr: {
5874     // Found an AnyPtr type vs self-OopPtr type
5875     const TypePtr *tp = t->is_ptr();
5876     Offset offset = meet_offset(tp->offset());
5877     PTR ptr = meet_ptr(tp->ptr());
5878     switch (tp->ptr()) {
5879     case Null:
5880       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5881       // else fall through:
5882     case TopPTR:
5883     case AnyNull: {
5884       return make(ptr, _metadata, offset);
5885     }
5886     case BotPTR:
5887     case NotNull:
5888       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5889     default: typerr(t);
5890     }
5891   }
5892 
5893   case RawPtr:
5894   case KlassPtr:
5895   case InstKlassPtr:
5896   case AryKlassPtr:
5897   case OopPtr:
5898   case InstPtr:
5899   case AryPtr:
5900     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
5901 
5902   case MetadataPtr: {
5903     const TypeMetadataPtr *tp = t->is_metadataptr();
5904     Offset offset = meet_offset(tp->offset());
5905     PTR tptr = tp->ptr();
5906     PTR ptr = meet_ptr(tptr);
5907     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
5908     if (tptr == TopPTR || _ptr == TopPTR ||
5909         metadata()->equals(tp->metadata())) {
5910       return make(ptr, md, offset);
5911     }
5912     // metadata is different
5913     if( ptr == Constant ) {  // Cannot be equal constants, so...
5914       if( tptr == Constant && _ptr != Constant)  return t;
5915       if( _ptr == Constant && tptr != Constant)  return this;
5916       ptr = NotNull;            // Fall down in lattice
5917     }
5918     return make(ptr, nullptr, offset);
5919     break;
5920   }
5921   } // End of switch
5922   return this;                  // Return the double constant
5923 }
5924 
5925 
5926 //------------------------------xdual------------------------------------------
5927 // Dual of a pure metadata pointer.
5928 const Type *TypeMetadataPtr::xdual() const {
5929   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
5930 }
5931 
5932 //------------------------------dump2------------------------------------------
5933 #ifndef PRODUCT
5934 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5935   st->print("metadataptr:%s", ptr_msg[_ptr]);
5936   if( metadata() ) st->print(INTPTR_FORMAT, p2i(metadata()));
5937   switch (offset()) {
5938   case OffsetTop: st->print("+top"); break;
5939   case OffsetBot: st->print("+any"); break;
5940   case         0: break;
5941   default:        st->print("+%d",offset()); break;
5942   }
5943 }
5944 #endif
5945 
5946 
5947 //=============================================================================
5948 // Convenience common pre-built type.
5949 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
5950 
5951 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, Offset offset):
5952   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
5953 }
5954 
5955 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
5956   return make(Constant, m, Offset(0));
5957 }
5958 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
5959   return make(Constant, m, Offset(0));
5960 }
5961 
5962 //------------------------------make-------------------------------------------
5963 // Create a meta data constant
5964 const TypeMetadataPtr* TypeMetadataPtr::make(PTR ptr, ciMetadata* m, Offset offset) {
5965   assert(m == nullptr || !m->is_klass(), "wrong type");
5966   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
5967 }
5968 
5969 
5970 const TypeKlassPtr* TypeAryPtr::as_klass_type(bool try_for_exact) const {
5971   const Type* elem = _ary->_elem;
5972   bool xk = klass_is_exact();
5973   if (elem->make_oopptr() != nullptr) {
5974     elem = elem->make_oopptr()->as_klass_type(try_for_exact);
5975     if (elem->is_klassptr()->klass_is_exact() &&
5976         // TODO 8325106 Fix comment
5977         // Even if MyValue is exact, [LMyValue is not exact due to [QMyValue <: [LMyValue.
5978         (is_null_free() || is_flat() || !_ary->_elem->make_oopptr()->is_inlinetypeptr())) {
5979       xk = true;
5980     }
5981   }
5982   return TypeAryKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, elem, klass(), Offset(0), is_not_flat(), is_not_null_free(), is_null_free());
5983 }
5984 
5985 const TypeKlassPtr* TypeKlassPtr::make(ciKlass* klass, InterfaceHandling interface_handling) {
5986   if (klass->is_instance_klass()) {
5987     return TypeInstKlassPtr::make(klass, interface_handling);
5988   }
5989   return TypeAryKlassPtr::make(klass, interface_handling);
5990 }
5991 
5992 const TypeKlassPtr* TypeKlassPtr::make(PTR ptr, ciKlass* klass, Offset offset, InterfaceHandling interface_handling) {
5993   if (klass->is_instance_klass()) {
5994     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
5995     return TypeInstKlassPtr::make(ptr, klass, interfaces, offset);
5996   }
5997   return TypeAryKlassPtr::make(ptr, klass, offset, interface_handling);
5998 }
5999 
6000 TypeKlassPtr::TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, Offset offset)


6001   : TypePtr(t, ptr, offset), _klass(klass), _interfaces(interfaces) {
6002   assert(klass == nullptr || !klass->is_loaded() || (klass->is_instance_klass() && !klass->is_interface()) ||
6003          klass->is_type_array_klass() || klass->is_flat_array_klass() || !klass->as_obj_array_klass()->base_element_klass()->is_interface(), "no interface here");
6004 }
6005 
6006 // Is there a single ciKlass* that can represent that type?
6007 ciKlass* TypeKlassPtr::exact_klass_helper() const {
6008   assert(_klass->is_instance_klass() && !_klass->is_interface(), "No interface");
6009   if (_interfaces->empty()) {
6010     return _klass;
6011   }
6012   if (_klass != ciEnv::current()->Object_klass()) {
6013     if (_interfaces->eq(_klass->as_instance_klass())) {
6014       return _klass;
6015     }
6016     return nullptr;
6017   }
6018   return _interfaces->exact_klass();
6019 }
6020 
6021 //------------------------------eq---------------------------------------------
6022 // Structural equality check for Type representations
6023 bool TypeKlassPtr::eq(const Type *t) const {
6024   const TypeKlassPtr *p = t->is_klassptr();
6025   return
6026     _interfaces->eq(p->_interfaces) &&
6027     TypePtr::eq(p);
6028 }
6029 
6030 //------------------------------hash-------------------------------------------
6031 // Type-specific hashing function.
6032 uint TypeKlassPtr::hash(void) const {
6033   return TypePtr::hash() + _interfaces->hash();
6034 }
6035 
6036 //------------------------------singleton--------------------------------------
6037 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
6038 // constants
6039 bool TypeKlassPtr::singleton(void) const {
6040   // detune optimizer to not generate constant klass + constant offset as a constant!
6041   // TopPTR, Null, AnyNull, Constant are all singletons
6042   return (offset() == 0) && !below_centerline(_ptr);
6043 }
6044 
6045 // Do not allow interface-vs.-noninterface joins to collapse to top.
6046 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
6047   // logic here mirrors the one from TypeOopPtr::filter. See comments
6048   // there.
6049   const Type* ft = join_helper(kills, include_speculative);
6050   const TypeKlassPtr* ftkp = ft->isa_instklassptr();
6051   const TypeKlassPtr* ktkp = kills->isa_instklassptr();
6052 
6053   if (ft->empty()) {
6054     return Type::TOP;           // Canonical empty value
6055   }
6056 
6057   return ft;
6058 }
6059 
6060 const TypeInterfaces* TypeKlassPtr::meet_interfaces(const TypeKlassPtr* other) const {
6061   if (above_centerline(_ptr) && above_centerline(other->_ptr)) {
6062     return _interfaces->union_with(other->_interfaces);
6063   } else if (above_centerline(_ptr) && !above_centerline(other->_ptr)) {
6064     return other->_interfaces;
6065   } else if (above_centerline(other->_ptr) && !above_centerline(_ptr)) {
6066     return _interfaces;
6067   }
6068   return _interfaces->intersection_with(other->_interfaces);
6069 }
6070 
6071 //------------------------------get_con----------------------------------------
6072 intptr_t TypeKlassPtr::get_con() const {
6073   assert( _ptr == Null || _ptr == Constant, "" );
6074   assert( offset() >= 0, "" );
6075 
6076   if (offset() != 0) {
6077     // After being ported to the compiler interface, the compiler no longer
6078     // directly manipulates the addresses of oops.  Rather, it only has a pointer
6079     // to a handle at compile time.  This handle is embedded in the generated
6080     // code and dereferenced at the time the nmethod is made.  Until that time,
6081     // it is not reasonable to do arithmetic with the addresses of oops (we don't
6082     // have access to the addresses!).  This does not seem to currently happen,
6083     // but this assertion here is to help prevent its occurrence.
6084     tty->print_cr("Found oop constant with non-zero offset");
6085     ShouldNotReachHere();
6086   }
6087 
6088   ciKlass* k = exact_klass();
6089 
6090   return (intptr_t)k->constant_encoding();
6091 }
6092 
6093 //------------------------------dump2------------------------------------------
6094 // Dump Klass Type
6095 #ifndef PRODUCT
6096 void TypeKlassPtr::dump2(Dict & d, uint depth, outputStream *st) const {

6100   case NotNull:
6101     {
6102       const char *name = klass()->name()->as_utf8();
6103       if (name) {
6104         st->print("%s: " INTPTR_FORMAT, name, p2i(klass()));
6105       } else {
6106         ShouldNotReachHere();
6107       }
6108       _interfaces->dump(st);
6109     }
6110   case BotPTR:
6111     if (!WizardMode && !Verbose && _ptr != Constant) break;
6112   case TopPTR:
6113   case AnyNull:
6114     st->print(":%s", ptr_msg[_ptr]);
6115     if (_ptr == Constant) st->print(":exact");
6116     break;
6117   default:
6118     break;
6119   }
6120   if (Verbose) {
6121     if (isa_instklassptr() && is_instklassptr()->flat_in_array()) st->print(":flat in array");



6122   }
6123   _offset.dump2(st);
6124   st->print(" *");
6125 }
6126 #endif
6127 
6128 //=============================================================================
6129 // Convenience common pre-built types.
6130 
6131 // Not-null object klass or below
6132 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT;
6133 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT_OR_NULL;
6134 
6135 bool TypeInstKlassPtr::eq(const Type *t) const {
6136   const TypeKlassPtr *p = t->is_klassptr();
6137   return
6138     klass()->equals(p->klass()) &&
6139     flat_in_array() == p->flat_in_array() &&
6140     TypeKlassPtr::eq(p);
6141 }
6142 
6143 uint TypeInstKlassPtr::hash(void) const {
6144   return klass()->hash() + TypeKlassPtr::hash() + (uint)flat_in_array();
6145 }
6146 
6147 const TypeInstKlassPtr *TypeInstKlassPtr::make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, Offset offset, bool flat_in_array) {
6148   flat_in_array = flat_in_array || k->flat_in_array();
6149 
6150   TypeInstKlassPtr *r =
6151     (TypeInstKlassPtr*)(new TypeInstKlassPtr(ptr, k, interfaces, offset, flat_in_array))->hashcons();
6152 
6153   return r;
6154 }
6155 
6156 //------------------------------add_offset-------------------------------------
6157 // Access internals of klass object
6158 const TypePtr *TypeInstKlassPtr::add_offset( intptr_t offset ) const {
6159   return make(_ptr, klass(), _interfaces, xadd_offset(offset), flat_in_array());
6160 }
6161 
6162 const TypeInstKlassPtr* TypeInstKlassPtr::with_offset(intptr_t offset) const {
6163   return make(_ptr, klass(), _interfaces, Offset(offset), flat_in_array());
6164 }
6165 
6166 //------------------------------cast_to_ptr_type-------------------------------
6167 const TypeInstKlassPtr* TypeInstKlassPtr::cast_to_ptr_type(PTR ptr) const {
6168   assert(_base == InstKlassPtr, "subclass must override cast_to_ptr_type");
6169   if( ptr == _ptr ) return this;
6170   return make(ptr, _klass, _interfaces, _offset, flat_in_array());
6171 }
6172 
6173 
6174 bool TypeInstKlassPtr::must_be_exact() const {
6175   if (!_klass->is_loaded())  return false;
6176   ciInstanceKlass* ik = _klass->as_instance_klass();
6177   if (ik->is_final())  return true;  // cannot clear xk
6178   return false;
6179 }
6180 
6181 //-----------------------------cast_to_exactness-------------------------------
6182 const TypeKlassPtr* TypeInstKlassPtr::cast_to_exactness(bool klass_is_exact) const {
6183   if (klass_is_exact == (_ptr == Constant)) return this;
6184   if (must_be_exact()) return this;
6185   ciKlass* k = klass();
6186   return make(klass_is_exact ? Constant : NotNull, k, _interfaces, _offset, flat_in_array());
6187 }
6188 
6189 
6190 //-----------------------------as_instance_type--------------------------------
6191 // Corresponding type for an instance of the given class.
6192 // It will be NotNull, and exact if and only if the klass type is exact.
6193 const TypeOopPtr* TypeInstKlassPtr::as_instance_type(bool klass_change) const {
6194   ciKlass* k = klass();
6195   bool xk = klass_is_exact();
6196   Compile* C = Compile::current();
6197   Dependencies* deps = C->dependencies();
6198   assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
6199   // Element is an instance
6200   bool klass_is_exact = false;
6201   const TypeInterfaces* interfaces = _interfaces;
6202   if (k->is_loaded()) {
6203     // Try to set klass_is_exact.
6204     ciInstanceKlass* ik = k->as_instance_klass();
6205     klass_is_exact = ik->is_final();
6206     if (!klass_is_exact && klass_change
6207         && deps != nullptr && UseUniqueSubclasses) {
6208       ciInstanceKlass* sub = ik->unique_concrete_subklass();
6209       if (sub != nullptr) {
6210         if (_interfaces->eq(sub)) {
6211           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
6212           k = ik = sub;
6213           xk = sub->is_final();
6214         }
6215       }
6216     }
6217   }
6218   return TypeInstPtr::make(TypePtr::BotPTR, k, interfaces, xk, nullptr, Offset(0), flat_in_array() && !klass()->is_inlinetype());
6219 }
6220 
6221 //------------------------------xmeet------------------------------------------
6222 // Compute the MEET of two types, return a new Type object.
6223 const Type    *TypeInstKlassPtr::xmeet( const Type *t ) const {
6224   // Perform a fast test for common case; meeting the same types together.
6225   if( this == t ) return this;  // Meeting same type-rep?
6226 
6227   // Current "this->_base" is Pointer
6228   switch (t->base()) {          // switch on original type
6229 
6230   case Int:                     // Mixing ints & oops happens when javac
6231   case Long:                    // reuses local variables
6232   case FloatTop:
6233   case FloatCon:
6234   case FloatBot:
6235   case DoubleTop:
6236   case DoubleCon:
6237   case DoubleBot:
6238   case NarrowOop:
6239   case NarrowKlass:
6240   case Bottom:                  // Ye Olde Default
6241     return Type::BOTTOM;
6242   case Top:
6243     return this;
6244 
6245   default:                      // All else is a mistake
6246     typerr(t);
6247 
6248   case AnyPtr: {                // Meeting to AnyPtrs
6249     // Found an AnyPtr type vs self-KlassPtr type
6250     const TypePtr *tp = t->is_ptr();
6251     Offset offset = meet_offset(tp->offset());
6252     PTR ptr = meet_ptr(tp->ptr());
6253     switch (tp->ptr()) {
6254     case TopPTR:
6255       return this;
6256     case Null:
6257       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6258     case AnyNull:
6259       return make(ptr, klass(), _interfaces, offset, flat_in_array());
6260     case BotPTR:
6261     case NotNull:
6262       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6263     default: typerr(t);
6264     }
6265   }
6266 
6267   case RawPtr:
6268   case MetadataPtr:
6269   case OopPtr:
6270   case AryPtr:                  // Meet with AryPtr
6271   case InstPtr:                 // Meet with InstPtr
6272       return TypePtr::BOTTOM;
6273 
6274   //
6275   //             A-top         }
6276   //           /   |   \       }  Tops
6277   //       B-top A-any C-top   }
6278   //          | /  |  \ |      }  Any-nulls
6279   //       B-any   |   C-any   }
6280   //          |    |    |
6281   //       B-con A-con C-con   } constants; not comparable across classes
6282   //          |    |    |
6283   //       B-not   |   C-not   }
6284   //          | \  |  / |      }  not-nulls
6285   //       B-bot A-not C-bot   }
6286   //           \   |   /       }  Bottoms
6287   //             A-bot         }
6288   //
6289 
6290   case InstKlassPtr: {  // Meet two KlassPtr types
6291     const TypeInstKlassPtr *tkls = t->is_instklassptr();
6292     Offset  off     = meet_offset(tkls->offset());
6293     PTR  ptr     = meet_ptr(tkls->ptr());
6294     const TypeInterfaces* interfaces = meet_interfaces(tkls);
6295 
6296     ciKlass* res_klass = nullptr;
6297     bool res_xk = false;
6298     bool res_flat_in_array = false;
6299     switch(meet_instptr(ptr, interfaces, this, tkls, res_klass, res_xk, res_flat_in_array)) {
6300       case UNLOADED:
6301         ShouldNotReachHere();
6302       case SUBTYPE:
6303       case NOT_SUBTYPE:
6304       case LCA:
6305       case QUICK: {
6306         assert(res_xk == (ptr == Constant), "");
6307         const Type* res = make(ptr, res_klass, interfaces, off, res_flat_in_array);
6308         return res;
6309       }
6310       default:
6311         ShouldNotReachHere();
6312     }
6313   } // End of case KlassPtr
6314   case AryKlassPtr: {                // All arrays inherit from Object class
6315     const TypeAryKlassPtr *tp = t->is_aryklassptr();
6316     Offset offset = meet_offset(tp->offset());
6317     PTR ptr = meet_ptr(tp->ptr());
6318     const TypeInterfaces* interfaces = meet_interfaces(tp);
6319     const TypeInterfaces* tp_interfaces = tp->_interfaces;
6320     const TypeInterfaces* this_interfaces = _interfaces;
6321 
6322     switch (ptr) {
6323     case TopPTR:
6324     case AnyNull:                // Fall 'down' to dual of object klass
6325       // For instances when a subclass meets a superclass we fall
6326       // below the centerline when the superclass is exact. We need to
6327       // do the same here.
6328       if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces->contains(this_interfaces) && !klass_is_exact()) {
6329         return TypeAryKlassPtr::make(ptr, tp->elem(), tp->klass(), offset, tp->is_not_flat(), tp->is_not_null_free(), tp->is_null_free());
6330       } else {
6331         // cannot subclass, so the meet has to fall badly below the centerline
6332         ptr = NotNull;
6333         interfaces = _interfaces->intersection_with(tp->_interfaces);
6334         return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset, false);
6335       }
6336     case Constant:
6337     case NotNull:
6338     case BotPTR:                // Fall down to object klass
6339       // LCA is object_klass, but if we subclass from the top we can do better
6340       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
6341         // If 'this' (InstPtr) is above the centerline and it is Object class
6342         // then we can subclass in the Java class hierarchy.
6343         // For instances when a subclass meets a superclass we fall
6344         // below the centerline when the superclass is exact. We need
6345         // to do the same here.
6346         if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces->contains(this_interfaces) && !klass_is_exact()) {
6347           // that is, tp's array type is a subtype of my klass
6348           return TypeAryKlassPtr::make(ptr, tp->elem(), tp->klass(), offset, tp->is_not_flat(), tp->is_not_null_free(), tp->is_null_free());

6349         }
6350       }
6351       // The other case cannot happen, since I cannot be a subtype of an array.
6352       // The meet falls down to Object class below centerline.
6353       if( ptr == Constant )
6354          ptr = NotNull;
6355       interfaces = this_interfaces->intersection_with(tp_interfaces);
6356       return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset, false);
6357     default: typerr(t);
6358     }
6359   }
6360 
6361   } // End of switch
6362   return this;                  // Return the double constant
6363 }
6364 
6365 //------------------------------xdual------------------------------------------
6366 // Dual: compute field-by-field dual
6367 const Type    *TypeInstKlassPtr::xdual() const {
6368   return new TypeInstKlassPtr(dual_ptr(), klass(), _interfaces, dual_offset(), flat_in_array());
6369 }
6370 
6371 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
6372   static_assert(std::is_base_of<T2, T1>::value, "");
6373   if (!this_one->is_loaded() || !other->is_loaded()) {
6374     return false;
6375   }
6376   if (!this_one->is_instance_type(other)) {
6377     return false;
6378   }
6379 
6380   if (!other_exact) {
6381     return false;
6382   }
6383 
6384   if (other->klass()->equals(ciEnv::current()->Object_klass()) && other->_interfaces->empty()) {
6385     return true;
6386   }
6387 
6388   return this_one->klass()->is_subtype_of(other->klass()) && this_one->_interfaces->contains(other->_interfaces);

6449   const TypeInterfaces* interfaces = _interfaces;
6450   if (k->is_loaded()) {
6451     ciInstanceKlass* ik = k->as_instance_klass();
6452     bool klass_is_exact = ik->is_final();
6453     if (!klass_is_exact &&
6454         deps != nullptr) {
6455       ciInstanceKlass* sub = ik->unique_concrete_subklass();
6456       if (sub != nullptr) {
6457         if (_interfaces->eq(sub)) {
6458           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
6459           k = ik = sub;
6460           klass_is_exact = sub->is_final();
6461           return TypeKlassPtr::make(klass_is_exact ? Constant : _ptr, k, _offset);
6462         }
6463       }
6464     }
6465   }
6466   return this;
6467 }
6468 
6469 bool TypeInstKlassPtr::can_be_inline_array() const {
6470   return _klass->equals(ciEnv::current()->Object_klass()) && TypeAryKlassPtr::_array_interfaces->contains(_interfaces);
6471 }
6472 
6473 bool TypeAryKlassPtr::can_be_inline_array() const {
6474   return _elem->isa_instklassptr() && _elem->is_instklassptr()->_klass->can_be_inline_klass();
6475 }
6476 
6477 bool TypeInstPtr::can_be_inline_array() const {
6478   return _klass->equals(ciEnv::current()->Object_klass()) && TypeAryPtr::_array_interfaces->contains(_interfaces);
6479 }
6480 
6481 bool TypeAryPtr::can_be_inline_array() const {
6482   return elem()->make_ptr() && elem()->make_ptr()->isa_instptr() && elem()->make_ptr()->is_instptr()->_klass->can_be_inline_klass();
6483 }
6484 
6485 const TypeAryKlassPtr *TypeAryKlassPtr::make(PTR ptr, const Type* elem, ciKlass* k, Offset offset, bool not_flat, bool not_null_free, bool null_free) {
6486   return (TypeAryKlassPtr*)(new TypeAryKlassPtr(ptr, elem, k, offset, not_flat, not_null_free, null_free))->hashcons();
6487 }
6488 
6489 const TypeAryKlassPtr* TypeAryKlassPtr::make(PTR ptr, ciKlass* k, Offset offset, InterfaceHandling interface_handling, bool not_flat, bool not_null_free, bool null_free) {
6490   if (k->is_obj_array_klass()) {
6491     // Element is an object array. Recursively call ourself.
6492     ciKlass* eklass = k->as_obj_array_klass()->element_klass();
6493     const TypeKlassPtr* etype = TypeKlassPtr::make(eklass, interface_handling)->cast_to_exactness(false);
6494     // TODO 8325106 Fix comment
6495     // Even if MyValue is exact, [LMyValue is not exact due to [QMyValue <: [LMyValue.
6496     if (etype->klass_is_exact() && etype->isa_instklassptr() && etype->is_instklassptr()->klass()->is_inlinetype() && !null_free) {
6497       etype = TypeInstKlassPtr::make(NotNull, etype->is_instklassptr()->klass(), Offset(etype->is_instklassptr()->offset()));
6498     }
6499     return TypeAryKlassPtr::make(ptr, etype, nullptr, offset, not_flat, not_null_free, null_free);
6500   } else if (k->is_type_array_klass()) {
6501     // Element is an typeArray
6502     const Type* etype = get_const_basic_type(k->as_type_array_klass()->element_type());
6503     return TypeAryKlassPtr::make(ptr, etype, k, offset, not_flat, not_null_free, null_free);
6504   } else if (k->is_flat_array_klass()) {
6505     ciKlass* eklass = k->as_flat_array_klass()->element_klass();
6506     const TypeKlassPtr* etype = TypeKlassPtr::make(eklass);
6507     return TypeAryKlassPtr::make(ptr, etype, k, offset, not_flat, not_null_free, null_free);
6508   } else {
6509     ShouldNotReachHere();
6510     return nullptr;
6511   }
6512 }
6513 
6514 const TypeAryKlassPtr* TypeAryKlassPtr::make(PTR ptr, ciKlass* k, Offset offset, InterfaceHandling interface_handling) {
6515   bool null_free = k->as_array_klass()->is_elem_null_free();
6516   bool not_null_free = (ptr == Constant) ? !null_free : !k->is_flat_array_klass() && (k->is_type_array_klass() || !k->as_array_klass()->element_klass()->can_be_inline_klass(false));
6517 
6518   bool not_flat = !UseFlatArray || not_null_free || (k->as_array_klass()->element_klass() != nullptr &&
6519                                                      k->as_array_klass()->element_klass()->is_inlinetype() &&
6520                                                      !k->as_array_klass()->element_klass()->flat_in_array());
6521 
6522   return TypeAryKlassPtr::make(ptr, k, offset, interface_handling, not_flat, not_null_free, null_free);
6523 }
6524 
6525 const TypeAryKlassPtr* TypeAryKlassPtr::make(ciKlass* klass, InterfaceHandling interface_handling) {
6526   return TypeAryKlassPtr::make(Constant, klass, Offset(0), interface_handling);
6527 }
6528 
6529 //------------------------------eq---------------------------------------------
6530 // Structural equality check for Type representations
6531 bool TypeAryKlassPtr::eq(const Type *t) const {
6532   const TypeAryKlassPtr *p = t->is_aryklassptr();
6533   return
6534     _elem == p->_elem &&  // Check array
6535     _not_flat == p->_not_flat &&
6536     _not_null_free == p->_not_null_free &&
6537     _null_free == p->_null_free &&
6538     TypeKlassPtr::eq(p);  // Check sub-parts
6539 }
6540 
6541 //------------------------------hash-------------------------------------------
6542 // Type-specific hashing function.
6543 uint TypeAryKlassPtr::hash(void) const {
6544   return (uint)(uintptr_t)_elem + TypeKlassPtr::hash() + (uint)(_not_flat ? 43 : 0) +
6545       (uint)(_not_null_free ? 44 : 0) + (uint)(_null_free ? 45 : 0);
6546 }
6547 
6548 //----------------------compute_klass------------------------------------------
6549 // Compute the defining klass for this class
6550 ciKlass* TypeAryPtr::compute_klass() const {
6551   // Compute _klass based on element type.
6552   ciKlass* k_ary = nullptr;
6553   const TypeInstPtr *tinst;
6554   const TypeAryPtr *tary;
6555   const Type* el = elem();
6556   if (el->isa_narrowoop()) {
6557     el = el->make_ptr();
6558   }
6559 
6560   // Get element klass
6561   if (is_flat() && el->is_inlinetypeptr()) {
6562     // Klass is required by TypeAryPtr::flat_layout_helper() and others
6563     if (el->inline_klass() != nullptr) {
6564       k_ary = ciArrayKlass::make(el->inline_klass(), /* null_free */ true);
6565     }
6566   } else if ((tinst = el->isa_instptr()) != nullptr) {
6567     // Leave k_ary at nullptr.
6568   } else if ((tary = el->isa_aryptr()) != nullptr) {
6569     // Leave k_ary at nullptr.
6570   } else if ((el->base() == Type::Top) ||
6571              (el->base() == Type::Bottom)) {
6572     // element type of Bottom occurs from meet of basic type
6573     // and object; Top occurs when doing join on Bottom.
6574     // Leave k_ary at null.
6575   } else {
6576     assert(!el->isa_int(), "integral arrays must be pre-equipped with a class");
6577     // Compute array klass directly from basic type
6578     k_ary = ciTypeArrayKlass::make(el->basic_type());
6579   }
6580   return k_ary;
6581 }
6582 
6583 //------------------------------klass------------------------------------------
6584 // Return the defining klass for this class
6585 ciKlass* TypeAryPtr::klass() const {
6586   if( _klass ) return _klass;   // Return cached value, if possible
6587 
6588   // Oops, need to compute _klass and cache it
6589   ciKlass* k_ary = compute_klass();

6597     // type TypeAryPtr::OOPS.  This Type is shared between all
6598     // active compilations.  However, the ciKlass which represents
6599     // this Type is *not* shared between compilations, so caching
6600     // this value would result in fetching a dangling pointer.
6601     //
6602     // Recomputing the underlying ciKlass for each request is
6603     // a bit less efficient than caching, but calls to
6604     // TypeAryPtr::OOPS->klass() are not common enough to matter.
6605     ((TypeAryPtr*)this)->_klass = k_ary;
6606   }
6607   return k_ary;
6608 }
6609 
6610 // Is there a single ciKlass* that can represent that type?
6611 ciKlass* TypeAryPtr::exact_klass_helper() const {
6612   if (_ary->_elem->make_ptr() && _ary->_elem->make_ptr()->isa_oopptr()) {
6613     ciKlass* k = _ary->_elem->make_ptr()->is_oopptr()->exact_klass_helper();
6614     if (k == nullptr) {
6615       return nullptr;
6616     }
6617     k = ciArrayKlass::make(k, is_null_free());
6618     return k;
6619   }
6620 
6621   return klass();
6622 }
6623 
6624 const Type* TypeAryPtr::base_element_type(int& dims) const {
6625   const Type* elem = this->elem();
6626   dims = 1;
6627   while (elem->make_ptr() && elem->make_ptr()->isa_aryptr()) {
6628     elem = elem->make_ptr()->is_aryptr()->elem();
6629     dims++;
6630   }
6631   return elem;
6632 }
6633 
6634 //------------------------------add_offset-------------------------------------
6635 // Access internals of klass object
6636 const TypePtr* TypeAryKlassPtr::add_offset(intptr_t offset) const {
6637   return make(_ptr, elem(), klass(), xadd_offset(offset), is_not_flat(), is_not_null_free(), _null_free);
6638 }
6639 
6640 const TypeAryKlassPtr* TypeAryKlassPtr::with_offset(intptr_t offset) const {
6641   return make(_ptr, elem(), klass(), Offset(offset), is_not_flat(), is_not_null_free(), _null_free);
6642 }
6643 
6644 //------------------------------cast_to_ptr_type-------------------------------
6645 const TypeAryKlassPtr* TypeAryKlassPtr::cast_to_ptr_type(PTR ptr) const {
6646   assert(_base == AryKlassPtr, "subclass must override cast_to_ptr_type");
6647   if (ptr == _ptr) return this;
6648   return make(ptr, elem(), _klass, _offset, is_not_flat(), is_not_null_free(), _null_free);
6649 }
6650 
6651 bool TypeAryKlassPtr::must_be_exact() const {
6652   if (_elem == Type::BOTTOM) return false;
6653   if (_elem == Type::TOP   ) return false;
6654   const TypeKlassPtr*  tk = _elem->isa_klassptr();
6655   if (!tk)             return true;   // a primitive type, like int
6656   // TODO 8325106 Fix comment
6657   // Even if MyValue is exact, [LMyValue is not exact due to [QMyValue <: [LMyValue.
6658   if (tk->isa_instklassptr() && tk->klass()->is_inlinetype() && !is_null_free()) {
6659     return false;
6660   }
6661   return tk->must_be_exact();
6662 }
6663 
6664 
6665 //-----------------------------cast_to_exactness-------------------------------
6666 const TypeKlassPtr *TypeAryKlassPtr::cast_to_exactness(bool klass_is_exact) const {
6667   if (must_be_exact() && !klass_is_exact) return this;  // cannot clear xk
6668   if (klass_is_exact == this->klass_is_exact()) {
6669     return this;
6670   }
6671   ciKlass* k = _klass;
6672   const Type* elem = this->elem();
6673   if (elem->isa_klassptr() && !klass_is_exact) {
6674     elem = elem->is_klassptr()->cast_to_exactness(klass_is_exact);
6675   }
6676   bool not_flat = is_not_flat();
6677   bool not_null_free = is_not_null_free();
6678   if (_elem->isa_klassptr()) {
6679     if (klass_is_exact || _elem->isa_aryklassptr()) {
6680       assert(!is_null_free() && !is_flat(), "null-free (or flat) inline type arrays should always be exact");
6681       // TODO 8325106 Still correct?
6682       // An array can't be null-free (or flat) if the klass is exact
6683       not_null_free = true;
6684       not_flat = true;
6685     } else {
6686       // Klass is not exact (anymore), re-compute null-free/flat properties
6687       const TypeOopPtr* exact_etype = TypeOopPtr::make_from_klass_unique(_elem->is_instklassptr()->instance_klass());
6688       not_null_free = !exact_etype->can_be_inline_type();
6689       not_flat = !UseFlatArray || not_null_free || (exact_etype->is_inlinetypeptr() && !exact_etype->inline_klass()->flat_in_array());
6690     }
6691   }
6692   return make(klass_is_exact ? Constant : NotNull, elem, k, _offset, not_flat, not_null_free, _null_free);
6693 }
6694 
6695 const TypeAryKlassPtr* TypeAryKlassPtr::cast_to_null_free() const {
6696   return make(_ptr, elem(), klass(), _offset, is_not_flat(), false, true);
6697 }
6698 
6699 //-----------------------------as_instance_type--------------------------------
6700 // Corresponding type for an instance of the given class.
6701 // It will be NotNull, and exact if and only if the klass type is exact.
6702 const TypeOopPtr* TypeAryKlassPtr::as_instance_type(bool klass_change) const {
6703   ciKlass* k = klass();
6704   bool    xk = klass_is_exact();
6705   const Type* el = nullptr;
6706   if (elem()->isa_klassptr()) {
6707     el = elem()->is_klassptr()->as_instance_type(false)->cast_to_exactness(false);
6708     k = nullptr;
6709   } else {
6710     el = elem();
6711   }
6712   bool null_free = _null_free;
6713   if (null_free && el->isa_ptr()) {
6714     el = el->is_ptr()->join_speculative(TypePtr::NOTNULL);
6715   }
6716   return TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(el, TypeInt::POS, false, is_flat(), is_not_flat(), is_not_null_free()), k, xk, Offset(0));
6717 }
6718 
6719 
6720 //------------------------------xmeet------------------------------------------
6721 // Compute the MEET of two types, return a new Type object.
6722 const Type    *TypeAryKlassPtr::xmeet( const Type *t ) const {
6723   // Perform a fast test for common case; meeting the same types together.
6724   if( this == t ) return this;  // Meeting same type-rep?
6725 
6726   // Current "this->_base" is Pointer
6727   switch (t->base()) {          // switch on original type
6728 
6729   case Int:                     // Mixing ints & oops happens when javac
6730   case Long:                    // reuses local variables
6731   case FloatTop:
6732   case FloatCon:
6733   case FloatBot:
6734   case DoubleTop:
6735   case DoubleCon:
6736   case DoubleBot:
6737   case NarrowOop:
6738   case NarrowKlass:
6739   case Bottom:                  // Ye Olde Default
6740     return Type::BOTTOM;
6741   case Top:
6742     return this;
6743 
6744   default:                      // All else is a mistake
6745     typerr(t);
6746 
6747   case AnyPtr: {                // Meeting to AnyPtrs
6748     // Found an AnyPtr type vs self-KlassPtr type
6749     const TypePtr *tp = t->is_ptr();
6750     Offset offset = meet_offset(tp->offset());
6751     PTR ptr = meet_ptr(tp->ptr());
6752     switch (tp->ptr()) {
6753     case TopPTR:
6754       return this;
6755     case Null:
6756       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6757     case AnyNull:
6758       return make(ptr, _elem, klass(), offset, is_not_flat(), is_not_null_free(), is_null_free());
6759     case BotPTR:
6760     case NotNull:
6761       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6762     default: typerr(t);
6763     }
6764   }
6765 
6766   case RawPtr:
6767   case MetadataPtr:
6768   case OopPtr:
6769   case AryPtr:                  // Meet with AryPtr
6770   case InstPtr:                 // Meet with InstPtr
6771     return TypePtr::BOTTOM;
6772 
6773   //
6774   //             A-top         }
6775   //           /   |   \       }  Tops
6776   //       B-top A-any C-top   }
6777   //          | /  |  \ |      }  Any-nulls
6778   //       B-any   |   C-any   }
6779   //          |    |    |
6780   //       B-con A-con C-con   } constants; not comparable across classes
6781   //          |    |    |
6782   //       B-not   |   C-not   }
6783   //          | \  |  / |      }  not-nulls
6784   //       B-bot A-not C-bot   }
6785   //           \   |   /       }  Bottoms
6786   //             A-bot         }
6787   //
6788 
6789   case AryKlassPtr: {  // Meet two KlassPtr types
6790     const TypeAryKlassPtr *tap = t->is_aryklassptr();
6791     Offset off = meet_offset(tap->offset());
6792     const Type* elem = _elem->meet(tap->_elem);

6793     PTR ptr = meet_ptr(tap->ptr());
6794     ciKlass* res_klass = nullptr;
6795     bool res_xk = false;
6796     bool res_flat = false;
6797     bool res_not_flat = false;
6798     bool res_not_null_free = false;
6799     MeetResult res = meet_aryptr(ptr, elem, this, tap,
6800                                  res_klass, res_xk, res_flat, res_not_flat, res_not_null_free);
6801     assert(res_xk == (ptr == Constant), "");
6802     bool null_free = meet_null_free(tap->_null_free);
6803     if (res == NOT_SUBTYPE) {
6804       null_free = false;
6805     } else if (res == SUBTYPE) {
6806       if (above_centerline(tap->ptr()) && !above_centerline(this->ptr())) {
6807         null_free = _null_free;
6808       } else if (above_centerline(this->ptr()) && !above_centerline(tap->ptr())) {
6809         null_free = tap->_null_free;
6810       } else if (above_centerline(this->ptr()) && above_centerline(tap->ptr())) {
6811         null_free = _null_free || tap->_null_free;
6812       }
6813     }
6814     return make(ptr, elem, res_klass, off, res_not_flat, res_not_null_free, null_free);
6815   } // End of case KlassPtr
6816   case InstKlassPtr: {
6817     const TypeInstKlassPtr *tp = t->is_instklassptr();
6818     Offset offset = meet_offset(tp->offset());
6819     PTR ptr = meet_ptr(tp->ptr());
6820     const TypeInterfaces* interfaces = meet_interfaces(tp);
6821     const TypeInterfaces* tp_interfaces = tp->_interfaces;
6822     const TypeInterfaces* this_interfaces = _interfaces;
6823 
6824     switch (ptr) {
6825     case TopPTR:
6826     case AnyNull:                // Fall 'down' to dual of object klass
6827       // For instances when a subclass meets a superclass we fall
6828       // below the centerline when the superclass is exact. We need to
6829       // do the same here.
6830       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->intersection_with(tp_interfaces)->eq(tp_interfaces) && !tp->klass_is_exact()) {
6831         return TypeAryKlassPtr::make(ptr, _elem, _klass, offset, is_not_flat(), is_not_null_free(), is_null_free());
6832       } else {
6833         // cannot subclass, so the meet has to fall badly below the centerline
6834         ptr = NotNull;
6835         interfaces = this_interfaces->intersection_with(tp->_interfaces);
6836         return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset, false);
6837       }
6838     case Constant:
6839     case NotNull:
6840     case BotPTR:                // Fall down to object klass
6841       // LCA is object_klass, but if we subclass from the top we can do better
6842       if (above_centerline(tp->ptr())) {
6843         // If 'tp'  is above the centerline and it is Object class
6844         // then we can subclass in the Java class hierarchy.
6845         // For instances when a subclass meets a superclass we fall
6846         // below the centerline when the superclass is exact. We need
6847         // to do the same here.
6848         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->intersection_with(tp_interfaces)->eq(tp_interfaces) && !tp->klass_is_exact()) {
6849           // that is, my array type is a subtype of 'tp' klass
6850           return make(ptr, _elem, _klass, offset, is_not_flat(), is_not_null_free(), is_null_free());
6851         }
6852       }
6853       // The other case cannot happen, since t cannot be a subtype of an array.
6854       // The meet falls down to Object class below centerline.
6855       if (ptr == Constant)
6856          ptr = NotNull;
6857       interfaces = this_interfaces->intersection_with(tp_interfaces);
6858       return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset, false);
6859     default: typerr(t);
6860     }
6861   }
6862 
6863   } // End of switch
6864   return this;                  // Return the double constant
6865 }
6866 
6867 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
6868   static_assert(std::is_base_of<T2, T1>::value, "");
6869 
6870   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty() && other_exact) {
6871     return true;
6872   }
6873 
6874   int dummy;
6875   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
6876 
6877   if (!this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) {
6878     return false;
6879   }
6880 
6881   if (this_one->is_instance_type(other)) {
6882     return other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->intersection_with(this_one->_interfaces)->eq(other->_interfaces) && other_exact;
6883   }
6884 
6885   assert(this_one->is_array_type(other), "");
6886   const T1* other_ary = this_one->is_array_type(other);
6887   bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
6888   if (other_top_or_bottom) {
6889     return false;
6890   }
6891 
6892   const TypePtr* other_elem = other_ary->elem()->make_ptr();
6893   const TypePtr* this_elem = this_one->elem()->make_ptr();
6894   if (this_elem != nullptr && other_elem != nullptr) {
6895     if (other->is_null_free() && !this_one->is_null_free()) {
6896       // TODO 8325106 Fix comment
6897       return false; // [LMyValue is not a subtype of [QMyValue
6898     }
6899     return this_one->is_reference_type(this_elem)->is_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact);
6900   }
6901   if (this_elem == nullptr && other_elem == nullptr) {
6902     return this_one->klass()->is_subtype_of(other->klass());
6903   }
6904   return false;
6905 }
6906 
6907 bool TypeAryKlassPtr::is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
6908   return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
6909 }
6910 
6911 template <class T1, class T2> bool TypePtr::is_same_java_type_as_helper_for_array(const T1* this_one, const T2* other) {
6912   static_assert(std::is_base_of<T2, T1>::value, "");
6913 
6914   int dummy;
6915   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
6916 
6917   if (!this_one->is_array_type(other) ||
6918       !this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) {

6965   }
6966 
6967   const TypePtr* this_elem = this_one->elem()->make_ptr();
6968   const TypePtr* other_elem = other_ary->elem()->make_ptr();
6969   if (other_elem != nullptr && this_elem != nullptr) {
6970     return this_one->is_reference_type(this_elem)->maybe_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact);
6971   }
6972   if (other_elem == nullptr && this_elem == nullptr) {
6973     return this_one->klass()->is_subtype_of(other->klass());
6974   }
6975   return false;
6976 }
6977 
6978 bool TypeAryKlassPtr::maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
6979   return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
6980 }
6981 
6982 //------------------------------xdual------------------------------------------
6983 // Dual: compute field-by-field dual
6984 const Type    *TypeAryKlassPtr::xdual() const {
6985   return new TypeAryKlassPtr(dual_ptr(), elem()->dual(), klass(), dual_offset(), !is_not_flat(), !is_not_null_free(), dual_null_free());
6986 }
6987 
6988 // Is there a single ciKlass* that can represent that type?
6989 ciKlass* TypeAryKlassPtr::exact_klass_helper() const {
6990   if (elem()->isa_klassptr()) {
6991     ciKlass* k = elem()->is_klassptr()->exact_klass_helper();
6992     if (k == nullptr) {
6993       return nullptr;
6994     }
6995     k = ciArrayKlass::make(k, _null_free);
6996     return k;
6997   }
6998 
6999   return klass();
7000 }
7001 
7002 ciKlass* TypeAryKlassPtr::klass() const {
7003   if (_klass != nullptr) {
7004     return _klass;
7005   }
7006   ciKlass* k = nullptr;
7007   if (elem()->isa_klassptr()) {
7008     // leave null
7009   } else if ((elem()->base() == Type::Top) ||
7010              (elem()->base() == Type::Bottom)) {
7011   } else {
7012     k = ciTypeArrayKlass::make(elem()->basic_type());
7013     ((TypeAryKlassPtr*)this)->_klass = k;
7014   }
7015   return k;

7022   switch( _ptr ) {
7023   case Constant:
7024     st->print("precise ");
7025   case NotNull:
7026     {
7027       st->print("[");
7028       _elem->dump2(d, depth, st);
7029       _interfaces->dump(st);
7030       st->print(": ");
7031     }
7032   case BotPTR:
7033     if( !WizardMode && !Verbose && _ptr != Constant ) break;
7034   case TopPTR:
7035   case AnyNull:
7036     st->print(":%s", ptr_msg[_ptr]);
7037     if( _ptr == Constant ) st->print(":exact");
7038     break;
7039   default:
7040     break;
7041   }
7042   if (is_flat()) st->print(":flat");
7043   if (_null_free) st->print(":null free");
7044   if (Verbose) {
7045     if (_not_flat) st->print(":not flat");
7046     if (_not_null_free) st->print(":not null free");
7047   }
7048 
7049   _offset.dump2(st);
7050 
7051   st->print(" *");
7052 }
7053 #endif
7054 
7055 const Type* TypeAryKlassPtr::base_element_type(int& dims) const {
7056   const Type* elem = this->elem();
7057   dims = 1;
7058   while (elem->isa_aryklassptr()) {
7059     elem = elem->is_aryklassptr()->elem();
7060     dims++;
7061   }
7062   return elem;
7063 }
7064 
7065 //=============================================================================
7066 // Convenience common pre-built types.
7067 
7068 //------------------------------make-------------------------------------------
7069 const TypeFunc *TypeFunc::make(const TypeTuple *domain_sig, const TypeTuple* domain_cc,
7070                                const TypeTuple *range_sig, const TypeTuple *range_cc) {
7071   return (TypeFunc*)(new TypeFunc(domain_sig, domain_cc, range_sig, range_cc))->hashcons();
7072 }
7073 
7074 const TypeFunc *TypeFunc::make(const TypeTuple *domain, const TypeTuple *range) {
7075   return make(domain, domain, range, range);
7076 }
7077 
7078 //------------------------------osr_domain-----------------------------
7079 const TypeTuple* osr_domain() {
7080   const Type **fields = TypeTuple::fields(2);
7081   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM;  // address of osr buffer
7082   return TypeTuple::make(TypeFunc::Parms+1, fields);
7083 }
7084 
7085 //------------------------------make-------------------------------------------
7086 const TypeFunc* TypeFunc::make(ciMethod* method, bool is_osr_compilation) {
7087   Compile* C = Compile::current();
7088   const TypeFunc* tf = nullptr;
7089   if (!is_osr_compilation) {
7090     tf = C->last_tf(method); // check cache
7091     if (tf != nullptr)  return tf;  // The hit rate here is almost 50%.
7092   }
7093   // Inline types are not passed/returned by reference, instead each field of
7094   // the inline type is passed/returned as an argument. We maintain two views of
7095   // the argument/return list here: one based on the signature (with an inline
7096   // type argument/return as a single slot), one based on the actual calling
7097   // convention (with an inline type argument/return as a list of its fields).
7098   bool has_scalar_args = method->has_scalarized_args() && !is_osr_compilation;
7099   // Fall back to the non-scalarized calling convention when compiling a call via a mismatching method
7100   if (method != C->method() && method->get_Method()->mismatch()) {
7101     has_scalar_args = false;
7102   }
7103   const TypeTuple* domain_sig = is_osr_compilation ? osr_domain() : TypeTuple::make_domain(method, ignore_interfaces, false);
7104   const TypeTuple* domain_cc = has_scalar_args ? TypeTuple::make_domain(method, ignore_interfaces, true) : domain_sig;
7105   ciSignature* sig = method->signature();
7106   bool has_scalar_ret = !method->is_native() && sig->return_type()->is_inlinetype() && sig->return_type()->as_inline_klass()->can_be_returned_as_fields();
7107   const TypeTuple* range_sig = TypeTuple::make_range(sig, ignore_interfaces, false);
7108   const TypeTuple* range_cc = has_scalar_ret ? TypeTuple::make_range(sig, ignore_interfaces, true) : range_sig;
7109   tf = TypeFunc::make(domain_sig, domain_cc, range_sig, range_cc);
7110   if (!is_osr_compilation) {
7111     C->set_last_tf(method, tf);  // fill cache
7112   }



7113   return tf;
7114 }
7115 
7116 //------------------------------meet-------------------------------------------
7117 // Compute the MEET of two types.  It returns a new Type object.
7118 const Type *TypeFunc::xmeet( const Type *t ) const {
7119   // Perform a fast test for common case; meeting the same types together.
7120   if( this == t ) return this;  // Meeting same type-rep?
7121 
7122   // Current "this->_base" is Func
7123   switch (t->base()) {          // switch on original type
7124 
7125   case Bottom:                  // Ye Olde Default
7126     return t;
7127 
7128   default:                      // All else is a mistake
7129     typerr(t);
7130 
7131   case Top:
7132     break;
7133   }
7134   return this;                  // Return the double constant
7135 }
7136 
7137 //------------------------------xdual------------------------------------------
7138 // Dual: compute field-by-field dual
7139 const Type *TypeFunc::xdual() const {
7140   return this;
7141 }
7142 
7143 //------------------------------eq---------------------------------------------
7144 // Structural equality check for Type representations
7145 bool TypeFunc::eq( const Type *t ) const {
7146   const TypeFunc *a = (const TypeFunc*)t;
7147   return _domain_sig == a->_domain_sig &&
7148     _domain_cc == a->_domain_cc &&
7149     _range_sig == a->_range_sig &&
7150     _range_cc == a->_range_cc;
7151 }
7152 
7153 //------------------------------hash-------------------------------------------
7154 // Type-specific hashing function.
7155 uint TypeFunc::hash(void) const {
7156   return (uint)(intptr_t)_domain_sig + (uint)(intptr_t)_domain_cc + (uint)(intptr_t)_range_sig + (uint)(intptr_t)_range_cc;
7157 }
7158 
7159 //------------------------------dump2------------------------------------------
7160 // Dump Function Type
7161 #ifndef PRODUCT
7162 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
7163   if( _range_sig->cnt() <= Parms )
7164     st->print("void");
7165   else {
7166     uint i;
7167     for (i = Parms; i < _range_sig->cnt()-1; i++) {
7168       _range_sig->field_at(i)->dump2(d,depth,st);
7169       st->print("/");
7170     }
7171     _range_sig->field_at(i)->dump2(d,depth,st);
7172   }
7173   st->print(" ");
7174   st->print("( ");
7175   if( !depth || d[this] ) {     // Check for recursive dump
7176     st->print("...)");
7177     return;
7178   }
7179   d.Insert((void*)this,(void*)this);    // Stop recursion
7180   if (Parms < _domain_sig->cnt())
7181     _domain_sig->field_at(Parms)->dump2(d,depth-1,st);
7182   for (uint i = Parms+1; i < _domain_sig->cnt(); i++) {
7183     st->print(", ");
7184     _domain_sig->field_at(i)->dump2(d,depth-1,st);
7185   }
7186   st->print(" )");
7187 }
7188 #endif
7189 
7190 //------------------------------singleton--------------------------------------
7191 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
7192 // constants (Ldi nodes).  Singletons are integer, float or double constants
7193 // or a single symbol.
7194 bool TypeFunc::singleton(void) const {
7195   return false;                 // Never a singleton
7196 }
7197 
7198 bool TypeFunc::empty(void) const {
7199   return false;                 // Never empty
7200 }
7201 
7202 
7203 BasicType TypeFunc::return_type() const{
7204   if (range_sig()->cnt() == TypeFunc::Parms) {
7205     return T_VOID;
7206   }
7207   return range_sig()->field_at(TypeFunc::Parms)->basic_type();
7208 }
< prev index next >