< prev index next >

src/hotspot/share/opto/type.cpp

Print this page

   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"



  26 #include "ci/ciMethodData.hpp"
  27 #include "ci/ciTypeFlow.hpp"
  28 #include "classfile/javaClasses.hpp"
  29 #include "classfile/symbolTable.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "libadt/dict.hpp"
  32 #include "memory/oopFactory.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "oops/instanceKlass.hpp"
  35 #include "oops/instanceMirrorKlass.hpp"
  36 #include "oops/objArrayKlass.hpp"
  37 #include "oops/typeArrayKlass.hpp"
  38 #include "opto/matcher.hpp"
  39 #include "opto/node.hpp"
  40 #include "opto/opcodes.hpp"
  41 #include "opto/type.hpp"
  42 #include "utilities/checkedCast.hpp"
  43 #include "utilities/powerOfTwo.hpp"
  44 #include "utilities/stringUtils.hpp"
  45 
  46 // Portions of code courtesy of Clifford Click
  47 
  48 // Optimization - Graph Style
  49 
  50 // Dictionary of types shared among compilations.
  51 Dict* Type::_shared_type_dict = nullptr;













































  52 
  53 // Array which maps compiler types to Basic Types
  54 const Type::TypeInfo Type::_type_info[Type::lastype] = {
  55   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
  56   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
  57   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
  58   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
  59   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
  60   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
  61   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
  62   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
  63   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
  64   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
  65   { Bad,             T_ARRAY,      "interfaces:",   false, Node::NotAMachineReg, relocInfo::none          },  // Interfaces
  66 
  67 #if defined(PPC64)
  68   { Bad,             T_ILLEGAL,    "vectormask:",   false, Op_RegVectMask,       relocInfo::none          },  // VectorMask.
  69   { Bad,             T_ILLEGAL,    "vectora:",      false, Op_VecA,              relocInfo::none          },  // VectorA.
  70   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  71   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD

 206   case ciTypeFlow::StateVector::T_NULL:
 207     assert(type == ciTypeFlow::StateVector::null_type(), "");
 208     return TypePtr::NULL_PTR;
 209 
 210   case ciTypeFlow::StateVector::T_LONG2:
 211     // The ciTypeFlow pass pushes a long, then the half.
 212     // We do the same.
 213     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 214     return TypeInt::TOP;
 215 
 216   case ciTypeFlow::StateVector::T_DOUBLE2:
 217     // The ciTypeFlow pass pushes double, then the half.
 218     // Our convention is the same.
 219     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 220     return Type::TOP;
 221 
 222   case T_ADDRESS:
 223     assert(type->is_return_address(), "");
 224     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 225 



 226   default:
 227     // make sure we did not mix up the cases:
 228     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 229     assert(type != ciTypeFlow::StateVector::top_type(), "");
 230     assert(type != ciTypeFlow::StateVector::null_type(), "");
 231     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 232     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 233     assert(!type->is_return_address(), "");
 234 
 235     return Type::get_const_type(type);
 236   }
 237 }
 238 
 239 
 240 //-----------------------make_from_constant------------------------------------
 241 const Type* Type::make_from_constant(ciConstant constant, bool require_constant,
 242                                      int stable_dimension, bool is_narrow_oop,
 243                                      bool is_autobox_cache) {
 244   switch (constant.basic_type()) {
 245     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());

 518   const Type **ffalse =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 519   ffalse[0] = Type::CONTROL;
 520   ffalse[1] = Type::TOP;
 521   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 522 
 523   const Type **fneither =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 524   fneither[0] = Type::TOP;
 525   fneither[1] = Type::TOP;
 526   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 527 
 528   const Type **ftrue =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 529   ftrue[0] = Type::TOP;
 530   ftrue[1] = Type::CONTROL;
 531   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 532 
 533   const Type **floop =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 534   floop[0] = Type::CONTROL;
 535   floop[1] = TypeInt::INT;
 536   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 537 
 538   TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, 0);
 539   TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, OffsetBot);
 540   TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, OffsetBot);
 541 
 542   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 543   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 544 
 545   const Type **fmembar = TypeTuple::fields(0);
 546   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 547 
 548   const Type **fsc = (const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 549   fsc[0] = TypeInt::CC;
 550   fsc[1] = Type::MEMORY;
 551   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 552 
 553   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 554   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 555   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 556   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 557                                            false, nullptr, oopDesc::mark_offset_in_bytes());
 558   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 559                                            false, nullptr, oopDesc::klass_offset_in_bytes());
 560   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
 561 
 562   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, nullptr, OffsetBot);
 563 
 564   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 565   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 566 
 567   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 568 
 569   mreg2type[Op_Node] = Type::BOTTOM;
 570   mreg2type[Op_Set ] = nullptr;
 571   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 572   mreg2type[Op_RegI] = TypeInt::INT;
 573   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 574   mreg2type[Op_RegF] = Type::FLOAT;
 575   mreg2type[Op_RegD] = Type::DOUBLE;
 576   mreg2type[Op_RegL] = TypeLong::LONG;
 577   mreg2type[Op_RegFlags] = TypeInt::CC;
 578 
 579   GrowableArray<ciInstanceKlass*> array_interfaces;
 580   array_interfaces.push(current->env()->Cloneable_klass());
 581   array_interfaces.push(current->env()->Serializable_klass());
 582   TypeAryPtr::_array_interfaces = TypeInterfaces::make(&array_interfaces);
 583   TypeAryKlassPtr::_array_interfaces = TypeAryPtr::_array_interfaces;
 584 
 585   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), nullptr /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
 586 
 587   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), nullptr /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 588 
 589 #ifdef _LP64
 590   if (UseCompressedOops) {
 591     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 592     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 593   } else
 594 #endif
 595   {
 596     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 597     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), nullptr /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 598   }
 599   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
 600   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
 601   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
 602   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
 603   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
 604   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
 605   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);

 606 
 607   // Nobody should ask _array_body_type[T_NARROWOOP]. Use null as assert.
 608   TypeAryPtr::_array_body_type[T_NARROWOOP] = nullptr;
 609   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;

 610   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 611   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 612   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 613   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 614   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 615   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 616   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 617   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 618   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 619 
 620   TypeInstKlassPtr::OBJECT = TypeInstKlassPtr::make(TypePtr::NotNull, current->env()->Object_klass(), 0);
 621   TypeInstKlassPtr::OBJECT_OR_NULL = TypeInstKlassPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), 0);
 622 
 623   const Type **fi2c = TypeTuple::fields(2);
 624   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 625   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 626   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 627 
 628   const Type **intpair = TypeTuple::fields(2);
 629   intpair[0] = TypeInt::INT;
 630   intpair[1] = TypeInt::INT;
 631   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 632 
 633   const Type **longpair = TypeTuple::fields(2);
 634   longpair[0] = TypeLong::LONG;
 635   longpair[1] = TypeLong::LONG;
 636   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 637 
 638   const Type **intccpair = TypeTuple::fields(2);
 639   intccpair[0] = TypeInt::INT;
 640   intccpair[1] = TypeInt::CC;
 641   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 642 
 643   const Type **longccpair = TypeTuple::fields(2);
 644   longccpair[0] = TypeLong::LONG;
 645   longccpair[1] = TypeInt::CC;
 646   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 647 
 648   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 649   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 650   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 651   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 652   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 653   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 654   _const_basic_type[T_INT]         = TypeInt::INT;
 655   _const_basic_type[T_LONG]        = TypeLong::LONG;
 656   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 657   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 658   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 659   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays

 660   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 661   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 662   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 663 
 664   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 665   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 666   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 667   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 668   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 669   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 670   _zero_type[T_INT]         = TypeInt::ZERO;
 671   _zero_type[T_LONG]        = TypeLong::ZERO;
 672   _zero_type[T_FLOAT]       = TypeF::ZERO;
 673   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 674   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 675   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop

 676   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 677   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 678 
 679   // get_zero_type() should not happen for T_CONFLICT
 680   _zero_type[T_CONFLICT]= nullptr;
 681 
 682   TypeVect::VECTMASK = (TypeVect*)(new TypeVectMask(T_BOOLEAN, MaxVectorSize))->hashcons();
 683   mreg2type[Op_RegVectMask] = TypeVect::VECTMASK;
 684 
 685   if (Matcher::supports_scalable_vector()) {
 686     TypeVect::VECTA = TypeVect::make(T_BYTE, Matcher::scalable_vector_reg_size(T_BYTE));
 687   }
 688 
 689   // Vector predefined types, it needs initialized _const_basic_type[].
 690   if (Matcher::vector_size_supported(T_BYTE, 4)) {
 691     TypeVect::VECTS = TypeVect::make(T_BYTE, 4);
 692   }
 693   if (Matcher::vector_size_supported(T_FLOAT, 2)) {
 694     TypeVect::VECTD = TypeVect::make(T_FLOAT, 2);
 695   }

 926   ~VerifyMeet() {
 927     assert(_C->_type_verify->_depth != 0, "");
 928     _C->_type_verify->_depth--;
 929     if (_C->_type_verify->_depth == 0) {
 930       _C->_type_verify->_cache.trunc_to(0);
 931     }
 932   }
 933 
 934   const Type* meet(const Type* t1, const Type* t2) const {
 935     return _C->_type_verify->meet(t1, t2);
 936   }
 937 
 938   void add(const Type* t1, const Type* t2, const Type* res) const {
 939     _C->_type_verify->add(t1, t2, res);
 940   }
 941 };
 942 
 943 void Type::check_symmetrical(const Type* t, const Type* mt, const VerifyMeet& verify) const {
 944   Compile* C = Compile::current();
 945   const Type* mt2 = verify.meet(t, this);



 946   if (mt != mt2) {
 947     tty->print_cr("=== Meet Not Commutative ===");
 948     tty->print("t           = ");   t->dump(); tty->cr();
 949     tty->print("this        = ");      dump(); tty->cr();
 950     tty->print("t meet this = "); mt2->dump(); tty->cr();
 951     tty->print("this meet t = ");  mt->dump(); tty->cr();
 952     fatal("meet not commutative");
 953   }
 954   const Type* dual_join = mt->_dual;
 955   const Type* t2t    = verify.meet(dual_join,t->_dual);
 956   const Type* t2this = verify.meet(dual_join,this->_dual);
 957 
 958   // Interface meet Oop is Not Symmetric:
 959   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
 960   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
 961 






 962   if (t2t != t->_dual || t2this != this->_dual) {
 963     tty->print_cr("=== Meet Not Symmetric ===");
 964     tty->print("t   =                   ");              t->dump(); tty->cr();
 965     tty->print("this=                   ");                 dump(); tty->cr();
 966     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
 967 
 968     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
 969     tty->print("this_dual=              ");          _dual->dump(); tty->cr();
 970     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
 971 
 972     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
 973     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
 974 
 975     fatal("meet not symmetric");
 976   }
 977 }
 978 #endif
 979 
 980 //------------------------------meet-------------------------------------------
 981 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is

2112 
2113 bool TypeLong::empty(void) const {
2114   return _lo > _hi;
2115 }
2116 
2117 //=============================================================================
2118 // Convenience common pre-built types.
2119 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
2120 const TypeTuple *TypeTuple::IFFALSE;
2121 const TypeTuple *TypeTuple::IFTRUE;
2122 const TypeTuple *TypeTuple::IFNEITHER;
2123 const TypeTuple *TypeTuple::LOOPBODY;
2124 const TypeTuple *TypeTuple::MEMBAR;
2125 const TypeTuple *TypeTuple::STORECONDITIONAL;
2126 const TypeTuple *TypeTuple::START_I2C;
2127 const TypeTuple *TypeTuple::INT_PAIR;
2128 const TypeTuple *TypeTuple::LONG_PAIR;
2129 const TypeTuple *TypeTuple::INT_CC_PAIR;
2130 const TypeTuple *TypeTuple::LONG_CC_PAIR;
2131 












2132 //------------------------------make-------------------------------------------
2133 // Make a TypeTuple from the range of a method signature
2134 const TypeTuple *TypeTuple::make_range(ciSignature* sig, InterfaceHandling interface_handling) {
2135   ciType* return_type = sig->return_type();
2136   uint arg_cnt = return_type->size();





2137   const Type **field_array = fields(arg_cnt);
2138   switch (return_type->basic_type()) {
2139   case T_LONG:
2140     field_array[TypeFunc::Parms]   = TypeLong::LONG;
2141     field_array[TypeFunc::Parms+1] = Type::HALF;
2142     break;
2143   case T_DOUBLE:
2144     field_array[TypeFunc::Parms]   = Type::DOUBLE;
2145     field_array[TypeFunc::Parms+1] = Type::HALF;
2146     break;
2147   case T_OBJECT:











2148   case T_ARRAY:
2149   case T_BOOLEAN:
2150   case T_CHAR:
2151   case T_FLOAT:
2152   case T_BYTE:
2153   case T_SHORT:
2154   case T_INT:
2155     field_array[TypeFunc::Parms] = get_const_type(return_type, interface_handling);
2156     break;
2157   case T_VOID:
2158     break;
2159   default:
2160     ShouldNotReachHere();
2161   }
2162   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2163 }
2164 
2165 // Make a TypeTuple from the domain of a method signature
2166 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig, InterfaceHandling interface_handling) {
2167   uint arg_cnt = sig->size();








2168 
2169   uint pos = TypeFunc::Parms;
2170   const Type **field_array;
2171   if (recv != nullptr) {
2172     arg_cnt++;
2173     field_array = fields(arg_cnt);
2174     // Use get_const_type here because it respects UseUniqueSubclasses:
2175     field_array[pos++] = get_const_type(recv, interface_handling)->join_speculative(TypePtr::NOTNULL);
2176   } else {
2177     field_array = fields(arg_cnt);
2178   }
2179 
2180   int i = 0;
2181   while (pos < TypeFunc::Parms + arg_cnt) {
2182     ciType* type = sig->type_at(i);

2183 
2184     switch (type->basic_type()) {
2185     case T_LONG:
2186       field_array[pos++] = TypeLong::LONG;
2187       field_array[pos++] = Type::HALF;
2188       break;
2189     case T_DOUBLE:
2190       field_array[pos++] = Type::DOUBLE;
2191       field_array[pos++] = Type::HALF;
2192       break;
2193     case T_OBJECT:








2194     case T_ARRAY:
2195     case T_FLOAT:
2196     case T_INT:
2197       field_array[pos++] = get_const_type(type, interface_handling);
2198       break;
2199     case T_BOOLEAN:
2200     case T_CHAR:
2201     case T_BYTE:
2202     case T_SHORT:
2203       field_array[pos++] = TypeInt::INT;
2204       break;
2205     default:
2206       ShouldNotReachHere();
2207     }
2208     i++;
2209   }

2210 
2211   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2212 }
2213 
2214 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
2215   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
2216 }
2217 
2218 //------------------------------fields-----------------------------------------
2219 // Subroutine call type with space allocated for argument types
2220 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
2221 const Type **TypeTuple::fields( uint arg_cnt ) {
2222   const Type **flds = (const Type **)(Compile::current()->type_arena()->AmallocWords((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
2223   flds[TypeFunc::Control  ] = Type::CONTROL;
2224   flds[TypeFunc::I_O      ] = Type::ABIO;
2225   flds[TypeFunc::Memory   ] = Type::MEMORY;
2226   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
2227   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
2228 
2229   return flds;

2324     if (_fields[i]->empty())  return true;
2325   }
2326   return false;
2327 }
2328 
2329 //=============================================================================
2330 // Convenience common pre-built types.
2331 
2332 inline const TypeInt* normalize_array_size(const TypeInt* size) {
2333   // Certain normalizations keep us sane when comparing types.
2334   // We do not want arrayOop variables to differ only by the wideness
2335   // of their index types.  Pick minimum wideness, since that is the
2336   // forced wideness of small ranges anyway.
2337   if (size->_widen != Type::WidenMin)
2338     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
2339   else
2340     return size;
2341 }
2342 
2343 //------------------------------make-------------------------------------------
2344 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {

2345   if (UseCompressedOops && elem->isa_oopptr()) {
2346     elem = elem->make_narrowoop();
2347   }
2348   size = normalize_array_size(size);
2349   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
2350 }
2351 
2352 //------------------------------meet-------------------------------------------
2353 // Compute the MEET of two types.  It returns a new Type object.
2354 const Type *TypeAry::xmeet( const Type *t ) const {
2355   // Perform a fast test for common case; meeting the same types together.
2356   if( this == t ) return this;  // Meeting same type-rep?
2357 
2358   // Current "this->_base" is Ary
2359   switch (t->base()) {          // switch on original type
2360 
2361   case Bottom:                  // Ye Olde Default
2362     return t;
2363 
2364   default:                      // All else is a mistake
2365     typerr(t);
2366 
2367   case Array: {                 // Meeting 2 arrays?
2368     const TypeAry *a = t->is_ary();
2369     return TypeAry::make(_elem->meet_speculative(a->_elem),
2370                          _size->xmeet(a->_size)->is_int(),
2371                          _stable && a->_stable);



2372   }
2373   case Top:
2374     break;
2375   }
2376   return this;                  // Return the double constant
2377 }
2378 
2379 //------------------------------xdual------------------------------------------
2380 // Dual: compute field-by-field dual
2381 const Type *TypeAry::xdual() const {
2382   const TypeInt* size_dual = _size->dual()->is_int();
2383   size_dual = normalize_array_size(size_dual);
2384   return new TypeAry(_elem->dual(), size_dual, !_stable);
2385 }
2386 
2387 //------------------------------eq---------------------------------------------
2388 // Structural equality check for Type representations
2389 bool TypeAry::eq( const Type *t ) const {
2390   const TypeAry *a = (const TypeAry*)t;
2391   return _elem == a->_elem &&
2392     _stable == a->_stable &&
2393     _size == a->_size;




2394 }
2395 
2396 //------------------------------hash-------------------------------------------
2397 // Type-specific hashing function.
2398 uint TypeAry::hash(void) const {
2399   return (uint)(uintptr_t)_elem + (uint)(uintptr_t)_size + (uint)(_stable ? 43 : 0);

2400 }
2401 
2402 /**
2403  * Return same type without a speculative part in the element
2404  */
2405 const TypeAry* TypeAry::remove_speculative() const {
2406   return make(_elem->remove_speculative(), _size, _stable);
2407 }
2408 
2409 /**
2410  * Return same type with cleaned up speculative part of element
2411  */
2412 const Type* TypeAry::cleanup_speculative() const {
2413   return make(_elem->cleanup_speculative(), _size, _stable);
2414 }
2415 
2416 /**
2417  * Return same type but with a different inline depth (used for speculation)
2418  *
2419  * @param depth  depth to meet with
2420  */
2421 const TypePtr* TypePtr::with_inline_depth(int depth) const {
2422   if (!UseInlineDepthForSpeculativeTypes) {
2423     return this;
2424   }
2425   return make(AnyPtr, _ptr, _offset, _speculative, depth);
2426 }
2427 
2428 //------------------------------dump2------------------------------------------
2429 #ifndef PRODUCT
2430 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2431   if (_stable)  st->print("stable:");





2432   _elem->dump2(d, depth, st);
2433   st->print("[");
2434   _size->dump2(d, depth, st);
2435   st->print("]");
2436 }
2437 #endif
2438 
2439 //------------------------------singleton--------------------------------------
2440 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2441 // constants (Ldi nodes).  Singletons are integer, float or double constants
2442 // or a single symbol.
2443 bool TypeAry::singleton(void) const {
2444   return false;                 // Never a singleton
2445 }
2446 
2447 bool TypeAry::empty(void) const {
2448   return _elem->empty() || _size->empty();
2449 }
2450 
2451 //--------------------------ary_must_be_exact----------------------------------
2452 bool TypeAry::ary_must_be_exact() const {
2453   // This logic looks at the element type of an array, and returns true
2454   // if the element type is either a primitive or a final instance class.
2455   // In such cases, an array built on this ary must have no subclasses.
2456   if (_elem == BOTTOM)      return false;  // general array not exact
2457   if (_elem == TOP   )      return false;  // inverted general array not exact
2458   const TypeOopPtr*  toop = nullptr;
2459   if (UseCompressedOops && _elem->isa_narrowoop()) {
2460     toop = _elem->make_ptr()->isa_oopptr();
2461   } else {
2462     toop = _elem->isa_oopptr();
2463   }
2464   if (!toop)                return true;   // a primitive type, like int
2465   if (!toop->is_loaded())   return false;  // unloaded class
2466   const TypeInstPtr* tinst;
2467   if (_elem->isa_narrowoop())
2468     tinst = _elem->make_ptr()->isa_instptr();
2469   else
2470     tinst = _elem->isa_instptr();
2471   if (tinst)
2472     return tinst->instance_klass()->is_final();








2473   const TypeAryPtr*  tap;
2474   if (_elem->isa_narrowoop())
2475     tap = _elem->make_ptr()->isa_aryptr();
2476   else
2477     tap = _elem->isa_aryptr();
2478   if (tap)
2479     return tap->ary()->ary_must_be_exact();
2480   return false;
2481 }
2482 
2483 //==============================TypeVect=======================================
2484 // Convenience common pre-built types.
2485 const TypeVect* TypeVect::VECTA = nullptr; // vector length agnostic
2486 const TypeVect* TypeVect::VECTS = nullptr; //  32-bit vectors
2487 const TypeVect* TypeVect::VECTD = nullptr; //  64-bit vectors
2488 const TypeVect* TypeVect::VECTX = nullptr; // 128-bit vectors
2489 const TypeVect* TypeVect::VECTY = nullptr; // 256-bit vectors
2490 const TypeVect* TypeVect::VECTZ = nullptr; // 512-bit vectors
2491 const TypeVect* TypeVect::VECTMASK = nullptr; // predicate/mask vector
2492 

2627 
2628 //=============================================================================
2629 // Convenience common pre-built types.
2630 const TypePtr *TypePtr::NULL_PTR;
2631 const TypePtr *TypePtr::NOTNULL;
2632 const TypePtr *TypePtr::BOTTOM;
2633 
2634 //------------------------------meet-------------------------------------------
2635 // Meet over the PTR enum
2636 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2637   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2638   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2639   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2640   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2641   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2642   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2643   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2644 };
2645 
2646 //------------------------------make-------------------------------------------
2647 const TypePtr *TypePtr::make(TYPES t, enum PTR ptr, int offset, const TypePtr* speculative, int inline_depth) {
2648   return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2649 }
2650 
2651 //------------------------------cast_to_ptr_type-------------------------------
2652 const TypePtr* TypePtr::cast_to_ptr_type(PTR ptr) const {
2653   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2654   if( ptr == _ptr ) return this;
2655   return make(_base, ptr, _offset, _speculative, _inline_depth);
2656 }
2657 
2658 //------------------------------get_con----------------------------------------
2659 intptr_t TypePtr::get_con() const {
2660   assert( _ptr == Null, "" );
2661   return _offset;
2662 }
2663 
2664 //------------------------------meet-------------------------------------------
2665 // Compute the MEET of two types.  It returns a new Type object.
2666 const Type *TypePtr::xmeet(const Type *t) const {
2667   const Type* res = xmeet_helper(t);
2668   if (res->isa_ptr() == nullptr) {
2669     return res;
2670   }
2671 
2672   const TypePtr* res_ptr = res->is_ptr();
2673   if (res_ptr->speculative() != nullptr) {
2674     // type->speculative() is null means that speculation is no better
2675     // than type, i.e. type->speculative() == type. So there are 2
2676     // ways to represent the fact that we have no useful speculative
2677     // data and we should use a single one to be able to test for
2678     // equality between types. Check whether type->speculative() ==
2679     // type and set speculative to null if it is the case.
2680     if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2681       return res_ptr->remove_speculative();

2712     int depth = meet_inline_depth(tp->inline_depth());
2713     return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2714   }
2715   case RawPtr:                  // For these, flip the call around to cut down
2716   case OopPtr:
2717   case InstPtr:                 // on the cases I have to handle.
2718   case AryPtr:
2719   case MetadataPtr:
2720   case KlassPtr:
2721   case InstKlassPtr:
2722   case AryKlassPtr:
2723     return t->xmeet(this);      // Call in reverse direction
2724   default:                      // All else is a mistake
2725     typerr(t);
2726 
2727   }
2728   return this;
2729 }
2730 
2731 //------------------------------meet_offset------------------------------------
2732 int TypePtr::meet_offset( int offset ) const {
2733   // Either is 'TOP' offset?  Return the other offset!
2734   if( _offset == OffsetTop ) return offset;
2735   if( offset == OffsetTop ) return _offset;
2736   // If either is different, return 'BOTTOM' offset
2737   if( _offset != offset ) return OffsetBot;
2738   return _offset;
2739 }
2740 
2741 //------------------------------dual_offset------------------------------------
2742 int TypePtr::dual_offset( ) const {
2743   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
2744   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
2745   return _offset;               // Map everything else into self
2746 }
2747 
2748 //------------------------------xdual------------------------------------------
2749 // Dual: compute field-by-field dual
2750 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2751   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2752 };
2753 const Type *TypePtr::xdual() const {
2754   return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2755 }
2756 
2757 //------------------------------xadd_offset------------------------------------
2758 int TypePtr::xadd_offset( intptr_t offset ) const {
2759   // Adding to 'TOP' offset?  Return 'TOP'!
2760   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
2761   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
2762   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
2763   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
2764   offset += (intptr_t)_offset;
2765   if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
2766 
2767   // assert( _offset >= 0 && _offset+offset >= 0, "" );
2768   // It is possible to construct a negative offset during PhaseCCP
2769 
2770   return (int)offset;        // Sum valid offsets
2771 }
2772 
2773 //------------------------------add_offset-------------------------------------
2774 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2775   return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2776 }
2777 
2778 const TypePtr *TypePtr::with_offset(intptr_t offset) const {
2779   return make(AnyPtr, _ptr, offset, _speculative, _inline_depth);
2780 }
2781 
2782 //------------------------------eq---------------------------------------------
2783 // Structural equality check for Type representations
2784 bool TypePtr::eq( const Type *t ) const {
2785   const TypePtr *a = (const TypePtr*)t;
2786   return _ptr == a->ptr() && _offset == a->offset() && eq_speculative(a) && _inline_depth == a->_inline_depth;
2787 }
2788 
2789 //------------------------------hash-------------------------------------------
2790 // Type-specific hashing function.
2791 uint TypePtr::hash(void) const {
2792   return (uint)_ptr + (uint)_offset + (uint)hash_speculative() + (uint)_inline_depth;
2793 }
2794 
2795 /**
2796  * Return same type without a speculative part
2797  */
2798 const TypePtr* TypePtr::remove_speculative() const {
2799   if (_speculative == nullptr) {
2800     return this;
2801   }
2802   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2803   return make(AnyPtr, _ptr, _offset, nullptr, _inline_depth);
2804 }
2805 
2806 /**
2807  * Return same type but drop speculative part if we know we won't use
2808  * it
2809  */
2810 const Type* TypePtr::cleanup_speculative() const {
2811   if (speculative() == nullptr) {
2812     return this;

3038   }
3039   // We already know the speculative type is always null
3040   if (speculative_always_null()) {
3041     return false;
3042   }
3043   if (ptr_kind == ProfileAlwaysNull && speculative() != nullptr && speculative()->isa_oopptr()) {
3044     return false;
3045   }
3046   return true;
3047 }
3048 
3049 //------------------------------dump2------------------------------------------
3050 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
3051   "TopPTR","AnyNull","Constant","null","NotNull","BotPTR"
3052 };
3053 
3054 #ifndef PRODUCT
3055 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3056   if( _ptr == Null ) st->print("null");
3057   else st->print("%s *", ptr_msg[_ptr]);
3058   if( _offset == OffsetTop ) st->print("+top");
3059   else if( _offset == OffsetBot ) st->print("+bot");
3060   else if( _offset ) st->print("+%d", _offset);
3061   dump_inline_depth(st);
3062   dump_speculative(st);
3063 }
3064 
3065 /**
3066  *dump the speculative part of the type
3067  */
3068 void TypePtr::dump_speculative(outputStream *st) const {
3069   if (_speculative != nullptr) {
3070     st->print(" (speculative=");
3071     _speculative->dump_on(st);
3072     st->print(")");
3073   }
3074 }
3075 
3076 /**
3077  *dump the inline depth of the type
3078  */
3079 void TypePtr::dump_inline_depth(outputStream *st) const {
3080   if (_inline_depth != InlineDepthBottom) {
3081     if (_inline_depth == InlineDepthTop) {
3082       st->print(" (inline_depth=InlineDepthTop)");
3083     } else {
3084       st->print(" (inline_depth=%d)", _inline_depth);
3085     }
3086   }
3087 }
3088 #endif
3089 
3090 //------------------------------singleton--------------------------------------
3091 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3092 // constants
3093 bool TypePtr::singleton(void) const {
3094   // TopPTR, Null, AnyNull, Constant are all singletons
3095   return (_offset != OffsetBot) && !below_centerline(_ptr);
3096 }
3097 
3098 bool TypePtr::empty(void) const {
3099   return (_offset == OffsetTop) || above_centerline(_ptr);
3100 }
3101 
3102 //=============================================================================
3103 // Convenience common pre-built types.
3104 const TypeRawPtr *TypeRawPtr::BOTTOM;
3105 const TypeRawPtr *TypeRawPtr::NOTNULL;
3106 
3107 //------------------------------make-------------------------------------------
3108 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
3109   assert( ptr != Constant, "what is the constant?" );
3110   assert( ptr != Null, "Use TypePtr for null" );
3111   return (TypeRawPtr*)(new TypeRawPtr(ptr,nullptr))->hashcons();
3112 }
3113 
3114 const TypeRawPtr *TypeRawPtr::make(address bits) {
3115   assert(bits != nullptr, "Use TypePtr for null");
3116   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
3117 }
3118 
3119 //------------------------------cast_to_ptr_type-------------------------------

3480 void TypeInterfaces::verify_is_loaded() const {
3481   for (int i = 0; i < _interfaces.length(); i++) {
3482     ciKlass* interface = _interfaces.at(i);
3483     assert(interface->is_loaded(), "Interface not loaded");
3484   }
3485 }
3486 #endif
3487 
3488 // Can't be implemented because there's no way to know if the type is above or below the center line.
3489 const Type* TypeInterfaces::xmeet(const Type* t) const {
3490   ShouldNotReachHere();
3491   return Type::xmeet(t);
3492 }
3493 
3494 bool TypeInterfaces::singleton(void) const {
3495   ShouldNotReachHere();
3496   return Type::singleton();
3497 }
3498 
3499 //------------------------------TypeOopPtr-------------------------------------
3500 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int offset,
3501                        int instance_id, const TypePtr* speculative, int inline_depth)
3502   : TypePtr(t, ptr, offset, speculative, inline_depth),
3503     _const_oop(o), _klass(k),
3504     _interfaces(interfaces),
3505     _klass_is_exact(xk),
3506     _is_ptr_to_narrowoop(false),
3507     _is_ptr_to_narrowklass(false),
3508     _is_ptr_to_boxed_value(false),
3509     _instance_id(instance_id) {
3510 #ifdef ASSERT
3511   if (klass() != nullptr && klass()->is_loaded()) {
3512     interfaces->verify_is_loaded();
3513   }
3514 #endif
3515   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
3516       (offset > 0) && xk && (k != nullptr) && k->is_instance_klass()) {
3517     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
3518   }
3519 #ifdef _LP64
3520   if (_offset > 0 || _offset == Type::OffsetTop || _offset == Type::OffsetBot) {
3521     if (_offset == oopDesc::klass_offset_in_bytes()) {
3522       _is_ptr_to_narrowklass = UseCompressedClassPointers;
3523     } else if (klass() == nullptr) {
3524       // Array with unknown body type
3525       assert(this->isa_aryptr(), "only arrays without klass");
3526       _is_ptr_to_narrowoop = UseCompressedOops;
3527     } else if (this->isa_aryptr()) {
3528       _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
3529                              _offset != arrayOopDesc::length_offset_in_bytes());









3530     } else if (klass()->is_instance_klass()) {
3531       ciInstanceKlass* ik = klass()->as_instance_klass();
3532       if (this->isa_klassptr()) {
3533         // Perm objects don't use compressed references
3534       } else if (_offset == OffsetBot || _offset == OffsetTop) {
3535         // unsafe access
3536         _is_ptr_to_narrowoop = UseCompressedOops;
3537       } else {
3538         assert(this->isa_instptr(), "must be an instance ptr.");
3539 
3540         if (klass() == ciEnv::current()->Class_klass() &&
3541             (_offset == java_lang_Class::klass_offset() ||
3542              _offset == java_lang_Class::array_klass_offset())) {
3543           // Special hidden fields from the Class.
3544           assert(this->isa_instptr(), "must be an instance ptr.");
3545           _is_ptr_to_narrowoop = false;
3546         } else if (klass() == ciEnv::current()->Class_klass() &&
3547                    _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
3548           // Static fields
3549           ciField* field = nullptr;
3550           if (const_oop() != nullptr) {
3551             ciInstanceKlass* k = const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
3552             field = k->get_field_by_offset(_offset, true);
3553           }
3554           if (field != nullptr) {
3555             BasicType basic_elem_type = field->layout_type();
3556             _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type);
3557           } else {
3558             // unsafe access
3559             _is_ptr_to_narrowoop = UseCompressedOops;
3560           }
3561         } else {
3562           // Instance fields which contains a compressed oop references.
3563           ciField* field = ik->get_field_by_offset(_offset, false);

3564           if (field != nullptr) {
3565             BasicType basic_elem_type = field->layout_type();
3566             _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type);
3567           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
3568             // Compile::find_alias_type() cast exactness on all types to verify
3569             // that it does not affect alias type.
3570             _is_ptr_to_narrowoop = UseCompressedOops;
3571           } else {
3572             // Type for the copy start in LibraryCallKit::inline_native_clone().
3573             _is_ptr_to_narrowoop = UseCompressedOops;
3574           }
3575         }
3576       }
3577     }
3578   }
3579 #endif
3580 }
3581 
3582 //------------------------------make-------------------------------------------
3583 const TypeOopPtr *TypeOopPtr::make(PTR ptr, int offset, int instance_id,
3584                                      const TypePtr* speculative, int inline_depth) {
3585   assert(ptr != Constant, "no constant generic pointers");
3586   ciKlass*  k = Compile::current()->env()->Object_klass();
3587   bool      xk = false;
3588   ciObject* o = nullptr;
3589   const TypeInterfaces* interfaces = TypeInterfaces::make();
3590   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, interfaces, xk, o, offset, instance_id, speculative, inline_depth))->hashcons();
3591 }
3592 
3593 
3594 //------------------------------cast_to_ptr_type-------------------------------
3595 const TypeOopPtr* TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
3596   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
3597   if( ptr == _ptr ) return this;
3598   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
3599 }
3600 
3601 //-----------------------------cast_to_instance_id----------------------------
3602 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
3603   // There are no instances of a general oop.
3604   // Return self unchanged.
3605   return this;
3606 }
3607 
3608 //-----------------------------cast_to_exactness-------------------------------
3609 const TypeOopPtr* TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
3610   // There is no such thing as an exact general oop.
3611   // Return self unchanged.
3612   return this;
3613 }
3614 
3615 
3616 //------------------------------as_klass_type----------------------------------
3617 // Return the klass type corresponding to this instance or array type.
3618 // It is the type that is loaded from an object of this type.
3619 const TypeKlassPtr* TypeOopPtr::as_klass_type(bool try_for_exact) const {
3620   ShouldNotReachHere();
3621   return nullptr;
3622 }
3623 
3624 //------------------------------meet-------------------------------------------
3625 // Compute the MEET of two types.  It returns a new Type object.
3626 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
3627   // Perform a fast test for common case; meeting the same types together.
3628   if( this == t ) return this;  // Meeting same type-rep?
3629 
3630   // Current "this->_base" is OopPtr
3631   switch (t->base()) {          // switch on original type
3632 
3633   case Int:                     // Mixing ints & oops happens when javac
3634   case Long:                    // reuses local variables
3635   case FloatTop:

3641   case NarrowOop:
3642   case NarrowKlass:
3643   case Bottom:                  // Ye Olde Default
3644     return Type::BOTTOM;
3645   case Top:
3646     return this;
3647 
3648   default:                      // All else is a mistake
3649     typerr(t);
3650 
3651   case RawPtr:
3652   case MetadataPtr:
3653   case KlassPtr:
3654   case InstKlassPtr:
3655   case AryKlassPtr:
3656     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3657 
3658   case AnyPtr: {
3659     // Found an AnyPtr type vs self-OopPtr type
3660     const TypePtr *tp = t->is_ptr();
3661     int offset = meet_offset(tp->offset());
3662     PTR ptr = meet_ptr(tp->ptr());
3663     const TypePtr* speculative = xmeet_speculative(tp);
3664     int depth = meet_inline_depth(tp->inline_depth());
3665     switch (tp->ptr()) {
3666     case Null:
3667       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3668       // else fall through:
3669     case TopPTR:
3670     case AnyNull: {
3671       int instance_id = meet_instance_id(InstanceTop);
3672       return make(ptr, offset, instance_id, speculative, depth);
3673     }
3674     case BotPTR:
3675     case NotNull:
3676       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3677     default: typerr(t);
3678     }
3679   }
3680 
3681   case OopPtr: {                 // Meeting to other OopPtrs

3683     int instance_id = meet_instance_id(tp->instance_id());
3684     const TypePtr* speculative = xmeet_speculative(tp);
3685     int depth = meet_inline_depth(tp->inline_depth());
3686     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
3687   }
3688 
3689   case InstPtr:                  // For these, flip the call around to cut down
3690   case AryPtr:
3691     return t->xmeet(this);      // Call in reverse direction
3692 
3693   } // End of switch
3694   return this;                  // Return the double constant
3695 }
3696 
3697 
3698 //------------------------------xdual------------------------------------------
3699 // Dual of a pure heap pointer.  No relevant klass or oop information.
3700 const Type *TypeOopPtr::xdual() const {
3701   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
3702   assert(const_oop() == nullptr,             "no constants here");
3703   return new TypeOopPtr(_base, dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
3704 }
3705 
3706 //--------------------------make_from_klass_common-----------------------------
3707 // Computes the element-type given a klass.
3708 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact, InterfaceHandling interface_handling) {
3709   if (klass->is_instance_klass()) {
3710     Compile* C = Compile::current();
3711     Dependencies* deps = C->dependencies();
3712     assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
3713     // Element is an instance
3714     bool klass_is_exact = false;
3715     if (klass->is_loaded()) {
3716       // Try to set klass_is_exact.
3717       ciInstanceKlass* ik = klass->as_instance_klass();
3718       klass_is_exact = ik->is_final();
3719       if (!klass_is_exact && klass_change
3720           && deps != nullptr && UseUniqueSubclasses) {
3721         ciInstanceKlass* sub = ik->unique_concrete_subklass();
3722         if (sub != nullptr) {
3723           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3724           klass = ik = sub;
3725           klass_is_exact = sub->is_final();
3726         }
3727       }
3728       if (!klass_is_exact && try_for_exact && deps != nullptr &&
3729           !ik->is_interface() && !ik->has_subklass()) {
3730         // Add a dependence; if concrete subclass added we need to recompile
3731         deps->assert_leaf_type(ik);
3732         klass_is_exact = true;
3733       }
3734     }
3735     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
3736     return TypeInstPtr::make(TypePtr::BotPTR, klass, interfaces, klass_is_exact, nullptr, 0);
3737   } else if (klass->is_obj_array_klass()) {
3738     // Element is an object array. Recursively call ourself.
3739     ciKlass* eklass = klass->as_obj_array_klass()->element_klass();
3740     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(eklass, false, try_for_exact, interface_handling);
3741     bool xk = etype->klass_is_exact();
3742     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);








3743     // We used to pass NotNull in here, asserting that the sub-arrays
3744     // are all not-null.  This is not true in generally, as code can
3745     // slam nulls down in the subarrays.
3746     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, nullptr, xk, 0);
3747     return arr;
3748   } else if (klass->is_type_array_klass()) {
3749     // Element is an typeArray
3750     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3751     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);

3752     // We used to pass NotNull in here, asserting that the array pointer
3753     // is not-null. That was not true in general.
3754     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);






3755     return arr;
3756   } else {
3757     ShouldNotReachHere();
3758     return nullptr;
3759   }
3760 }
3761 
3762 //------------------------------make_from_constant-----------------------------
3763 // Make a java pointer from an oop constant
3764 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
3765   assert(!o->is_null_object(), "null object not yet handled here.");
3766 
3767   const bool make_constant = require_constant || o->should_be_constant();
3768 
3769   ciKlass* klass = o->klass();
3770   if (klass->is_instance_klass()) {
3771     // Element is an instance
3772     if (make_constant) {
3773       return TypeInstPtr::make(o);
3774     } else {
3775       return TypeInstPtr::make(TypePtr::NotNull, klass, true, nullptr, 0);
3776     }
3777   } else if (klass->is_obj_array_klass()) {
3778     // Element is an object array. Recursively call ourself.
3779     const TypeOopPtr *etype =
3780       TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass(), trust_interfaces);
3781     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));





3782     // We used to pass NotNull in here, asserting that the sub-arrays
3783     // are all not-null.  This is not true in generally, as code can
3784     // slam nulls down in the subarrays.
3785     if (make_constant) {
3786       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3787     } else {
3788       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3789     }
3790   } else if (klass->is_type_array_klass()) {
3791     // Element is an typeArray
3792     const Type* etype =
3793       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3794     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3795     // We used to pass NotNull in here, asserting that the array pointer
3796     // is not-null. That was not true in general.
3797     if (make_constant) {
3798       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);












3799     } else {
3800       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3801     }
3802   }
3803 
3804   fatal("unhandled object type");
3805   return nullptr;
3806 }
3807 
3808 //------------------------------get_con----------------------------------------
3809 intptr_t TypeOopPtr::get_con() const {
3810   assert( _ptr == Null || _ptr == Constant, "" );
3811   assert( _offset >= 0, "" );
3812 
3813   if (_offset != 0) {
3814     // After being ported to the compiler interface, the compiler no longer
3815     // directly manipulates the addresses of oops.  Rather, it only has a pointer
3816     // to a handle at compile time.  This handle is embedded in the generated
3817     // code and dereferenced at the time the nmethod is made.  Until that time,
3818     // it is not reasonable to do arithmetic with the addresses of oops (we don't
3819     // have access to the addresses!).  This does not seem to currently happen,
3820     // but this assertion here is to help prevent its occurrence.
3821     tty->print_cr("Found oop constant with non-zero offset");
3822     ShouldNotReachHere();
3823   }
3824 
3825   return (intptr_t)const_oop()->constant_encoding();
3826 }
3827 
3828 
3829 //-----------------------------filter------------------------------------------
3830 // Do not allow interface-vs.-noninterface joins to collapse to top.
3831 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
3832 
3833   const Type* ft = join_helper(kills, include_speculative);

3854   } else {
3855     return one->equals(two) && TypePtr::eq(t);
3856   }
3857 }
3858 
3859 //------------------------------hash-------------------------------------------
3860 // Type-specific hashing function.
3861 uint TypeOopPtr::hash(void) const {
3862   return
3863     (uint)(const_oop() ? const_oop()->hash() : 0) +
3864     (uint)_klass_is_exact +
3865     (uint)_instance_id + TypePtr::hash();
3866 }
3867 
3868 //------------------------------dump2------------------------------------------
3869 #ifndef PRODUCT
3870 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3871   st->print("oopptr:%s", ptr_msg[_ptr]);
3872   if( _klass_is_exact ) st->print(":exact");
3873   if( const_oop() ) st->print(INTPTR_FORMAT, p2i(const_oop()));
3874   switch( _offset ) {
3875   case OffsetTop: st->print("+top"); break;
3876   case OffsetBot: st->print("+any"); break;
3877   case         0: break;
3878   default:        st->print("+%d",_offset); break;
3879   }
3880   if (_instance_id == InstanceTop)
3881     st->print(",iid=top");
3882   else if (_instance_id != InstanceBot)
3883     st->print(",iid=%d",_instance_id);
3884 
3885   dump_inline_depth(st);
3886   dump_speculative(st);
3887 }
3888 #endif
3889 
3890 //------------------------------singleton--------------------------------------
3891 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3892 // constants
3893 bool TypeOopPtr::singleton(void) const {
3894   // detune optimizer to not generate constant oop + constant offset as a constant!
3895   // TopPTR, Null, AnyNull, Constant are all singletons
3896   return (_offset == 0) && !below_centerline(_ptr);
3897 }
3898 
3899 //------------------------------add_offset-------------------------------------
3900 const TypePtr* TypeOopPtr::add_offset(intptr_t offset) const {
3901   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
3902 }
3903 
3904 const TypeOopPtr* TypeOopPtr::with_offset(intptr_t offset) const {
3905   return make(_ptr, offset, _instance_id, with_offset_speculative(offset), _inline_depth);
3906 }
3907 
3908 /**
3909  * Return same type without a speculative part
3910  */
3911 const TypeOopPtr* TypeOopPtr::remove_speculative() const {
3912   if (_speculative == nullptr) {
3913     return this;
3914   }
3915   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3916   return make(_ptr, _offset, _instance_id, nullptr, _inline_depth);
3917 }
3918 
3919 /**
3920  * Return same type but drop speculative part if we know we won't use
3921  * it
3922  */
3923 const Type* TypeOopPtr::cleanup_speculative() const {
3924   // If the klass is exact and the ptr is not null then there's
3925   // nothing that the speculative type can help us with

3998 const TypeInstPtr *TypeInstPtr::BOTTOM;
3999 const TypeInstPtr *TypeInstPtr::MIRROR;
4000 const TypeInstPtr *TypeInstPtr::MARK;
4001 const TypeInstPtr *TypeInstPtr::KLASS;
4002 
4003 // Is there a single ciKlass* that can represent that type?
4004 ciKlass* TypeInstPtr::exact_klass_helper() const {
4005   if (_interfaces->empty()) {
4006     return _klass;
4007   }
4008   if (_klass != ciEnv::current()->Object_klass()) {
4009     if (_interfaces->eq(_klass->as_instance_klass())) {
4010       return _klass;
4011     }
4012     return nullptr;
4013   }
4014   return _interfaces->exact_klass();
4015 }
4016 
4017 //------------------------------TypeInstPtr-------------------------------------
4018 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int off,
4019                          int instance_id, const TypePtr* speculative, int inline_depth)
4020   : TypeOopPtr(InstPtr, ptr, k, interfaces, xk, o, off, instance_id, speculative, inline_depth) {

4021   assert(k == nullptr || !k->is_loaded() || !k->is_interface(), "no interface here");
4022   assert(k != nullptr &&
4023          (k->is_loaded() || o == nullptr),
4024          "cannot have constants with non-loaded klass");


4025 };
4026 
4027 //------------------------------make-------------------------------------------
4028 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
4029                                      ciKlass* k,
4030                                      const TypeInterfaces* interfaces,
4031                                      bool xk,
4032                                      ciObject* o,
4033                                      int offset,

4034                                      int instance_id,
4035                                      const TypePtr* speculative,
4036                                      int inline_depth) {
4037   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
4038   // Either const_oop() is null or else ptr is Constant
4039   assert( (!o && ptr != Constant) || (o && ptr == Constant),
4040           "constant pointers must have a value supplied" );
4041   // Ptr is never Null
4042   assert( ptr != Null, "null pointers are not typed" );
4043 
4044   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4045   if (ptr == Constant) {
4046     // Note:  This case includes meta-object constants, such as methods.
4047     xk = true;
4048   } else if (k->is_loaded()) {
4049     ciInstanceKlass* ik = k->as_instance_klass();
4050     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
4051     assert(!ik->is_interface(), "no interface here");
4052     if (xk && ik->is_interface())  xk = false;  // no exact interface
4053   }
4054 



4055   // Now hash this baby
4056   TypeInstPtr *result =
4057     (TypeInstPtr*)(new TypeInstPtr(ptr, k, interfaces, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
4058 
4059   return result;
4060 }
4061 
4062 const TypeInterfaces* TypePtr::interfaces(ciKlass*& k, bool klass, bool interface, bool array, InterfaceHandling interface_handling) {
4063   if (k->is_instance_klass()) {
4064     if (k->is_loaded()) {
4065       if (k->is_interface() && interface_handling == ignore_interfaces) {
4066         assert(interface, "no interface expected");
4067         k = ciEnv::current()->Object_klass();
4068         const TypeInterfaces* interfaces = TypeInterfaces::make();
4069         return interfaces;
4070       }
4071       GrowableArray<ciInstanceKlass *>* k_interfaces = k->as_instance_klass()->transitive_interfaces();
4072       const TypeInterfaces* interfaces = TypeInterfaces::make(k_interfaces);
4073       if (k->is_interface()) {
4074         assert(interface, "no interface expected");
4075         k = ciEnv::current()->Object_klass();
4076       } else {
4077         assert(klass, "no instance klass expected");

4103   switch (bt) {
4104     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
4105     case T_INT:      return TypeInt::make(constant.as_int());
4106     case T_CHAR:     return TypeInt::make(constant.as_char());
4107     case T_BYTE:     return TypeInt::make(constant.as_byte());
4108     case T_SHORT:    return TypeInt::make(constant.as_short());
4109     case T_FLOAT:    return TypeF::make(constant.as_float());
4110     case T_DOUBLE:   return TypeD::make(constant.as_double());
4111     case T_LONG:     return TypeLong::make(constant.as_long());
4112     default:         break;
4113   }
4114   fatal("Invalid boxed value type '%s'", type2name(bt));
4115   return nullptr;
4116 }
4117 
4118 //------------------------------cast_to_ptr_type-------------------------------
4119 const TypeInstPtr* TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
4120   if( ptr == _ptr ) return this;
4121   // Reconstruct _sig info here since not a problem with later lazy
4122   // construction, _sig will show up on demand.
4123   return make(ptr, klass(), _interfaces, klass_is_exact(), ptr == Constant ? const_oop() : nullptr, _offset, _instance_id, _speculative, _inline_depth);
4124 }
4125 
4126 
4127 //-----------------------------cast_to_exactness-------------------------------
4128 const TypeInstPtr* TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
4129   if( klass_is_exact == _klass_is_exact ) return this;
4130   if (!_klass->is_loaded())  return this;
4131   ciInstanceKlass* ik = _klass->as_instance_klass();
4132   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
4133   assert(!ik->is_interface(), "no interface here");
4134   return make(ptr(), klass(), _interfaces, klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
4135 }
4136 
4137 //-----------------------------cast_to_instance_id----------------------------
4138 const TypeInstPtr* TypeInstPtr::cast_to_instance_id(int instance_id) const {
4139   if( instance_id == _instance_id ) return this;
4140   return make(_ptr, klass(),  _interfaces, _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
4141 }
4142 
4143 //------------------------------xmeet_unloaded---------------------------------
4144 // Compute the MEET of two InstPtrs when at least one is unloaded.
4145 // Assume classes are different since called after check for same name/class-loader
4146 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst, const TypeInterfaces* interfaces) const {
4147   int off = meet_offset(tinst->offset());
4148   PTR ptr = meet_ptr(tinst->ptr());
4149   int instance_id = meet_instance_id(tinst->instance_id());
4150   const TypePtr* speculative = xmeet_speculative(tinst);
4151   int depth = meet_inline_depth(tinst->inline_depth());
4152 
4153   const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
4154   const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
4155   if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
4156     //
4157     // Meet unloaded class with java/lang/Object
4158     //
4159     // Meet
4160     //          |                     Unloaded Class
4161     //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
4162     //  ===================================================================
4163     //   TOP    | ..........................Unloaded......................|
4164     //  AnyNull |  U-AN    |................Unloaded......................|
4165     // Constant | ... O-NN .................................. |   O-BOT   |
4166     //  NotNull | ... O-NN .................................. |   O-BOT   |
4167     //  BOTTOM  | ........................Object-BOTTOM ..................|
4168     //
4169     assert(loaded->ptr() != TypePtr::Null, "insanity check");
4170     //
4171     if (loaded->ptr() == TypePtr::TopPTR)        { return unloaded->with_speculative(speculative); }
4172     else if (loaded->ptr() == TypePtr::AnyNull)  { return make(ptr, unloaded->klass(), interfaces, false, nullptr, off, instance_id, speculative, depth); }
4173     else if (loaded->ptr() == TypePtr::BotPTR)   { return TypeInstPtr::BOTTOM->with_speculative(speculative); }
4174     else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
4175       if (unloaded->ptr() == TypePtr::BotPTR)    { return TypeInstPtr::BOTTOM->with_speculative(speculative);  }
4176       else                                       { return TypeInstPtr::NOTNULL->with_speculative(speculative); }
4177     }
4178     else if (unloaded->ptr() == TypePtr::TopPTR) { return unloaded->with_speculative(speculative); }
4179 
4180     return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr()->with_speculative(speculative);
4181   }
4182 
4183   // Both are unloaded, not the same class, not Object
4184   // Or meet unloaded with a different loaded class, not java/lang/Object
4185   if (ptr != TypePtr::BotPTR) {
4186     return TypeInstPtr::NOTNULL->with_speculative(speculative);
4187   }
4188   return TypeInstPtr::BOTTOM->with_speculative(speculative);
4189 }
4190 
4191 
4192 //------------------------------meet-------------------------------------------

4213   case Top:
4214     return this;
4215 
4216   default:                      // All else is a mistake
4217     typerr(t);
4218 
4219   case MetadataPtr:
4220   case KlassPtr:
4221   case InstKlassPtr:
4222   case AryKlassPtr:
4223   case RawPtr: return TypePtr::BOTTOM;
4224 
4225   case AryPtr: {                // All arrays inherit from Object class
4226     // Call in reverse direction to avoid duplication
4227     return t->is_aryptr()->xmeet_helper(this);
4228   }
4229 
4230   case OopPtr: {                // Meeting to OopPtrs
4231     // Found a OopPtr type vs self-InstPtr type
4232     const TypeOopPtr *tp = t->is_oopptr();
4233     int offset = meet_offset(tp->offset());
4234     PTR ptr = meet_ptr(tp->ptr());
4235     switch (tp->ptr()) {
4236     case TopPTR:
4237     case AnyNull: {
4238       int instance_id = meet_instance_id(InstanceTop);
4239       const TypePtr* speculative = xmeet_speculative(tp);
4240       int depth = meet_inline_depth(tp->inline_depth());
4241       return make(ptr, klass(), _interfaces, klass_is_exact(),
4242                   (ptr == Constant ? const_oop() : nullptr), offset, instance_id, speculative, depth);
4243     }
4244     case NotNull:
4245     case BotPTR: {
4246       int instance_id = meet_instance_id(tp->instance_id());
4247       const TypePtr* speculative = xmeet_speculative(tp);
4248       int depth = meet_inline_depth(tp->inline_depth());
4249       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4250     }
4251     default: typerr(t);
4252     }
4253   }
4254 
4255   case AnyPtr: {                // Meeting to AnyPtrs
4256     // Found an AnyPtr type vs self-InstPtr type
4257     const TypePtr *tp = t->is_ptr();
4258     int offset = meet_offset(tp->offset());
4259     PTR ptr = meet_ptr(tp->ptr());
4260     int instance_id = meet_instance_id(InstanceTop);
4261     const TypePtr* speculative = xmeet_speculative(tp);
4262     int depth = meet_inline_depth(tp->inline_depth());
4263     switch (tp->ptr()) {
4264     case Null:
4265       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4266       // else fall through to AnyNull
4267     case TopPTR:
4268     case AnyNull: {
4269       return make(ptr, klass(), _interfaces, klass_is_exact(),
4270                   (ptr == Constant ? const_oop() : nullptr), offset, instance_id, speculative, depth);
4271     }
4272     case NotNull:
4273     case BotPTR:
4274       return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
4275     default: typerr(t);
4276     }
4277   }
4278 
4279   /*
4280                  A-top         }
4281                /   |   \       }  Tops
4282            B-top A-any C-top   }
4283               | /  |  \ |      }  Any-nulls
4284            B-any   |   C-any   }
4285               |    |    |
4286            B-con A-con C-con   } constants; not comparable across classes
4287               |    |    |
4288            B-not   |   C-not   }
4289               | \  |  / |      }  not-nulls
4290            B-bot A-not C-bot   }
4291                \   |   /       }  Bottoms
4292                  A-bot         }
4293   */
4294 
4295   case InstPtr: {                // Meeting 2 Oops?
4296     // Found an InstPtr sub-type vs self-InstPtr type
4297     const TypeInstPtr *tinst = t->is_instptr();
4298     int off = meet_offset(tinst->offset());
4299     PTR ptr = meet_ptr(tinst->ptr());
4300     int instance_id = meet_instance_id(tinst->instance_id());
4301     const TypePtr* speculative = xmeet_speculative(tinst);
4302     int depth = meet_inline_depth(tinst->inline_depth());
4303     const TypeInterfaces* interfaces = meet_interfaces(tinst);
4304 
4305     ciKlass* tinst_klass = tinst->klass();
4306     ciKlass* this_klass  = klass();
4307 
4308     ciKlass* res_klass = nullptr;
4309     bool res_xk = false;

4310     const Type* res;
4311     MeetResult kind = meet_instptr(ptr, interfaces, this, tinst, res_klass, res_xk);
4312 
4313     if (kind == UNLOADED) {
4314       // One of these classes has not been loaded
4315       const TypeInstPtr* unloaded_meet = xmeet_unloaded(tinst, interfaces);
4316 #ifndef PRODUCT
4317       if (PrintOpto && Verbose) {
4318         tty->print("meet of unloaded classes resulted in: ");
4319         unloaded_meet->dump();
4320         tty->cr();
4321         tty->print("  this == ");
4322         dump();
4323         tty->cr();
4324         tty->print(" tinst == ");
4325         tinst->dump();
4326         tty->cr();
4327       }
4328 #endif
4329       res = unloaded_meet;
4330     } else {
4331       if (kind == NOT_SUBTYPE && instance_id > 0) {
4332         instance_id = InstanceBot;
4333       } else if (kind == LCA) {
4334         instance_id = InstanceBot;
4335       }
4336       ciObject* o = nullptr;             // Assume not constant when done
4337       ciObject* this_oop = const_oop();
4338       ciObject* tinst_oop = tinst->const_oop();
4339       if (ptr == Constant) {
4340         if (this_oop != nullptr && tinst_oop != nullptr &&
4341             this_oop->equals(tinst_oop))
4342           o = this_oop;
4343         else if (above_centerline(_ptr)) {
4344           assert(!tinst_klass->is_interface(), "");
4345           o = tinst_oop;
4346         } else if (above_centerline(tinst->_ptr)) {
4347           assert(!this_klass->is_interface(), "");
4348           o = this_oop;
4349         } else
4350           ptr = NotNull;
4351       }
4352       res = make(ptr, res_klass, interfaces, res_xk, o, off, instance_id, speculative, depth);
4353     }
4354 
4355     return res;
4356 
4357   } // End of case InstPtr
4358 
4359   } // End of switch
4360   return this;                  // Return the double constant
4361 }
4362 
4363 template<class T> TypePtr::MeetResult TypePtr::meet_instptr(PTR& ptr, const TypeInterfaces*& interfaces, const T* this_type, const T* other_type,
4364                                                             ciKlass*& res_klass, bool& res_xk) {
4365   ciKlass* this_klass = this_type->klass();
4366   ciKlass* other_klass = other_type->klass();





4367   bool this_xk = this_type->klass_is_exact();
4368   bool other_xk = other_type->klass_is_exact();
4369   PTR this_ptr = this_type->ptr();
4370   PTR other_ptr = other_type->ptr();
4371   const TypeInterfaces* this_interfaces = this_type->interfaces();
4372   const TypeInterfaces* other_interfaces = other_type->interfaces();
4373   // Check for easy case; klasses are equal (and perhaps not loaded!)
4374   // If we have constants, then we created oops so classes are loaded
4375   // and we can handle the constants further down.  This case handles
4376   // both-not-loaded or both-loaded classes
4377   if (ptr != Constant && this_klass->equals(other_klass) && this_xk == other_xk) {
4378     res_klass = this_klass;
4379     res_xk = this_xk;

4380     return QUICK;
4381   }
4382 
4383   // Classes require inspection in the Java klass hierarchy.  Must be loaded.
4384   if (!other_klass->is_loaded() || !this_klass->is_loaded()) {
4385     return UNLOADED;
4386   }
4387 
4388   // !!! Here's how the symmetry requirement breaks down into invariants:
4389   // If we split one up & one down AND they subtype, take the down man.
4390   // If we split one up & one down AND they do NOT subtype, "fall hard".
4391   // If both are up and they subtype, take the subtype class.
4392   // If both are up and they do NOT subtype, "fall hard".
4393   // If both are down and they subtype, take the supertype class.
4394   // If both are down and they do NOT subtype, "fall hard".
4395   // Constants treated as down.
4396 
4397   // Now, reorder the above list; observe that both-down+subtype is also
4398   // "fall hard"; "fall hard" becomes the default case:
4399   // If we split one up & one down AND they subtype, take the down man.
4400   // If both are up and they subtype, take the subtype class.
4401 
4402   // If both are down and they subtype, "fall hard".
4403   // If both are down and they do NOT subtype, "fall hard".
4404   // If both are up and they do NOT subtype, "fall hard".
4405   // If we split one up & one down AND they do NOT subtype, "fall hard".
4406 
4407   // If a proper subtype is exact, and we return it, we return it exactly.
4408   // If a proper supertype is exact, there can be no subtyping relationship!
4409   // If both types are equal to the subtype, exactness is and-ed below the
4410   // centerline and or-ed above it.  (N.B. Constants are always exact.)
4411 
4412   // Check for subtyping:









4413   const T* subtype = nullptr;
4414   bool subtype_exact = false;

4415   if (this_type->is_same_java_type_as(other_type)) {
4416     subtype = this_type;
4417     subtype_exact = below_centerline(ptr) ? (this_xk && other_xk) : (this_xk || other_xk);
4418   } else if (!other_xk && this_type->is_meet_subtype_of(other_type)) {

4419     subtype = this_type;     // Pick subtyping class
4420     subtype_exact = this_xk;
4421   } else if(!this_xk && other_type->is_meet_subtype_of(this_type)) {


4422     subtype = other_type;    // Pick subtyping class
4423     subtype_exact = other_xk;


4424   }
4425 
4426   if (subtype) {
4427     if (above_centerline(ptr)) { // both are up?

4428       this_type = other_type = subtype;
4429       this_xk = other_xk = subtype_exact;
4430     } else if (above_centerline(this_ptr) && !above_centerline(other_ptr)) {
4431       this_type = other_type; // tinst is down; keep down man

4432       this_xk = other_xk;

4433     } else if (above_centerline(other_ptr) && !above_centerline(this_ptr)) {

4434       other_type = this_type; // this is down; keep down man
4435       other_xk = this_xk;
4436     } else {

4437       this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
4438     }
4439   }
4440 
4441   // Check for classes now being equal
4442   if (this_type->is_same_java_type_as(other_type)) {
4443     // If the klasses are equal, the constants may still differ.  Fall to
4444     // NotNull if they do (neither constant is null; that is a special case
4445     // handled elsewhere).
4446     res_klass = this_type->klass();
4447     res_xk = this_xk;

4448     return SUBTYPE;
4449   } // Else classes are not equal
4450 
4451   // Since klasses are different, we require a LCA in the Java
4452   // class hierarchy - which means we have to fall to at least NotNull.
4453   if (ptr == TopPTR || ptr == AnyNull || ptr == Constant) {
4454     ptr = NotNull;
4455   }
4456 
4457   interfaces = this_interfaces->intersection_with(other_interfaces);
4458 
4459   // Now we find the LCA of Java classes
4460   ciKlass* k = this_klass->least_common_ancestor(other_klass);
4461 
4462   res_klass = k;
4463   res_xk = false;

4464 
4465   return LCA;
4466 }
4467 




4468 //------------------------java_mirror_type--------------------------------------
4469 ciType* TypeInstPtr::java_mirror_type() const {
4470   // must be a singleton type
4471   if( const_oop() == nullptr )  return nullptr;
4472 
4473   // must be of type java.lang.Class
4474   if( klass() != ciEnv::current()->Class_klass() )  return nullptr;
4475 
4476   return const_oop()->as_instance()->java_mirror_type();
4477 }
4478 
4479 
4480 //------------------------------xdual------------------------------------------
4481 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
4482 // inheritance mechanism.
4483 const Type *TypeInstPtr::xdual() const {
4484   return new TypeInstPtr(dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
4485 }
4486 
4487 //------------------------------eq---------------------------------------------
4488 // Structural equality check for Type representations
4489 bool TypeInstPtr::eq( const Type *t ) const {
4490   const TypeInstPtr *p = t->is_instptr();
4491   return
4492     klass()->equals(p->klass()) &&

4493     _interfaces->eq(p->_interfaces) &&
4494     TypeOopPtr::eq(p);          // Check sub-type stuff
4495 }
4496 
4497 //------------------------------hash-------------------------------------------
4498 // Type-specific hashing function.
4499 uint TypeInstPtr::hash(void) const {
4500   return klass()->hash() + TypeOopPtr::hash() + _interfaces->hash();
4501 }
4502 
4503 bool TypeInstPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4504   return TypePtr::is_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
4505 }
4506 
4507 
4508 bool TypeInstPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const {
4509   return TypePtr::is_same_java_type_as_helper_for_instance(this, other);
4510 }
4511 
4512 bool TypeInstPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4513   return TypePtr::maybe_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
4514 }
4515 
4516 
4517 //------------------------------dump2------------------------------------------
4518 // Dump oop Type
4519 #ifndef PRODUCT
4520 void TypeInstPtr::dump2(Dict &d, uint depth, outputStream* st) const {

4534       // suppress newlines from it so -XX:+Verbose -XX:+PrintIdeal dumps one-liner for each node.
4535       char* buf = ss.as_string(/* c_heap= */false);
4536       StringUtils::replace_no_expand(buf, "\n", "");
4537       st->print_raw(buf);
4538     }
4539   case BotPTR:
4540     if (!WizardMode && !Verbose) {
4541       if( _klass_is_exact ) st->print(":exact");
4542       break;
4543     }
4544   case TopPTR:
4545   case AnyNull:
4546   case NotNull:
4547     st->print(":%s", ptr_msg[_ptr]);
4548     if( _klass_is_exact ) st->print(":exact");
4549     break;
4550   default:
4551     break;
4552   }
4553 
4554   if( _offset ) {               // Dump offset, if any
4555     if( _offset == OffsetBot )      st->print("+any");
4556     else if( _offset == OffsetTop ) st->print("+unknown");
4557     else st->print("+%d", _offset);
4558   }
4559 
4560   st->print(" *");





4561   if (_instance_id == InstanceTop)
4562     st->print(",iid=top");
4563   else if (_instance_id != InstanceBot)
4564     st->print(",iid=%d",_instance_id);
4565 
4566   dump_inline_depth(st);
4567   dump_speculative(st);
4568 }
4569 #endif
4570 
4571 //------------------------------add_offset-------------------------------------
4572 const TypePtr* TypeInstPtr::add_offset(intptr_t offset) const {
4573   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), xadd_offset(offset),
4574               _instance_id, add_offset_speculative(offset), _inline_depth);
4575 }
4576 
4577 const TypeInstPtr* TypeInstPtr::with_offset(intptr_t offset) const {
4578   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), offset,
4579               _instance_id, with_offset_speculative(offset), _inline_depth);
4580 }
4581 
4582 const TypeInstPtr* TypeInstPtr::remove_speculative() const {
4583   if (_speculative == nullptr) {
4584     return this;
4585   }
4586   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4587   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset,
4588               _instance_id, nullptr, _inline_depth);
4589 }
4590 
4591 const TypeInstPtr* TypeInstPtr::with_speculative(const TypePtr* speculative) const {
4592   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, _instance_id, speculative, _inline_depth);
4593 }
4594 
4595 const TypePtr* TypeInstPtr::with_inline_depth(int depth) const {
4596   if (!UseInlineDepthForSpeculativeTypes) {
4597     return this;
4598   }
4599   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
4600 }
4601 
4602 const TypePtr* TypeInstPtr::with_instance_id(int instance_id) const {
4603   assert(is_known_instance(), "should be known");
4604   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, instance_id, _speculative, _inline_depth);




4605 }
4606 
4607 const TypeKlassPtr* TypeInstPtr::as_klass_type(bool try_for_exact) const {
4608   bool xk = klass_is_exact();
4609   ciInstanceKlass* ik = klass()->as_instance_klass();
4610   if (try_for_exact && !xk && !ik->has_subklass() && !ik->is_final()) {
4611     if (_interfaces->eq(ik)) {
4612       Compile* C = Compile::current();
4613       Dependencies* deps = C->dependencies();
4614       deps->assert_leaf_type(ik);
4615       xk = true;
4616     }
4617   }
4618   return TypeInstKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, klass(), _interfaces, 0);
4619 }
4620 
4621 template <class T1, class T2> bool TypePtr::is_meet_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_xk, bool other_xk) {
4622   static_assert(std::is_base_of<T2, T1>::value, "");
4623 
4624   if (!this_one->is_instance_type(other)) {
4625     return false;
4626   }
4627 
4628   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty()) {
4629     return true;
4630   }
4631 
4632   return this_one->klass()->is_subtype_of(other->klass()) &&
4633          (!this_xk || this_one->_interfaces->contains(other->_interfaces));
4634 }
4635 
4636 
4637 bool TypeInstPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const {
4638   return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk);

4643   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty()) {
4644     return true;
4645   }
4646 
4647   if (this_one->is_instance_type(other)) {
4648     return other->klass() == ciEnv::current()->Object_klass() && this_one->_interfaces->contains(other->_interfaces);
4649   }
4650 
4651   int dummy;
4652   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
4653   if (this_top_or_bottom) {
4654     return false;
4655   }
4656 
4657   const T1* other_ary = this_one->is_array_type(other);
4658   const TypePtr* other_elem = other_ary->elem()->make_ptr();
4659   const TypePtr* this_elem = this_one->elem()->make_ptr();
4660   if (other_elem != nullptr && this_elem != nullptr) {
4661     return this_one->is_reference_type(this_elem)->is_meet_subtype_of_helper(this_one->is_reference_type(other_elem), this_xk, other_xk);
4662   }
4663 
4664   if (other_elem == nullptr && this_elem == nullptr) {
4665     return this_one->klass()->is_subtype_of(other->klass());
4666   }
4667 
4668   return false;
4669 }
4670 
4671 bool TypeAryPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const {
4672   return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk);
4673 }
4674 
4675 bool TypeInstKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const {
4676   return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk);
4677 }
4678 
4679 bool TypeAryKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const {
4680   return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk);
4681 }
4682 
4683 //=============================================================================
4684 // Convenience common pre-built types.
4685 const TypeAryPtr *TypeAryPtr::RANGE;
4686 const TypeAryPtr *TypeAryPtr::OOPS;
4687 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
4688 const TypeAryPtr *TypeAryPtr::BYTES;
4689 const TypeAryPtr *TypeAryPtr::SHORTS;
4690 const TypeAryPtr *TypeAryPtr::CHARS;
4691 const TypeAryPtr *TypeAryPtr::INTS;
4692 const TypeAryPtr *TypeAryPtr::LONGS;
4693 const TypeAryPtr *TypeAryPtr::FLOATS;
4694 const TypeAryPtr *TypeAryPtr::DOUBLES;

4695 
4696 //------------------------------make-------------------------------------------
4697 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset,
4698                                    int instance_id, const TypePtr* speculative, int inline_depth) {
4699   assert(!(k == nullptr && ary->_elem->isa_int()),
4700          "integral arrays must be pre-equipped with a class");
4701   if (!xk)  xk = ary->ary_must_be_exact();
4702   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4703   if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() &&
4704       k->as_obj_array_klass()->base_element_klass()->is_interface()) {
4705     k = nullptr;
4706   }
4707   return (TypeAryPtr*)(new TypeAryPtr(ptr, nullptr, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons();



4708 }
4709 
4710 //------------------------------make-------------------------------------------
4711 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset,
4712                                    int instance_id, const TypePtr* speculative, int inline_depth,
4713                                    bool is_autobox_cache) {
4714   assert(!(k == nullptr && ary->_elem->isa_int()),
4715          "integral arrays must be pre-equipped with a class");
4716   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
4717   if (!xk)  xk = (o != nullptr) || ary->ary_must_be_exact();
4718   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4719   if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() &&
4720       k->as_obj_array_klass()->base_element_klass()->is_interface()) {
4721     k = nullptr;
4722   }
4723   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();



4724 }
4725 
4726 //------------------------------cast_to_ptr_type-------------------------------
4727 const TypeAryPtr* TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
4728   if( ptr == _ptr ) return this;
4729   return make(ptr, ptr == Constant ? const_oop() : nullptr, _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4730 }
4731 
4732 
4733 //-----------------------------cast_to_exactness-------------------------------
4734 const TypeAryPtr* TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
4735   if( klass_is_exact == _klass_is_exact ) return this;
4736   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
4737   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
4738 }
4739 
4740 //-----------------------------cast_to_instance_id----------------------------
4741 const TypeAryPtr* TypeAryPtr::cast_to_instance_id(int instance_id) const {
4742   if( instance_id == _instance_id ) return this;
4743   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
4744 }
4745 
4746 
4747 //-----------------------------max_array_length-------------------------------
4748 // A wrapper around arrayOopDesc::max_array_length(etype) with some input normalization.
4749 jint TypeAryPtr::max_array_length(BasicType etype) {
4750   if (!is_java_primitive(etype) && !::is_reference_type(etype)) {
4751     if (etype == T_NARROWOOP) {
4752       etype = T_OBJECT;
4753     } else if (etype == T_ILLEGAL) { // bottom[]
4754       etype = T_BYTE; // will produce conservatively high value
4755     } else {
4756       fatal("not an element type: %s", type2name(etype));
4757     }
4758   }
4759   return arrayOopDesc::max_array_length(etype);
4760 }
4761 
4762 //-----------------------------narrow_size_type-------------------------------
4763 // Narrow the given size type to the index range for the given array base type.

4779   if (hi > max_hi) {
4780     hi = max_hi;
4781     if (size->is_con()) {
4782       lo = hi;
4783     }
4784     chg = true;
4785   }
4786   // Negative length arrays will produce weird intermediate dead fast-path code
4787   if (lo > hi)
4788     return TypeInt::ZERO;
4789   if (!chg)
4790     return size;
4791   return TypeInt::make(lo, hi, Type::WidenMin);
4792 }
4793 
4794 //-------------------------------cast_to_size----------------------------------
4795 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
4796   assert(new_size != nullptr, "");
4797   new_size = narrow_size_type(new_size);
4798   if (new_size == size())  return this;
4799   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
4800   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);




























































4801 }
4802 
4803 //------------------------------cast_to_stable---------------------------------
4804 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
4805   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
4806     return this;
4807 
4808   const Type* elem = this->elem();
4809   const TypePtr* elem_ptr = elem->make_ptr();
4810 
4811   if (stable_dimension > 1 && elem_ptr != nullptr && elem_ptr->isa_aryptr()) {
4812     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
4813     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
4814   }
4815 
4816   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
4817 
4818   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4819 }
4820 
4821 //-----------------------------stable_dimension--------------------------------
4822 int TypeAryPtr::stable_dimension() const {
4823   if (!is_stable())  return 0;
4824   int dim = 1;
4825   const TypePtr* elem_ptr = elem()->make_ptr();
4826   if (elem_ptr != nullptr && elem_ptr->isa_aryptr())
4827     dim += elem_ptr->is_aryptr()->stable_dimension();
4828   return dim;
4829 }
4830 
4831 //----------------------cast_to_autobox_cache-----------------------------------
4832 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache() const {
4833   if (is_autobox_cache())  return this;
4834   const TypeOopPtr* etype = elem()->make_oopptr();
4835   if (etype == nullptr)  return this;
4836   // The pointers in the autobox arrays are always non-null.
4837   etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4838   const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable());
4839   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth, /*is_autobox_cache=*/true);
4840 }
4841 
4842 //------------------------------eq---------------------------------------------
4843 // Structural equality check for Type representations
4844 bool TypeAryPtr::eq( const Type *t ) const {
4845   const TypeAryPtr *p = t->is_aryptr();
4846   return
4847     _ary == p->_ary &&  // Check array
4848     TypeOopPtr::eq(p);  // Check sub-parts

4849 }
4850 
4851 //------------------------------hash-------------------------------------------
4852 // Type-specific hashing function.
4853 uint TypeAryPtr::hash(void) const {
4854   return (uint)(uintptr_t)_ary + TypeOopPtr::hash();
4855 }
4856 
4857 bool TypeAryPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4858   return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
4859 }
4860 
4861 bool TypeAryPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const {
4862   return TypePtr::is_same_java_type_as_helper_for_array(this, other);
4863 }
4864 
4865 bool TypeAryPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4866   return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
4867 }
4868 //------------------------------meet-------------------------------------------
4869 // Compute the MEET of two types.  It returns a new Type object.
4870 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
4871   // Perform a fast test for common case; meeting the same types together.
4872   if( this == t ) return this;  // Meeting same type-rep?
4873   // Current "this->_base" is Pointer
4874   switch (t->base()) {          // switch on original type

4878   case Long:
4879   case FloatTop:
4880   case FloatCon:
4881   case FloatBot:
4882   case DoubleTop:
4883   case DoubleCon:
4884   case DoubleBot:
4885   case NarrowOop:
4886   case NarrowKlass:
4887   case Bottom:                  // Ye Olde Default
4888     return Type::BOTTOM;
4889   case Top:
4890     return this;
4891 
4892   default:                      // All else is a mistake
4893     typerr(t);
4894 
4895   case OopPtr: {                // Meeting to OopPtrs
4896     // Found a OopPtr type vs self-AryPtr type
4897     const TypeOopPtr *tp = t->is_oopptr();
4898     int offset = meet_offset(tp->offset());
4899     PTR ptr = meet_ptr(tp->ptr());
4900     int depth = meet_inline_depth(tp->inline_depth());
4901     const TypePtr* speculative = xmeet_speculative(tp);
4902     switch (tp->ptr()) {
4903     case TopPTR:
4904     case AnyNull: {
4905       int instance_id = meet_instance_id(InstanceTop);
4906       return make(ptr, (ptr == Constant ? const_oop() : nullptr),
4907                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4908     }
4909     case BotPTR:
4910     case NotNull: {
4911       int instance_id = meet_instance_id(tp->instance_id());
4912       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4913     }
4914     default: ShouldNotReachHere();
4915     }
4916   }
4917 
4918   case AnyPtr: {                // Meeting two AnyPtrs
4919     // Found an AnyPtr type vs self-AryPtr type
4920     const TypePtr *tp = t->is_ptr();
4921     int offset = meet_offset(tp->offset());
4922     PTR ptr = meet_ptr(tp->ptr());
4923     const TypePtr* speculative = xmeet_speculative(tp);
4924     int depth = meet_inline_depth(tp->inline_depth());
4925     switch (tp->ptr()) {
4926     case TopPTR:
4927       return this;
4928     case BotPTR:
4929     case NotNull:
4930       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4931     case Null:
4932       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4933       // else fall through to AnyNull
4934     case AnyNull: {
4935       int instance_id = meet_instance_id(InstanceTop);
4936       return make(ptr, (ptr == Constant ? const_oop() : nullptr),
4937                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4938     }
4939     default: ShouldNotReachHere();
4940     }
4941   }
4942 
4943   case MetadataPtr:
4944   case KlassPtr:
4945   case InstKlassPtr:
4946   case AryKlassPtr:
4947   case RawPtr: return TypePtr::BOTTOM;
4948 
4949   case AryPtr: {                // Meeting 2 references?
4950     const TypeAryPtr *tap = t->is_aryptr();
4951     int off = meet_offset(tap->offset());

4952     const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
4953     PTR ptr = meet_ptr(tap->ptr());
4954     int instance_id = meet_instance_id(tap->instance_id());
4955     const TypePtr* speculative = xmeet_speculative(tap);
4956     int depth = meet_inline_depth(tap->inline_depth());
4957 
4958     ciKlass* res_klass = nullptr;
4959     bool res_xk = false;



4960     const Type* elem = tary->_elem;
4961     if (meet_aryptr(ptr, elem, this, tap, res_klass, res_xk) == NOT_SUBTYPE) {
4962       instance_id = InstanceBot;














4963     }
4964 
4965     ciObject* o = nullptr;             // Assume not constant when done
4966     ciObject* this_oop = const_oop();
4967     ciObject* tap_oop = tap->const_oop();
4968     if (ptr == Constant) {
4969       if (this_oop != nullptr && tap_oop != nullptr &&
4970           this_oop->equals(tap_oop)) {
4971         o = tap_oop;
4972       } else if (above_centerline(_ptr)) {
4973         o = tap_oop;
4974       } else if (above_centerline(tap->_ptr)) {
4975         o = this_oop;
4976       } else {
4977         ptr = NotNull;
4978       }
4979     }
4980     return make(ptr, o, TypeAry::make(elem, tary->_size, tary->_stable), res_klass, res_xk, off, instance_id, speculative, depth);
4981   }
4982 
4983   // All arrays inherit from Object class
4984   case InstPtr: {
4985     const TypeInstPtr *tp = t->is_instptr();
4986     int offset = meet_offset(tp->offset());
4987     PTR ptr = meet_ptr(tp->ptr());
4988     int instance_id = meet_instance_id(tp->instance_id());
4989     const TypePtr* speculative = xmeet_speculative(tp);
4990     int depth = meet_inline_depth(tp->inline_depth());
4991     const TypeInterfaces* interfaces = meet_interfaces(tp);
4992     const TypeInterfaces* tp_interfaces = tp->_interfaces;
4993     const TypeInterfaces* this_interfaces = _interfaces;
4994 
4995     switch (ptr) {
4996     case TopPTR:
4997     case AnyNull:                // Fall 'down' to dual of object klass
4998       // For instances when a subclass meets a superclass we fall
4999       // below the centerline when the superclass is exact. We need to
5000       // do the same here.
5001       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) && !tp->klass_is_exact()) {
5002         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
5003       } else {
5004         // cannot subclass, so the meet has to fall badly below the centerline
5005         ptr = NotNull;
5006         instance_id = InstanceBot;
5007         interfaces = this_interfaces->intersection_with(tp_interfaces);
5008         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr,offset, instance_id, speculative, depth);
5009       }
5010     case Constant:
5011     case NotNull:
5012     case BotPTR:                // Fall down to object klass
5013       // LCA is object_klass, but if we subclass from the top we can do better
5014       if (above_centerline(tp->ptr())) {
5015         // If 'tp'  is above the centerline and it is Object class
5016         // then we can subclass in the Java class hierarchy.
5017         // For instances when a subclass meets a superclass we fall
5018         // below the centerline when the superclass is exact. We need
5019         // to do the same here.
5020         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) && !tp->klass_is_exact()) {
5021           // that is, my array type is a subtype of 'tp' klass
5022           return make(ptr, (ptr == Constant ? const_oop() : nullptr),
5023                       _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
5024         }
5025       }
5026       // The other case cannot happen, since t cannot be a subtype of an array.
5027       // The meet falls down to Object class below centerline.
5028       if (ptr == Constant) {
5029          ptr = NotNull;
5030       }
5031       if (instance_id > 0) {
5032         instance_id = InstanceBot;
5033       }
5034       interfaces = this_interfaces->intersection_with(tp_interfaces);
5035       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr, offset, instance_id, speculative, depth);
5036     default: typerr(t);
5037     }
5038   }
5039   }
5040   return this;                  // Lint noise
5041 }
5042 
5043 
5044 template<class T> TypePtr::MeetResult TypePtr::meet_aryptr(PTR& ptr, const Type*& elem, const T* this_ary,
5045                                                            const T* other_ary, ciKlass*& res_klass, bool& res_xk) {
5046   int dummy;
5047   bool this_top_or_bottom = (this_ary->base_element_type(dummy) == Type::TOP || this_ary->base_element_type(dummy) == Type::BOTTOM);
5048   bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
5049   ciKlass* this_klass = this_ary->klass();
5050   ciKlass* other_klass = other_ary->klass();
5051   bool this_xk = this_ary->klass_is_exact();
5052   bool other_xk = other_ary->klass_is_exact();
5053   PTR this_ptr = this_ary->ptr();
5054   PTR other_ptr = other_ary->ptr();






5055   res_klass = nullptr;
5056   MeetResult result = SUBTYPE;




5057   if (elem->isa_int()) {
5058     // Integral array element types have irrelevant lattice relations.
5059     // It is the klass that determines array layout, not the element type.
5060     if (this_top_or_bottom)
5061       res_klass = other_klass;
5062     else if (other_top_or_bottom || other_klass == this_klass) {
5063       res_klass = this_klass;
5064     } else {
5065       // Something like byte[int+] meets char[int+].
5066       // This must fall to bottom, not (int[-128..65535])[int+].
5067       // instance_id = InstanceBot;
5068       elem = Type::BOTTOM;
5069       result = NOT_SUBTYPE;
5070       if (above_centerline(ptr) || ptr == Constant) {
5071         ptr = NotNull;
5072         res_xk = false;
5073         return NOT_SUBTYPE;
5074       }
5075     }
5076   } else {// Non integral arrays.
5077     // Must fall to bottom if exact klasses in upper lattice
5078     // are not equal or super klass is exact.
5079     if ((above_centerline(ptr) || ptr == Constant) && !this_ary->is_same_java_type_as(other_ary) &&
5080         // meet with top[] and bottom[] are processed further down:
5081         !this_top_or_bottom && !other_top_or_bottom &&
5082         // both are exact and not equal:

5084          // 'tap'  is exact and super or unrelated:
5085          (other_xk && !other_ary->is_meet_subtype_of(this_ary)) ||
5086          // 'this' is exact and super or unrelated:
5087          (this_xk && !this_ary->is_meet_subtype_of(other_ary)))) {
5088       if (above_centerline(ptr) || (elem->make_ptr() && above_centerline(elem->make_ptr()->_ptr))) {
5089         elem = Type::BOTTOM;
5090       }
5091       ptr = NotNull;
5092       res_xk = false;
5093       return NOT_SUBTYPE;
5094     }
5095   }
5096 
5097   res_xk = false;
5098   switch (other_ptr) {
5099     case AnyNull:
5100     case TopPTR:
5101       // Compute new klass on demand, do not use tap->_klass
5102       if (below_centerline(this_ptr)) {
5103         res_xk = this_xk;



5104       } else {
5105         res_xk = (other_xk || this_xk);
5106       }
5107       return result;
5108     case Constant: {
5109       if (this_ptr == Constant) {
5110         res_xk = true;
5111       } else if(above_centerline(this_ptr)) {
5112         res_xk = true;
5113       } else {
5114         // Only precise for identical arrays
5115         res_xk = this_xk && (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom));





5116       }
5117       return result;
5118     }
5119     case NotNull:
5120     case BotPTR:
5121       // Compute new klass on demand, do not use tap->_klass
5122       if (above_centerline(this_ptr)) {
5123         res_xk = other_xk;



5124       } else {
5125         res_xk = (other_xk && this_xk) &&
5126                  (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom)); // Only precise for identical arrays





5127       }
5128       return result;
5129     default:  {
5130       ShouldNotReachHere();
5131       return result;
5132     }
5133   }
5134   return result;
5135 }
5136 
5137 
5138 //------------------------------xdual------------------------------------------
5139 // Dual: compute field-by-field dual
5140 const Type *TypeAryPtr::xdual() const {
5141   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());









5142 }
5143 
5144 //------------------------------dump2------------------------------------------
5145 #ifndef PRODUCT
5146 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5147   _ary->dump2(d,depth,st);
5148   _interfaces->dump(st);
5149 
5150   switch( _ptr ) {
5151   case Constant:
5152     const_oop()->print(st);
5153     break;
5154   case BotPTR:
5155     if (!WizardMode && !Verbose) {
5156       if( _klass_is_exact ) st->print(":exact");
5157       break;
5158     }
5159   case TopPTR:
5160   case AnyNull:
5161   case NotNull:
5162     st->print(":%s", ptr_msg[_ptr]);
5163     if( _klass_is_exact ) st->print(":exact");
5164     break;
5165   default:
5166     break;
5167   }
5168 
5169   if( _offset != 0 ) {









5170     BasicType basic_elem_type = elem()->basic_type();
5171     int header_size = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5172     if( _offset == OffsetTop )       st->print("+undefined");
5173     else if( _offset == OffsetBot )  st->print("+any");
5174     else if( _offset < header_size ) st->print("+%d", _offset);
5175     else {
5176       if (basic_elem_type == T_ILLEGAL) {
5177         st->print("+any");
5178       } else {
5179         int elem_size = type2aelembytes(basic_elem_type);
5180         st->print("[%d]", (_offset - header_size)/elem_size);
5181       }
5182     }
5183   }
5184   st->print(" *");
5185   if (_instance_id == InstanceTop)
5186     st->print(",iid=top");
5187   else if (_instance_id != InstanceBot)
5188     st->print(",iid=%d",_instance_id);
5189 
5190   dump_inline_depth(st);
5191   dump_speculative(st);
5192 }
5193 #endif
5194 
5195 bool TypeAryPtr::empty(void) const {
5196   if (_ary->empty())       return true;




5197   return TypeOopPtr::empty();
5198 }
5199 
5200 //------------------------------add_offset-------------------------------------
5201 const TypePtr* TypeAryPtr::add_offset(intptr_t offset) const {
5202   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
5203 }
5204 
5205 const TypeAryPtr* TypeAryPtr::with_offset(intptr_t offset) const {
5206   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, offset, _instance_id, with_offset_speculative(offset), _inline_depth);
5207 }
5208 
5209 const TypeAryPtr* TypeAryPtr::with_ary(const TypeAry* ary) const {
5210   return make(_ptr, _const_oop, ary, _klass, _klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
5211 }
5212 
5213 const TypeAryPtr* TypeAryPtr::remove_speculative() const {
5214   if (_speculative == nullptr) {
5215     return this;
5216   }
5217   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
5218   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, nullptr, _inline_depth);













5219 }
5220 
5221 const TypePtr* TypeAryPtr::with_inline_depth(int depth) const {
5222   if (!UseInlineDepthForSpeculativeTypes) {
5223     return this;
5224   }
5225   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth);











































5226 }
5227 
5228 const TypePtr* TypeAryPtr::with_instance_id(int instance_id) const {
5229   assert(is_known_instance(), "should be known");
5230   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
5231 }
5232 
5233 //=============================================================================
5234 

5235 //------------------------------hash-------------------------------------------
5236 // Type-specific hashing function.
5237 uint TypeNarrowPtr::hash(void) const {
5238   return _ptrtype->hash() + 7;
5239 }
5240 
5241 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
5242   return _ptrtype->singleton();
5243 }
5244 
5245 bool TypeNarrowPtr::empty(void) const {
5246   return _ptrtype->empty();
5247 }
5248 
5249 intptr_t TypeNarrowPtr::get_con() const {
5250   return _ptrtype->get_con();
5251 }
5252 
5253 bool TypeNarrowPtr::eq( const Type *t ) const {
5254   const TypeNarrowPtr* tc = isa_same_narrowptr(t);

5305 
5306   case Int:                     // Mixing ints & oops happens when javac
5307   case Long:                    // reuses local variables
5308   case FloatTop:
5309   case FloatCon:
5310   case FloatBot:
5311   case DoubleTop:
5312   case DoubleCon:
5313   case DoubleBot:
5314   case AnyPtr:
5315   case RawPtr:
5316   case OopPtr:
5317   case InstPtr:
5318   case AryPtr:
5319   case MetadataPtr:
5320   case KlassPtr:
5321   case InstKlassPtr:
5322   case AryKlassPtr:
5323   case NarrowOop:
5324   case NarrowKlass:
5325 
5326   case Bottom:                  // Ye Olde Default
5327     return Type::BOTTOM;
5328   case Top:
5329     return this;
5330 
5331   default:                      // All else is a mistake
5332     typerr(t);
5333 
5334   } // End of switch
5335 
5336   return this;
5337 }
5338 
5339 #ifndef PRODUCT
5340 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5341   _ptrtype->dump2(d, depth, st);
5342 }
5343 #endif
5344 
5345 const TypeNarrowOop *TypeNarrowOop::BOTTOM;

5389     return (one == two) && TypePtr::eq(t);
5390   } else {
5391     return one->equals(two) && TypePtr::eq(t);
5392   }
5393 }
5394 
5395 //------------------------------hash-------------------------------------------
5396 // Type-specific hashing function.
5397 uint TypeMetadataPtr::hash(void) const {
5398   return
5399     (metadata() ? metadata()->hash() : 0) +
5400     TypePtr::hash();
5401 }
5402 
5403 //------------------------------singleton--------------------------------------
5404 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5405 // constants
5406 bool TypeMetadataPtr::singleton(void) const {
5407   // detune optimizer to not generate constant metadata + constant offset as a constant!
5408   // TopPTR, Null, AnyNull, Constant are all singletons
5409   return (_offset == 0) && !below_centerline(_ptr);
5410 }
5411 
5412 //------------------------------add_offset-------------------------------------
5413 const TypePtr* TypeMetadataPtr::add_offset( intptr_t offset ) const {
5414   return make( _ptr, _metadata, xadd_offset(offset));
5415 }
5416 
5417 //-----------------------------filter------------------------------------------
5418 // Do not allow interface-vs.-noninterface joins to collapse to top.
5419 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
5420   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
5421   if (ft == nullptr || ft->empty())
5422     return Type::TOP;           // Canonical empty value
5423   return ft;
5424 }
5425 
5426  //------------------------------get_con----------------------------------------
5427 intptr_t TypeMetadataPtr::get_con() const {
5428   assert( _ptr == Null || _ptr == Constant, "" );
5429   assert( _offset >= 0, "" );
5430 
5431   if (_offset != 0) {
5432     // After being ported to the compiler interface, the compiler no longer
5433     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5434     // to a handle at compile time.  This handle is embedded in the generated
5435     // code and dereferenced at the time the nmethod is made.  Until that time,
5436     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5437     // have access to the addresses!).  This does not seem to currently happen,
5438     // but this assertion here is to help prevent its occurrence.
5439     tty->print_cr("Found oop constant with non-zero offset");
5440     ShouldNotReachHere();
5441   }
5442 
5443   return (intptr_t)metadata()->constant_encoding();
5444 }
5445 
5446 //------------------------------cast_to_ptr_type-------------------------------
5447 const TypeMetadataPtr* TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
5448   if( ptr == _ptr ) return this;
5449   return make(ptr, metadata(), _offset);
5450 }
5451 

5462   case Long:                    // reuses local variables
5463   case FloatTop:
5464   case FloatCon:
5465   case FloatBot:
5466   case DoubleTop:
5467   case DoubleCon:
5468   case DoubleBot:
5469   case NarrowOop:
5470   case NarrowKlass:
5471   case Bottom:                  // Ye Olde Default
5472     return Type::BOTTOM;
5473   case Top:
5474     return this;
5475 
5476   default:                      // All else is a mistake
5477     typerr(t);
5478 
5479   case AnyPtr: {
5480     // Found an AnyPtr type vs self-OopPtr type
5481     const TypePtr *tp = t->is_ptr();
5482     int offset = meet_offset(tp->offset());
5483     PTR ptr = meet_ptr(tp->ptr());
5484     switch (tp->ptr()) {
5485     case Null:
5486       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5487       // else fall through:
5488     case TopPTR:
5489     case AnyNull: {
5490       return make(ptr, _metadata, offset);
5491     }
5492     case BotPTR:
5493     case NotNull:
5494       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5495     default: typerr(t);
5496     }
5497   }
5498 
5499   case RawPtr:
5500   case KlassPtr:
5501   case InstKlassPtr:
5502   case AryKlassPtr:
5503   case OopPtr:
5504   case InstPtr:
5505   case AryPtr:
5506     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
5507 
5508   case MetadataPtr: {
5509     const TypeMetadataPtr *tp = t->is_metadataptr();
5510     int offset = meet_offset(tp->offset());
5511     PTR tptr = tp->ptr();
5512     PTR ptr = meet_ptr(tptr);
5513     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
5514     if (tptr == TopPTR || _ptr == TopPTR ||
5515         metadata()->equals(tp->metadata())) {
5516       return make(ptr, md, offset);
5517     }
5518     // metadata is different
5519     if( ptr == Constant ) {  // Cannot be equal constants, so...
5520       if( tptr == Constant && _ptr != Constant)  return t;
5521       if( _ptr == Constant && tptr != Constant)  return this;
5522       ptr = NotNull;            // Fall down in lattice
5523     }
5524     return make(ptr, nullptr, offset);
5525     break;
5526   }
5527   } // End of switch
5528   return this;                  // Return the double constant
5529 }
5530 
5531 
5532 //------------------------------xdual------------------------------------------
5533 // Dual of a pure metadata pointer.
5534 const Type *TypeMetadataPtr::xdual() const {
5535   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
5536 }
5537 
5538 //------------------------------dump2------------------------------------------
5539 #ifndef PRODUCT
5540 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5541   st->print("metadataptr:%s", ptr_msg[_ptr]);
5542   if( metadata() ) st->print(INTPTR_FORMAT, p2i(metadata()));
5543   switch( _offset ) {
5544   case OffsetTop: st->print("+top"); break;
5545   case OffsetBot: st->print("+any"); break;
5546   case         0: break;
5547   default:        st->print("+%d",_offset); break;
5548   }
5549 }
5550 #endif
5551 
5552 
5553 //=============================================================================
5554 // Convenience common pre-built type.
5555 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
5556 
5557 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
5558   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
5559 }
5560 
5561 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
5562   return make(Constant, m, 0);
5563 }
5564 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
5565   return make(Constant, m, 0);
5566 }
5567 
5568 //------------------------------make-------------------------------------------
5569 // Create a meta data constant
5570 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
5571   assert(m == nullptr || !m->is_klass(), "wrong type");
5572   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
5573 }
5574 
5575 
5576 const TypeKlassPtr* TypeAryPtr::as_klass_type(bool try_for_exact) const {
5577   const Type* elem = _ary->_elem;
5578   bool xk = klass_is_exact();
5579   if (elem->make_oopptr() != nullptr) {
5580     elem = elem->make_oopptr()->as_klass_type(try_for_exact);
5581     if (elem->is_klassptr()->klass_is_exact()) {



5582       xk = true;
5583     }
5584   }
5585   return TypeAryKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, elem, klass(), 0);
5586 }
5587 
5588 const TypeKlassPtr* TypeKlassPtr::make(ciKlass *klass, InterfaceHandling interface_handling) {
5589   if (klass->is_instance_klass()) {
5590     return TypeInstKlassPtr::make(klass, interface_handling);
5591   }
5592   return TypeAryKlassPtr::make(klass, interface_handling);
5593 }
5594 
5595 const TypeKlassPtr* TypeKlassPtr::make(PTR ptr, ciKlass* klass, int offset, InterfaceHandling interface_handling) {
5596   if (klass->is_instance_klass()) {
5597     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
5598     return TypeInstKlassPtr::make(ptr, klass, interfaces, offset);
5599   }
5600   return TypeAryKlassPtr::make(ptr, klass, offset, interface_handling);
5601 }
5602 
5603 
5604 //------------------------------TypeKlassPtr-----------------------------------
5605 TypeKlassPtr::TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, int offset)
5606   : TypePtr(t, ptr, offset), _klass(klass), _interfaces(interfaces) {
5607   assert(klass == nullptr || !klass->is_loaded() || (klass->is_instance_klass() && !klass->is_interface()) ||
5608          klass->is_type_array_klass() || !klass->as_obj_array_klass()->base_element_klass()->is_interface(), "no interface here");
5609 }
5610 
5611 // Is there a single ciKlass* that can represent that type?
5612 ciKlass* TypeKlassPtr::exact_klass_helper() const {
5613   assert(_klass->is_instance_klass() && !_klass->is_interface(), "No interface");
5614   if (_interfaces->empty()) {
5615     return _klass;
5616   }
5617   if (_klass != ciEnv::current()->Object_klass()) {
5618     if (_interfaces->eq(_klass->as_instance_klass())) {
5619       return _klass;
5620     }
5621     return nullptr;
5622   }
5623   return _interfaces->exact_klass();
5624 }
5625 
5626 //------------------------------eq---------------------------------------------
5627 // Structural equality check for Type representations
5628 bool TypeKlassPtr::eq(const Type *t) const {
5629   const TypeKlassPtr *p = t->is_klassptr();
5630   return
5631     _interfaces->eq(p->_interfaces) &&
5632     TypePtr::eq(p);
5633 }
5634 
5635 //------------------------------hash-------------------------------------------
5636 // Type-specific hashing function.
5637 uint TypeKlassPtr::hash(void) const {
5638   return TypePtr::hash() + _interfaces->hash();
5639 }
5640 
5641 //------------------------------singleton--------------------------------------
5642 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5643 // constants
5644 bool TypeKlassPtr::singleton(void) const {
5645   // detune optimizer to not generate constant klass + constant offset as a constant!
5646   // TopPTR, Null, AnyNull, Constant are all singletons
5647   return (_offset == 0) && !below_centerline(_ptr);
5648 }
5649 
5650 // Do not allow interface-vs.-noninterface joins to collapse to top.
5651 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
5652   // logic here mirrors the one from TypeOopPtr::filter. See comments
5653   // there.
5654   const Type* ft = join_helper(kills, include_speculative);
5655   const TypeKlassPtr* ftkp = ft->isa_instklassptr();
5656   const TypeKlassPtr* ktkp = kills->isa_instklassptr();
5657 
5658   if (ft->empty()) {
5659     return Type::TOP;           // Canonical empty value
5660   }
5661 
5662   return ft;
5663 }
5664 
5665 const TypeInterfaces* TypeKlassPtr::meet_interfaces(const TypeKlassPtr* other) const {
5666   if (above_centerline(_ptr) && above_centerline(other->_ptr)) {
5667     return _interfaces->union_with(other->_interfaces);
5668   } else if (above_centerline(_ptr) && !above_centerline(other->_ptr)) {
5669     return other->_interfaces;
5670   } else if (above_centerline(other->_ptr) && !above_centerline(_ptr)) {
5671     return _interfaces;
5672   }
5673   return _interfaces->intersection_with(other->_interfaces);
5674 }
5675 
5676 //------------------------------get_con----------------------------------------
5677 intptr_t TypeKlassPtr::get_con() const {
5678   assert( _ptr == Null || _ptr == Constant, "" );
5679   assert( _offset >= 0, "" );
5680 
5681   if (_offset != 0) {
5682     // After being ported to the compiler interface, the compiler no longer
5683     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5684     // to a handle at compile time.  This handle is embedded in the generated
5685     // code and dereferenced at the time the nmethod is made.  Until that time,
5686     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5687     // have access to the addresses!).  This does not seem to currently happen,
5688     // but this assertion here is to help prevent its occurrence.
5689     tty->print_cr("Found oop constant with non-zero offset");
5690     ShouldNotReachHere();
5691   }
5692 
5693   ciKlass* k = exact_klass();
5694 
5695   return (intptr_t)k->constant_encoding();
5696 }
5697 
5698 //------------------------------dump2------------------------------------------
5699 // Dump Klass Type
5700 #ifndef PRODUCT
5701 void TypeKlassPtr::dump2(Dict & d, uint depth, outputStream *st) const {

5705   case NotNull:
5706     {
5707       const char *name = klass()->name()->as_utf8();
5708       if (name) {
5709         st->print("%s: " INTPTR_FORMAT, name, p2i(klass()));
5710       } else {
5711         ShouldNotReachHere();
5712       }
5713       _interfaces->dump(st);
5714     }
5715   case BotPTR:
5716     if (!WizardMode && !Verbose && _ptr != Constant) break;
5717   case TopPTR:
5718   case AnyNull:
5719     st->print(":%s", ptr_msg[_ptr]);
5720     if (_ptr == Constant) st->print(":exact");
5721     break;
5722   default:
5723     break;
5724   }
5725 
5726   if (_offset) {               // Dump offset, if any
5727     if (_offset == OffsetBot)      { st->print("+any"); }
5728     else if (_offset == OffsetTop) { st->print("+unknown"); }
5729     else                            { st->print("+%d", _offset); }
5730   }
5731 
5732   st->print(" *");
5733 }
5734 #endif
5735 
5736 //=============================================================================
5737 // Convenience common pre-built types.
5738 
5739 // Not-null object klass or below
5740 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT;
5741 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT_OR_NULL;
5742 
5743 bool TypeInstKlassPtr::eq(const Type *t) const {
5744   const TypeKlassPtr *p = t->is_klassptr();
5745   return
5746     klass()->equals(p->klass()) &&

5747     TypeKlassPtr::eq(p);
5748 }
5749 
5750 uint TypeInstKlassPtr::hash(void) const {
5751   return klass()->hash() + TypeKlassPtr::hash();
5752 }
5753 
5754 const TypeInstKlassPtr *TypeInstKlassPtr::make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, int offset) {


5755   TypeInstKlassPtr *r =
5756     (TypeInstKlassPtr*)(new TypeInstKlassPtr(ptr, k, interfaces, offset))->hashcons();
5757 
5758   return r;
5759 }
5760 
5761 //------------------------------add_offset-------------------------------------
5762 // Access internals of klass object
5763 const TypePtr* TypeInstKlassPtr::add_offset( intptr_t offset ) const {
5764   return make( _ptr, klass(), _interfaces, xadd_offset(offset) );
5765 }
5766 
5767 const TypeInstKlassPtr* TypeInstKlassPtr::with_offset(intptr_t offset) const {
5768   return make(_ptr, klass(), _interfaces, offset);
5769 }
5770 
5771 //------------------------------cast_to_ptr_type-------------------------------
5772 const TypeInstKlassPtr* TypeInstKlassPtr::cast_to_ptr_type(PTR ptr) const {
5773   assert(_base == InstKlassPtr, "subclass must override cast_to_ptr_type");
5774   if( ptr == _ptr ) return this;
5775   return make(ptr, _klass, _interfaces, _offset);
5776 }
5777 
5778 
5779 bool TypeInstKlassPtr::must_be_exact() const {
5780   if (!_klass->is_loaded())  return false;
5781   ciInstanceKlass* ik = _klass->as_instance_klass();
5782   if (ik->is_final())  return true;  // cannot clear xk
5783   return false;
5784 }
5785 
5786 //-----------------------------cast_to_exactness-------------------------------
5787 const TypeKlassPtr* TypeInstKlassPtr::cast_to_exactness(bool klass_is_exact) const {
5788   if (klass_is_exact == (_ptr == Constant)) return this;
5789   if (must_be_exact()) return this;
5790   ciKlass* k = klass();
5791   return make(klass_is_exact ? Constant : NotNull, k, _interfaces, _offset);
5792 }
5793 
5794 
5795 //-----------------------------as_instance_type--------------------------------
5796 // Corresponding type for an instance of the given class.
5797 // It will be NotNull, and exact if and only if the klass type is exact.
5798 const TypeOopPtr* TypeInstKlassPtr::as_instance_type(bool klass_change) const {
5799   ciKlass* k = klass();
5800   bool xk = klass_is_exact();
5801   Compile* C = Compile::current();
5802   Dependencies* deps = C->dependencies();
5803   assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
5804   // Element is an instance
5805   bool klass_is_exact = false;
5806   const TypeInterfaces* interfaces = _interfaces;
5807   if (k->is_loaded()) {
5808     // Try to set klass_is_exact.
5809     ciInstanceKlass* ik = k->as_instance_klass();
5810     klass_is_exact = ik->is_final();
5811     if (!klass_is_exact && klass_change
5812         && deps != nullptr && UseUniqueSubclasses) {
5813       ciInstanceKlass* sub = ik->unique_concrete_subklass();
5814       if (sub != nullptr) {
5815         if (_interfaces->eq(sub)) {
5816           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
5817           k = ik = sub;
5818           xk = sub->is_final();
5819         }
5820       }
5821     }
5822   }
5823   return TypeInstPtr::make(TypePtr::BotPTR, k, interfaces, xk, nullptr, 0);
5824 }
5825 
5826 //------------------------------xmeet------------------------------------------
5827 // Compute the MEET of two types, return a new Type object.
5828 const Type    *TypeInstKlassPtr::xmeet( const Type *t ) const {
5829   // Perform a fast test for common case; meeting the same types together.
5830   if( this == t ) return this;  // Meeting same type-rep?
5831 
5832   // Current "this->_base" is Pointer
5833   switch (t->base()) {          // switch on original type
5834 
5835   case Int:                     // Mixing ints & oops happens when javac
5836   case Long:                    // reuses local variables
5837   case FloatTop:
5838   case FloatCon:
5839   case FloatBot:
5840   case DoubleTop:
5841   case DoubleCon:
5842   case DoubleBot:
5843   case NarrowOop:
5844   case NarrowKlass:
5845   case Bottom:                  // Ye Olde Default
5846     return Type::BOTTOM;
5847   case Top:
5848     return this;
5849 
5850   default:                      // All else is a mistake
5851     typerr(t);
5852 
5853   case AnyPtr: {                // Meeting to AnyPtrs
5854     // Found an AnyPtr type vs self-KlassPtr type
5855     const TypePtr *tp = t->is_ptr();
5856     int offset = meet_offset(tp->offset());
5857     PTR ptr = meet_ptr(tp->ptr());
5858     switch (tp->ptr()) {
5859     case TopPTR:
5860       return this;
5861     case Null:
5862       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5863     case AnyNull:
5864       return make( ptr, klass(), _interfaces, offset );
5865     case BotPTR:
5866     case NotNull:
5867       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5868     default: typerr(t);
5869     }
5870   }
5871 
5872   case RawPtr:
5873   case MetadataPtr:
5874   case OopPtr:
5875   case AryPtr:                  // Meet with AryPtr
5876   case InstPtr:                 // Meet with InstPtr
5877     return TypePtr::BOTTOM;
5878 
5879   //
5880   //             A-top         }
5881   //           /   |   \       }  Tops
5882   //       B-top A-any C-top   }
5883   //          | /  |  \ |      }  Any-nulls
5884   //       B-any   |   C-any   }
5885   //          |    |    |
5886   //       B-con A-con C-con   } constants; not comparable across classes
5887   //          |    |    |
5888   //       B-not   |   C-not   }
5889   //          | \  |  / |      }  not-nulls
5890   //       B-bot A-not C-bot   }
5891   //           \   |   /       }  Bottoms
5892   //             A-bot         }
5893   //
5894 
5895   case InstKlassPtr: {  // Meet two KlassPtr types
5896     const TypeInstKlassPtr *tkls = t->is_instklassptr();
5897     int  off     = meet_offset(tkls->offset());
5898     PTR  ptr     = meet_ptr(tkls->ptr());
5899     const TypeInterfaces* interfaces = meet_interfaces(tkls);
5900 
5901     ciKlass* res_klass = nullptr;
5902     bool res_xk = false;
5903     switch(meet_instptr(ptr, interfaces, this, tkls, res_klass, res_xk)) {

5904       case UNLOADED:
5905         ShouldNotReachHere();
5906       case SUBTYPE:
5907       case NOT_SUBTYPE:
5908       case LCA:
5909       case QUICK: {
5910         assert(res_xk == (ptr == Constant), "");
5911         const Type* res = make(ptr, res_klass, interfaces, off);
5912         return res;
5913       }
5914       default:
5915         ShouldNotReachHere();
5916     }
5917   } // End of case KlassPtr
5918   case AryKlassPtr: {                // All arrays inherit from Object class
5919     const TypeAryKlassPtr *tp = t->is_aryklassptr();
5920     int offset = meet_offset(tp->offset());
5921     PTR ptr = meet_ptr(tp->ptr());
5922     const TypeInterfaces* interfaces = meet_interfaces(tp);
5923     const TypeInterfaces* tp_interfaces = tp->_interfaces;
5924     const TypeInterfaces* this_interfaces = _interfaces;
5925 
5926     switch (ptr) {
5927     case TopPTR:
5928     case AnyNull:                // Fall 'down' to dual of object klass
5929       // For instances when a subclass meets a superclass we fall
5930       // below the centerline when the superclass is exact. We need to
5931       // do the same here.
5932       if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces->contains(this_interfaces) && !klass_is_exact()) {
5933         return TypeAryKlassPtr::make(ptr, tp->elem(), tp->klass(), offset);
5934       } else {
5935         // cannot subclass, so the meet has to fall badly below the centerline
5936         ptr = NotNull;
5937         interfaces = _interfaces->intersection_with(tp->_interfaces);
5938         return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset);
5939       }
5940     case Constant:
5941     case NotNull:
5942     case BotPTR:                // Fall down to object klass
5943       // LCA is object_klass, but if we subclass from the top we can do better
5944       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
5945         // If 'this' (InstPtr) is above the centerline and it is Object class
5946         // then we can subclass in the Java class hierarchy.
5947         // For instances when a subclass meets a superclass we fall
5948         // below the centerline when the superclass is exact. We need
5949         // to do the same here.
5950         if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces->contains(this_interfaces) && !klass_is_exact()) {
5951           // that is, tp's array type is a subtype of my klass
5952           return TypeAryKlassPtr::make(ptr,
5953                                        tp->elem(), tp->klass(), offset);
5954         }
5955       }
5956       // The other case cannot happen, since I cannot be a subtype of an array.
5957       // The meet falls down to Object class below centerline.
5958       if( ptr == Constant )
5959          ptr = NotNull;
5960       interfaces = this_interfaces->intersection_with(tp_interfaces);
5961       return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset);
5962     default: typerr(t);
5963     }
5964   }
5965 
5966   } // End of switch
5967   return this;                  // Return the double constant
5968 }
5969 
5970 //------------------------------xdual------------------------------------------
5971 // Dual: compute field-by-field dual
5972 const Type    *TypeInstKlassPtr::xdual() const {
5973   return new TypeInstKlassPtr(dual_ptr(), klass(), _interfaces, dual_offset());
5974 }
5975 
5976 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
5977   static_assert(std::is_base_of<T2, T1>::value, "");
5978   if (!this_one->is_loaded() || !other->is_loaded()) {
5979     return false;
5980   }
5981   if (!this_one->is_instance_type(other)) {
5982     return false;
5983   }
5984 
5985   if (!other_exact) {
5986     return false;
5987   }
5988 
5989   if (other->klass()->equals(ciEnv::current()->Object_klass()) && other->_interfaces->empty()) {
5990     return true;
5991   }
5992 
5993   return this_one->klass()->is_subtype_of(other->klass()) && this_one->_interfaces->contains(other->_interfaces);

6054   const TypeInterfaces* interfaces = _interfaces;
6055   if (k->is_loaded()) {
6056     ciInstanceKlass* ik = k->as_instance_klass();
6057     bool klass_is_exact = ik->is_final();
6058     if (!klass_is_exact &&
6059         deps != nullptr) {
6060       ciInstanceKlass* sub = ik->unique_concrete_subklass();
6061       if (sub != nullptr) {
6062         if (_interfaces->eq(sub)) {
6063           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
6064           k = ik = sub;
6065           klass_is_exact = sub->is_final();
6066           return TypeKlassPtr::make(klass_is_exact ? Constant : _ptr, k, _offset);
6067         }
6068       }
6069     }
6070   }
6071   return this;
6072 }
6073 















6074 
6075 const TypeAryKlassPtr *TypeAryKlassPtr::make(PTR ptr, const Type* elem, ciKlass* k, int offset) {
6076   return (TypeAryKlassPtr*)(new TypeAryKlassPtr(ptr, elem, k, offset))->hashcons();
6077 }
6078 
6079 const TypeAryKlassPtr *TypeAryKlassPtr::make(PTR ptr, ciKlass* k, int offset, InterfaceHandling interface_handling) {
6080   if (k->is_obj_array_klass()) {
6081     // Element is an object array. Recursively call ourself.
6082     ciKlass* eklass = k->as_obj_array_klass()->element_klass();
6083     const TypeKlassPtr *etype = TypeKlassPtr::make(eklass, interface_handling)->cast_to_exactness(false);
6084     return TypeAryKlassPtr::make(ptr, etype, nullptr, offset);
6085   } else if (k->is_type_array_klass()) {
6086     // Element is an typeArray
6087     const Type* etype = get_const_basic_type(k->as_type_array_klass()->element_type());
6088     return TypeAryKlassPtr::make(ptr, etype, k, offset);




6089   } else {
6090     ShouldNotReachHere();
6091     return nullptr;
6092   }
6093 }
6094 











6095 const TypeAryKlassPtr* TypeAryKlassPtr::make(ciKlass* klass, InterfaceHandling interface_handling) {
6096   return TypeAryKlassPtr::make(Constant, klass, 0, interface_handling);
6097 }
6098 
6099 //------------------------------eq---------------------------------------------
6100 // Structural equality check for Type representations
6101 bool TypeAryKlassPtr::eq(const Type *t) const {
6102   const TypeAryKlassPtr *p = t->is_aryklassptr();
6103   return
6104     _elem == p->_elem &&  // Check array



6105     TypeKlassPtr::eq(p);  // Check sub-parts
6106 }
6107 
6108 //------------------------------hash-------------------------------------------
6109 // Type-specific hashing function.
6110 uint TypeAryKlassPtr::hash(void) const {
6111   return (uint)(uintptr_t)_elem + TypeKlassPtr::hash();

6112 }
6113 
6114 //----------------------compute_klass------------------------------------------
6115 // Compute the defining klass for this class
6116 ciKlass* TypeAryPtr::compute_klass() const {
6117   // Compute _klass based on element type.
6118   ciKlass* k_ary = nullptr;
6119   const TypeInstPtr *tinst;
6120   const TypeAryPtr *tary;
6121   const Type* el = elem();
6122   if (el->isa_narrowoop()) {
6123     el = el->make_ptr();
6124   }
6125 
6126   // Get element klass
6127   if ((tinst = el->isa_instptr()) != nullptr) {
6128     // Leave k_ary at null.





6129   } else if ((tary = el->isa_aryptr()) != nullptr) {
6130     // Leave k_ary at null.
6131   } else if ((el->base() == Type::Top) ||
6132              (el->base() == Type::Bottom)) {
6133     // element type of Bottom occurs from meet of basic type
6134     // and object; Top occurs when doing join on Bottom.
6135     // Leave k_ary at null.
6136   } else {
6137     assert(!el->isa_int(), "integral arrays must be pre-equipped with a class");
6138     // Compute array klass directly from basic type
6139     k_ary = ciTypeArrayKlass::make(el->basic_type());
6140   }
6141   return k_ary;
6142 }
6143 
6144 //------------------------------klass------------------------------------------
6145 // Return the defining klass for this class
6146 ciKlass* TypeAryPtr::klass() const {
6147   if( _klass ) return _klass;   // Return cached value, if possible
6148 
6149   // Oops, need to compute _klass and cache it
6150   ciKlass* k_ary = compute_klass();

6158     // type TypeAryPtr::OOPS.  This Type is shared between all
6159     // active compilations.  However, the ciKlass which represents
6160     // this Type is *not* shared between compilations, so caching
6161     // this value would result in fetching a dangling pointer.
6162     //
6163     // Recomputing the underlying ciKlass for each request is
6164     // a bit less efficient than caching, but calls to
6165     // TypeAryPtr::OOPS->klass() are not common enough to matter.
6166     ((TypeAryPtr*)this)->_klass = k_ary;
6167   }
6168   return k_ary;
6169 }
6170 
6171 // Is there a single ciKlass* that can represent that type?
6172 ciKlass* TypeAryPtr::exact_klass_helper() const {
6173   if (_ary->_elem->make_ptr() && _ary->_elem->make_ptr()->isa_oopptr()) {
6174     ciKlass* k = _ary->_elem->make_ptr()->is_oopptr()->exact_klass_helper();
6175     if (k == nullptr) {
6176       return nullptr;
6177     }
6178     k = ciObjArrayKlass::make(k);
6179     return k;
6180   }
6181 
6182   return klass();
6183 }
6184 
6185 const Type* TypeAryPtr::base_element_type(int& dims) const {
6186   const Type* elem = this->elem();
6187   dims = 1;
6188   while (elem->make_ptr() && elem->make_ptr()->isa_aryptr()) {
6189     elem = elem->make_ptr()->is_aryptr()->elem();
6190     dims++;
6191   }
6192   return elem;
6193 }
6194 
6195 //------------------------------add_offset-------------------------------------
6196 // Access internals of klass object
6197 const TypePtr* TypeAryKlassPtr::add_offset(intptr_t offset) const {
6198   return make(_ptr, elem(), klass(), xadd_offset(offset));
6199 }
6200 
6201 const TypeAryKlassPtr* TypeAryKlassPtr::with_offset(intptr_t offset) const {
6202   return make(_ptr, elem(), klass(), offset);
6203 }
6204 
6205 //------------------------------cast_to_ptr_type-------------------------------
6206 const TypeAryKlassPtr* TypeAryKlassPtr::cast_to_ptr_type(PTR ptr) const {
6207   assert(_base == AryKlassPtr, "subclass must override cast_to_ptr_type");
6208   if (ptr == _ptr) return this;
6209   return make(ptr, elem(), _klass, _offset);
6210 }
6211 
6212 bool TypeAryKlassPtr::must_be_exact() const {
6213   if (_elem == Type::BOTTOM) return false;
6214   if (_elem == Type::TOP   ) return false;
6215   const TypeKlassPtr*  tk = _elem->isa_klassptr();
6216   if (!tk)             return true;   // a primitive type, like int





6217   return tk->must_be_exact();
6218 }
6219 
6220 
6221 //-----------------------------cast_to_exactness-------------------------------
6222 const TypeKlassPtr *TypeAryKlassPtr::cast_to_exactness(bool klass_is_exact) const {
6223   if (must_be_exact()) return this;  // cannot clear xk



6224   ciKlass* k = _klass;
6225   const Type* elem = this->elem();
6226   if (elem->isa_klassptr() && !klass_is_exact) {
6227     elem = elem->is_klassptr()->cast_to_exactness(klass_is_exact);
6228   }
6229   return make(klass_is_exact ? Constant : NotNull, elem, k, _offset);















6230 }
6231 



6232 
6233 //-----------------------------as_instance_type--------------------------------
6234 // Corresponding type for an instance of the given class.
6235 // It will be NotNull, and exact if and only if the klass type is exact.
6236 const TypeOopPtr* TypeAryKlassPtr::as_instance_type(bool klass_change) const {
6237   ciKlass* k = klass();
6238   bool    xk = klass_is_exact();
6239   const Type* el = nullptr;
6240   if (elem()->isa_klassptr()) {
6241     el = elem()->is_klassptr()->as_instance_type(false)->cast_to_exactness(false);
6242     k = nullptr;
6243   } else {
6244     el = elem();
6245   }
6246   return TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(el, TypeInt::POS), k, xk, 0);




6247 }
6248 
6249 
6250 //------------------------------xmeet------------------------------------------
6251 // Compute the MEET of two types, return a new Type object.
6252 const Type    *TypeAryKlassPtr::xmeet( const Type *t ) const {
6253   // Perform a fast test for common case; meeting the same types together.
6254   if( this == t ) return this;  // Meeting same type-rep?
6255 
6256   // Current "this->_base" is Pointer
6257   switch (t->base()) {          // switch on original type
6258 
6259   case Int:                     // Mixing ints & oops happens when javac
6260   case Long:                    // reuses local variables
6261   case FloatTop:
6262   case FloatCon:
6263   case FloatBot:
6264   case DoubleTop:
6265   case DoubleCon:
6266   case DoubleBot:
6267   case NarrowOop:
6268   case NarrowKlass:
6269   case Bottom:                  // Ye Olde Default
6270     return Type::BOTTOM;
6271   case Top:
6272     return this;
6273 
6274   default:                      // All else is a mistake
6275     typerr(t);
6276 
6277   case AnyPtr: {                // Meeting to AnyPtrs
6278     // Found an AnyPtr type vs self-KlassPtr type
6279     const TypePtr *tp = t->is_ptr();
6280     int offset = meet_offset(tp->offset());
6281     PTR ptr = meet_ptr(tp->ptr());
6282     switch (tp->ptr()) {
6283     case TopPTR:
6284       return this;
6285     case Null:
6286       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6287     case AnyNull:
6288       return make( ptr, _elem, klass(), offset );
6289     case BotPTR:
6290     case NotNull:
6291       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6292     default: typerr(t);
6293     }
6294   }
6295 
6296   case RawPtr:
6297   case MetadataPtr:
6298   case OopPtr:
6299   case AryPtr:                  // Meet with AryPtr
6300   case InstPtr:                 // Meet with InstPtr
6301     return TypePtr::BOTTOM;
6302 
6303   //
6304   //             A-top         }
6305   //           /   |   \       }  Tops
6306   //       B-top A-any C-top   }
6307   //          | /  |  \ |      }  Any-nulls
6308   //       B-any   |   C-any   }
6309   //          |    |    |
6310   //       B-con A-con C-con   } constants; not comparable across classes
6311   //          |    |    |
6312   //       B-not   |   C-not   }
6313   //          | \  |  / |      }  not-nulls
6314   //       B-bot A-not C-bot   }
6315   //           \   |   /       }  Bottoms
6316   //             A-bot         }
6317   //
6318 
6319   case AryKlassPtr: {  // Meet two KlassPtr types
6320     const TypeAryKlassPtr *tap = t->is_aryklassptr();
6321     int off = meet_offset(tap->offset());
6322     const Type* elem = _elem->meet(tap->_elem);
6323 
6324     PTR ptr = meet_ptr(tap->ptr());
6325     ciKlass* res_klass = nullptr;
6326     bool res_xk = false;
6327     meet_aryptr(ptr, elem, this, tap, res_klass, res_xk);




6328     assert(res_xk == (ptr == Constant), "");
6329     return make(ptr, elem, res_klass, off);












6330   } // End of case KlassPtr
6331   case InstKlassPtr: {
6332     const TypeInstKlassPtr *tp = t->is_instklassptr();
6333     int offset = meet_offset(tp->offset());
6334     PTR ptr = meet_ptr(tp->ptr());
6335     const TypeInterfaces* interfaces = meet_interfaces(tp);
6336     const TypeInterfaces* tp_interfaces = tp->_interfaces;
6337     const TypeInterfaces* this_interfaces = _interfaces;
6338 
6339     switch (ptr) {
6340     case TopPTR:
6341     case AnyNull:                // Fall 'down' to dual of object klass
6342       // For instances when a subclass meets a superclass we fall
6343       // below the centerline when the superclass is exact. We need to
6344       // do the same here.
6345       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) &&
6346           !tp->klass_is_exact()) {
6347         return TypeAryKlassPtr::make(ptr, _elem, _klass, offset);
6348       } else {
6349         // cannot subclass, so the meet has to fall badly below the centerline
6350         ptr = NotNull;
6351         interfaces = this_interfaces->intersection_with(tp->_interfaces);
6352         return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset);
6353       }
6354     case Constant:
6355     case NotNull:
6356     case BotPTR:                // Fall down to object klass
6357       // LCA is object_klass, but if we subclass from the top we can do better
6358       if (above_centerline(tp->ptr())) {
6359         // If 'tp'  is above the centerline and it is Object class
6360         // then we can subclass in the Java class hierarchy.
6361         // For instances when a subclass meets a superclass we fall
6362         // below the centerline when the superclass is exact. We need
6363         // to do the same here.
6364         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) &&
6365             !tp->klass_is_exact()) {
6366           // that is, my array type is a subtype of 'tp' klass
6367           return make(ptr, _elem, _klass, offset);
6368         }
6369       }
6370       // The other case cannot happen, since t cannot be a subtype of an array.
6371       // The meet falls down to Object class below centerline.
6372       if (ptr == Constant)
6373          ptr = NotNull;
6374       interfaces = this_interfaces->intersection_with(tp_interfaces);
6375       return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset);
6376     default: typerr(t);
6377     }
6378   }
6379 
6380   } // End of switch
6381   return this;                  // Return the double constant
6382 }
6383 
6384 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
6385   static_assert(std::is_base_of<T2, T1>::value, "");
6386 
6387   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty() && other_exact) {
6388     return true;
6389   }
6390 
6391   int dummy;
6392   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
6393 
6394   if (!this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) {
6395     return false;
6396   }
6397 
6398   if (this_one->is_instance_type(other)) {
6399     return other->klass() == ciEnv::current()->Object_klass() && this_one->_interfaces->contains(other->_interfaces) &&
6400            other_exact;
6401   }
6402 
6403   assert(this_one->is_array_type(other), "");
6404   const T1* other_ary = this_one->is_array_type(other);
6405   bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
6406   if (other_top_or_bottom) {
6407     return false;
6408   }
6409 
6410   const TypePtr* other_elem = other_ary->elem()->make_ptr();
6411   const TypePtr* this_elem = this_one->elem()->make_ptr();
6412   if (this_elem != nullptr && other_elem != nullptr) {



6413     return this_one->is_reference_type(this_elem)->is_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact);
6414   }
6415   if (this_elem == nullptr && other_elem == nullptr) {
6416     return this_one->klass()->is_subtype_of(other->klass());
6417   }
6418   return false;
6419 }
6420 
6421 bool TypeAryKlassPtr::is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
6422   return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
6423 }
6424 
6425 template <class T1, class T2> bool TypePtr::is_same_java_type_as_helper_for_array(const T1* this_one, const T2* other) {
6426   static_assert(std::is_base_of<T2, T1>::value, "");
6427 
6428   int dummy;
6429   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
6430 
6431   if (!this_one->is_array_type(other) ||
6432       !this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) {

6485   }
6486 
6487   const TypePtr* this_elem = this_one->elem()->make_ptr();
6488   const TypePtr* other_elem = other_ary->elem()->make_ptr();
6489   if (other_elem != nullptr && this_elem != nullptr) {
6490     return this_one->is_reference_type(this_elem)->maybe_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact);
6491   }
6492   if (other_elem == nullptr && this_elem == nullptr) {
6493     return this_one->klass()->is_subtype_of(other->klass());
6494   }
6495   return false;
6496 }
6497 
6498 bool TypeAryKlassPtr::maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
6499   return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
6500 }
6501 
6502 //------------------------------xdual------------------------------------------
6503 // Dual: compute field-by-field dual
6504 const Type    *TypeAryKlassPtr::xdual() const {
6505   return new TypeAryKlassPtr(dual_ptr(), elem()->dual(), klass(), dual_offset());
6506 }
6507 
6508 // Is there a single ciKlass* that can represent that type?
6509 ciKlass* TypeAryKlassPtr::exact_klass_helper() const {
6510   if (elem()->isa_klassptr()) {
6511     ciKlass* k = elem()->is_klassptr()->exact_klass_helper();
6512     if (k == nullptr) {
6513       return nullptr;
6514     }
6515     k = ciObjArrayKlass::make(k);
6516     return k;
6517   }
6518 
6519   return klass();
6520 }
6521 
6522 ciKlass* TypeAryKlassPtr::klass() const {
6523   if (_klass != nullptr) {
6524     return _klass;
6525   }
6526   ciKlass* k = nullptr;
6527   if (elem()->isa_klassptr()) {
6528     // leave null
6529   } else if ((elem()->base() == Type::Top) ||
6530              (elem()->base() == Type::Bottom)) {
6531   } else {
6532     k = ciTypeArrayKlass::make(elem()->basic_type());
6533     ((TypeAryKlassPtr*)this)->_klass = k;
6534   }
6535   return k;

6542   switch( _ptr ) {
6543   case Constant:
6544     st->print("precise ");
6545   case NotNull:
6546     {
6547       st->print("[");
6548       _elem->dump2(d, depth, st);
6549       _interfaces->dump(st);
6550       st->print(": ");
6551     }
6552   case BotPTR:
6553     if( !WizardMode && !Verbose && _ptr != Constant ) break;
6554   case TopPTR:
6555   case AnyNull:
6556     st->print(":%s", ptr_msg[_ptr]);
6557     if( _ptr == Constant ) st->print(":exact");
6558     break;
6559   default:
6560     break;
6561   }
6562 
6563   if( _offset ) {               // Dump offset, if any
6564     if( _offset == OffsetBot )      { st->print("+any"); }
6565     else if( _offset == OffsetTop ) { st->print("+unknown"); }
6566     else                            { st->print("+%d", _offset); }
6567   }
6568 


6569   st->print(" *");
6570 }
6571 #endif
6572 
6573 const Type* TypeAryKlassPtr::base_element_type(int& dims) const {
6574   const Type* elem = this->elem();
6575   dims = 1;
6576   while (elem->isa_aryklassptr()) {
6577     elem = elem->is_aryklassptr()->elem();
6578     dims++;
6579   }
6580   return elem;
6581 }
6582 
6583 //=============================================================================
6584 // Convenience common pre-built types.
6585 
6586 //------------------------------make-------------------------------------------
6587 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
6588   return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();












6589 }
6590 
6591 //------------------------------make-------------------------------------------
6592 const TypeFunc *TypeFunc::make(ciMethod* method) {
6593   Compile* C = Compile::current();
6594   const TypeFunc* tf = C->last_tf(method); // check cache
6595   if (tf != nullptr)  return tf;  // The hit rate here is almost 50%.
6596   const TypeTuple *domain;
6597   if (method->is_static()) {
6598     domain = TypeTuple::make_domain(nullptr, method->signature(), ignore_interfaces);
6599   } else {
6600     domain = TypeTuple::make_domain(method->holder(), method->signature(), ignore_interfaces);

















6601   }
6602   const TypeTuple *range  = TypeTuple::make_range(method->signature(), ignore_interfaces);
6603   tf = TypeFunc::make(domain, range);
6604   C->set_last_tf(method, tf);  // fill cache
6605   return tf;
6606 }
6607 
6608 //------------------------------meet-------------------------------------------
6609 // Compute the MEET of two types.  It returns a new Type object.
6610 const Type *TypeFunc::xmeet( const Type *t ) const {
6611   // Perform a fast test for common case; meeting the same types together.
6612   if( this == t ) return this;  // Meeting same type-rep?
6613 
6614   // Current "this->_base" is Func
6615   switch (t->base()) {          // switch on original type
6616 
6617   case Bottom:                  // Ye Olde Default
6618     return t;
6619 
6620   default:                      // All else is a mistake
6621     typerr(t);
6622 
6623   case Top:
6624     break;
6625   }
6626   return this;                  // Return the double constant
6627 }
6628 
6629 //------------------------------xdual------------------------------------------
6630 // Dual: compute field-by-field dual
6631 const Type *TypeFunc::xdual() const {
6632   return this;
6633 }
6634 
6635 //------------------------------eq---------------------------------------------
6636 // Structural equality check for Type representations
6637 bool TypeFunc::eq( const Type *t ) const {
6638   const TypeFunc *a = (const TypeFunc*)t;
6639   return _domain == a->_domain &&
6640     _range == a->_range;


6641 }
6642 
6643 //------------------------------hash-------------------------------------------
6644 // Type-specific hashing function.
6645 uint TypeFunc::hash(void) const {
6646   return (uint)(uintptr_t)_domain + (uint)(uintptr_t)_range;
6647 }
6648 
6649 //------------------------------dump2------------------------------------------
6650 // Dump Function Type
6651 #ifndef PRODUCT
6652 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
6653   if( _range->cnt() <= Parms )
6654     st->print("void");
6655   else {
6656     uint i;
6657     for (i = Parms; i < _range->cnt()-1; i++) {
6658       _range->field_at(i)->dump2(d,depth,st);
6659       st->print("/");
6660     }
6661     _range->field_at(i)->dump2(d,depth,st);
6662   }
6663   st->print(" ");
6664   st->print("( ");
6665   if( !depth || d[this] ) {     // Check for recursive dump
6666     st->print("...)");
6667     return;
6668   }
6669   d.Insert((void*)this,(void*)this);    // Stop recursion
6670   if (Parms < _domain->cnt())
6671     _domain->field_at(Parms)->dump2(d,depth-1,st);
6672   for (uint i = Parms+1; i < _domain->cnt(); i++) {
6673     st->print(", ");
6674     _domain->field_at(i)->dump2(d,depth-1,st);
6675   }
6676   st->print(" )");
6677 }
6678 #endif
6679 
6680 //------------------------------singleton--------------------------------------
6681 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
6682 // constants (Ldi nodes).  Singletons are integer, float or double constants
6683 // or a single symbol.
6684 bool TypeFunc::singleton(void) const {
6685   return false;                 // Never a singleton
6686 }
6687 
6688 bool TypeFunc::empty(void) const {
6689   return false;                 // Never empty
6690 }
6691 
6692 
6693 BasicType TypeFunc::return_type() const{
6694   if (range()->cnt() == TypeFunc::Parms) {
6695     return T_VOID;
6696   }
6697   return range()->field_at(TypeFunc::Parms)->basic_type();
6698 }

   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciFlatArrayKlass.hpp"
  27 #include "ci/ciField.hpp"
  28 #include "ci/ciInlineKlass.hpp"
  29 #include "ci/ciMethodData.hpp"
  30 #include "ci/ciTypeFlow.hpp"
  31 #include "classfile/javaClasses.hpp"
  32 #include "classfile/symbolTable.hpp"
  33 #include "compiler/compileLog.hpp"
  34 #include "libadt/dict.hpp"
  35 #include "memory/oopFactory.hpp"
  36 #include "memory/resourceArea.hpp"
  37 #include "oops/instanceKlass.hpp"
  38 #include "oops/instanceMirrorKlass.hpp"
  39 #include "oops/objArrayKlass.hpp"
  40 #include "oops/typeArrayKlass.hpp"
  41 #include "opto/matcher.hpp"
  42 #include "opto/node.hpp"
  43 #include "opto/opcodes.hpp"
  44 #include "opto/type.hpp"
  45 #include "utilities/checkedCast.hpp"
  46 #include "utilities/powerOfTwo.hpp"
  47 #include "utilities/stringUtils.hpp"
  48 
  49 // Portions of code courtesy of Clifford Click
  50 
  51 // Optimization - Graph Style
  52 
  53 // Dictionary of types shared among compilations.
  54 Dict* Type::_shared_type_dict = nullptr;
  55 const Type::Offset Type::Offset::top(Type::OffsetTop);
  56 const Type::Offset Type::Offset::bottom(Type::OffsetBot);
  57 
  58 const Type::Offset Type::Offset::meet(const Type::Offset other) const {
  59   // Either is 'TOP' offset?  Return the other offset!
  60   if (_offset == OffsetTop) return other;
  61   if (other._offset == OffsetTop) return *this;
  62   // If either is different, return 'BOTTOM' offset
  63   if (_offset != other._offset) return bottom;
  64   return Offset(_offset);
  65 }
  66 
  67 const Type::Offset Type::Offset::dual() const {
  68   if (_offset == OffsetTop) return bottom;// Map 'TOP' into 'BOTTOM'
  69   if (_offset == OffsetBot) return top;// Map 'BOTTOM' into 'TOP'
  70   return Offset(_offset);               // Map everything else into self
  71 }
  72 
  73 const Type::Offset Type::Offset::add(intptr_t offset) const {
  74   // Adding to 'TOP' offset?  Return 'TOP'!
  75   if (_offset == OffsetTop || offset == OffsetTop) return top;
  76   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
  77   if (_offset == OffsetBot || offset == OffsetBot) return bottom;
  78   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
  79   offset += (intptr_t)_offset;
  80   if (offset != (int)offset || offset == OffsetTop) return bottom;
  81 
  82   // assert( _offset >= 0 && _offset+offset >= 0, "" );
  83   // It is possible to construct a negative offset during PhaseCCP
  84 
  85   return Offset((int)offset);        // Sum valid offsets
  86 }
  87 
  88 void Type::Offset::dump2(outputStream *st) const {
  89   if (_offset == 0) {
  90     return;
  91   } else if (_offset == OffsetTop) {
  92     st->print("+top");
  93   }
  94   else if (_offset == OffsetBot) {
  95     st->print("+bot");
  96   } else if (_offset) {
  97     st->print("+%d", _offset);
  98   }
  99 }
 100 
 101 // Array which maps compiler types to Basic Types
 102 const Type::TypeInfo Type::_type_info[Type::lastype] = {
 103   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
 104   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
 105   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
 106   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
 107   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
 108   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
 109   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
 110   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
 111   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
 112   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
 113   { Bad,             T_ARRAY,      "interfaces:",   false, Node::NotAMachineReg, relocInfo::none          },  // Interfaces
 114 
 115 #if defined(PPC64)
 116   { Bad,             T_ILLEGAL,    "vectormask:",   false, Op_RegVectMask,       relocInfo::none          },  // VectorMask.
 117   { Bad,             T_ILLEGAL,    "vectora:",      false, Op_VecA,              relocInfo::none          },  // VectorA.
 118   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
 119   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD

 254   case ciTypeFlow::StateVector::T_NULL:
 255     assert(type == ciTypeFlow::StateVector::null_type(), "");
 256     return TypePtr::NULL_PTR;
 257 
 258   case ciTypeFlow::StateVector::T_LONG2:
 259     // The ciTypeFlow pass pushes a long, then the half.
 260     // We do the same.
 261     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 262     return TypeInt::TOP;
 263 
 264   case ciTypeFlow::StateVector::T_DOUBLE2:
 265     // The ciTypeFlow pass pushes double, then the half.
 266     // Our convention is the same.
 267     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 268     return Type::TOP;
 269 
 270   case T_ADDRESS:
 271     assert(type->is_return_address(), "");
 272     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 273 
 274   case T_OBJECT:
 275     return Type::get_const_type(type->unwrap())->join_speculative(type->is_null_free() ? TypePtr::NOTNULL : TypePtr::BOTTOM);
 276 
 277   default:
 278     // make sure we did not mix up the cases:
 279     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 280     assert(type != ciTypeFlow::StateVector::top_type(), "");
 281     assert(type != ciTypeFlow::StateVector::null_type(), "");
 282     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 283     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 284     assert(!type->is_return_address(), "");
 285 
 286     return Type::get_const_type(type);
 287   }
 288 }
 289 
 290 
 291 //-----------------------make_from_constant------------------------------------
 292 const Type* Type::make_from_constant(ciConstant constant, bool require_constant,
 293                                      int stable_dimension, bool is_narrow_oop,
 294                                      bool is_autobox_cache) {
 295   switch (constant.basic_type()) {
 296     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());

 569   const Type **ffalse =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 570   ffalse[0] = Type::CONTROL;
 571   ffalse[1] = Type::TOP;
 572   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 573 
 574   const Type **fneither =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 575   fneither[0] = Type::TOP;
 576   fneither[1] = Type::TOP;
 577   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 578 
 579   const Type **ftrue =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 580   ftrue[0] = Type::TOP;
 581   ftrue[1] = Type::CONTROL;
 582   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 583 
 584   const Type **floop =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 585   floop[0] = Type::CONTROL;
 586   floop[1] = TypeInt::INT;
 587   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 588 
 589   TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, Offset(0));
 590   TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, Offset::bottom);
 591   TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, Offset::bottom);
 592 
 593   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 594   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 595 
 596   const Type **fmembar = TypeTuple::fields(0);
 597   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 598 
 599   const Type **fsc = (const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 600   fsc[0] = TypeInt::CC;
 601   fsc[1] = Type::MEMORY;
 602   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 603 
 604   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 605   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 606   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 607   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 608                                            false, nullptr, Offset(oopDesc::mark_offset_in_bytes()));
 609   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 610                                            false, nullptr, Offset(oopDesc::klass_offset_in_bytes()));
 611   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, Offset::bottom, TypeOopPtr::InstanceBot);
 612 
 613   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, nullptr, Offset::bottom);
 614 
 615   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 616   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 617 
 618   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 619 
 620   mreg2type[Op_Node] = Type::BOTTOM;
 621   mreg2type[Op_Set ] = nullptr;
 622   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 623   mreg2type[Op_RegI] = TypeInt::INT;
 624   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 625   mreg2type[Op_RegF] = Type::FLOAT;
 626   mreg2type[Op_RegD] = Type::DOUBLE;
 627   mreg2type[Op_RegL] = TypeLong::LONG;
 628   mreg2type[Op_RegFlags] = TypeInt::CC;
 629 
 630   GrowableArray<ciInstanceKlass*> array_interfaces;
 631   array_interfaces.push(current->env()->Cloneable_klass());
 632   array_interfaces.push(current->env()->Serializable_klass());
 633   TypeAryPtr::_array_interfaces = TypeInterfaces::make(&array_interfaces);
 634   TypeAryKlassPtr::_array_interfaces = TypeAryPtr::_array_interfaces;
 635 
 636   TypeAryPtr::RANGE   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), nullptr /* current->env()->Object_klass() */, false, Offset(arrayOopDesc::length_offset_in_bytes()));
 637 
 638   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), nullptr /*ciArrayKlass::make(o)*/,  false,  Offset::bottom);
 639 
 640 #ifdef _LP64
 641   if (UseCompressedOops) {
 642     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 643     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 644   } else
 645 #endif
 646   {
 647     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 648     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), nullptr /*ciArrayKlass::make(o)*/,  false,  Offset::bottom);
 649   }
 650   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Offset::bottom);
 651   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Offset::bottom);
 652   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Offset::bottom);
 653   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Offset::bottom);
 654   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Offset::bottom);
 655   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Offset::bottom);
 656   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Offset::bottom);
 657   TypeAryPtr::INLINES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS, /* stable= */ false, /* flat= */ true), nullptr, false, Offset::bottom);
 658 
 659   // Nobody should ask _array_body_type[T_NARROWOOP]. Use null as assert.
 660   TypeAryPtr::_array_body_type[T_NARROWOOP] = nullptr;
 661   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 662   TypeAryPtr::_array_body_type[T_PRIMITIVE_OBJECT] = TypeAryPtr::OOPS;
 663   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 664   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 665   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 666   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 667   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 668   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 669   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 670   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 671   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 672 
 673   TypeInstKlassPtr::OBJECT = TypeInstKlassPtr::make(TypePtr::NotNull, current->env()->Object_klass(), Offset(0));
 674   TypeInstKlassPtr::OBJECT_OR_NULL = TypeInstKlassPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), Offset(0));
 675 
 676   const Type **fi2c = TypeTuple::fields(2);
 677   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 678   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 679   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 680 
 681   const Type **intpair = TypeTuple::fields(2);
 682   intpair[0] = TypeInt::INT;
 683   intpair[1] = TypeInt::INT;
 684   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 685 
 686   const Type **longpair = TypeTuple::fields(2);
 687   longpair[0] = TypeLong::LONG;
 688   longpair[1] = TypeLong::LONG;
 689   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 690 
 691   const Type **intccpair = TypeTuple::fields(2);
 692   intccpair[0] = TypeInt::INT;
 693   intccpair[1] = TypeInt::CC;
 694   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 695 
 696   const Type **longccpair = TypeTuple::fields(2);
 697   longccpair[0] = TypeLong::LONG;
 698   longccpair[1] = TypeInt::CC;
 699   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 700 
 701   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 702   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 703   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 704   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 705   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 706   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 707   _const_basic_type[T_INT]         = TypeInt::INT;
 708   _const_basic_type[T_LONG]        = TypeLong::LONG;
 709   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 710   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 711   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 712   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 713   _const_basic_type[T_PRIMITIVE_OBJECT] = TypeInstPtr::BOTTOM;
 714   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 715   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 716   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 717 
 718   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 719   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 720   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 721   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 722   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 723   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 724   _zero_type[T_INT]         = TypeInt::ZERO;
 725   _zero_type[T_LONG]        = TypeLong::ZERO;
 726   _zero_type[T_FLOAT]       = TypeF::ZERO;
 727   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 728   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 729   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
 730   _zero_type[T_PRIMITIVE_OBJECT] = TypePtr::NULL_PTR;
 731   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 732   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 733 
 734   // get_zero_type() should not happen for T_CONFLICT
 735   _zero_type[T_CONFLICT]= nullptr;
 736 
 737   TypeVect::VECTMASK = (TypeVect*)(new TypeVectMask(T_BOOLEAN, MaxVectorSize))->hashcons();
 738   mreg2type[Op_RegVectMask] = TypeVect::VECTMASK;
 739 
 740   if (Matcher::supports_scalable_vector()) {
 741     TypeVect::VECTA = TypeVect::make(T_BYTE, Matcher::scalable_vector_reg_size(T_BYTE));
 742   }
 743 
 744   // Vector predefined types, it needs initialized _const_basic_type[].
 745   if (Matcher::vector_size_supported(T_BYTE, 4)) {
 746     TypeVect::VECTS = TypeVect::make(T_BYTE, 4);
 747   }
 748   if (Matcher::vector_size_supported(T_FLOAT, 2)) {
 749     TypeVect::VECTD = TypeVect::make(T_FLOAT, 2);
 750   }

 981   ~VerifyMeet() {
 982     assert(_C->_type_verify->_depth != 0, "");
 983     _C->_type_verify->_depth--;
 984     if (_C->_type_verify->_depth == 0) {
 985       _C->_type_verify->_cache.trunc_to(0);
 986     }
 987   }
 988 
 989   const Type* meet(const Type* t1, const Type* t2) const {
 990     return _C->_type_verify->meet(t1, t2);
 991   }
 992 
 993   void add(const Type* t1, const Type* t2, const Type* res) const {
 994     _C->_type_verify->add(t1, t2, res);
 995   }
 996 };
 997 
 998 void Type::check_symmetrical(const Type* t, const Type* mt, const VerifyMeet& verify) const {
 999   Compile* C = Compile::current();
1000   const Type* mt2 = verify.meet(t, this);
1001 
1002   // Verify that:
1003   //      this meet t == t meet this
1004   if (mt != mt2) {
1005     tty->print_cr("=== Meet Not Commutative ===");
1006     tty->print("t           = ");   t->dump(); tty->cr();
1007     tty->print("this        = ");      dump(); tty->cr();
1008     tty->print("t meet this = "); mt2->dump(); tty->cr();
1009     tty->print("this meet t = ");  mt->dump(); tty->cr();
1010     fatal("meet not commutative");
1011   }
1012   const Type* dual_join = mt->_dual;
1013   const Type* t2t    = verify.meet(dual_join,t->_dual);
1014   const Type* t2this = verify.meet(dual_join,this->_dual);
1015 
1016   // Interface meet Oop is Not Symmetric:
1017   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
1018   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
1019 
1020   // Verify that:
1021   //      !(t meet this)  meet !t ==
1022   //      (!t join !this) meet !t == !t
1023   // and
1024   //      !(t meet this)  meet !this ==
1025   //      (!t join !this) meet !this == !this
1026   if (t2t != t->_dual || t2this != this->_dual) {
1027     tty->print_cr("=== Meet Not Symmetric ===");
1028     tty->print("t   =                   ");              t->dump(); tty->cr();
1029     tty->print("this=                   ");                 dump(); tty->cr();
1030     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
1031 
1032     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
1033     tty->print("this_dual=              ");          _dual->dump(); tty->cr();
1034     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
1035 
1036     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
1037     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
1038 
1039     fatal("meet not symmetric");
1040   }
1041 }
1042 #endif
1043 
1044 //------------------------------meet-------------------------------------------
1045 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is

2176 
2177 bool TypeLong::empty(void) const {
2178   return _lo > _hi;
2179 }
2180 
2181 //=============================================================================
2182 // Convenience common pre-built types.
2183 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
2184 const TypeTuple *TypeTuple::IFFALSE;
2185 const TypeTuple *TypeTuple::IFTRUE;
2186 const TypeTuple *TypeTuple::IFNEITHER;
2187 const TypeTuple *TypeTuple::LOOPBODY;
2188 const TypeTuple *TypeTuple::MEMBAR;
2189 const TypeTuple *TypeTuple::STORECONDITIONAL;
2190 const TypeTuple *TypeTuple::START_I2C;
2191 const TypeTuple *TypeTuple::INT_PAIR;
2192 const TypeTuple *TypeTuple::LONG_PAIR;
2193 const TypeTuple *TypeTuple::INT_CC_PAIR;
2194 const TypeTuple *TypeTuple::LONG_CC_PAIR;
2195 
2196 static void collect_inline_fields(ciInlineKlass* vk, const Type** field_array, uint& pos) {
2197   for (int j = 0; j < vk->nof_nonstatic_fields(); j++) {
2198     ciField* field = vk->nonstatic_field_at(j);
2199     BasicType bt = field->type()->basic_type();
2200     const Type* ft = Type::get_const_type(field->type());
2201     field_array[pos++] = ft;
2202     if (type2size[bt] == 2) {
2203       field_array[pos++] = Type::HALF;
2204     }
2205   }
2206 }
2207 
2208 //------------------------------make-------------------------------------------
2209 // Make a TypeTuple from the range of a method signature
2210 const TypeTuple *TypeTuple::make_range(ciSignature* sig, InterfaceHandling interface_handling, bool ret_vt_fields) {
2211   ciType* return_type = sig->return_type();
2212   uint arg_cnt = return_type->size();
2213   if (ret_vt_fields) {
2214     arg_cnt = return_type->as_inline_klass()->inline_arg_slots() + 1;
2215     // InlineTypeNode::IsInit field used for null checking
2216     arg_cnt++;
2217   }
2218   const Type **field_array = fields(arg_cnt);
2219   switch (return_type->basic_type()) {
2220   case T_LONG:
2221     field_array[TypeFunc::Parms]   = TypeLong::LONG;
2222     field_array[TypeFunc::Parms+1] = Type::HALF;
2223     break;
2224   case T_DOUBLE:
2225     field_array[TypeFunc::Parms]   = Type::DOUBLE;
2226     field_array[TypeFunc::Parms+1] = Type::HALF;
2227     break;
2228   case T_OBJECT:
2229     if (return_type->is_inlinetype() && ret_vt_fields) {
2230       uint pos = TypeFunc::Parms;
2231       field_array[pos++] = get_const_type(return_type); // Oop might be null when returning as fields
2232       collect_inline_fields(return_type->as_inline_klass(), field_array, pos);
2233       // InlineTypeNode::IsInit field used for null checking
2234       field_array[pos++] = get_const_basic_type(T_BOOLEAN);
2235       break;
2236     } else {
2237       field_array[TypeFunc::Parms] = get_const_type(return_type, interface_handling)->join_speculative(TypePtr::BOTTOM);
2238     }
2239     break;
2240   case T_ARRAY:
2241   case T_BOOLEAN:
2242   case T_CHAR:
2243   case T_FLOAT:
2244   case T_BYTE:
2245   case T_SHORT:
2246   case T_INT:
2247     field_array[TypeFunc::Parms] = get_const_type(return_type, interface_handling);
2248     break;
2249   case T_VOID:
2250     break;
2251   default:
2252     ShouldNotReachHere();
2253   }
2254   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2255 }
2256 
2257 // Make a TypeTuple from the domain of a method signature
2258 const TypeTuple *TypeTuple::make_domain(ciMethod* method, InterfaceHandling interface_handling, bool vt_fields_as_args) {
2259   ciSignature* sig = method->signature();
2260   uint arg_cnt = sig->size() + (method->is_static() ? 0 : 1);
2261   if (vt_fields_as_args) {
2262     arg_cnt = 0;
2263     assert(method->get_sig_cc() != nullptr, "Should have scalarized signature");
2264     for (ExtendedSignature sig_cc = ExtendedSignature(method->get_sig_cc(), SigEntryFilter()); !sig_cc.at_end(); ++sig_cc) {
2265       arg_cnt += type2size[(*sig_cc)._bt];
2266     }
2267   }
2268 
2269   uint pos = TypeFunc::Parms;
2270   const Type** field_array = fields(arg_cnt);
2271   if (!method->is_static()) {
2272     ciInstanceKlass* recv = method->holder();
2273     if (vt_fields_as_args && recv->is_inlinetype() && recv->as_inline_klass()->can_be_passed_as_fields() && method->is_scalarized_arg(0)) {
2274       collect_inline_fields(recv->as_inline_klass(), field_array, pos);
2275     } else {
2276       field_array[pos++] = get_const_type(recv, interface_handling)->join_speculative(TypePtr::NOTNULL);
2277     }
2278   }
2279 
2280   int i = 0;
2281   while (pos < TypeFunc::Parms + arg_cnt) {
2282     ciType* type = sig->type_at(i);
2283     BasicType bt = type->basic_type();
2284 
2285     switch (bt) {
2286     case T_LONG:
2287       field_array[pos++] = TypeLong::LONG;
2288       field_array[pos++] = Type::HALF;
2289       break;
2290     case T_DOUBLE:
2291       field_array[pos++] = Type::DOUBLE;
2292       field_array[pos++] = Type::HALF;
2293       break;
2294     case T_OBJECT:
2295       if (type->is_inlinetype() && vt_fields_as_args && method->is_scalarized_arg(i + (method->is_static() ? 0 : 1))) {
2296         // InlineTypeNode::IsInit field used for null checking
2297         field_array[pos++] = get_const_basic_type(T_BOOLEAN);
2298         collect_inline_fields(type->as_inline_klass(), field_array, pos);
2299       } else {
2300         field_array[pos++] = get_const_type(type, interface_handling);
2301       }
2302       break;
2303     case T_ARRAY:
2304     case T_FLOAT:
2305     case T_INT:
2306       field_array[pos++] = get_const_type(type, interface_handling);
2307       break;
2308     case T_BOOLEAN:
2309     case T_CHAR:
2310     case T_BYTE:
2311     case T_SHORT:
2312       field_array[pos++] = TypeInt::INT;
2313       break;
2314     default:
2315       ShouldNotReachHere();
2316     }
2317     i++;
2318   }
2319   assert(pos == TypeFunc::Parms + arg_cnt, "wrong number of arguments");
2320 
2321   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2322 }
2323 
2324 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
2325   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
2326 }
2327 
2328 //------------------------------fields-----------------------------------------
2329 // Subroutine call type with space allocated for argument types
2330 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
2331 const Type **TypeTuple::fields( uint arg_cnt ) {
2332   const Type **flds = (const Type **)(Compile::current()->type_arena()->AmallocWords((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
2333   flds[TypeFunc::Control  ] = Type::CONTROL;
2334   flds[TypeFunc::I_O      ] = Type::ABIO;
2335   flds[TypeFunc::Memory   ] = Type::MEMORY;
2336   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
2337   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
2338 
2339   return flds;

2434     if (_fields[i]->empty())  return true;
2435   }
2436   return false;
2437 }
2438 
2439 //=============================================================================
2440 // Convenience common pre-built types.
2441 
2442 inline const TypeInt* normalize_array_size(const TypeInt* size) {
2443   // Certain normalizations keep us sane when comparing types.
2444   // We do not want arrayOop variables to differ only by the wideness
2445   // of their index types.  Pick minimum wideness, since that is the
2446   // forced wideness of small ranges anyway.
2447   if (size->_widen != Type::WidenMin)
2448     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
2449   else
2450     return size;
2451 }
2452 
2453 //------------------------------make-------------------------------------------
2454 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable,
2455                              bool flat, bool not_flat, bool not_null_free) {
2456   if (UseCompressedOops && elem->isa_oopptr()) {
2457     elem = elem->make_narrowoop();
2458   }
2459   size = normalize_array_size(size);
2460   return (TypeAry*)(new TypeAry(elem, size, stable, flat, not_flat, not_null_free))->hashcons();
2461 }
2462 
2463 //------------------------------meet-------------------------------------------
2464 // Compute the MEET of two types.  It returns a new Type object.
2465 const Type *TypeAry::xmeet( const Type *t ) const {
2466   // Perform a fast test for common case; meeting the same types together.
2467   if( this == t ) return this;  // Meeting same type-rep?
2468 
2469   // Current "this->_base" is Ary
2470   switch (t->base()) {          // switch on original type
2471 
2472   case Bottom:                  // Ye Olde Default
2473     return t;
2474 
2475   default:                      // All else is a mistake
2476     typerr(t);
2477 
2478   case Array: {                 // Meeting 2 arrays?
2479     const TypeAry *a = t->is_ary();
2480     return TypeAry::make(_elem->meet_speculative(a->_elem),
2481                          _size->xmeet(a->_size)->is_int(),
2482                          _stable && a->_stable,
2483                          _flat && a->_flat,
2484                          _not_flat && a->_not_flat,
2485                          _not_null_free && a->_not_null_free);
2486   }
2487   case Top:
2488     break;
2489   }
2490   return this;                  // Return the double constant
2491 }
2492 
2493 //------------------------------xdual------------------------------------------
2494 // Dual: compute field-by-field dual
2495 const Type *TypeAry::xdual() const {
2496   const TypeInt* size_dual = _size->dual()->is_int();
2497   size_dual = normalize_array_size(size_dual);
2498   return new TypeAry(_elem->dual(), size_dual, !_stable, !_flat, !_not_flat, !_not_null_free);
2499 }
2500 
2501 //------------------------------eq---------------------------------------------
2502 // Structural equality check for Type representations
2503 bool TypeAry::eq( const Type *t ) const {
2504   const TypeAry *a = (const TypeAry*)t;
2505   return _elem == a->_elem &&
2506     _stable == a->_stable &&
2507     _size == a->_size &&
2508     _flat == a->_flat &&
2509     _not_flat == a->_not_flat &&
2510     _not_null_free == a->_not_null_free;
2511 
2512 }
2513 
2514 //------------------------------hash-------------------------------------------
2515 // Type-specific hashing function.
2516 uint TypeAry::hash(void) const {
2517   return (uint)(uintptr_t)_elem + (uint)(uintptr_t)_size + (uint)(_stable ? 43 : 0) +
2518       (uint)(_flat ? 44 : 0) + (uint)(_not_flat ? 45 : 0) + (uint)(_not_null_free ? 46 : 0);
2519 }
2520 
2521 /**
2522  * Return same type without a speculative part in the element
2523  */
2524 const TypeAry* TypeAry::remove_speculative() const {
2525   return make(_elem->remove_speculative(), _size, _stable, _flat, _not_flat, _not_null_free);
2526 }
2527 
2528 /**
2529  * Return same type with cleaned up speculative part of element
2530  */
2531 const Type* TypeAry::cleanup_speculative() const {
2532   return make(_elem->cleanup_speculative(), _size, _stable, _flat, _not_flat, _not_null_free);
2533 }
2534 
2535 /**
2536  * Return same type but with a different inline depth (used for speculation)
2537  *
2538  * @param depth  depth to meet with
2539  */
2540 const TypePtr* TypePtr::with_inline_depth(int depth) const {
2541   if (!UseInlineDepthForSpeculativeTypes) {
2542     return this;
2543   }
2544   return make(AnyPtr, _ptr, _offset, _speculative, depth);
2545 }
2546 
2547 //------------------------------dump2------------------------------------------
2548 #ifndef PRODUCT
2549 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2550   if (_stable)  st->print("stable:");
2551   if (_flat) st->print("flat:");
2552   if (Verbose) {
2553     if (_not_flat) st->print("not flat:");
2554     if (_not_null_free) st->print("not null free:");
2555   }
2556   _elem->dump2(d, depth, st);
2557   st->print("[");
2558   _size->dump2(d, depth, st);
2559   st->print("]");
2560 }
2561 #endif
2562 
2563 //------------------------------singleton--------------------------------------
2564 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2565 // constants (Ldi nodes).  Singletons are integer, float or double constants
2566 // or a single symbol.
2567 bool TypeAry::singleton(void) const {
2568   return false;                 // Never a singleton
2569 }
2570 
2571 bool TypeAry::empty(void) const {
2572   return _elem->empty() || _size->empty();
2573 }
2574 
2575 //--------------------------ary_must_be_exact----------------------------------
2576 bool TypeAry::ary_must_be_exact() const {
2577   // This logic looks at the element type of an array, and returns true
2578   // if the element type is either a primitive or a final instance class.
2579   // In such cases, an array built on this ary must have no subclasses.
2580   if (_elem == BOTTOM)      return false;  // general array not exact
2581   if (_elem == TOP   )      return false;  // inverted general array not exact
2582   const TypeOopPtr*  toop = nullptr;
2583   if (UseCompressedOops && _elem->isa_narrowoop()) {
2584     toop = _elem->make_ptr()->isa_oopptr();
2585   } else {
2586     toop = _elem->isa_oopptr();
2587   }
2588   if (!toop)                return true;   // a primitive type, like int
2589   if (!toop->is_loaded())   return false;  // unloaded class
2590   const TypeInstPtr* tinst;
2591   if (_elem->isa_narrowoop())
2592     tinst = _elem->make_ptr()->isa_instptr();
2593   else
2594     tinst = _elem->isa_instptr();
2595   if (tinst) {
2596     if (tinst->instance_klass()->is_final()) {
2597       // Even though MyValue is final, [LMyValue is not exact because null-free [LMyValue is a subtype.
2598       if (tinst->is_inlinetypeptr() && (tinst->ptr() == TypePtr::BotPTR || tinst->ptr() == TypePtr::TopPTR)) {
2599         return false;
2600       }
2601       return true;
2602     }
2603     return false;
2604   }
2605   const TypeAryPtr*  tap;
2606   if (_elem->isa_narrowoop())
2607     tap = _elem->make_ptr()->isa_aryptr();
2608   else
2609     tap = _elem->isa_aryptr();
2610   if (tap)
2611     return tap->ary()->ary_must_be_exact();
2612   return false;
2613 }
2614 
2615 //==============================TypeVect=======================================
2616 // Convenience common pre-built types.
2617 const TypeVect* TypeVect::VECTA = nullptr; // vector length agnostic
2618 const TypeVect* TypeVect::VECTS = nullptr; //  32-bit vectors
2619 const TypeVect* TypeVect::VECTD = nullptr; //  64-bit vectors
2620 const TypeVect* TypeVect::VECTX = nullptr; // 128-bit vectors
2621 const TypeVect* TypeVect::VECTY = nullptr; // 256-bit vectors
2622 const TypeVect* TypeVect::VECTZ = nullptr; // 512-bit vectors
2623 const TypeVect* TypeVect::VECTMASK = nullptr; // predicate/mask vector
2624 

2759 
2760 //=============================================================================
2761 // Convenience common pre-built types.
2762 const TypePtr *TypePtr::NULL_PTR;
2763 const TypePtr *TypePtr::NOTNULL;
2764 const TypePtr *TypePtr::BOTTOM;
2765 
2766 //------------------------------meet-------------------------------------------
2767 // Meet over the PTR enum
2768 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2769   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2770   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2771   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2772   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2773   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2774   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2775   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2776 };
2777 
2778 //------------------------------make-------------------------------------------
2779 const TypePtr* TypePtr::make(TYPES t, enum PTR ptr, Offset offset, const TypePtr* speculative, int inline_depth) {
2780   return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2781 }
2782 
2783 //------------------------------cast_to_ptr_type-------------------------------
2784 const TypePtr* TypePtr::cast_to_ptr_type(PTR ptr) const {
2785   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2786   if( ptr == _ptr ) return this;
2787   return make(_base, ptr, _offset, _speculative, _inline_depth);
2788 }
2789 
2790 //------------------------------get_con----------------------------------------
2791 intptr_t TypePtr::get_con() const {
2792   assert( _ptr == Null, "" );
2793   return offset();
2794 }
2795 
2796 //------------------------------meet-------------------------------------------
2797 // Compute the MEET of two types.  It returns a new Type object.
2798 const Type *TypePtr::xmeet(const Type *t) const {
2799   const Type* res = xmeet_helper(t);
2800   if (res->isa_ptr() == nullptr) {
2801     return res;
2802   }
2803 
2804   const TypePtr* res_ptr = res->is_ptr();
2805   if (res_ptr->speculative() != nullptr) {
2806     // type->speculative() is null means that speculation is no better
2807     // than type, i.e. type->speculative() == type. So there are 2
2808     // ways to represent the fact that we have no useful speculative
2809     // data and we should use a single one to be able to test for
2810     // equality between types. Check whether type->speculative() ==
2811     // type and set speculative to null if it is the case.
2812     if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2813       return res_ptr->remove_speculative();

2844     int depth = meet_inline_depth(tp->inline_depth());
2845     return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2846   }
2847   case RawPtr:                  // For these, flip the call around to cut down
2848   case OopPtr:
2849   case InstPtr:                 // on the cases I have to handle.
2850   case AryPtr:
2851   case MetadataPtr:
2852   case KlassPtr:
2853   case InstKlassPtr:
2854   case AryKlassPtr:
2855     return t->xmeet(this);      // Call in reverse direction
2856   default:                      // All else is a mistake
2857     typerr(t);
2858 
2859   }
2860   return this;
2861 }
2862 
2863 //------------------------------meet_offset------------------------------------
2864 Type::Offset TypePtr::meet_offset(int offset) const {
2865   return _offset.meet(Offset(offset));





2866 }
2867 
2868 //------------------------------dual_offset------------------------------------
2869 Type::Offset TypePtr::dual_offset() const {
2870   return _offset.dual();


2871 }
2872 
2873 //------------------------------xdual------------------------------------------
2874 // Dual: compute field-by-field dual
2875 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2876   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2877 };
2878 const Type *TypePtr::xdual() const {
2879   return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2880 }
2881 
2882 //------------------------------xadd_offset------------------------------------
2883 Type::Offset TypePtr::xadd_offset(intptr_t offset) const {
2884   return _offset.add(offset);











2885 }
2886 
2887 //------------------------------add_offset-------------------------------------
2888 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2889   return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2890 }
2891 
2892 const TypePtr *TypePtr::with_offset(intptr_t offset) const {
2893   return make(AnyPtr, _ptr, Offset(offset), _speculative, _inline_depth);
2894 }
2895 
2896 //------------------------------eq---------------------------------------------
2897 // Structural equality check for Type representations
2898 bool TypePtr::eq( const Type *t ) const {
2899   const TypePtr *a = (const TypePtr*)t;
2900   return _ptr == a->ptr() && _offset == a->_offset && eq_speculative(a) && _inline_depth == a->_inline_depth;
2901 }
2902 
2903 //------------------------------hash-------------------------------------------
2904 // Type-specific hashing function.
2905 uint TypePtr::hash(void) const {
2906   return (uint)_ptr + (uint)offset() + (uint)hash_speculative() + (uint)_inline_depth;
2907 }
2908 
2909 /**
2910  * Return same type without a speculative part
2911  */
2912 const TypePtr* TypePtr::remove_speculative() const {
2913   if (_speculative == nullptr) {
2914     return this;
2915   }
2916   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2917   return make(AnyPtr, _ptr, _offset, nullptr, _inline_depth);
2918 }
2919 
2920 /**
2921  * Return same type but drop speculative part if we know we won't use
2922  * it
2923  */
2924 const Type* TypePtr::cleanup_speculative() const {
2925   if (speculative() == nullptr) {
2926     return this;

3152   }
3153   // We already know the speculative type is always null
3154   if (speculative_always_null()) {
3155     return false;
3156   }
3157   if (ptr_kind == ProfileAlwaysNull && speculative() != nullptr && speculative()->isa_oopptr()) {
3158     return false;
3159   }
3160   return true;
3161 }
3162 
3163 //------------------------------dump2------------------------------------------
3164 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
3165   "TopPTR","AnyNull","Constant","null","NotNull","BotPTR"
3166 };
3167 
3168 #ifndef PRODUCT
3169 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3170   if( _ptr == Null ) st->print("null");
3171   else st->print("%s *", ptr_msg[_ptr]);
3172   _offset.dump2(st);


3173   dump_inline_depth(st);
3174   dump_speculative(st);
3175 }
3176 
3177 /**
3178  *dump the speculative part of the type
3179  */
3180 void TypePtr::dump_speculative(outputStream *st) const {
3181   if (_speculative != nullptr) {
3182     st->print(" (speculative=");
3183     _speculative->dump_on(st);
3184     st->print(")");
3185   }
3186 }
3187 
3188 /**
3189  *dump the inline depth of the type
3190  */
3191 void TypePtr::dump_inline_depth(outputStream *st) const {
3192   if (_inline_depth != InlineDepthBottom) {
3193     if (_inline_depth == InlineDepthTop) {
3194       st->print(" (inline_depth=InlineDepthTop)");
3195     } else {
3196       st->print(" (inline_depth=%d)", _inline_depth);
3197     }
3198   }
3199 }
3200 #endif
3201 
3202 //------------------------------singleton--------------------------------------
3203 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3204 // constants
3205 bool TypePtr::singleton(void) const {
3206   // TopPTR, Null, AnyNull, Constant are all singletons
3207   return (_offset != Offset::bottom) && !below_centerline(_ptr);
3208 }
3209 
3210 bool TypePtr::empty(void) const {
3211   return (_offset == Offset::top) || above_centerline(_ptr);
3212 }
3213 
3214 //=============================================================================
3215 // Convenience common pre-built types.
3216 const TypeRawPtr *TypeRawPtr::BOTTOM;
3217 const TypeRawPtr *TypeRawPtr::NOTNULL;
3218 
3219 //------------------------------make-------------------------------------------
3220 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
3221   assert( ptr != Constant, "what is the constant?" );
3222   assert( ptr != Null, "Use TypePtr for null" );
3223   return (TypeRawPtr*)(new TypeRawPtr(ptr,nullptr))->hashcons();
3224 }
3225 
3226 const TypeRawPtr *TypeRawPtr::make(address bits) {
3227   assert(bits != nullptr, "Use TypePtr for null");
3228   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
3229 }
3230 
3231 //------------------------------cast_to_ptr_type-------------------------------

3592 void TypeInterfaces::verify_is_loaded() const {
3593   for (int i = 0; i < _interfaces.length(); i++) {
3594     ciKlass* interface = _interfaces.at(i);
3595     assert(interface->is_loaded(), "Interface not loaded");
3596   }
3597 }
3598 #endif
3599 
3600 // Can't be implemented because there's no way to know if the type is above or below the center line.
3601 const Type* TypeInterfaces::xmeet(const Type* t) const {
3602   ShouldNotReachHere();
3603   return Type::xmeet(t);
3604 }
3605 
3606 bool TypeInterfaces::singleton(void) const {
3607   ShouldNotReachHere();
3608   return Type::singleton();
3609 }
3610 
3611 //------------------------------TypeOopPtr-------------------------------------
3612 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset offset, Offset field_offset,
3613                        int instance_id, const TypePtr* speculative, int inline_depth)
3614   : TypePtr(t, ptr, offset, speculative, inline_depth),
3615     _const_oop(o), _klass(k),
3616     _interfaces(interfaces),
3617     _klass_is_exact(xk),
3618     _is_ptr_to_narrowoop(false),
3619     _is_ptr_to_narrowklass(false),
3620     _is_ptr_to_boxed_value(false),
3621     _instance_id(instance_id) {
3622 #ifdef ASSERT
3623   if (klass() != nullptr && klass()->is_loaded()) {
3624     interfaces->verify_is_loaded();
3625   }
3626 #endif
3627   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
3628       (offset.get() > 0) && xk && (k != nullptr) && k->is_instance_klass()) {
3629     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset.get());
3630   }
3631 #ifdef _LP64
3632   if (this->offset() > 0 || this->offset() == Type::OffsetTop || this->offset() == Type::OffsetBot) {
3633     if (this->offset() == oopDesc::klass_offset_in_bytes()) {
3634       _is_ptr_to_narrowklass = UseCompressedClassPointers;
3635     } else if (klass() == nullptr) {
3636       // Array with unknown body type
3637       assert(this->isa_aryptr(), "only arrays without klass");
3638       _is_ptr_to_narrowoop = UseCompressedOops;
3639     } else if (UseCompressedOops && this->isa_aryptr() && this->offset() != arrayOopDesc::length_offset_in_bytes()) {
3640       if (klass()->is_obj_array_klass()) {
3641         _is_ptr_to_narrowoop = true;
3642       } else if (klass()->is_flat_array_klass() && field_offset != Offset::top && field_offset != Offset::bottom) {
3643         // Check if the field of the inline type array element contains oops
3644         ciInlineKlass* vk = klass()->as_flat_array_klass()->element_klass()->as_inline_klass();
3645         int foffset = field_offset.get() + vk->first_field_offset();
3646         ciField* field = vk->get_field_by_offset(foffset, false);
3647         assert(field != nullptr, "missing field");
3648         BasicType bt = field->layout_type();
3649         _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(bt);
3650       }
3651     } else if (klass()->is_instance_klass()) {

3652       if (this->isa_klassptr()) {
3653         // Perm objects don't use compressed references
3654       } else if (_offset == Offset::bottom || _offset == Offset::top) {
3655         // unsafe access
3656         _is_ptr_to_narrowoop = UseCompressedOops;
3657       } else {
3658         assert(this->isa_instptr(), "must be an instance ptr.");

3659         if (klass() == ciEnv::current()->Class_klass() &&
3660             (this->offset() == java_lang_Class::klass_offset() ||
3661              this->offset() == java_lang_Class::array_klass_offset())) {
3662           // Special hidden fields from the Class.
3663           assert(this->isa_instptr(), "must be an instance ptr.");
3664           _is_ptr_to_narrowoop = false;
3665         } else if (klass() == ciEnv::current()->Class_klass() &&
3666                    this->offset() >= InstanceMirrorKlass::offset_of_static_fields()) {
3667           // Static fields
3668           ciField* field = nullptr;
3669           if (const_oop() != nullptr) {
3670             ciInstanceKlass* k = const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
3671             field = k->get_field_by_offset(this->offset(), true);
3672           }
3673           if (field != nullptr) {
3674             BasicType basic_elem_type = field->layout_type();
3675             _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type);
3676           } else {
3677             // unsafe access
3678             _is_ptr_to_narrowoop = UseCompressedOops;
3679           }
3680         } else {
3681           // Instance fields which contains a compressed oop references.
3682           ciInstanceKlass* ik = klass()->as_instance_klass();
3683           ciField* field = ik->get_field_by_offset(this->offset(), false);
3684           if (field != nullptr) {
3685             BasicType basic_elem_type = field->layout_type();
3686             _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type);
3687           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
3688             // Compile::find_alias_type() cast exactness on all types to verify
3689             // that it does not affect alias type.
3690             _is_ptr_to_narrowoop = UseCompressedOops;
3691           } else {
3692             // Type for the copy start in LibraryCallKit::inline_native_clone().
3693             _is_ptr_to_narrowoop = UseCompressedOops;
3694           }
3695         }
3696       }
3697     }
3698   }
3699 #endif
3700 }
3701 
3702 //------------------------------make-------------------------------------------
3703 const TypeOopPtr *TypeOopPtr::make(PTR ptr, Offset offset, int instance_id,
3704                                    const TypePtr* speculative, int inline_depth) {
3705   assert(ptr != Constant, "no constant generic pointers");
3706   ciKlass*  k = Compile::current()->env()->Object_klass();
3707   bool      xk = false;
3708   ciObject* o = nullptr;
3709   const TypeInterfaces* interfaces = TypeInterfaces::make();
3710   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, interfaces, xk, o, offset, Offset::bottom, instance_id, speculative, inline_depth))->hashcons();
3711 }
3712 
3713 
3714 //------------------------------cast_to_ptr_type-------------------------------
3715 const TypeOopPtr* TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
3716   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
3717   if( ptr == _ptr ) return this;
3718   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
3719 }
3720 
3721 //-----------------------------cast_to_instance_id----------------------------
3722 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
3723   // There are no instances of a general oop.
3724   // Return self unchanged.
3725   return this;
3726 }
3727 
3728 //-----------------------------cast_to_exactness-------------------------------
3729 const TypeOopPtr* TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
3730   // There is no such thing as an exact general oop.
3731   // Return self unchanged.
3732   return this;
3733 }
3734 

3735 //------------------------------as_klass_type----------------------------------
3736 // Return the klass type corresponding to this instance or array type.
3737 // It is the type that is loaded from an object of this type.
3738 const TypeKlassPtr* TypeOopPtr::as_klass_type(bool try_for_exact) const {
3739   ShouldNotReachHere();
3740   return nullptr;
3741 }
3742 
3743 //------------------------------meet-------------------------------------------
3744 // Compute the MEET of two types.  It returns a new Type object.
3745 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
3746   // Perform a fast test for common case; meeting the same types together.
3747   if( this == t ) return this;  // Meeting same type-rep?
3748 
3749   // Current "this->_base" is OopPtr
3750   switch (t->base()) {          // switch on original type
3751 
3752   case Int:                     // Mixing ints & oops happens when javac
3753   case Long:                    // reuses local variables
3754   case FloatTop:

3760   case NarrowOop:
3761   case NarrowKlass:
3762   case Bottom:                  // Ye Olde Default
3763     return Type::BOTTOM;
3764   case Top:
3765     return this;
3766 
3767   default:                      // All else is a mistake
3768     typerr(t);
3769 
3770   case RawPtr:
3771   case MetadataPtr:
3772   case KlassPtr:
3773   case InstKlassPtr:
3774   case AryKlassPtr:
3775     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3776 
3777   case AnyPtr: {
3778     // Found an AnyPtr type vs self-OopPtr type
3779     const TypePtr *tp = t->is_ptr();
3780     Offset offset = meet_offset(tp->offset());
3781     PTR ptr = meet_ptr(tp->ptr());
3782     const TypePtr* speculative = xmeet_speculative(tp);
3783     int depth = meet_inline_depth(tp->inline_depth());
3784     switch (tp->ptr()) {
3785     case Null:
3786       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3787       // else fall through:
3788     case TopPTR:
3789     case AnyNull: {
3790       int instance_id = meet_instance_id(InstanceTop);
3791       return make(ptr, offset, instance_id, speculative, depth);
3792     }
3793     case BotPTR:
3794     case NotNull:
3795       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3796     default: typerr(t);
3797     }
3798   }
3799 
3800   case OopPtr: {                 // Meeting to other OopPtrs

3802     int instance_id = meet_instance_id(tp->instance_id());
3803     const TypePtr* speculative = xmeet_speculative(tp);
3804     int depth = meet_inline_depth(tp->inline_depth());
3805     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
3806   }
3807 
3808   case InstPtr:                  // For these, flip the call around to cut down
3809   case AryPtr:
3810     return t->xmeet(this);      // Call in reverse direction
3811 
3812   } // End of switch
3813   return this;                  // Return the double constant
3814 }
3815 
3816 
3817 //------------------------------xdual------------------------------------------
3818 // Dual of a pure heap pointer.  No relevant klass or oop information.
3819 const Type *TypeOopPtr::xdual() const {
3820   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
3821   assert(const_oop() == nullptr,             "no constants here");
3822   return new TypeOopPtr(_base, dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), Offset::bottom, dual_instance_id(), dual_speculative(), dual_inline_depth());
3823 }
3824 
3825 //--------------------------make_from_klass_common-----------------------------
3826 // Computes the element-type given a klass.
3827 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact, InterfaceHandling interface_handling) {
3828   if (klass->is_instance_klass() || klass->is_inlinetype()) {
3829     Compile* C = Compile::current();
3830     Dependencies* deps = C->dependencies();
3831     assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
3832     // Element is an instance
3833     bool klass_is_exact = false;
3834     if (klass->is_loaded()) {
3835       // Try to set klass_is_exact.
3836       ciInstanceKlass* ik = klass->as_instance_klass();
3837       klass_is_exact = ik->is_final();
3838       if (!klass_is_exact && klass_change
3839           && deps != nullptr && UseUniqueSubclasses) {
3840         ciInstanceKlass* sub = ik->unique_concrete_subklass();
3841         if (sub != nullptr) {
3842           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3843           klass = ik = sub;
3844           klass_is_exact = sub->is_final();
3845         }
3846       }
3847       if (!klass_is_exact && try_for_exact && deps != nullptr &&
3848           !ik->is_interface() && !ik->has_subklass()) {
3849         // Add a dependence; if concrete subclass added we need to recompile
3850         deps->assert_leaf_type(ik);
3851         klass_is_exact = true;
3852       }
3853     }
3854     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
3855     return TypeInstPtr::make(TypePtr::BotPTR, klass, interfaces, klass_is_exact, nullptr, Offset(0));
3856   } else if (klass->is_obj_array_klass()) {
3857     // Element is an object or inline type array. Recursively call ourself.
3858     const TypeOopPtr* etype = TypeOopPtr::make_from_klass_common(klass->as_array_klass()->element_klass(), /* klass_change= */ false, try_for_exact, interface_handling);
3859     // Determine null-free/flat properties
3860     const TypeOopPtr* exact_etype = etype;
3861     if (etype->can_be_inline_type()) {
3862       // Use exact type if element can be an inline type
3863       exact_etype = TypeOopPtr::make_from_klass_common(klass->as_array_klass()->element_klass(), /* klass_change= */ true, /* try_for_exact= */ true, interface_handling);
3864     }
3865     bool not_null_free = !exact_etype->can_be_inline_type();
3866     bool not_flat = !UseFlatArray || not_null_free || (exact_etype->is_inlinetypeptr() && !exact_etype->inline_klass()->flat_in_array());
3867     // Even though MyValue is final, [LMyValue is not exact because null-free [LMyValue is a subtype.
3868     bool xk = etype->klass_is_exact() && !etype->is_inlinetypeptr();
3869     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS, /* stable= */ false, /* flat= */ false, not_flat, not_null_free);
3870     // We used to pass NotNull in here, asserting that the sub-arrays
3871     // are all not-null.  This is not true in generally, as code can
3872     // slam nullptrs down in the subarrays.
3873     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, nullptr, xk, Offset(0));
3874     return arr;
3875   } else if (klass->is_type_array_klass()) {
3876     // Element is an typeArray
3877     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3878     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS,
3879                                         /* stable= */ false, /* flat= */ false, /* not_flat= */ true, /* not_null_free= */ true);
3880     // We used to pass NotNull in here, asserting that the array pointer
3881     // is not-null. That was not true in general.
3882     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, Offset(0));
3883     return arr;
3884   } else if (klass->is_flat_array_klass()) {
3885     const TypeOopPtr* etype = TypeOopPtr::make_from_klass_raw(klass->as_array_klass()->element_klass(), trust_interfaces);
3886     etype = etype->join_speculative(TypePtr::NOTNULL)->is_oopptr();
3887     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS, /* stable= */ false, /* flat= */ true);
3888     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, Offset(0));
3889     return arr;
3890   } else {
3891     ShouldNotReachHere();
3892     return nullptr;
3893   }
3894 }
3895 
3896 //------------------------------make_from_constant-----------------------------
3897 // Make a java pointer from an oop constant
3898 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
3899   assert(!o->is_null_object(), "null object not yet handled here.");
3900 
3901   const bool make_constant = require_constant || o->should_be_constant();
3902 
3903   ciKlass* klass = o->klass();
3904   if (klass->is_instance_klass() || klass->is_inlinetype()) {
3905     // Element is an instance or inline type
3906     if (make_constant) {
3907       return TypeInstPtr::make(o);
3908     } else {
3909       return TypeInstPtr::make(TypePtr::NotNull, klass, true, nullptr, Offset(0));
3910     }
3911   } else if (klass->is_obj_array_klass()) {
3912     // Element is an object array. Recursively call ourself.
3913     const TypeOopPtr* etype = TypeOopPtr::make_from_klass_raw(klass->as_array_klass()->element_klass(), trust_interfaces);
3914     bool is_flat = o->as_obj_array()->is_flat();
3915     bool is_null_free = o->as_obj_array()->is_null_free();
3916     if (is_null_free) {
3917       etype = etype->join_speculative(TypePtr::NOTNULL)->is_oopptr();
3918     }
3919     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()),
3920                                         /* stable= */ false, /* flat= */ false, /* not_flat= */ !is_flat, /* not_null_free= */ !is_null_free);
3921     // We used to pass NotNull in here, asserting that the sub-arrays
3922     // are all not-null.  This is not true in generally, as code can
3923     // slam nulls down in the subarrays.
3924     if (make_constant) {
3925       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3926     } else {
3927       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3928     }
3929   } else if (klass->is_type_array_klass()) {
3930     // Element is an typeArray
3931     const Type* etype = (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3932     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()),
3933                                         /* stable= */ false, /* flat= */ false, /* not_flat= */ true, /* not_null_free= */ true);
3934     // We used to pass NotNull in here, asserting that the array pointer
3935     // is not-null. That was not true in general.
3936     if (make_constant) {
3937       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3938     } else {
3939       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3940     }
3941   } else if (klass->is_flat_array_klass()) {
3942     const TypeOopPtr* etype = TypeOopPtr::make_from_klass_raw(klass->as_array_klass()->element_klass(), trust_interfaces);
3943     etype = etype->join_speculative(TypePtr::NOTNULL)->is_oopptr();
3944     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()), /* stable= */ false, /* flat= */ true);
3945     // We used to pass NotNull in here, asserting that the sub-arrays
3946     // are all not-null.  This is not true in generally, as code can
3947     // slam nullptrs down in the subarrays.
3948     if (make_constant) {
3949       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3950     } else {
3951       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3952     }
3953   }
3954 
3955   fatal("unhandled object type");
3956   return nullptr;
3957 }
3958 
3959 //------------------------------get_con----------------------------------------
3960 intptr_t TypeOopPtr::get_con() const {
3961   assert( _ptr == Null || _ptr == Constant, "" );
3962   assert(offset() >= 0, "");
3963 
3964   if (offset() != 0) {
3965     // After being ported to the compiler interface, the compiler no longer
3966     // directly manipulates the addresses of oops.  Rather, it only has a pointer
3967     // to a handle at compile time.  This handle is embedded in the generated
3968     // code and dereferenced at the time the nmethod is made.  Until that time,
3969     // it is not reasonable to do arithmetic with the addresses of oops (we don't
3970     // have access to the addresses!).  This does not seem to currently happen,
3971     // but this assertion here is to help prevent its occurrence.
3972     tty->print_cr("Found oop constant with non-zero offset");
3973     ShouldNotReachHere();
3974   }
3975 
3976   return (intptr_t)const_oop()->constant_encoding();
3977 }
3978 
3979 
3980 //-----------------------------filter------------------------------------------
3981 // Do not allow interface-vs.-noninterface joins to collapse to top.
3982 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
3983 
3984   const Type* ft = join_helper(kills, include_speculative);

4005   } else {
4006     return one->equals(two) && TypePtr::eq(t);
4007   }
4008 }
4009 
4010 //------------------------------hash-------------------------------------------
4011 // Type-specific hashing function.
4012 uint TypeOopPtr::hash(void) const {
4013   return
4014     (uint)(const_oop() ? const_oop()->hash() : 0) +
4015     (uint)_klass_is_exact +
4016     (uint)_instance_id + TypePtr::hash();
4017 }
4018 
4019 //------------------------------dump2------------------------------------------
4020 #ifndef PRODUCT
4021 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4022   st->print("oopptr:%s", ptr_msg[_ptr]);
4023   if( _klass_is_exact ) st->print(":exact");
4024   if( const_oop() ) st->print(INTPTR_FORMAT, p2i(const_oop()));
4025   _offset.dump2(st);





4026   if (_instance_id == InstanceTop)
4027     st->print(",iid=top");
4028   else if (_instance_id != InstanceBot)
4029     st->print(",iid=%d",_instance_id);
4030 
4031   dump_inline_depth(st);
4032   dump_speculative(st);
4033 }
4034 #endif
4035 
4036 //------------------------------singleton--------------------------------------
4037 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4038 // constants
4039 bool TypeOopPtr::singleton(void) const {
4040   // detune optimizer to not generate constant oop + constant offset as a constant!
4041   // TopPTR, Null, AnyNull, Constant are all singletons
4042   return (offset() == 0) && !below_centerline(_ptr);
4043 }
4044 
4045 //------------------------------add_offset-------------------------------------
4046 const TypePtr* TypeOopPtr::add_offset(intptr_t offset) const {
4047   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
4048 }
4049 
4050 const TypeOopPtr* TypeOopPtr::with_offset(intptr_t offset) const {
4051   return make(_ptr, Offset(offset), _instance_id, with_offset_speculative(offset), _inline_depth);
4052 }
4053 
4054 /**
4055  * Return same type without a speculative part
4056  */
4057 const TypeOopPtr* TypeOopPtr::remove_speculative() const {
4058   if (_speculative == nullptr) {
4059     return this;
4060   }
4061   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4062   return make(_ptr, _offset, _instance_id, nullptr, _inline_depth);
4063 }
4064 
4065 /**
4066  * Return same type but drop speculative part if we know we won't use
4067  * it
4068  */
4069 const Type* TypeOopPtr::cleanup_speculative() const {
4070   // If the klass is exact and the ptr is not null then there's
4071   // nothing that the speculative type can help us with

4144 const TypeInstPtr *TypeInstPtr::BOTTOM;
4145 const TypeInstPtr *TypeInstPtr::MIRROR;
4146 const TypeInstPtr *TypeInstPtr::MARK;
4147 const TypeInstPtr *TypeInstPtr::KLASS;
4148 
4149 // Is there a single ciKlass* that can represent that type?
4150 ciKlass* TypeInstPtr::exact_klass_helper() const {
4151   if (_interfaces->empty()) {
4152     return _klass;
4153   }
4154   if (_klass != ciEnv::current()->Object_klass()) {
4155     if (_interfaces->eq(_klass->as_instance_klass())) {
4156       return _klass;
4157     }
4158     return nullptr;
4159   }
4160   return _interfaces->exact_klass();
4161 }
4162 
4163 //------------------------------TypeInstPtr-------------------------------------
4164 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset off,
4165                          bool flat_in_array, int instance_id, const TypePtr* speculative, int inline_depth)
4166   : TypeOopPtr(InstPtr, ptr, k, interfaces, xk, o, off, Offset::bottom, instance_id, speculative, inline_depth),
4167     _flat_in_array(flat_in_array) {
4168   assert(k == nullptr || !k->is_loaded() || !k->is_interface(), "no interface here");
4169   assert(k != nullptr &&
4170          (k->is_loaded() || o == nullptr),
4171          "cannot have constants with non-loaded klass");
4172   assert(!klass()->flat_in_array() || flat_in_array, "Should be flat in array");
4173   assert(!flat_in_array || can_be_inline_type(), "Only inline types can be flat in array");
4174 };
4175 
4176 //------------------------------make-------------------------------------------
4177 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
4178                                      ciKlass* k,
4179                                      const TypeInterfaces* interfaces,
4180                                      bool xk,
4181                                      ciObject* o,
4182                                      Offset offset,
4183                                      bool flat_in_array,
4184                                      int instance_id,
4185                                      const TypePtr* speculative,
4186                                      int inline_depth) {
4187   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
4188   // Either const_oop() is null or else ptr is Constant
4189   assert( (!o && ptr != Constant) || (o && ptr == Constant),
4190           "constant pointers must have a value supplied" );
4191   // Ptr is never Null
4192   assert( ptr != Null, "null pointers are not typed" );
4193 
4194   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4195   if (ptr == Constant) {
4196     // Note:  This case includes meta-object constants, such as methods.
4197     xk = true;
4198   } else if (k->is_loaded()) {
4199     ciInstanceKlass* ik = k->as_instance_klass();
4200     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
4201     assert(!ik->is_interface(), "no interface here");
4202     if (xk && ik->is_interface())  xk = false;  // no exact interface
4203   }
4204 
4205   // Check if this type is known to be flat in arrays
4206   flat_in_array = flat_in_array || k->flat_in_array();
4207 
4208   // Now hash this baby
4209   TypeInstPtr *result =
4210     (TypeInstPtr*)(new TypeInstPtr(ptr, k, interfaces, xk, o, offset, flat_in_array, instance_id, speculative, inline_depth))->hashcons();
4211 
4212   return result;
4213 }
4214 
4215 const TypeInterfaces* TypePtr::interfaces(ciKlass*& k, bool klass, bool interface, bool array, InterfaceHandling interface_handling) {
4216   if (k->is_instance_klass()) {
4217     if (k->is_loaded()) {
4218       if (k->is_interface() && interface_handling == ignore_interfaces) {
4219         assert(interface, "no interface expected");
4220         k = ciEnv::current()->Object_klass();
4221         const TypeInterfaces* interfaces = TypeInterfaces::make();
4222         return interfaces;
4223       }
4224       GrowableArray<ciInstanceKlass *>* k_interfaces = k->as_instance_klass()->transitive_interfaces();
4225       const TypeInterfaces* interfaces = TypeInterfaces::make(k_interfaces);
4226       if (k->is_interface()) {
4227         assert(interface, "no interface expected");
4228         k = ciEnv::current()->Object_klass();
4229       } else {
4230         assert(klass, "no instance klass expected");

4256   switch (bt) {
4257     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
4258     case T_INT:      return TypeInt::make(constant.as_int());
4259     case T_CHAR:     return TypeInt::make(constant.as_char());
4260     case T_BYTE:     return TypeInt::make(constant.as_byte());
4261     case T_SHORT:    return TypeInt::make(constant.as_short());
4262     case T_FLOAT:    return TypeF::make(constant.as_float());
4263     case T_DOUBLE:   return TypeD::make(constant.as_double());
4264     case T_LONG:     return TypeLong::make(constant.as_long());
4265     default:         break;
4266   }
4267   fatal("Invalid boxed value type '%s'", type2name(bt));
4268   return nullptr;
4269 }
4270 
4271 //------------------------------cast_to_ptr_type-------------------------------
4272 const TypeInstPtr* TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
4273   if( ptr == _ptr ) return this;
4274   // Reconstruct _sig info here since not a problem with later lazy
4275   // construction, _sig will show up on demand.
4276   return make(ptr, klass(), _interfaces, klass_is_exact(), ptr == Constant ? const_oop() : nullptr, _offset, _flat_in_array, _instance_id, _speculative, _inline_depth);
4277 }
4278 
4279 
4280 //-----------------------------cast_to_exactness-------------------------------
4281 const TypeInstPtr* TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
4282   if( klass_is_exact == _klass_is_exact ) return this;
4283   if (!_klass->is_loaded())  return this;
4284   ciInstanceKlass* ik = _klass->as_instance_klass();
4285   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
4286   assert(!ik->is_interface(), "no interface here");
4287   return make(ptr(), klass(), _interfaces, klass_is_exact, const_oop(), _offset, _flat_in_array, _instance_id, _speculative, _inline_depth);
4288 }
4289 
4290 //-----------------------------cast_to_instance_id----------------------------
4291 const TypeInstPtr* TypeInstPtr::cast_to_instance_id(int instance_id) const {
4292   if( instance_id == _instance_id ) return this;
4293   return make(_ptr, klass(), _interfaces, _klass_is_exact, const_oop(), _offset, _flat_in_array, instance_id, _speculative, _inline_depth);
4294 }
4295 
4296 //------------------------------xmeet_unloaded---------------------------------
4297 // Compute the MEET of two InstPtrs when at least one is unloaded.
4298 // Assume classes are different since called after check for same name/class-loader
4299 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst, const TypeInterfaces* interfaces) const {
4300   Offset off = meet_offset(tinst->offset());
4301   PTR ptr = meet_ptr(tinst->ptr());
4302   int instance_id = meet_instance_id(tinst->instance_id());
4303   const TypePtr* speculative = xmeet_speculative(tinst);
4304   int depth = meet_inline_depth(tinst->inline_depth());
4305 
4306   const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
4307   const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
4308   if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
4309     //
4310     // Meet unloaded class with java/lang/Object
4311     //
4312     // Meet
4313     //          |                     Unloaded Class
4314     //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
4315     //  ===================================================================
4316     //   TOP    | ..........................Unloaded......................|
4317     //  AnyNull |  U-AN    |................Unloaded......................|
4318     // Constant | ... O-NN .................................. |   O-BOT   |
4319     //  NotNull | ... O-NN .................................. |   O-BOT   |
4320     //  BOTTOM  | ........................Object-BOTTOM ..................|
4321     //
4322     assert(loaded->ptr() != TypePtr::Null, "insanity check");
4323     //
4324     if (loaded->ptr() == TypePtr::TopPTR)        { return unloaded->with_speculative(speculative); }
4325     else if (loaded->ptr() == TypePtr::AnyNull)  { return make(ptr, unloaded->klass(), interfaces, false, nullptr, off, false, instance_id, speculative, depth); }
4326     else if (loaded->ptr() == TypePtr::BotPTR)   { return TypeInstPtr::BOTTOM->with_speculative(speculative); }
4327     else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
4328       if (unloaded->ptr() == TypePtr::BotPTR)    { return TypeInstPtr::BOTTOM->with_speculative(speculative);  }
4329       else                                       { return TypeInstPtr::NOTNULL->with_speculative(speculative); }
4330     }
4331     else if (unloaded->ptr() == TypePtr::TopPTR) { return unloaded->with_speculative(speculative); }
4332 
4333     return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr()->with_speculative(speculative);
4334   }
4335 
4336   // Both are unloaded, not the same class, not Object
4337   // Or meet unloaded with a different loaded class, not java/lang/Object
4338   if (ptr != TypePtr::BotPTR) {
4339     return TypeInstPtr::NOTNULL->with_speculative(speculative);
4340   }
4341   return TypeInstPtr::BOTTOM->with_speculative(speculative);
4342 }
4343 
4344 
4345 //------------------------------meet-------------------------------------------

4366   case Top:
4367     return this;
4368 
4369   default:                      // All else is a mistake
4370     typerr(t);
4371 
4372   case MetadataPtr:
4373   case KlassPtr:
4374   case InstKlassPtr:
4375   case AryKlassPtr:
4376   case RawPtr: return TypePtr::BOTTOM;
4377 
4378   case AryPtr: {                // All arrays inherit from Object class
4379     // Call in reverse direction to avoid duplication
4380     return t->is_aryptr()->xmeet_helper(this);
4381   }
4382 
4383   case OopPtr: {                // Meeting to OopPtrs
4384     // Found a OopPtr type vs self-InstPtr type
4385     const TypeOopPtr *tp = t->is_oopptr();
4386     Offset offset = meet_offset(tp->offset());
4387     PTR ptr = meet_ptr(tp->ptr());
4388     switch (tp->ptr()) {
4389     case TopPTR:
4390     case AnyNull: {
4391       int instance_id = meet_instance_id(InstanceTop);
4392       const TypePtr* speculative = xmeet_speculative(tp);
4393       int depth = meet_inline_depth(tp->inline_depth());
4394       return make(ptr, klass(), _interfaces, klass_is_exact(),
4395                   (ptr == Constant ? const_oop() : nullptr), offset, flat_in_array(), instance_id, speculative, depth);
4396     }
4397     case NotNull:
4398     case BotPTR: {
4399       int instance_id = meet_instance_id(tp->instance_id());
4400       const TypePtr* speculative = xmeet_speculative(tp);
4401       int depth = meet_inline_depth(tp->inline_depth());
4402       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4403     }
4404     default: typerr(t);
4405     }
4406   }
4407 
4408   case AnyPtr: {                // Meeting to AnyPtrs
4409     // Found an AnyPtr type vs self-InstPtr type
4410     const TypePtr *tp = t->is_ptr();
4411     Offset offset = meet_offset(tp->offset());
4412     PTR ptr = meet_ptr(tp->ptr());
4413     int instance_id = meet_instance_id(InstanceTop);
4414     const TypePtr* speculative = xmeet_speculative(tp);
4415     int depth = meet_inline_depth(tp->inline_depth());
4416     switch (tp->ptr()) {
4417     case Null:
4418       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4419       // else fall through to AnyNull
4420     case TopPTR:
4421     case AnyNull: {
4422       return make(ptr, klass(), _interfaces, klass_is_exact(),
4423                   (ptr == Constant ? const_oop() : nullptr), offset, flat_in_array(), instance_id, speculative, depth);
4424     }
4425     case NotNull:
4426     case BotPTR:
4427       return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
4428     default: typerr(t);
4429     }
4430   }
4431 
4432   /*
4433                  A-top         }
4434                /   |   \       }  Tops
4435            B-top A-any C-top   }
4436               | /  |  \ |      }  Any-nulls
4437            B-any   |   C-any   }
4438               |    |    |
4439            B-con A-con C-con   } constants; not comparable across classes
4440               |    |    |
4441            B-not   |   C-not   }
4442               | \  |  / |      }  not-nulls
4443            B-bot A-not C-bot   }
4444                \   |   /       }  Bottoms
4445                  A-bot         }
4446   */
4447 
4448   case InstPtr: {                // Meeting 2 Oops?
4449     // Found an InstPtr sub-type vs self-InstPtr type
4450     const TypeInstPtr *tinst = t->is_instptr();
4451     Offset off = meet_offset(tinst->offset());
4452     PTR ptr = meet_ptr(tinst->ptr());
4453     int instance_id = meet_instance_id(tinst->instance_id());
4454     const TypePtr* speculative = xmeet_speculative(tinst);
4455     int depth = meet_inline_depth(tinst->inline_depth());
4456     const TypeInterfaces* interfaces = meet_interfaces(tinst);
4457 
4458     ciKlass* tinst_klass = tinst->klass();
4459     ciKlass* this_klass  = klass();
4460 
4461     ciKlass* res_klass = nullptr;
4462     bool res_xk = false;
4463     bool res_flat_in_array = false;
4464     const Type* res;
4465     MeetResult kind = meet_instptr(ptr, interfaces, this, tinst, res_klass, res_xk, res_flat_in_array);
4466 
4467     if (kind == UNLOADED) {
4468       // One of these classes has not been loaded
4469       const TypeInstPtr* unloaded_meet = xmeet_unloaded(tinst, interfaces);
4470 #ifndef PRODUCT
4471       if (PrintOpto && Verbose) {
4472         tty->print("meet of unloaded classes resulted in: ");
4473         unloaded_meet->dump();
4474         tty->cr();
4475         tty->print("  this == ");
4476         dump();
4477         tty->cr();
4478         tty->print(" tinst == ");
4479         tinst->dump();
4480         tty->cr();
4481       }
4482 #endif
4483       res = unloaded_meet;
4484     } else {
4485       if (kind == NOT_SUBTYPE && instance_id > 0) {
4486         instance_id = InstanceBot;
4487       } else if (kind == LCA) {
4488         instance_id = InstanceBot;
4489       }
4490       ciObject* o = nullptr;             // Assume not constant when done
4491       ciObject* this_oop = const_oop();
4492       ciObject* tinst_oop = tinst->const_oop();
4493       if (ptr == Constant) {
4494         if (this_oop != nullptr && tinst_oop != nullptr &&
4495             this_oop->equals(tinst_oop))
4496           o = this_oop;
4497         else if (above_centerline(_ptr)) {
4498           assert(!tinst_klass->is_interface(), "");
4499           o = tinst_oop;
4500         } else if (above_centerline(tinst->_ptr)) {
4501           assert(!this_klass->is_interface(), "");
4502           o = this_oop;
4503         } else
4504           ptr = NotNull;
4505       }
4506       res = make(ptr, res_klass, interfaces, res_xk, o, off, res_flat_in_array, instance_id, speculative, depth);
4507     }
4508 
4509     return res;
4510 
4511   } // End of case InstPtr
4512 
4513   } // End of switch
4514   return this;                  // Return the double constant
4515 }
4516 
4517 template<class T> TypePtr::MeetResult TypePtr::meet_instptr(PTR& ptr, const TypeInterfaces*& interfaces, const T* this_type, const T* other_type,
4518                                                             ciKlass*& res_klass, bool& res_xk, bool& res_flat_in_array) {
4519   ciKlass* this_klass = this_type->klass();
4520   ciKlass* other_klass = other_type->klass();
4521   const bool this_flat_in_array = this_type->flat_in_array();
4522   const bool other_flat_in_array = other_type->flat_in_array();
4523   const bool this_not_flat_in_array = this_type->not_flat_in_array();
4524   const bool other_not_flat_in_array = other_type->not_flat_in_array();
4525 
4526   bool this_xk = this_type->klass_is_exact();
4527   bool other_xk = other_type->klass_is_exact();
4528   PTR this_ptr = this_type->ptr();
4529   PTR other_ptr = other_type->ptr();
4530   const TypeInterfaces* this_interfaces = this_type->interfaces();
4531   const TypeInterfaces* other_interfaces = other_type->interfaces();
4532   // Check for easy case; klasses are equal (and perhaps not loaded!)
4533   // If we have constants, then we created oops so classes are loaded
4534   // and we can handle the constants further down.  This case handles
4535   // both-not-loaded or both-loaded classes
4536   if (ptr != Constant && this_klass->equals(other_klass) && this_xk == other_xk && this_flat_in_array == other_flat_in_array) {
4537     res_klass = this_klass;
4538     res_xk = this_xk;
4539     res_flat_in_array = this_flat_in_array;
4540     return QUICK;
4541   }
4542 
4543   // Classes require inspection in the Java klass hierarchy.  Must be loaded.
4544   if (!other_klass->is_loaded() || !this_klass->is_loaded()) {
4545     return UNLOADED;
4546   }
4547 
4548   // !!! Here's how the symmetry requirement breaks down into invariants:
4549   // If we split one up & one down AND they subtype, take the down man.
4550   // If we split one up & one down AND they do NOT subtype, "fall hard".
4551   // If both are up and they subtype, take the subtype class.
4552   // If both are up and they do NOT subtype, "fall hard".
4553   // If both are down and they subtype, take the supertype class.
4554   // If both are down and they do NOT subtype, "fall hard".
4555   // Constants treated as down.
4556 
4557   // Now, reorder the above list; observe that both-down+subtype is also
4558   // "fall hard"; "fall hard" becomes the default case:
4559   // If we split one up & one down AND they subtype, take the down man.
4560   // If both are up and they subtype, take the subtype class.
4561 
4562   // If both are down and they subtype, "fall hard".
4563   // If both are down and they do NOT subtype, "fall hard".
4564   // If both are up and they do NOT subtype, "fall hard".
4565   // If we split one up & one down AND they do NOT subtype, "fall hard".
4566 
4567   // If a proper subtype is exact, and we return it, we return it exactly.
4568   // If a proper supertype is exact, there can be no subtyping relationship!
4569   // If both types are equal to the subtype, exactness is and-ed below the
4570   // centerline and or-ed above it.  (N.B. Constants are always exact.)
4571 
4572   // Check for subtyping:
4573   // Flat in array matrix, yes = y, no = n, maybe = m, top/empty = T:
4574   //        yes maybe no   -> Super Klass
4575   //   yes   y    y    y
4576   // maybe   y    m    m
4577   //    no   T    n    n
4578   //    |
4579   //    v
4580   // Sub Klass
4581 
4582   const T* subtype = nullptr;
4583   bool subtype_exact = false;
4584   bool flat_in_array = false;
4585   if (this_type->is_same_java_type_as(other_type)) {
4586     subtype = this_type;
4587     subtype_exact = below_centerline(ptr) ? (this_xk && other_xk) : (this_xk || other_xk);
4588     flat_in_array = below_centerline(ptr) ? (this_flat_in_array && other_flat_in_array) : (this_flat_in_array || other_flat_in_array);
4589   } else if (!other_xk && is_meet_subtype_of(this_type, other_type)) {
4590     subtype = this_type;     // Pick subtyping class
4591     subtype_exact = this_xk;
4592     bool other_flat_this_maybe_flat = other_flat_in_array && (!this_flat_in_array && !this_not_flat_in_array);
4593     flat_in_array = this_flat_in_array || other_flat_this_maybe_flat;
4594   } else if (!this_xk && is_meet_subtype_of(other_type, this_type)) {
4595     subtype = other_type;    // Pick subtyping class
4596     subtype_exact = other_xk;
4597     bool this_flat_other_maybe_flat = this_flat_in_array && (!other_flat_in_array && !other_not_flat_in_array);
4598     flat_in_array = other_flat_in_array || this_flat_other_maybe_flat;
4599   }
4600 
4601   if (subtype) {
4602     if (above_centerline(ptr)) {
4603       // Both types are empty.
4604       this_type = other_type = subtype;
4605       this_xk = other_xk = subtype_exact;
4606     } else if (above_centerline(this_ptr) && !above_centerline(other_ptr)) {
4607       // this_type is empty while other_type is not. Take other_type.
4608       this_type = other_type;
4609       this_xk = other_xk;
4610       flat_in_array = other_flat_in_array;
4611     } else if (above_centerline(other_ptr) && !above_centerline(this_ptr)) {
4612       // other_type is empty while this_type is not. Take this_type.
4613       other_type = this_type; // this is down; keep down man
4614       flat_in_array = this_flat_in_array;
4615     } else {
4616       // this_type and other_type are both non-empty.
4617       this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
4618     }
4619   }
4620 
4621   // Check for classes now being equal
4622   if (this_type->is_same_java_type_as(other_type)) {
4623     // If the klasses are equal, the constants may still differ.  Fall to
4624     // NotNull if they do (neither constant is null; that is a special case
4625     // handled elsewhere).
4626     res_klass = this_type->klass();
4627     res_xk = this_xk;
4628     res_flat_in_array = subtype ? flat_in_array : this_flat_in_array;
4629     return SUBTYPE;
4630   } // Else classes are not equal
4631 
4632   // Since klasses are different, we require a LCA in the Java
4633   // class hierarchy - which means we have to fall to at least NotNull.
4634   if (ptr == TopPTR || ptr == AnyNull || ptr == Constant) {
4635     ptr = NotNull;
4636   }
4637 
4638   interfaces = this_interfaces->intersection_with(other_interfaces);
4639 
4640   // Now we find the LCA of Java classes
4641   ciKlass* k = this_klass->least_common_ancestor(other_klass);
4642 
4643   res_klass = k;
4644   res_xk = false;
4645   res_flat_in_array = this_flat_in_array && other_flat_in_array;
4646 
4647   return LCA;
4648 }
4649 
4650 template<class T> bool TypePtr::is_meet_subtype_of(const T* sub_type, const T* super_type) {
4651   return sub_type->is_meet_subtype_of(super_type) && !(super_type->flat_in_array() && sub_type->not_flat_in_array());
4652 }
4653 
4654 //------------------------java_mirror_type--------------------------------------
4655 ciType* TypeInstPtr::java_mirror_type(bool* is_null_free_array) const {
4656   // must be a singleton type
4657   if( const_oop() == nullptr )  return nullptr;
4658 
4659   // must be of type java.lang.Class
4660   if( klass() != ciEnv::current()->Class_klass() )  return nullptr;
4661   return const_oop()->as_instance()->java_mirror_type(is_null_free_array);

4662 }
4663 
4664 
4665 //------------------------------xdual------------------------------------------
4666 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
4667 // inheritance mechanism.
4668 const Type *TypeInstPtr::xdual() const {
4669   return new TypeInstPtr(dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), flat_in_array(), dual_instance_id(), dual_speculative(), dual_inline_depth());
4670 }
4671 
4672 //------------------------------eq---------------------------------------------
4673 // Structural equality check for Type representations
4674 bool TypeInstPtr::eq( const Type *t ) const {
4675   const TypeInstPtr *p = t->is_instptr();
4676   return
4677     klass()->equals(p->klass()) &&
4678     flat_in_array() == p->flat_in_array() &&
4679     _interfaces->eq(p->_interfaces) &&
4680     TypeOopPtr::eq(p);          // Check sub-type stuff
4681 }
4682 
4683 //------------------------------hash-------------------------------------------
4684 // Type-specific hashing function.
4685 uint TypeInstPtr::hash(void) const {
4686   return klass()->hash() + TypeOopPtr::hash() + _interfaces->hash() + (uint)flat_in_array();
4687 }
4688 
4689 bool TypeInstPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4690   return TypePtr::is_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
4691 }
4692 
4693 
4694 bool TypeInstPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const {
4695   return TypePtr::is_same_java_type_as_helper_for_instance(this, other);
4696 }
4697 
4698 bool TypeInstPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4699   return TypePtr::maybe_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
4700 }
4701 
4702 
4703 //------------------------------dump2------------------------------------------
4704 // Dump oop Type
4705 #ifndef PRODUCT
4706 void TypeInstPtr::dump2(Dict &d, uint depth, outputStream* st) const {

4720       // suppress newlines from it so -XX:+Verbose -XX:+PrintIdeal dumps one-liner for each node.
4721       char* buf = ss.as_string(/* c_heap= */false);
4722       StringUtils::replace_no_expand(buf, "\n", "");
4723       st->print_raw(buf);
4724     }
4725   case BotPTR:
4726     if (!WizardMode && !Verbose) {
4727       if( _klass_is_exact ) st->print(":exact");
4728       break;
4729     }
4730   case TopPTR:
4731   case AnyNull:
4732   case NotNull:
4733     st->print(":%s", ptr_msg[_ptr]);
4734     if( _klass_is_exact ) st->print(":exact");
4735     break;
4736   default:
4737     break;
4738   }
4739 
4740   _offset.dump2(st);




4741 
4742   st->print(" *");
4743 
4744   if (flat_in_array() && !klass()->is_inlinetype()) {
4745     st->print(" (flat in array)");
4746   }
4747 
4748   if (_instance_id == InstanceTop)
4749     st->print(",iid=top");
4750   else if (_instance_id != InstanceBot)
4751     st->print(",iid=%d",_instance_id);
4752 
4753   dump_inline_depth(st);
4754   dump_speculative(st);
4755 }
4756 #endif
4757 
4758 //------------------------------add_offset-------------------------------------
4759 const TypePtr* TypeInstPtr::add_offset(intptr_t offset) const {
4760   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), xadd_offset(offset), flat_in_array(),
4761               _instance_id, add_offset_speculative(offset), _inline_depth);
4762 }
4763 
4764 const TypeInstPtr* TypeInstPtr::with_offset(intptr_t offset) const {
4765   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), Offset(offset), flat_in_array(),
4766               _instance_id, with_offset_speculative(offset), _inline_depth);
4767 }
4768 
4769 const TypeInstPtr* TypeInstPtr::remove_speculative() const {
4770   if (_speculative == nullptr) {
4771     return this;
4772   }
4773   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4774   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, flat_in_array(),
4775               _instance_id, nullptr, _inline_depth);
4776 }
4777 
4778 const TypeInstPtr* TypeInstPtr::with_speculative(const TypePtr* speculative) const {
4779   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, flat_in_array(), _instance_id, speculative, _inline_depth);
4780 }
4781 
4782 const TypePtr* TypeInstPtr::with_inline_depth(int depth) const {
4783   if (!UseInlineDepthForSpeculativeTypes) {
4784     return this;
4785   }
4786   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, flat_in_array(), _instance_id, _speculative, depth);
4787 }
4788 
4789 const TypePtr* TypeInstPtr::with_instance_id(int instance_id) const {
4790   assert(is_known_instance(), "should be known");
4791   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, flat_in_array(), instance_id, _speculative, _inline_depth);
4792 }
4793 
4794 const TypeInstPtr *TypeInstPtr::cast_to_flat_in_array() const {
4795   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, true, _instance_id, _speculative, _inline_depth);
4796 }
4797 
4798 const TypeKlassPtr* TypeInstPtr::as_klass_type(bool try_for_exact) const {
4799   bool xk = klass_is_exact();
4800   ciInstanceKlass* ik = klass()->as_instance_klass();
4801   if (try_for_exact && !xk && !ik->has_subklass() && !ik->is_final()) {
4802     if (_interfaces->eq(ik)) {
4803       Compile* C = Compile::current();
4804       Dependencies* deps = C->dependencies();
4805       deps->assert_leaf_type(ik);
4806       xk = true;
4807     }
4808   }
4809   return TypeInstKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, klass(), _interfaces, Offset(0), flat_in_array());
4810 }
4811 
4812 template <class T1, class T2> bool TypePtr::is_meet_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_xk, bool other_xk) {
4813   static_assert(std::is_base_of<T2, T1>::value, "");
4814 
4815   if (!this_one->is_instance_type(other)) {
4816     return false;
4817   }
4818 
4819   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty()) {
4820     return true;
4821   }
4822 
4823   return this_one->klass()->is_subtype_of(other->klass()) &&
4824          (!this_xk || this_one->_interfaces->contains(other->_interfaces));
4825 }
4826 
4827 
4828 bool TypeInstPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const {
4829   return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk);

4834   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty()) {
4835     return true;
4836   }
4837 
4838   if (this_one->is_instance_type(other)) {
4839     return other->klass() == ciEnv::current()->Object_klass() && this_one->_interfaces->contains(other->_interfaces);
4840   }
4841 
4842   int dummy;
4843   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
4844   if (this_top_or_bottom) {
4845     return false;
4846   }
4847 
4848   const T1* other_ary = this_one->is_array_type(other);
4849   const TypePtr* other_elem = other_ary->elem()->make_ptr();
4850   const TypePtr* this_elem = this_one->elem()->make_ptr();
4851   if (other_elem != nullptr && this_elem != nullptr) {
4852     return this_one->is_reference_type(this_elem)->is_meet_subtype_of_helper(this_one->is_reference_type(other_elem), this_xk, other_xk);
4853   }

4854   if (other_elem == nullptr && this_elem == nullptr) {
4855     return this_one->klass()->is_subtype_of(other->klass());
4856   }
4857 
4858   return false;
4859 }
4860 
4861 bool TypeAryPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const {
4862   return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk);
4863 }
4864 
4865 bool TypeInstKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const {
4866   return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk);
4867 }
4868 
4869 bool TypeAryKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const {
4870   return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk);
4871 }
4872 
4873 //=============================================================================
4874 // Convenience common pre-built types.
4875 const TypeAryPtr *TypeAryPtr::RANGE;
4876 const TypeAryPtr *TypeAryPtr::OOPS;
4877 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
4878 const TypeAryPtr *TypeAryPtr::BYTES;
4879 const TypeAryPtr *TypeAryPtr::SHORTS;
4880 const TypeAryPtr *TypeAryPtr::CHARS;
4881 const TypeAryPtr *TypeAryPtr::INTS;
4882 const TypeAryPtr *TypeAryPtr::LONGS;
4883 const TypeAryPtr *TypeAryPtr::FLOATS;
4884 const TypeAryPtr *TypeAryPtr::DOUBLES;
4885 const TypeAryPtr *TypeAryPtr::INLINES;
4886 
4887 //------------------------------make-------------------------------------------
4888 const TypeAryPtr* TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, Offset offset, Offset field_offset,
4889                                    int instance_id, const TypePtr* speculative, int inline_depth) {
4890   assert(!(k == nullptr && ary->_elem->isa_int()),
4891          "integral arrays must be pre-equipped with a class");
4892   if (!xk)  xk = ary->ary_must_be_exact();
4893   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4894   if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() &&
4895       k->as_obj_array_klass()->base_element_klass()->is_interface()) {
4896     k = nullptr;
4897   }
4898   if (k != nullptr && k->is_flat_array_klass() && !ary->_flat) {
4899     k = nullptr;
4900   }
4901   return (TypeAryPtr*)(new TypeAryPtr(ptr, nullptr, ary, k, xk, offset, field_offset, instance_id, false, speculative, inline_depth))->hashcons();
4902 }
4903 
4904 //------------------------------make-------------------------------------------
4905 const TypeAryPtr* TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, Offset offset, Offset field_offset,
4906                                    int instance_id, const TypePtr* speculative, int inline_depth,
4907                                    bool is_autobox_cache) {
4908   assert(!(k == nullptr && ary->_elem->isa_int()),
4909          "integral arrays must be pre-equipped with a class");
4910   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
4911   if (!xk)  xk = (o != nullptr) || ary->ary_must_be_exact();
4912   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4913   if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() &&
4914       k->as_obj_array_klass()->base_element_klass()->is_interface()) {
4915     k = nullptr;
4916   }
4917   if (k != nullptr && k->is_flat_array_klass() && !ary->_flat) {
4918     k = nullptr;
4919   }
4920   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, field_offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
4921 }
4922 
4923 //------------------------------cast_to_ptr_type-------------------------------
4924 const TypeAryPtr* TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
4925   if( ptr == _ptr ) return this;
4926   return make(ptr, ptr == Constant ? const_oop() : nullptr, _ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4927 }
4928 
4929 
4930 //-----------------------------cast_to_exactness-------------------------------
4931 const TypeAryPtr* TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
4932   if( klass_is_exact == _klass_is_exact ) return this;
4933   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
4934   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4935 }
4936 
4937 //-----------------------------cast_to_instance_id----------------------------
4938 const TypeAryPtr* TypeAryPtr::cast_to_instance_id(int instance_id) const {
4939   if( instance_id == _instance_id ) return this;
4940   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, _field_offset, instance_id, _speculative, _inline_depth, _is_autobox_cache);
4941 }
4942 
4943 
4944 //-----------------------------max_array_length-------------------------------
4945 // A wrapper around arrayOopDesc::max_array_length(etype) with some input normalization.
4946 jint TypeAryPtr::max_array_length(BasicType etype) {
4947   if (!is_java_primitive(etype) && !::is_reference_type(etype)) {
4948     if (etype == T_NARROWOOP) {
4949       etype = T_OBJECT;
4950     } else if (etype == T_ILLEGAL) { // bottom[]
4951       etype = T_BYTE; // will produce conservatively high value
4952     } else {
4953       fatal("not an element type: %s", type2name(etype));
4954     }
4955   }
4956   return arrayOopDesc::max_array_length(etype);
4957 }
4958 
4959 //-----------------------------narrow_size_type-------------------------------
4960 // Narrow the given size type to the index range for the given array base type.

4976   if (hi > max_hi) {
4977     hi = max_hi;
4978     if (size->is_con()) {
4979       lo = hi;
4980     }
4981     chg = true;
4982   }
4983   // Negative length arrays will produce weird intermediate dead fast-path code
4984   if (lo > hi)
4985     return TypeInt::ZERO;
4986   if (!chg)
4987     return size;
4988   return TypeInt::make(lo, hi, Type::WidenMin);
4989 }
4990 
4991 //-------------------------------cast_to_size----------------------------------
4992 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
4993   assert(new_size != nullptr, "");
4994   new_size = narrow_size_type(new_size);
4995   if (new_size == size())  return this;
4996   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable(), is_flat(), is_not_flat(), is_not_null_free());
4997   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4998 }
4999 
5000 //-------------------------------cast_to_not_flat------------------------------
5001 const TypeAryPtr* TypeAryPtr::cast_to_not_flat(bool not_flat) const {
5002   if (not_flat == is_not_flat()) {
5003     return this;
5004   }
5005   assert(!not_flat || !is_flat(), "inconsistency");
5006   const TypeAry* new_ary = TypeAry::make(elem(), size(), is_stable(), is_flat(), not_flat, is_not_null_free());
5007   const TypeAryPtr* res = make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5008   // We keep the speculative part if it contains information about flat-/nullability.
5009   // Make sure it's removed if it's not better than the non-speculative type anymore.
5010   if (res->speculative() == res->remove_speculative()) {
5011     return res->remove_speculative();
5012   }
5013   return res;
5014 }
5015 
5016 //-------------------------------cast_to_not_null_free-------------------------
5017 const TypeAryPtr* TypeAryPtr::cast_to_not_null_free(bool not_null_free) const {
5018   if (not_null_free == is_not_null_free()) {
5019     return this;
5020   }
5021   assert(!not_null_free || !is_flat(), "inconsistency");
5022   const TypeAry* new_ary = TypeAry::make(elem(), size(), is_stable(), is_flat(), /* not_flat= */ not_null_free ? true : is_not_flat(), not_null_free);
5023   const TypeAryPtr* res = make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset,
5024                                _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5025   // We keep the speculative part if it contains information about flat-/nullability.
5026   // Make sure it's removed if it's not better than the non-speculative type anymore.
5027   if (res->speculative() == res->remove_speculative()) {
5028     return res->remove_speculative();
5029   }
5030   return res;
5031 }
5032 
5033 //---------------------------------update_properties---------------------------
5034 const TypeAryPtr* TypeAryPtr::update_properties(const TypeAryPtr* from) const {
5035   if ((from->is_flat()          && is_not_flat()) ||
5036       (from->is_not_flat()      && is_flat()) ||
5037       (from->is_null_free()     && is_not_null_free()) ||
5038       (from->is_not_null_free() && is_null_free())) {
5039     return nullptr; // Inconsistent properties
5040   } else if (from->is_not_null_free()) {
5041     return cast_to_not_null_free(); // Implies not flat
5042   } else if (from->is_not_flat()) {
5043     return cast_to_not_flat();
5044   }
5045   return this;
5046 }
5047 
5048 jint TypeAryPtr::flat_layout_helper() const {
5049   return klass()->as_flat_array_klass()->layout_helper();
5050 }
5051 
5052 int TypeAryPtr::flat_elem_size() const {
5053   return klass()->as_flat_array_klass()->element_byte_size();
5054 }
5055 
5056 int TypeAryPtr::flat_log_elem_size() const {
5057   return klass()->as_flat_array_klass()->log2_element_size();
5058 }
5059 
5060 //------------------------------cast_to_stable---------------------------------
5061 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
5062   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
5063     return this;
5064 
5065   const Type* elem = this->elem();
5066   const TypePtr* elem_ptr = elem->make_ptr();
5067 
5068   if (stable_dimension > 1 && elem_ptr != nullptr && elem_ptr->isa_aryptr()) {
5069     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
5070     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
5071   }
5072 
5073   const TypeAry* new_ary = TypeAry::make(elem, size(), stable, is_flat(), is_not_flat(), is_not_null_free());
5074 
5075   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5076 }
5077 
5078 //-----------------------------stable_dimension--------------------------------
5079 int TypeAryPtr::stable_dimension() const {
5080   if (!is_stable())  return 0;
5081   int dim = 1;
5082   const TypePtr* elem_ptr = elem()->make_ptr();
5083   if (elem_ptr != nullptr && elem_ptr->isa_aryptr())
5084     dim += elem_ptr->is_aryptr()->stable_dimension();
5085   return dim;
5086 }
5087 
5088 //----------------------cast_to_autobox_cache-----------------------------------
5089 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache() const {
5090   if (is_autobox_cache())  return this;
5091   const TypeOopPtr* etype = elem()->make_oopptr();
5092   if (etype == nullptr)  return this;
5093   // The pointers in the autobox arrays are always non-null.
5094   etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
5095   const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable(), is_flat(), is_not_flat(), is_not_null_free());
5096   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, /*is_autobox_cache=*/true);
5097 }
5098 
5099 //------------------------------eq---------------------------------------------
5100 // Structural equality check for Type representations
5101 bool TypeAryPtr::eq( const Type *t ) const {
5102   const TypeAryPtr *p = t->is_aryptr();
5103   return
5104     _ary == p->_ary &&  // Check array
5105     TypeOopPtr::eq(p) &&// Check sub-parts
5106     _field_offset == p->_field_offset;
5107 }
5108 
5109 //------------------------------hash-------------------------------------------
5110 // Type-specific hashing function.
5111 uint TypeAryPtr::hash(void) const {
5112   return (uint)(uintptr_t)_ary + TypeOopPtr::hash() + _field_offset.get();
5113 }
5114 
5115 bool TypeAryPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
5116   return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
5117 }
5118 
5119 bool TypeAryPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const {
5120   return TypePtr::is_same_java_type_as_helper_for_array(this, other);
5121 }
5122 
5123 bool TypeAryPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
5124   return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
5125 }
5126 //------------------------------meet-------------------------------------------
5127 // Compute the MEET of two types.  It returns a new Type object.
5128 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
5129   // Perform a fast test for common case; meeting the same types together.
5130   if( this == t ) return this;  // Meeting same type-rep?
5131   // Current "this->_base" is Pointer
5132   switch (t->base()) {          // switch on original type

5136   case Long:
5137   case FloatTop:
5138   case FloatCon:
5139   case FloatBot:
5140   case DoubleTop:
5141   case DoubleCon:
5142   case DoubleBot:
5143   case NarrowOop:
5144   case NarrowKlass:
5145   case Bottom:                  // Ye Olde Default
5146     return Type::BOTTOM;
5147   case Top:
5148     return this;
5149 
5150   default:                      // All else is a mistake
5151     typerr(t);
5152 
5153   case OopPtr: {                // Meeting to OopPtrs
5154     // Found a OopPtr type vs self-AryPtr type
5155     const TypeOopPtr *tp = t->is_oopptr();
5156     Offset offset = meet_offset(tp->offset());
5157     PTR ptr = meet_ptr(tp->ptr());
5158     int depth = meet_inline_depth(tp->inline_depth());
5159     const TypePtr* speculative = xmeet_speculative(tp);
5160     switch (tp->ptr()) {
5161     case TopPTR:
5162     case AnyNull: {
5163       int instance_id = meet_instance_id(InstanceTop);
5164       return make(ptr, (ptr == Constant ? const_oop() : nullptr),
5165                   _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
5166     }
5167     case BotPTR:
5168     case NotNull: {
5169       int instance_id = meet_instance_id(tp->instance_id());
5170       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
5171     }
5172     default: ShouldNotReachHere();
5173     }
5174   }
5175 
5176   case AnyPtr: {                // Meeting two AnyPtrs
5177     // Found an AnyPtr type vs self-AryPtr type
5178     const TypePtr *tp = t->is_ptr();
5179     Offset offset = meet_offset(tp->offset());
5180     PTR ptr = meet_ptr(tp->ptr());
5181     const TypePtr* speculative = xmeet_speculative(tp);
5182     int depth = meet_inline_depth(tp->inline_depth());
5183     switch (tp->ptr()) {
5184     case TopPTR:
5185       return this;
5186     case BotPTR:
5187     case NotNull:
5188       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
5189     case Null:
5190       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
5191       // else fall through to AnyNull
5192     case AnyNull: {
5193       int instance_id = meet_instance_id(InstanceTop);
5194       return make(ptr, (ptr == Constant ? const_oop() : nullptr),
5195                   _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
5196     }
5197     default: ShouldNotReachHere();
5198     }
5199   }
5200 
5201   case MetadataPtr:
5202   case KlassPtr:
5203   case InstKlassPtr:
5204   case AryKlassPtr:
5205   case RawPtr: return TypePtr::BOTTOM;
5206 
5207   case AryPtr: {                // Meeting 2 references?
5208     const TypeAryPtr *tap = t->is_aryptr();
5209     Offset off = meet_offset(tap->offset());
5210     Offset field_off = meet_field_offset(tap->field_offset());
5211     const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
5212     PTR ptr = meet_ptr(tap->ptr());
5213     int instance_id = meet_instance_id(tap->instance_id());
5214     const TypePtr* speculative = xmeet_speculative(tap);
5215     int depth = meet_inline_depth(tap->inline_depth());
5216 
5217     ciKlass* res_klass = nullptr;
5218     bool res_xk = false;
5219     bool res_flat = false;
5220     bool res_not_flat = false;
5221     bool res_not_null_free = false;
5222     const Type* elem = tary->_elem;
5223     if (meet_aryptr(ptr, elem, this, tap, res_klass, res_xk, res_flat, res_not_flat, res_not_null_free) == NOT_SUBTYPE) {
5224       instance_id = InstanceBot;
5225     } else if (this->is_flat() != tap->is_flat()) {
5226       // Meeting flat inline type array with non-flat array. Adjust (field) offset accordingly.
5227       if (tary->_flat) {
5228         // Result is in a flat representation
5229         off = Offset(is_flat() ? offset() : tap->offset());
5230         field_off = is_flat() ? field_offset() : tap->field_offset();
5231       } else if (below_centerline(ptr)) {
5232         // Result is in a non-flat representation
5233         off = Offset(flat_offset()).meet(Offset(tap->flat_offset()));
5234         field_off = (field_off == Offset::top) ? Offset::top : Offset::bottom;
5235       } else if (flat_offset() == tap->flat_offset()) {
5236         off = Offset(!is_flat() ? offset() : tap->offset());
5237         field_off = !is_flat() ? field_offset() : tap->field_offset();
5238       }
5239     }
5240 
5241     ciObject* o = nullptr;             // Assume not constant when done
5242     ciObject* this_oop = const_oop();
5243     ciObject* tap_oop = tap->const_oop();
5244     if (ptr == Constant) {
5245       if (this_oop != nullptr && tap_oop != nullptr &&
5246           this_oop->equals(tap_oop)) {
5247         o = tap_oop;
5248       } else if (above_centerline(_ptr)) {
5249         o = tap_oop;
5250       } else if (above_centerline(tap->_ptr)) {
5251         o = this_oop;
5252       } else {
5253         ptr = NotNull;
5254       }
5255     }
5256     return make(ptr, o, TypeAry::make(elem, tary->_size, tary->_stable, res_flat, res_not_flat, res_not_null_free), res_klass, res_xk, off, field_off, instance_id, speculative, depth);
5257   }
5258 
5259   // All arrays inherit from Object class
5260   case InstPtr: {
5261     const TypeInstPtr *tp = t->is_instptr();
5262     Offset offset = meet_offset(tp->offset());
5263     PTR ptr = meet_ptr(tp->ptr());
5264     int instance_id = meet_instance_id(tp->instance_id());
5265     const TypePtr* speculative = xmeet_speculative(tp);
5266     int depth = meet_inline_depth(tp->inline_depth());
5267     const TypeInterfaces* interfaces = meet_interfaces(tp);
5268     const TypeInterfaces* tp_interfaces = tp->_interfaces;
5269     const TypeInterfaces* this_interfaces = _interfaces;
5270 
5271     switch (ptr) {
5272     case TopPTR:
5273     case AnyNull:                // Fall 'down' to dual of object klass
5274       // For instances when a subclass meets a superclass we fall
5275       // below the centerline when the superclass is exact. We need to
5276       // do the same here.
5277       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) && !tp->klass_is_exact() && !tp->flat_in_array()) {
5278         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
5279       } else {
5280         // cannot subclass, so the meet has to fall badly below the centerline
5281         ptr = NotNull;
5282         instance_id = InstanceBot;
5283         interfaces = this_interfaces->intersection_with(tp_interfaces);
5284         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr, offset, false, instance_id, speculative, depth);
5285       }
5286     case Constant:
5287     case NotNull:
5288     case BotPTR:                // Fall down to object klass
5289       // LCA is object_klass, but if we subclass from the top we can do better
5290       if (above_centerline(tp->ptr())) {
5291         // If 'tp'  is above the centerline and it is Object class
5292         // then we can subclass in the Java class hierarchy.
5293         // For instances when a subclass meets a superclass we fall
5294         // below the centerline when the superclass is exact. We need
5295         // to do the same here.
5296         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) && !tp->klass_is_exact() && !tp->flat_in_array()) {
5297           // that is, my array type is a subtype of 'tp' klass
5298           return make(ptr, (ptr == Constant ? const_oop() : nullptr),
5299                       _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
5300         }
5301       }
5302       // The other case cannot happen, since t cannot be a subtype of an array.
5303       // The meet falls down to Object class below centerline.
5304       if (ptr == Constant) {
5305          ptr = NotNull;
5306       }
5307       if (instance_id > 0) {
5308         instance_id = InstanceBot;
5309       }
5310       interfaces = this_interfaces->intersection_with(tp_interfaces);
5311       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr, offset, false, instance_id, speculative, depth);
5312     default: typerr(t);
5313     }
5314   }
5315   }
5316   return this;                  // Lint noise
5317 }
5318 
5319 
5320 template<class T> TypePtr::MeetResult TypePtr::meet_aryptr(PTR& ptr, const Type*& elem, const T* this_ary, const T* other_ary,
5321                                                            ciKlass*& res_klass, bool& res_xk, bool &res_flat, bool& res_not_flat, bool& res_not_null_free) {
5322   int dummy;
5323   bool this_top_or_bottom = (this_ary->base_element_type(dummy) == Type::TOP || this_ary->base_element_type(dummy) == Type::BOTTOM);
5324   bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
5325   ciKlass* this_klass = this_ary->klass();
5326   ciKlass* other_klass = other_ary->klass();
5327   bool this_xk = this_ary->klass_is_exact();
5328   bool other_xk = other_ary->klass_is_exact();
5329   PTR this_ptr = this_ary->ptr();
5330   PTR other_ptr = other_ary->ptr();
5331   bool this_flat = this_ary->is_flat();
5332   bool this_not_flat = this_ary->is_not_flat();
5333   bool other_flat = other_ary->is_flat();
5334   bool other_not_flat = other_ary->is_not_flat();
5335   bool this_not_null_free = this_ary->is_not_null_free();
5336   bool other_not_null_free = other_ary->is_not_null_free();
5337   res_klass = nullptr;
5338   MeetResult result = SUBTYPE;
5339   res_flat = this_flat && other_flat;
5340   res_not_flat = this_not_flat && other_not_flat;
5341   res_not_null_free = this_not_null_free && other_not_null_free;
5342 
5343   if (elem->isa_int()) {
5344     // Integral array element types have irrelevant lattice relations.
5345     // It is the klass that determines array layout, not the element type.
5346       if (this_top_or_bottom) {
5347         res_klass = other_klass;
5348       } else if (other_top_or_bottom || other_klass == this_klass) {
5349       res_klass = this_klass;
5350     } else {
5351       // Something like byte[int+] meets char[int+].
5352       // This must fall to bottom, not (int[-128..65535])[int+].
5353       // instance_id = InstanceBot;
5354       elem = Type::BOTTOM;
5355       result = NOT_SUBTYPE;
5356       if (above_centerline(ptr) || ptr == Constant) {
5357         ptr = NotNull;
5358         res_xk = false;
5359         return NOT_SUBTYPE;
5360       }
5361     }
5362   } else {// Non integral arrays.
5363     // Must fall to bottom if exact klasses in upper lattice
5364     // are not equal or super klass is exact.
5365     if ((above_centerline(ptr) || ptr == Constant) && !this_ary->is_same_java_type_as(other_ary) &&
5366         // meet with top[] and bottom[] are processed further down:
5367         !this_top_or_bottom && !other_top_or_bottom &&
5368         // both are exact and not equal:

5370          // 'tap'  is exact and super or unrelated:
5371          (other_xk && !other_ary->is_meet_subtype_of(this_ary)) ||
5372          // 'this' is exact and super or unrelated:
5373          (this_xk && !this_ary->is_meet_subtype_of(other_ary)))) {
5374       if (above_centerline(ptr) || (elem->make_ptr() && above_centerline(elem->make_ptr()->_ptr))) {
5375         elem = Type::BOTTOM;
5376       }
5377       ptr = NotNull;
5378       res_xk = false;
5379       return NOT_SUBTYPE;
5380     }
5381   }
5382 
5383   res_xk = false;
5384   switch (other_ptr) {
5385     case AnyNull:
5386     case TopPTR:
5387       // Compute new klass on demand, do not use tap->_klass
5388       if (below_centerline(this_ptr)) {
5389         res_xk = this_xk;
5390         if (this_ary->is_flat()) {
5391           elem = this_ary->elem();
5392         }
5393       } else {
5394         res_xk = (other_xk || this_xk);
5395       }
5396       break;
5397     case Constant: {
5398       if (this_ptr == Constant) {
5399         res_xk = true;
5400       } else if (above_centerline(this_ptr)) {
5401         res_xk = true;
5402       } else {
5403         // Only precise for identical arrays
5404         res_xk = this_xk && (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom));
5405         // Even though MyValue is final, [LMyValue is only exact if the array
5406         // is null-free due to null-free [LMyValue <: null-able [LMyValue.
5407         if (res_xk && !res_not_null_free) {
5408           res_xk = false;
5409         }
5410       }
5411       break;
5412     }
5413     case NotNull:
5414     case BotPTR:
5415       // Compute new klass on demand, do not use tap->_klass
5416       if (above_centerline(this_ptr)) {
5417         res_xk = other_xk;
5418         if (other_ary->is_flat()) {
5419           elem = other_ary->elem();
5420         }
5421       } else {
5422         res_xk = (other_xk && this_xk) &&
5423                  (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom)); // Only precise for identical arrays
5424         // Even though MyValue is final, [LMyValue is only exact if the array
5425         // is null-free due to null-free [LMyValue <: null-able [LMyValue.
5426         if (res_xk && !res_not_null_free) {
5427           res_xk = false;
5428         }
5429       }
5430       break;
5431     default:  {
5432       ShouldNotReachHere();
5433       return result;
5434     }
5435   }
5436   return result;
5437 }
5438 
5439 
5440 //------------------------------xdual------------------------------------------
5441 // Dual: compute field-by-field dual
5442 const Type *TypeAryPtr::xdual() const {
5443   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(), _klass, _klass_is_exact, dual_offset(), dual_field_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
5444 }
5445 
5446 Type::Offset TypeAryPtr::meet_field_offset(const Type::Offset offset) const {
5447   return _field_offset.meet(offset);
5448 }
5449 
5450 //------------------------------dual_offset------------------------------------
5451 Type::Offset TypeAryPtr::dual_field_offset() const {
5452   return _field_offset.dual();
5453 }
5454 
5455 //------------------------------dump2------------------------------------------
5456 #ifndef PRODUCT
5457 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5458   _ary->dump2(d,depth,st);
5459   _interfaces->dump(st);
5460 
5461   switch( _ptr ) {
5462   case Constant:
5463     const_oop()->print(st);
5464     break;
5465   case BotPTR:
5466     if (!WizardMode && !Verbose) {
5467       if( _klass_is_exact ) st->print(":exact");
5468       break;
5469     }
5470   case TopPTR:
5471   case AnyNull:
5472   case NotNull:
5473     st->print(":%s", ptr_msg[_ptr]);
5474     if( _klass_is_exact ) st->print(":exact");
5475     break;
5476   default:
5477     break;
5478   }
5479 
5480   if (is_flat()) {
5481     st->print(":flat");
5482     st->print("(");
5483     _field_offset.dump2(st);
5484     st->print(")");
5485   }
5486   if (is_null_free()) {
5487     st->print(":null_free");
5488   }
5489   if (offset() != 0) {
5490     BasicType basic_elem_type = elem()->basic_type();
5491     int header_size = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5492     if( _offset == Offset::top )       st->print("+undefined");
5493     else if( _offset == Offset::bottom )  st->print("+any");
5494     else if( offset() < header_size ) st->print("+%d", offset());
5495     else {
5496       if (basic_elem_type == T_ILLEGAL) {
5497         st->print("+any");
5498       } else {
5499         int elem_size = type2aelembytes(basic_elem_type);
5500         st->print("[%d]", (offset() - header_size)/elem_size);
5501       }
5502     }
5503   }
5504   st->print(" *");
5505   if (_instance_id == InstanceTop)
5506     st->print(",iid=top");
5507   else if (_instance_id != InstanceBot)
5508     st->print(",iid=%d",_instance_id);
5509 
5510   dump_inline_depth(st);
5511   dump_speculative(st);
5512 }
5513 #endif
5514 
5515 bool TypeAryPtr::empty(void) const {
5516   if (_ary->empty())       return true;
5517   // FIXME: Does this belong here? Or in the meet code itself?
5518   if (is_flat() && is_not_flat()) {
5519     return true;
5520   }
5521   return TypeOopPtr::empty();
5522 }
5523 
5524 //------------------------------add_offset-------------------------------------
5525 const TypePtr* TypeAryPtr::add_offset(intptr_t offset) const {
5526   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _field_offset, _instance_id, add_offset_speculative(offset), _inline_depth, _is_autobox_cache);
5527 }
5528 
5529 const TypeAryPtr* TypeAryPtr::with_offset(intptr_t offset) const {
5530   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, Offset(offset), _field_offset, _instance_id, with_offset_speculative(offset), _inline_depth, _is_autobox_cache);
5531 }
5532 
5533 const TypeAryPtr* TypeAryPtr::with_ary(const TypeAry* ary) const {
5534   return make(_ptr, _const_oop, ary, _klass, _klass_is_exact, _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5535 }
5536 
5537 const TypeAryPtr* TypeAryPtr::remove_speculative() const {
5538   if (_speculative == nullptr) {
5539     return this;
5540   }
5541   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
5542   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, _instance_id, nullptr, _inline_depth, _is_autobox_cache);
5543 }
5544 
5545 const Type* TypeAryPtr::cleanup_speculative() const {
5546   if (speculative() == nullptr) {
5547     return this;
5548   }
5549   // Keep speculative part if it contains information about flat-/nullability
5550   const TypeAryPtr* spec_aryptr = speculative()->isa_aryptr();
5551   if (spec_aryptr != nullptr && !above_centerline(spec_aryptr->ptr()) &&
5552       (spec_aryptr->is_not_flat() || spec_aryptr->is_not_null_free())) {
5553     return this;
5554   }
5555   return TypeOopPtr::cleanup_speculative();
5556 }
5557 
5558 const TypePtr* TypeAryPtr::with_inline_depth(int depth) const {
5559   if (!UseInlineDepthForSpeculativeTypes) {
5560     return this;
5561   }
5562   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, _instance_id, _speculative, depth, _is_autobox_cache);
5563 }
5564 
5565 const TypeAryPtr* TypeAryPtr::with_field_offset(int offset) const {
5566   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, Offset(offset), _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5567 }
5568 
5569 const TypePtr* TypeAryPtr::add_field_offset_and_offset(intptr_t offset) const {
5570   int adj = 0;
5571   if (is_flat() && offset != Type::OffsetBot && offset != Type::OffsetTop) {
5572     if (_offset.get() != OffsetBot && _offset.get() != OffsetTop) {
5573       adj = _offset.get();
5574       offset += _offset.get();
5575     }
5576     uint header = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
5577     if (_field_offset.get() != OffsetBot && _field_offset.get() != OffsetTop) {
5578       offset += _field_offset.get();
5579       if (_offset.get() == OffsetBot || _offset.get() == OffsetTop) {
5580         offset += header;
5581       }
5582     }
5583     if (elem()->make_oopptr()->is_inlinetypeptr() && (offset >= (intptr_t)header || offset < 0)) {
5584       // Try to get the field of the inline type array element we are pointing to
5585       ciInlineKlass* vk = elem()->inline_klass();
5586       int shift = flat_log_elem_size();
5587       int mask = (1 << shift) - 1;
5588       intptr_t field_offset = ((offset - header) & mask);
5589       ciField* field = vk->get_field_by_offset(field_offset + vk->first_field_offset(), false);
5590       if (field != nullptr) {
5591         return with_field_offset(field_offset)->add_offset(offset - field_offset - adj);
5592       }
5593     }
5594   }
5595   return add_offset(offset - adj);
5596 }
5597 
5598 // Return offset incremented by field_offset for flat inline type arrays
5599 int TypeAryPtr::flat_offset() const {
5600   int offset = _offset.get();
5601   if (offset != Type::OffsetBot && offset != Type::OffsetTop &&
5602       _field_offset != Offset::bottom && _field_offset != Offset::top) {
5603     offset += _field_offset.get();
5604   }
5605   return offset;
5606 }
5607 
5608 const TypePtr* TypeAryPtr::with_instance_id(int instance_id) const {
5609   assert(is_known_instance(), "should be known");
5610   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, instance_id, _speculative, _inline_depth);
5611 }
5612 
5613 //=============================================================================
5614 
5615 
5616 //------------------------------hash-------------------------------------------
5617 // Type-specific hashing function.
5618 uint TypeNarrowPtr::hash(void) const {
5619   return _ptrtype->hash() + 7;
5620 }
5621 
5622 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
5623   return _ptrtype->singleton();
5624 }
5625 
5626 bool TypeNarrowPtr::empty(void) const {
5627   return _ptrtype->empty();
5628 }
5629 
5630 intptr_t TypeNarrowPtr::get_con() const {
5631   return _ptrtype->get_con();
5632 }
5633 
5634 bool TypeNarrowPtr::eq( const Type *t ) const {
5635   const TypeNarrowPtr* tc = isa_same_narrowptr(t);

5686 
5687   case Int:                     // Mixing ints & oops happens when javac
5688   case Long:                    // reuses local variables
5689   case FloatTop:
5690   case FloatCon:
5691   case FloatBot:
5692   case DoubleTop:
5693   case DoubleCon:
5694   case DoubleBot:
5695   case AnyPtr:
5696   case RawPtr:
5697   case OopPtr:
5698   case InstPtr:
5699   case AryPtr:
5700   case MetadataPtr:
5701   case KlassPtr:
5702   case InstKlassPtr:
5703   case AryKlassPtr:
5704   case NarrowOop:
5705   case NarrowKlass:

5706   case Bottom:                  // Ye Olde Default
5707     return Type::BOTTOM;
5708   case Top:
5709     return this;
5710 
5711   default:                      // All else is a mistake
5712     typerr(t);
5713 
5714   } // End of switch
5715 
5716   return this;
5717 }
5718 
5719 #ifndef PRODUCT
5720 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5721   _ptrtype->dump2(d, depth, st);
5722 }
5723 #endif
5724 
5725 const TypeNarrowOop *TypeNarrowOop::BOTTOM;

5769     return (one == two) && TypePtr::eq(t);
5770   } else {
5771     return one->equals(two) && TypePtr::eq(t);
5772   }
5773 }
5774 
5775 //------------------------------hash-------------------------------------------
5776 // Type-specific hashing function.
5777 uint TypeMetadataPtr::hash(void) const {
5778   return
5779     (metadata() ? metadata()->hash() : 0) +
5780     TypePtr::hash();
5781 }
5782 
5783 //------------------------------singleton--------------------------------------
5784 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5785 // constants
5786 bool TypeMetadataPtr::singleton(void) const {
5787   // detune optimizer to not generate constant metadata + constant offset as a constant!
5788   // TopPTR, Null, AnyNull, Constant are all singletons
5789   return (offset() == 0) && !below_centerline(_ptr);
5790 }
5791 
5792 //------------------------------add_offset-------------------------------------
5793 const TypePtr* TypeMetadataPtr::add_offset( intptr_t offset ) const {
5794   return make( _ptr, _metadata, xadd_offset(offset));
5795 }
5796 
5797 //-----------------------------filter------------------------------------------
5798 // Do not allow interface-vs.-noninterface joins to collapse to top.
5799 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
5800   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
5801   if (ft == nullptr || ft->empty())
5802     return Type::TOP;           // Canonical empty value
5803   return ft;
5804 }
5805 
5806  //------------------------------get_con----------------------------------------
5807 intptr_t TypeMetadataPtr::get_con() const {
5808   assert( _ptr == Null || _ptr == Constant, "" );
5809   assert(offset() >= 0, "");
5810 
5811   if (offset() != 0) {
5812     // After being ported to the compiler interface, the compiler no longer
5813     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5814     // to a handle at compile time.  This handle is embedded in the generated
5815     // code and dereferenced at the time the nmethod is made.  Until that time,
5816     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5817     // have access to the addresses!).  This does not seem to currently happen,
5818     // but this assertion here is to help prevent its occurrence.
5819     tty->print_cr("Found oop constant with non-zero offset");
5820     ShouldNotReachHere();
5821   }
5822 
5823   return (intptr_t)metadata()->constant_encoding();
5824 }
5825 
5826 //------------------------------cast_to_ptr_type-------------------------------
5827 const TypeMetadataPtr* TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
5828   if( ptr == _ptr ) return this;
5829   return make(ptr, metadata(), _offset);
5830 }
5831 

5842   case Long:                    // reuses local variables
5843   case FloatTop:
5844   case FloatCon:
5845   case FloatBot:
5846   case DoubleTop:
5847   case DoubleCon:
5848   case DoubleBot:
5849   case NarrowOop:
5850   case NarrowKlass:
5851   case Bottom:                  // Ye Olde Default
5852     return Type::BOTTOM;
5853   case Top:
5854     return this;
5855 
5856   default:                      // All else is a mistake
5857     typerr(t);
5858 
5859   case AnyPtr: {
5860     // Found an AnyPtr type vs self-OopPtr type
5861     const TypePtr *tp = t->is_ptr();
5862     Offset offset = meet_offset(tp->offset());
5863     PTR ptr = meet_ptr(tp->ptr());
5864     switch (tp->ptr()) {
5865     case Null:
5866       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5867       // else fall through:
5868     case TopPTR:
5869     case AnyNull: {
5870       return make(ptr, _metadata, offset);
5871     }
5872     case BotPTR:
5873     case NotNull:
5874       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5875     default: typerr(t);
5876     }
5877   }
5878 
5879   case RawPtr:
5880   case KlassPtr:
5881   case InstKlassPtr:
5882   case AryKlassPtr:
5883   case OopPtr:
5884   case InstPtr:
5885   case AryPtr:
5886     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
5887 
5888   case MetadataPtr: {
5889     const TypeMetadataPtr *tp = t->is_metadataptr();
5890     Offset offset = meet_offset(tp->offset());
5891     PTR tptr = tp->ptr();
5892     PTR ptr = meet_ptr(tptr);
5893     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
5894     if (tptr == TopPTR || _ptr == TopPTR ||
5895         metadata()->equals(tp->metadata())) {
5896       return make(ptr, md, offset);
5897     }
5898     // metadata is different
5899     if( ptr == Constant ) {  // Cannot be equal constants, so...
5900       if( tptr == Constant && _ptr != Constant)  return t;
5901       if( _ptr == Constant && tptr != Constant)  return this;
5902       ptr = NotNull;            // Fall down in lattice
5903     }
5904     return make(ptr, nullptr, offset);
5905     break;
5906   }
5907   } // End of switch
5908   return this;                  // Return the double constant
5909 }
5910 
5911 
5912 //------------------------------xdual------------------------------------------
5913 // Dual of a pure metadata pointer.
5914 const Type *TypeMetadataPtr::xdual() const {
5915   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
5916 }
5917 
5918 //------------------------------dump2------------------------------------------
5919 #ifndef PRODUCT
5920 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5921   st->print("metadataptr:%s", ptr_msg[_ptr]);
5922   if( metadata() ) st->print(INTPTR_FORMAT, p2i(metadata()));
5923   switch (offset()) {
5924   case OffsetTop: st->print("+top"); break;
5925   case OffsetBot: st->print("+any"); break;
5926   case         0: break;
5927   default:        st->print("+%d",offset()); break;
5928   }
5929 }
5930 #endif
5931 
5932 
5933 //=============================================================================
5934 // Convenience common pre-built type.
5935 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
5936 
5937 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, Offset offset):
5938   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
5939 }
5940 
5941 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
5942   return make(Constant, m, Offset(0));
5943 }
5944 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
5945   return make(Constant, m, Offset(0));
5946 }
5947 
5948 //------------------------------make-------------------------------------------
5949 // Create a meta data constant
5950 const TypeMetadataPtr* TypeMetadataPtr::make(PTR ptr, ciMetadata* m, Offset offset) {
5951   assert(m == nullptr || !m->is_klass(), "wrong type");
5952   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
5953 }
5954 
5955 
5956 const TypeKlassPtr* TypeAryPtr::as_klass_type(bool try_for_exact) const {
5957   const Type* elem = _ary->_elem;
5958   bool xk = klass_is_exact();
5959   if (elem->make_oopptr() != nullptr) {
5960     elem = elem->make_oopptr()->as_klass_type(try_for_exact);
5961     if (elem->is_klassptr()->klass_is_exact() &&
5962         // Even though MyValue is final, [LMyValue is only exact if the array
5963         // is null-free due to null-free [LMyValue <: null-able [LMyValue.
5964         (is_null_free() || !_ary->_elem->make_oopptr()->is_inlinetypeptr())) {
5965       xk = true;
5966     }
5967   }
5968   return TypeAryKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, elem, klass(), Offset(0), is_not_flat(), is_not_null_free(), is_null_free());
5969 }
5970 
5971 const TypeKlassPtr* TypeKlassPtr::make(ciKlass* klass, InterfaceHandling interface_handling) {
5972   if (klass->is_instance_klass()) {
5973     return TypeInstKlassPtr::make(klass, interface_handling);
5974   }
5975   return TypeAryKlassPtr::make(klass, interface_handling);
5976 }
5977 
5978 const TypeKlassPtr* TypeKlassPtr::make(PTR ptr, ciKlass* klass, Offset offset, InterfaceHandling interface_handling) {
5979   if (klass->is_instance_klass()) {
5980     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
5981     return TypeInstKlassPtr::make(ptr, klass, interfaces, offset);
5982   }
5983   return TypeAryKlassPtr::make(ptr, klass, offset, interface_handling);
5984 }
5985 
5986 TypeKlassPtr::TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, Offset offset)


5987   : TypePtr(t, ptr, offset), _klass(klass), _interfaces(interfaces) {
5988   assert(klass == nullptr || !klass->is_loaded() || (klass->is_instance_klass() && !klass->is_interface()) ||
5989          klass->is_type_array_klass() || klass->is_flat_array_klass() || !klass->as_obj_array_klass()->base_element_klass()->is_interface(), "no interface here");
5990 }
5991 
5992 // Is there a single ciKlass* that can represent that type?
5993 ciKlass* TypeKlassPtr::exact_klass_helper() const {
5994   assert(_klass->is_instance_klass() && !_klass->is_interface(), "No interface");
5995   if (_interfaces->empty()) {
5996     return _klass;
5997   }
5998   if (_klass != ciEnv::current()->Object_klass()) {
5999     if (_interfaces->eq(_klass->as_instance_klass())) {
6000       return _klass;
6001     }
6002     return nullptr;
6003   }
6004   return _interfaces->exact_klass();
6005 }
6006 
6007 //------------------------------eq---------------------------------------------
6008 // Structural equality check for Type representations
6009 bool TypeKlassPtr::eq(const Type *t) const {
6010   const TypeKlassPtr *p = t->is_klassptr();
6011   return
6012     _interfaces->eq(p->_interfaces) &&
6013     TypePtr::eq(p);
6014 }
6015 
6016 //------------------------------hash-------------------------------------------
6017 // Type-specific hashing function.
6018 uint TypeKlassPtr::hash(void) const {
6019   return TypePtr::hash() + _interfaces->hash();
6020 }
6021 
6022 //------------------------------singleton--------------------------------------
6023 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
6024 // constants
6025 bool TypeKlassPtr::singleton(void) const {
6026   // detune optimizer to not generate constant klass + constant offset as a constant!
6027   // TopPTR, Null, AnyNull, Constant are all singletons
6028   return (offset() == 0) && !below_centerline(_ptr);
6029 }
6030 
6031 // Do not allow interface-vs.-noninterface joins to collapse to top.
6032 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
6033   // logic here mirrors the one from TypeOopPtr::filter. See comments
6034   // there.
6035   const Type* ft = join_helper(kills, include_speculative);
6036   const TypeKlassPtr* ftkp = ft->isa_instklassptr();
6037   const TypeKlassPtr* ktkp = kills->isa_instklassptr();
6038 
6039   if (ft->empty()) {
6040     return Type::TOP;           // Canonical empty value
6041   }
6042 
6043   return ft;
6044 }
6045 
6046 const TypeInterfaces* TypeKlassPtr::meet_interfaces(const TypeKlassPtr* other) const {
6047   if (above_centerline(_ptr) && above_centerline(other->_ptr)) {
6048     return _interfaces->union_with(other->_interfaces);
6049   } else if (above_centerline(_ptr) && !above_centerline(other->_ptr)) {
6050     return other->_interfaces;
6051   } else if (above_centerline(other->_ptr) && !above_centerline(_ptr)) {
6052     return _interfaces;
6053   }
6054   return _interfaces->intersection_with(other->_interfaces);
6055 }
6056 
6057 //------------------------------get_con----------------------------------------
6058 intptr_t TypeKlassPtr::get_con() const {
6059   assert( _ptr == Null || _ptr == Constant, "" );
6060   assert( offset() >= 0, "" );
6061 
6062   if (offset() != 0) {
6063     // After being ported to the compiler interface, the compiler no longer
6064     // directly manipulates the addresses of oops.  Rather, it only has a pointer
6065     // to a handle at compile time.  This handle is embedded in the generated
6066     // code and dereferenced at the time the nmethod is made.  Until that time,
6067     // it is not reasonable to do arithmetic with the addresses of oops (we don't
6068     // have access to the addresses!).  This does not seem to currently happen,
6069     // but this assertion here is to help prevent its occurrence.
6070     tty->print_cr("Found oop constant with non-zero offset");
6071     ShouldNotReachHere();
6072   }
6073 
6074   ciKlass* k = exact_klass();
6075 
6076   return (intptr_t)k->constant_encoding();
6077 }
6078 
6079 //------------------------------dump2------------------------------------------
6080 // Dump Klass Type
6081 #ifndef PRODUCT
6082 void TypeKlassPtr::dump2(Dict & d, uint depth, outputStream *st) const {

6086   case NotNull:
6087     {
6088       const char *name = klass()->name()->as_utf8();
6089       if (name) {
6090         st->print("%s: " INTPTR_FORMAT, name, p2i(klass()));
6091       } else {
6092         ShouldNotReachHere();
6093       }
6094       _interfaces->dump(st);
6095     }
6096   case BotPTR:
6097     if (!WizardMode && !Verbose && _ptr != Constant) break;
6098   case TopPTR:
6099   case AnyNull:
6100     st->print(":%s", ptr_msg[_ptr]);
6101     if (_ptr == Constant) st->print(":exact");
6102     break;
6103   default:
6104     break;
6105   }
6106   if (Verbose) {
6107     if (isa_instklassptr() && is_instklassptr()->flat_in_array()) st->print(":flat in array");



6108   }
6109   _offset.dump2(st);
6110   st->print(" *");
6111 }
6112 #endif
6113 
6114 //=============================================================================
6115 // Convenience common pre-built types.
6116 
6117 // Not-null object klass or below
6118 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT;
6119 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT_OR_NULL;
6120 
6121 bool TypeInstKlassPtr::eq(const Type *t) const {
6122   const TypeKlassPtr *p = t->is_klassptr();
6123   return
6124     klass()->equals(p->klass()) &&
6125     flat_in_array() == p->flat_in_array() &&
6126     TypeKlassPtr::eq(p);
6127 }
6128 
6129 uint TypeInstKlassPtr::hash(void) const {
6130   return klass()->hash() + TypeKlassPtr::hash() + (uint)flat_in_array();
6131 }
6132 
6133 const TypeInstKlassPtr *TypeInstKlassPtr::make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, Offset offset, bool flat_in_array) {
6134   flat_in_array = flat_in_array || k->flat_in_array();
6135 
6136   TypeInstKlassPtr *r =
6137     (TypeInstKlassPtr*)(new TypeInstKlassPtr(ptr, k, interfaces, offset, flat_in_array))->hashcons();
6138 
6139   return r;
6140 }
6141 
6142 //------------------------------add_offset-------------------------------------
6143 // Access internals of klass object
6144 const TypePtr *TypeInstKlassPtr::add_offset( intptr_t offset ) const {
6145   return make(_ptr, klass(), _interfaces, xadd_offset(offset), flat_in_array());
6146 }
6147 
6148 const TypeInstKlassPtr* TypeInstKlassPtr::with_offset(intptr_t offset) const {
6149   return make(_ptr, klass(), _interfaces, Offset(offset), flat_in_array());
6150 }
6151 
6152 //------------------------------cast_to_ptr_type-------------------------------
6153 const TypeInstKlassPtr* TypeInstKlassPtr::cast_to_ptr_type(PTR ptr) const {
6154   assert(_base == InstKlassPtr, "subclass must override cast_to_ptr_type");
6155   if( ptr == _ptr ) return this;
6156   return make(ptr, _klass, _interfaces, _offset, flat_in_array());
6157 }
6158 
6159 
6160 bool TypeInstKlassPtr::must_be_exact() const {
6161   if (!_klass->is_loaded())  return false;
6162   ciInstanceKlass* ik = _klass->as_instance_klass();
6163   if (ik->is_final())  return true;  // cannot clear xk
6164   return false;
6165 }
6166 
6167 //-----------------------------cast_to_exactness-------------------------------
6168 const TypeKlassPtr* TypeInstKlassPtr::cast_to_exactness(bool klass_is_exact) const {
6169   if (klass_is_exact == (_ptr == Constant)) return this;
6170   if (must_be_exact()) return this;
6171   ciKlass* k = klass();
6172   return make(klass_is_exact ? Constant : NotNull, k, _interfaces, _offset, flat_in_array());
6173 }
6174 
6175 
6176 //-----------------------------as_instance_type--------------------------------
6177 // Corresponding type for an instance of the given class.
6178 // It will be NotNull, and exact if and only if the klass type is exact.
6179 const TypeOopPtr* TypeInstKlassPtr::as_instance_type(bool klass_change) const {
6180   ciKlass* k = klass();
6181   bool xk = klass_is_exact();
6182   Compile* C = Compile::current();
6183   Dependencies* deps = C->dependencies();
6184   assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
6185   // Element is an instance
6186   bool klass_is_exact = false;
6187   const TypeInterfaces* interfaces = _interfaces;
6188   if (k->is_loaded()) {
6189     // Try to set klass_is_exact.
6190     ciInstanceKlass* ik = k->as_instance_klass();
6191     klass_is_exact = ik->is_final();
6192     if (!klass_is_exact && klass_change
6193         && deps != nullptr && UseUniqueSubclasses) {
6194       ciInstanceKlass* sub = ik->unique_concrete_subklass();
6195       if (sub != nullptr) {
6196         if (_interfaces->eq(sub)) {
6197           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
6198           k = ik = sub;
6199           xk = sub->is_final();
6200         }
6201       }
6202     }
6203   }
6204   return TypeInstPtr::make(TypePtr::BotPTR, k, interfaces, xk, nullptr, Offset(0), flat_in_array() && !klass()->is_inlinetype());
6205 }
6206 
6207 //------------------------------xmeet------------------------------------------
6208 // Compute the MEET of two types, return a new Type object.
6209 const Type    *TypeInstKlassPtr::xmeet( const Type *t ) const {
6210   // Perform a fast test for common case; meeting the same types together.
6211   if( this == t ) return this;  // Meeting same type-rep?
6212 
6213   // Current "this->_base" is Pointer
6214   switch (t->base()) {          // switch on original type
6215 
6216   case Int:                     // Mixing ints & oops happens when javac
6217   case Long:                    // reuses local variables
6218   case FloatTop:
6219   case FloatCon:
6220   case FloatBot:
6221   case DoubleTop:
6222   case DoubleCon:
6223   case DoubleBot:
6224   case NarrowOop:
6225   case NarrowKlass:
6226   case Bottom:                  // Ye Olde Default
6227     return Type::BOTTOM;
6228   case Top:
6229     return this;
6230 
6231   default:                      // All else is a mistake
6232     typerr(t);
6233 
6234   case AnyPtr: {                // Meeting to AnyPtrs
6235     // Found an AnyPtr type vs self-KlassPtr type
6236     const TypePtr *tp = t->is_ptr();
6237     Offset offset = meet_offset(tp->offset());
6238     PTR ptr = meet_ptr(tp->ptr());
6239     switch (tp->ptr()) {
6240     case TopPTR:
6241       return this;
6242     case Null:
6243       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6244     case AnyNull:
6245       return make(ptr, klass(), _interfaces, offset, flat_in_array());
6246     case BotPTR:
6247     case NotNull:
6248       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6249     default: typerr(t);
6250     }
6251   }
6252 
6253   case RawPtr:
6254   case MetadataPtr:
6255   case OopPtr:
6256   case AryPtr:                  // Meet with AryPtr
6257   case InstPtr:                 // Meet with InstPtr
6258       return TypePtr::BOTTOM;
6259 
6260   //
6261   //             A-top         }
6262   //           /   |   \       }  Tops
6263   //       B-top A-any C-top   }
6264   //          | /  |  \ |      }  Any-nulls
6265   //       B-any   |   C-any   }
6266   //          |    |    |
6267   //       B-con A-con C-con   } constants; not comparable across classes
6268   //          |    |    |
6269   //       B-not   |   C-not   }
6270   //          | \  |  / |      }  not-nulls
6271   //       B-bot A-not C-bot   }
6272   //           \   |   /       }  Bottoms
6273   //             A-bot         }
6274   //
6275 
6276   case InstKlassPtr: {  // Meet two KlassPtr types
6277     const TypeInstKlassPtr *tkls = t->is_instklassptr();
6278     Offset  off     = meet_offset(tkls->offset());
6279     PTR  ptr     = meet_ptr(tkls->ptr());
6280     const TypeInterfaces* interfaces = meet_interfaces(tkls);
6281 
6282     ciKlass* res_klass = nullptr;
6283     bool res_xk = false;
6284     bool res_flat_in_array = false;
6285     switch(meet_instptr(ptr, interfaces, this, tkls, res_klass, res_xk, res_flat_in_array)) {
6286       case UNLOADED:
6287         ShouldNotReachHere();
6288       case SUBTYPE:
6289       case NOT_SUBTYPE:
6290       case LCA:
6291       case QUICK: {
6292         assert(res_xk == (ptr == Constant), "");
6293         const Type* res = make(ptr, res_klass, interfaces, off, res_flat_in_array);
6294         return res;
6295       }
6296       default:
6297         ShouldNotReachHere();
6298     }
6299   } // End of case KlassPtr
6300   case AryKlassPtr: {                // All arrays inherit from Object class
6301     const TypeAryKlassPtr *tp = t->is_aryklassptr();
6302     Offset offset = meet_offset(tp->offset());
6303     PTR ptr = meet_ptr(tp->ptr());
6304     const TypeInterfaces* interfaces = meet_interfaces(tp);
6305     const TypeInterfaces* tp_interfaces = tp->_interfaces;
6306     const TypeInterfaces* this_interfaces = _interfaces;
6307 
6308     switch (ptr) {
6309     case TopPTR:
6310     case AnyNull:                // Fall 'down' to dual of object klass
6311       // For instances when a subclass meets a superclass we fall
6312       // below the centerline when the superclass is exact. We need to
6313       // do the same here.
6314       if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces->contains(this_interfaces) && !klass_is_exact()) {
6315         return TypeAryKlassPtr::make(ptr, tp->elem(), tp->klass(), offset, tp->is_not_flat(), tp->is_not_null_free(), tp->is_null_free());
6316       } else {
6317         // cannot subclass, so the meet has to fall badly below the centerline
6318         ptr = NotNull;
6319         interfaces = _interfaces->intersection_with(tp->_interfaces);
6320         return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset, false);
6321       }
6322     case Constant:
6323     case NotNull:
6324     case BotPTR:                // Fall down to object klass
6325       // LCA is object_klass, but if we subclass from the top we can do better
6326       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
6327         // If 'this' (InstPtr) is above the centerline and it is Object class
6328         // then we can subclass in the Java class hierarchy.
6329         // For instances when a subclass meets a superclass we fall
6330         // below the centerline when the superclass is exact. We need
6331         // to do the same here.
6332         if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces->contains(this_interfaces) && !klass_is_exact()) {
6333           // that is, tp's array type is a subtype of my klass
6334           return TypeAryKlassPtr::make(ptr, tp->elem(), tp->klass(), offset, tp->is_not_flat(), tp->is_not_null_free(), tp->is_null_free());

6335         }
6336       }
6337       // The other case cannot happen, since I cannot be a subtype of an array.
6338       // The meet falls down to Object class below centerline.
6339       if( ptr == Constant )
6340          ptr = NotNull;
6341       interfaces = this_interfaces->intersection_with(tp_interfaces);
6342       return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset, false);
6343     default: typerr(t);
6344     }
6345   }
6346 
6347   } // End of switch
6348   return this;                  // Return the double constant
6349 }
6350 
6351 //------------------------------xdual------------------------------------------
6352 // Dual: compute field-by-field dual
6353 const Type    *TypeInstKlassPtr::xdual() const {
6354   return new TypeInstKlassPtr(dual_ptr(), klass(), _interfaces, dual_offset(), flat_in_array());
6355 }
6356 
6357 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
6358   static_assert(std::is_base_of<T2, T1>::value, "");
6359   if (!this_one->is_loaded() || !other->is_loaded()) {
6360     return false;
6361   }
6362   if (!this_one->is_instance_type(other)) {
6363     return false;
6364   }
6365 
6366   if (!other_exact) {
6367     return false;
6368   }
6369 
6370   if (other->klass()->equals(ciEnv::current()->Object_klass()) && other->_interfaces->empty()) {
6371     return true;
6372   }
6373 
6374   return this_one->klass()->is_subtype_of(other->klass()) && this_one->_interfaces->contains(other->_interfaces);

6435   const TypeInterfaces* interfaces = _interfaces;
6436   if (k->is_loaded()) {
6437     ciInstanceKlass* ik = k->as_instance_klass();
6438     bool klass_is_exact = ik->is_final();
6439     if (!klass_is_exact &&
6440         deps != nullptr) {
6441       ciInstanceKlass* sub = ik->unique_concrete_subklass();
6442       if (sub != nullptr) {
6443         if (_interfaces->eq(sub)) {
6444           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
6445           k = ik = sub;
6446           klass_is_exact = sub->is_final();
6447           return TypeKlassPtr::make(klass_is_exact ? Constant : _ptr, k, _offset);
6448         }
6449       }
6450     }
6451   }
6452   return this;
6453 }
6454 
6455 bool TypeInstKlassPtr::can_be_inline_array() const {
6456   return _klass->equals(ciEnv::current()->Object_klass()) && TypeAryKlassPtr::_array_interfaces->contains(_interfaces);
6457 }
6458 
6459 bool TypeAryKlassPtr::can_be_inline_array() const {
6460   return _elem->isa_instklassptr() && _elem->is_instklassptr()->_klass->can_be_inline_klass();
6461 }
6462 
6463 bool TypeInstPtr::can_be_inline_array() const {
6464   return _klass->equals(ciEnv::current()->Object_klass()) && TypeAryPtr::_array_interfaces->contains(_interfaces);
6465 }
6466 
6467 bool TypeAryPtr::can_be_inline_array() const {
6468   return elem()->make_ptr() && elem()->make_ptr()->isa_instptr() && elem()->make_ptr()->is_instptr()->_klass->can_be_inline_klass();
6469 }
6470 
6471 const TypeAryKlassPtr *TypeAryKlassPtr::make(PTR ptr, const Type* elem, ciKlass* k, Offset offset, bool not_flat, bool not_null_free, bool null_free) {
6472   return (TypeAryKlassPtr*)(new TypeAryKlassPtr(ptr, elem, k, offset, not_flat, not_null_free, null_free))->hashcons();
6473 }
6474 
6475 const TypeAryKlassPtr* TypeAryKlassPtr::make(PTR ptr, ciKlass* k, Offset offset, InterfaceHandling interface_handling, bool not_flat, bool not_null_free, bool null_free) {
6476   if (k->is_obj_array_klass()) {
6477     // Element is an object array. Recursively call ourself.
6478     ciKlass* eklass = k->as_obj_array_klass()->element_klass();
6479     const TypeKlassPtr* etype = TypeKlassPtr::make(eklass, interface_handling)->cast_to_exactness(false);
6480     return TypeAryKlassPtr::make(ptr, etype, nullptr, offset, not_flat, not_null_free, null_free);
6481   } else if (k->is_type_array_klass()) {
6482     // Element is an typeArray
6483     const Type* etype = get_const_basic_type(k->as_type_array_klass()->element_type());
6484     return TypeAryKlassPtr::make(ptr, etype, k, offset, not_flat, not_null_free, null_free);
6485   } else if (k->is_flat_array_klass()) {
6486     ciKlass* eklass = k->as_flat_array_klass()->element_klass();
6487     const TypeKlassPtr* etype = TypeKlassPtr::make(eklass);
6488     return TypeAryKlassPtr::make(ptr, etype, k, offset, not_flat, not_null_free, null_free);
6489   } else {
6490     ShouldNotReachHere();
6491     return nullptr;
6492   }
6493 }
6494 
6495 const TypeAryKlassPtr* TypeAryKlassPtr::make(PTR ptr, ciKlass* k, Offset offset, InterfaceHandling interface_handling) {
6496   bool null_free = k->as_array_klass()->is_elem_null_free();
6497   bool not_null_free = (ptr == Constant) ? !null_free : !k->is_flat_array_klass() && (k->is_type_array_klass() || !k->as_array_klass()->element_klass()->can_be_inline_klass(false));
6498 
6499   bool not_flat = !UseFlatArray || not_null_free || (k->as_array_klass()->element_klass() != nullptr &&
6500                                                      k->as_array_klass()->element_klass()->is_inlinetype() &&
6501                                                      !k->as_array_klass()->element_klass()->flat_in_array());
6502 
6503   return TypeAryKlassPtr::make(ptr, k, offset, interface_handling, not_flat, not_null_free, null_free);
6504 }
6505 
6506 const TypeAryKlassPtr* TypeAryKlassPtr::make(ciKlass* klass, InterfaceHandling interface_handling) {
6507   return TypeAryKlassPtr::make(Constant, klass, Offset(0), interface_handling);
6508 }
6509 
6510 //------------------------------eq---------------------------------------------
6511 // Structural equality check for Type representations
6512 bool TypeAryKlassPtr::eq(const Type *t) const {
6513   const TypeAryKlassPtr *p = t->is_aryklassptr();
6514   return
6515     _elem == p->_elem &&  // Check array
6516     _not_flat == p->_not_flat &&
6517     _not_null_free == p->_not_null_free &&
6518     _null_free == p->_null_free &&
6519     TypeKlassPtr::eq(p);  // Check sub-parts
6520 }
6521 
6522 //------------------------------hash-------------------------------------------
6523 // Type-specific hashing function.
6524 uint TypeAryKlassPtr::hash(void) const {
6525   return (uint)(uintptr_t)_elem + TypeKlassPtr::hash() + (uint)(_not_flat ? 43 : 0) +
6526       (uint)(_not_null_free ? 44 : 0) + (uint)(_null_free ? 45 : 0);
6527 }
6528 
6529 //----------------------compute_klass------------------------------------------
6530 // Compute the defining klass for this class
6531 ciKlass* TypeAryPtr::compute_klass() const {
6532   // Compute _klass based on element type.
6533   ciKlass* k_ary = nullptr;
6534   const TypeInstPtr *tinst;
6535   const TypeAryPtr *tary;
6536   const Type* el = elem();
6537   if (el->isa_narrowoop()) {
6538     el = el->make_ptr();
6539   }
6540 
6541   // Get element klass
6542   if (is_flat() && el->is_inlinetypeptr()) {
6543     // Klass is required by TypeAryPtr::flat_layout_helper() and others
6544     if (el->inline_klass() != nullptr) {
6545       k_ary = ciArrayKlass::make(el->inline_klass(), /* null_free */ true);
6546     }
6547   } else if ((tinst = el->isa_instptr()) != nullptr) {
6548     // Leave k_ary at nullptr.
6549   } else if ((tary = el->isa_aryptr()) != nullptr) {
6550     // Leave k_ary at nullptr.
6551   } else if ((el->base() == Type::Top) ||
6552              (el->base() == Type::Bottom)) {
6553     // element type of Bottom occurs from meet of basic type
6554     // and object; Top occurs when doing join on Bottom.
6555     // Leave k_ary at null.
6556   } else {
6557     assert(!el->isa_int(), "integral arrays must be pre-equipped with a class");
6558     // Compute array klass directly from basic type
6559     k_ary = ciTypeArrayKlass::make(el->basic_type());
6560   }
6561   return k_ary;
6562 }
6563 
6564 //------------------------------klass------------------------------------------
6565 // Return the defining klass for this class
6566 ciKlass* TypeAryPtr::klass() const {
6567   if( _klass ) return _klass;   // Return cached value, if possible
6568 
6569   // Oops, need to compute _klass and cache it
6570   ciKlass* k_ary = compute_klass();

6578     // type TypeAryPtr::OOPS.  This Type is shared between all
6579     // active compilations.  However, the ciKlass which represents
6580     // this Type is *not* shared between compilations, so caching
6581     // this value would result in fetching a dangling pointer.
6582     //
6583     // Recomputing the underlying ciKlass for each request is
6584     // a bit less efficient than caching, but calls to
6585     // TypeAryPtr::OOPS->klass() are not common enough to matter.
6586     ((TypeAryPtr*)this)->_klass = k_ary;
6587   }
6588   return k_ary;
6589 }
6590 
6591 // Is there a single ciKlass* that can represent that type?
6592 ciKlass* TypeAryPtr::exact_klass_helper() const {
6593   if (_ary->_elem->make_ptr() && _ary->_elem->make_ptr()->isa_oopptr()) {
6594     ciKlass* k = _ary->_elem->make_ptr()->is_oopptr()->exact_klass_helper();
6595     if (k == nullptr) {
6596       return nullptr;
6597     }
6598     k = ciArrayKlass::make(k, is_null_free());
6599     return k;
6600   }
6601 
6602   return klass();
6603 }
6604 
6605 const Type* TypeAryPtr::base_element_type(int& dims) const {
6606   const Type* elem = this->elem();
6607   dims = 1;
6608   while (elem->make_ptr() && elem->make_ptr()->isa_aryptr()) {
6609     elem = elem->make_ptr()->is_aryptr()->elem();
6610     dims++;
6611   }
6612   return elem;
6613 }
6614 
6615 //------------------------------add_offset-------------------------------------
6616 // Access internals of klass object
6617 const TypePtr* TypeAryKlassPtr::add_offset(intptr_t offset) const {
6618   return make(_ptr, elem(), klass(), xadd_offset(offset), is_not_flat(), is_not_null_free(), _null_free);
6619 }
6620 
6621 const TypeAryKlassPtr* TypeAryKlassPtr::with_offset(intptr_t offset) const {
6622   return make(_ptr, elem(), klass(), Offset(offset), is_not_flat(), is_not_null_free(), _null_free);
6623 }
6624 
6625 //------------------------------cast_to_ptr_type-------------------------------
6626 const TypeAryKlassPtr* TypeAryKlassPtr::cast_to_ptr_type(PTR ptr) const {
6627   assert(_base == AryKlassPtr, "subclass must override cast_to_ptr_type");
6628   if (ptr == _ptr) return this;
6629   return make(ptr, elem(), _klass, _offset, is_not_flat(), is_not_null_free(), _null_free);
6630 }
6631 
6632 bool TypeAryKlassPtr::must_be_exact() const {
6633   if (_elem == Type::BOTTOM) return false;
6634   if (_elem == Type::TOP   ) return false;
6635   const TypeKlassPtr*  tk = _elem->isa_klassptr();
6636   if (!tk)             return true;   // a primitive type, like int
6637   // Even though MyValue is final, [LMyValue is only exact if the array
6638   // is null-free due to null-free [LMyValue <: null-able [LMyValue.
6639   if (tk->isa_instklassptr() && tk->klass()->is_inlinetype() && !is_null_free()) {
6640     return false;
6641   }
6642   return tk->must_be_exact();
6643 }
6644 
6645 
6646 //-----------------------------cast_to_exactness-------------------------------
6647 const TypeKlassPtr *TypeAryKlassPtr::cast_to_exactness(bool klass_is_exact) const {
6648   if (must_be_exact() && !klass_is_exact) return this;  // cannot clear xk
6649   if (klass_is_exact == this->klass_is_exact()) {
6650     return this;
6651   }
6652   ciKlass* k = _klass;
6653   const Type* elem = this->elem();
6654   if (elem->isa_klassptr() && !klass_is_exact) {
6655     elem = elem->is_klassptr()->cast_to_exactness(klass_is_exact);
6656   }
6657   bool not_flat = is_not_flat();
6658   bool not_null_free = is_not_null_free();
6659   if (_elem->isa_klassptr()) {
6660     if (klass_is_exact || _elem->isa_aryklassptr()) {
6661       assert(!is_null_free() && !is_flat(), "null-free (or flat) inline type arrays should always be exact");
6662       // An array can't be null-free (or flat) if the klass is exact
6663       not_null_free = true;
6664       not_flat = true;
6665     } else {
6666       // Klass is not exact (anymore), re-compute null-free/flat properties
6667       const TypeOopPtr* exact_etype = TypeOopPtr::make_from_klass_unique(_elem->is_instklassptr()->instance_klass());
6668       not_null_free = !exact_etype->can_be_inline_type();
6669       not_flat = !UseFlatArray || not_null_free || (exact_etype->is_inlinetypeptr() && !exact_etype->inline_klass()->flat_in_array());
6670     }
6671   }
6672   return make(klass_is_exact ? Constant : NotNull, elem, k, _offset, not_flat, not_null_free, _null_free);
6673 }
6674 
6675 const TypeAryKlassPtr* TypeAryKlassPtr::cast_to_null_free() const {
6676   return make(_ptr, elem(), klass(), _offset, is_not_flat(), false, true);
6677 }
6678 
6679 //-----------------------------as_instance_type--------------------------------
6680 // Corresponding type for an instance of the given class.
6681 // It will be NotNull, and exact if and only if the klass type is exact.
6682 const TypeOopPtr* TypeAryKlassPtr::as_instance_type(bool klass_change) const {
6683   ciKlass* k = klass();
6684   bool    xk = klass_is_exact();
6685   const Type* el = nullptr;
6686   if (elem()->isa_klassptr()) {
6687     el = elem()->is_klassptr()->as_instance_type(false)->cast_to_exactness(false);
6688     k = nullptr;
6689   } else {
6690     el = elem();
6691   }
6692   bool null_free = _null_free;
6693   if (null_free && el->isa_ptr()) {
6694     el = el->is_ptr()->join_speculative(TypePtr::NOTNULL);
6695   }
6696   return TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(el, TypeInt::POS, false, is_flat(), is_not_flat(), is_not_null_free()), k, xk, Offset(0));
6697 }
6698 
6699 
6700 //------------------------------xmeet------------------------------------------
6701 // Compute the MEET of two types, return a new Type object.
6702 const Type    *TypeAryKlassPtr::xmeet( const Type *t ) const {
6703   // Perform a fast test for common case; meeting the same types together.
6704   if( this == t ) return this;  // Meeting same type-rep?
6705 
6706   // Current "this->_base" is Pointer
6707   switch (t->base()) {          // switch on original type
6708 
6709   case Int:                     // Mixing ints & oops happens when javac
6710   case Long:                    // reuses local variables
6711   case FloatTop:
6712   case FloatCon:
6713   case FloatBot:
6714   case DoubleTop:
6715   case DoubleCon:
6716   case DoubleBot:
6717   case NarrowOop:
6718   case NarrowKlass:
6719   case Bottom:                  // Ye Olde Default
6720     return Type::BOTTOM;
6721   case Top:
6722     return this;
6723 
6724   default:                      // All else is a mistake
6725     typerr(t);
6726 
6727   case AnyPtr: {                // Meeting to AnyPtrs
6728     // Found an AnyPtr type vs self-KlassPtr type
6729     const TypePtr *tp = t->is_ptr();
6730     Offset offset = meet_offset(tp->offset());
6731     PTR ptr = meet_ptr(tp->ptr());
6732     switch (tp->ptr()) {
6733     case TopPTR:
6734       return this;
6735     case Null:
6736       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6737     case AnyNull:
6738       return make(ptr, _elem, klass(), offset, is_not_flat(), is_not_null_free(), is_null_free());
6739     case BotPTR:
6740     case NotNull:
6741       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6742     default: typerr(t);
6743     }
6744   }
6745 
6746   case RawPtr:
6747   case MetadataPtr:
6748   case OopPtr:
6749   case AryPtr:                  // Meet with AryPtr
6750   case InstPtr:                 // Meet with InstPtr
6751     return TypePtr::BOTTOM;
6752 
6753   //
6754   //             A-top         }
6755   //           /   |   \       }  Tops
6756   //       B-top A-any C-top   }
6757   //          | /  |  \ |      }  Any-nulls
6758   //       B-any   |   C-any   }
6759   //          |    |    |
6760   //       B-con A-con C-con   } constants; not comparable across classes
6761   //          |    |    |
6762   //       B-not   |   C-not   }
6763   //          | \  |  / |      }  not-nulls
6764   //       B-bot A-not C-bot   }
6765   //           \   |   /       }  Bottoms
6766   //             A-bot         }
6767   //
6768 
6769   case AryKlassPtr: {  // Meet two KlassPtr types
6770     const TypeAryKlassPtr *tap = t->is_aryklassptr();
6771     Offset off = meet_offset(tap->offset());
6772     const Type* elem = _elem->meet(tap->_elem);

6773     PTR ptr = meet_ptr(tap->ptr());
6774     ciKlass* res_klass = nullptr;
6775     bool res_xk = false;
6776     bool res_flat = false;
6777     bool res_not_flat = false;
6778     bool res_not_null_free = false;
6779     MeetResult res = meet_aryptr(ptr, elem, this, tap,
6780                                  res_klass, res_xk, res_flat, res_not_flat, res_not_null_free);
6781     assert(res_xk == (ptr == Constant), "");
6782     bool null_free = meet_null_free(tap->_null_free);
6783     if (res == NOT_SUBTYPE) {
6784       null_free = false;
6785     } else if (res == SUBTYPE) {
6786       if (above_centerline(tap->ptr()) && !above_centerline(this->ptr())) {
6787         null_free = _null_free;
6788       } else if (above_centerline(this->ptr()) && !above_centerline(tap->ptr())) {
6789         null_free = tap->_null_free;
6790       } else if (above_centerline(this->ptr()) && above_centerline(tap->ptr())) {
6791         null_free = _null_free || tap->_null_free;
6792       }
6793     }
6794     return make(ptr, elem, res_klass, off, res_not_flat, res_not_null_free, null_free);
6795   } // End of case KlassPtr
6796   case InstKlassPtr: {
6797     const TypeInstKlassPtr *tp = t->is_instklassptr();
6798     Offset offset = meet_offset(tp->offset());
6799     PTR ptr = meet_ptr(tp->ptr());
6800     const TypeInterfaces* interfaces = meet_interfaces(tp);
6801     const TypeInterfaces* tp_interfaces = tp->_interfaces;
6802     const TypeInterfaces* this_interfaces = _interfaces;
6803 
6804     switch (ptr) {
6805     case TopPTR:
6806     case AnyNull:                // Fall 'down' to dual of object klass
6807       // For instances when a subclass meets a superclass we fall
6808       // below the centerline when the superclass is exact. We need to
6809       // do the same here.
6810       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) &&
6811           !tp->klass_is_exact()) {
6812         return TypeAryKlassPtr::make(ptr, _elem, _klass, offset, is_not_flat(), is_not_null_free(), is_null_free());
6813       } else {
6814         // cannot subclass, so the meet has to fall badly below the centerline
6815         ptr = NotNull;
6816         interfaces = this_interfaces->intersection_with(tp->_interfaces);
6817         return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset, false);
6818       }
6819     case Constant:
6820     case NotNull:
6821     case BotPTR:                // Fall down to object klass
6822       // LCA is object_klass, but if we subclass from the top we can do better
6823       if (above_centerline(tp->ptr())) {
6824         // If 'tp'  is above the centerline and it is Object class
6825         // then we can subclass in the Java class hierarchy.
6826         // For instances when a subclass meets a superclass we fall
6827         // below the centerline when the superclass is exact. We need
6828         // to do the same here.
6829         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) &&
6830             !tp->klass_is_exact()) {
6831           // that is, my array type is a subtype of 'tp' klass
6832           return make(ptr, _elem, _klass, offset, is_not_flat(), is_not_null_free(), is_null_free());
6833         }
6834       }
6835       // The other case cannot happen, since t cannot be a subtype of an array.
6836       // The meet falls down to Object class below centerline.
6837       if (ptr == Constant)
6838          ptr = NotNull;
6839       interfaces = this_interfaces->intersection_with(tp_interfaces);
6840       return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset, false);
6841     default: typerr(t);
6842     }
6843   }
6844 
6845   } // End of switch
6846   return this;                  // Return the double constant
6847 }
6848 
6849 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
6850   static_assert(std::is_base_of<T2, T1>::value, "");
6851 
6852   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty() && other_exact) {
6853     return true;
6854   }
6855 
6856   int dummy;
6857   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
6858 
6859   if (!this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) {
6860     return false;
6861   }
6862 
6863   if (this_one->is_instance_type(other)) {
6864     return other->klass() == ciEnv::current()->Object_klass() && this_one->_interfaces->contains(other->_interfaces) &&
6865            other_exact;
6866   }
6867 
6868   assert(this_one->is_array_type(other), "");
6869   const T1* other_ary = this_one->is_array_type(other);
6870   bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
6871   if (other_top_or_bottom) {
6872     return false;
6873   }
6874 
6875   const TypePtr* other_elem = other_ary->elem()->make_ptr();
6876   const TypePtr* this_elem = this_one->elem()->make_ptr();
6877   if (this_elem != nullptr && other_elem != nullptr) {
6878     if (other->is_null_free() && !this_one->is_null_free()) {
6879       return false; // A nullable array can't be a subtype of a null-free array
6880     }
6881     return this_one->is_reference_type(this_elem)->is_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact);
6882   }
6883   if (this_elem == nullptr && other_elem == nullptr) {
6884     return this_one->klass()->is_subtype_of(other->klass());
6885   }
6886   return false;
6887 }
6888 
6889 bool TypeAryKlassPtr::is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
6890   return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
6891 }
6892 
6893 template <class T1, class T2> bool TypePtr::is_same_java_type_as_helper_for_array(const T1* this_one, const T2* other) {
6894   static_assert(std::is_base_of<T2, T1>::value, "");
6895 
6896   int dummy;
6897   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
6898 
6899   if (!this_one->is_array_type(other) ||
6900       !this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) {

6953   }
6954 
6955   const TypePtr* this_elem = this_one->elem()->make_ptr();
6956   const TypePtr* other_elem = other_ary->elem()->make_ptr();
6957   if (other_elem != nullptr && this_elem != nullptr) {
6958     return this_one->is_reference_type(this_elem)->maybe_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact);
6959   }
6960   if (other_elem == nullptr && this_elem == nullptr) {
6961     return this_one->klass()->is_subtype_of(other->klass());
6962   }
6963   return false;
6964 }
6965 
6966 bool TypeAryKlassPtr::maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
6967   return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
6968 }
6969 
6970 //------------------------------xdual------------------------------------------
6971 // Dual: compute field-by-field dual
6972 const Type    *TypeAryKlassPtr::xdual() const {
6973   return new TypeAryKlassPtr(dual_ptr(), elem()->dual(), klass(), dual_offset(), !is_not_flat(), !is_not_null_free(), dual_null_free());
6974 }
6975 
6976 // Is there a single ciKlass* that can represent that type?
6977 ciKlass* TypeAryKlassPtr::exact_klass_helper() const {
6978   if (elem()->isa_klassptr()) {
6979     ciKlass* k = elem()->is_klassptr()->exact_klass_helper();
6980     if (k == nullptr) {
6981       return nullptr;
6982     }
6983     k = ciArrayKlass::make(k, _null_free);
6984     return k;
6985   }
6986 
6987   return klass();
6988 }
6989 
6990 ciKlass* TypeAryKlassPtr::klass() const {
6991   if (_klass != nullptr) {
6992     return _klass;
6993   }
6994   ciKlass* k = nullptr;
6995   if (elem()->isa_klassptr()) {
6996     // leave null
6997   } else if ((elem()->base() == Type::Top) ||
6998              (elem()->base() == Type::Bottom)) {
6999   } else {
7000     k = ciTypeArrayKlass::make(elem()->basic_type());
7001     ((TypeAryKlassPtr*)this)->_klass = k;
7002   }
7003   return k;

7010   switch( _ptr ) {
7011   case Constant:
7012     st->print("precise ");
7013   case NotNull:
7014     {
7015       st->print("[");
7016       _elem->dump2(d, depth, st);
7017       _interfaces->dump(st);
7018       st->print(": ");
7019     }
7020   case BotPTR:
7021     if( !WizardMode && !Verbose && _ptr != Constant ) break;
7022   case TopPTR:
7023   case AnyNull:
7024     st->print(":%s", ptr_msg[_ptr]);
7025     if( _ptr == Constant ) st->print(":exact");
7026     break;
7027   default:
7028     break;
7029   }
7030   if (is_flat()) st->print(":flat");
7031   if (_null_free) st->print(":null free");
7032   if (Verbose) {
7033     if (_not_flat) st->print(":not flat");
7034     if (_not_null_free) st->print(":not null free");
7035   }
7036 
7037   _offset.dump2(st);
7038 
7039   st->print(" *");
7040 }
7041 #endif
7042 
7043 const Type* TypeAryKlassPtr::base_element_type(int& dims) const {
7044   const Type* elem = this->elem();
7045   dims = 1;
7046   while (elem->isa_aryklassptr()) {
7047     elem = elem->is_aryklassptr()->elem();
7048     dims++;
7049   }
7050   return elem;
7051 }
7052 
7053 //=============================================================================
7054 // Convenience common pre-built types.
7055 
7056 //------------------------------make-------------------------------------------
7057 const TypeFunc *TypeFunc::make(const TypeTuple *domain_sig, const TypeTuple* domain_cc,
7058                                const TypeTuple *range_sig, const TypeTuple *range_cc) {
7059   return (TypeFunc*)(new TypeFunc(domain_sig, domain_cc, range_sig, range_cc))->hashcons();
7060 }
7061 
7062 const TypeFunc *TypeFunc::make(const TypeTuple *domain, const TypeTuple *range) {
7063   return make(domain, domain, range, range);
7064 }
7065 
7066 //------------------------------osr_domain-----------------------------
7067 const TypeTuple* osr_domain() {
7068   const Type **fields = TypeTuple::fields(2);
7069   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM;  // address of osr buffer
7070   return TypeTuple::make(TypeFunc::Parms+1, fields);
7071 }
7072 
7073 //------------------------------make-------------------------------------------
7074 const TypeFunc* TypeFunc::make(ciMethod* method, bool is_osr_compilation) {
7075   Compile* C = Compile::current();
7076   const TypeFunc* tf = nullptr;
7077   if (!is_osr_compilation) {
7078     tf = C->last_tf(method); // check cache
7079     if (tf != nullptr)  return tf;  // The hit rate here is almost 50%.
7080   }
7081   // Inline types are not passed/returned by reference, instead each field of
7082   // the inline type is passed/returned as an argument. We maintain two views of
7083   // the argument/return list here: one based on the signature (with an inline
7084   // type argument/return as a single slot), one based on the actual calling
7085   // convention (with an inline type argument/return as a list of its fields).
7086   bool has_scalar_args = method->has_scalarized_args() && !is_osr_compilation;
7087   // Fall back to the non-scalarized calling convention when compiling a call via a mismatching method
7088   if (method != C->method() && method->get_Method()->mismatch()) {
7089     has_scalar_args = false;
7090   }
7091   const TypeTuple* domain_sig = is_osr_compilation ? osr_domain() : TypeTuple::make_domain(method, ignore_interfaces, false);
7092   const TypeTuple* domain_cc = has_scalar_args ? TypeTuple::make_domain(method, ignore_interfaces, true) : domain_sig;
7093   ciSignature* sig = method->signature();
7094   bool has_scalar_ret = !method->is_native() && sig->return_type()->is_inlinetype() && sig->return_type()->as_inline_klass()->can_be_returned_as_fields();
7095   const TypeTuple* range_sig = TypeTuple::make_range(sig, ignore_interfaces, false);
7096   const TypeTuple* range_cc = has_scalar_ret ? TypeTuple::make_range(sig, ignore_interfaces, true) : range_sig;
7097   tf = TypeFunc::make(domain_sig, domain_cc, range_sig, range_cc);
7098   if (!is_osr_compilation) {
7099     C->set_last_tf(method, tf);  // fill cache
7100   }



7101   return tf;
7102 }
7103 
7104 //------------------------------meet-------------------------------------------
7105 // Compute the MEET of two types.  It returns a new Type object.
7106 const Type *TypeFunc::xmeet( const Type *t ) const {
7107   // Perform a fast test for common case; meeting the same types together.
7108   if( this == t ) return this;  // Meeting same type-rep?
7109 
7110   // Current "this->_base" is Func
7111   switch (t->base()) {          // switch on original type
7112 
7113   case Bottom:                  // Ye Olde Default
7114     return t;
7115 
7116   default:                      // All else is a mistake
7117     typerr(t);
7118 
7119   case Top:
7120     break;
7121   }
7122   return this;                  // Return the double constant
7123 }
7124 
7125 //------------------------------xdual------------------------------------------
7126 // Dual: compute field-by-field dual
7127 const Type *TypeFunc::xdual() const {
7128   return this;
7129 }
7130 
7131 //------------------------------eq---------------------------------------------
7132 // Structural equality check for Type representations
7133 bool TypeFunc::eq( const Type *t ) const {
7134   const TypeFunc *a = (const TypeFunc*)t;
7135   return _domain_sig == a->_domain_sig &&
7136     _domain_cc == a->_domain_cc &&
7137     _range_sig == a->_range_sig &&
7138     _range_cc == a->_range_cc;
7139 }
7140 
7141 //------------------------------hash-------------------------------------------
7142 // Type-specific hashing function.
7143 uint TypeFunc::hash(void) const {
7144   return (uint)(intptr_t)_domain_sig + (uint)(intptr_t)_domain_cc + (uint)(intptr_t)_range_sig + (uint)(intptr_t)_range_cc;
7145 }
7146 
7147 //------------------------------dump2------------------------------------------
7148 // Dump Function Type
7149 #ifndef PRODUCT
7150 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
7151   if( _range_sig->cnt() <= Parms )
7152     st->print("void");
7153   else {
7154     uint i;
7155     for (i = Parms; i < _range_sig->cnt()-1; i++) {
7156       _range_sig->field_at(i)->dump2(d,depth,st);
7157       st->print("/");
7158     }
7159     _range_sig->field_at(i)->dump2(d,depth,st);
7160   }
7161   st->print(" ");
7162   st->print("( ");
7163   if( !depth || d[this] ) {     // Check for recursive dump
7164     st->print("...)");
7165     return;
7166   }
7167   d.Insert((void*)this,(void*)this);    // Stop recursion
7168   if (Parms < _domain_sig->cnt())
7169     _domain_sig->field_at(Parms)->dump2(d,depth-1,st);
7170   for (uint i = Parms+1; i < _domain_sig->cnt(); i++) {
7171     st->print(", ");
7172     _domain_sig->field_at(i)->dump2(d,depth-1,st);
7173   }
7174   st->print(" )");
7175 }
7176 #endif
7177 
7178 //------------------------------singleton--------------------------------------
7179 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
7180 // constants (Ldi nodes).  Singletons are integer, float or double constants
7181 // or a single symbol.
7182 bool TypeFunc::singleton(void) const {
7183   return false;                 // Never a singleton
7184 }
7185 
7186 bool TypeFunc::empty(void) const {
7187   return false;                 // Never empty
7188 }
7189 
7190 
7191 BasicType TypeFunc::return_type() const{
7192   if (range_sig()->cnt() == TypeFunc::Parms) {
7193     return T_VOID;
7194   }
7195   return range_sig()->field_at(TypeFunc::Parms)->basic_type();
7196 }
< prev index next >