< prev index next >

src/hotspot/share/opto/type.cpp

Print this page

   1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 




  25 #include "ci/ciMethodData.hpp"

  26 #include "ci/ciTypeFlow.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "libadt/dict.hpp"
  32 #include "memory/oopFactory.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "oops/instanceKlass.hpp"
  35 #include "oops/instanceMirrorKlass.hpp"
  36 #include "oops/objArrayKlass.hpp"
  37 #include "oops/typeArrayKlass.hpp"
  38 #include "opto/arraycopynode.hpp"
  39 #include "opto/callnode.hpp"
  40 #include "opto/matcher.hpp"
  41 #include "opto/node.hpp"
  42 #include "opto/opcodes.hpp"
  43 #include "opto/rangeinference.hpp"
  44 #include "opto/runtime.hpp"
  45 #include "opto/type.hpp"

  46 #include "runtime/stubRoutines.hpp"
  47 #include "utilities/checkedCast.hpp"
  48 #include "utilities/debug.hpp"

  49 #include "utilities/ostream.hpp"
  50 #include "utilities/powerOfTwo.hpp"
  51 #include "utilities/stringUtils.hpp"
  52 
  53 // Portions of code courtesy of Clifford Click
  54 
  55 // Optimization - Graph Style
  56 
  57 // Dictionary of types shared among compilations.
  58 Dict* Type::_shared_type_dict = nullptr;













































  59 
  60 // Array which maps compiler types to Basic Types
  61 const Type::TypeInfo Type::_type_info[Type::lastype] = {
  62   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
  63   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
  64   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
  65   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
  66   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
  67   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
  68   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
  69   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
  70   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
  71   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
  72   { Bad,             T_ARRAY,      "interfaces:",   false, Node::NotAMachineReg, relocInfo::none          },  // Interfaces
  73 
  74 #if defined(PPC64)
  75   { Bad,             T_ILLEGAL,    "vectormask:",   false, Op_RegVectMask,       relocInfo::none          },  // VectorMask.
  76   { Bad,             T_ILLEGAL,    "vectora:",      false, Op_VecA,              relocInfo::none          },  // VectorA.
  77   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  78   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD

 217   case ciTypeFlow::StateVector::T_NULL:
 218     assert(type == ciTypeFlow::StateVector::null_type(), "");
 219     return TypePtr::NULL_PTR;
 220 
 221   case ciTypeFlow::StateVector::T_LONG2:
 222     // The ciTypeFlow pass pushes a long, then the half.
 223     // We do the same.
 224     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 225     return TypeInt::TOP;
 226 
 227   case ciTypeFlow::StateVector::T_DOUBLE2:
 228     // The ciTypeFlow pass pushes double, then the half.
 229     // Our convention is the same.
 230     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 231     return Type::TOP;
 232 
 233   case T_ADDRESS:
 234     assert(type->is_return_address(), "");
 235     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 236 



 237   default:
 238     // make sure we did not mix up the cases:
 239     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 240     assert(type != ciTypeFlow::StateVector::top_type(), "");
 241     assert(type != ciTypeFlow::StateVector::null_type(), "");
 242     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 243     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 244     assert(!type->is_return_address(), "");
 245 
 246     return Type::get_const_type(type);
 247   }
 248 }
 249 
 250 
 251 //-----------------------make_from_constant------------------------------------
 252 const Type* Type::make_from_constant(ciConstant constant, bool require_constant,
 253                                      int stable_dimension, bool is_narrow_oop,
 254                                      bool is_autobox_cache) {
 255   switch (constant.basic_type()) {
 256     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());

 306     case T_NARROWOOP: loadbt = T_OBJECT; break;
 307     case T_ARRAY:     loadbt = T_OBJECT; break;
 308     case T_ADDRESS:   loadbt = T_OBJECT; break;
 309     default:                             break;
 310   }
 311   if (conbt == loadbt) {
 312     if (is_unsigned && conbt == T_BYTE) {
 313       // LoadB (T_BYTE) with a small mask (<=8-bit) is converted to LoadUB (T_BYTE).
 314       return ciConstant(T_INT, con.as_int() & 0xFF);
 315     } else {
 316       return con;
 317     }
 318   }
 319   if (conbt == T_SHORT && loadbt == T_CHAR) {
 320     // LoadS (T_SHORT) with a small mask (<=16-bit) is converted to LoadUS (T_CHAR).
 321     return ciConstant(T_INT, con.as_int() & 0xFFFF);
 322   }
 323   return ciConstant(); // T_ILLEGAL
 324 }
 325 
 326 // Try to constant-fold a stable array element.
 327 const Type* Type::make_constant_from_array_element(ciArray* array, int off, int stable_dimension,
 328                                                    BasicType loadbt, bool is_unsigned_load) {
 329   // Decode the results of GraphKit::array_element_address.
 330   ciConstant element_value = array->element_value_by_offset(off);
 331   if (element_value.basic_type() == T_ILLEGAL) {
 332     return nullptr; // wrong offset
 333   }
 334   ciConstant con = check_mismatched_access(element_value, loadbt, is_unsigned_load);
 335 
 336   assert(con.basic_type() != T_ILLEGAL, "elembt=%s; loadbt=%s; unsigned=%d",
 337          type2name(element_value.basic_type()), type2name(loadbt), is_unsigned_load);
 338 
 339   if (con.is_valid() &&          // not a mismatched access
 340       !con.is_null_or_zero()) {  // not a default value
 341     bool is_narrow_oop = (loadbt == T_NARROWOOP);
 342     return Type::make_from_constant(con, /*require_constant=*/true, stable_dimension, is_narrow_oop, /*is_autobox_cache=*/false);
 343   }
 344   return nullptr;
 345 }
 346 





























 347 const Type* Type::make_constant_from_field(ciInstance* holder, int off, bool is_unsigned_load, BasicType loadbt) {
 348   ciField* field;
 349   ciType* type = holder->java_mirror_type();
 350   if (type != nullptr && type->is_instance_klass() && off >= InstanceMirrorKlass::offset_of_static_fields()) {
 351     // Static field
 352     field = type->as_instance_klass()->get_field_by_offset(off, /*is_static=*/true);
 353   } else {
 354     // Instance field
 355     field = holder->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/false);
 356   }
 357   if (field == nullptr) {
 358     return nullptr; // Wrong offset
 359   }
 360   return Type::make_constant_from_field(field, holder, loadbt, is_unsigned_load);
 361 }
 362 
 363 const Type* Type::make_constant_from_field(ciField* field, ciInstance* holder,
 364                                            BasicType loadbt, bool is_unsigned_load) {
 365   if (!field->is_constant()) {
 366     return nullptr; // Non-constant field

 539   const Type **ffalse =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 540   ffalse[0] = Type::CONTROL;
 541   ffalse[1] = Type::TOP;
 542   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 543 
 544   const Type **fneither =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 545   fneither[0] = Type::TOP;
 546   fneither[1] = Type::TOP;
 547   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 548 
 549   const Type **ftrue =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 550   ftrue[0] = Type::TOP;
 551   ftrue[1] = Type::CONTROL;
 552   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 553 
 554   const Type **floop =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 555   floop[0] = Type::CONTROL;
 556   floop[1] = TypeInt::INT;
 557   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 558 
 559   TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, 0);
 560   TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, OffsetBot);
 561   TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, OffsetBot);
 562 
 563   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 564   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 565 
 566   const Type **fmembar = TypeTuple::fields(0);
 567   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 568 
 569   const Type **fsc = (const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 570   fsc[0] = TypeInt::CC;
 571   fsc[1] = Type::MEMORY;
 572   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 573 
 574   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 575   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 576   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 577   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 578                                            false, nullptr, oopDesc::mark_offset_in_bytes());
 579   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 580                                            false, nullptr, oopDesc::klass_offset_in_bytes());
 581   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
 582 
 583   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, nullptr, OffsetBot);
 584 
 585   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 586   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 587 
 588   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 589 
 590   mreg2type[Op_Node] = Type::BOTTOM;
 591   mreg2type[Op_Set ] = nullptr;
 592   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 593   mreg2type[Op_RegI] = TypeInt::INT;
 594   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 595   mreg2type[Op_RegF] = Type::FLOAT;
 596   mreg2type[Op_RegD] = Type::DOUBLE;
 597   mreg2type[Op_RegL] = TypeLong::LONG;
 598   mreg2type[Op_RegFlags] = TypeInt::CC;
 599 
 600   GrowableArray<ciInstanceKlass*> array_interfaces;
 601   array_interfaces.push(current->env()->Cloneable_klass());
 602   array_interfaces.push(current->env()->Serializable_klass());
 603   TypeAryPtr::_array_interfaces = TypeInterfaces::make(&array_interfaces);
 604   TypeAryKlassPtr::_array_interfaces = TypeAryPtr::_array_interfaces;
 605 
 606   TypeAryPtr::BOTTOM = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::BOTTOM, TypeInt::POS), nullptr, false, Type::OffsetBot);
 607   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), nullptr /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
 608 
 609   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), nullptr /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 610 
 611 #ifdef _LP64
 612   if (UseCompressedOops) {
 613     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 614     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 615   } else
 616 #endif
 617   {
 618     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 619     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), nullptr /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 620   }
 621   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
 622   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
 623   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
 624   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
 625   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
 626   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
 627   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);

 628 
 629   // Nobody should ask _array_body_type[T_NARROWOOP]. Use null as assert.
 630   TypeAryPtr::_array_body_type[T_NARROWOOP] = nullptr;
 631   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;

 632   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 633   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 634   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 635   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 636   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 637   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 638   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 639   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 640   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 641 
 642   TypeInstKlassPtr::OBJECT = TypeInstKlassPtr::make(TypePtr::NotNull, current->env()->Object_klass(), 0);
 643   TypeInstKlassPtr::OBJECT_OR_NULL = TypeInstKlassPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), 0);
 644 
 645   const Type **fi2c = TypeTuple::fields(2);
 646   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 647   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 648   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 649 
 650   const Type **intpair = TypeTuple::fields(2);
 651   intpair[0] = TypeInt::INT;
 652   intpair[1] = TypeInt::INT;
 653   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 654 
 655   const Type **longpair = TypeTuple::fields(2);
 656   longpair[0] = TypeLong::LONG;
 657   longpair[1] = TypeLong::LONG;
 658   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 659 
 660   const Type **intccpair = TypeTuple::fields(2);
 661   intccpair[0] = TypeInt::INT;
 662   intccpair[1] = TypeInt::CC;
 663   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 664 
 665   const Type **longccpair = TypeTuple::fields(2);
 666   longccpair[0] = TypeLong::LONG;
 667   longccpair[1] = TypeInt::CC;
 668   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 669 
 670   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 671   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 672   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 673   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 674   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 675   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 676   _const_basic_type[T_INT]         = TypeInt::INT;
 677   _const_basic_type[T_LONG]        = TypeLong::LONG;
 678   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 679   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 680   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 681   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays

 682   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 683   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 684   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 685 
 686   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 687   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 688   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 689   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 690   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 691   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 692   _zero_type[T_INT]         = TypeInt::ZERO;
 693   _zero_type[T_LONG]        = TypeLong::ZERO;
 694   _zero_type[T_FLOAT]       = TypeF::ZERO;
 695   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 696   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 697   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop

 698   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 699   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 700 
 701   // get_zero_type() should not happen for T_CONFLICT
 702   _zero_type[T_CONFLICT]= nullptr;
 703 
 704   TypeVect::VECTMASK = (TypeVect*)(new TypeVectMask(T_BOOLEAN, MaxVectorSize))->hashcons();
 705   mreg2type[Op_RegVectMask] = TypeVect::VECTMASK;
 706 
 707   if (Matcher::supports_scalable_vector()) {
 708     TypeVect::VECTA = TypeVect::make(T_BYTE, Matcher::scalable_vector_reg_size(T_BYTE));
 709   }
 710 
 711   // Vector predefined types, it needs initialized _const_basic_type[].
 712   if (Matcher::vector_size_supported(T_BYTE, 4)) {
 713     TypeVect::VECTS = TypeVect::make(T_BYTE, 4);
 714   }
 715   if (Matcher::vector_size_supported(T_FLOAT, 2)) {
 716     TypeVect::VECTD = TypeVect::make(T_FLOAT, 2);
 717   }

 952   ~VerifyMeet() {
 953     assert(_C->_type_verify->_depth != 0, "");
 954     _C->_type_verify->_depth--;
 955     if (_C->_type_verify->_depth == 0) {
 956       _C->_type_verify->_cache.trunc_to(0);
 957     }
 958   }
 959 
 960   const Type* meet(const Type* t1, const Type* t2) const {
 961     return _C->_type_verify->meet(t1, t2);
 962   }
 963 
 964   void add(const Type* t1, const Type* t2, const Type* res) const {
 965     _C->_type_verify->add(t1, t2, res);
 966   }
 967 };
 968 
 969 void Type::check_symmetrical(const Type* t, const Type* mt, const VerifyMeet& verify) const {
 970   Compile* C = Compile::current();
 971   const Type* mt2 = verify.meet(t, this);



 972   if (mt != mt2) {
 973     tty->print_cr("=== Meet Not Commutative ===");
 974     tty->print("t           = ");   t->dump(); tty->cr();
 975     tty->print("this        = ");      dump(); tty->cr();
 976     tty->print("t meet this = "); mt2->dump(); tty->cr();
 977     tty->print("this meet t = ");  mt->dump(); tty->cr();
 978     fatal("meet not commutative");
 979   }
 980   const Type* dual_join = mt->_dual;
 981   const Type* t2t    = verify.meet(dual_join,t->_dual);
 982   const Type* t2this = verify.meet(dual_join,this->_dual);
 983 
 984   // Interface meet Oop is Not Symmetric:
 985   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
 986   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
 987 









 988   if (t2t != t->_dual || t2this != this->_dual) {
 989     tty->print_cr("=== Meet Not Symmetric ===");
 990     tty->print("t   =                   ");              t->dump(); tty->cr();
 991     tty->print("this=                   ");                 dump(); tty->cr();
 992     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
 993 
 994     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
 995     tty->print("this_dual=              ");          _dual->dump(); tty->cr();
 996     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
 997 

 998     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();

 999     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();









1000 
1001     fatal("meet not symmetric");
1002   }
1003 }
1004 #endif
1005 
1006 //------------------------------meet-------------------------------------------
1007 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
1008 // commutative and the lattice is symmetric.
1009 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
1010   if (isa_narrowoop() && t->isa_narrowoop()) {
1011     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
1012     return result->make_narrowoop();
1013   }
1014   if (isa_narrowklass() && t->isa_narrowklass()) {
1015     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
1016     return result->make_narrowklass();
1017   }
1018 
1019 #ifdef ASSERT
1020   Compile* C = Compile::current();
1021   VerifyMeet verify(C);
1022 #endif
1023 
1024   const Type *this_t = maybe_remove_speculative(include_speculative);
1025   t = t->maybe_remove_speculative(include_speculative);
1026 
1027   const Type *mt = this_t->xmeet(t);
1028 #ifdef ASSERT
1029   verify.add(this_t, t, mt);
1030   if (isa_narrowoop() || t->isa_narrowoop()) {
1031     return mt;
1032   }
1033   if (isa_narrowklass() || t->isa_narrowklass()) {
1034     return mt;
1035   }



1036   this_t->check_symmetrical(t, mt, verify);
1037   const Type *mt_dual = verify.meet(this_t->_dual, t->_dual);
1038   this_t->_dual->check_symmetrical(t->_dual, mt_dual, verify);
1039 #endif
1040   return mt;
1041 }
1042 
1043 //------------------------------xmeet------------------------------------------
1044 // Compute the MEET of two types.  It returns a new Type object.
1045 const Type *Type::xmeet( const Type *t ) const {
1046   // Perform a fast test for common case; meeting the same types together.
1047   if( this == t ) return this;  // Meeting same type-rep?
1048 
1049   // Meeting TOP with anything?
1050   if( _base == Top ) return t;
1051 
1052   // Meeting BOTTOM with anything?
1053   if( _base == Bottom ) return BOTTOM;
1054 
1055   // Current "this->_base" is one of: Bad, Multi, Control, Top,

2032 void TypeLong::dump_verbose() const {
2033   TypeIntHelper::int_type_dump(this, tty, true);
2034 }
2035 #endif
2036 
2037 //=============================================================================
2038 // Convenience common pre-built types.
2039 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
2040 const TypeTuple *TypeTuple::IFFALSE;
2041 const TypeTuple *TypeTuple::IFTRUE;
2042 const TypeTuple *TypeTuple::IFNEITHER;
2043 const TypeTuple *TypeTuple::LOOPBODY;
2044 const TypeTuple *TypeTuple::MEMBAR;
2045 const TypeTuple *TypeTuple::STORECONDITIONAL;
2046 const TypeTuple *TypeTuple::START_I2C;
2047 const TypeTuple *TypeTuple::INT_PAIR;
2048 const TypeTuple *TypeTuple::LONG_PAIR;
2049 const TypeTuple *TypeTuple::INT_CC_PAIR;
2050 const TypeTuple *TypeTuple::LONG_CC_PAIR;
2051 





















2052 //------------------------------make-------------------------------------------
2053 // Make a TypeTuple from the range of a method signature
2054 const TypeTuple *TypeTuple::make_range(ciSignature* sig, InterfaceHandling interface_handling) {
2055   ciType* return_type = sig->return_type();
2056   uint arg_cnt = return_type->size();





2057   const Type **field_array = fields(arg_cnt);
2058   switch (return_type->basic_type()) {
2059   case T_LONG:
2060     field_array[TypeFunc::Parms]   = TypeLong::LONG;
2061     field_array[TypeFunc::Parms+1] = Type::HALF;
2062     break;
2063   case T_DOUBLE:
2064     field_array[TypeFunc::Parms]   = Type::DOUBLE;
2065     field_array[TypeFunc::Parms+1] = Type::HALF;
2066     break;
2067   case T_OBJECT:












2068   case T_ARRAY:
2069   case T_BOOLEAN:
2070   case T_CHAR:
2071   case T_FLOAT:
2072   case T_BYTE:
2073   case T_SHORT:
2074   case T_INT:
2075     field_array[TypeFunc::Parms] = get_const_type(return_type, interface_handling);
2076     break;
2077   case T_VOID:
2078     break;
2079   default:
2080     ShouldNotReachHere();
2081   }
2082   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2083 }
2084 
2085 // Make a TypeTuple from the domain of a method signature
2086 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig, InterfaceHandling interface_handling) {
2087   uint arg_cnt = sig->size();








2088 
2089   uint pos = TypeFunc::Parms;
2090   const Type **field_array;
2091   if (recv != nullptr) {
2092     arg_cnt++;
2093     field_array = fields(arg_cnt);
2094     // Use get_const_type here because it respects UseUniqueSubclasses:
2095     field_array[pos++] = get_const_type(recv, interface_handling)->join_speculative(TypePtr::NOTNULL);
2096   } else {
2097     field_array = fields(arg_cnt);
2098   }
2099 
2100   int i = 0;
2101   while (pos < TypeFunc::Parms + arg_cnt) {
2102     ciType* type = sig->type_at(i);

2103 
2104     switch (type->basic_type()) {
2105     case T_LONG:
2106       field_array[pos++] = TypeLong::LONG;
2107       field_array[pos++] = Type::HALF;
2108       break;
2109     case T_DOUBLE:
2110       field_array[pos++] = Type::DOUBLE;
2111       field_array[pos++] = Type::HALF;
2112       break;
2113     case T_OBJECT:








2114     case T_ARRAY:
2115     case T_FLOAT:
2116     case T_INT:
2117       field_array[pos++] = get_const_type(type, interface_handling);
2118       break;
2119     case T_BOOLEAN:
2120     case T_CHAR:
2121     case T_BYTE:
2122     case T_SHORT:
2123       field_array[pos++] = TypeInt::INT;
2124       break;
2125     default:
2126       ShouldNotReachHere();
2127     }
2128     i++;
2129   }

2130 
2131   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2132 }
2133 
2134 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
2135   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
2136 }
2137 
2138 //------------------------------fields-----------------------------------------
2139 // Subroutine call type with space allocated for argument types
2140 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
2141 const Type **TypeTuple::fields( uint arg_cnt ) {
2142   const Type **flds = (const Type **)(Compile::current()->type_arena()->AmallocWords((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
2143   flds[TypeFunc::Control  ] = Type::CONTROL;
2144   flds[TypeFunc::I_O      ] = Type::ABIO;
2145   flds[TypeFunc::Memory   ] = Type::MEMORY;
2146   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
2147   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
2148 
2149   return flds;

2244     if (_fields[i]->empty())  return true;
2245   }
2246   return false;
2247 }
2248 
2249 //=============================================================================
2250 // Convenience common pre-built types.
2251 
2252 inline const TypeInt* normalize_array_size(const TypeInt* size) {
2253   // Certain normalizations keep us sane when comparing types.
2254   // We do not want arrayOop variables to differ only by the wideness
2255   // of their index types.  Pick minimum wideness, since that is the
2256   // forced wideness of small ranges anyway.
2257   if (size->_widen != Type::WidenMin)
2258     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
2259   else
2260     return size;
2261 }
2262 
2263 //------------------------------make-------------------------------------------
2264 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {

2265   if (UseCompressedOops && elem->isa_oopptr()) {
2266     elem = elem->make_narrowoop();
2267   }
2268   size = normalize_array_size(size);
2269   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
2270 }
2271 
2272 //------------------------------meet-------------------------------------------
2273 // Compute the MEET of two types.  It returns a new Type object.
2274 const Type *TypeAry::xmeet( const Type *t ) const {
2275   // Perform a fast test for common case; meeting the same types together.
2276   if( this == t ) return this;  // Meeting same type-rep?
2277 
2278   // Current "this->_base" is Ary
2279   switch (t->base()) {          // switch on original type
2280 
2281   case Bottom:                  // Ye Olde Default
2282     return t;
2283 
2284   default:                      // All else is a mistake
2285     typerr(t);
2286 
2287   case Array: {                 // Meeting 2 arrays?
2288     const TypeAry* a = t->is_ary();
2289     const Type* size = _size->xmeet(a->_size);
2290     const TypeInt* isize = size->isa_int();
2291     if (isize == nullptr) {
2292       assert(size == Type::TOP || size == Type::BOTTOM, "");
2293       return size;
2294     }
2295     return TypeAry::make(_elem->meet_speculative(a->_elem),
2296                          isize, _stable && a->_stable);




2297   }
2298   case Top:
2299     break;
2300   }
2301   return this;                  // Return the double constant
2302 }
2303 
2304 //------------------------------xdual------------------------------------------
2305 // Dual: compute field-by-field dual
2306 const Type *TypeAry::xdual() const {
2307   const TypeInt* size_dual = _size->dual()->is_int();
2308   size_dual = normalize_array_size(size_dual);
2309   return new TypeAry(_elem->dual(), size_dual, !_stable);
2310 }
2311 
2312 //------------------------------eq---------------------------------------------
2313 // Structural equality check for Type representations
2314 bool TypeAry::eq( const Type *t ) const {
2315   const TypeAry *a = (const TypeAry*)t;
2316   return _elem == a->_elem &&
2317     _stable == a->_stable &&
2318     _size == a->_size;





2319 }
2320 
2321 //------------------------------hash-------------------------------------------
2322 // Type-specific hashing function.
2323 uint TypeAry::hash(void) const {
2324   return (uint)(uintptr_t)_elem + (uint)(uintptr_t)_size + (uint)(_stable ? 43 : 0);

2325 }
2326 
2327 /**
2328  * Return same type without a speculative part in the element
2329  */
2330 const TypeAry* TypeAry::remove_speculative() const {
2331   return make(_elem->remove_speculative(), _size, _stable);
2332 }
2333 
2334 /**
2335  * Return same type with cleaned up speculative part of element
2336  */
2337 const Type* TypeAry::cleanup_speculative() const {
2338   return make(_elem->cleanup_speculative(), _size, _stable);
2339 }
2340 
2341 /**
2342  * Return same type but with a different inline depth (used for speculation)
2343  *
2344  * @param depth  depth to meet with
2345  */
2346 const TypePtr* TypePtr::with_inline_depth(int depth) const {
2347   if (!UseInlineDepthForSpeculativeTypes) {
2348     return this;
2349   }
2350   return make(AnyPtr, _ptr, _offset, _speculative, depth);
2351 }
2352 
2353 //------------------------------dump2------------------------------------------
2354 #ifndef PRODUCT
2355 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2356   if (_stable)  st->print("stable:");






2357   _elem->dump2(d, depth, st);
2358   st->print("[");
2359   _size->dump2(d, depth, st);
2360   st->print("]");
2361 }
2362 #endif
2363 
2364 //------------------------------singleton--------------------------------------
2365 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2366 // constants (Ldi nodes).  Singletons are integer, float or double constants
2367 // or a single symbol.
2368 bool TypeAry::singleton(void) const {
2369   return false;                 // Never a singleton
2370 }
2371 
2372 bool TypeAry::empty(void) const {
2373   return _elem->empty() || _size->empty();
2374 }
2375 
2376 //--------------------------ary_must_be_exact----------------------------------
2377 bool TypeAry::ary_must_be_exact() const {
2378   // This logic looks at the element type of an array, and returns true
2379   // if the element type is either a primitive or a final instance class.
2380   // In such cases, an array built on this ary must have no subclasses.
2381   if (_elem == BOTTOM)      return false;  // general array not exact
2382   if (_elem == TOP   )      return false;  // inverted general array not exact
2383   const TypeOopPtr*  toop = nullptr;
2384   if (UseCompressedOops && _elem->isa_narrowoop()) {
2385     toop = _elem->make_ptr()->isa_oopptr();
2386   } else {
2387     toop = _elem->isa_oopptr();
2388   }
2389   if (!toop)                return true;   // a primitive type, like int
2390   if (!toop->is_loaded())   return false;  // unloaded class
2391   const TypeInstPtr* tinst;
2392   if (_elem->isa_narrowoop())
2393     tinst = _elem->make_ptr()->isa_instptr();
2394   else
2395     tinst = _elem->isa_instptr();
2396   if (tinst)
2397     return tinst->instance_klass()->is_final();











2398   const TypeAryPtr*  tap;
2399   if (_elem->isa_narrowoop())
2400     tap = _elem->make_ptr()->isa_aryptr();
2401   else
2402     tap = _elem->isa_aryptr();
2403   if (tap)
2404     return tap->ary()->ary_must_be_exact();
2405   return false;
2406 }
2407 
2408 //==============================TypeVect=======================================
2409 // Convenience common pre-built types.
2410 const TypeVect* TypeVect::VECTA = nullptr; // vector length agnostic
2411 const TypeVect* TypeVect::VECTS = nullptr; //  32-bit vectors
2412 const TypeVect* TypeVect::VECTD = nullptr; //  64-bit vectors
2413 const TypeVect* TypeVect::VECTX = nullptr; // 128-bit vectors
2414 const TypeVect* TypeVect::VECTY = nullptr; // 256-bit vectors
2415 const TypeVect* TypeVect::VECTZ = nullptr; // 512-bit vectors
2416 const TypeVect* TypeVect::VECTMASK = nullptr; // predicate/mask vector
2417 

2552 
2553 //=============================================================================
2554 // Convenience common pre-built types.
2555 const TypePtr *TypePtr::NULL_PTR;
2556 const TypePtr *TypePtr::NOTNULL;
2557 const TypePtr *TypePtr::BOTTOM;
2558 
2559 //------------------------------meet-------------------------------------------
2560 // Meet over the PTR enum
2561 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2562   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2563   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2564   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2565   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2566   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2567   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2568   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2569 };
2570 
2571 //------------------------------make-------------------------------------------
2572 const TypePtr *TypePtr::make(TYPES t, enum PTR ptr, int offset, const TypePtr* speculative, int inline_depth) {
2573   return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2574 }
2575 
2576 //------------------------------cast_to_ptr_type-------------------------------
2577 const TypePtr* TypePtr::cast_to_ptr_type(PTR ptr) const {
2578   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2579   if( ptr == _ptr ) return this;
2580   return make(_base, ptr, _offset, _speculative, _inline_depth);
2581 }
2582 
2583 //------------------------------get_con----------------------------------------
2584 intptr_t TypePtr::get_con() const {
2585   assert( _ptr == Null, "" );
2586   return _offset;
2587 }
2588 
2589 //------------------------------meet-------------------------------------------
2590 // Compute the MEET of two types.  It returns a new Type object.
2591 const Type *TypePtr::xmeet(const Type *t) const {
2592   const Type* res = xmeet_helper(t);
2593   if (res->isa_ptr() == nullptr) {
2594     return res;
2595   }
2596 
2597   const TypePtr* res_ptr = res->is_ptr();
2598   if (res_ptr->speculative() != nullptr) {
2599     // type->speculative() is null means that speculation is no better
2600     // than type, i.e. type->speculative() == type. So there are 2
2601     // ways to represent the fact that we have no useful speculative
2602     // data and we should use a single one to be able to test for
2603     // equality between types. Check whether type->speculative() ==
2604     // type and set speculative to null if it is the case.
2605     if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2606       return res_ptr->remove_speculative();

2640     int depth = meet_inline_depth(tp->inline_depth());
2641     return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2642   }
2643   case RawPtr:                  // For these, flip the call around to cut down
2644   case OopPtr:
2645   case InstPtr:                 // on the cases I have to handle.
2646   case AryPtr:
2647   case MetadataPtr:
2648   case KlassPtr:
2649   case InstKlassPtr:
2650   case AryKlassPtr:
2651     return t->xmeet(this);      // Call in reverse direction
2652   default:                      // All else is a mistake
2653     typerr(t);
2654 
2655   }
2656   return this;
2657 }
2658 
2659 //------------------------------meet_offset------------------------------------
2660 int TypePtr::meet_offset( int offset ) const {
2661   // Either is 'TOP' offset?  Return the other offset!
2662   if( _offset == OffsetTop ) return offset;
2663   if( offset == OffsetTop ) return _offset;
2664   // If either is different, return 'BOTTOM' offset
2665   if( _offset != offset ) return OffsetBot;
2666   return _offset;
2667 }
2668 
2669 //------------------------------dual_offset------------------------------------
2670 int TypePtr::dual_offset( ) const {
2671   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
2672   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
2673   return _offset;               // Map everything else into self
2674 }
2675 
2676 //------------------------------xdual------------------------------------------
2677 // Dual: compute field-by-field dual
2678 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2679   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2680 };












2681 const Type *TypePtr::xdual() const {
2682   return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2683 }
2684 
2685 //------------------------------xadd_offset------------------------------------
2686 int TypePtr::xadd_offset( intptr_t offset ) const {
2687   // Adding to 'TOP' offset?  Return 'TOP'!
2688   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
2689   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
2690   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
2691   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
2692   offset += (intptr_t)_offset;
2693   if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
2694 
2695   // assert( _offset >= 0 && _offset+offset >= 0, "" );
2696   // It is possible to construct a negative offset during PhaseCCP
2697 
2698   return (int)offset;        // Sum valid offsets
2699 }
2700 
2701 //------------------------------add_offset-------------------------------------
2702 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2703   return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2704 }
2705 
2706 const TypePtr *TypePtr::with_offset(intptr_t offset) const {
2707   return make(AnyPtr, _ptr, offset, _speculative, _inline_depth);
2708 }
2709 
2710 //------------------------------eq---------------------------------------------
2711 // Structural equality check for Type representations
2712 bool TypePtr::eq( const Type *t ) const {
2713   const TypePtr *a = (const TypePtr*)t;
2714   return _ptr == a->ptr() && _offset == a->offset() && eq_speculative(a) && _inline_depth == a->_inline_depth;
2715 }
2716 
2717 //------------------------------hash-------------------------------------------
2718 // Type-specific hashing function.
2719 uint TypePtr::hash(void) const {
2720   return (uint)_ptr + (uint)_offset + (uint)hash_speculative() + (uint)_inline_depth;
2721 }
2722 
2723 /**
2724  * Return same type without a speculative part
2725  */
2726 const TypePtr* TypePtr::remove_speculative() const {
2727   if (_speculative == nullptr) {
2728     return this;
2729   }
2730   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2731   return make(AnyPtr, _ptr, _offset, nullptr, _inline_depth);
2732 }
2733 
2734 /**
2735  * Return same type but drop speculative part if we know we won't use
2736  * it
2737  */
2738 const Type* TypePtr::cleanup_speculative() const {
2739   if (speculative() == nullptr) {
2740     return this;

2957     return false;
2958   }
2959   // We already know the speculative type cannot be null
2960   if (!speculative_maybe_null()) {
2961     return false;
2962   }
2963   // We already know this is always null
2964   if (this == TypePtr::NULL_PTR) {
2965     return false;
2966   }
2967   // We already know the speculative type is always null
2968   if (speculative_always_null()) {
2969     return false;
2970   }
2971   if (ptr_kind == ProfileAlwaysNull && speculative() != nullptr && speculative()->isa_oopptr()) {
2972     return false;
2973   }
2974   return true;
2975 }
2976 

































2977 //------------------------------dump2------------------------------------------
2978 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
2979   "TopPTR","AnyNull","Constant","null","NotNull","BotPTR"
2980 };
2981 
2982 #ifndef PRODUCT
2983 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2984   st->print("ptr:%s", ptr_msg[_ptr]);
2985   dump_offset(st);
2986   dump_inline_depth(st);
2987   dump_speculative(st);
2988 }
2989 
2990 void TypePtr::dump_offset(outputStream* st) const {
2991   if (_offset == OffsetBot) {
2992     st->print("+bot");
2993   } else if (_offset == OffsetTop) {
2994     st->print("+top");
2995   } else {
2996     st->print("+%d", _offset);
2997   }
2998 }
2999 
3000 /**
3001  *dump the speculative part of the type
3002  */
3003 void TypePtr::dump_speculative(outputStream *st) const {
3004   if (_speculative != nullptr) {
3005     st->print(" (speculative=");
3006     _speculative->dump_on(st);
3007     st->print(")");
3008   }
3009 }
3010 
3011 /**
3012  *dump the inline depth of the type
3013  */
3014 void TypePtr::dump_inline_depth(outputStream *st) const {
3015   if (_inline_depth != InlineDepthBottom) {
3016     if (_inline_depth == InlineDepthTop) {
3017       st->print(" (inline_depth=InlineDepthTop)");
3018     } else {
3019       st->print(" (inline_depth=%d)", _inline_depth);
3020     }
3021   }
3022 }
















3023 #endif
3024 
3025 //------------------------------singleton--------------------------------------
3026 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3027 // constants
3028 bool TypePtr::singleton(void) const {
3029   // TopPTR, Null, AnyNull, Constant are all singletons
3030   return (_offset != OffsetBot) && !below_centerline(_ptr);
3031 }
3032 
3033 bool TypePtr::empty(void) const {
3034   return (_offset == OffsetTop) || above_centerline(_ptr);
3035 }
3036 
3037 //=============================================================================
3038 // Convenience common pre-built types.
3039 const TypeRawPtr *TypeRawPtr::BOTTOM;
3040 const TypeRawPtr *TypeRawPtr::NOTNULL;
3041 
3042 //------------------------------make-------------------------------------------
3043 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
3044   assert( ptr != Constant, "what is the constant?" );
3045   assert( ptr != Null, "Use TypePtr for null" );
3046   return (TypeRawPtr*)(new TypeRawPtr(ptr,nullptr))->hashcons();
3047 }
3048 
3049 const TypeRawPtr *TypeRawPtr::make(address bits) {
3050   assert(bits != nullptr, "Use TypePtr for null");
3051   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
3052 }
3053 
3054 //------------------------------cast_to_ptr_type-------------------------------

3422 #endif
3423 
3424 // Can't be implemented because there's no way to know if the type is above or below the center line.
3425 const Type* TypeInterfaces::xmeet(const Type* t) const {
3426   ShouldNotReachHere();
3427   return Type::xmeet(t);
3428 }
3429 
3430 bool TypeInterfaces::singleton(void) const {
3431   ShouldNotReachHere();
3432   return Type::singleton();
3433 }
3434 
3435 bool TypeInterfaces::has_non_array_interface() const {
3436   assert(TypeAryPtr::_array_interfaces != nullptr, "How come Type::Initialize_shared wasn't called yet?");
3437 
3438   return !TypeAryPtr::_array_interfaces->contains(this);
3439 }
3440 
3441 //------------------------------TypeOopPtr-------------------------------------
3442 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int offset,
3443                        int instance_id, const TypePtr* speculative, int inline_depth)
3444   : TypePtr(t, ptr, offset, speculative, inline_depth),
3445     _const_oop(o), _klass(k),
3446     _interfaces(interfaces),
3447     _klass_is_exact(xk),
3448     _is_ptr_to_narrowoop(false),
3449     _is_ptr_to_narrowklass(false),
3450     _is_ptr_to_boxed_value(false),

3451     _instance_id(instance_id) {
3452 #ifdef ASSERT
3453   if (klass() != nullptr && klass()->is_loaded()) {
3454     interfaces->verify_is_loaded();
3455   }
3456 #endif
3457   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
3458       (offset > 0) && xk && (k != nullptr) && k->is_instance_klass()) {
3459     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);

3460   }









3461 #ifdef _LP64
3462   if (_offset > 0 || _offset == Type::OffsetTop || _offset == Type::OffsetBot) {
3463     if (_offset == oopDesc::klass_offset_in_bytes()) {
3464       _is_ptr_to_narrowklass = UseCompressedClassPointers;
3465     } else if (klass() == nullptr) {
3466       // Array with unknown body type
3467       assert(this->isa_aryptr(), "only arrays without klass");
3468       _is_ptr_to_narrowoop = UseCompressedOops;
3469     } else if (this->isa_aryptr()) {
3470       _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
3471                              _offset != arrayOopDesc::length_offset_in_bytes());














3472     } else if (klass()->is_instance_klass()) {
3473       ciInstanceKlass* ik = klass()->as_instance_klass();
3474       if (this->isa_klassptr()) {
3475         // Perm objects don't use compressed references
3476       } else if (_offset == OffsetBot || _offset == OffsetTop) {
3477         // unsafe access
3478         _is_ptr_to_narrowoop = UseCompressedOops;
3479       } else {
3480         assert(this->isa_instptr(), "must be an instance ptr.");
3481 
3482         if (klass() == ciEnv::current()->Class_klass() &&
3483             (_offset == java_lang_Class::klass_offset() ||
3484              _offset == java_lang_Class::array_klass_offset())) {
3485           // Special hidden fields from the Class.
3486           assert(this->isa_instptr(), "must be an instance ptr.");
3487           _is_ptr_to_narrowoop = false;
3488         } else if (klass() == ciEnv::current()->Class_klass() &&
3489                    _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
3490           // Static fields
3491           BasicType basic_elem_type = T_ILLEGAL;
3492           if (const_oop() != nullptr) {
3493             ciInstanceKlass* k = const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
3494             basic_elem_type = k->get_field_type_by_offset(_offset, true);
3495           }
3496           if (basic_elem_type != T_ILLEGAL) {
3497             _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type);
3498           } else {
3499             // unsafe access
3500             _is_ptr_to_narrowoop = UseCompressedOops;
3501           }
3502         } else {
3503           // Instance fields which contains a compressed oop references.
3504           BasicType basic_elem_type = ik->get_field_type_by_offset(_offset, false);

3505           if (basic_elem_type != T_ILLEGAL) {
3506             _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type);
3507           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
3508             // Compile::find_alias_type() cast exactness on all types to verify
3509             // that it does not affect alias type.
3510             _is_ptr_to_narrowoop = UseCompressedOops;
3511           } else {
3512             // Type for the copy start in LibraryCallKit::inline_native_clone().
3513             _is_ptr_to_narrowoop = UseCompressedOops;
3514           }
3515         }
3516       }
3517     }
3518   }
3519 #endif
3520 }
3521 
3522 //------------------------------make-------------------------------------------
3523 const TypeOopPtr *TypeOopPtr::make(PTR ptr, int offset, int instance_id,
3524                                      const TypePtr* speculative, int inline_depth) {
3525   assert(ptr != Constant, "no constant generic pointers");
3526   ciKlass*  k = Compile::current()->env()->Object_klass();
3527   bool      xk = false;
3528   ciObject* o = nullptr;
3529   const TypeInterfaces* interfaces = TypeInterfaces::make();
3530   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, interfaces, xk, o, offset, instance_id, speculative, inline_depth))->hashcons();
3531 }
3532 
3533 
3534 //------------------------------cast_to_ptr_type-------------------------------
3535 const TypeOopPtr* TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
3536   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
3537   if( ptr == _ptr ) return this;
3538   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
3539 }
3540 
3541 //-----------------------------cast_to_instance_id----------------------------
3542 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
3543   // There are no instances of a general oop.
3544   // Return self unchanged.
3545   return this;
3546 }
3547 
3548 //-----------------------------cast_to_exactness-------------------------------
3549 const TypeOopPtr* TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
3550   // There is no such thing as an exact general oop.
3551   // Return self unchanged.
3552   return this;
3553 }
3554 
3555 
3556 //------------------------------as_klass_type----------------------------------
3557 // Return the klass type corresponding to this instance or array type.
3558 // It is the type that is loaded from an object of this type.
3559 const TypeKlassPtr* TypeOopPtr::as_klass_type(bool try_for_exact) const {
3560   ShouldNotReachHere();
3561   return nullptr;
3562 }
3563 
3564 //------------------------------meet-------------------------------------------
3565 // Compute the MEET of two types.  It returns a new Type object.
3566 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
3567   // Perform a fast test for common case; meeting the same types together.
3568   if( this == t ) return this;  // Meeting same type-rep?
3569 
3570   // Current "this->_base" is OopPtr
3571   switch (t->base()) {          // switch on original type
3572 
3573   case Int:                     // Mixing ints & oops happens when javac
3574   case Long:                    // reuses local variables
3575   case HalfFloatTop:

3584   case NarrowOop:
3585   case NarrowKlass:
3586   case Bottom:                  // Ye Olde Default
3587     return Type::BOTTOM;
3588   case Top:
3589     return this;
3590 
3591   default:                      // All else is a mistake
3592     typerr(t);
3593 
3594   case RawPtr:
3595   case MetadataPtr:
3596   case KlassPtr:
3597   case InstKlassPtr:
3598   case AryKlassPtr:
3599     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3600 
3601   case AnyPtr: {
3602     // Found an AnyPtr type vs self-OopPtr type
3603     const TypePtr *tp = t->is_ptr();
3604     int offset = meet_offset(tp->offset());
3605     PTR ptr = meet_ptr(tp->ptr());
3606     const TypePtr* speculative = xmeet_speculative(tp);
3607     int depth = meet_inline_depth(tp->inline_depth());
3608     switch (tp->ptr()) {
3609     case Null:
3610       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3611       // else fall through:
3612     case TopPTR:
3613     case AnyNull: {
3614       int instance_id = meet_instance_id(InstanceTop);
3615       return make(ptr, offset, instance_id, speculative, depth);
3616     }
3617     case BotPTR:
3618     case NotNull:
3619       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3620     default: typerr(t);
3621     }
3622   }
3623 
3624   case OopPtr: {                 // Meeting to other OopPtrs

3626     int instance_id = meet_instance_id(tp->instance_id());
3627     const TypePtr* speculative = xmeet_speculative(tp);
3628     int depth = meet_inline_depth(tp->inline_depth());
3629     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
3630   }
3631 
3632   case InstPtr:                  // For these, flip the call around to cut down
3633   case AryPtr:
3634     return t->xmeet(this);      // Call in reverse direction
3635 
3636   } // End of switch
3637   return this;                  // Return the double constant
3638 }
3639 
3640 
3641 //------------------------------xdual------------------------------------------
3642 // Dual of a pure heap pointer.  No relevant klass or oop information.
3643 const Type *TypeOopPtr::xdual() const {
3644   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
3645   assert(const_oop() == nullptr,             "no constants here");
3646   return new TypeOopPtr(_base, dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
3647 }
3648 
3649 //--------------------------make_from_klass_common-----------------------------
3650 // Computes the element-type given a klass.
3651 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact, InterfaceHandling interface_handling) {
3652   if (klass->is_instance_klass()) {
3653     Compile* C = Compile::current();
3654     Dependencies* deps = C->dependencies();
3655     assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
3656     // Element is an instance
3657     bool klass_is_exact = false;

3658     if (klass->is_loaded()) {
3659       // Try to set klass_is_exact.
3660       ciInstanceKlass* ik = klass->as_instance_klass();
3661       klass_is_exact = ik->is_final();
3662       if (!klass_is_exact && klass_change
3663           && deps != nullptr && UseUniqueSubclasses) {
3664         ciInstanceKlass* sub = ik->unique_concrete_subklass();
3665         if (sub != nullptr) {
3666           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3667           klass = ik = sub;
3668           klass_is_exact = sub->is_final();
3669         }
3670       }
3671       if (!klass_is_exact && try_for_exact && deps != nullptr &&
3672           !ik->is_interface() && !ik->has_subklass()) {
3673         // Add a dependence; if concrete subclass added we need to recompile
3674         deps->assert_leaf_type(ik);
3675         klass_is_exact = true;
3676       }
3677     }

3678     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
3679     return TypeInstPtr::make(TypePtr::BotPTR, klass, interfaces, klass_is_exact, nullptr, 0);
3680   } else if (klass->is_obj_array_klass()) {
3681     // Element is an object array. Recursively call ourself.
3682     ciKlass* eklass = klass->as_obj_array_klass()->element_klass();
3683     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(eklass, false, try_for_exact, interface_handling);
3684     bool xk = etype->klass_is_exact();
3685     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);































3686     // We used to pass NotNull in here, asserting that the sub-arrays
3687     // are all not-null.  This is not true in generally, as code can
3688     // slam nulls down in the subarrays.
3689     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, nullptr, xk, 0);
3690     return arr;
3691   } else if (klass->is_type_array_klass()) {
3692     // Element is an typeArray
3693     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3694     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);

3695     // We used to pass NotNull in here, asserting that the array pointer
3696     // is not-null. That was not true in general.
3697     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
3698     return arr;
3699   } else {
3700     ShouldNotReachHere();
3701     return nullptr;
3702   }
3703 }
3704 
3705 //------------------------------make_from_constant-----------------------------
3706 // Make a java pointer from an oop constant
3707 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
3708   assert(!o->is_null_object(), "null object not yet handled here.");
3709 
3710   const bool make_constant = require_constant || o->should_be_constant();
3711 
3712   ciKlass* klass = o->klass();
3713   if (klass->is_instance_klass()) {
3714     // Element is an instance
3715     if (make_constant) {
3716       return TypeInstPtr::make(o);
3717     } else {
3718       return TypeInstPtr::make(TypePtr::NotNull, klass, true, nullptr, 0);
3719     }
3720   } else if (klass->is_obj_array_klass()) {
3721     // Element is an object array. Recursively call ourself.
3722     const TypeOopPtr *etype =
3723       TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass(), trust_interfaces);
3724     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));






3725     // We used to pass NotNull in here, asserting that the sub-arrays
3726     // are all not-null.  This is not true in generally, as code can
3727     // slam nulls down in the subarrays.
3728     if (make_constant) {
3729       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3730     } else {
3731       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3732     }
3733   } else if (klass->is_type_array_klass()) {
3734     // Element is an typeArray
3735     const Type* etype =
3736       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3737     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3738     // We used to pass NotNull in here, asserting that the array pointer
3739     // is not-null. That was not true in general.
3740     if (make_constant) {
3741       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3742     } else {
3743       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3744     }
3745   }
3746 
3747   fatal("unhandled object type");
3748   return nullptr;
3749 }
3750 
3751 //------------------------------get_con----------------------------------------
3752 intptr_t TypeOopPtr::get_con() const {
3753   assert( _ptr == Null || _ptr == Constant, "" );
3754   assert( _offset >= 0, "" );
3755 
3756   if (_offset != 0) {
3757     // After being ported to the compiler interface, the compiler no longer
3758     // directly manipulates the addresses of oops.  Rather, it only has a pointer
3759     // to a handle at compile time.  This handle is embedded in the generated
3760     // code and dereferenced at the time the nmethod is made.  Until that time,
3761     // it is not reasonable to do arithmetic with the addresses of oops (we don't
3762     // have access to the addresses!).  This does not seem to currently happen,
3763     // but this assertion here is to help prevent its occurrence.
3764     tty->print_cr("Found oop constant with non-zero offset");
3765     ShouldNotReachHere();
3766   }
3767 
3768   return (intptr_t)const_oop()->constant_encoding();
3769 }
3770 
3771 
3772 //-----------------------------filter------------------------------------------
3773 // Do not allow interface-vs.-noninterface joins to collapse to top.
3774 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
3775 
3776   const Type* ft = join_helper(kills, include_speculative);

3822   dump_speculative(st);
3823 }
3824 
3825 void TypeOopPtr::dump_instance_id(outputStream* st) const {
3826   if (_instance_id == InstanceTop) {
3827     st->print(",iid=top");
3828   } else if (_instance_id == InstanceBot) {
3829     st->print(",iid=bot");
3830   } else {
3831     st->print(",iid=%d", _instance_id);
3832   }
3833 }
3834 #endif
3835 
3836 //------------------------------singleton--------------------------------------
3837 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3838 // constants
3839 bool TypeOopPtr::singleton(void) const {
3840   // detune optimizer to not generate constant oop + constant offset as a constant!
3841   // TopPTR, Null, AnyNull, Constant are all singletons
3842   return (_offset == 0) && !below_centerline(_ptr);
3843 }
3844 
3845 //------------------------------add_offset-------------------------------------
3846 const TypePtr* TypeOopPtr::add_offset(intptr_t offset) const {
3847   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
3848 }
3849 
3850 const TypeOopPtr* TypeOopPtr::with_offset(intptr_t offset) const {
3851   return make(_ptr, offset, _instance_id, with_offset_speculative(offset), _inline_depth);
3852 }
3853 
3854 /**
3855  * Return same type without a speculative part
3856  */
3857 const TypeOopPtr* TypeOopPtr::remove_speculative() const {
3858   if (_speculative == nullptr) {
3859     return this;
3860   }
3861   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3862   return make(_ptr, _offset, _instance_id, nullptr, _inline_depth);
3863 }
3864 
3865 /**
3866  * Return same type but drop speculative part if we know we won't use
3867  * it
3868  */
3869 const Type* TypeOopPtr::cleanup_speculative() const {
3870   // If the klass is exact and the ptr is not null then there's
3871   // nothing that the speculative type can help us with

3944 const TypeInstPtr *TypeInstPtr::BOTTOM;
3945 const TypeInstPtr *TypeInstPtr::MIRROR;
3946 const TypeInstPtr *TypeInstPtr::MARK;
3947 const TypeInstPtr *TypeInstPtr::KLASS;
3948 
3949 // Is there a single ciKlass* that can represent that type?
3950 ciKlass* TypeInstPtr::exact_klass_helper() const {
3951   if (_interfaces->empty()) {
3952     return _klass;
3953   }
3954   if (_klass != ciEnv::current()->Object_klass()) {
3955     if (_interfaces->eq(_klass->as_instance_klass())) {
3956       return _klass;
3957     }
3958     return nullptr;
3959   }
3960   return _interfaces->exact_klass();
3961 }
3962 
3963 //------------------------------TypeInstPtr-------------------------------------
3964 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int off,
3965                          int instance_id, const TypePtr* speculative, int inline_depth)
3966   : TypeOopPtr(InstPtr, ptr, k, interfaces, xk, o, off, instance_id, speculative, inline_depth) {



3967   assert(k == nullptr || !k->is_loaded() || !k->is_interface(), "no interface here");
3968   assert(k != nullptr &&
3969          (k->is_loaded() || o == nullptr),
3970          "cannot have constants with non-loaded klass");
3971 };
3972 
3973 //------------------------------make-------------------------------------------
3974 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
3975                                      ciKlass* k,
3976                                      const TypeInterfaces* interfaces,
3977                                      bool xk,
3978                                      ciObject* o,
3979                                      int offset,

3980                                      int instance_id,
3981                                      const TypePtr* speculative,
3982                                      int inline_depth) {
3983   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
3984   // Either const_oop() is null or else ptr is Constant
3985   assert( (!o && ptr != Constant) || (o && ptr == Constant),
3986           "constant pointers must have a value supplied" );
3987   // Ptr is never Null
3988   assert( ptr != Null, "null pointers are not typed" );
3989 
3990   assert(instance_id <= 0 || xk, "instances are always exactly typed");

3991   if (ptr == Constant) {
3992     // Note:  This case includes meta-object constants, such as methods.
3993     xk = true;
3994   } else if (k->is_loaded()) {
3995     ciInstanceKlass* ik = k->as_instance_klass();
3996     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
3997     assert(!ik->is_interface(), "no interface here");
3998     if (xk && ik->is_interface())  xk = false;  // no exact interface
3999   }
4000 



4001   // Now hash this baby
4002   TypeInstPtr *result =
4003     (TypeInstPtr*)(new TypeInstPtr(ptr, k, interfaces, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
4004 
4005   return result;
4006 }
4007 
4008 const TypeInterfaces* TypePtr::interfaces(ciKlass*& k, bool klass, bool interface, bool array, InterfaceHandling interface_handling) {
4009   if (k->is_instance_klass()) {
4010     if (k->is_loaded()) {
4011       if (k->is_interface() && interface_handling == ignore_interfaces) {
4012         assert(interface, "no interface expected");
4013         k = ciEnv::current()->Object_klass();
4014         const TypeInterfaces* interfaces = TypeInterfaces::make();
4015         return interfaces;
4016       }
4017       GrowableArray<ciInstanceKlass *>* k_interfaces = k->as_instance_klass()->transitive_interfaces();
4018       const TypeInterfaces* interfaces = TypeInterfaces::make(k_interfaces);
4019       if (k->is_interface()) {
4020         assert(interface, "no interface expected");
4021         k = ciEnv::current()->Object_klass();
4022       } else {
4023         assert(klass, "no instance klass expected");

4049   switch (bt) {
4050     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
4051     case T_INT:      return TypeInt::make(constant.as_int());
4052     case T_CHAR:     return TypeInt::make(constant.as_char());
4053     case T_BYTE:     return TypeInt::make(constant.as_byte());
4054     case T_SHORT:    return TypeInt::make(constant.as_short());
4055     case T_FLOAT:    return TypeF::make(constant.as_float());
4056     case T_DOUBLE:   return TypeD::make(constant.as_double());
4057     case T_LONG:     return TypeLong::make(constant.as_long());
4058     default:         break;
4059   }
4060   fatal("Invalid boxed value type '%s'", type2name(bt));
4061   return nullptr;
4062 }
4063 
4064 //------------------------------cast_to_ptr_type-------------------------------
4065 const TypeInstPtr* TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
4066   if( ptr == _ptr ) return this;
4067   // Reconstruct _sig info here since not a problem with later lazy
4068   // construction, _sig will show up on demand.
4069   return make(ptr, klass(), _interfaces, klass_is_exact(), ptr == Constant ? const_oop() : nullptr, _offset, _instance_id, _speculative, _inline_depth);
4070 }
4071 
4072 
4073 //-----------------------------cast_to_exactness-------------------------------
4074 const TypeInstPtr* TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
4075   if( klass_is_exact == _klass_is_exact ) return this;
4076   if (!_klass->is_loaded())  return this;
4077   ciInstanceKlass* ik = _klass->as_instance_klass();
4078   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
4079   assert(!ik->is_interface(), "no interface here");
4080   return make(ptr(), klass(), _interfaces, klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);

4081 }
4082 
4083 //-----------------------------cast_to_instance_id----------------------------
4084 const TypeInstPtr* TypeInstPtr::cast_to_instance_id(int instance_id) const {
4085   if( instance_id == _instance_id ) return this;
4086   return make(_ptr, klass(),  _interfaces, _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
4087 }
4088 
4089 //------------------------------xmeet_unloaded---------------------------------
4090 // Compute the MEET of two InstPtrs when at least one is unloaded.
4091 // Assume classes are different since called after check for same name/class-loader
4092 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst, const TypeInterfaces* interfaces) const {
4093   int off = meet_offset(tinst->offset());
4094   PTR ptr = meet_ptr(tinst->ptr());
4095   int instance_id = meet_instance_id(tinst->instance_id());
4096   const TypePtr* speculative = xmeet_speculative(tinst);
4097   int depth = meet_inline_depth(tinst->inline_depth());
4098 
4099   const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
4100   const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
4101   if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
4102     //
4103     // Meet unloaded class with java/lang/Object
4104     //
4105     // Meet
4106     //          |                     Unloaded Class
4107     //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
4108     //  ===================================================================
4109     //   TOP    | ..........................Unloaded......................|
4110     //  AnyNull |  U-AN    |................Unloaded......................|
4111     // Constant | ... O-NN .................................. |   O-BOT   |
4112     //  NotNull | ... O-NN .................................. |   O-BOT   |
4113     //  BOTTOM  | ........................Object-BOTTOM ..................|
4114     //
4115     assert(loaded->ptr() != TypePtr::Null, "insanity check");
4116     //
4117     if (loaded->ptr() == TypePtr::TopPTR)        { return unloaded->with_speculative(speculative); }
4118     else if (loaded->ptr() == TypePtr::AnyNull)  { return make(ptr, unloaded->klass(), interfaces, false, nullptr, off, instance_id, speculative, depth); }




4119     else if (loaded->ptr() == TypePtr::BotPTR)   { return TypeInstPtr::BOTTOM->with_speculative(speculative); }
4120     else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
4121       if (unloaded->ptr() == TypePtr::BotPTR)    { return TypeInstPtr::BOTTOM->with_speculative(speculative);  }
4122       else                                       { return TypeInstPtr::NOTNULL->with_speculative(speculative); }
4123     }
4124     else if (unloaded->ptr() == TypePtr::TopPTR) { return unloaded->with_speculative(speculative); }
4125 
4126     return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr()->with_speculative(speculative);
4127   }
4128 
4129   // Both are unloaded, not the same class, not Object
4130   // Or meet unloaded with a different loaded class, not java/lang/Object
4131   if (ptr != TypePtr::BotPTR) {
4132     return TypeInstPtr::NOTNULL->with_speculative(speculative);
4133   }
4134   return TypeInstPtr::BOTTOM->with_speculative(speculative);
4135 }
4136 
4137 
4138 //------------------------------meet-------------------------------------------

4162   case Top:
4163     return this;
4164 
4165   default:                      // All else is a mistake
4166     typerr(t);
4167 
4168   case MetadataPtr:
4169   case KlassPtr:
4170   case InstKlassPtr:
4171   case AryKlassPtr:
4172   case RawPtr: return TypePtr::BOTTOM;
4173 
4174   case AryPtr: {                // All arrays inherit from Object class
4175     // Call in reverse direction to avoid duplication
4176     return t->is_aryptr()->xmeet_helper(this);
4177   }
4178 
4179   case OopPtr: {                // Meeting to OopPtrs
4180     // Found a OopPtr type vs self-InstPtr type
4181     const TypeOopPtr *tp = t->is_oopptr();
4182     int offset = meet_offset(tp->offset());
4183     PTR ptr = meet_ptr(tp->ptr());
4184     switch (tp->ptr()) {
4185     case TopPTR:
4186     case AnyNull: {
4187       int instance_id = meet_instance_id(InstanceTop);
4188       const TypePtr* speculative = xmeet_speculative(tp);
4189       int depth = meet_inline_depth(tp->inline_depth());
4190       return make(ptr, klass(), _interfaces, klass_is_exact(),
4191                   (ptr == Constant ? const_oop() : nullptr), offset, instance_id, speculative, depth);
4192     }
4193     case NotNull:
4194     case BotPTR: {
4195       int instance_id = meet_instance_id(tp->instance_id());
4196       const TypePtr* speculative = xmeet_speculative(tp);
4197       int depth = meet_inline_depth(tp->inline_depth());
4198       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4199     }
4200     default: typerr(t);
4201     }
4202   }
4203 
4204   case AnyPtr: {                // Meeting to AnyPtrs
4205     // Found an AnyPtr type vs self-InstPtr type
4206     const TypePtr *tp = t->is_ptr();
4207     int offset = meet_offset(tp->offset());
4208     PTR ptr = meet_ptr(tp->ptr());
4209     int instance_id = meet_instance_id(InstanceTop);
4210     const TypePtr* speculative = xmeet_speculative(tp);
4211     int depth = meet_inline_depth(tp->inline_depth());
4212     switch (tp->ptr()) {
4213     case Null:
4214       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4215       // else fall through to AnyNull
4216     case TopPTR:
4217     case AnyNull: {
4218       return make(ptr, klass(), _interfaces, klass_is_exact(),
4219                   (ptr == Constant ? const_oop() : nullptr), offset, instance_id, speculative, depth);
4220     }
4221     case NotNull:
4222     case BotPTR:
4223       return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
4224     default: typerr(t);
4225     }
4226   }
4227 
4228   /*
4229                  A-top         }
4230                /   |   \       }  Tops
4231            B-top A-any C-top   }
4232               | /  |  \ |      }  Any-nulls
4233            B-any   |   C-any   }
4234               |    |    |
4235            B-con A-con C-con   } constants; not comparable across classes
4236               |    |    |
4237            B-not   |   C-not   }
4238               | \  |  / |      }  not-nulls
4239            B-bot A-not C-bot   }
4240                \   |   /       }  Bottoms
4241                  A-bot         }
4242   */
4243 
4244   case InstPtr: {                // Meeting 2 Oops?
4245     // Found an InstPtr sub-type vs self-InstPtr type
4246     const TypeInstPtr *tinst = t->is_instptr();
4247     int off = meet_offset(tinst->offset());
4248     PTR ptr = meet_ptr(tinst->ptr());
4249     int instance_id = meet_instance_id(tinst->instance_id());
4250     const TypePtr* speculative = xmeet_speculative(tinst);
4251     int depth = meet_inline_depth(tinst->inline_depth());
4252     const TypeInterfaces* interfaces = meet_interfaces(tinst);
4253 
4254     ciKlass* tinst_klass = tinst->klass();
4255     ciKlass* this_klass  = klass();
4256 
4257     ciKlass* res_klass = nullptr;
4258     bool res_xk = false;
4259     const Type* res;
4260     MeetResult kind = meet_instptr(ptr, interfaces, this, tinst, res_klass, res_xk);
4261 
4262     if (kind == UNLOADED) {
4263       // One of these classes has not been loaded
4264       const TypeInstPtr* unloaded_meet = xmeet_unloaded(tinst, interfaces);
4265 #ifndef PRODUCT
4266       if (PrintOpto && Verbose) {
4267         tty->print("meet of unloaded classes resulted in: ");
4268         unloaded_meet->dump();
4269         tty->cr();
4270         tty->print("  this == ");
4271         dump();
4272         tty->cr();
4273         tty->print(" tinst == ");
4274         tinst->dump();
4275         tty->cr();
4276       }
4277 #endif
4278       res = unloaded_meet;
4279     } else {

4280       if (kind == NOT_SUBTYPE && instance_id > 0) {
4281         instance_id = InstanceBot;
4282       } else if (kind == LCA) {
4283         instance_id = InstanceBot;
4284       }
4285       ciObject* o = nullptr;             // Assume not constant when done
4286       ciObject* this_oop = const_oop();
4287       ciObject* tinst_oop = tinst->const_oop();
4288       if (ptr == Constant) {
4289         if (this_oop != nullptr && tinst_oop != nullptr &&
4290             this_oop->equals(tinst_oop))
4291           o = this_oop;
4292         else if (above_centerline(_ptr)) {
4293           assert(!tinst_klass->is_interface(), "");
4294           o = tinst_oop;
4295         } else if (above_centerline(tinst->_ptr)) {
4296           assert(!this_klass->is_interface(), "");
4297           o = this_oop;
4298         } else
4299           ptr = NotNull;
4300       }
4301       res = make(ptr, res_klass, interfaces, res_xk, o, off, instance_id, speculative, depth);
4302     }
4303 
4304     return res;
4305 
4306   } // End of case InstPtr
4307 
4308   } // End of switch
4309   return this;                  // Return the double constant
4310 }
4311 
4312 template<class T> TypePtr::MeetResult TypePtr::meet_instptr(PTR& ptr, const TypeInterfaces*& interfaces, const T* this_type, const T* other_type,
4313                                                             ciKlass*& res_klass, bool& res_xk) {
4314   ciKlass* this_klass = this_type->klass();
4315   ciKlass* other_klass = other_type->klass();

4316   bool this_xk = this_type->klass_is_exact();
4317   bool other_xk = other_type->klass_is_exact();
4318   PTR this_ptr = this_type->ptr();
4319   PTR other_ptr = other_type->ptr();
4320   const TypeInterfaces* this_interfaces = this_type->interfaces();
4321   const TypeInterfaces* other_interfaces = other_type->interfaces();
4322   // Check for easy case; klasses are equal (and perhaps not loaded!)
4323   // If we have constants, then we created oops so classes are loaded
4324   // and we can handle the constants further down.  This case handles
4325   // both-not-loaded or both-loaded classes
4326   if (ptr != Constant && this_klass->equals(other_klass) && this_xk == other_xk) {
4327     res_klass = this_klass;
4328     res_xk = this_xk;
4329     return QUICK;
4330   }
4331 
4332   // Classes require inspection in the Java klass hierarchy.  Must be loaded.
4333   if (!other_klass->is_loaded() || !this_klass->is_loaded()) {
4334     return UNLOADED;
4335   }

4341   // If both are up and they do NOT subtype, "fall hard".
4342   // If both are down and they subtype, take the supertype class.
4343   // If both are down and they do NOT subtype, "fall hard".
4344   // Constants treated as down.
4345 
4346   // Now, reorder the above list; observe that both-down+subtype is also
4347   // "fall hard"; "fall hard" becomes the default case:
4348   // If we split one up & one down AND they subtype, take the down man.
4349   // If both are up and they subtype, take the subtype class.
4350 
4351   // If both are down and they subtype, "fall hard".
4352   // If both are down and they do NOT subtype, "fall hard".
4353   // If both are up and they do NOT subtype, "fall hard".
4354   // If we split one up & one down AND they do NOT subtype, "fall hard".
4355 
4356   // If a proper subtype is exact, and we return it, we return it exactly.
4357   // If a proper supertype is exact, there can be no subtyping relationship!
4358   // If both types are equal to the subtype, exactness is and-ed below the
4359   // centerline and or-ed above it.  (N.B. Constants are always exact.)
4360 
4361   // Check for subtyping:
4362   const T* subtype = nullptr;
4363   bool subtype_exact = false;
4364   if (this_type->is_same_java_type_as(other_type)) {

4365     subtype = this_type;
4366     subtype_exact = below_centerline(ptr) ? (this_xk && other_xk) : (this_xk || other_xk);
4367   } else if (!other_xk && this_type->is_meet_subtype_of(other_type)) {
4368     subtype = this_type;     // Pick subtyping class
4369     subtype_exact = this_xk;
4370   } else if(!this_xk && other_type->is_meet_subtype_of(this_type)) {
4371     subtype = other_type;    // Pick subtyping class
4372     subtype_exact = other_xk;
4373   }
4374 
4375   if (subtype) {
4376     if (above_centerline(ptr)) { // both are up?

4377       this_type = other_type = subtype;
4378       this_xk = other_xk = subtype_exact;
4379     } else if (above_centerline(this_ptr) && !above_centerline(other_ptr)) {
4380       this_type = other_type; // tinst is down; keep down man

4381       this_xk = other_xk;
4382     } else if (above_centerline(other_ptr) && !above_centerline(this_ptr)) {

4383       other_type = this_type; // this is down; keep down man
4384       other_xk = this_xk;
4385     } else {

4386       this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
4387     }
4388   }
4389 
4390   // Check for classes now being equal
4391   if (this_type->is_same_java_type_as(other_type)) {
4392     // If the klasses are equal, the constants may still differ.  Fall to
4393     // NotNull if they do (neither constant is null; that is a special case
4394     // handled elsewhere).
4395     res_klass = this_type->klass();
4396     res_xk = this_xk;
4397     return SUBTYPE;
4398   } // Else classes are not equal
4399 
4400   // Since klasses are different, we require a LCA in the Java
4401   // class hierarchy - which means we have to fall to at least NotNull.
4402   if (ptr == TopPTR || ptr == AnyNull || ptr == Constant) {
4403     ptr = NotNull;
4404   }
4405 
4406   interfaces = this_interfaces->intersection_with(other_interfaces);
4407 
4408   // Now we find the LCA of Java classes
4409   ciKlass* k = this_klass->least_common_ancestor(other_klass);
4410 
4411   res_klass = k;
4412   res_xk = false;
4413 
4414   return LCA;
4415 }
4416 


































4417 //------------------------java_mirror_type--------------------------------------
4418 ciType* TypeInstPtr::java_mirror_type() const {
4419   // must be a singleton type
4420   if( const_oop() == nullptr )  return nullptr;
4421 
4422   // must be of type java.lang.Class
4423   if( klass() != ciEnv::current()->Class_klass() )  return nullptr;
4424 
4425   return const_oop()->as_instance()->java_mirror_type();
4426 }
4427 
4428 
4429 //------------------------------xdual------------------------------------------
4430 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
4431 // inheritance mechanism.
4432 const Type *TypeInstPtr::xdual() const {
4433   return new TypeInstPtr(dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());

4434 }
4435 
4436 //------------------------------eq---------------------------------------------
4437 // Structural equality check for Type representations
4438 bool TypeInstPtr::eq( const Type *t ) const {
4439   const TypeInstPtr *p = t->is_instptr();
4440   return
4441     klass()->equals(p->klass()) &&

4442     _interfaces->eq(p->_interfaces) &&
4443     TypeOopPtr::eq(p);          // Check sub-type stuff
4444 }
4445 
4446 //------------------------------hash-------------------------------------------
4447 // Type-specific hashing function.
4448 uint TypeInstPtr::hash(void) const {
4449   return klass()->hash() + TypeOopPtr::hash() + _interfaces->hash();
4450 }
4451 
4452 bool TypeInstPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4453   return TypePtr::is_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
4454 }
4455 
4456 
4457 bool TypeInstPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const {
4458   return TypePtr::is_same_java_type_as_helper_for_instance(this, other);
4459 }
4460 
4461 bool TypeInstPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4462   return TypePtr::maybe_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
4463 }
4464 
4465 
4466 //------------------------------dump2------------------------------------------
4467 // Dump oop Type
4468 #ifndef PRODUCT
4469 void TypeInstPtr::dump2(Dict &d, uint depth, outputStream* st) const {

4473   _interfaces->dump(st);
4474 
4475   if (_ptr == Constant && (WizardMode || Verbose)) {
4476     ResourceMark rm;
4477     stringStream ss;
4478 
4479     st->print(" ");
4480     const_oop()->print_oop(&ss);
4481     // 'const_oop->print_oop()' may emit newlines('\n') into ss.
4482     // suppress newlines from it so -XX:+Verbose -XX:+PrintIdeal dumps one-liner for each node.
4483     char* buf = ss.as_string(/* c_heap= */false);
4484     StringUtils::replace_no_expand(buf, "\n", "");
4485     st->print_raw(buf);
4486   }
4487 
4488   st->print(":%s", ptr_msg[_ptr]);
4489   if (_klass_is_exact) {
4490     st->print(":exact");
4491   }
4492 


4493   dump_offset(st);
4494   dump_instance_id(st);
4495   dump_inline_depth(st);
4496   dump_speculative(st);

4497 }
4498 #endif
4499 







4500 //------------------------------add_offset-------------------------------------
4501 const TypePtr* TypeInstPtr::add_offset(intptr_t offset) const {
4502   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), xadd_offset(offset),
4503               _instance_id, add_offset_speculative(offset), _inline_depth);
4504 }
4505 
4506 const TypeInstPtr* TypeInstPtr::with_offset(intptr_t offset) const {
4507   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), offset,
4508               _instance_id, with_offset_speculative(offset), _inline_depth);
4509 }
4510 
4511 const TypeInstPtr* TypeInstPtr::remove_speculative() const {
4512   if (_speculative == nullptr) {
4513     return this;
4514   }
4515   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4516   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset,
4517               _instance_id, nullptr, _inline_depth);
4518 }
4519 
4520 const TypeInstPtr* TypeInstPtr::with_speculative(const TypePtr* speculative) const {
4521   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, _instance_id, speculative, _inline_depth);
4522 }
4523 
4524 const TypePtr* TypeInstPtr::with_inline_depth(int depth) const {
4525   if (!UseInlineDepthForSpeculativeTypes) {
4526     return this;
4527   }
4528   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
4529 }
4530 
4531 const TypePtr* TypeInstPtr::with_instance_id(int instance_id) const {
4532   assert(is_known_instance(), "should be known");
4533   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, instance_id, _speculative, _inline_depth);








4534 }
4535 
4536 const TypeKlassPtr* TypeInstPtr::as_klass_type(bool try_for_exact) const {
4537   bool xk = klass_is_exact();
4538   ciInstanceKlass* ik = klass()->as_instance_klass();
4539   if (try_for_exact && !xk && !ik->has_subklass() && !ik->is_final()) {
4540     if (_interfaces->eq(ik)) {
4541       Compile* C = Compile::current();
4542       Dependencies* deps = C->dependencies();
4543       deps->assert_leaf_type(ik);
4544       xk = true;
4545     }
4546   }
4547   return TypeInstKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, klass(), _interfaces, 0);

4548 }
4549 
4550 template <class T1, class T2> bool TypePtr::is_meet_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_xk, bool other_xk) {
4551   static_assert(std::is_base_of<T2, T1>::value, "");
4552 
4553   if (!this_one->is_instance_type(other)) {
4554     return false;
4555   }
4556 
4557   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty()) {
4558     return true;
4559   }
4560 
4561   return this_one->klass()->is_subtype_of(other->klass()) &&
4562          (!this_xk || this_one->_interfaces->contains(other->_interfaces));
4563 }
4564 
4565 
4566 bool TypeInstPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const {
4567   return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk);

4572   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty()) {
4573     return true;
4574   }
4575 
4576   if (this_one->is_instance_type(other)) {
4577     return other->klass() == ciEnv::current()->Object_klass() && this_one->_interfaces->contains(other->_interfaces);
4578   }
4579 
4580   int dummy;
4581   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
4582   if (this_top_or_bottom) {
4583     return false;
4584   }
4585 
4586   const T1* other_ary = this_one->is_array_type(other);
4587   const TypePtr* other_elem = other_ary->elem()->make_ptr();
4588   const TypePtr* this_elem = this_one->elem()->make_ptr();
4589   if (other_elem != nullptr && this_elem != nullptr) {
4590     return this_one->is_reference_type(this_elem)->is_meet_subtype_of_helper(this_one->is_reference_type(other_elem), this_xk, other_xk);
4591   }
4592 
4593   if (other_elem == nullptr && this_elem == nullptr) {
4594     return this_one->klass()->is_subtype_of(other->klass());
4595   }
4596 
4597   return false;
4598 }
4599 
4600 bool TypeAryPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const {
4601   return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk);
4602 }
4603 
4604 bool TypeInstKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const {
4605   return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk);
4606 }
4607 
4608 bool TypeAryKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const {
4609   return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk);
4610 }
4611 
4612 //=============================================================================
4613 // Convenience common pre-built types.
4614 const TypeAryPtr* TypeAryPtr::BOTTOM;
4615 const TypeAryPtr* TypeAryPtr::RANGE;
4616 const TypeAryPtr* TypeAryPtr::OOPS;
4617 const TypeAryPtr* TypeAryPtr::NARROWOOPS;
4618 const TypeAryPtr* TypeAryPtr::BYTES;
4619 const TypeAryPtr* TypeAryPtr::SHORTS;
4620 const TypeAryPtr* TypeAryPtr::CHARS;
4621 const TypeAryPtr* TypeAryPtr::INTS;
4622 const TypeAryPtr* TypeAryPtr::LONGS;
4623 const TypeAryPtr* TypeAryPtr::FLOATS;
4624 const TypeAryPtr* TypeAryPtr::DOUBLES;

4625 
4626 //------------------------------make-------------------------------------------
4627 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset,
4628                                    int instance_id, const TypePtr* speculative, int inline_depth) {
4629   assert(!(k == nullptr && ary->_elem->isa_int()),
4630          "integral arrays must be pre-equipped with a class");
4631   if (!xk)  xk = ary->ary_must_be_exact();
4632   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4633   if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() &&
4634       k->as_obj_array_klass()->base_element_klass()->is_interface()) {
4635     k = nullptr;
4636   }
4637   return (TypeAryPtr*)(new TypeAryPtr(ptr, nullptr, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons();
4638 }
4639 
4640 //------------------------------make-------------------------------------------
4641 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset,
4642                                    int instance_id, const TypePtr* speculative, int inline_depth,
4643                                    bool is_autobox_cache) {
4644   assert(!(k == nullptr && ary->_elem->isa_int()),
4645          "integral arrays must be pre-equipped with a class");
4646   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
4647   if (!xk)  xk = (o != nullptr) || ary->ary_must_be_exact();
4648   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4649   if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() &&
4650       k->as_obj_array_klass()->base_element_klass()->is_interface()) {
4651     k = nullptr;
4652   }
4653   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
4654 }
4655 
4656 //------------------------------cast_to_ptr_type-------------------------------
4657 const TypeAryPtr* TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
4658   if( ptr == _ptr ) return this;
4659   return make(ptr, ptr == Constant ? const_oop() : nullptr, _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4660 }
4661 
4662 
4663 //-----------------------------cast_to_exactness-------------------------------
4664 const TypeAryPtr* TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
4665   if( klass_is_exact == _klass_is_exact ) return this;
4666   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
4667   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
4668 }
4669 
4670 //-----------------------------cast_to_instance_id----------------------------
4671 const TypeAryPtr* TypeAryPtr::cast_to_instance_id(int instance_id) const {
4672   if( instance_id == _instance_id ) return this;
4673   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
4674 }
4675 
4676 
4677 //-----------------------------max_array_length-------------------------------
4678 // A wrapper around arrayOopDesc::max_array_length(etype) with some input normalization.
4679 jint TypeAryPtr::max_array_length(BasicType etype) {
4680   if (!is_java_primitive(etype) && !::is_reference_type(etype)) {
4681     if (etype == T_NARROWOOP) {
4682       etype = T_OBJECT;
4683     } else if (etype == T_ILLEGAL) { // bottom[]
4684       etype = T_BYTE; // will produce conservatively high value
4685     } else {
4686       fatal("not an element type: %s", type2name(etype));
4687     }
4688   }
4689   return arrayOopDesc::max_array_length(etype);
4690 }
4691 
4692 //-----------------------------narrow_size_type-------------------------------
4693 // Narrow the given size type to the index range for the given array base type.

4711     if (size->is_con()) {
4712       lo = hi;
4713     }
4714     chg = true;
4715   }
4716   // Negative length arrays will produce weird intermediate dead fast-path code
4717   if (lo > hi) {
4718     return TypeInt::ZERO;
4719   }
4720   if (!chg) {
4721     return size;
4722   }
4723   return TypeInt::make(lo, hi, Type::WidenMin);
4724 }
4725 
4726 //-------------------------------cast_to_size----------------------------------
4727 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
4728   assert(new_size != nullptr, "");
4729   new_size = narrow_size_type(new_size);
4730   if (new_size == size())  return this;
4731   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
4732   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);

































































































4733 }
4734 
4735 //------------------------------cast_to_stable---------------------------------
4736 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
4737   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
4738     return this;
4739 
4740   const Type* elem = this->elem();
4741   const TypePtr* elem_ptr = elem->make_ptr();
4742 
4743   if (stable_dimension > 1 && elem_ptr != nullptr && elem_ptr->isa_aryptr()) {
4744     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
4745     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
4746   }
4747 
4748   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
4749 
4750   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4751 }
4752 
4753 //-----------------------------stable_dimension--------------------------------
4754 int TypeAryPtr::stable_dimension() const {
4755   if (!is_stable())  return 0;
4756   int dim = 1;
4757   const TypePtr* elem_ptr = elem()->make_ptr();
4758   if (elem_ptr != nullptr && elem_ptr->isa_aryptr())
4759     dim += elem_ptr->is_aryptr()->stable_dimension();
4760   return dim;
4761 }
4762 
4763 //----------------------cast_to_autobox_cache-----------------------------------
4764 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache() const {
4765   if (is_autobox_cache())  return this;
4766   const TypeOopPtr* etype = elem()->make_oopptr();
4767   if (etype == nullptr)  return this;
4768   // The pointers in the autobox arrays are always non-null.
4769   etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4770   const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable());
4771   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth, /*is_autobox_cache=*/true);
4772 }
4773 
4774 //------------------------------eq---------------------------------------------
4775 // Structural equality check for Type representations
4776 bool TypeAryPtr::eq( const Type *t ) const {
4777   const TypeAryPtr *p = t->is_aryptr();
4778   return
4779     _ary == p->_ary &&  // Check array
4780     TypeOopPtr::eq(p);  // Check sub-parts

4781 }
4782 
4783 //------------------------------hash-------------------------------------------
4784 // Type-specific hashing function.
4785 uint TypeAryPtr::hash(void) const {
4786   return (uint)(uintptr_t)_ary + TypeOopPtr::hash();
4787 }
4788 
4789 bool TypeAryPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4790   return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
4791 }
4792 
4793 bool TypeAryPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const {
4794   return TypePtr::is_same_java_type_as_helper_for_array(this, other);
4795 }
4796 
4797 bool TypeAryPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4798   return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
4799 }
4800 //------------------------------meet-------------------------------------------
4801 // Compute the MEET of two types.  It returns a new Type object.
4802 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
4803   // Perform a fast test for common case; meeting the same types together.
4804   if( this == t ) return this;  // Meeting same type-rep?
4805   // Current "this->_base" is Pointer
4806   switch (t->base()) {          // switch on original type

4813   case HalfFloatBot:
4814   case FloatTop:
4815   case FloatCon:
4816   case FloatBot:
4817   case DoubleTop:
4818   case DoubleCon:
4819   case DoubleBot:
4820   case NarrowOop:
4821   case NarrowKlass:
4822   case Bottom:                  // Ye Olde Default
4823     return Type::BOTTOM;
4824   case Top:
4825     return this;
4826 
4827   default:                      // All else is a mistake
4828     typerr(t);
4829 
4830   case OopPtr: {                // Meeting to OopPtrs
4831     // Found a OopPtr type vs self-AryPtr type
4832     const TypeOopPtr *tp = t->is_oopptr();
4833     int offset = meet_offset(tp->offset());
4834     PTR ptr = meet_ptr(tp->ptr());
4835     int depth = meet_inline_depth(tp->inline_depth());
4836     const TypePtr* speculative = xmeet_speculative(tp);
4837     switch (tp->ptr()) {
4838     case TopPTR:
4839     case AnyNull: {
4840       int instance_id = meet_instance_id(InstanceTop);
4841       return make(ptr, (ptr == Constant ? const_oop() : nullptr),
4842                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4843     }
4844     case BotPTR:
4845     case NotNull: {
4846       int instance_id = meet_instance_id(tp->instance_id());
4847       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4848     }
4849     default: ShouldNotReachHere();
4850     }
4851   }
4852 
4853   case AnyPtr: {                // Meeting two AnyPtrs
4854     // Found an AnyPtr type vs self-AryPtr type
4855     const TypePtr *tp = t->is_ptr();
4856     int offset = meet_offset(tp->offset());
4857     PTR ptr = meet_ptr(tp->ptr());
4858     const TypePtr* speculative = xmeet_speculative(tp);
4859     int depth = meet_inline_depth(tp->inline_depth());
4860     switch (tp->ptr()) {
4861     case TopPTR:
4862       return this;
4863     case BotPTR:
4864     case NotNull:
4865       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4866     case Null:
4867       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4868       // else fall through to AnyNull
4869     case AnyNull: {
4870       int instance_id = meet_instance_id(InstanceTop);
4871       return make(ptr, (ptr == Constant ? const_oop() : nullptr),
4872                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4873     }
4874     default: ShouldNotReachHere();
4875     }
4876   }
4877 
4878   case MetadataPtr:
4879   case KlassPtr:
4880   case InstKlassPtr:
4881   case AryKlassPtr:
4882   case RawPtr: return TypePtr::BOTTOM;
4883 
4884   case AryPtr: {                // Meeting 2 references?
4885     const TypeAryPtr *tap = t->is_aryptr();
4886     int off = meet_offset(tap->offset());

4887     const Type* tm = _ary->meet_speculative(tap->_ary);
4888     const TypeAry* tary = tm->isa_ary();
4889     if (tary == nullptr) {
4890       assert(tm == Type::TOP || tm == Type::BOTTOM, "");
4891       return tm;
4892     }
4893     PTR ptr = meet_ptr(tap->ptr());
4894     int instance_id = meet_instance_id(tap->instance_id());
4895     const TypePtr* speculative = xmeet_speculative(tap);
4896     int depth = meet_inline_depth(tap->inline_depth());
4897 
4898     ciKlass* res_klass = nullptr;
4899     bool res_xk = false;




4900     const Type* elem = tary->_elem;
4901     if (meet_aryptr(ptr, elem, this, tap, res_klass, res_xk) == NOT_SUBTYPE) {
4902       instance_id = InstanceBot;














4903     }
4904 
4905     ciObject* o = nullptr;             // Assume not constant when done
4906     ciObject* this_oop = const_oop();
4907     ciObject* tap_oop = tap->const_oop();
4908     if (ptr == Constant) {
4909       if (this_oop != nullptr && tap_oop != nullptr &&
4910           this_oop->equals(tap_oop)) {
4911         o = tap_oop;
4912       } else if (above_centerline(_ptr)) {
4913         o = tap_oop;
4914       } else if (above_centerline(tap->_ptr)) {
4915         o = this_oop;
4916       } else {
4917         ptr = NotNull;
4918       }
4919     }
4920     return make(ptr, o, TypeAry::make(elem, tary->_size, tary->_stable), res_klass, res_xk, off, instance_id, speculative, depth);
4921   }
4922 
4923   // All arrays inherit from Object class
4924   case InstPtr: {
4925     const TypeInstPtr *tp = t->is_instptr();
4926     int offset = meet_offset(tp->offset());
4927     PTR ptr = meet_ptr(tp->ptr());
4928     int instance_id = meet_instance_id(tp->instance_id());
4929     const TypePtr* speculative = xmeet_speculative(tp);
4930     int depth = meet_inline_depth(tp->inline_depth());
4931     const TypeInterfaces* interfaces = meet_interfaces(tp);
4932     const TypeInterfaces* tp_interfaces = tp->_interfaces;
4933     const TypeInterfaces* this_interfaces = _interfaces;
4934 
4935     switch (ptr) {
4936     case TopPTR:
4937     case AnyNull:                // Fall 'down' to dual of object klass
4938       // For instances when a subclass meets a superclass we fall
4939       // below the centerline when the superclass is exact. We need to
4940       // do the same here.
4941       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) && !tp->klass_is_exact()) {
4942         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);












4943       } else {
4944         // cannot subclass, so the meet has to fall badly below the centerline
4945         ptr = NotNull;
4946         instance_id = InstanceBot;
4947         interfaces = this_interfaces->intersection_with(tp_interfaces);
4948         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr,offset, instance_id, speculative, depth);

4949       }
4950     case Constant:
4951     case NotNull:
4952     case BotPTR:                // Fall down to object klass
4953       // LCA is object_klass, but if we subclass from the top we can do better
4954       if (above_centerline(tp->ptr())) {
4955         // If 'tp'  is above the centerline and it is Object class
4956         // then we can subclass in the Java class hierarchy.
4957         // For instances when a subclass meets a superclass we fall
4958         // below the centerline when the superclass is exact. We need
4959         // to do the same here.
4960         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) && !tp->klass_is_exact()) {



4961           // that is, my array type is a subtype of 'tp' klass
4962           return make(ptr, (ptr == Constant ? const_oop() : nullptr),
4963                       _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4964         }
4965       }
4966       // The other case cannot happen, since t cannot be a subtype of an array.
4967       // The meet falls down to Object class below centerline.
4968       if (ptr == Constant) {
4969          ptr = NotNull;
4970       }
4971       if (instance_id > 0) {
4972         instance_id = InstanceBot;
4973       }


4974       interfaces = this_interfaces->intersection_with(tp_interfaces);
4975       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr, offset, instance_id, speculative, depth);


4976     default: typerr(t);
4977     }
4978   }
4979   }
4980   return this;                  // Lint noise
4981 }
4982 
4983 
4984 template<class T> TypePtr::MeetResult TypePtr::meet_aryptr(PTR& ptr, const Type*& elem, const T* this_ary,
4985                                                            const T* other_ary, ciKlass*& res_klass, bool& res_xk) {
4986   int dummy;
4987   bool this_top_or_bottom = (this_ary->base_element_type(dummy) == Type::TOP || this_ary->base_element_type(dummy) == Type::BOTTOM);
4988   bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
4989   ciKlass* this_klass = this_ary->klass();
4990   ciKlass* other_klass = other_ary->klass();
4991   bool this_xk = this_ary->klass_is_exact();
4992   bool other_xk = other_ary->klass_is_exact();
4993   PTR this_ptr = this_ary->ptr();
4994   PTR other_ptr = other_ary->ptr();









4995   res_klass = nullptr;
4996   MeetResult result = SUBTYPE;






4997   if (elem->isa_int()) {
4998     // Integral array element types have irrelevant lattice relations.
4999     // It is the klass that determines array layout, not the element type.
5000     if (this_top_or_bottom)
5001       res_klass = other_klass;
5002     else if (other_top_or_bottom || other_klass == this_klass) {
5003       res_klass = this_klass;
5004     } else {
5005       // Something like byte[int+] meets char[int+].
5006       // This must fall to bottom, not (int[-128..65535])[int+].
5007       // instance_id = InstanceBot;
5008       elem = Type::BOTTOM;
5009       result = NOT_SUBTYPE;
5010       if (above_centerline(ptr) || ptr == Constant) {
5011         ptr = NotNull;
5012         res_xk = false;
5013         return NOT_SUBTYPE;
5014       }
5015     }
5016   } else {// Non integral arrays.
5017     // Must fall to bottom if exact klasses in upper lattice
5018     // are not equal or super klass is exact.
5019     if ((above_centerline(ptr) || ptr == Constant) && !this_ary->is_same_java_type_as(other_ary) &&
5020         // meet with top[] and bottom[] are processed further down:
5021         !this_top_or_bottom && !other_top_or_bottom &&
5022         // both are exact and not equal:

5024          // 'tap'  is exact and super or unrelated:
5025          (other_xk && !other_ary->is_meet_subtype_of(this_ary)) ||
5026          // 'this' is exact and super or unrelated:
5027          (this_xk && !this_ary->is_meet_subtype_of(other_ary)))) {
5028       if (above_centerline(ptr) || (elem->make_ptr() && above_centerline(elem->make_ptr()->_ptr))) {
5029         elem = Type::BOTTOM;
5030       }
5031       ptr = NotNull;
5032       res_xk = false;
5033       return NOT_SUBTYPE;
5034     }
5035   }
5036 
5037   res_xk = false;
5038   switch (other_ptr) {
5039     case AnyNull:
5040     case TopPTR:
5041       // Compute new klass on demand, do not use tap->_klass
5042       if (below_centerline(this_ptr)) {
5043         res_xk = this_xk;



5044       } else {
5045         res_xk = (other_xk || this_xk);
5046       }
5047       return result;
5048     case Constant: {
5049       if (this_ptr == Constant) {


5050         res_xk = true;
5051       } else if(above_centerline(this_ptr)) {
5052         res_xk = true;
5053       } else {
5054         // Only precise for identical arrays
5055         res_xk = this_xk && (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom));






5056       }
5057       return result;
5058     }
5059     case NotNull:
5060     case BotPTR:
5061       // Compute new klass on demand, do not use tap->_klass
5062       if (above_centerline(this_ptr)) {
5063         res_xk = other_xk;



5064       } else {
5065         res_xk = (other_xk && this_xk) &&
5066                  (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom)); // Only precise for identical arrays






5067       }
5068       return result;
5069     default:  {
5070       ShouldNotReachHere();
5071       return result;
5072     }
5073   }
5074   return result;
5075 }
5076 
5077 
5078 //------------------------------xdual------------------------------------------
5079 // Dual: compute field-by-field dual
5080 const Type *TypeAryPtr::xdual() const {
5081   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());










5082 }
5083 
5084 //------------------------------dump2------------------------------------------
5085 #ifndef PRODUCT
5086 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5087   st->print("aryptr:");
5088   _ary->dump2(d, depth, st);
5089   _interfaces->dump(st);
5090 
5091   if (_ptr == Constant) {
5092     const_oop()->print(st);
5093   }
5094 
5095   st->print(":%s", ptr_msg[_ptr]);
5096   if (_klass_is_exact) {
5097     st->print(":exact");
5098   }
5099 
5100   if( _offset != 0 ) {






















5101     BasicType basic_elem_type = elem()->basic_type();
5102     int header_size = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5103     if( _offset == OffsetTop )       st->print("+undefined");
5104     else if( _offset == OffsetBot )  st->print("+any");
5105     else if( _offset < header_size ) st->print("+%d", _offset);
5106     else {
5107       if (basic_elem_type == T_ILLEGAL) {
5108         st->print("+any");
5109       } else {
5110         int elem_size = type2aelembytes(basic_elem_type);
5111         st->print("[%d]", (_offset - header_size)/elem_size);
5112       }
5113     }
5114   }
5115 
5116   dump_instance_id(st);
5117   dump_inline_depth(st);
5118   dump_speculative(st);
5119 }
5120 #endif
5121 
5122 bool TypeAryPtr::empty(void) const {
5123   if (_ary->empty())       return true;




5124   return TypeOopPtr::empty();
5125 }
5126 
5127 //------------------------------add_offset-------------------------------------
5128 const TypePtr* TypeAryPtr::add_offset(intptr_t offset) const {
5129   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
5130 }
5131 
5132 const TypeAryPtr* TypeAryPtr::with_offset(intptr_t offset) const {
5133   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, offset, _instance_id, with_offset_speculative(offset), _inline_depth);
5134 }
5135 
5136 const TypeAryPtr* TypeAryPtr::with_ary(const TypeAry* ary) const {
5137   return make(_ptr, _const_oop, ary, _klass, _klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
5138 }
5139 
5140 const TypeAryPtr* TypeAryPtr::remove_speculative() const {
5141   if (_speculative == nullptr) {
5142     return this;
5143   }
5144   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
5145   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, nullptr, _inline_depth);













5146 }
5147 
5148 const TypePtr* TypeAryPtr::with_inline_depth(int depth) const {
5149   if (!UseInlineDepthForSpeculativeTypes) {
5150     return this;
5151   }
5152   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth);











































5153 }
5154 
5155 const TypePtr* TypeAryPtr::with_instance_id(int instance_id) const {
5156   assert(is_known_instance(), "should be known");
5157   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
5158 }
5159 
5160 //=============================================================================
5161 

5162 //------------------------------hash-------------------------------------------
5163 // Type-specific hashing function.
5164 uint TypeNarrowPtr::hash(void) const {
5165   return _ptrtype->hash() + 7;
5166 }
5167 
5168 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
5169   return _ptrtype->singleton();
5170 }
5171 
5172 bool TypeNarrowPtr::empty(void) const {
5173   return _ptrtype->empty();
5174 }
5175 
5176 intptr_t TypeNarrowPtr::get_con() const {
5177   return _ptrtype->get_con();
5178 }
5179 
5180 bool TypeNarrowPtr::eq( const Type *t ) const {
5181   const TypeNarrowPtr* tc = isa_same_narrowptr(t);

5235   case HalfFloatTop:
5236   case HalfFloatCon:
5237   case HalfFloatBot:
5238   case FloatTop:
5239   case FloatCon:
5240   case FloatBot:
5241   case DoubleTop:
5242   case DoubleCon:
5243   case DoubleBot:
5244   case AnyPtr:
5245   case RawPtr:
5246   case OopPtr:
5247   case InstPtr:
5248   case AryPtr:
5249   case MetadataPtr:
5250   case KlassPtr:
5251   case InstKlassPtr:
5252   case AryKlassPtr:
5253   case NarrowOop:
5254   case NarrowKlass:
5255 
5256   case Bottom:                  // Ye Olde Default
5257     return Type::BOTTOM;
5258   case Top:
5259     return this;
5260 
5261   default:                      // All else is a mistake
5262     typerr(t);
5263 
5264   } // End of switch
5265 
5266   return this;
5267 }
5268 
5269 #ifndef PRODUCT
5270 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5271   _ptrtype->dump2(d, depth, st);
5272 }
5273 #endif
5274 
5275 const TypeNarrowOop *TypeNarrowOop::BOTTOM;

5319     return (one == two) && TypePtr::eq(t);
5320   } else {
5321     return one->equals(two) && TypePtr::eq(t);
5322   }
5323 }
5324 
5325 //------------------------------hash-------------------------------------------
5326 // Type-specific hashing function.
5327 uint TypeMetadataPtr::hash(void) const {
5328   return
5329     (metadata() ? metadata()->hash() : 0) +
5330     TypePtr::hash();
5331 }
5332 
5333 //------------------------------singleton--------------------------------------
5334 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5335 // constants
5336 bool TypeMetadataPtr::singleton(void) const {
5337   // detune optimizer to not generate constant metadata + constant offset as a constant!
5338   // TopPTR, Null, AnyNull, Constant are all singletons
5339   return (_offset == 0) && !below_centerline(_ptr);
5340 }
5341 
5342 //------------------------------add_offset-------------------------------------
5343 const TypePtr* TypeMetadataPtr::add_offset( intptr_t offset ) const {
5344   return make( _ptr, _metadata, xadd_offset(offset));
5345 }
5346 
5347 //-----------------------------filter------------------------------------------
5348 // Do not allow interface-vs.-noninterface joins to collapse to top.
5349 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
5350   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
5351   if (ft == nullptr || ft->empty())
5352     return Type::TOP;           // Canonical empty value
5353   return ft;
5354 }
5355 
5356  //------------------------------get_con----------------------------------------
5357 intptr_t TypeMetadataPtr::get_con() const {
5358   assert( _ptr == Null || _ptr == Constant, "" );
5359   assert( _offset >= 0, "" );
5360 
5361   if (_offset != 0) {
5362     // After being ported to the compiler interface, the compiler no longer
5363     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5364     // to a handle at compile time.  This handle is embedded in the generated
5365     // code and dereferenced at the time the nmethod is made.  Until that time,
5366     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5367     // have access to the addresses!).  This does not seem to currently happen,
5368     // but this assertion here is to help prevent its occurrence.
5369     tty->print_cr("Found oop constant with non-zero offset");
5370     ShouldNotReachHere();
5371   }
5372 
5373   return (intptr_t)metadata()->constant_encoding();
5374 }
5375 
5376 //------------------------------cast_to_ptr_type-------------------------------
5377 const TypeMetadataPtr* TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
5378   if( ptr == _ptr ) return this;
5379   return make(ptr, metadata(), _offset);
5380 }
5381 

5395   case HalfFloatBot:
5396   case FloatTop:
5397   case FloatCon:
5398   case FloatBot:
5399   case DoubleTop:
5400   case DoubleCon:
5401   case DoubleBot:
5402   case NarrowOop:
5403   case NarrowKlass:
5404   case Bottom:                  // Ye Olde Default
5405     return Type::BOTTOM;
5406   case Top:
5407     return this;
5408 
5409   default:                      // All else is a mistake
5410     typerr(t);
5411 
5412   case AnyPtr: {
5413     // Found an AnyPtr type vs self-OopPtr type
5414     const TypePtr *tp = t->is_ptr();
5415     int offset = meet_offset(tp->offset());
5416     PTR ptr = meet_ptr(tp->ptr());
5417     switch (tp->ptr()) {
5418     case Null:
5419       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5420       // else fall through:
5421     case TopPTR:
5422     case AnyNull: {
5423       return make(ptr, _metadata, offset);
5424     }
5425     case BotPTR:
5426     case NotNull:
5427       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5428     default: typerr(t);
5429     }
5430   }
5431 
5432   case RawPtr:
5433   case KlassPtr:
5434   case InstKlassPtr:
5435   case AryKlassPtr:
5436   case OopPtr:
5437   case InstPtr:
5438   case AryPtr:
5439     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
5440 
5441   case MetadataPtr: {
5442     const TypeMetadataPtr *tp = t->is_metadataptr();
5443     int offset = meet_offset(tp->offset());
5444     PTR tptr = tp->ptr();
5445     PTR ptr = meet_ptr(tptr);
5446     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
5447     if (tptr == TopPTR || _ptr == TopPTR ||
5448         metadata()->equals(tp->metadata())) {
5449       return make(ptr, md, offset);
5450     }
5451     // metadata is different
5452     if( ptr == Constant ) {  // Cannot be equal constants, so...
5453       if( tptr == Constant && _ptr != Constant)  return t;
5454       if( _ptr == Constant && tptr != Constant)  return this;
5455       ptr = NotNull;            // Fall down in lattice
5456     }
5457     return make(ptr, nullptr, offset);
5458     break;
5459   }
5460   } // End of switch
5461   return this;                  // Return the double constant
5462 }
5463 

5467 const Type *TypeMetadataPtr::xdual() const {
5468   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
5469 }
5470 
5471 //------------------------------dump2------------------------------------------
5472 #ifndef PRODUCT
5473 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5474   st->print("metadataptr:%s", ptr_msg[_ptr]);
5475   if (metadata() != nullptr) {
5476     st->print(":" INTPTR_FORMAT, p2i(metadata()));
5477   }
5478   dump_offset(st);
5479 }
5480 #endif
5481 
5482 
5483 //=============================================================================
5484 // Convenience common pre-built type.
5485 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
5486 
5487 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
5488   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
5489 }
5490 
5491 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
5492   return make(Constant, m, 0);
5493 }
5494 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
5495   return make(Constant, m, 0);
5496 }
5497 
5498 //------------------------------make-------------------------------------------
5499 // Create a meta data constant
5500 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
5501   assert(m == nullptr || !m->is_klass(), "wrong type");
5502   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
5503 }
5504 
5505 
5506 const TypeKlassPtr* TypeAryPtr::as_klass_type(bool try_for_exact) const {
5507   const Type* elem = _ary->_elem;
5508   bool xk = klass_is_exact();

5509   if (elem->make_oopptr() != nullptr) {

5510     elem = elem->make_oopptr()->as_klass_type(try_for_exact);
5511     if (elem->is_klassptr()->klass_is_exact()) {
5512       xk = true;









5513     }
5514   }
5515   return TypeAryKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, elem, klass(), 0);
5516 }
5517 
5518 const TypeKlassPtr* TypeKlassPtr::make(ciKlass *klass, InterfaceHandling interface_handling) {
5519   if (klass->is_instance_klass()) {
5520     return TypeInstKlassPtr::make(klass, interface_handling);
5521   }
5522   return TypeAryKlassPtr::make(klass, interface_handling);
5523 }
5524 
5525 const TypeKlassPtr* TypeKlassPtr::make(PTR ptr, ciKlass* klass, int offset, InterfaceHandling interface_handling) {
5526   if (klass->is_instance_klass()) {
5527     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
5528     return TypeInstKlassPtr::make(ptr, klass, interfaces, offset);
5529   }
5530   return TypeAryKlassPtr::make(ptr, klass, offset, interface_handling);
5531 }
5532 
5533 
5534 //------------------------------TypeKlassPtr-----------------------------------
5535 TypeKlassPtr::TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, int offset)
5536   : TypePtr(t, ptr, offset), _klass(klass), _interfaces(interfaces) {
5537   assert(klass == nullptr || !klass->is_loaded() || (klass->is_instance_klass() && !klass->is_interface()) ||
5538          klass->is_type_array_klass() || !klass->as_obj_array_klass()->base_element_klass()->is_interface(), "no interface here");
5539 }
5540 
5541 // Is there a single ciKlass* that can represent that type?
5542 ciKlass* TypeKlassPtr::exact_klass_helper() const {
5543   assert(_klass->is_instance_klass() && !_klass->is_interface(), "No interface");
5544   if (_interfaces->empty()) {
5545     return _klass;
5546   }
5547   if (_klass != ciEnv::current()->Object_klass()) {
5548     if (_interfaces->eq(_klass->as_instance_klass())) {
5549       return _klass;
5550     }
5551     return nullptr;
5552   }
5553   return _interfaces->exact_klass();
5554 }
5555 
5556 //------------------------------eq---------------------------------------------
5557 // Structural equality check for Type representations
5558 bool TypeKlassPtr::eq(const Type *t) const {
5559   const TypeKlassPtr *p = t->is_klassptr();
5560   return
5561     _interfaces->eq(p->_interfaces) &&
5562     TypePtr::eq(p);
5563 }
5564 
5565 //------------------------------hash-------------------------------------------
5566 // Type-specific hashing function.
5567 uint TypeKlassPtr::hash(void) const {
5568   return TypePtr::hash() + _interfaces->hash();
5569 }
5570 
5571 //------------------------------singleton--------------------------------------
5572 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5573 // constants
5574 bool TypeKlassPtr::singleton(void) const {
5575   // detune optimizer to not generate constant klass + constant offset as a constant!
5576   // TopPTR, Null, AnyNull, Constant are all singletons
5577   return (_offset == 0) && !below_centerline(_ptr);
5578 }
5579 
5580 // Do not allow interface-vs.-noninterface joins to collapse to top.
5581 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
5582   // logic here mirrors the one from TypeOopPtr::filter. See comments
5583   // there.
5584   const Type* ft = join_helper(kills, include_speculative);
5585 
5586   if (ft->empty()) {
5587     return Type::TOP;           // Canonical empty value
5588   }
5589 
5590   return ft;
5591 }
5592 
5593 const TypeInterfaces* TypeKlassPtr::meet_interfaces(const TypeKlassPtr* other) const {
5594   if (above_centerline(_ptr) && above_centerline(other->_ptr)) {
5595     return _interfaces->union_with(other->_interfaces);
5596   } else if (above_centerline(_ptr) && !above_centerline(other->_ptr)) {
5597     return other->_interfaces;
5598   } else if (above_centerline(other->_ptr) && !above_centerline(_ptr)) {
5599     return _interfaces;
5600   }
5601   return _interfaces->intersection_with(other->_interfaces);
5602 }
5603 
5604 //------------------------------get_con----------------------------------------
5605 intptr_t TypeKlassPtr::get_con() const {
5606   assert( _ptr == Null || _ptr == Constant, "" );
5607   assert( _offset >= 0, "" );
5608 
5609   if (_offset != 0) {
5610     // After being ported to the compiler interface, the compiler no longer
5611     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5612     // to a handle at compile time.  This handle is embedded in the generated
5613     // code and dereferenced at the time the nmethod is made.  Until that time,
5614     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5615     // have access to the addresses!).  This does not seem to currently happen,
5616     // but this assertion here is to help prevent its occurrence.
5617     tty->print_cr("Found oop constant with non-zero offset");
5618     ShouldNotReachHere();
5619   }
5620 
5621   ciKlass* k = exact_klass();
5622 
5623   return (intptr_t)k->constant_encoding();
5624 }
5625 
5626 //=============================================================================
5627 // Convenience common pre-built types.
5628 
5629 // Not-null object klass or below
5630 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT;
5631 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT_OR_NULL;
5632 
5633 bool TypeInstKlassPtr::eq(const Type *t) const {
5634   const TypeKlassPtr *p = t->is_klassptr();
5635   return
5636     klass()->equals(p->klass()) &&

5637     TypeKlassPtr::eq(p);
5638 }
5639 
5640 uint TypeInstKlassPtr::hash(void) const {
5641   return klass()->hash() + TypeKlassPtr::hash();
5642 }
5643 
5644 const TypeInstKlassPtr *TypeInstKlassPtr::make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, int offset) {



5645   TypeInstKlassPtr *r =
5646     (TypeInstKlassPtr*)(new TypeInstKlassPtr(ptr, k, interfaces, offset))->hashcons();
5647 
5648   return r;
5649 }
5650 







5651 //------------------------------add_offset-------------------------------------
5652 // Access internals of klass object
5653 const TypePtr* TypeInstKlassPtr::add_offset( intptr_t offset ) const {
5654   return make( _ptr, klass(), _interfaces, xadd_offset(offset) );
5655 }
5656 
5657 const TypeInstKlassPtr* TypeInstKlassPtr::with_offset(intptr_t offset) const {
5658   return make(_ptr, klass(), _interfaces, offset);
5659 }
5660 
5661 //------------------------------cast_to_ptr_type-------------------------------
5662 const TypeInstKlassPtr* TypeInstKlassPtr::cast_to_ptr_type(PTR ptr) const {
5663   assert(_base == InstKlassPtr, "subclass must override cast_to_ptr_type");
5664   if( ptr == _ptr ) return this;
5665   return make(ptr, _klass, _interfaces, _offset);
5666 }
5667 
5668 
5669 bool TypeInstKlassPtr::must_be_exact() const {
5670   if (!_klass->is_loaded())  return false;
5671   ciInstanceKlass* ik = _klass->as_instance_klass();
5672   if (ik->is_final())  return true;  // cannot clear xk
5673   return false;
5674 }
5675 
5676 //-----------------------------cast_to_exactness-------------------------------
5677 const TypeKlassPtr* TypeInstKlassPtr::cast_to_exactness(bool klass_is_exact) const {
5678   if (klass_is_exact == (_ptr == Constant)) return this;
5679   if (must_be_exact()) return this;
5680   ciKlass* k = klass();
5681   return make(klass_is_exact ? Constant : NotNull, k, _interfaces, _offset);

5682 }
5683 
5684 
5685 //-----------------------------as_instance_type--------------------------------
5686 // Corresponding type for an instance of the given class.
5687 // It will be NotNull, and exact if and only if the klass type is exact.
5688 const TypeOopPtr* TypeInstKlassPtr::as_instance_type(bool klass_change) const {
5689   ciKlass* k = klass();
5690   bool xk = klass_is_exact();
5691   Compile* C = Compile::current();
5692   Dependencies* deps = C->dependencies();
5693   assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
5694   // Element is an instance
5695   bool klass_is_exact = false;
5696   const TypeInterfaces* interfaces = _interfaces;

5697   if (k->is_loaded()) {
5698     // Try to set klass_is_exact.
5699     ciInstanceKlass* ik = k->as_instance_klass();
5700     klass_is_exact = ik->is_final();
5701     if (!klass_is_exact && klass_change
5702         && deps != nullptr && UseUniqueSubclasses) {
5703       ciInstanceKlass* sub = ik->unique_concrete_subklass();
5704       if (sub != nullptr) {
5705         if (_interfaces->eq(sub)) {
5706           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
5707           k = ik = sub;
5708           xk = sub->is_final();
5709         }
5710       }
5711     }
5712   }
5713   return TypeInstPtr::make(TypePtr::BotPTR, k, interfaces, xk, nullptr, 0);


5714 }
5715 
5716 //------------------------------xmeet------------------------------------------
5717 // Compute the MEET of two types, return a new Type object.
5718 const Type    *TypeInstKlassPtr::xmeet( const Type *t ) const {
5719   // Perform a fast test for common case; meeting the same types together.
5720   if( this == t ) return this;  // Meeting same type-rep?
5721 
5722   // Current "this->_base" is Pointer
5723   switch (t->base()) {          // switch on original type
5724 
5725   case Int:                     // Mixing ints & oops happens when javac
5726   case Long:                    // reuses local variables
5727   case HalfFloatTop:
5728   case HalfFloatCon:
5729   case HalfFloatBot:
5730   case FloatTop:
5731   case FloatCon:
5732   case FloatBot:
5733   case DoubleTop:
5734   case DoubleCon:
5735   case DoubleBot:
5736   case NarrowOop:
5737   case NarrowKlass:
5738   case Bottom:                  // Ye Olde Default
5739     return Type::BOTTOM;
5740   case Top:
5741     return this;
5742 
5743   default:                      // All else is a mistake
5744     typerr(t);
5745 
5746   case AnyPtr: {                // Meeting to AnyPtrs
5747     // Found an AnyPtr type vs self-KlassPtr type
5748     const TypePtr *tp = t->is_ptr();
5749     int offset = meet_offset(tp->offset());
5750     PTR ptr = meet_ptr(tp->ptr());
5751     switch (tp->ptr()) {
5752     case TopPTR:
5753       return this;
5754     case Null:
5755       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5756     case AnyNull:
5757       return make( ptr, klass(), _interfaces, offset );
5758     case BotPTR:
5759     case NotNull:
5760       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5761     default: typerr(t);
5762     }
5763   }
5764 
5765   case RawPtr:
5766   case MetadataPtr:
5767   case OopPtr:
5768   case AryPtr:                  // Meet with AryPtr
5769   case InstPtr:                 // Meet with InstPtr
5770     return TypePtr::BOTTOM;
5771 
5772   //
5773   //             A-top         }
5774   //           /   |   \       }  Tops
5775   //       B-top A-any C-top   }
5776   //          | /  |  \ |      }  Any-nulls
5777   //       B-any   |   C-any   }
5778   //          |    |    |
5779   //       B-con A-con C-con   } constants; not comparable across classes
5780   //          |    |    |
5781   //       B-not   |   C-not   }
5782   //          | \  |  / |      }  not-nulls
5783   //       B-bot A-not C-bot   }
5784   //           \   |   /       }  Bottoms
5785   //             A-bot         }
5786   //
5787 
5788   case InstKlassPtr: {  // Meet two KlassPtr types
5789     const TypeInstKlassPtr *tkls = t->is_instklassptr();
5790     int  off     = meet_offset(tkls->offset());
5791     PTR  ptr     = meet_ptr(tkls->ptr());
5792     const TypeInterfaces* interfaces = meet_interfaces(tkls);
5793 
5794     ciKlass* res_klass = nullptr;
5795     bool res_xk = false;
5796     switch(meet_instptr(ptr, interfaces, this, tkls, res_klass, res_xk)) {

5797       case UNLOADED:
5798         ShouldNotReachHere();
5799       case SUBTYPE:
5800       case NOT_SUBTYPE:
5801       case LCA:
5802       case QUICK: {
5803         assert(res_xk == (ptr == Constant), "");
5804         const Type* res = make(ptr, res_klass, interfaces, off);
5805         return res;
5806       }
5807       default:
5808         ShouldNotReachHere();
5809     }
5810   } // End of case KlassPtr
5811   case AryKlassPtr: {                // All arrays inherit from Object class
5812     const TypeAryKlassPtr *tp = t->is_aryklassptr();
5813     int offset = meet_offset(tp->offset());
5814     PTR ptr = meet_ptr(tp->ptr());
5815     const TypeInterfaces* interfaces = meet_interfaces(tp);
5816     const TypeInterfaces* tp_interfaces = tp->_interfaces;
5817     const TypeInterfaces* this_interfaces = _interfaces;
5818 
5819     switch (ptr) {
5820     case TopPTR:
5821     case AnyNull:                // Fall 'down' to dual of object klass
5822       // For instances when a subclass meets a superclass we fall
5823       // below the centerline when the superclass is exact. We need to
5824       // do the same here.
5825       if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces->contains(this_interfaces) && !klass_is_exact()) {
5826         return TypeAryKlassPtr::make(ptr, tp->elem(), tp->klass(), offset);



5827       } else {
5828         // cannot subclass, so the meet has to fall badly below the centerline
5829         ptr = NotNull;
5830         interfaces = _interfaces->intersection_with(tp->_interfaces);
5831         return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset);

5832       }
5833     case Constant:
5834     case NotNull:
5835     case BotPTR:                // Fall down to object klass
5836       // LCA is object_klass, but if we subclass from the top we can do better
5837       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
5838         // If 'this' (InstPtr) is above the centerline and it is Object class
5839         // then we can subclass in the Java class hierarchy.
5840         // For instances when a subclass meets a superclass we fall
5841         // below the centerline when the superclass is exact. We need
5842         // to do the same here.
5843         if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces->contains(this_interfaces) && !klass_is_exact()) {



5844           // that is, tp's array type is a subtype of my klass
5845           return TypeAryKlassPtr::make(ptr,
5846                                        tp->elem(), tp->klass(), offset);
5847         }
5848       }
5849       // The other case cannot happen, since I cannot be a subtype of an array.
5850       // The meet falls down to Object class below centerline.
5851       if( ptr == Constant )
5852          ptr = NotNull;
5853       interfaces = this_interfaces->intersection_with(tp_interfaces);
5854       return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset);


5855     default: typerr(t);
5856     }
5857   }
5858 
5859   } // End of switch
5860   return this;                  // Return the double constant
5861 }
5862 
5863 //------------------------------xdual------------------------------------------
5864 // Dual: compute field-by-field dual
5865 const Type    *TypeInstKlassPtr::xdual() const {
5866   return new TypeInstKlassPtr(dual_ptr(), klass(), _interfaces, dual_offset());
5867 }
5868 
5869 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
5870   static_assert(std::is_base_of<T2, T1>::value, "");
5871   if (!this_one->is_loaded() || !other->is_loaded()) {
5872     return false;
5873   }
5874   if (!this_one->is_instance_type(other)) {
5875     return false;
5876   }
5877 
5878   if (!other_exact) {
5879     return false;
5880   }
5881 
5882   if (other->klass()->equals(ciEnv::current()->Object_klass()) && other->_interfaces->empty()) {
5883     return true;
5884   }
5885 
5886   return this_one->klass()->is_subtype_of(other->klass()) && this_one->_interfaces->contains(other->_interfaces);

5940 
5941   if (this_exact) {
5942     return this_one->klass()->is_subtype_of(other->klass()) && this_one->_interfaces->contains(other->_interfaces);
5943   }
5944 
5945   return true;
5946 }
5947 
5948 bool TypeInstKlassPtr::maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
5949   return TypePtr::maybe_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
5950 }
5951 
5952 const TypeKlassPtr* TypeInstKlassPtr::try_improve() const {
5953   if (!UseUniqueSubclasses) {
5954     return this;
5955   }
5956   ciKlass* k = klass();
5957   Compile* C = Compile::current();
5958   Dependencies* deps = C->dependencies();
5959   assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
5960   const TypeInterfaces* interfaces = _interfaces;
5961   if (k->is_loaded()) {
5962     ciInstanceKlass* ik = k->as_instance_klass();
5963     bool klass_is_exact = ik->is_final();
5964     if (!klass_is_exact &&
5965         deps != nullptr) {
5966       ciInstanceKlass* sub = ik->unique_concrete_subklass();
5967       if (sub != nullptr) {
5968         if (_interfaces->eq(sub)) {


5969           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
5970           k = ik = sub;
5971           klass_is_exact = sub->is_final();
5972           return TypeKlassPtr::make(klass_is_exact ? Constant : _ptr, k, _offset);
5973         }
5974       }
5975     }
5976   }
5977   return this;
5978 }
5979 




5980 #ifndef PRODUCT
5981 void TypeInstKlassPtr::dump2(Dict& d, uint depth, outputStream* st) const {
5982   st->print("instklassptr:");
5983   klass()->print_name_on(st);
5984   _interfaces->dump(st);
5985   st->print(":%s", ptr_msg[_ptr]);
5986   dump_offset(st);

5987 }
5988 #endif // PRODUCT
5989 
5990 const TypeAryKlassPtr *TypeAryKlassPtr::make(PTR ptr, const Type* elem, ciKlass* k, int offset) {
5991   return (TypeAryKlassPtr*)(new TypeAryKlassPtr(ptr, elem, k, offset))->hashcons();












5992 }
5993 
5994 const TypeAryKlassPtr *TypeAryKlassPtr::make(PTR ptr, ciKlass* k, int offset, InterfaceHandling interface_handling) {

5995   if (k->is_obj_array_klass()) {
5996     // Element is an object array. Recursively call ourself.
5997     ciKlass* eklass = k->as_obj_array_klass()->element_klass();
5998     const TypeKlassPtr *etype = TypeKlassPtr::make(eklass, interface_handling)->cast_to_exactness(false);
5999     return TypeAryKlassPtr::make(ptr, etype, nullptr, offset);
6000   } else if (k->is_type_array_klass()) {
6001     // Element is an typeArray
6002     const Type* etype = get_const_basic_type(k->as_type_array_klass()->element_type());
6003     return TypeAryKlassPtr::make(ptr, etype, k, offset);
6004   } else {
6005     ShouldNotReachHere();
6006     return nullptr;
6007   }


6008 }
6009 
6010 const TypeAryKlassPtr* TypeAryKlassPtr::make(ciKlass* klass, InterfaceHandling interface_handling) {
6011   return TypeAryKlassPtr::make(Constant, klass, 0, interface_handling);



























6012 }
6013 
6014 //------------------------------eq---------------------------------------------
6015 // Structural equality check for Type representations
6016 bool TypeAryKlassPtr::eq(const Type *t) const {
6017   const TypeAryKlassPtr *p = t->is_aryklassptr();
6018   return
6019     _elem == p->_elem &&  // Check array






6020     TypeKlassPtr::eq(p);  // Check sub-parts
6021 }
6022 
6023 //------------------------------hash-------------------------------------------
6024 // Type-specific hashing function.
6025 uint TypeAryKlassPtr::hash(void) const {
6026   return (uint)(uintptr_t)_elem + TypeKlassPtr::hash();

6027 }
6028 
6029 //----------------------compute_klass------------------------------------------
6030 // Compute the defining klass for this class
6031 ciKlass* TypeAryPtr::compute_klass() const {
6032   // Compute _klass based on element type.
6033   ciKlass* k_ary = nullptr;
6034   const TypeInstPtr *tinst;
6035   const TypeAryPtr *tary;
6036   const Type* el = elem();
6037   if (el->isa_narrowoop()) {
6038     el = el->make_ptr();
6039   }
6040 
6041   // Get element klass
6042   if ((tinst = el->isa_instptr()) != nullptr) {
6043     // Leave k_ary at null.
6044   } else if ((tary = el->isa_aryptr()) != nullptr) {
6045     // Leave k_ary at null.
6046   } else if ((el->base() == Type::Top) ||
6047              (el->base() == Type::Bottom)) {
6048     // element type of Bottom occurs from meet of basic type
6049     // and object; Top occurs when doing join on Bottom.
6050     // Leave k_ary at null.
6051   } else {
6052     assert(!el->isa_int(), "integral arrays must be pre-equipped with a class");
6053     // Compute array klass directly from basic type
6054     k_ary = ciTypeArrayKlass::make(el->basic_type());
6055   }
6056   return k_ary;
6057 }
6058 
6059 //------------------------------klass------------------------------------------
6060 // Return the defining klass for this class
6061 ciKlass* TypeAryPtr::klass() const {
6062   if( _klass ) return _klass;   // Return cached value, if possible
6063 
6064   // Oops, need to compute _klass and cache it
6065   ciKlass* k_ary = compute_klass();

6073     // type TypeAryPtr::OOPS.  This Type is shared between all
6074     // active compilations.  However, the ciKlass which represents
6075     // this Type is *not* shared between compilations, so caching
6076     // this value would result in fetching a dangling pointer.
6077     //
6078     // Recomputing the underlying ciKlass for each request is
6079     // a bit less efficient than caching, but calls to
6080     // TypeAryPtr::OOPS->klass() are not common enough to matter.
6081     ((TypeAryPtr*)this)->_klass = k_ary;
6082   }
6083   return k_ary;
6084 }
6085 
6086 // Is there a single ciKlass* that can represent that type?
6087 ciKlass* TypeAryPtr::exact_klass_helper() const {
6088   if (_ary->_elem->make_ptr() && _ary->_elem->make_ptr()->isa_oopptr()) {
6089     ciKlass* k = _ary->_elem->make_ptr()->is_oopptr()->exact_klass_helper();
6090     if (k == nullptr) {
6091       return nullptr;
6092     }
6093     k = ciObjArrayKlass::make(k);
6094     return k;








6095   }
6096 
6097   return klass();
6098 }
6099 
6100 const Type* TypeAryPtr::base_element_type(int& dims) const {
6101   const Type* elem = this->elem();
6102   dims = 1;
6103   while (elem->make_ptr() && elem->make_ptr()->isa_aryptr()) {
6104     elem = elem->make_ptr()->is_aryptr()->elem();
6105     dims++;
6106   }
6107   return elem;
6108 }
6109 
6110 //------------------------------add_offset-------------------------------------
6111 // Access internals of klass object
6112 const TypePtr* TypeAryKlassPtr::add_offset(intptr_t offset) const {
6113   return make(_ptr, elem(), klass(), xadd_offset(offset));
6114 }
6115 
6116 const TypeAryKlassPtr* TypeAryKlassPtr::with_offset(intptr_t offset) const {
6117   return make(_ptr, elem(), klass(), offset);
6118 }
6119 
6120 //------------------------------cast_to_ptr_type-------------------------------
6121 const TypeAryKlassPtr* TypeAryKlassPtr::cast_to_ptr_type(PTR ptr) const {
6122   assert(_base == AryKlassPtr, "subclass must override cast_to_ptr_type");
6123   if (ptr == _ptr) return this;
6124   return make(ptr, elem(), _klass, _offset);
6125 }
6126 
6127 bool TypeAryKlassPtr::must_be_exact() const {
6128   if (_elem == Type::BOTTOM) return false;
6129   if (_elem == Type::TOP   ) return false;
6130   const TypeKlassPtr*  tk = _elem->isa_klassptr();
6131   if (!tk)             return true;   // a primitive type, like int
6132   return tk->must_be_exact();
6133 }



6134 



6135 
6136 //-----------------------------cast_to_exactness-------------------------------
6137 const TypeKlassPtr *TypeAryKlassPtr::cast_to_exactness(bool klass_is_exact) const {
6138   if (must_be_exact()) return this;  // cannot clear xk
6139   ciKlass* k = _klass;




6140   const Type* elem = this->elem();
6141   if (elem->isa_klassptr() && !klass_is_exact) {
6142     elem = elem->is_klassptr()->cast_to_exactness(klass_is_exact);
6143   }
6144   return make(klass_is_exact ? Constant : NotNull, elem, k, _offset);
6145 }
6146 















6147 
6148 //-----------------------------as_instance_type--------------------------------
6149 // Corresponding type for an instance of the given class.
6150 // It will be NotNull, and exact if and only if the klass type is exact.
6151 const TypeOopPtr* TypeAryKlassPtr::as_instance_type(bool klass_change) const {
6152   ciKlass* k = klass();
6153   bool    xk = klass_is_exact();
6154   const Type* el = nullptr;
6155   if (elem()->isa_klassptr()) {
6156     el = elem()->is_klassptr()->as_instance_type(false)->cast_to_exactness(false);
6157     k = nullptr;
6158   } else {
6159     el = elem();
6160   }
6161   return TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(el, TypeInt::POS), k, xk, 0);




6162 }
6163 
6164 
6165 //------------------------------xmeet------------------------------------------
6166 // Compute the MEET of two types, return a new Type object.
6167 const Type    *TypeAryKlassPtr::xmeet( const Type *t ) const {
6168   // Perform a fast test for common case; meeting the same types together.
6169   if( this == t ) return this;  // Meeting same type-rep?
6170 
6171   // Current "this->_base" is Pointer
6172   switch (t->base()) {          // switch on original type
6173 
6174   case Int:                     // Mixing ints & oops happens when javac
6175   case Long:                    // reuses local variables
6176   case HalfFloatTop:
6177   case HalfFloatCon:
6178   case HalfFloatBot:
6179   case FloatTop:
6180   case FloatCon:
6181   case FloatBot:
6182   case DoubleTop:
6183   case DoubleCon:
6184   case DoubleBot:
6185   case NarrowOop:
6186   case NarrowKlass:
6187   case Bottom:                  // Ye Olde Default
6188     return Type::BOTTOM;
6189   case Top:
6190     return this;
6191 
6192   default:                      // All else is a mistake
6193     typerr(t);
6194 
6195   case AnyPtr: {                // Meeting to AnyPtrs
6196     // Found an AnyPtr type vs self-KlassPtr type
6197     const TypePtr *tp = t->is_ptr();
6198     int offset = meet_offset(tp->offset());
6199     PTR ptr = meet_ptr(tp->ptr());
6200     switch (tp->ptr()) {
6201     case TopPTR:
6202       return this;
6203     case Null:
6204       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6205     case AnyNull:
6206       return make( ptr, _elem, klass(), offset );
6207     case BotPTR:
6208     case NotNull:
6209       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6210     default: typerr(t);
6211     }
6212   }
6213 
6214   case RawPtr:
6215   case MetadataPtr:
6216   case OopPtr:
6217   case AryPtr:                  // Meet with AryPtr
6218   case InstPtr:                 // Meet with InstPtr
6219     return TypePtr::BOTTOM;
6220 
6221   //
6222   //             A-top         }
6223   //           /   |   \       }  Tops
6224   //       B-top A-any C-top   }
6225   //          | /  |  \ |      }  Any-nulls
6226   //       B-any   |   C-any   }
6227   //          |    |    |
6228   //       B-con A-con C-con   } constants; not comparable across classes
6229   //          |    |    |
6230   //       B-not   |   C-not   }
6231   //          | \  |  / |      }  not-nulls
6232   //       B-bot A-not C-bot   }
6233   //           \   |   /       }  Bottoms
6234   //             A-bot         }
6235   //
6236 
6237   case AryKlassPtr: {  // Meet two KlassPtr types
6238     const TypeAryKlassPtr *tap = t->is_aryklassptr();
6239     int off = meet_offset(tap->offset());
6240     const Type* elem = _elem->meet(tap->_elem);
6241 
6242     PTR ptr = meet_ptr(tap->ptr());
6243     ciKlass* res_klass = nullptr;
6244     bool res_xk = false;
6245     meet_aryptr(ptr, elem, this, tap, res_klass, res_xk);





6246     assert(res_xk == (ptr == Constant), "");
6247     return make(ptr, elem, res_klass, off);
































6248   } // End of case KlassPtr
6249   case InstKlassPtr: {
6250     const TypeInstKlassPtr *tp = t->is_instklassptr();
6251     int offset = meet_offset(tp->offset());
6252     PTR ptr = meet_ptr(tp->ptr());
6253     const TypeInterfaces* interfaces = meet_interfaces(tp);
6254     const TypeInterfaces* tp_interfaces = tp->_interfaces;
6255     const TypeInterfaces* this_interfaces = _interfaces;
6256 
6257     switch (ptr) {
6258     case TopPTR:
6259     case AnyNull:                // Fall 'down' to dual of object klass
6260       // For instances when a subclass meets a superclass we fall
6261       // below the centerline when the superclass is exact. We need to
6262       // do the same here.


6263       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) &&
6264           !tp->klass_is_exact()) {
6265         return TypeAryKlassPtr::make(ptr, _elem, _klass, offset);
6266       } else {
6267         // cannot subclass, so the meet has to fall badly below the centerline
6268         ptr = NotNull;
6269         interfaces = this_interfaces->intersection_with(tp->_interfaces);
6270         return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset);

6271       }
6272     case Constant:
6273     case NotNull:
6274     case BotPTR:                // Fall down to object klass
6275       // LCA is object_klass, but if we subclass from the top we can do better
6276       if (above_centerline(tp->ptr())) {
6277         // If 'tp'  is above the centerline and it is Object class
6278         // then we can subclass in the Java class hierarchy.
6279         // For instances when a subclass meets a superclass we fall
6280         // below the centerline when the superclass is exact. We need
6281         // to do the same here.


6282         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) &&
6283             !tp->klass_is_exact()) {
6284           // that is, my array type is a subtype of 'tp' klass
6285           return make(ptr, _elem, _klass, offset);
6286         }
6287       }
6288       // The other case cannot happen, since t cannot be a subtype of an array.
6289       // The meet falls down to Object class below centerline.
6290       if (ptr == Constant)
6291          ptr = NotNull;
6292       interfaces = this_interfaces->intersection_with(tp_interfaces);
6293       return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset);


6294     default: typerr(t);
6295     }
6296   }
6297 
6298   } // End of switch
6299   return this;                  // Return the double constant
6300 }
6301 
6302 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
6303   static_assert(std::is_base_of<T2, T1>::value, "");
6304 
6305   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty() && other_exact) {
6306     return true;
6307   }
6308 
6309   int dummy;
6310   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
6311 
6312   if (!this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) {
6313     return false;
6314   }
6315 
6316   if (this_one->is_instance_type(other)) {
6317     return other->klass() == ciEnv::current()->Object_klass() && this_one->_interfaces->contains(other->_interfaces) &&
6318            other_exact;
6319   }
6320 
6321   assert(this_one->is_array_type(other), "");
6322   const T1* other_ary = this_one->is_array_type(other);
6323   bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
6324   if (other_top_or_bottom) {
6325     return false;
6326   }
6327 
6328   const TypePtr* other_elem = other_ary->elem()->make_ptr();
6329   const TypePtr* this_elem = this_one->elem()->make_ptr();
6330   if (this_elem != nullptr && other_elem != nullptr) {



6331     return this_one->is_reference_type(this_elem)->is_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact);
6332   }
6333   if (this_elem == nullptr && other_elem == nullptr) {
6334     return this_one->klass()->is_subtype_of(other->klass());
6335   }
6336   return false;
6337 }
6338 
6339 bool TypeAryKlassPtr::is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
6340   return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
6341 }
6342 
6343 template <class T1, class T2> bool TypePtr::is_same_java_type_as_helper_for_array(const T1* this_one, const T2* other) {
6344   static_assert(std::is_base_of<T2, T1>::value, "");
6345 
6346   int dummy;
6347   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
6348 
6349   if (!this_one->is_array_type(other) ||
6350       !this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) {

6403   }
6404 
6405   const TypePtr* this_elem = this_one->elem()->make_ptr();
6406   const TypePtr* other_elem = other_ary->elem()->make_ptr();
6407   if (other_elem != nullptr && this_elem != nullptr) {
6408     return this_one->is_reference_type(this_elem)->maybe_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact);
6409   }
6410   if (other_elem == nullptr && this_elem == nullptr) {
6411     return this_one->klass()->is_subtype_of(other->klass());
6412   }
6413   return false;
6414 }
6415 
6416 bool TypeAryKlassPtr::maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
6417   return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
6418 }
6419 
6420 //------------------------------xdual------------------------------------------
6421 // Dual: compute field-by-field dual
6422 const Type    *TypeAryKlassPtr::xdual() const {
6423   return new TypeAryKlassPtr(dual_ptr(), elem()->dual(), klass(), dual_offset());
6424 }
6425 
6426 // Is there a single ciKlass* that can represent that type?
6427 ciKlass* TypeAryKlassPtr::exact_klass_helper() const {
6428   if (elem()->isa_klassptr()) {
6429     ciKlass* k = elem()->is_klassptr()->exact_klass_helper();
6430     if (k == nullptr) {
6431       return nullptr;
6432     }
6433     k = ciObjArrayKlass::make(k);

6434     return k;
6435   }
6436 
6437   return klass();
6438 }
6439 
6440 ciKlass* TypeAryKlassPtr::klass() const {
6441   if (_klass != nullptr) {
6442     return _klass;
6443   }
6444   ciKlass* k = nullptr;
6445   if (elem()->isa_klassptr()) {
6446     // leave null
6447   } else if ((elem()->base() == Type::Top) ||
6448              (elem()->base() == Type::Bottom)) {
6449   } else {
6450     k = ciTypeArrayKlass::make(elem()->basic_type());
6451     ((TypeAryKlassPtr*)this)->_klass = k;
6452   }
6453   return k;
6454 }
6455 
6456 //------------------------------dump2------------------------------------------
6457 // Dump Klass Type
6458 #ifndef PRODUCT
6459 void TypeAryKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
6460   st->print("aryklassptr:[");
6461   _elem->dump2(d, depth, st);
6462   _interfaces->dump(st);
6463   st->print(":%s", ptr_msg[_ptr]);








6464   dump_offset(st);
6465 }
6466 #endif
6467 
6468 const Type* TypeAryKlassPtr::base_element_type(int& dims) const {
6469   const Type* elem = this->elem();
6470   dims = 1;
6471   while (elem->isa_aryklassptr()) {
6472     elem = elem->is_aryklassptr()->elem();
6473     dims++;
6474   }
6475   return elem;
6476 }
6477 
6478 //=============================================================================
6479 // Convenience common pre-built types.
6480 
6481 //------------------------------make-------------------------------------------
6482 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
6483   return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();












6484 }
6485 
6486 //------------------------------make-------------------------------------------
6487 const TypeFunc *TypeFunc::make(ciMethod* method) {
6488   Compile* C = Compile::current();
6489   const TypeFunc* tf = C->last_tf(method); // check cache
6490   if (tf != nullptr)  return tf;  // The hit rate here is almost 50%.
6491   const TypeTuple *domain;
6492   if (method->is_static()) {
6493     domain = TypeTuple::make_domain(nullptr, method->signature(), ignore_interfaces);
6494   } else {
6495     domain = TypeTuple::make_domain(method->holder(), method->signature(), ignore_interfaces);

















6496   }
6497   const TypeTuple *range  = TypeTuple::make_range(method->signature(), ignore_interfaces);
6498   tf = TypeFunc::make(domain, range);
6499   C->set_last_tf(method, tf);  // fill cache
6500   return tf;
6501 }
6502 
6503 //------------------------------meet-------------------------------------------
6504 // Compute the MEET of two types.  It returns a new Type object.
6505 const Type *TypeFunc::xmeet( const Type *t ) const {
6506   // Perform a fast test for common case; meeting the same types together.
6507   if( this == t ) return this;  // Meeting same type-rep?
6508 
6509   // Current "this->_base" is Func
6510   switch (t->base()) {          // switch on original type
6511 
6512   case Bottom:                  // Ye Olde Default
6513     return t;
6514 
6515   default:                      // All else is a mistake
6516     typerr(t);
6517 
6518   case Top:
6519     break;
6520   }
6521   return this;                  // Return the double constant
6522 }
6523 
6524 //------------------------------xdual------------------------------------------
6525 // Dual: compute field-by-field dual
6526 const Type *TypeFunc::xdual() const {
6527   return this;
6528 }
6529 
6530 //------------------------------eq---------------------------------------------
6531 // Structural equality check for Type representations
6532 bool TypeFunc::eq( const Type *t ) const {
6533   const TypeFunc *a = (const TypeFunc*)t;
6534   return _domain == a->_domain &&
6535     _range == a->_range;


6536 }
6537 
6538 //------------------------------hash-------------------------------------------
6539 // Type-specific hashing function.
6540 uint TypeFunc::hash(void) const {
6541   return (uint)(uintptr_t)_domain + (uint)(uintptr_t)_range;
6542 }
6543 
6544 //------------------------------dump2------------------------------------------
6545 // Dump Function Type
6546 #ifndef PRODUCT
6547 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
6548   if( _range->cnt() <= Parms )
6549     st->print("void");
6550   else {
6551     uint i;
6552     for (i = Parms; i < _range->cnt()-1; i++) {
6553       _range->field_at(i)->dump2(d,depth,st);
6554       st->print("/");
6555     }
6556     _range->field_at(i)->dump2(d,depth,st);
6557   }
6558   st->print(" ");
6559   st->print("( ");
6560   if( !depth || d[this] ) {     // Check for recursive dump
6561     st->print("...)");
6562     return;
6563   }
6564   d.Insert((void*)this,(void*)this);    // Stop recursion
6565   if (Parms < _domain->cnt())
6566     _domain->field_at(Parms)->dump2(d,depth-1,st);
6567   for (uint i = Parms+1; i < _domain->cnt(); i++) {
6568     st->print(", ");
6569     _domain->field_at(i)->dump2(d,depth-1,st);
6570   }
6571   st->print(" )");
6572 }
6573 #endif
6574 
6575 //------------------------------singleton--------------------------------------
6576 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
6577 // constants (Ldi nodes).  Singletons are integer, float or double constants
6578 // or a single symbol.
6579 bool TypeFunc::singleton(void) const {
6580   return false;                 // Never a singleton
6581 }
6582 
6583 bool TypeFunc::empty(void) const {
6584   return false;                 // Never empty
6585 }
6586 
6587 
6588 BasicType TypeFunc::return_type() const{
6589   if (range()->cnt() == TypeFunc::Parms) {
6590     return T_VOID;
6591   }
6592   return range()->field_at(TypeFunc::Parms)->basic_type();
6593 }

   1 /*
   2  * Copyright (c) 1997, 2026, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "ci/ciField.hpp"
  26 #include "ci/ciFlatArray.hpp"
  27 #include "ci/ciFlatArrayKlass.hpp"
  28 #include "ci/ciInlineKlass.hpp"
  29 #include "ci/ciMethodData.hpp"
  30 #include "ci/ciObjArrayKlass.hpp"
  31 #include "ci/ciTypeFlow.hpp"
  32 #include "classfile/javaClasses.hpp"
  33 #include "classfile/symbolTable.hpp"
  34 #include "classfile/vmSymbols.hpp"
  35 #include "compiler/compileLog.hpp"
  36 #include "libadt/dict.hpp"
  37 #include "memory/oopFactory.hpp"
  38 #include "memory/resourceArea.hpp"
  39 #include "oops/instanceKlass.hpp"
  40 #include "oops/instanceMirrorKlass.hpp"
  41 #include "oops/objArrayKlass.hpp"
  42 #include "oops/typeArrayKlass.hpp"
  43 #include "opto/arraycopynode.hpp"
  44 #include "opto/callnode.hpp"
  45 #include "opto/matcher.hpp"
  46 #include "opto/node.hpp"
  47 #include "opto/opcodes.hpp"
  48 #include "opto/rangeinference.hpp"
  49 #include "opto/runtime.hpp"
  50 #include "opto/type.hpp"
  51 #include "runtime/globals.hpp"
  52 #include "runtime/stubRoutines.hpp"
  53 #include "utilities/checkedCast.hpp"
  54 #include "utilities/debug.hpp"
  55 #include "utilities/globalDefinitions.hpp"
  56 #include "utilities/ostream.hpp"
  57 #include "utilities/powerOfTwo.hpp"
  58 #include "utilities/stringUtils.hpp"
  59 
  60 // Portions of code courtesy of Clifford Click
  61 
  62 // Optimization - Graph Style
  63 
  64 // Dictionary of types shared among compilations.
  65 Dict* Type::_shared_type_dict = nullptr;
  66 const Type::Offset Type::Offset::top(Type::OffsetTop);
  67 const Type::Offset Type::Offset::bottom(Type::OffsetBot);
  68 
  69 const Type::Offset Type::Offset::meet(const Type::Offset other) const {
  70   // Either is 'TOP' offset?  Return the other offset!
  71   if (_offset == OffsetTop) return other;
  72   if (other._offset == OffsetTop) return *this;
  73   // If either is different, return 'BOTTOM' offset
  74   if (_offset != other._offset) return bottom;
  75   return Offset(_offset);
  76 }
  77 
  78 const Type::Offset Type::Offset::dual() const {
  79   if (_offset == OffsetTop) return bottom;// Map 'TOP' into 'BOTTOM'
  80   if (_offset == OffsetBot) return top;// Map 'BOTTOM' into 'TOP'
  81   return Offset(_offset);               // Map everything else into self
  82 }
  83 
  84 const Type::Offset Type::Offset::add(intptr_t offset) const {
  85   // Adding to 'TOP' offset?  Return 'TOP'!
  86   if (_offset == OffsetTop || offset == OffsetTop) return top;
  87   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
  88   if (_offset == OffsetBot || offset == OffsetBot) return bottom;
  89   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
  90   offset += (intptr_t)_offset;
  91   if (offset != (int)offset || offset == OffsetTop) return bottom;
  92 
  93   // assert( _offset >= 0 && _offset+offset >= 0, "" );
  94   // It is possible to construct a negative offset during PhaseCCP
  95 
  96   return Offset((int)offset);        // Sum valid offsets
  97 }
  98 
  99 void Type::Offset::dump2(outputStream *st) const {
 100   if (_offset == 0) {
 101     return;
 102   } else if (_offset == OffsetTop) {
 103     st->print("+top");
 104   }
 105   else if (_offset == OffsetBot) {
 106     st->print("+bot");
 107   } else if (_offset) {
 108     st->print("+%d", _offset);
 109   }
 110 }
 111 
 112 // Array which maps compiler types to Basic Types
 113 const Type::TypeInfo Type::_type_info[Type::lastype] = {
 114   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
 115   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
 116   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
 117   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
 118   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
 119   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
 120   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
 121   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
 122   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
 123   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
 124   { Bad,             T_ARRAY,      "interfaces:",   false, Node::NotAMachineReg, relocInfo::none          },  // Interfaces
 125 
 126 #if defined(PPC64)
 127   { Bad,             T_ILLEGAL,    "vectormask:",   false, Op_RegVectMask,       relocInfo::none          },  // VectorMask.
 128   { Bad,             T_ILLEGAL,    "vectora:",      false, Op_VecA,              relocInfo::none          },  // VectorA.
 129   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
 130   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD

 269   case ciTypeFlow::StateVector::T_NULL:
 270     assert(type == ciTypeFlow::StateVector::null_type(), "");
 271     return TypePtr::NULL_PTR;
 272 
 273   case ciTypeFlow::StateVector::T_LONG2:
 274     // The ciTypeFlow pass pushes a long, then the half.
 275     // We do the same.
 276     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 277     return TypeInt::TOP;
 278 
 279   case ciTypeFlow::StateVector::T_DOUBLE2:
 280     // The ciTypeFlow pass pushes double, then the half.
 281     // Our convention is the same.
 282     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 283     return Type::TOP;
 284 
 285   case T_ADDRESS:
 286     assert(type->is_return_address(), "");
 287     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 288 
 289   case T_OBJECT:
 290     return Type::get_const_type(type->unwrap())->join_speculative(type->is_null_free() ? TypePtr::NOTNULL : TypePtr::BOTTOM);
 291 
 292   default:
 293     // make sure we did not mix up the cases:
 294     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 295     assert(type != ciTypeFlow::StateVector::top_type(), "");
 296     assert(type != ciTypeFlow::StateVector::null_type(), "");
 297     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 298     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 299     assert(!type->is_return_address(), "");
 300 
 301     return Type::get_const_type(type);
 302   }
 303 }
 304 
 305 
 306 //-----------------------make_from_constant------------------------------------
 307 const Type* Type::make_from_constant(ciConstant constant, bool require_constant,
 308                                      int stable_dimension, bool is_narrow_oop,
 309                                      bool is_autobox_cache) {
 310   switch (constant.basic_type()) {
 311     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());

 361     case T_NARROWOOP: loadbt = T_OBJECT; break;
 362     case T_ARRAY:     loadbt = T_OBJECT; break;
 363     case T_ADDRESS:   loadbt = T_OBJECT; break;
 364     default:                             break;
 365   }
 366   if (conbt == loadbt) {
 367     if (is_unsigned && conbt == T_BYTE) {
 368       // LoadB (T_BYTE) with a small mask (<=8-bit) is converted to LoadUB (T_BYTE).
 369       return ciConstant(T_INT, con.as_int() & 0xFF);
 370     } else {
 371       return con;
 372     }
 373   }
 374   if (conbt == T_SHORT && loadbt == T_CHAR) {
 375     // LoadS (T_SHORT) with a small mask (<=16-bit) is converted to LoadUS (T_CHAR).
 376     return ciConstant(T_INT, con.as_int() & 0xFFFF);
 377   }
 378   return ciConstant(); // T_ILLEGAL
 379 }
 380 
 381 static const Type* make_constant_from_non_flat_array_element(ciArray* array, int off, int stable_dimension,

 382                                                    BasicType loadbt, bool is_unsigned_load) {
 383   // Decode the results of GraphKit::array_element_address.
 384   ciConstant element_value = array->element_value_by_offset(off);
 385   if (element_value.basic_type() == T_ILLEGAL) {
 386     return nullptr; // wrong offset
 387   }
 388   ciConstant con = check_mismatched_access(element_value, loadbt, is_unsigned_load);
 389 
 390   assert(con.basic_type() != T_ILLEGAL, "elembt=%s; loadbt=%s; unsigned=%d",
 391          type2name(element_value.basic_type()), type2name(loadbt), is_unsigned_load);
 392 
 393   if (con.is_valid() &&          // not a mismatched access
 394       !con.is_null_or_zero()) {  // not a default value
 395     bool is_narrow_oop = (loadbt == T_NARROWOOP);
 396     return Type::make_from_constant(con, /*require_constant=*/true, stable_dimension, is_narrow_oop, /*is_autobox_cache=*/false);
 397   }
 398   return nullptr;
 399 }
 400 
 401 static const Type* make_constant_from_flat_array_element(ciFlatArray* array, int off, int field_offset, int stable_dimension,
 402                                                          BasicType loadbt, bool is_unsigned_load) {
 403   // Decode the results of GraphKit::array_element_address.
 404   ciConstant element_value = array->field_value_by_offset(off + field_offset);
 405   if (element_value.basic_type() == T_ILLEGAL) {
 406     return nullptr; // wrong offset
 407   }
 408   ciConstant con = check_mismatched_access(element_value, loadbt, is_unsigned_load);
 409 
 410   assert(con.basic_type() != T_ILLEGAL, "elembt=%s; loadbt=%s; unsigned=%d",
 411          type2name(element_value.basic_type()), type2name(loadbt), is_unsigned_load);
 412 
 413   if (con.is_valid() &&          // not a mismatched access
 414       !con.is_null_or_zero()) {  // not a default value
 415     bool is_narrow_oop = (loadbt == T_NARROWOOP);
 416     return Type::make_from_constant(con, /*require_constant=*/true, stable_dimension, is_narrow_oop, /*is_autobox_cache=*/false);
 417   }
 418   return nullptr;
 419 }
 420 
 421 // Try to constant-fold a stable array element.
 422 const Type* Type::make_constant_from_array_element(ciArray* array, int off, int field_offset, int stable_dimension,
 423                                                    BasicType loadbt, bool is_unsigned_load) {
 424   if (array->is_flat()) {
 425     return make_constant_from_flat_array_element(array->as_flat_array(), off, field_offset, stable_dimension, loadbt, is_unsigned_load);
 426   }
 427   return make_constant_from_non_flat_array_element(array, off, stable_dimension, loadbt, is_unsigned_load);
 428 }
 429 
 430 const Type* Type::make_constant_from_field(ciInstance* holder, int off, bool is_unsigned_load, BasicType loadbt) {
 431   ciField* field;
 432   ciType* type = holder->java_mirror_type();
 433   if (type != nullptr && type->is_instance_klass() && off >= InstanceMirrorKlass::offset_of_static_fields()) {
 434     // Static field
 435     field = type->as_instance_klass()->get_field_by_offset(off, /*is_static=*/true);
 436   } else {
 437     // Instance field
 438     field = holder->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/false);
 439   }
 440   if (field == nullptr) {
 441     return nullptr; // Wrong offset
 442   }
 443   return Type::make_constant_from_field(field, holder, loadbt, is_unsigned_load);
 444 }
 445 
 446 const Type* Type::make_constant_from_field(ciField* field, ciInstance* holder,
 447                                            BasicType loadbt, bool is_unsigned_load) {
 448   if (!field->is_constant()) {
 449     return nullptr; // Non-constant field

 622   const Type **ffalse =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 623   ffalse[0] = Type::CONTROL;
 624   ffalse[1] = Type::TOP;
 625   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 626 
 627   const Type **fneither =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 628   fneither[0] = Type::TOP;
 629   fneither[1] = Type::TOP;
 630   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 631 
 632   const Type **ftrue =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 633   ftrue[0] = Type::TOP;
 634   ftrue[1] = Type::CONTROL;
 635   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 636 
 637   const Type **floop =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 638   floop[0] = Type::CONTROL;
 639   floop[1] = TypeInt::INT;
 640   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 641 
 642   TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, Offset(0));
 643   TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, Offset::bottom);
 644   TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, Offset::bottom);
 645 
 646   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 647   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 648 
 649   const Type **fmembar = TypeTuple::fields(0);
 650   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 651 
 652   const Type **fsc = (const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 653   fsc[0] = TypeInt::CC;
 654   fsc[1] = Type::MEMORY;
 655   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 656 
 657   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 658   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 659   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 660   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 661                                            false, nullptr, Offset(oopDesc::mark_offset_in_bytes()));
 662   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 663                                            false, nullptr, Offset(oopDesc::klass_offset_in_bytes()));
 664   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, Offset::bottom, TypeOopPtr::InstanceBot);
 665 
 666   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, nullptr, Offset::bottom);
 667 
 668   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 669   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 670 
 671   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 672 
 673   mreg2type[Op_Node] = Type::BOTTOM;
 674   mreg2type[Op_Set ] = nullptr;
 675   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 676   mreg2type[Op_RegI] = TypeInt::INT;
 677   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 678   mreg2type[Op_RegF] = Type::FLOAT;
 679   mreg2type[Op_RegD] = Type::DOUBLE;
 680   mreg2type[Op_RegL] = TypeLong::LONG;
 681   mreg2type[Op_RegFlags] = TypeInt::CC;
 682 
 683   GrowableArray<ciInstanceKlass*> array_interfaces;
 684   array_interfaces.push(current->env()->Cloneable_klass());
 685   array_interfaces.push(current->env()->Serializable_klass());
 686   TypeAryPtr::_array_interfaces = TypeInterfaces::make(&array_interfaces);
 687   TypeAryKlassPtr::_array_interfaces = TypeAryPtr::_array_interfaces;
 688 
 689   TypeAryPtr::BOTTOM = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::BOTTOM, TypeInt::POS, false, false, false, false, false), nullptr, false, Offset::bottom);
 690   TypeAryPtr::RANGE   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS, false, false, false, false, false), nullptr /* current->env()->Object_klass() */, false, Offset(arrayOopDesc::length_offset_in_bytes()));
 691 
 692   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS, false, false, false, false, false), nullptr /*ciArrayKlass::make(o)*/,  false,  Offset::bottom);
 693 
 694 #ifdef _LP64
 695   if (UseCompressedOops) {
 696     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 697     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 698   } else
 699 #endif
 700   {
 701     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 702     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS, false, false, false, false, false), nullptr /*ciArrayKlass::make(o)*/,  false,  Offset::bottom);
 703   }
 704   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS, false, false, true, true, true), ciTypeArrayKlass::make(T_BYTE),   true,  Offset::bottom);
 705   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS, false, false, true, true, true), ciTypeArrayKlass::make(T_SHORT),  true,  Offset::bottom);
 706   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS, false, false, true, true, true), ciTypeArrayKlass::make(T_CHAR),   true,  Offset::bottom);
 707   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS, false, false, true, true, true), ciTypeArrayKlass::make(T_INT),    true,  Offset::bottom);
 708   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS, false, false, true, true, true), ciTypeArrayKlass::make(T_LONG),   true,  Offset::bottom);
 709   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS, false, false, true, true, true), ciTypeArrayKlass::make(T_FLOAT),  true,  Offset::bottom);
 710   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS, false, false, true, true, true), ciTypeArrayKlass::make(T_DOUBLE), true,  Offset::bottom);
 711   TypeAryPtr::INLINES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS, /* stable= */ false, /* flat= */ true, false, false, false), nullptr, false, Offset::bottom);
 712 
 713   // Nobody should ask _array_body_type[T_NARROWOOP]. Use null as assert.
 714   TypeAryPtr::_array_body_type[T_NARROWOOP] = nullptr;
 715   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 716   TypeAryPtr::_array_body_type[T_FLAT_ELEMENT] = TypeAryPtr::OOPS;
 717   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 718   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 719   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 720   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 721   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 722   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 723   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 724   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 725   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 726 
 727   TypeInstKlassPtr::OBJECT = TypeInstKlassPtr::make(TypePtr::NotNull, current->env()->Object_klass(), Offset(0));
 728   TypeInstKlassPtr::OBJECT_OR_NULL = TypeInstKlassPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), Offset(0));
 729 
 730   const Type **fi2c = TypeTuple::fields(2);
 731   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 732   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 733   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 734 
 735   const Type **intpair = TypeTuple::fields(2);
 736   intpair[0] = TypeInt::INT;
 737   intpair[1] = TypeInt::INT;
 738   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 739 
 740   const Type **longpair = TypeTuple::fields(2);
 741   longpair[0] = TypeLong::LONG;
 742   longpair[1] = TypeLong::LONG;
 743   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 744 
 745   const Type **intccpair = TypeTuple::fields(2);
 746   intccpair[0] = TypeInt::INT;
 747   intccpair[1] = TypeInt::CC;
 748   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 749 
 750   const Type **longccpair = TypeTuple::fields(2);
 751   longccpair[0] = TypeLong::LONG;
 752   longccpair[1] = TypeInt::CC;
 753   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 754 
 755   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 756   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 757   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 758   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 759   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 760   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 761   _const_basic_type[T_INT]         = TypeInt::INT;
 762   _const_basic_type[T_LONG]        = TypeLong::LONG;
 763   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 764   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 765   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 766   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 767   _const_basic_type[T_FLAT_ELEMENT] = TypeInstPtr::BOTTOM;
 768   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 769   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 770   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 771 
 772   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 773   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 774   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 775   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 776   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 777   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 778   _zero_type[T_INT]         = TypeInt::ZERO;
 779   _zero_type[T_LONG]        = TypeLong::ZERO;
 780   _zero_type[T_FLOAT]       = TypeF::ZERO;
 781   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 782   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 783   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
 784   _zero_type[T_FLAT_ELEMENT] = TypePtr::NULL_PTR;
 785   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 786   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 787 
 788   // get_zero_type() should not happen for T_CONFLICT
 789   _zero_type[T_CONFLICT]= nullptr;
 790 
 791   TypeVect::VECTMASK = (TypeVect*)(new TypeVectMask(T_BOOLEAN, MaxVectorSize))->hashcons();
 792   mreg2type[Op_RegVectMask] = TypeVect::VECTMASK;
 793 
 794   if (Matcher::supports_scalable_vector()) {
 795     TypeVect::VECTA = TypeVect::make(T_BYTE, Matcher::scalable_vector_reg_size(T_BYTE));
 796   }
 797 
 798   // Vector predefined types, it needs initialized _const_basic_type[].
 799   if (Matcher::vector_size_supported(T_BYTE, 4)) {
 800     TypeVect::VECTS = TypeVect::make(T_BYTE, 4);
 801   }
 802   if (Matcher::vector_size_supported(T_FLOAT, 2)) {
 803     TypeVect::VECTD = TypeVect::make(T_FLOAT, 2);
 804   }

1039   ~VerifyMeet() {
1040     assert(_C->_type_verify->_depth != 0, "");
1041     _C->_type_verify->_depth--;
1042     if (_C->_type_verify->_depth == 0) {
1043       _C->_type_verify->_cache.trunc_to(0);
1044     }
1045   }
1046 
1047   const Type* meet(const Type* t1, const Type* t2) const {
1048     return _C->_type_verify->meet(t1, t2);
1049   }
1050 
1051   void add(const Type* t1, const Type* t2, const Type* res) const {
1052     _C->_type_verify->add(t1, t2, res);
1053   }
1054 };
1055 
1056 void Type::check_symmetrical(const Type* t, const Type* mt, const VerifyMeet& verify) const {
1057   Compile* C = Compile::current();
1058   const Type* mt2 = verify.meet(t, this);
1059 
1060   // Verify that:
1061   //      this meet t == t meet this
1062   if (mt != mt2) {
1063     tty->print_cr("=== Meet Not Commutative ===");
1064     tty->print("t           = ");   t->dump(); tty->cr();
1065     tty->print("this        = ");      dump(); tty->cr();
1066     tty->print("t meet this = "); mt2->dump(); tty->cr();
1067     tty->print("this meet t = ");  mt->dump(); tty->cr();
1068     fatal("meet not commutative");
1069   }
1070   const Type* dual_join = mt->_dual;
1071   const Type* t2t    = verify.meet(dual_join,t->_dual);
1072   const Type* t2this = verify.meet(dual_join,this->_dual);
1073 
1074   // Interface meet Oop is Not Symmetric:
1075   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
1076   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
1077 
1078   // Verify that:
1079   // 1)     mt_dual meet t_dual    == t_dual
1080   //    which corresponds to
1081   //       !(t meet this)  meet !t ==
1082   //       (!t join !this) meet !t == !t
1083   // 2)    mt_dual meet this_dual     == this_dual
1084   //    which corresponds to
1085   //       !(t meet this)  meet !this ==
1086   //       (!t join !this) meet !this == !this
1087   if (t2t != t->_dual || t2this != this->_dual) {
1088     tty->print_cr("=== Meet Not Symmetric ===");
1089     tty->print("t   =                   ");              t->dump(); tty->cr();
1090     tty->print("this=                   ");                 dump(); tty->cr();
1091     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
1092 
1093     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
1094     tty->print("this_dual=              ");          _dual->dump(); tty->cr();
1095     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
1096 
1097     // 1)
1098     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
1099     // 2)
1100     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
1101     tty->cr();
1102     tty->print_cr("Fail: ");
1103     if (t2t != t->_dual) {
1104       tty->print_cr("- mt_dual meet t_dual != t_dual");
1105     }
1106     if (t2this != this->_dual) {
1107       tty->print_cr("- mt_dual meet this_dual != this_dual");
1108     }
1109     tty->cr();
1110 
1111     fatal("meet not symmetric");
1112   }
1113 }
1114 #endif
1115 
1116 //------------------------------meet-------------------------------------------
1117 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
1118 // commutative and the lattice is symmetric.
1119 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
1120   if (isa_narrowoop() && t->isa_narrowoop()) {
1121     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
1122     return result->make_narrowoop();
1123   }
1124   if (isa_narrowklass() && t->isa_narrowklass()) {
1125     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
1126     return result->make_narrowklass();
1127   }
1128 
1129 #ifdef ASSERT
1130   Compile* C = Compile::current();
1131   VerifyMeet verify(C);
1132 #endif
1133 
1134   const Type *this_t = maybe_remove_speculative(include_speculative);
1135   t = t->maybe_remove_speculative(include_speculative);
1136 
1137   const Type *mt = this_t->xmeet(t);
1138 #ifdef ASSERT
1139   verify.add(this_t, t, mt);
1140   if (isa_narrowoop() || t->isa_narrowoop()) {
1141     return mt;
1142   }
1143   if (isa_narrowklass() || t->isa_narrowklass()) {
1144     return mt;
1145   }
1146   // TODO 8350865 This currently triggers a verification failure, the code around "// Even though MyValue is final" needs adjustments
1147   if ((this_t->isa_ptr() && this_t->is_ptr()->is_not_flat()) ||
1148       (this_t->_dual->isa_ptr() && this_t->_dual->is_ptr()->is_not_flat())) return mt;
1149   this_t->check_symmetrical(t, mt, verify);
1150   const Type *mt_dual = verify.meet(this_t->_dual, t->_dual);
1151   this_t->_dual->check_symmetrical(t->_dual, mt_dual, verify);
1152 #endif
1153   return mt;
1154 }
1155 
1156 //------------------------------xmeet------------------------------------------
1157 // Compute the MEET of two types.  It returns a new Type object.
1158 const Type *Type::xmeet( const Type *t ) const {
1159   // Perform a fast test for common case; meeting the same types together.
1160   if( this == t ) return this;  // Meeting same type-rep?
1161 
1162   // Meeting TOP with anything?
1163   if( _base == Top ) return t;
1164 
1165   // Meeting BOTTOM with anything?
1166   if( _base == Bottom ) return BOTTOM;
1167 
1168   // Current "this->_base" is one of: Bad, Multi, Control, Top,

2145 void TypeLong::dump_verbose() const {
2146   TypeIntHelper::int_type_dump(this, tty, true);
2147 }
2148 #endif
2149 
2150 //=============================================================================
2151 // Convenience common pre-built types.
2152 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
2153 const TypeTuple *TypeTuple::IFFALSE;
2154 const TypeTuple *TypeTuple::IFTRUE;
2155 const TypeTuple *TypeTuple::IFNEITHER;
2156 const TypeTuple *TypeTuple::LOOPBODY;
2157 const TypeTuple *TypeTuple::MEMBAR;
2158 const TypeTuple *TypeTuple::STORECONDITIONAL;
2159 const TypeTuple *TypeTuple::START_I2C;
2160 const TypeTuple *TypeTuple::INT_PAIR;
2161 const TypeTuple *TypeTuple::LONG_PAIR;
2162 const TypeTuple *TypeTuple::INT_CC_PAIR;
2163 const TypeTuple *TypeTuple::LONG_CC_PAIR;
2164 
2165 static void collect_inline_fields(ciInlineKlass* vk, const Type** field_array, uint& pos) {
2166   for (int i = 0; i < vk->nof_declared_nonstatic_fields(); i++) {
2167     ciField* field = vk->declared_nonstatic_field_at(i);
2168     if (field->is_flat()) {
2169       collect_inline_fields(field->type()->as_inline_klass(), field_array, pos);
2170       if (!field->is_null_free()) {
2171         // Use T_INT instead of T_BOOLEAN here because the upper bits can contain garbage if the holder
2172         // is null and C2 will only zero them for T_INT assuming that T_BOOLEAN is already canonicalized.
2173         field_array[pos++] = Type::get_const_basic_type(T_INT);
2174       }
2175     } else {
2176       BasicType bt = field->type()->basic_type();
2177       const Type* ft = Type::get_const_type(field->type());
2178       field_array[pos++] = ft;
2179       if (type2size[bt] == 2) {
2180         field_array[pos++] = Type::HALF;
2181       }
2182     }
2183   }
2184 }
2185 
2186 //------------------------------make-------------------------------------------
2187 // Make a TypeTuple from the range of a method signature
2188 const TypeTuple *TypeTuple::make_range(ciSignature* sig, InterfaceHandling interface_handling, bool ret_vt_fields) {
2189   ciType* return_type = sig->return_type();
2190   uint arg_cnt = return_type->size();
2191   if (ret_vt_fields) {
2192     arg_cnt = return_type->as_inline_klass()->inline_arg_slots() + 1;
2193     // InlineTypeNode::NullMarker field used for null checking
2194     arg_cnt++;
2195   }
2196   const Type **field_array = fields(arg_cnt);
2197   switch (return_type->basic_type()) {
2198   case T_LONG:
2199     field_array[TypeFunc::Parms]   = TypeLong::LONG;
2200     field_array[TypeFunc::Parms+1] = Type::HALF;
2201     break;
2202   case T_DOUBLE:
2203     field_array[TypeFunc::Parms]   = Type::DOUBLE;
2204     field_array[TypeFunc::Parms+1] = Type::HALF;
2205     break;
2206   case T_OBJECT:
2207     if (return_type->is_inlinetype() && ret_vt_fields) {
2208       uint pos = TypeFunc::Parms;
2209       field_array[pos++] = get_const_type(return_type); // Oop might be null when returning as fields
2210       collect_inline_fields(return_type->as_inline_klass(), field_array, pos);
2211       // InlineTypeNode::NullMarker field used for null checking
2212       field_array[pos++] = get_const_basic_type(T_BOOLEAN);
2213       assert(pos == (TypeFunc::Parms + arg_cnt), "out of bounds");
2214       break;
2215     } else {
2216       field_array[TypeFunc::Parms] = get_const_type(return_type, interface_handling)->join_speculative(TypePtr::BOTTOM);
2217     }
2218     break;
2219   case T_ARRAY:
2220   case T_BOOLEAN:
2221   case T_CHAR:
2222   case T_FLOAT:
2223   case T_BYTE:
2224   case T_SHORT:
2225   case T_INT:
2226     field_array[TypeFunc::Parms] = get_const_type(return_type, interface_handling);
2227     break;
2228   case T_VOID:
2229     break;
2230   default:
2231     ShouldNotReachHere();
2232   }
2233   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2234 }
2235 
2236 // Make a TypeTuple from the domain of a method signature
2237 const TypeTuple *TypeTuple::make_domain(ciMethod* method, InterfaceHandling interface_handling, bool vt_fields_as_args) {
2238   ciSignature* sig = method->signature();
2239   uint arg_cnt = sig->size() + (method->is_static() ? 0 : 1);
2240   if (vt_fields_as_args) {
2241     arg_cnt = 0;
2242     assert(method->get_sig_cc() != nullptr, "Should have scalarized signature");
2243     for (ExtendedSignature sig_cc = ExtendedSignature(method->get_sig_cc(), SigEntryFilter()); !sig_cc.at_end(); ++sig_cc) {
2244       arg_cnt += type2size[(*sig_cc)._bt];
2245     }
2246   }
2247 
2248   uint pos = TypeFunc::Parms;
2249   const Type** field_array = fields(arg_cnt);
2250   if (!method->is_static()) {
2251     ciInstanceKlass* recv = method->holder();
2252     if (vt_fields_as_args && recv->is_inlinetype() && recv->as_inline_klass()->can_be_passed_as_fields() && method->is_scalarized_arg(0)) {
2253       collect_inline_fields(recv->as_inline_klass(), field_array, pos);
2254     } else {
2255       field_array[pos++] = get_const_type(recv, interface_handling)->join_speculative(TypePtr::NOTNULL);
2256     }
2257   }
2258 
2259   int i = 0;
2260   while (pos < TypeFunc::Parms + arg_cnt) {
2261     ciType* type = sig->type_at(i);
2262     BasicType bt = type->basic_type();
2263 
2264     switch (bt) {
2265     case T_LONG:
2266       field_array[pos++] = TypeLong::LONG;
2267       field_array[pos++] = Type::HALF;
2268       break;
2269     case T_DOUBLE:
2270       field_array[pos++] = Type::DOUBLE;
2271       field_array[pos++] = Type::HALF;
2272       break;
2273     case T_OBJECT:
2274       if (type->is_inlinetype() && vt_fields_as_args && method->is_scalarized_arg(i + (method->is_static() ? 0 : 1))) {
2275         // InlineTypeNode::NullMarker field used for null checking
2276         field_array[pos++] = get_const_basic_type(T_BOOLEAN);
2277         collect_inline_fields(type->as_inline_klass(), field_array, pos);
2278       } else {
2279         field_array[pos++] = get_const_type(type, interface_handling);
2280       }
2281       break;
2282     case T_ARRAY:
2283     case T_FLOAT:
2284     case T_INT:
2285       field_array[pos++] = get_const_type(type, interface_handling);
2286       break;
2287     case T_BOOLEAN:
2288     case T_CHAR:
2289     case T_BYTE:
2290     case T_SHORT:
2291       field_array[pos++] = TypeInt::INT;
2292       break;
2293     default:
2294       ShouldNotReachHere();
2295     }
2296     i++;
2297   }
2298   assert(pos == TypeFunc::Parms + arg_cnt, "wrong number of arguments");
2299 
2300   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2301 }
2302 
2303 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
2304   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
2305 }
2306 
2307 //------------------------------fields-----------------------------------------
2308 // Subroutine call type with space allocated for argument types
2309 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
2310 const Type **TypeTuple::fields( uint arg_cnt ) {
2311   const Type **flds = (const Type **)(Compile::current()->type_arena()->AmallocWords((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
2312   flds[TypeFunc::Control  ] = Type::CONTROL;
2313   flds[TypeFunc::I_O      ] = Type::ABIO;
2314   flds[TypeFunc::Memory   ] = Type::MEMORY;
2315   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
2316   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
2317 
2318   return flds;

2413     if (_fields[i]->empty())  return true;
2414   }
2415   return false;
2416 }
2417 
2418 //=============================================================================
2419 // Convenience common pre-built types.
2420 
2421 inline const TypeInt* normalize_array_size(const TypeInt* size) {
2422   // Certain normalizations keep us sane when comparing types.
2423   // We do not want arrayOop variables to differ only by the wideness
2424   // of their index types.  Pick minimum wideness, since that is the
2425   // forced wideness of small ranges anyway.
2426   if (size->_widen != Type::WidenMin)
2427     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
2428   else
2429     return size;
2430 }
2431 
2432 //------------------------------make-------------------------------------------
2433 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable,
2434                              bool flat, bool not_flat, bool not_null_free, bool atomic) {
2435   if (UseCompressedOops && elem->isa_oopptr()) {
2436     elem = elem->make_narrowoop();
2437   }
2438   size = normalize_array_size(size);
2439   return (TypeAry*)(new TypeAry(elem, size, stable, flat, not_flat, not_null_free, atomic))->hashcons();
2440 }
2441 
2442 //------------------------------meet-------------------------------------------
2443 // Compute the MEET of two types.  It returns a new Type object.
2444 const Type *TypeAry::xmeet( const Type *t ) const {
2445   // Perform a fast test for common case; meeting the same types together.
2446   if( this == t ) return this;  // Meeting same type-rep?
2447 
2448   // Current "this->_base" is Ary
2449   switch (t->base()) {          // switch on original type
2450 
2451   case Bottom:                  // Ye Olde Default
2452     return t;
2453 
2454   default:                      // All else is a mistake
2455     typerr(t);
2456 
2457   case Array: {                 // Meeting 2 arrays?
2458     const TypeAry* a = t->is_ary();
2459     const Type* size = _size->xmeet(a->_size);
2460     const TypeInt* isize = size->isa_int();
2461     if (isize == nullptr) {
2462       assert(size == Type::TOP || size == Type::BOTTOM, "");
2463       return size;
2464     }
2465     return TypeAry::make(_elem->meet_speculative(a->_elem),
2466                          isize, _stable && a->_stable,
2467                          _flat && a->_flat,
2468                          _not_flat && a->_not_flat,
2469                          _not_null_free && a->_not_null_free,
2470                          _atomic && a->_atomic);
2471   }
2472   case Top:
2473     break;
2474   }
2475   return this;                  // Return the double constant
2476 }
2477 
2478 //------------------------------xdual------------------------------------------
2479 // Dual: compute field-by-field dual
2480 const Type *TypeAry::xdual() const {
2481   const TypeInt* size_dual = _size->dual()->is_int();
2482   size_dual = normalize_array_size(size_dual);
2483   return new TypeAry(_elem->dual(), size_dual, !_stable, !_flat, !_not_flat, !_not_null_free, !_atomic);
2484 }
2485 
2486 //------------------------------eq---------------------------------------------
2487 // Structural equality check for Type representations
2488 bool TypeAry::eq( const Type *t ) const {
2489   const TypeAry *a = (const TypeAry*)t;
2490   return _elem == a->_elem &&
2491     _stable == a->_stable &&
2492     _size == a->_size &&
2493     _flat == a->_flat &&
2494     _not_flat == a->_not_flat &&
2495     _not_null_free == a->_not_null_free &&
2496     _atomic == a->_atomic;
2497 
2498 }
2499 
2500 //------------------------------hash-------------------------------------------
2501 // Type-specific hashing function.
2502 uint TypeAry::hash(void) const {
2503   return (uint)(uintptr_t)_elem + (uint)(uintptr_t)_size + (uint)(_stable ? 43 : 0) +
2504       (uint)(_flat ? 44 : 0) + (uint)(_not_flat ? 45 : 0) + (uint)(_not_null_free ? 46 : 0) + (uint)(_atomic ? 47 : 0);
2505 }
2506 
2507 /**
2508  * Return same type without a speculative part in the element
2509  */
2510 const TypeAry* TypeAry::remove_speculative() const {
2511   return make(_elem->remove_speculative(), _size, _stable, _flat, _not_flat, _not_null_free, _atomic);
2512 }
2513 
2514 /**
2515  * Return same type with cleaned up speculative part of element
2516  */
2517 const Type* TypeAry::cleanup_speculative() const {
2518   return make(_elem->cleanup_speculative(), _size, _stable, _flat, _not_flat, _not_null_free, _atomic);
2519 }
2520 
2521 /**
2522  * Return same type but with a different inline depth (used for speculation)
2523  *
2524  * @param depth  depth to meet with
2525  */
2526 const TypePtr* TypePtr::with_inline_depth(int depth) const {
2527   if (!UseInlineDepthForSpeculativeTypes) {
2528     return this;
2529   }
2530   return make(AnyPtr, _ptr, _offset, _speculative, depth);
2531 }
2532 
2533 //------------------------------dump2------------------------------------------
2534 #ifndef PRODUCT
2535 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2536   if (_stable)  st->print("stable:");
2537   if (_flat) st->print("flat:");
2538   if (Verbose) {
2539     if (_not_flat) st->print("not flat:");
2540     if (_not_null_free) st->print("not null free:");
2541   }
2542   if (_atomic) st->print("atomic:");
2543   _elem->dump2(d, depth, st);
2544   st->print("[");
2545   _size->dump2(d, depth, st);
2546   st->print("]");
2547 }
2548 #endif
2549 
2550 //------------------------------singleton--------------------------------------
2551 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2552 // constants (Ldi nodes).  Singletons are integer, float or double constants
2553 // or a single symbol.
2554 bool TypeAry::singleton(void) const {
2555   return false;                 // Never a singleton
2556 }
2557 
2558 bool TypeAry::empty(void) const {
2559   return _elem->empty() || _size->empty();
2560 }
2561 
2562 //--------------------------ary_must_be_exact----------------------------------
2563 bool TypeAry::ary_must_be_exact() const {
2564   // This logic looks at the element type of an array, and returns true
2565   // if the element type is either a primitive or a final instance class.
2566   // In such cases, an array built on this ary must have no subclasses.
2567   if (_elem == BOTTOM)      return false;  // general array not exact
2568   if (_elem == TOP   )      return false;  // inverted general array not exact
2569   const TypeOopPtr*  toop = nullptr;
2570   if (UseCompressedOops && _elem->isa_narrowoop()) {
2571     toop = _elem->make_ptr()->isa_oopptr();
2572   } else {
2573     toop = _elem->isa_oopptr();
2574   }
2575   if (!toop)                return true;   // a primitive type, like int
2576   if (!toop->is_loaded())   return false;  // unloaded class
2577   const TypeInstPtr* tinst;
2578   if (_elem->isa_narrowoop())
2579     tinst = _elem->make_ptr()->isa_instptr();
2580   else
2581     tinst = _elem->isa_instptr();
2582   if (tinst) {
2583     if (tinst->instance_klass()->is_final()) {
2584       // Even though MyValue is final, [LMyValue is only exact if the array
2585       // is (not) null-free due to null-free [LMyValue <: null-able [LMyValue.
2586       // TODO 8350865 If we know that the array can't be null-free, it's allowed to be exact, right?
2587       // If so, we should add '&& !_not_null_free'
2588       if (tinst->is_inlinetypeptr() && (tinst->ptr() != TypePtr::NotNull)) {
2589         return false;
2590       }
2591       return true;
2592     }
2593     return false;
2594   }
2595   const TypeAryPtr*  tap;
2596   if (_elem->isa_narrowoop())
2597     tap = _elem->make_ptr()->isa_aryptr();
2598   else
2599     tap = _elem->isa_aryptr();
2600   if (tap)
2601     return tap->ary()->ary_must_be_exact();
2602   return false;
2603 }
2604 
2605 //==============================TypeVect=======================================
2606 // Convenience common pre-built types.
2607 const TypeVect* TypeVect::VECTA = nullptr; // vector length agnostic
2608 const TypeVect* TypeVect::VECTS = nullptr; //  32-bit vectors
2609 const TypeVect* TypeVect::VECTD = nullptr; //  64-bit vectors
2610 const TypeVect* TypeVect::VECTX = nullptr; // 128-bit vectors
2611 const TypeVect* TypeVect::VECTY = nullptr; // 256-bit vectors
2612 const TypeVect* TypeVect::VECTZ = nullptr; // 512-bit vectors
2613 const TypeVect* TypeVect::VECTMASK = nullptr; // predicate/mask vector
2614 

2749 
2750 //=============================================================================
2751 // Convenience common pre-built types.
2752 const TypePtr *TypePtr::NULL_PTR;
2753 const TypePtr *TypePtr::NOTNULL;
2754 const TypePtr *TypePtr::BOTTOM;
2755 
2756 //------------------------------meet-------------------------------------------
2757 // Meet over the PTR enum
2758 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2759   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2760   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2761   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2762   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2763   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2764   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2765   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2766 };
2767 
2768 //------------------------------make-------------------------------------------
2769 const TypePtr* TypePtr::make(TYPES t, enum PTR ptr, Offset offset, const TypePtr* speculative, int inline_depth) {
2770   return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2771 }
2772 
2773 //------------------------------cast_to_ptr_type-------------------------------
2774 const TypePtr* TypePtr::cast_to_ptr_type(PTR ptr) const {
2775   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2776   if( ptr == _ptr ) return this;
2777   return make(_base, ptr, _offset, _speculative, _inline_depth);
2778 }
2779 
2780 //------------------------------get_con----------------------------------------
2781 intptr_t TypePtr::get_con() const {
2782   assert( _ptr == Null, "" );
2783   return offset();
2784 }
2785 
2786 //------------------------------meet-------------------------------------------
2787 // Compute the MEET of two types.  It returns a new Type object.
2788 const Type *TypePtr::xmeet(const Type *t) const {
2789   const Type* res = xmeet_helper(t);
2790   if (res->isa_ptr() == nullptr) {
2791     return res;
2792   }
2793 
2794   const TypePtr* res_ptr = res->is_ptr();
2795   if (res_ptr->speculative() != nullptr) {
2796     // type->speculative() is null means that speculation is no better
2797     // than type, i.e. type->speculative() == type. So there are 2
2798     // ways to represent the fact that we have no useful speculative
2799     // data and we should use a single one to be able to test for
2800     // equality between types. Check whether type->speculative() ==
2801     // type and set speculative to null if it is the case.
2802     if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2803       return res_ptr->remove_speculative();

2837     int depth = meet_inline_depth(tp->inline_depth());
2838     return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2839   }
2840   case RawPtr:                  // For these, flip the call around to cut down
2841   case OopPtr:
2842   case InstPtr:                 // on the cases I have to handle.
2843   case AryPtr:
2844   case MetadataPtr:
2845   case KlassPtr:
2846   case InstKlassPtr:
2847   case AryKlassPtr:
2848     return t->xmeet(this);      // Call in reverse direction
2849   default:                      // All else is a mistake
2850     typerr(t);
2851 
2852   }
2853   return this;
2854 }
2855 
2856 //------------------------------meet_offset------------------------------------
2857 Type::Offset TypePtr::meet_offset(int offset) const {
2858   return _offset.meet(Offset(offset));





2859 }
2860 
2861 //------------------------------dual_offset------------------------------------
2862 Type::Offset TypePtr::dual_offset() const {
2863   return _offset.dual();


2864 }
2865 
2866 //------------------------------xdual------------------------------------------
2867 // Dual: compute field-by-field dual
2868 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2869   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2870 };
2871 
2872 const TypePtr::FlatInArray TypePtr::flat_in_array_dual[Uninitialized] = {
2873   /* TopFlat   -> */ MaybeFlat,
2874   /* Flat      -> */ NotFlat,
2875   /* NotFlat   -> */ Flat,
2876   /* MaybeFlat -> */ TopFlat
2877 };
2878 
2879 const char* const TypePtr::flat_in_array_msg[Uninitialized] = {
2880   "TOP flat in array", "flat in array", "not flat in array", "maybe flat in array"
2881 };
2882 
2883 const Type *TypePtr::xdual() const {
2884   return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2885 }
2886 
2887 //------------------------------xadd_offset------------------------------------
2888 Type::Offset TypePtr::xadd_offset(intptr_t offset) const {
2889   return _offset.add(offset);











2890 }
2891 
2892 //------------------------------add_offset-------------------------------------
2893 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2894   return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2895 }
2896 
2897 const TypePtr *TypePtr::with_offset(intptr_t offset) const {
2898   return make(AnyPtr, _ptr, Offset(offset), _speculative, _inline_depth);
2899 }
2900 
2901 //------------------------------eq---------------------------------------------
2902 // Structural equality check for Type representations
2903 bool TypePtr::eq( const Type *t ) const {
2904   const TypePtr *a = (const TypePtr*)t;
2905   return _ptr == a->ptr() && _offset == a->_offset && eq_speculative(a) && _inline_depth == a->_inline_depth;
2906 }
2907 
2908 //------------------------------hash-------------------------------------------
2909 // Type-specific hashing function.
2910 uint TypePtr::hash(void) const {
2911   return (uint)_ptr + (uint)offset() + (uint)hash_speculative() + (uint)_inline_depth;
2912 }
2913 
2914 /**
2915  * Return same type without a speculative part
2916  */
2917 const TypePtr* TypePtr::remove_speculative() const {
2918   if (_speculative == nullptr) {
2919     return this;
2920   }
2921   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2922   return make(AnyPtr, _ptr, _offset, nullptr, _inline_depth);
2923 }
2924 
2925 /**
2926  * Return same type but drop speculative part if we know we won't use
2927  * it
2928  */
2929 const Type* TypePtr::cleanup_speculative() const {
2930   if (speculative() == nullptr) {
2931     return this;

3148     return false;
3149   }
3150   // We already know the speculative type cannot be null
3151   if (!speculative_maybe_null()) {
3152     return false;
3153   }
3154   // We already know this is always null
3155   if (this == TypePtr::NULL_PTR) {
3156     return false;
3157   }
3158   // We already know the speculative type is always null
3159   if (speculative_always_null()) {
3160     return false;
3161   }
3162   if (ptr_kind == ProfileAlwaysNull && speculative() != nullptr && speculative()->isa_oopptr()) {
3163     return false;
3164   }
3165   return true;
3166 }
3167 
3168 TypePtr::FlatInArray TypePtr::compute_flat_in_array(ciInstanceKlass* instance_klass, bool is_exact) {
3169   if (!instance_klass->can_be_inline_klass(is_exact)) {
3170     // Definitely not a value class and thus never flat in an array.
3171     return NotFlat;
3172   }
3173   if (instance_klass->is_inlinetype() && instance_klass->as_inline_klass()->is_always_flat_in_array()) {
3174     return Flat;
3175   }
3176   // We don't know.
3177   return MaybeFlat;
3178 }
3179 
3180 // Compute flat in array property if we don't know anything about it (i.e. old_flat_in_array == MaybeFlat).
3181 TypePtr::FlatInArray TypePtr::compute_flat_in_array_if_unknown(ciInstanceKlass* instance_klass, bool is_exact,
3182   FlatInArray old_flat_in_array) const {
3183   switch (old_flat_in_array) {
3184     case Flat:
3185       assert(can_be_inline_type(), "only value objects can be flat in array");
3186       assert(!instance_klass->is_inlinetype() || instance_klass->as_inline_klass()->is_always_flat_in_array(),
3187              "a value object is only marked flat in array if it's proven to be always flat in array");
3188       break;
3189     case NotFlat:
3190       assert(!instance_klass->maybe_flat_in_array(), "cannot be flat");
3191       break;
3192     case MaybeFlat:
3193       return compute_flat_in_array(instance_klass, is_exact);
3194       break;
3195     default:
3196       break;
3197   }
3198   return old_flat_in_array;
3199 }
3200 
3201 //------------------------------dump2------------------------------------------
3202 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
3203   "TopPTR","AnyNull","Constant","null","NotNull","BotPTR"
3204 };
3205 
3206 #ifndef PRODUCT
3207 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3208   st->print("ptr:%s", ptr_msg[_ptr]);
3209   dump_offset(st);
3210   dump_inline_depth(st);
3211   dump_speculative(st);
3212 }
3213 
3214 void TypePtr::dump_offset(outputStream* st) const {
3215   _offset.dump2(st);






3216 }
3217 
3218 /**
3219  *dump the speculative part of the type
3220  */
3221 void TypePtr::dump_speculative(outputStream *st) const {
3222   if (_speculative != nullptr) {
3223     st->print(" (speculative=");
3224     _speculative->dump_on(st);
3225     st->print(")");
3226   }
3227 }
3228 
3229 /**
3230  *dump the inline depth of the type
3231  */
3232 void TypePtr::dump_inline_depth(outputStream *st) const {
3233   if (_inline_depth != InlineDepthBottom) {
3234     if (_inline_depth == InlineDepthTop) {
3235       st->print(" (inline_depth=InlineDepthTop)");
3236     } else {
3237       st->print(" (inline_depth=%d)", _inline_depth);
3238     }
3239   }
3240 }
3241 
3242 void TypePtr::dump_flat_in_array(FlatInArray flat_in_array, outputStream* st) {
3243   switch (flat_in_array) {
3244     case MaybeFlat:
3245     case NotFlat:
3246       if (!Verbose) {
3247         break;
3248       }
3249     case TopFlat:
3250     case Flat:
3251       st->print(" (%s)", flat_in_array_msg[flat_in_array]);
3252       break;
3253     default:
3254       ShouldNotReachHere();
3255   }
3256 }
3257 #endif
3258 
3259 //------------------------------singleton--------------------------------------
3260 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3261 // constants
3262 bool TypePtr::singleton(void) const {
3263   // TopPTR, Null, AnyNull, Constant are all singletons
3264   return (_offset != Offset::bottom) && !below_centerline(_ptr);
3265 }
3266 
3267 bool TypePtr::empty(void) const {
3268   return (_offset == Offset::top) || above_centerline(_ptr);
3269 }
3270 
3271 //=============================================================================
3272 // Convenience common pre-built types.
3273 const TypeRawPtr *TypeRawPtr::BOTTOM;
3274 const TypeRawPtr *TypeRawPtr::NOTNULL;
3275 
3276 //------------------------------make-------------------------------------------
3277 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
3278   assert( ptr != Constant, "what is the constant?" );
3279   assert( ptr != Null, "Use TypePtr for null" );
3280   return (TypeRawPtr*)(new TypeRawPtr(ptr,nullptr))->hashcons();
3281 }
3282 
3283 const TypeRawPtr *TypeRawPtr::make(address bits) {
3284   assert(bits != nullptr, "Use TypePtr for null");
3285   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
3286 }
3287 
3288 //------------------------------cast_to_ptr_type-------------------------------

3656 #endif
3657 
3658 // Can't be implemented because there's no way to know if the type is above or below the center line.
3659 const Type* TypeInterfaces::xmeet(const Type* t) const {
3660   ShouldNotReachHere();
3661   return Type::xmeet(t);
3662 }
3663 
3664 bool TypeInterfaces::singleton(void) const {
3665   ShouldNotReachHere();
3666   return Type::singleton();
3667 }
3668 
3669 bool TypeInterfaces::has_non_array_interface() const {
3670   assert(TypeAryPtr::_array_interfaces != nullptr, "How come Type::Initialize_shared wasn't called yet?");
3671 
3672   return !TypeAryPtr::_array_interfaces->contains(this);
3673 }
3674 
3675 //------------------------------TypeOopPtr-------------------------------------
3676 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset offset, Offset field_offset,
3677                        int instance_id, const TypePtr* speculative, int inline_depth)
3678   : TypePtr(t, ptr, offset, speculative, inline_depth),
3679     _const_oop(o), _klass(k),
3680     _interfaces(interfaces),
3681     _klass_is_exact(xk),
3682     _is_ptr_to_narrowoop(false),
3683     _is_ptr_to_narrowklass(false),
3684     _is_ptr_to_boxed_value(false),
3685     _is_ptr_to_strict_final_field(false),
3686     _instance_id(instance_id) {
3687 #ifdef ASSERT
3688   if (klass() != nullptr && klass()->is_loaded()) {
3689     interfaces->verify_is_loaded();
3690   }
3691 #endif
3692   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
3693       (offset.get() > 0) && xk && (k != nullptr) && k->is_instance_klass()) {
3694     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset.get());
3695     _is_ptr_to_strict_final_field = _is_ptr_to_boxed_value;
3696   }
3697 
3698   if (klass() != nullptr && klass()->is_instance_klass() && klass()->is_loaded() &&
3699       this->offset() != Type::OffsetBot && this->offset() != Type::OffsetTop) {
3700     ciField* field = klass()->as_instance_klass()->get_field_by_offset(this->offset(), false);
3701     if (field != nullptr && field->is_strict() && field->is_final()) {
3702       _is_ptr_to_strict_final_field = true;
3703     }
3704   }
3705 
3706 #ifdef _LP64
3707   if (this->offset() > 0 || this->offset() == Type::OffsetTop || this->offset() == Type::OffsetBot) {
3708     if (this->offset() == oopDesc::klass_offset_in_bytes()) {
3709       _is_ptr_to_narrowklass = UseCompressedClassPointers;
3710     } else if (klass() == nullptr) {
3711       // Array with unknown body type
3712       assert(this->isa_aryptr(), "only arrays without klass");
3713       _is_ptr_to_narrowoop = UseCompressedOops;
3714     } else if (UseCompressedOops && this->isa_aryptr() && this->offset() != arrayOopDesc::length_offset_in_bytes()) {
3715       if (klass()->is_flat_array_klass() && field_offset != Offset::top && field_offset != Offset::bottom) {
3716         // Check if the field of the inline type array element contains oops
3717         ciInlineKlass* vk = klass()->as_flat_array_klass()->element_klass()->as_inline_klass();
3718         int foffset = field_offset.get() + vk->payload_offset();
3719         BasicType field_bt;
3720         ciField* field = vk->get_field_by_offset(foffset, false);
3721         if (field != nullptr) {
3722           field_bt = field->layout_type();
3723         } else {
3724           assert(field_offset.get() == vk->null_marker_offset_in_payload(), "no field or null marker of %s at offset %d", vk->name()->as_utf8(), foffset);
3725           field_bt = T_BOOLEAN;
3726         }
3727         _is_ptr_to_narrowoop = ::is_reference_type(field_bt);
3728       } else if (klass()->is_obj_array_klass()) {
3729         _is_ptr_to_narrowoop = true;
3730       }
3731     } else if (klass()->is_instance_klass()) {

3732       if (this->isa_klassptr()) {
3733         // Perm objects don't use compressed references
3734       } else if (_offset == Offset::bottom || _offset == Offset::top) {
3735         // unsafe access
3736         _is_ptr_to_narrowoop = UseCompressedOops;
3737       } else {
3738         assert(this->isa_instptr(), "must be an instance ptr.");

3739         if (klass() == ciEnv::current()->Class_klass() &&
3740             (this->offset() == java_lang_Class::klass_offset() ||
3741              this->offset() == java_lang_Class::array_klass_offset())) {
3742           // Special hidden fields from the Class.
3743           assert(this->isa_instptr(), "must be an instance ptr.");
3744           _is_ptr_to_narrowoop = false;
3745         } else if (klass() == ciEnv::current()->Class_klass() &&
3746                    this->offset() >= InstanceMirrorKlass::offset_of_static_fields()) {
3747           // Static fields
3748           BasicType basic_elem_type = T_ILLEGAL;
3749           if (const_oop() != nullptr) {
3750             ciInstanceKlass* k = const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
3751             basic_elem_type = k->get_field_type_by_offset(this->offset(), true);
3752           }
3753           if (basic_elem_type != T_ILLEGAL) {
3754             _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type);
3755           } else {
3756             // unsafe access
3757             _is_ptr_to_narrowoop = UseCompressedOops;
3758           }
3759         } else {
3760           // Instance fields which contains a compressed oop references.
3761           ciInstanceKlass* ik = klass()->as_instance_klass();
3762           BasicType basic_elem_type = ik->get_field_type_by_offset(this->offset(), false);
3763           if (basic_elem_type != T_ILLEGAL) {
3764             _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type);
3765           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
3766             // Compile::find_alias_type() cast exactness on all types to verify
3767             // that it does not affect alias type.
3768             _is_ptr_to_narrowoop = UseCompressedOops;
3769           } else {
3770             // Type for the copy start in LibraryCallKit::inline_native_clone().
3771             _is_ptr_to_narrowoop = UseCompressedOops;
3772           }
3773         }
3774       }
3775     }
3776   }
3777 #endif // _LP64
3778 }
3779 
3780 //------------------------------make-------------------------------------------
3781 const TypeOopPtr *TypeOopPtr::make(PTR ptr, Offset offset, int instance_id,
3782                                    const TypePtr* speculative, int inline_depth) {
3783   assert(ptr != Constant, "no constant generic pointers");
3784   ciKlass*  k = Compile::current()->env()->Object_klass();
3785   bool      xk = false;
3786   ciObject* o = nullptr;
3787   const TypeInterfaces* interfaces = TypeInterfaces::make();
3788   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, interfaces, xk, o, offset, Offset::bottom, instance_id, speculative, inline_depth))->hashcons();
3789 }
3790 
3791 
3792 //------------------------------cast_to_ptr_type-------------------------------
3793 const TypeOopPtr* TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
3794   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
3795   if( ptr == _ptr ) return this;
3796   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
3797 }
3798 
3799 //-----------------------------cast_to_instance_id----------------------------
3800 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
3801   // There are no instances of a general oop.
3802   // Return self unchanged.
3803   return this;
3804 }
3805 
3806 //-----------------------------cast_to_exactness-------------------------------
3807 const TypeOopPtr* TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
3808   // There is no such thing as an exact general oop.
3809   // Return self unchanged.
3810   return this;
3811 }
3812 

3813 //------------------------------as_klass_type----------------------------------
3814 // Return the klass type corresponding to this instance or array type.
3815 // It is the type that is loaded from an object of this type.
3816 const TypeKlassPtr* TypeOopPtr::as_klass_type(bool try_for_exact) const {
3817   ShouldNotReachHere();
3818   return nullptr;
3819 }
3820 
3821 //------------------------------meet-------------------------------------------
3822 // Compute the MEET of two types.  It returns a new Type object.
3823 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
3824   // Perform a fast test for common case; meeting the same types together.
3825   if( this == t ) return this;  // Meeting same type-rep?
3826 
3827   // Current "this->_base" is OopPtr
3828   switch (t->base()) {          // switch on original type
3829 
3830   case Int:                     // Mixing ints & oops happens when javac
3831   case Long:                    // reuses local variables
3832   case HalfFloatTop:

3841   case NarrowOop:
3842   case NarrowKlass:
3843   case Bottom:                  // Ye Olde Default
3844     return Type::BOTTOM;
3845   case Top:
3846     return this;
3847 
3848   default:                      // All else is a mistake
3849     typerr(t);
3850 
3851   case RawPtr:
3852   case MetadataPtr:
3853   case KlassPtr:
3854   case InstKlassPtr:
3855   case AryKlassPtr:
3856     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3857 
3858   case AnyPtr: {
3859     // Found an AnyPtr type vs self-OopPtr type
3860     const TypePtr *tp = t->is_ptr();
3861     Offset offset = meet_offset(tp->offset());
3862     PTR ptr = meet_ptr(tp->ptr());
3863     const TypePtr* speculative = xmeet_speculative(tp);
3864     int depth = meet_inline_depth(tp->inline_depth());
3865     switch (tp->ptr()) {
3866     case Null:
3867       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3868       // else fall through:
3869     case TopPTR:
3870     case AnyNull: {
3871       int instance_id = meet_instance_id(InstanceTop);
3872       return make(ptr, offset, instance_id, speculative, depth);
3873     }
3874     case BotPTR:
3875     case NotNull:
3876       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3877     default: typerr(t);
3878     }
3879   }
3880 
3881   case OopPtr: {                 // Meeting to other OopPtrs

3883     int instance_id = meet_instance_id(tp->instance_id());
3884     const TypePtr* speculative = xmeet_speculative(tp);
3885     int depth = meet_inline_depth(tp->inline_depth());
3886     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
3887   }
3888 
3889   case InstPtr:                  // For these, flip the call around to cut down
3890   case AryPtr:
3891     return t->xmeet(this);      // Call in reverse direction
3892 
3893   } // End of switch
3894   return this;                  // Return the double constant
3895 }
3896 
3897 
3898 //------------------------------xdual------------------------------------------
3899 // Dual of a pure heap pointer.  No relevant klass or oop information.
3900 const Type *TypeOopPtr::xdual() const {
3901   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
3902   assert(const_oop() == nullptr,             "no constants here");
3903   return new TypeOopPtr(_base, dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), Offset::bottom, dual_instance_id(), dual_speculative(), dual_inline_depth());
3904 }
3905 
3906 //--------------------------make_from_klass_common-----------------------------
3907 // Computes the element-type given a klass.
3908 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact, InterfaceHandling interface_handling) {
3909   if (klass->is_instance_klass() || klass->is_inlinetype()) {
3910     Compile* C = Compile::current();
3911     Dependencies* deps = C->dependencies();
3912     assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
3913     // Element is an instance
3914     bool klass_is_exact = false;
3915     ciInstanceKlass* ik = klass->as_instance_klass();
3916     if (klass->is_loaded()) {
3917       // Try to set klass_is_exact.

3918       klass_is_exact = ik->is_final();
3919       if (!klass_is_exact && klass_change
3920           && deps != nullptr && UseUniqueSubclasses) {
3921         ciInstanceKlass* sub = ik->unique_concrete_subklass();
3922         if (sub != nullptr) {
3923           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3924           klass = ik = sub;
3925           klass_is_exact = sub->is_final();
3926         }
3927       }
3928       if (!klass_is_exact && try_for_exact && deps != nullptr &&
3929           !ik->is_interface() && !ik->has_subklass()) {
3930         // Add a dependence; if concrete subclass added we need to recompile
3931         deps->assert_leaf_type(ik);
3932         klass_is_exact = true;
3933       }
3934     }
3935     FlatInArray flat_in_array = compute_flat_in_array(ik, klass_is_exact);
3936     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
3937     return TypeInstPtr::make(TypePtr::BotPTR, klass, interfaces, klass_is_exact, nullptr, Offset(0), flat_in_array);
3938   } else if (klass->is_obj_array_klass()) {
3939     // Element is an object or inline type array. Recursively call ourself.
3940     ciObjArrayKlass* array_klass = klass->as_obj_array_klass();
3941     const TypeOopPtr* etype = TypeOopPtr::make_from_klass_common(array_klass->element_klass(), /* klass_change= */ false, try_for_exact, interface_handling);
3942     bool xk = array_klass->is_loaded() && array_klass->is_refined();
3943 
3944     // Determine null-free/flat properties
3945     bool flat;
3946     bool not_flat;
3947     bool is_null_free;
3948     bool not_null_free;
3949     bool atomic;
3950     if (xk) {
3951       flat = array_klass->is_flat_array_klass();
3952       not_flat = !flat;
3953       is_null_free = array_klass->is_elem_null_free();
3954       not_null_free = !is_null_free;
3955       atomic = array_klass->is_elem_atomic();
3956 
3957       if (is_null_free) {
3958         etype = etype->join_speculative(NOTNULL)->is_oopptr();
3959       }
3960     } else {
3961       const TypeOopPtr* exact_etype = etype;
3962       if (etype->can_be_inline_type()) {
3963         // Use exact type if element can be an inline type
3964         exact_etype = TypeOopPtr::make_from_klass_common(klass->as_array_klass()->element_klass(), /* klass_change= */ true, /* try_for_exact= */ true, interface_handling);
3965       }
3966 
3967       flat = false;
3968       bool not_inline = !exact_etype->can_be_inline_type();
3969       not_null_free = not_inline;
3970       not_flat = !UseArrayFlattening || not_inline || (exact_etype->is_inlinetypeptr() && !exact_etype->inline_klass()->maybe_flat_in_array());
3971       atomic = not_flat;
3972     }
3973 
3974     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS, /* stable= */ false, flat, not_flat, not_null_free, atomic);
3975     // We used to pass NotNull in here, asserting that the sub-arrays
3976     // are all not-null.  This is not true in generally, as code can
3977     // slam nullptrs down in the subarrays.
3978     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, nullptr, xk, Offset(0));
3979     return arr;
3980   } else if (klass->is_type_array_klass()) {
3981     // Element is an typeArray
3982     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3983     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS,
3984                                         /* stable= */ false, /* flat= */ false, /* not_flat= */ true, /* not_null_free= */ true, true);
3985     // We used to pass NotNull in here, asserting that the array pointer
3986     // is not-null. That was not true in general.
3987     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, Offset(0));
3988     return arr;
3989   } else {
3990     ShouldNotReachHere();
3991     return nullptr;
3992   }
3993 }
3994 
3995 //------------------------------make_from_constant-----------------------------
3996 // Make a java pointer from an oop constant
3997 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
3998   assert(!o->is_null_object(), "null object not yet handled here.");
3999 
4000   const bool make_constant = require_constant || o->should_be_constant();
4001 
4002   ciKlass* klass = o->klass();
4003   if (klass->is_instance_klass() || klass->is_inlinetype()) {
4004     // Element is an instance or inline type
4005     if (make_constant) {
4006       return TypeInstPtr::make(o);
4007     } else {
4008       return TypeInstPtr::make(TypePtr::NotNull, klass, true, nullptr, Offset(0));
4009     }
4010   } else if (klass->is_obj_array_klass()) {
4011     // Element is an object array. Recursively call ourself.
4012     const TypeOopPtr* etype = TypeOopPtr::make_from_klass_raw(klass->as_array_klass()->element_klass(), trust_interfaces);
4013     bool is_flat = o->as_array()->is_flat();
4014     bool is_null_free = o->as_array()->is_null_free();
4015     if (is_null_free) {
4016       etype = etype->join_speculative(TypePtr::NOTNULL)->is_oopptr();
4017     }
4018     bool is_atomic = o->as_array()->is_atomic();
4019     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()), /* stable= */ false, /* flat= */ is_flat,
4020                                         /* not_flat= */ !is_flat, /* not_null_free= */ !is_null_free, /* atomic= */ is_atomic);
4021     // We used to pass NotNull in here, asserting that the sub-arrays
4022     // are all not-null.  This is not true in generally, as code can
4023     // slam nulls down in the subarrays.
4024     if (make_constant) {
4025       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
4026     } else {
4027       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
4028     }
4029   } else if (klass->is_type_array_klass()) {
4030     // Element is an typeArray
4031     const Type* etype = (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
4032     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()), /* stable= */ false, /* flat= */ false,
4033                                         /* not_flat= */ true, /* not_null_free= */ true, true);
4034     // We used to pass NotNull in here, asserting that the array pointer
4035     // is not-null. That was not true in general.
4036     if (make_constant) {
4037       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
4038     } else {
4039       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
4040     }
4041   }
4042 
4043   fatal("unhandled object type");
4044   return nullptr;
4045 }
4046 
4047 //------------------------------get_con----------------------------------------
4048 intptr_t TypeOopPtr::get_con() const {
4049   assert( _ptr == Null || _ptr == Constant, "" );
4050   assert(offset() >= 0, "");
4051 
4052   if (offset() != 0) {
4053     // After being ported to the compiler interface, the compiler no longer
4054     // directly manipulates the addresses of oops.  Rather, it only has a pointer
4055     // to a handle at compile time.  This handle is embedded in the generated
4056     // code and dereferenced at the time the nmethod is made.  Until that time,
4057     // it is not reasonable to do arithmetic with the addresses of oops (we don't
4058     // have access to the addresses!).  This does not seem to currently happen,
4059     // but this assertion here is to help prevent its occurrence.
4060     tty->print_cr("Found oop constant with non-zero offset");
4061     ShouldNotReachHere();
4062   }
4063 
4064   return (intptr_t)const_oop()->constant_encoding();
4065 }
4066 
4067 
4068 //-----------------------------filter------------------------------------------
4069 // Do not allow interface-vs.-noninterface joins to collapse to top.
4070 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
4071 
4072   const Type* ft = join_helper(kills, include_speculative);

4118   dump_speculative(st);
4119 }
4120 
4121 void TypeOopPtr::dump_instance_id(outputStream* st) const {
4122   if (_instance_id == InstanceTop) {
4123     st->print(",iid=top");
4124   } else if (_instance_id == InstanceBot) {
4125     st->print(",iid=bot");
4126   } else {
4127     st->print(",iid=%d", _instance_id);
4128   }
4129 }
4130 #endif
4131 
4132 //------------------------------singleton--------------------------------------
4133 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4134 // constants
4135 bool TypeOopPtr::singleton(void) const {
4136   // detune optimizer to not generate constant oop + constant offset as a constant!
4137   // TopPTR, Null, AnyNull, Constant are all singletons
4138   return (offset() == 0) && !below_centerline(_ptr);
4139 }
4140 
4141 //------------------------------add_offset-------------------------------------
4142 const TypePtr* TypeOopPtr::add_offset(intptr_t offset) const {
4143   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
4144 }
4145 
4146 const TypeOopPtr* TypeOopPtr::with_offset(intptr_t offset) const {
4147   return make(_ptr, Offset(offset), _instance_id, with_offset_speculative(offset), _inline_depth);
4148 }
4149 
4150 /**
4151  * Return same type without a speculative part
4152  */
4153 const TypeOopPtr* TypeOopPtr::remove_speculative() const {
4154   if (_speculative == nullptr) {
4155     return this;
4156   }
4157   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4158   return make(_ptr, _offset, _instance_id, nullptr, _inline_depth);
4159 }
4160 
4161 /**
4162  * Return same type but drop speculative part if we know we won't use
4163  * it
4164  */
4165 const Type* TypeOopPtr::cleanup_speculative() const {
4166   // If the klass is exact and the ptr is not null then there's
4167   // nothing that the speculative type can help us with

4240 const TypeInstPtr *TypeInstPtr::BOTTOM;
4241 const TypeInstPtr *TypeInstPtr::MIRROR;
4242 const TypeInstPtr *TypeInstPtr::MARK;
4243 const TypeInstPtr *TypeInstPtr::KLASS;
4244 
4245 // Is there a single ciKlass* that can represent that type?
4246 ciKlass* TypeInstPtr::exact_klass_helper() const {
4247   if (_interfaces->empty()) {
4248     return _klass;
4249   }
4250   if (_klass != ciEnv::current()->Object_klass()) {
4251     if (_interfaces->eq(_klass->as_instance_klass())) {
4252       return _klass;
4253     }
4254     return nullptr;
4255   }
4256   return _interfaces->exact_klass();
4257 }
4258 
4259 //------------------------------TypeInstPtr-------------------------------------
4260 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset off,
4261                          FlatInArray flat_in_array, int instance_id, const TypePtr* speculative, int inline_depth)
4262   : TypeOopPtr(InstPtr, ptr, k, interfaces, xk, o, off, Offset::bottom, instance_id, speculative, inline_depth),
4263     _flat_in_array(flat_in_array) {
4264 
4265   assert(flat_in_array != Uninitialized, "must be set now");
4266   assert(k == nullptr || !k->is_loaded() || !k->is_interface(), "no interface here");
4267   assert(k != nullptr &&
4268          (k->is_loaded() || o == nullptr),
4269          "cannot have constants with non-loaded klass");
4270 };
4271 
4272 //------------------------------make-------------------------------------------
4273 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
4274                                      ciKlass* k,
4275                                      const TypeInterfaces* interfaces,
4276                                      bool xk,
4277                                      ciObject* o,
4278                                      Offset offset,
4279                                      FlatInArray flat_in_array,
4280                                      int instance_id,
4281                                      const TypePtr* speculative,
4282                                      int inline_depth) {
4283   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
4284   // Either const_oop() is null or else ptr is Constant
4285   assert( (!o && ptr != Constant) || (o && ptr == Constant),
4286           "constant pointers must have a value supplied" );
4287   // Ptr is never Null
4288   assert( ptr != Null, "null pointers are not typed" );
4289 
4290   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4291   ciInstanceKlass* ik = k->as_instance_klass();
4292   if (ptr == Constant) {
4293     // Note:  This case includes meta-object constants, such as methods.
4294     xk = true;
4295   } else if (k->is_loaded()) {

4296     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
4297     assert(!ik->is_interface(), "no interface here");
4298     if (xk && ik->is_interface())  xk = false;  // no exact interface
4299   }
4300 
4301   if (flat_in_array == Uninitialized) {
4302     flat_in_array = compute_flat_in_array(ik, xk);
4303   }
4304   // Now hash this baby
4305   TypeInstPtr *result =
4306     (TypeInstPtr*)(new TypeInstPtr(ptr, k, interfaces, xk, o, offset, flat_in_array, instance_id, speculative, inline_depth))->hashcons();
4307 
4308   return result;
4309 }
4310 
4311 const TypeInterfaces* TypePtr::interfaces(ciKlass*& k, bool klass, bool interface, bool array, InterfaceHandling interface_handling) {
4312   if (k->is_instance_klass()) {
4313     if (k->is_loaded()) {
4314       if (k->is_interface() && interface_handling == ignore_interfaces) {
4315         assert(interface, "no interface expected");
4316         k = ciEnv::current()->Object_klass();
4317         const TypeInterfaces* interfaces = TypeInterfaces::make();
4318         return interfaces;
4319       }
4320       GrowableArray<ciInstanceKlass *>* k_interfaces = k->as_instance_klass()->transitive_interfaces();
4321       const TypeInterfaces* interfaces = TypeInterfaces::make(k_interfaces);
4322       if (k->is_interface()) {
4323         assert(interface, "no interface expected");
4324         k = ciEnv::current()->Object_klass();
4325       } else {
4326         assert(klass, "no instance klass expected");

4352   switch (bt) {
4353     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
4354     case T_INT:      return TypeInt::make(constant.as_int());
4355     case T_CHAR:     return TypeInt::make(constant.as_char());
4356     case T_BYTE:     return TypeInt::make(constant.as_byte());
4357     case T_SHORT:    return TypeInt::make(constant.as_short());
4358     case T_FLOAT:    return TypeF::make(constant.as_float());
4359     case T_DOUBLE:   return TypeD::make(constant.as_double());
4360     case T_LONG:     return TypeLong::make(constant.as_long());
4361     default:         break;
4362   }
4363   fatal("Invalid boxed value type '%s'", type2name(bt));
4364   return nullptr;
4365 }
4366 
4367 //------------------------------cast_to_ptr_type-------------------------------
4368 const TypeInstPtr* TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
4369   if( ptr == _ptr ) return this;
4370   // Reconstruct _sig info here since not a problem with later lazy
4371   // construction, _sig will show up on demand.
4372   return make(ptr, klass(), _interfaces, klass_is_exact(), ptr == Constant ? const_oop() : nullptr, _offset, _flat_in_array, _instance_id, _speculative, _inline_depth);
4373 }
4374 
4375 
4376 //-----------------------------cast_to_exactness-------------------------------
4377 const TypeInstPtr* TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
4378   if( klass_is_exact == _klass_is_exact ) return this;
4379   if (!_klass->is_loaded())  return this;
4380   ciInstanceKlass* ik = _klass->as_instance_klass();
4381   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
4382   assert(!ik->is_interface(), "no interface here");
4383   FlatInArray flat_in_array = compute_flat_in_array(ik, klass_is_exact);
4384   return make(ptr(), klass(), _interfaces, klass_is_exact, const_oop(), _offset, flat_in_array, _instance_id, _speculative, _inline_depth);
4385 }
4386 
4387 //-----------------------------cast_to_instance_id----------------------------
4388 const TypeInstPtr* TypeInstPtr::cast_to_instance_id(int instance_id) const {
4389   if( instance_id == _instance_id ) return this;
4390   return make(_ptr, klass(), _interfaces, _klass_is_exact, const_oop(), _offset, _flat_in_array, instance_id, _speculative, _inline_depth);
4391 }
4392 
4393 //------------------------------xmeet_unloaded---------------------------------
4394 // Compute the MEET of two InstPtrs when at least one is unloaded.
4395 // Assume classes are different since called after check for same name/class-loader
4396 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst, const TypeInterfaces* interfaces) const {
4397   Offset off = meet_offset(tinst->offset());
4398   PTR ptr = meet_ptr(tinst->ptr());
4399   int instance_id = meet_instance_id(tinst->instance_id());
4400   const TypePtr* speculative = xmeet_speculative(tinst);
4401   int depth = meet_inline_depth(tinst->inline_depth());
4402 
4403   const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
4404   const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
4405   if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
4406     //
4407     // Meet unloaded class with java/lang/Object
4408     //
4409     // Meet
4410     //          |                     Unloaded Class
4411     //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
4412     //  ===================================================================
4413     //   TOP    | ..........................Unloaded......................|
4414     //  AnyNull |  U-AN    |................Unloaded......................|
4415     // Constant | ... O-NN .................................. |   O-BOT   |
4416     //  NotNull | ... O-NN .................................. |   O-BOT   |
4417     //  BOTTOM  | ........................Object-BOTTOM ..................|
4418     //
4419     assert(loaded->ptr() != TypePtr::Null, "insanity check");
4420     //
4421     if (loaded->ptr() == TypePtr::TopPTR)        { return unloaded->with_speculative(speculative); }
4422     else if (loaded->ptr() == TypePtr::AnyNull)  {
4423       FlatInArray flat_in_array = meet_flat_in_array(_flat_in_array, tinst->flat_in_array());
4424       return make(ptr, unloaded->klass(), interfaces, false, nullptr, off, flat_in_array, instance_id,
4425                   speculative, depth);
4426     }
4427     else if (loaded->ptr() == TypePtr::BotPTR)   { return TypeInstPtr::BOTTOM->with_speculative(speculative); }
4428     else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
4429       if (unloaded->ptr() == TypePtr::BotPTR)    { return TypeInstPtr::BOTTOM->with_speculative(speculative);  }
4430       else                                       { return TypeInstPtr::NOTNULL->with_speculative(speculative); }
4431     }
4432     else if (unloaded->ptr() == TypePtr::TopPTR) { return unloaded->with_speculative(speculative); }
4433 
4434     return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr()->with_speculative(speculative);
4435   }
4436 
4437   // Both are unloaded, not the same class, not Object
4438   // Or meet unloaded with a different loaded class, not java/lang/Object
4439   if (ptr != TypePtr::BotPTR) {
4440     return TypeInstPtr::NOTNULL->with_speculative(speculative);
4441   }
4442   return TypeInstPtr::BOTTOM->with_speculative(speculative);
4443 }
4444 
4445 
4446 //------------------------------meet-------------------------------------------

4470   case Top:
4471     return this;
4472 
4473   default:                      // All else is a mistake
4474     typerr(t);
4475 
4476   case MetadataPtr:
4477   case KlassPtr:
4478   case InstKlassPtr:
4479   case AryKlassPtr:
4480   case RawPtr: return TypePtr::BOTTOM;
4481 
4482   case AryPtr: {                // All arrays inherit from Object class
4483     // Call in reverse direction to avoid duplication
4484     return t->is_aryptr()->xmeet_helper(this);
4485   }
4486 
4487   case OopPtr: {                // Meeting to OopPtrs
4488     // Found a OopPtr type vs self-InstPtr type
4489     const TypeOopPtr *tp = t->is_oopptr();
4490     Offset offset = meet_offset(tp->offset());
4491     PTR ptr = meet_ptr(tp->ptr());
4492     switch (tp->ptr()) {
4493     case TopPTR:
4494     case AnyNull: {
4495       int instance_id = meet_instance_id(InstanceTop);
4496       const TypePtr* speculative = xmeet_speculative(tp);
4497       int depth = meet_inline_depth(tp->inline_depth());
4498       return make(ptr, klass(), _interfaces, klass_is_exact(),
4499                   (ptr == Constant ? const_oop() : nullptr), offset, flat_in_array(), instance_id, speculative, depth);
4500     }
4501     case NotNull:
4502     case BotPTR: {
4503       int instance_id = meet_instance_id(tp->instance_id());
4504       const TypePtr* speculative = xmeet_speculative(tp);
4505       int depth = meet_inline_depth(tp->inline_depth());
4506       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4507     }
4508     default: typerr(t);
4509     }
4510   }
4511 
4512   case AnyPtr: {                // Meeting to AnyPtrs
4513     // Found an AnyPtr type vs self-InstPtr type
4514     const TypePtr *tp = t->is_ptr();
4515     Offset offset = meet_offset(tp->offset());
4516     PTR ptr = meet_ptr(tp->ptr());
4517     int instance_id = meet_instance_id(InstanceTop);
4518     const TypePtr* speculative = xmeet_speculative(tp);
4519     int depth = meet_inline_depth(tp->inline_depth());
4520     switch (tp->ptr()) {
4521     case Null:
4522       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4523       // else fall through to AnyNull
4524     case TopPTR:
4525     case AnyNull: {
4526       return make(ptr, klass(), _interfaces, klass_is_exact(),
4527                   (ptr == Constant ? const_oop() : nullptr), offset, flat_in_array(), instance_id, speculative, depth);
4528     }
4529     case NotNull:
4530     case BotPTR:
4531       return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
4532     default: typerr(t);
4533     }
4534   }
4535 
4536   /*
4537                  A-top         }
4538                /   |   \       }  Tops
4539            B-top A-any C-top   }
4540               | /  |  \ |      }  Any-nulls
4541            B-any   |   C-any   }
4542               |    |    |
4543            B-con A-con C-con   } constants; not comparable across classes
4544               |    |    |
4545            B-not   |   C-not   }
4546               | \  |  / |      }  not-nulls
4547            B-bot A-not C-bot   }
4548                \   |   /       }  Bottoms
4549                  A-bot         }
4550   */
4551 
4552   case InstPtr: {                // Meeting 2 Oops?
4553     // Found an InstPtr sub-type vs self-InstPtr type
4554     const TypeInstPtr *tinst = t->is_instptr();
4555     Offset off = meet_offset(tinst->offset());
4556     PTR ptr = meet_ptr(tinst->ptr());
4557     int instance_id = meet_instance_id(tinst->instance_id());
4558     const TypePtr* speculative = xmeet_speculative(tinst);
4559     int depth = meet_inline_depth(tinst->inline_depth());
4560     const TypeInterfaces* interfaces = meet_interfaces(tinst);
4561 
4562     ciKlass* tinst_klass = tinst->klass();
4563     ciKlass* this_klass  = klass();
4564 
4565     ciKlass* res_klass = nullptr;
4566     bool res_xk = false;
4567     const Type* res;
4568     MeetResult kind = meet_instptr(ptr, interfaces, this, tinst, res_klass, res_xk);
4569 
4570     if (kind == UNLOADED) {
4571       // One of these classes has not been loaded
4572       const TypeInstPtr* unloaded_meet = xmeet_unloaded(tinst, interfaces);
4573 #ifndef PRODUCT
4574       if (PrintOpto && Verbose) {
4575         tty->print("meet of unloaded classes resulted in: ");
4576         unloaded_meet->dump();
4577         tty->cr();
4578         tty->print("  this == ");
4579         dump();
4580         tty->cr();
4581         tty->print(" tinst == ");
4582         tinst->dump();
4583         tty->cr();
4584       }
4585 #endif
4586       res = unloaded_meet;
4587     } else {
4588       FlatInArray flat_in_array = meet_flat_in_array(_flat_in_array, tinst->flat_in_array());
4589       if (kind == NOT_SUBTYPE && instance_id > 0) {
4590         instance_id = InstanceBot;
4591       } else if (kind == LCA) {
4592         instance_id = InstanceBot;
4593       }
4594       ciObject* o = nullptr;             // Assume not constant when done
4595       ciObject* this_oop = const_oop();
4596       ciObject* tinst_oop = tinst->const_oop();
4597       if (ptr == Constant) {
4598         if (this_oop != nullptr && tinst_oop != nullptr &&
4599             this_oop->equals(tinst_oop))
4600           o = this_oop;
4601         else if (above_centerline(_ptr)) {
4602           assert(!tinst_klass->is_interface(), "");
4603           o = tinst_oop;
4604         } else if (above_centerline(tinst->_ptr)) {
4605           assert(!this_klass->is_interface(), "");
4606           o = this_oop;
4607         } else
4608           ptr = NotNull;
4609       }
4610       res = make(ptr, res_klass, interfaces, res_xk, o, off, flat_in_array, instance_id, speculative, depth);
4611     }
4612 
4613     return res;
4614 
4615   } // End of case InstPtr
4616 
4617   } // End of switch
4618   return this;                  // Return the double constant
4619 }
4620 
4621 template<class T> TypePtr::MeetResult TypePtr::meet_instptr(PTR& ptr, const TypeInterfaces*& interfaces, const T* this_type, const T* other_type,
4622                                                             ciKlass*& res_klass, bool& res_xk) {
4623   ciKlass* this_klass = this_type->klass();
4624   ciKlass* other_klass = other_type->klass();
4625 
4626   bool this_xk = this_type->klass_is_exact();
4627   bool other_xk = other_type->klass_is_exact();
4628   PTR this_ptr = this_type->ptr();
4629   PTR other_ptr = other_type->ptr();
4630   const TypeInterfaces* this_interfaces = this_type->interfaces();
4631   const TypeInterfaces* other_interfaces = other_type->interfaces();
4632   // Check for easy case; klasses are equal (and perhaps not loaded!)
4633   // If we have constants, then we created oops so classes are loaded
4634   // and we can handle the constants further down.  This case handles
4635   // both-not-loaded or both-loaded classes
4636   if (ptr != Constant && this_klass->equals(other_klass) && this_xk == other_xk) {
4637     res_klass = this_klass;
4638     res_xk = this_xk;
4639     return QUICK;
4640   }
4641 
4642   // Classes require inspection in the Java klass hierarchy.  Must be loaded.
4643   if (!other_klass->is_loaded() || !this_klass->is_loaded()) {
4644     return UNLOADED;
4645   }

4651   // If both are up and they do NOT subtype, "fall hard".
4652   // If both are down and they subtype, take the supertype class.
4653   // If both are down and they do NOT subtype, "fall hard".
4654   // Constants treated as down.
4655 
4656   // Now, reorder the above list; observe that both-down+subtype is also
4657   // "fall hard"; "fall hard" becomes the default case:
4658   // If we split one up & one down AND they subtype, take the down man.
4659   // If both are up and they subtype, take the subtype class.
4660 
4661   // If both are down and they subtype, "fall hard".
4662   // If both are down and they do NOT subtype, "fall hard".
4663   // If both are up and they do NOT subtype, "fall hard".
4664   // If we split one up & one down AND they do NOT subtype, "fall hard".
4665 
4666   // If a proper subtype is exact, and we return it, we return it exactly.
4667   // If a proper supertype is exact, there can be no subtyping relationship!
4668   // If both types are equal to the subtype, exactness is and-ed below the
4669   // centerline and or-ed above it.  (N.B. Constants are always exact.)
4670 

4671   const T* subtype = nullptr;
4672   bool subtype_exact = false;
4673   if (this_type->is_same_java_type_as(other_type)) {
4674     // Same klass
4675     subtype = this_type;
4676     subtype_exact = below_centerline(ptr) ? (this_xk && other_xk) : (this_xk || other_xk);
4677   } else if (!other_xk && this_type->is_meet_subtype_of(other_type)) {
4678     subtype = this_type;     // Pick subtyping class
4679     subtype_exact = this_xk;
4680   } else if (!this_xk && other_type->is_meet_subtype_of(this_type)) {
4681     subtype = other_type;    // Pick subtyping class
4682     subtype_exact = other_xk;
4683   }
4684 
4685   if (subtype != nullptr) {
4686     if (above_centerline(ptr)) {
4687       // Both types are empty.
4688       this_type = other_type = subtype;
4689       this_xk = other_xk = subtype_exact;
4690     } else if (above_centerline(this_ptr) && !above_centerline(other_ptr)) {
4691       // this_type is empty while other_type is not. Take other_type.
4692       this_type = other_type;
4693       this_xk = other_xk;
4694     } else if (above_centerline(other_ptr) && !above_centerline(this_ptr)) {
4695       // other_type is empty while this_type is not. Take this_type.
4696       other_type = this_type; // this is down; keep down man

4697     } else {
4698       // this_type and other_type are both non-empty.
4699       this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
4700     }
4701   }
4702 
4703   // Check for classes now being equal
4704   if (this_type->is_same_java_type_as(other_type)) {
4705     // If the klasses are equal, the constants may still differ.  Fall to
4706     // NotNull if they do (neither constant is null; that is a special case
4707     // handled elsewhere).
4708     res_klass = this_type->klass();
4709     res_xk = this_xk;
4710     return SUBTYPE;
4711   } // Else classes are not equal
4712 
4713   // Since klasses are different, we require a LCA in the Java
4714   // class hierarchy - which means we have to fall to at least NotNull.
4715   if (ptr == TopPTR || ptr == AnyNull || ptr == Constant) {
4716     ptr = NotNull;
4717   }
4718 
4719   interfaces = this_interfaces->intersection_with(other_interfaces);
4720 
4721   // Now we find the LCA of Java classes
4722   ciKlass* k = this_klass->least_common_ancestor(other_klass);
4723 
4724   res_klass = k;
4725   res_xk = false;

4726   return LCA;
4727 }
4728 
4729 //                Top-Flat    Flat        Not-Flat    Maybe-Flat
4730 // -------------------------------------------------------------
4731 //    Top-Flat    Top-Flat    Flat        Not-Flat    Maybe-Flat
4732 //        Flat    Flat        Flat        Maybe-Flat  Maybe-Flat
4733 //    Not-Flat    Not-Flat    Maybe-Flat  Not-Flat    Maybe-Flat
4734 //  Maybe-Flat    Maybe-Flat  Maybe-Flat  Maybe-Flat  Maybe-flat
4735 TypePtr::FlatInArray TypePtr::meet_flat_in_array(const FlatInArray left, const FlatInArray right) {
4736   if (left == TopFlat) {
4737     return right;
4738   }
4739   if (right == TopFlat) {
4740     return left;
4741   }
4742   if (left == MaybeFlat || right == MaybeFlat) {
4743     return MaybeFlat;
4744   }
4745 
4746   switch (left) {
4747     case Flat:
4748       if (right == Flat) {
4749         return Flat;
4750       }
4751       return MaybeFlat;
4752     case NotFlat:
4753       if (right == NotFlat) {
4754         return NotFlat;
4755       }
4756       return MaybeFlat;
4757     default:
4758       ShouldNotReachHere();
4759       return Uninitialized;
4760   }
4761 }
4762 
4763 //------------------------java_mirror_type--------------------------------------
4764 ciType* TypeInstPtr::java_mirror_type() const {
4765   // must be a singleton type
4766   if( const_oop() == nullptr )  return nullptr;
4767 
4768   // must be of type java.lang.Class
4769   if( klass() != ciEnv::current()->Class_klass() )  return nullptr;

4770   return const_oop()->as_instance()->java_mirror_type();
4771 }
4772 
4773 
4774 //------------------------------xdual------------------------------------------
4775 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
4776 // inheritance mechanism.
4777 const Type* TypeInstPtr::xdual() const {
4778   return new TypeInstPtr(dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(),
4779                          dual_flat_in_array(), dual_instance_id(), dual_speculative(), dual_inline_depth());
4780 }
4781 
4782 //------------------------------eq---------------------------------------------
4783 // Structural equality check for Type representations
4784 bool TypeInstPtr::eq( const Type *t ) const {
4785   const TypeInstPtr *p = t->is_instptr();
4786   return
4787     klass()->equals(p->klass()) &&
4788     _flat_in_array == p->_flat_in_array &&
4789     _interfaces->eq(p->_interfaces) &&
4790     TypeOopPtr::eq(p);          // Check sub-type stuff
4791 }
4792 
4793 //------------------------------hash-------------------------------------------
4794 // Type-specific hashing function.
4795 uint TypeInstPtr::hash() const {
4796   return klass()->hash() + TypeOopPtr::hash() + _interfaces->hash() + static_cast<uint>(_flat_in_array);
4797 }
4798 
4799 bool TypeInstPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4800   return TypePtr::is_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
4801 }
4802 
4803 
4804 bool TypeInstPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const {
4805   return TypePtr::is_same_java_type_as_helper_for_instance(this, other);
4806 }
4807 
4808 bool TypeInstPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4809   return TypePtr::maybe_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
4810 }
4811 
4812 
4813 //------------------------------dump2------------------------------------------
4814 // Dump oop Type
4815 #ifndef PRODUCT
4816 void TypeInstPtr::dump2(Dict &d, uint depth, outputStream* st) const {

4820   _interfaces->dump(st);
4821 
4822   if (_ptr == Constant && (WizardMode || Verbose)) {
4823     ResourceMark rm;
4824     stringStream ss;
4825 
4826     st->print(" ");
4827     const_oop()->print_oop(&ss);
4828     // 'const_oop->print_oop()' may emit newlines('\n') into ss.
4829     // suppress newlines from it so -XX:+Verbose -XX:+PrintIdeal dumps one-liner for each node.
4830     char* buf = ss.as_string(/* c_heap= */false);
4831     StringUtils::replace_no_expand(buf, "\n", "");
4832     st->print_raw(buf);
4833   }
4834 
4835   st->print(":%s", ptr_msg[_ptr]);
4836   if (_klass_is_exact) {
4837     st->print(":exact");
4838   }
4839 
4840   st->print(" *");
4841 
4842   dump_offset(st);
4843   dump_instance_id(st);
4844   dump_inline_depth(st);
4845   dump_speculative(st);
4846   dump_flat_in_array(_flat_in_array, st);
4847 }
4848 #endif
4849 
4850 bool TypeInstPtr::empty() const {
4851   if (_flat_in_array == TopFlat) {
4852     return true;
4853   }
4854   return TypeOopPtr::empty();
4855 }
4856 
4857 //------------------------------add_offset-------------------------------------
4858 const TypePtr* TypeInstPtr::add_offset(intptr_t offset) const {
4859   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), xadd_offset(offset), _flat_in_array,
4860               _instance_id, add_offset_speculative(offset), _inline_depth);
4861 }
4862 
4863 const TypeInstPtr* TypeInstPtr::with_offset(intptr_t offset) const {
4864   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), Offset(offset), _flat_in_array,
4865               _instance_id, with_offset_speculative(offset), _inline_depth);
4866 }
4867 
4868 const TypeInstPtr* TypeInstPtr::remove_speculative() const {
4869   if (_speculative == nullptr) {
4870     return this;
4871   }
4872   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4873   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, _flat_in_array,
4874               _instance_id, nullptr, _inline_depth);
4875 }
4876 
4877 const TypeInstPtr* TypeInstPtr::with_speculative(const TypePtr* speculative) const {
4878   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, _flat_in_array, _instance_id, speculative, _inline_depth);
4879 }
4880 
4881 const TypePtr* TypeInstPtr::with_inline_depth(int depth) const {
4882   if (!UseInlineDepthForSpeculativeTypes) {
4883     return this;
4884   }
4885   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, _flat_in_array, _instance_id, _speculative, depth);
4886 }
4887 
4888 const TypePtr* TypeInstPtr::with_instance_id(int instance_id) const {
4889   assert(is_known_instance(), "should be known");
4890   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, _flat_in_array, instance_id, _speculative, _inline_depth);
4891 }
4892 
4893 const TypeInstPtr *TypeInstPtr::cast_to_flat_in_array() const {
4894   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, Flat, _instance_id, _speculative, _inline_depth);
4895 }
4896 
4897 const TypeInstPtr *TypeInstPtr::cast_to_maybe_flat_in_array() const {
4898   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, MaybeFlat, _instance_id, _speculative, _inline_depth);
4899 }
4900 
4901 const TypeKlassPtr* TypeInstPtr::as_klass_type(bool try_for_exact) const {
4902   bool xk = klass_is_exact();
4903   ciInstanceKlass* ik = klass()->as_instance_klass();
4904   if (try_for_exact && !xk && !ik->has_subklass() && !ik->is_final()) {
4905     if (_interfaces->eq(ik)) {
4906       Compile* C = Compile::current();
4907       Dependencies* deps = C->dependencies();
4908       deps->assert_leaf_type(ik);
4909       xk = true;
4910     }
4911   }
4912   FlatInArray flat_in_array = compute_flat_in_array_if_unknown(ik, xk, _flat_in_array);
4913   return TypeInstKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, klass(), _interfaces, Offset(0), flat_in_array);
4914 }
4915 
4916 template <class T1, class T2> bool TypePtr::is_meet_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_xk, bool other_xk) {
4917   static_assert(std::is_base_of<T2, T1>::value, "");
4918 
4919   if (!this_one->is_instance_type(other)) {
4920     return false;
4921   }
4922 
4923   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty()) {
4924     return true;
4925   }
4926 
4927   return this_one->klass()->is_subtype_of(other->klass()) &&
4928          (!this_xk || this_one->_interfaces->contains(other->_interfaces));
4929 }
4930 
4931 
4932 bool TypeInstPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const {
4933   return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk);

4938   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty()) {
4939     return true;
4940   }
4941 
4942   if (this_one->is_instance_type(other)) {
4943     return other->klass() == ciEnv::current()->Object_klass() && this_one->_interfaces->contains(other->_interfaces);
4944   }
4945 
4946   int dummy;
4947   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
4948   if (this_top_or_bottom) {
4949     return false;
4950   }
4951 
4952   const T1* other_ary = this_one->is_array_type(other);
4953   const TypePtr* other_elem = other_ary->elem()->make_ptr();
4954   const TypePtr* this_elem = this_one->elem()->make_ptr();
4955   if (other_elem != nullptr && this_elem != nullptr) {
4956     return this_one->is_reference_type(this_elem)->is_meet_subtype_of_helper(this_one->is_reference_type(other_elem), this_xk, other_xk);
4957   }

4958   if (other_elem == nullptr && this_elem == nullptr) {
4959     return this_one->klass()->is_subtype_of(other->klass());
4960   }
4961 
4962   return false;
4963 }
4964 
4965 bool TypeAryPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const {
4966   return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk);
4967 }
4968 
4969 bool TypeInstKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const {
4970   return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk);
4971 }
4972 
4973 bool TypeAryKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const {
4974   return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk);
4975 }
4976 
4977 //=============================================================================
4978 // Convenience common pre-built types.
4979 const TypeAryPtr* TypeAryPtr::BOTTOM;
4980 const TypeAryPtr *TypeAryPtr::RANGE;
4981 const TypeAryPtr *TypeAryPtr::OOPS;
4982 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
4983 const TypeAryPtr *TypeAryPtr::BYTES;
4984 const TypeAryPtr *TypeAryPtr::SHORTS;
4985 const TypeAryPtr *TypeAryPtr::CHARS;
4986 const TypeAryPtr *TypeAryPtr::INTS;
4987 const TypeAryPtr *TypeAryPtr::LONGS;
4988 const TypeAryPtr *TypeAryPtr::FLOATS;
4989 const TypeAryPtr *TypeAryPtr::DOUBLES;
4990 const TypeAryPtr *TypeAryPtr::INLINES;
4991 
4992 //------------------------------make-------------------------------------------
4993 const TypeAryPtr* TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, Offset offset, Offset field_offset,
4994                                    int instance_id, const TypePtr* speculative, int inline_depth) {
4995   assert(!(k == nullptr && ary->_elem->isa_int()),
4996          "integral arrays must be pre-equipped with a class");
4997   if (!xk)  xk = ary->ary_must_be_exact();
4998   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4999   if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() &&
5000       k->as_obj_array_klass()->base_element_klass()->is_interface()) {
5001     k = nullptr;
5002   }
5003   return (TypeAryPtr*)(new TypeAryPtr(ptr, nullptr, ary, k, xk, offset, field_offset, instance_id, false, speculative, inline_depth))->hashcons();
5004 }
5005 
5006 //------------------------------make-------------------------------------------
5007 const TypeAryPtr* TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, Offset offset, Offset field_offset,
5008                                    int instance_id, const TypePtr* speculative, int inline_depth,
5009                                    bool is_autobox_cache) {
5010   assert(!(k == nullptr && ary->_elem->isa_int()),
5011          "integral arrays must be pre-equipped with a class");
5012   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
5013   if (!xk)  xk = (o != nullptr) || ary->ary_must_be_exact();
5014   assert(instance_id <= 0 || xk, "instances are always exactly typed");
5015   if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() &&
5016       k->as_obj_array_klass()->base_element_klass()->is_interface()) {
5017     k = nullptr;
5018   }
5019   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, field_offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
5020 }
5021 
5022 //------------------------------cast_to_ptr_type-------------------------------
5023 const TypeAryPtr* TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
5024   if( ptr == _ptr ) return this;
5025   return make(ptr, ptr == Constant ? const_oop() : nullptr, _ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5026 }
5027 
5028 
5029 //-----------------------------cast_to_exactness-------------------------------
5030 const TypeAryPtr* TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
5031   if( klass_is_exact == _klass_is_exact ) return this;
5032   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
5033   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5034 }
5035 
5036 //-----------------------------cast_to_instance_id----------------------------
5037 const TypeAryPtr* TypeAryPtr::cast_to_instance_id(int instance_id) const {
5038   if( instance_id == _instance_id ) return this;
5039   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, _field_offset, instance_id, _speculative, _inline_depth, _is_autobox_cache);
5040 }
5041 
5042 
5043 //-----------------------------max_array_length-------------------------------
5044 // A wrapper around arrayOopDesc::max_array_length(etype) with some input normalization.
5045 jint TypeAryPtr::max_array_length(BasicType etype) {
5046   if (!is_java_primitive(etype) && !::is_reference_type(etype)) {
5047     if (etype == T_NARROWOOP) {
5048       etype = T_OBJECT;
5049     } else if (etype == T_ILLEGAL) { // bottom[]
5050       etype = T_BYTE; // will produce conservatively high value
5051     } else {
5052       fatal("not an element type: %s", type2name(etype));
5053     }
5054   }
5055   return arrayOopDesc::max_array_length(etype);
5056 }
5057 
5058 //-----------------------------narrow_size_type-------------------------------
5059 // Narrow the given size type to the index range for the given array base type.

5077     if (size->is_con()) {
5078       lo = hi;
5079     }
5080     chg = true;
5081   }
5082   // Negative length arrays will produce weird intermediate dead fast-path code
5083   if (lo > hi) {
5084     return TypeInt::ZERO;
5085   }
5086   if (!chg) {
5087     return size;
5088   }
5089   return TypeInt::make(lo, hi, Type::WidenMin);
5090 }
5091 
5092 //-------------------------------cast_to_size----------------------------------
5093 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
5094   assert(new_size != nullptr, "");
5095   new_size = narrow_size_type(new_size);
5096   if (new_size == size())  return this;
5097   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable(), is_flat(), is_not_flat(), is_not_null_free(), is_atomic());
5098   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5099 }
5100 
5101 const TypeAryPtr* TypeAryPtr::cast_to_flat(bool flat) const {
5102   if (flat == is_flat()) {
5103     return this;
5104   }
5105   assert(!flat || !is_not_flat(), "inconsistency");
5106   const TypeAry* new_ary = TypeAry::make(elem(), size(), is_stable(), flat, is_not_flat(), is_not_null_free(), is_atomic());
5107   const TypeAryPtr* res = make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5108   if (res->speculative() == res->remove_speculative()) {
5109     return res->remove_speculative();
5110   }
5111   return res;
5112 }
5113 
5114 //-------------------------------cast_to_not_flat------------------------------
5115 const TypeAryPtr* TypeAryPtr::cast_to_not_flat(bool not_flat) const {
5116   if (not_flat == is_not_flat()) {
5117     return this;
5118   }
5119   assert(!not_flat || !is_flat(), "inconsistency");
5120   const TypeAry* new_ary = TypeAry::make(elem(), size(), is_stable(), is_flat(), not_flat, is_not_null_free(), is_atomic());
5121   const TypeAryPtr* res = make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5122   // We keep the speculative part if it contains information about flat-/nullability.
5123   // Make sure it's removed if it's not better than the non-speculative type anymore.
5124   if (res->speculative() == res->remove_speculative()) {
5125     return res->remove_speculative();
5126   }
5127   return res;
5128 }
5129 
5130 const TypeAryPtr* TypeAryPtr::cast_to_null_free(bool null_free) const {
5131   if (null_free == is_null_free()) {
5132     return this;
5133   }
5134   assert(!null_free || !is_not_null_free(), "inconsistency");
5135   const Type* elem = this->elem();
5136   const Type* new_elem = elem->make_ptr();
5137   if (null_free) {
5138     new_elem = new_elem->join_speculative(TypePtr::NOTNULL);
5139   } else {
5140     new_elem = new_elem->meet_speculative(TypePtr::NULL_PTR);
5141   }
5142   new_elem = elem->isa_narrowoop() ? new_elem->make_narrowoop() : new_elem;
5143   const TypeAry* new_ary = TypeAry::make(new_elem, size(), is_stable(), is_flat(), is_not_flat(), is_not_null_free(), is_atomic());
5144   const TypeAryPtr* res = make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5145   if (res->speculative() == res->remove_speculative()) {
5146     return res->remove_speculative();
5147   }
5148   return res;
5149 }
5150 
5151 //-------------------------------cast_to_not_null_free-------------------------
5152 const TypeAryPtr* TypeAryPtr::cast_to_not_null_free(bool not_null_free) const {
5153   if (not_null_free == is_not_null_free()) {
5154     return this;
5155   }
5156   assert(!not_null_free || !is_null_free(), "inconsistency");
5157   const TypeAry* new_ary = TypeAry::make(elem(), size(), is_stable(), is_flat(), is_not_flat(), not_null_free, is_atomic());
5158   const TypeAryPtr* res = make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset,
5159                                _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5160   // We keep the speculative part if it contains information about flat-/nullability.
5161   // Make sure it's removed if it's not better than the non-speculative type anymore.
5162   if (res->speculative() == res->remove_speculative()) {
5163     return res->remove_speculative();
5164   }
5165   return res;
5166 }
5167 
5168 //---------------------------------update_properties---------------------------
5169 const TypeAryPtr* TypeAryPtr::update_properties(const TypeAryPtr* from) const {
5170   if ((from->is_flat()          && is_not_flat()) ||
5171       (from->is_not_flat()      && is_flat()) ||
5172       (from->is_null_free()     && is_not_null_free()) ||
5173       (from->is_not_null_free() && is_null_free())) {
5174     return nullptr; // Inconsistent properties
5175   }
5176   const TypeAryPtr* res = this;
5177   if (from->is_not_null_free()) {
5178     res = res->cast_to_not_null_free();
5179   }
5180   if (from->is_not_flat()) {
5181     res = res->cast_to_not_flat();
5182   }
5183   return res;
5184 }
5185 
5186 jint TypeAryPtr::flat_layout_helper() const {
5187   return exact_klass()->as_flat_array_klass()->layout_helper();
5188 }
5189 
5190 int TypeAryPtr::flat_elem_size() const {
5191   return exact_klass()->as_flat_array_klass()->element_byte_size();
5192 }
5193 
5194 int TypeAryPtr::flat_log_elem_size() const {
5195   return exact_klass()->as_flat_array_klass()->log2_element_size();
5196 }
5197 
5198 //------------------------------cast_to_stable---------------------------------
5199 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
5200   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
5201     return this;
5202 
5203   const Type* elem = this->elem();
5204   const TypePtr* elem_ptr = elem->make_ptr();
5205 
5206   if (stable_dimension > 1 && elem_ptr != nullptr && elem_ptr->isa_aryptr()) {
5207     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
5208     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
5209   }
5210 
5211   const TypeAry* new_ary = TypeAry::make(elem, size(), stable, is_flat(), is_not_flat(), is_not_null_free(), is_atomic());
5212 
5213   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5214 }
5215 
5216 //-----------------------------stable_dimension--------------------------------
5217 int TypeAryPtr::stable_dimension() const {
5218   if (!is_stable())  return 0;
5219   int dim = 1;
5220   const TypePtr* elem_ptr = elem()->make_ptr();
5221   if (elem_ptr != nullptr && elem_ptr->isa_aryptr())
5222     dim += elem_ptr->is_aryptr()->stable_dimension();
5223   return dim;
5224 }
5225 
5226 //----------------------cast_to_autobox_cache-----------------------------------
5227 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache() const {
5228   if (is_autobox_cache())  return this;
5229   const TypeOopPtr* etype = elem()->make_oopptr();
5230   if (etype == nullptr)  return this;
5231   // The pointers in the autobox arrays are always non-null.
5232   etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
5233   const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable(), is_flat(), is_not_flat(), is_not_null_free(), is_atomic());
5234   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, /*is_autobox_cache=*/true);
5235 }
5236 
5237 //------------------------------eq---------------------------------------------
5238 // Structural equality check for Type representations
5239 bool TypeAryPtr::eq( const Type *t ) const {
5240   const TypeAryPtr *p = t->is_aryptr();
5241   return
5242     _ary == p->_ary &&  // Check array
5243     TypeOopPtr::eq(p) &&// Check sub-parts
5244     _field_offset == p->_field_offset;
5245 }
5246 
5247 //------------------------------hash-------------------------------------------
5248 // Type-specific hashing function.
5249 uint TypeAryPtr::hash(void) const {
5250   return (uint)(uintptr_t)_ary + TypeOopPtr::hash() + _field_offset.get();
5251 }
5252 
5253 bool TypeAryPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
5254   return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
5255 }
5256 
5257 bool TypeAryPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const {
5258   return TypePtr::is_same_java_type_as_helper_for_array(this, other);
5259 }
5260 
5261 bool TypeAryPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
5262   return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
5263 }
5264 //------------------------------meet-------------------------------------------
5265 // Compute the MEET of two types.  It returns a new Type object.
5266 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
5267   // Perform a fast test for common case; meeting the same types together.
5268   if( this == t ) return this;  // Meeting same type-rep?
5269   // Current "this->_base" is Pointer
5270   switch (t->base()) {          // switch on original type

5277   case HalfFloatBot:
5278   case FloatTop:
5279   case FloatCon:
5280   case FloatBot:
5281   case DoubleTop:
5282   case DoubleCon:
5283   case DoubleBot:
5284   case NarrowOop:
5285   case NarrowKlass:
5286   case Bottom:                  // Ye Olde Default
5287     return Type::BOTTOM;
5288   case Top:
5289     return this;
5290 
5291   default:                      // All else is a mistake
5292     typerr(t);
5293 
5294   case OopPtr: {                // Meeting to OopPtrs
5295     // Found a OopPtr type vs self-AryPtr type
5296     const TypeOopPtr *tp = t->is_oopptr();
5297     Offset offset = meet_offset(tp->offset());
5298     PTR ptr = meet_ptr(tp->ptr());
5299     int depth = meet_inline_depth(tp->inline_depth());
5300     const TypePtr* speculative = xmeet_speculative(tp);
5301     switch (tp->ptr()) {
5302     case TopPTR:
5303     case AnyNull: {
5304       int instance_id = meet_instance_id(InstanceTop);
5305       return make(ptr, (ptr == Constant ? const_oop() : nullptr),
5306                   _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
5307     }
5308     case BotPTR:
5309     case NotNull: {
5310       int instance_id = meet_instance_id(tp->instance_id());
5311       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
5312     }
5313     default: ShouldNotReachHere();
5314     }
5315   }
5316 
5317   case AnyPtr: {                // Meeting two AnyPtrs
5318     // Found an AnyPtr type vs self-AryPtr type
5319     const TypePtr *tp = t->is_ptr();
5320     Offset offset = meet_offset(tp->offset());
5321     PTR ptr = meet_ptr(tp->ptr());
5322     const TypePtr* speculative = xmeet_speculative(tp);
5323     int depth = meet_inline_depth(tp->inline_depth());
5324     switch (tp->ptr()) {
5325     case TopPTR:
5326       return this;
5327     case BotPTR:
5328     case NotNull:
5329       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
5330     case Null:
5331       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
5332       // else fall through to AnyNull
5333     case AnyNull: {
5334       int instance_id = meet_instance_id(InstanceTop);
5335       return make(ptr, (ptr == Constant ? const_oop() : nullptr),
5336                   _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
5337     }
5338     default: ShouldNotReachHere();
5339     }
5340   }
5341 
5342   case MetadataPtr:
5343   case KlassPtr:
5344   case InstKlassPtr:
5345   case AryKlassPtr:
5346   case RawPtr: return TypePtr::BOTTOM;
5347 
5348   case AryPtr: {                // Meeting 2 references?
5349     const TypeAryPtr *tap = t->is_aryptr();
5350     Offset off = meet_offset(tap->offset());
5351     Offset field_off = meet_field_offset(tap->field_offset());
5352     const Type* tm = _ary->meet_speculative(tap->_ary);
5353     const TypeAry* tary = tm->isa_ary();
5354     if (tary == nullptr) {
5355       assert(tm == Type::TOP || tm == Type::BOTTOM, "");
5356       return tm;
5357     }
5358     PTR ptr = meet_ptr(tap->ptr());
5359     int instance_id = meet_instance_id(tap->instance_id());
5360     const TypePtr* speculative = xmeet_speculative(tap);
5361     int depth = meet_inline_depth(tap->inline_depth());
5362 
5363     ciKlass* res_klass = nullptr;
5364     bool res_xk = false;
5365     bool res_flat = false;
5366     bool res_not_flat = false;
5367     bool res_not_null_free = false;
5368     bool res_atomic = false;
5369     const Type* elem = tary->_elem;
5370     if (meet_aryptr(ptr, elem, this, tap, res_klass, res_xk, res_flat, res_not_flat, res_not_null_free, res_atomic) == NOT_SUBTYPE) {
5371       instance_id = InstanceBot;
5372     } else if (this->is_flat() != tap->is_flat()) {
5373       // Meeting flat inline type array with non-flat array. Adjust (field) offset accordingly.
5374       if (tary->_flat) {
5375         // Result is in a flat representation
5376         off = Offset(is_flat() ? offset() : tap->offset());
5377         field_off = is_flat() ? field_offset() : tap->field_offset();
5378       } else if (below_centerline(ptr)) {
5379         // Result is in a non-flat representation
5380         off = Offset(flat_offset()).meet(Offset(tap->flat_offset()));
5381         field_off = (field_off == Offset::top) ? Offset::top : Offset::bottom;
5382       } else if (flat_offset() == tap->flat_offset()) {
5383         off = Offset(!is_flat() ? offset() : tap->offset());
5384         field_off = !is_flat() ? field_offset() : tap->field_offset();
5385       }
5386     }
5387 
5388     ciObject* o = nullptr;             // Assume not constant when done
5389     ciObject* this_oop = const_oop();
5390     ciObject* tap_oop = tap->const_oop();
5391     if (ptr == Constant) {
5392       if (this_oop != nullptr && tap_oop != nullptr &&
5393           this_oop->equals(tap_oop)) {
5394         o = tap_oop;
5395       } else if (above_centerline(_ptr)) {
5396         o = tap_oop;
5397       } else if (above_centerline(tap->_ptr)) {
5398         o = this_oop;
5399       } else {
5400         ptr = NotNull;
5401       }
5402     }
5403     return make(ptr, o, TypeAry::make(elem, tary->_size, tary->_stable, res_flat, res_not_flat, res_not_null_free, res_atomic), res_klass, res_xk, off, field_off, instance_id, speculative, depth);
5404   }
5405 
5406   // All arrays inherit from Object class
5407   case InstPtr: {
5408     const TypeInstPtr *tp = t->is_instptr();
5409     Offset offset = meet_offset(tp->offset());
5410     PTR ptr = meet_ptr(tp->ptr());
5411     int instance_id = meet_instance_id(tp->instance_id());
5412     const TypePtr* speculative = xmeet_speculative(tp);
5413     int depth = meet_inline_depth(tp->inline_depth());
5414     const TypeInterfaces* interfaces = meet_interfaces(tp);
5415     const TypeInterfaces* tp_interfaces = tp->_interfaces;
5416     const TypeInterfaces* this_interfaces = _interfaces;
5417 
5418     switch (ptr) {
5419     case TopPTR:
5420     case AnyNull:                // Fall 'down' to dual of object klass
5421       // For instances when a subclass meets a superclass we fall
5422       // below the centerline when the superclass is exact. We need to
5423       // do the same here.
5424       //
5425       // Flat in array:
5426       // We do
5427       //   dual(TypeAryPtr) MEET dual(TypeInstPtr)
5428       // If TypeInstPtr is anything else than Object, then the result of the meet is bottom Object (i.e. we could have
5429       // instances or arrays).
5430       // If TypeInstPtr is an Object and either
5431       // - exact
5432       // - inexact AND flat in array == dual(not flat in array) (i.e. not an array type)
5433       // then the result of the meet is bottom Object (i.e. we could have instances or arrays).
5434       // Otherwise, we meet two array pointers and create a new TypeAryPtr.
5435       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) &&
5436           !tp->klass_is_exact() && !tp->is_not_flat_in_array()) {
5437         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
5438       } else {
5439         // cannot subclass, so the meet has to fall badly below the centerline
5440         ptr = NotNull;
5441         instance_id = InstanceBot;
5442         interfaces = this_interfaces->intersection_with(tp_interfaces);
5443         FlatInArray flat_in_array = meet_flat_in_array(NotFlat, tp->flat_in_array());
5444         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr, offset, flat_in_array, instance_id, speculative, depth);
5445       }
5446     case Constant:
5447     case NotNull:
5448     case BotPTR: { // Fall down to object klass
5449       // LCA is object_klass, but if we subclass from the top we can do better
5450       if (above_centerline(tp->ptr())) {
5451         // If 'tp'  is above the centerline and it is Object class
5452         // then we can subclass in the Java class hierarchy.
5453         // For instances when a subclass meets a superclass we fall
5454         // below the centerline when the superclass is exact. We need
5455         // to do the same here.
5456 
5457         // Flat in array: We do TypeAryPtr MEET dual(TypeInstPtr), same applies as above in TopPTR/AnyNull case.
5458         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) &&
5459             !tp->klass_is_exact() && !tp->is_not_flat_in_array()) {
5460           // that is, my array type is a subtype of 'tp' klass
5461           return make(ptr, (ptr == Constant ? const_oop() : nullptr),
5462                       _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
5463         }
5464       }
5465       // The other case cannot happen, since t cannot be a subtype of an array.
5466       // The meet falls down to Object class below centerline.
5467       if (ptr == Constant) {
5468         ptr = NotNull;
5469       }
5470       if (instance_id > 0) {
5471         instance_id = InstanceBot;
5472       }
5473 
5474       FlatInArray flat_in_array = meet_flat_in_array(NotFlat, tp->flat_in_array());
5475       interfaces = this_interfaces->intersection_with(tp_interfaces);
5476       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr, offset,
5477                                flat_in_array, instance_id, speculative, depth);
5478     }
5479     default: typerr(t);
5480     }
5481   }
5482   }
5483   return this;                  // Lint noise
5484 }
5485 
5486 
5487 template<class T> TypePtr::MeetResult TypePtr::meet_aryptr(PTR& ptr, const Type*& elem, const T* this_ary, const T* other_ary,
5488                                                            ciKlass*& res_klass, bool& res_xk, bool &res_flat, bool& res_not_flat, bool& res_not_null_free, bool &res_atomic) {
5489   int dummy;
5490   bool this_top_or_bottom = (this_ary->base_element_type(dummy) == Type::TOP || this_ary->base_element_type(dummy) == Type::BOTTOM);
5491   bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
5492   ciKlass* this_klass = this_ary->klass();
5493   ciKlass* other_klass = other_ary->klass();
5494   bool this_xk = this_ary->klass_is_exact();
5495   bool other_xk = other_ary->klass_is_exact();
5496   PTR this_ptr = this_ary->ptr();
5497   PTR other_ptr = other_ary->ptr();
5498   bool this_flat = this_ary->is_flat();
5499   bool this_not_flat = this_ary->is_not_flat();
5500   bool other_flat = other_ary->is_flat();
5501   bool other_not_flat = other_ary->is_not_flat();
5502   bool this_not_null_free = this_ary->is_not_null_free();
5503   bool other_not_null_free = other_ary->is_not_null_free();
5504   bool this_atomic = this_ary->is_atomic();
5505   bool other_atomic = other_ary->is_atomic();
5506   const bool same_nullness = this_ary->is_null_free() == other_ary->is_null_free();
5507   res_klass = nullptr;
5508   MeetResult result = SUBTYPE;
5509   res_flat = this_flat && other_flat;
5510   bool res_null_free = this_ary->is_null_free() && other_ary->is_null_free();
5511   res_not_flat = this_not_flat && other_not_flat;
5512   res_not_null_free = this_not_null_free && other_not_null_free;
5513   res_atomic = this_atomic && other_atomic;
5514 
5515   if (elem->isa_int()) {
5516     // Integral array element types have irrelevant lattice relations.
5517     // It is the klass that determines array layout, not the element type.
5518       if (this_top_or_bottom) {
5519         res_klass = other_klass;
5520       } else if (other_top_or_bottom || other_klass == this_klass) {
5521       res_klass = this_klass;
5522     } else {
5523       // Something like byte[int+] meets char[int+].
5524       // This must fall to bottom, not (int[-128..65535])[int+].
5525       // instance_id = InstanceBot;
5526       elem = Type::BOTTOM;
5527       result = NOT_SUBTYPE;
5528       if (above_centerline(ptr) || ptr == Constant) {
5529         ptr = NotNull;
5530         res_xk = false;
5531         return NOT_SUBTYPE;
5532       }
5533     }
5534   } else {// Non integral arrays.
5535     // Must fall to bottom if exact klasses in upper lattice
5536     // are not equal or super klass is exact.
5537     if ((above_centerline(ptr) || ptr == Constant) && !this_ary->is_same_java_type_as(other_ary) &&
5538         // meet with top[] and bottom[] are processed further down:
5539         !this_top_or_bottom && !other_top_or_bottom &&
5540         // both are exact and not equal:

5542          // 'tap'  is exact and super or unrelated:
5543          (other_xk && !other_ary->is_meet_subtype_of(this_ary)) ||
5544          // 'this' is exact and super or unrelated:
5545          (this_xk && !this_ary->is_meet_subtype_of(other_ary)))) {
5546       if (above_centerline(ptr) || (elem->make_ptr() && above_centerline(elem->make_ptr()->_ptr))) {
5547         elem = Type::BOTTOM;
5548       }
5549       ptr = NotNull;
5550       res_xk = false;
5551       return NOT_SUBTYPE;
5552     }
5553   }
5554 
5555   res_xk = false;
5556   switch (other_ptr) {
5557     case AnyNull:
5558     case TopPTR:
5559       // Compute new klass on demand, do not use tap->_klass
5560       if (below_centerline(this_ptr)) {
5561         res_xk = this_xk;
5562         if (this_ary->is_flat()) {
5563           elem = this_ary->elem();
5564         }
5565       } else {
5566         res_xk = (other_xk || this_xk);
5567       }
5568       break;
5569     case Constant: {
5570       if (this_ptr == Constant && same_nullness) {
5571         // Only exact if same nullness since:
5572         //     null-free [LMyValue <: nullable [LMyValue.
5573         res_xk = true;
5574       } else if (above_centerline(this_ptr)) {
5575         res_xk = true;
5576       } else {
5577         // Only precise for identical arrays
5578         res_xk = this_xk && (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom));
5579         // Even though MyValue is final, [LMyValue is only exact if the array
5580         // is (not) null-free due to null-free [LMyValue <: null-able [LMyValue.
5581         if (res_xk && !res_null_free && !res_not_null_free) {
5582           ptr = NotNull;
5583           res_xk = false;
5584         }
5585       }
5586       break;
5587     }
5588     case NotNull:
5589     case BotPTR:
5590       // Compute new klass on demand, do not use tap->_klass
5591       if (above_centerline(this_ptr)) {
5592         res_xk = other_xk;
5593         if (other_ary->is_flat()) {
5594           elem = other_ary->elem();
5595         }
5596       } else {
5597         res_xk = (other_xk && this_xk) &&
5598                  (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom)); // Only precise for identical arrays
5599         // Even though MyValue is final, [LMyValue is only exact if the array
5600         // is (not) null-free due to null-free [LMyValue <: null-able [LMyValue.
5601         if (res_xk && !res_null_free && !res_not_null_free) {
5602           ptr = NotNull;
5603           res_xk = false;
5604         }
5605       }
5606       break;
5607     default:  {
5608       ShouldNotReachHere();
5609       return result;
5610     }
5611   }
5612   return result;
5613 }
5614 
5615 
5616 //------------------------------xdual------------------------------------------
5617 // Dual: compute field-by-field dual
5618 const Type *TypeAryPtr::xdual() const {
5619   bool xk = _klass_is_exact;
5620   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(), _klass, xk, dual_offset(), dual_field_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
5621 }
5622 
5623 Type::Offset TypeAryPtr::meet_field_offset(const Type::Offset offset) const {
5624   return _field_offset.meet(offset);
5625 }
5626 
5627 //------------------------------dual_offset------------------------------------
5628 Type::Offset TypeAryPtr::dual_field_offset() const {
5629   return _field_offset.dual();
5630 }
5631 
5632 //------------------------------dump2------------------------------------------
5633 #ifndef PRODUCT
5634 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5635   st->print("aryptr:");
5636   _ary->dump2(d, depth, st);
5637   _interfaces->dump(st);
5638 
5639   if (_ptr == Constant) {
5640     const_oop()->print(st);
5641   }
5642 
5643   st->print(":%s", ptr_msg[_ptr]);
5644   if (_klass_is_exact) {
5645     st->print(":exact");
5646   }
5647 
5648   if (is_flat()) {
5649     st->print(":flat");
5650     st->print("(");
5651     _field_offset.dump2(st);
5652     st->print(")");
5653   } else if (is_not_flat()) {
5654     st->print(":not_flat");
5655   }
5656   if (is_null_free()) {
5657     st->print(":null free");
5658   }
5659   if (is_atomic()) {
5660     st->print(":atomic");
5661   }
5662   if (Verbose) {
5663     if (is_not_flat()) {
5664       st->print(":not flat");
5665     }
5666     if (is_not_null_free()) {
5667       st->print(":nullable");
5668     }
5669   }
5670   if (offset() != 0) {
5671     BasicType basic_elem_type = elem()->basic_type();
5672     int header_size = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5673     if( _offset == Offset::top )       st->print("+undefined");
5674     else if( _offset == Offset::bottom )  st->print("+any");
5675     else if( offset() < header_size ) st->print("+%d", offset());
5676     else {
5677       if (basic_elem_type == T_ILLEGAL) {
5678         st->print("+any");
5679       } else {
5680         int elem_size = type2aelembytes(basic_elem_type);
5681         st->print("[%d]", (offset() - header_size)/elem_size);
5682       }
5683     }
5684   }
5685 
5686   dump_instance_id(st);
5687   dump_inline_depth(st);
5688   dump_speculative(st);
5689 }
5690 #endif
5691 
5692 bool TypeAryPtr::empty(void) const {
5693   if (_ary->empty())       return true;
5694   // FIXME: Does this belong here? Or in the meet code itself?
5695   if (is_flat() && is_not_flat()) {
5696     return true;
5697   }
5698   return TypeOopPtr::empty();
5699 }
5700 
5701 //------------------------------add_offset-------------------------------------
5702 const TypePtr* TypeAryPtr::add_offset(intptr_t offset) const {
5703   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _field_offset, _instance_id, add_offset_speculative(offset), _inline_depth, _is_autobox_cache);
5704 }
5705 
5706 const TypeAryPtr* TypeAryPtr::with_offset(intptr_t offset) const {
5707   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, Offset(offset), _field_offset, _instance_id, with_offset_speculative(offset), _inline_depth, _is_autobox_cache);
5708 }
5709 
5710 const TypeAryPtr* TypeAryPtr::with_ary(const TypeAry* ary) const {
5711   return make(_ptr, _const_oop, ary, _klass, _klass_is_exact, _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5712 }
5713 
5714 const TypeAryPtr* TypeAryPtr::remove_speculative() const {
5715   if (_speculative == nullptr) {
5716     return this;
5717   }
5718   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
5719   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, _instance_id, nullptr, _inline_depth, _is_autobox_cache);
5720 }
5721 
5722 const Type* TypeAryPtr::cleanup_speculative() const {
5723   if (speculative() == nullptr) {
5724     return this;
5725   }
5726   // Keep speculative part if it contains information about flat-/nullability
5727   const TypeAryPtr* spec_aryptr = speculative()->isa_aryptr();
5728   if (spec_aryptr != nullptr && !above_centerline(spec_aryptr->ptr()) &&
5729       (spec_aryptr->is_not_flat() || spec_aryptr->is_not_null_free())) {
5730     return this;
5731   }
5732   return TypeOopPtr::cleanup_speculative();
5733 }
5734 
5735 const TypePtr* TypeAryPtr::with_inline_depth(int depth) const {
5736   if (!UseInlineDepthForSpeculativeTypes) {
5737     return this;
5738   }
5739   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, _instance_id, _speculative, depth, _is_autobox_cache);
5740 }
5741 
5742 const TypeAryPtr* TypeAryPtr::with_field_offset(int offset) const {
5743   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, Offset(offset), _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5744 }
5745 
5746 const TypePtr* TypeAryPtr::add_field_offset_and_offset(intptr_t offset) const {
5747   int adj = 0;
5748   if (is_flat() && klass_is_exact() && offset != Type::OffsetBot && offset != Type::OffsetTop) {
5749     if (_offset.get() != OffsetBot && _offset.get() != OffsetTop) {
5750       adj = _offset.get();
5751       offset += _offset.get();
5752     }
5753     uint header = arrayOopDesc::base_offset_in_bytes(T_FLAT_ELEMENT);
5754     if (_field_offset.get() != OffsetBot && _field_offset.get() != OffsetTop) {
5755       offset += _field_offset.get();
5756       if (_offset.get() == OffsetBot || _offset.get() == OffsetTop) {
5757         offset += header;
5758       }
5759     }
5760     if (elem()->make_oopptr()->is_inlinetypeptr() && (offset >= (intptr_t)header || offset < 0)) {
5761       // Try to get the field of the inline type array element we are pointing to
5762       ciInlineKlass* vk = elem()->inline_klass();
5763       int shift = flat_log_elem_size();
5764       int mask = (1 << shift) - 1;
5765       intptr_t field_offset = ((offset - header) & mask);
5766       ciField* field = vk->get_field_by_offset(field_offset + vk->payload_offset(), false);
5767       if (field != nullptr || field_offset == vk->null_marker_offset_in_payload()) {
5768         return with_field_offset(field_offset)->add_offset(offset - field_offset - adj);
5769       }
5770     }
5771   }
5772   return add_offset(offset - adj);
5773 }
5774 
5775 // Return offset incremented by field_offset for flat inline type arrays
5776 int TypeAryPtr::flat_offset() const {
5777   int offset = _offset.get();
5778   if (offset != Type::OffsetBot && offset != Type::OffsetTop &&
5779       _field_offset != Offset::bottom && _field_offset != Offset::top) {
5780     offset += _field_offset.get();
5781   }
5782   return offset;
5783 }
5784 
5785 const TypePtr* TypeAryPtr::with_instance_id(int instance_id) const {
5786   assert(is_known_instance(), "should be known");
5787   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, instance_id, _speculative, _inline_depth);
5788 }
5789 
5790 //=============================================================================
5791 
5792 
5793 //------------------------------hash-------------------------------------------
5794 // Type-specific hashing function.
5795 uint TypeNarrowPtr::hash(void) const {
5796   return _ptrtype->hash() + 7;
5797 }
5798 
5799 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
5800   return _ptrtype->singleton();
5801 }
5802 
5803 bool TypeNarrowPtr::empty(void) const {
5804   return _ptrtype->empty();
5805 }
5806 
5807 intptr_t TypeNarrowPtr::get_con() const {
5808   return _ptrtype->get_con();
5809 }
5810 
5811 bool TypeNarrowPtr::eq( const Type *t ) const {
5812   const TypeNarrowPtr* tc = isa_same_narrowptr(t);

5866   case HalfFloatTop:
5867   case HalfFloatCon:
5868   case HalfFloatBot:
5869   case FloatTop:
5870   case FloatCon:
5871   case FloatBot:
5872   case DoubleTop:
5873   case DoubleCon:
5874   case DoubleBot:
5875   case AnyPtr:
5876   case RawPtr:
5877   case OopPtr:
5878   case InstPtr:
5879   case AryPtr:
5880   case MetadataPtr:
5881   case KlassPtr:
5882   case InstKlassPtr:
5883   case AryKlassPtr:
5884   case NarrowOop:
5885   case NarrowKlass:

5886   case Bottom:                  // Ye Olde Default
5887     return Type::BOTTOM;
5888   case Top:
5889     return this;
5890 
5891   default:                      // All else is a mistake
5892     typerr(t);
5893 
5894   } // End of switch
5895 
5896   return this;
5897 }
5898 
5899 #ifndef PRODUCT
5900 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5901   _ptrtype->dump2(d, depth, st);
5902 }
5903 #endif
5904 
5905 const TypeNarrowOop *TypeNarrowOop::BOTTOM;

5949     return (one == two) && TypePtr::eq(t);
5950   } else {
5951     return one->equals(two) && TypePtr::eq(t);
5952   }
5953 }
5954 
5955 //------------------------------hash-------------------------------------------
5956 // Type-specific hashing function.
5957 uint TypeMetadataPtr::hash(void) const {
5958   return
5959     (metadata() ? metadata()->hash() : 0) +
5960     TypePtr::hash();
5961 }
5962 
5963 //------------------------------singleton--------------------------------------
5964 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5965 // constants
5966 bool TypeMetadataPtr::singleton(void) const {
5967   // detune optimizer to not generate constant metadata + constant offset as a constant!
5968   // TopPTR, Null, AnyNull, Constant are all singletons
5969   return (offset() == 0) && !below_centerline(_ptr);
5970 }
5971 
5972 //------------------------------add_offset-------------------------------------
5973 const TypePtr* TypeMetadataPtr::add_offset( intptr_t offset ) const {
5974   return make( _ptr, _metadata, xadd_offset(offset));
5975 }
5976 
5977 //-----------------------------filter------------------------------------------
5978 // Do not allow interface-vs.-noninterface joins to collapse to top.
5979 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
5980   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
5981   if (ft == nullptr || ft->empty())
5982     return Type::TOP;           // Canonical empty value
5983   return ft;
5984 }
5985 
5986  //------------------------------get_con----------------------------------------
5987 intptr_t TypeMetadataPtr::get_con() const {
5988   assert( _ptr == Null || _ptr == Constant, "" );
5989   assert(offset() >= 0, "");
5990 
5991   if (offset() != 0) {
5992     // After being ported to the compiler interface, the compiler no longer
5993     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5994     // to a handle at compile time.  This handle is embedded in the generated
5995     // code and dereferenced at the time the nmethod is made.  Until that time,
5996     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5997     // have access to the addresses!).  This does not seem to currently happen,
5998     // but this assertion here is to help prevent its occurrence.
5999     tty->print_cr("Found oop constant with non-zero offset");
6000     ShouldNotReachHere();
6001   }
6002 
6003   return (intptr_t)metadata()->constant_encoding();
6004 }
6005 
6006 //------------------------------cast_to_ptr_type-------------------------------
6007 const TypeMetadataPtr* TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
6008   if( ptr == _ptr ) return this;
6009   return make(ptr, metadata(), _offset);
6010 }
6011 

6025   case HalfFloatBot:
6026   case FloatTop:
6027   case FloatCon:
6028   case FloatBot:
6029   case DoubleTop:
6030   case DoubleCon:
6031   case DoubleBot:
6032   case NarrowOop:
6033   case NarrowKlass:
6034   case Bottom:                  // Ye Olde Default
6035     return Type::BOTTOM;
6036   case Top:
6037     return this;
6038 
6039   default:                      // All else is a mistake
6040     typerr(t);
6041 
6042   case AnyPtr: {
6043     // Found an AnyPtr type vs self-OopPtr type
6044     const TypePtr *tp = t->is_ptr();
6045     Offset offset = meet_offset(tp->offset());
6046     PTR ptr = meet_ptr(tp->ptr());
6047     switch (tp->ptr()) {
6048     case Null:
6049       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6050       // else fall through:
6051     case TopPTR:
6052     case AnyNull: {
6053       return make(ptr, _metadata, offset);
6054     }
6055     case BotPTR:
6056     case NotNull:
6057       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6058     default: typerr(t);
6059     }
6060   }
6061 
6062   case RawPtr:
6063   case KlassPtr:
6064   case InstKlassPtr:
6065   case AryKlassPtr:
6066   case OopPtr:
6067   case InstPtr:
6068   case AryPtr:
6069     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
6070 
6071   case MetadataPtr: {
6072     const TypeMetadataPtr *tp = t->is_metadataptr();
6073     Offset offset = meet_offset(tp->offset());
6074     PTR tptr = tp->ptr();
6075     PTR ptr = meet_ptr(tptr);
6076     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
6077     if (tptr == TopPTR || _ptr == TopPTR ||
6078         metadata()->equals(tp->metadata())) {
6079       return make(ptr, md, offset);
6080     }
6081     // metadata is different
6082     if( ptr == Constant ) {  // Cannot be equal constants, so...
6083       if( tptr == Constant && _ptr != Constant)  return t;
6084       if( _ptr == Constant && tptr != Constant)  return this;
6085       ptr = NotNull;            // Fall down in lattice
6086     }
6087     return make(ptr, nullptr, offset);
6088     break;
6089   }
6090   } // End of switch
6091   return this;                  // Return the double constant
6092 }
6093 

6097 const Type *TypeMetadataPtr::xdual() const {
6098   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
6099 }
6100 
6101 //------------------------------dump2------------------------------------------
6102 #ifndef PRODUCT
6103 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
6104   st->print("metadataptr:%s", ptr_msg[_ptr]);
6105   if (metadata() != nullptr) {
6106     st->print(":" INTPTR_FORMAT, p2i(metadata()));
6107   }
6108   dump_offset(st);
6109 }
6110 #endif
6111 
6112 
6113 //=============================================================================
6114 // Convenience common pre-built type.
6115 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
6116 
6117 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, Offset offset):
6118   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
6119 }
6120 
6121 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
6122   return make(Constant, m, Offset(0));
6123 }
6124 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
6125   return make(Constant, m, Offset(0));
6126 }
6127 
6128 //------------------------------make-------------------------------------------
6129 // Create a meta data constant
6130 const TypeMetadataPtr* TypeMetadataPtr::make(PTR ptr, ciMetadata* m, Offset offset) {
6131   assert(m == nullptr || !m->is_klass(), "wrong type");
6132   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
6133 }
6134 
6135 
6136 const TypeKlassPtr* TypeAryPtr::as_klass_type(bool try_for_exact) const {
6137   const Type* elem = _ary->_elem;
6138   bool xk = klass_is_exact();
6139   bool is_refined = false;
6140   if (elem->make_oopptr() != nullptr) {
6141     is_refined = true;
6142     elem = elem->make_oopptr()->as_klass_type(try_for_exact);
6143     if (elem->isa_aryklassptr()) {
6144       const TypeAryKlassPtr* elem_klass = elem->is_aryklassptr();
6145       if (elem_klass->is_refined_type()) {
6146         elem = elem_klass->cast_to_non_refined();
6147       }
6148     } else {
6149       const TypeInstKlassPtr* elem_klass = elem->is_instklassptr();
6150       if (try_for_exact && !xk && elem_klass->klass_is_exact() &&
6151           !elem_klass->exact_klass()->as_instance_klass()->can_be_inline_klass()) {
6152         xk = true;
6153       }
6154     }
6155   }
6156   return TypeAryKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, elem, klass(), Offset(0), is_not_flat(), is_not_null_free(), is_flat(), is_null_free(), is_atomic(), is_refined);
6157 }
6158 
6159 const TypeKlassPtr* TypeKlassPtr::make(ciKlass* klass, InterfaceHandling interface_handling) {
6160   if (klass->is_instance_klass()) {
6161     return TypeInstKlassPtr::make(klass, interface_handling);
6162   }
6163   return TypeAryKlassPtr::make(klass, interface_handling);
6164 }
6165 
6166 TypeKlassPtr::TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, Offset offset)










6167   : TypePtr(t, ptr, offset), _klass(klass), _interfaces(interfaces) {
6168   assert(klass == nullptr || !klass->is_loaded() || (klass->is_instance_klass() && !klass->is_interface()) ||
6169          klass->is_type_array_klass() || klass->is_flat_array_klass() || !klass->as_obj_array_klass()->base_element_klass()->is_interface(), "no interface here");
6170 }
6171 
6172 // Is there a single ciKlass* that can represent that type?
6173 ciKlass* TypeKlassPtr::exact_klass_helper() const {
6174   assert(_klass->is_instance_klass() && !_klass->is_interface(), "No interface");
6175   if (_interfaces->empty()) {
6176     return _klass;
6177   }
6178   if (_klass != ciEnv::current()->Object_klass()) {
6179     if (_interfaces->eq(_klass->as_instance_klass())) {
6180       return _klass;
6181     }
6182     return nullptr;
6183   }
6184   return _interfaces->exact_klass();
6185 }
6186 
6187 //------------------------------eq---------------------------------------------
6188 // Structural equality check for Type representations
6189 bool TypeKlassPtr::eq(const Type *t) const {
6190   const TypeKlassPtr *p = t->is_klassptr();
6191   return
6192     _interfaces->eq(p->_interfaces) &&
6193     TypePtr::eq(p);
6194 }
6195 
6196 //------------------------------hash-------------------------------------------
6197 // Type-specific hashing function.
6198 uint TypeKlassPtr::hash(void) const {
6199   return TypePtr::hash() + _interfaces->hash();
6200 }
6201 
6202 //------------------------------singleton--------------------------------------
6203 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
6204 // constants
6205 bool TypeKlassPtr::singleton(void) const {
6206   // detune optimizer to not generate constant klass + constant offset as a constant!
6207   // TopPTR, Null, AnyNull, Constant are all singletons
6208   return (offset() == 0) && !below_centerline(_ptr);
6209 }
6210 
6211 // Do not allow interface-vs.-noninterface joins to collapse to top.
6212 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
6213   // logic here mirrors the one from TypeOopPtr::filter. See comments
6214   // there.
6215   const Type* ft = join_helper(kills, include_speculative);
6216 
6217   if (ft->empty()) {
6218     return Type::TOP;           // Canonical empty value
6219   }
6220 
6221   return ft;
6222 }
6223 
6224 const TypeInterfaces* TypeKlassPtr::meet_interfaces(const TypeKlassPtr* other) const {
6225   if (above_centerline(_ptr) && above_centerline(other->_ptr)) {
6226     return _interfaces->union_with(other->_interfaces);
6227   } else if (above_centerline(_ptr) && !above_centerline(other->_ptr)) {
6228     return other->_interfaces;
6229   } else if (above_centerline(other->_ptr) && !above_centerline(_ptr)) {
6230     return _interfaces;
6231   }
6232   return _interfaces->intersection_with(other->_interfaces);
6233 }
6234 
6235 //------------------------------get_con----------------------------------------
6236 intptr_t TypeKlassPtr::get_con() const {
6237   assert( _ptr == Null || _ptr == Constant, "" );
6238   assert( offset() >= 0, "" );
6239 
6240   if (offset() != 0) {
6241     // After being ported to the compiler interface, the compiler no longer
6242     // directly manipulates the addresses of oops.  Rather, it only has a pointer
6243     // to a handle at compile time.  This handle is embedded in the generated
6244     // code and dereferenced at the time the nmethod is made.  Until that time,
6245     // it is not reasonable to do arithmetic with the addresses of oops (we don't
6246     // have access to the addresses!).  This does not seem to currently happen,
6247     // but this assertion here is to help prevent its occurrence.
6248     tty->print_cr("Found oop constant with non-zero offset");
6249     ShouldNotReachHere();
6250   }
6251 
6252   ciKlass* k = exact_klass();
6253 
6254   return (intptr_t)k->constant_encoding();
6255 }
6256 
6257 //=============================================================================
6258 // Convenience common pre-built types.
6259 
6260 // Not-null object klass or below
6261 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT;
6262 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT_OR_NULL;
6263 
6264 bool TypeInstKlassPtr::eq(const Type *t) const {
6265   const TypeInstKlassPtr* p = t->is_instklassptr();
6266   return
6267     klass()->equals(p->klass()) &&
6268     _flat_in_array == p->_flat_in_array &&
6269     TypeKlassPtr::eq(p);
6270 }
6271 
6272 uint TypeInstKlassPtr::hash() const {
6273   return klass()->hash() + TypeKlassPtr::hash() + static_cast<uint>(_flat_in_array);
6274 }
6275 
6276 const TypeInstKlassPtr *TypeInstKlassPtr::make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, Offset offset, FlatInArray flat_in_array) {
6277   if (flat_in_array == Uninitialized) {
6278     flat_in_array = compute_flat_in_array(k->as_instance_klass(), ptr == Constant);
6279   }
6280   TypeInstKlassPtr *r =
6281     (TypeInstKlassPtr*)(new TypeInstKlassPtr(ptr, k, interfaces, offset, flat_in_array))->hashcons();
6282 
6283   return r;
6284 }
6285 
6286 bool TypeInstKlassPtr::empty() const {
6287   if (_flat_in_array == TopFlat) {
6288     return true;
6289   }
6290   return TypeKlassPtr::empty();
6291 }
6292 
6293 //------------------------------add_offset-------------------------------------
6294 // Access internals of klass object
6295 const TypePtr *TypeInstKlassPtr::add_offset( intptr_t offset ) const {
6296   return make(_ptr, klass(), _interfaces, xadd_offset(offset), _flat_in_array);
6297 }
6298 
6299 const TypeInstKlassPtr* TypeInstKlassPtr::with_offset(intptr_t offset) const {
6300   return make(_ptr, klass(), _interfaces, Offset(offset), _flat_in_array);
6301 }
6302 
6303 //------------------------------cast_to_ptr_type-------------------------------
6304 const TypeInstKlassPtr* TypeInstKlassPtr::cast_to_ptr_type(PTR ptr) const {
6305   assert(_base == InstKlassPtr, "subclass must override cast_to_ptr_type");
6306   if( ptr == _ptr ) return this;
6307   return make(ptr, _klass, _interfaces, _offset, _flat_in_array);
6308 }
6309 
6310 
6311 bool TypeInstKlassPtr::must_be_exact() const {
6312   if (!_klass->is_loaded())  return false;
6313   ciInstanceKlass* ik = _klass->as_instance_klass();
6314   if (ik->is_final())  return true;  // cannot clear xk
6315   return false;
6316 }
6317 
6318 //-----------------------------cast_to_exactness-------------------------------
6319 const TypeKlassPtr* TypeInstKlassPtr::cast_to_exactness(bool klass_is_exact) const {
6320   if (klass_is_exact == (_ptr == Constant)) return this;
6321   if (must_be_exact()) return this;
6322   ciKlass* k = klass();
6323   FlatInArray flat_in_array = compute_flat_in_array(k->as_instance_klass(), klass_is_exact);
6324   return make(klass_is_exact ? Constant : NotNull, k, _interfaces, _offset, flat_in_array);
6325 }
6326 
6327 
6328 //-----------------------------as_instance_type--------------------------------
6329 // Corresponding type for an instance of the given class.
6330 // It will be NotNull, and exact if and only if the klass type is exact.
6331 const TypeOopPtr* TypeInstKlassPtr::as_instance_type(bool klass_change) const {
6332   ciKlass* k = klass();
6333   bool xk = klass_is_exact();
6334   Compile* C = Compile::current();
6335   Dependencies* deps = C->dependencies();
6336   assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
6337   // Element is an instance
6338   bool klass_is_exact = false;
6339   const TypeInterfaces* interfaces = _interfaces;
6340   ciInstanceKlass* ik = k->as_instance_klass();
6341   if (k->is_loaded()) {
6342     // Try to set klass_is_exact.

6343     klass_is_exact = ik->is_final();
6344     if (!klass_is_exact && klass_change
6345         && deps != nullptr && UseUniqueSubclasses) {
6346       ciInstanceKlass* sub = ik->unique_concrete_subklass();
6347       if (sub != nullptr) {
6348         if (_interfaces->eq(sub)) {
6349           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
6350           k = ik = sub;
6351           xk = sub->is_final();
6352         }
6353       }
6354     }
6355   }
6356 
6357   FlatInArray flat_in_array = compute_flat_in_array_if_unknown(ik, xk, _flat_in_array);
6358   return TypeInstPtr::make(TypePtr::BotPTR, k, interfaces, xk, nullptr, Offset(0), flat_in_array);
6359 }
6360 
6361 //------------------------------xmeet------------------------------------------
6362 // Compute the MEET of two types, return a new Type object.
6363 const Type    *TypeInstKlassPtr::xmeet( const Type *t ) const {
6364   // Perform a fast test for common case; meeting the same types together.
6365   if( this == t ) return this;  // Meeting same type-rep?
6366 
6367   // Current "this->_base" is Pointer
6368   switch (t->base()) {          // switch on original type
6369 
6370   case Int:                     // Mixing ints & oops happens when javac
6371   case Long:                    // reuses local variables
6372   case HalfFloatTop:
6373   case HalfFloatCon:
6374   case HalfFloatBot:
6375   case FloatTop:
6376   case FloatCon:
6377   case FloatBot:
6378   case DoubleTop:
6379   case DoubleCon:
6380   case DoubleBot:
6381   case NarrowOop:
6382   case NarrowKlass:
6383   case Bottom:                  // Ye Olde Default
6384     return Type::BOTTOM;
6385   case Top:
6386     return this;
6387 
6388   default:                      // All else is a mistake
6389     typerr(t);
6390 
6391   case AnyPtr: {                // Meeting to AnyPtrs
6392     // Found an AnyPtr type vs self-KlassPtr type
6393     const TypePtr *tp = t->is_ptr();
6394     Offset offset = meet_offset(tp->offset());
6395     PTR ptr = meet_ptr(tp->ptr());
6396     switch (tp->ptr()) {
6397     case TopPTR:
6398       return this;
6399     case Null:
6400       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6401     case AnyNull:
6402       return make(ptr, klass(), _interfaces, offset, _flat_in_array);
6403     case BotPTR:
6404     case NotNull:
6405       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6406     default: typerr(t);
6407     }
6408   }
6409 
6410   case RawPtr:
6411   case MetadataPtr:
6412   case OopPtr:
6413   case AryPtr:                  // Meet with AryPtr
6414   case InstPtr:                 // Meet with InstPtr
6415       return TypePtr::BOTTOM;
6416 
6417   //
6418   //             A-top         }
6419   //           /   |   \       }  Tops
6420   //       B-top A-any C-top   }
6421   //          | /  |  \ |      }  Any-nulls
6422   //       B-any   |   C-any   }
6423   //          |    |    |
6424   //       B-con A-con C-con   } constants; not comparable across classes
6425   //          |    |    |
6426   //       B-not   |   C-not   }
6427   //          | \  |  / |      }  not-nulls
6428   //       B-bot A-not C-bot   }
6429   //           \   |   /       }  Bottoms
6430   //             A-bot         }
6431   //
6432 
6433   case InstKlassPtr: {  // Meet two KlassPtr types
6434     const TypeInstKlassPtr *tkls = t->is_instklassptr();
6435     Offset  off     = meet_offset(tkls->offset());
6436     PTR  ptr     = meet_ptr(tkls->ptr());
6437     const TypeInterfaces* interfaces = meet_interfaces(tkls);
6438 
6439     ciKlass* res_klass = nullptr;
6440     bool res_xk = false;
6441     const FlatInArray flat_in_array = meet_flat_in_array(_flat_in_array, tkls->flat_in_array());
6442     switch (meet_instptr(ptr, interfaces, this, tkls, res_klass, res_xk)) {
6443       case UNLOADED:
6444         ShouldNotReachHere();
6445       case SUBTYPE:
6446       case NOT_SUBTYPE:
6447       case LCA:
6448       case QUICK: {
6449         assert(res_xk == (ptr == Constant), "");
6450         const Type* res = make(ptr, res_klass, interfaces, off, flat_in_array);
6451         return res;
6452       }
6453       default:
6454         ShouldNotReachHere();
6455     }
6456   } // End of case KlassPtr
6457   case AryKlassPtr: {                // All arrays inherit from Object class
6458     const TypeAryKlassPtr *tp = t->is_aryklassptr();
6459     Offset offset = meet_offset(tp->offset());
6460     PTR ptr = meet_ptr(tp->ptr());
6461     const TypeInterfaces* interfaces = meet_interfaces(tp);
6462     const TypeInterfaces* tp_interfaces = tp->_interfaces;
6463     const TypeInterfaces* this_interfaces = _interfaces;
6464 
6465     switch (ptr) {
6466     case TopPTR:
6467     case AnyNull:                // Fall 'down' to dual of object klass
6468       // For instances when a subclass meets a superclass we fall
6469       // below the centerline when the superclass is exact. We need to
6470       // do the same here.
6471       //
6472       // Flat in array: See explanation for meet with TypeInstPtr in TypeAryPtr::xmeet_helper().
6473       if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces->contains(this_interfaces) &&
6474           !klass_is_exact() && !is_not_flat_in_array()) {
6475         return TypeAryKlassPtr::make(ptr, tp->elem(), tp->klass(), offset, tp->is_not_flat(), tp->is_not_null_free(), tp->is_flat(), tp->is_null_free(), tp->is_atomic(), tp->is_refined_type());
6476       } else {
6477         // cannot subclass, so the meet has to fall badly below the centerline
6478         ptr = NotNull;
6479         interfaces = _interfaces->intersection_with(tp->_interfaces);
6480         FlatInArray flat_in_array = meet_flat_in_array(_flat_in_array, NotFlat);
6481         return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset, flat_in_array);
6482       }
6483     case Constant:
6484     case NotNull:
6485     case BotPTR: { // Fall down to object klass
6486       // LCA is object_klass, but if we subclass from the top we can do better
6487       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
6488         // If 'this' (InstPtr) is above the centerline and it is Object class
6489         // then we can subclass in the Java class hierarchy.
6490         // For instances when a subclass meets a superclass we fall
6491         // below the centerline when the superclass is exact. We need
6492         // to do the same here.
6493         //
6494         // Flat in array: See explanation for meet with TypeInstPtr in TypeAryPtr::xmeet_helper().
6495         if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces->contains(this_interfaces) &&
6496             !klass_is_exact() && !is_not_flat_in_array()) {
6497           // that is, tp's array type is a subtype of my klass
6498           return TypeAryKlassPtr::make(ptr, tp->elem(), tp->klass(), offset, tp->is_not_flat(), tp->is_not_null_free(), tp->is_flat(), tp->is_null_free(), tp->is_atomic(), tp->is_refined_type());

6499         }
6500       }
6501       // The other case cannot happen, since I cannot be a subtype of an array.
6502       // The meet falls down to Object class below centerline.
6503       if( ptr == Constant )
6504         ptr = NotNull;
6505       interfaces = this_interfaces->intersection_with(tp_interfaces);
6506       FlatInArray flat_in_array = meet_flat_in_array(_flat_in_array, NotFlat);
6507       return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset, flat_in_array);
6508     }
6509     default: typerr(t);
6510     }
6511   }
6512 
6513   } // End of switch
6514   return this;                  // Return the double constant
6515 }
6516 
6517 //------------------------------xdual------------------------------------------
6518 // Dual: compute field-by-field dual
6519 const Type* TypeInstKlassPtr::xdual() const {
6520   return new TypeInstKlassPtr(dual_ptr(), klass(), _interfaces, dual_offset(), dual_flat_in_array());
6521 }
6522 
6523 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
6524   static_assert(std::is_base_of<T2, T1>::value, "");
6525   if (!this_one->is_loaded() || !other->is_loaded()) {
6526     return false;
6527   }
6528   if (!this_one->is_instance_type(other)) {
6529     return false;
6530   }
6531 
6532   if (!other_exact) {
6533     return false;
6534   }
6535 
6536   if (other->klass()->equals(ciEnv::current()->Object_klass()) && other->_interfaces->empty()) {
6537     return true;
6538   }
6539 
6540   return this_one->klass()->is_subtype_of(other->klass()) && this_one->_interfaces->contains(other->_interfaces);

6594 
6595   if (this_exact) {
6596     return this_one->klass()->is_subtype_of(other->klass()) && this_one->_interfaces->contains(other->_interfaces);
6597   }
6598 
6599   return true;
6600 }
6601 
6602 bool TypeInstKlassPtr::maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
6603   return TypePtr::maybe_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
6604 }
6605 
6606 const TypeKlassPtr* TypeInstKlassPtr::try_improve() const {
6607   if (!UseUniqueSubclasses) {
6608     return this;
6609   }
6610   ciKlass* k = klass();
6611   Compile* C = Compile::current();
6612   Dependencies* deps = C->dependencies();
6613   assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");

6614   if (k->is_loaded()) {
6615     ciInstanceKlass* ik = k->as_instance_klass();
6616     if (deps != nullptr) {


6617       ciInstanceKlass* sub = ik->unique_concrete_subklass();
6618       if (sub != nullptr) {
6619         bool improve_to_exact = sub->is_final() && _ptr == NotNull;
6620         const TypeInstKlassPtr* improved = TypeInstKlassPtr::make(improve_to_exact ? Constant : _ptr, sub, _offset);
6621         if (improved->_interfaces->contains(_interfaces)) {
6622           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
6623           return improved;


6624         }
6625       }
6626     }
6627   }
6628   return this;
6629 }
6630 
6631 bool TypeInstKlassPtr::can_be_inline_array() const {
6632   return _klass->equals(ciEnv::current()->Object_klass()) && TypeAryKlassPtr::_array_interfaces->contains(_interfaces);
6633 }
6634 
6635 #ifndef PRODUCT
6636 void TypeInstKlassPtr::dump2(Dict& d, uint depth, outputStream* st) const {
6637   st->print("instklassptr:");
6638   klass()->print_name_on(st);
6639   _interfaces->dump(st);
6640   st->print(":%s", ptr_msg[_ptr]);
6641   dump_offset(st);
6642   dump_flat_in_array(_flat_in_array, st);
6643 }
6644 #endif // PRODUCT
6645 
6646 bool TypeAryKlassPtr::can_be_inline_array() const {
6647   return _elem->isa_instklassptr() && _elem->is_instklassptr()->_klass->can_be_inline_klass();
6648 }
6649 
6650 bool TypeInstPtr::can_be_inline_array() const {
6651   return _klass->equals(ciEnv::current()->Object_klass()) && TypeAryPtr::_array_interfaces->contains(_interfaces);
6652 }
6653 
6654 bool TypeAryPtr::can_be_inline_array() const {
6655   return elem()->make_ptr() && elem()->make_ptr()->isa_instptr() && elem()->make_ptr()->is_instptr()->_klass->can_be_inline_klass();
6656 }
6657 
6658 const TypeAryKlassPtr *TypeAryKlassPtr::make(PTR ptr, const Type* elem, ciKlass* k, Offset offset, bool not_flat, bool not_null_free, bool flat, bool null_free, bool atomic, bool refined_type) {
6659   return (TypeAryKlassPtr*)(new TypeAryKlassPtr(ptr, elem, k, offset, not_flat, not_null_free, flat, null_free, atomic, refined_type))->hashcons();
6660 }
6661 
6662 const TypeAryKlassPtr* TypeAryKlassPtr::make(PTR ptr, ciKlass* k, Offset offset, InterfaceHandling interface_handling, bool not_flat, bool not_null_free, bool flat, bool null_free, bool atomic, bool refined_type) {
6663   const Type* etype;
6664   if (k->is_obj_array_klass()) {
6665     // Element is an object array. Recursively call ourself.
6666     ciKlass* eklass = k->as_obj_array_klass()->element_klass();
6667     etype = TypeKlassPtr::make(eklass, interface_handling)->cast_to_exactness(false);
6668     k = nullptr;
6669   } else if (k->is_type_array_klass()) {
6670     // Element is an typeArray
6671     etype = get_const_basic_type(k->as_type_array_klass()->element_type());

6672   } else {
6673     ShouldNotReachHere();

6674   }
6675 
6676   return TypeAryKlassPtr::make(ptr, etype, k, offset, not_flat, not_null_free, flat, null_free, atomic, refined_type);
6677 }
6678 
6679 const TypeAryKlassPtr* TypeAryKlassPtr::make(ciKlass* klass, InterfaceHandling interface_handling) {
6680   ciArrayKlass* k = klass->as_array_klass();
6681   if (k->is_refined()) {
6682     return TypeAryKlassPtr::make(Constant, k, Offset(0), interface_handling, !k->is_flat_array_klass(), !k->is_elem_null_free(),
6683                                  k->is_flat_array_klass(), k->is_elem_null_free(), k->is_elem_atomic(), true);
6684   } else {
6685     // Use the default combination to canonicalize all non-refined klass pointers
6686     return TypeAryKlassPtr::make(Constant, k, Offset(0), interface_handling, true, true, false, false, true, false);
6687   }
6688 }
6689 
6690 const TypeAryKlassPtr* TypeAryKlassPtr::cast_to_non_refined() const {
6691   assert(is_refined_type(), "must be a refined type");
6692   PTR ptr = _ptr;
6693   // There can be multiple refined array types corresponding to a single unrefined type
6694   if (ptr == NotNull && elem()->is_klassptr()->klass_is_exact()) {
6695     ptr = Constant;
6696   }
6697   return make(ptr, elem(), nullptr, _offset, true, true, false, false, true, false);
6698 }
6699 
6700 // Get the (non-)refined array klass ptr
6701 const TypeAryKlassPtr* TypeAryKlassPtr::cast_to_refined_array_klass_ptr(bool refined) const {
6702   if ((refined == is_refined_type()) || !klass_is_exact() || !exact_klass()->is_obj_array_klass()) {
6703     return this;
6704   }
6705   ciArrayKlass* k = exact_klass()->as_array_klass();
6706   k = ciObjArrayKlass::make(k->element_klass(), refined);
6707   return make(k, trust_interfaces);
6708 }
6709 
6710 //------------------------------eq---------------------------------------------
6711 // Structural equality check for Type representations
6712 bool TypeAryKlassPtr::eq(const Type *t) const {
6713   const TypeAryKlassPtr *p = t->is_aryklassptr();
6714   return
6715     _elem == p->_elem &&  // Check array
6716     _flat == p->_flat &&
6717     _not_flat == p->_not_flat &&
6718     _null_free == p->_null_free &&
6719     _not_null_free == p->_not_null_free &&
6720     _atomic == p->_atomic &&
6721     _refined_type == p->_refined_type &&
6722     TypeKlassPtr::eq(p);  // Check sub-parts
6723 }
6724 
6725 //------------------------------hash-------------------------------------------
6726 // Type-specific hashing function.
6727 uint TypeAryKlassPtr::hash(void) const {
6728   return (uint)(uintptr_t)_elem + TypeKlassPtr::hash() + (uint)(_not_flat ? 43 : 0) +
6729       (uint)(_not_null_free ? 44 : 0) + (uint)(_flat ? 45 : 0) + (uint)(_null_free ? 46 : 0)  + (uint)(_atomic ? 47 : 0) + (uint)(_refined_type ? 48 : 0);
6730 }
6731 
6732 //----------------------compute_klass------------------------------------------
6733 // Compute the defining klass for this class
6734 ciKlass* TypeAryPtr::compute_klass() const {
6735   // Compute _klass based on element type.
6736   ciKlass* k_ary = nullptr;
6737   const TypeInstPtr *tinst;
6738   const TypeAryPtr *tary;
6739   const Type* el = elem();
6740   if (el->isa_narrowoop()) {
6741     el = el->make_ptr();
6742   }
6743 
6744   // Get element klass
6745   if ((tinst = el->isa_instptr()) != nullptr) {
6746     // Leave k_ary at nullptr.
6747   } else if ((tary = el->isa_aryptr()) != nullptr) {
6748     // Leave k_ary at nullptr.
6749   } else if ((el->base() == Type::Top) ||
6750              (el->base() == Type::Bottom)) {
6751     // element type of Bottom occurs from meet of basic type
6752     // and object; Top occurs when doing join on Bottom.
6753     // Leave k_ary at null.
6754   } else {
6755     assert(!el->isa_int(), "integral arrays must be pre-equipped with a class");
6756     // Compute array klass directly from basic type
6757     k_ary = ciTypeArrayKlass::make(el->basic_type());
6758   }
6759   return k_ary;
6760 }
6761 
6762 //------------------------------klass------------------------------------------
6763 // Return the defining klass for this class
6764 ciKlass* TypeAryPtr::klass() const {
6765   if( _klass ) return _klass;   // Return cached value, if possible
6766 
6767   // Oops, need to compute _klass and cache it
6768   ciKlass* k_ary = compute_klass();

6776     // type TypeAryPtr::OOPS.  This Type is shared between all
6777     // active compilations.  However, the ciKlass which represents
6778     // this Type is *not* shared between compilations, so caching
6779     // this value would result in fetching a dangling pointer.
6780     //
6781     // Recomputing the underlying ciKlass for each request is
6782     // a bit less efficient than caching, but calls to
6783     // TypeAryPtr::OOPS->klass() are not common enough to matter.
6784     ((TypeAryPtr*)this)->_klass = k_ary;
6785   }
6786   return k_ary;
6787 }
6788 
6789 // Is there a single ciKlass* that can represent that type?
6790 ciKlass* TypeAryPtr::exact_klass_helper() const {
6791   if (_ary->_elem->make_ptr() && _ary->_elem->make_ptr()->isa_oopptr()) {
6792     ciKlass* k = _ary->_elem->make_ptr()->is_oopptr()->exact_klass_helper();
6793     if (k == nullptr) {
6794       return nullptr;
6795     }
6796     if (k->is_array_klass() && k->as_array_klass()->is_refined()) {
6797       // We have no mechanism to create an array of refined arrays
6798       k = ciObjArrayKlass::make(k->as_array_klass()->element_klass(), false);
6799     }
6800     if (klass_is_exact()) {
6801       return ciObjArrayKlass::make(k, true, is_null_free(), is_atomic());
6802     } else {
6803       // We may reach here if called recursively, must be an unrefined type then
6804       return ciObjArrayKlass::make(k, false);
6805     }
6806   }
6807 
6808   return klass();
6809 }
6810 
6811 const Type* TypeAryPtr::base_element_type(int& dims) const {
6812   const Type* elem = this->elem();
6813   dims = 1;
6814   while (elem->make_ptr() && elem->make_ptr()->isa_aryptr()) {
6815     elem = elem->make_ptr()->is_aryptr()->elem();
6816     dims++;
6817   }
6818   return elem;
6819 }
6820 
6821 //------------------------------add_offset-------------------------------------
6822 // Access internals of klass object
6823 const TypePtr* TypeAryKlassPtr::add_offset(intptr_t offset) const {
6824   return make(_ptr, elem(), klass(), xadd_offset(offset), is_not_flat(), is_not_null_free(), _flat, _null_free, _atomic, _refined_type);
6825 }
6826 
6827 const TypeAryKlassPtr* TypeAryKlassPtr::with_offset(intptr_t offset) const {
6828   return make(_ptr, elem(), klass(), Offset(offset), is_not_flat(), is_not_null_free(), _flat, _null_free, _atomic, _refined_type);
6829 }
6830 
6831 //------------------------------cast_to_ptr_type-------------------------------
6832 const TypeAryKlassPtr* TypeAryKlassPtr::cast_to_ptr_type(PTR ptr) const {
6833   assert(_base == AryKlassPtr, "subclass must override cast_to_ptr_type");
6834   if (ptr == _ptr) return this;
6835   return make(ptr, elem(), _klass, _offset, is_not_flat(), is_not_null_free(), _flat, _null_free, _atomic, _refined_type);
6836 }
6837 
6838 bool TypeAryKlassPtr::must_be_exact() const {
6839   assert(klass_is_exact(), "precondition");
6840   if (_elem == Type::BOTTOM || _elem == Type::TOP) {
6841     return false;
6842   }
6843   const TypeKlassPtr* elem = _elem->isa_klassptr();
6844   if (elem == nullptr) {
6845     // primitive arrays
6846     return true;
6847   }
6848 
6849   // refined types are final
6850   return _refined_type;
6851 }
6852 
6853 //-----------------------------cast_to_exactness-------------------------------
6854 const TypeKlassPtr *TypeAryKlassPtr::cast_to_exactness(bool klass_is_exact) const {
6855   if (klass_is_exact == this->klass_is_exact()) {
6856     return this;
6857   }
6858   if (!klass_is_exact && must_be_exact()) {
6859     return this;
6860   }
6861   const Type* elem = this->elem();
6862   if (elem->isa_klassptr() && !klass_is_exact) {
6863     elem = elem->is_klassptr()->cast_to_exactness(klass_is_exact);
6864   }


6865 
6866   if (klass_is_exact) {
6867     // cast_to_exactness(true) really means get the LCA of all values represented by this
6868     // TypeAryKlassPtr. As a result, it must be an unrefined klass pointer.
6869     return make(Constant, elem, nullptr, _offset, true, true, false, false, true, false);
6870   } else {
6871     // cast_to_exactness(false) means get the TypeAryKlassPtr representing all values that subtype
6872     // this value
6873     bool not_inline = !_elem->isa_instklassptr() || !_elem->is_instklassptr()->instance_klass()->can_be_inline_klass();
6874     bool not_flat = !UseArrayFlattening || not_inline ||
6875                     (_elem->isa_instklassptr() && _elem->is_instklassptr()->instance_klass()->is_inlinetype() && !_elem->is_instklassptr()->instance_klass()->maybe_flat_in_array());
6876     bool not_null_free = not_inline;
6877     bool atomic = not_flat;
6878     return make(NotNull, elem, nullptr, _offset, not_flat, not_null_free, false, false, atomic, false);
6879   }
6880 }
6881 
6882 //-----------------------------as_instance_type--------------------------------
6883 // Corresponding type for an instance of the given class.
6884 // It will be NotNull, and exact if and only if the klass type is exact.
6885 const TypeOopPtr* TypeAryKlassPtr::as_instance_type(bool klass_change) const {
6886   ciKlass* k = klass();
6887   bool    xk = klass_is_exact();
6888   const Type* el = nullptr;
6889   if (elem()->isa_klassptr()) {
6890     el = elem()->is_klassptr()->as_instance_type(false)->cast_to_exactness(false);
6891     k = nullptr;
6892   } else {
6893     el = elem();
6894   }
6895   bool null_free = _null_free;
6896   if (null_free && el->isa_ptr()) {
6897     el = el->is_ptr()->join_speculative(TypePtr::NOTNULL);
6898   }
6899   return TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(el, TypeInt::POS, false, is_flat(), is_not_flat(), is_not_null_free(), is_atomic()), k, xk, Offset(0));
6900 }
6901 
6902 
6903 //------------------------------xmeet------------------------------------------
6904 // Compute the MEET of two types, return a new Type object.
6905 const Type    *TypeAryKlassPtr::xmeet( const Type *t ) const {
6906   // Perform a fast test for common case; meeting the same types together.
6907   if( this == t ) return this;  // Meeting same type-rep?
6908 
6909   // Current "this->_base" is Pointer
6910   switch (t->base()) {          // switch on original type
6911 
6912   case Int:                     // Mixing ints & oops happens when javac
6913   case Long:                    // reuses local variables
6914   case HalfFloatTop:
6915   case HalfFloatCon:
6916   case HalfFloatBot:
6917   case FloatTop:
6918   case FloatCon:
6919   case FloatBot:
6920   case DoubleTop:
6921   case DoubleCon:
6922   case DoubleBot:
6923   case NarrowOop:
6924   case NarrowKlass:
6925   case Bottom:                  // Ye Olde Default
6926     return Type::BOTTOM;
6927   case Top:
6928     return this;
6929 
6930   default:                      // All else is a mistake
6931     typerr(t);
6932 
6933   case AnyPtr: {                // Meeting to AnyPtrs
6934     // Found an AnyPtr type vs self-KlassPtr type
6935     const TypePtr *tp = t->is_ptr();
6936     Offset offset = meet_offset(tp->offset());
6937     PTR ptr = meet_ptr(tp->ptr());
6938     switch (tp->ptr()) {
6939     case TopPTR:
6940       return this;
6941     case Null:
6942       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6943     case AnyNull:
6944       return make(ptr, _elem, klass(), offset, is_not_flat(), is_not_null_free(), is_flat(), is_null_free(), is_atomic(), is_refined_type());
6945     case BotPTR:
6946     case NotNull:
6947       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6948     default: typerr(t);
6949     }
6950   }
6951 
6952   case RawPtr:
6953   case MetadataPtr:
6954   case OopPtr:
6955   case AryPtr:                  // Meet with AryPtr
6956   case InstPtr:                 // Meet with InstPtr
6957     return TypePtr::BOTTOM;
6958 
6959   //
6960   //             A-top         }
6961   //           /   |   \       }  Tops
6962   //       B-top A-any C-top   }
6963   //          | /  |  \ |      }  Any-nulls
6964   //       B-any   |   C-any   }
6965   //          |    |    |
6966   //       B-con A-con C-con   } constants; not comparable across classes
6967   //          |    |    |
6968   //       B-not   |   C-not   }
6969   //          | \  |  / |      }  not-nulls
6970   //       B-bot A-not C-bot   }
6971   //           \   |   /       }  Bottoms
6972   //             A-bot         }
6973   //
6974 
6975   case AryKlassPtr: {  // Meet two KlassPtr types
6976     const TypeAryKlassPtr *tap = t->is_aryklassptr();
6977     Offset off = meet_offset(tap->offset());
6978     const Type* elem = _elem->meet(tap->_elem);

6979     PTR ptr = meet_ptr(tap->ptr());
6980     ciKlass* res_klass = nullptr;
6981     bool res_xk = false;
6982     bool res_flat = false;
6983     bool res_not_flat = false;
6984     bool res_not_null_free = false;
6985     bool res_atomic = false;
6986     MeetResult res = meet_aryptr(ptr, elem, this, tap,
6987                                  res_klass, res_xk, res_flat, res_not_flat, res_not_null_free, res_atomic);
6988     assert(res_xk == (ptr == Constant), "");
6989     bool flat = meet_flat(tap->_flat);
6990     bool null_free = meet_null_free(tap->_null_free);
6991     bool atomic = meet_atomic(tap->_atomic);
6992     bool refined_type = _refined_type && tap->_refined_type;
6993     if (res == NOT_SUBTYPE) {
6994       flat = false;
6995       null_free = false;
6996       atomic = false;
6997       refined_type = false;
6998     } else if (res == SUBTYPE) {
6999       if (above_centerline(tap->ptr()) && !above_centerline(this->ptr())) {
7000         flat = _flat;
7001         null_free = _null_free;
7002         atomic = _atomic;
7003         refined_type = _refined_type;
7004       } else if (above_centerline(this->ptr()) && !above_centerline(tap->ptr())) {
7005         flat = tap->_flat;
7006         null_free = tap->_null_free;
7007         atomic = tap->_atomic;
7008         refined_type = tap->_refined_type;
7009       } else if (above_centerline(this->ptr()) && above_centerline(tap->ptr())) {
7010         flat = _flat || tap->_flat;
7011         null_free = _null_free || tap->_null_free;
7012         atomic = _atomic || tap->_atomic;
7013         refined_type = _refined_type || tap->_refined_type;
7014       } else if (res_xk && _refined_type != tap->_refined_type) {
7015         // This can happen if the phi emitted by LibraryCallKit::load_default_refined_array_klass/load_non_refined_array_klass
7016         // is processed before the typeArray guard is folded. Both inputs are constant but the input corresponding to the
7017         // typeArray will go away. Don't constant fold it yet but wait for the control input to collapse.
7018         ptr = PTR::NotNull;
7019       }
7020     }
7021     return make(ptr, elem, res_klass, off, res_not_flat, res_not_null_free, flat, null_free, atomic, refined_type);
7022   } // End of case KlassPtr
7023   case InstKlassPtr: {
7024     const TypeInstKlassPtr *tp = t->is_instklassptr();
7025     Offset offset = meet_offset(tp->offset());
7026     PTR ptr = meet_ptr(tp->ptr());
7027     const TypeInterfaces* interfaces = meet_interfaces(tp);
7028     const TypeInterfaces* tp_interfaces = tp->_interfaces;
7029     const TypeInterfaces* this_interfaces = _interfaces;
7030 
7031     switch (ptr) {
7032     case TopPTR:
7033     case AnyNull:                // Fall 'down' to dual of object klass
7034       // For instances when a subclass meets a superclass we fall
7035       // below the centerline when the superclass is exact. We need to
7036       // do the same here.
7037       //
7038       // Flat in array: See explanation for meet with TypeInstPtr in TypeAryPtr::xmeet_helper().
7039       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) &&
7040           !tp->klass_is_exact() && !tp->is_not_flat_in_array()) {
7041         return TypeAryKlassPtr::make(ptr, _elem, _klass, offset, is_not_flat(), is_not_null_free(), is_flat(), is_null_free(), is_atomic(), is_refined_type());
7042       } else {
7043         // cannot subclass, so the meet has to fall badly below the centerline
7044         ptr = NotNull;
7045         interfaces = this_interfaces->intersection_with(tp->_interfaces);
7046         FlatInArray flat_in_array = meet_flat_in_array(NotFlat, tp->flat_in_array());
7047         return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset, flat_in_array);
7048       }
7049     case Constant:
7050     case NotNull:
7051     case BotPTR: { // Fall down to object klass
7052       // LCA is object_klass, but if we subclass from the top we can do better
7053       if (above_centerline(tp->ptr())) {
7054         // If 'tp'  is above the centerline and it is Object class
7055         // then we can subclass in the Java class hierarchy.
7056         // For instances when a subclass meets a superclass we fall
7057         // below the centerline when the superclass is exact. We need
7058         // to do the same here.
7059         //
7060         // Flat in array: See explanation for meet with TypeInstPtr in TypeAryPtr::xmeet_helper().
7061         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) &&
7062             !tp->klass_is_exact() && !tp->is_not_flat_in_array()) {
7063           // that is, my array type is a subtype of 'tp' klass
7064           return make(ptr, _elem, _klass, offset, is_not_flat(), is_not_null_free(), is_flat(), is_null_free(), is_atomic(), is_refined_type());
7065         }
7066       }
7067       // The other case cannot happen, since t cannot be a subtype of an array.
7068       // The meet falls down to Object class below centerline.
7069       if (ptr == Constant)
7070         ptr = NotNull;
7071       interfaces = this_interfaces->intersection_with(tp_interfaces);
7072       FlatInArray flat_in_array = meet_flat_in_array(NotFlat, tp->flat_in_array());
7073       return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset, tp->flat_in_array());
7074     }
7075     default: typerr(t);
7076     }
7077   }
7078 
7079   } // End of switch
7080   return this;                  // Return the double constant
7081 }
7082 
7083 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
7084   static_assert(std::is_base_of<T2, T1>::value, "");
7085 
7086   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty() && other_exact) {
7087     return true;
7088   }
7089 
7090   int dummy;
7091   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
7092 
7093   if (!this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) {
7094     return false;
7095   }
7096 
7097   if (this_one->is_instance_type(other)) {
7098     return other->klass() == ciEnv::current()->Object_klass() && this_one->_interfaces->contains(other->_interfaces) &&
7099            other_exact;
7100   }
7101 
7102   assert(this_one->is_array_type(other), "");
7103   const T1* other_ary = this_one->is_array_type(other);
7104   bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
7105   if (other_top_or_bottom) {
7106     return false;
7107   }
7108 
7109   const TypePtr* other_elem = other_ary->elem()->make_ptr();
7110   const TypePtr* this_elem = this_one->elem()->make_ptr();
7111   if (this_elem != nullptr && other_elem != nullptr) {
7112     if (other->is_null_free() && !this_one->is_null_free()) {
7113       return false; // A nullable array can't be a subtype of a null-free array
7114     }
7115     return this_one->is_reference_type(this_elem)->is_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact);
7116   }
7117   if (this_elem == nullptr && other_elem == nullptr) {
7118     return this_one->klass()->is_subtype_of(other->klass());
7119   }
7120   return false;
7121 }
7122 
7123 bool TypeAryKlassPtr::is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
7124   return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
7125 }
7126 
7127 template <class T1, class T2> bool TypePtr::is_same_java_type_as_helper_for_array(const T1* this_one, const T2* other) {
7128   static_assert(std::is_base_of<T2, T1>::value, "");
7129 
7130   int dummy;
7131   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
7132 
7133   if (!this_one->is_array_type(other) ||
7134       !this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) {

7187   }
7188 
7189   const TypePtr* this_elem = this_one->elem()->make_ptr();
7190   const TypePtr* other_elem = other_ary->elem()->make_ptr();
7191   if (other_elem != nullptr && this_elem != nullptr) {
7192     return this_one->is_reference_type(this_elem)->maybe_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact);
7193   }
7194   if (other_elem == nullptr && this_elem == nullptr) {
7195     return this_one->klass()->is_subtype_of(other->klass());
7196   }
7197   return false;
7198 }
7199 
7200 bool TypeAryKlassPtr::maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
7201   return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
7202 }
7203 
7204 //------------------------------xdual------------------------------------------
7205 // Dual: compute field-by-field dual
7206 const Type    *TypeAryKlassPtr::xdual() const {
7207   return new TypeAryKlassPtr(dual_ptr(), elem()->dual(), klass(), dual_offset(), !is_not_flat(), !is_not_null_free(), dual_flat(), dual_null_free(), dual_atomic(), _refined_type);
7208 }
7209 
7210 // Is there a single ciKlass* that can represent that type?
7211 ciKlass* TypeAryKlassPtr::exact_klass_helper() const {
7212   if (elem()->isa_klassptr()) {
7213     ciKlass* k = elem()->is_klassptr()->exact_klass_helper();
7214     if (k == nullptr) {
7215       return nullptr;
7216     }
7217     assert(!k->is_array_klass() || !k->as_array_klass()->is_refined(), "no mechanism to create an array of refined arrays %s", k->name()->as_utf8());
7218     k = ciArrayKlass::make(k, is_null_free(), is_atomic(), _refined_type);
7219     return k;
7220   }
7221 
7222   return klass();
7223 }
7224 
7225 ciKlass* TypeAryKlassPtr::klass() const {
7226   if (_klass != nullptr) {
7227     return _klass;
7228   }
7229   ciKlass* k = nullptr;
7230   if (elem()->isa_klassptr()) {
7231     // leave null
7232   } else if ((elem()->base() == Type::Top) ||
7233              (elem()->base() == Type::Bottom)) {
7234   } else {
7235     k = ciTypeArrayKlass::make(elem()->basic_type());
7236     ((TypeAryKlassPtr*)this)->_klass = k;
7237   }
7238   return k;
7239 }
7240 
7241 //------------------------------dump2------------------------------------------
7242 // Dump Klass Type
7243 #ifndef PRODUCT
7244 void TypeAryKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
7245   st->print("aryklassptr:[");
7246   _elem->dump2(d, depth, st);
7247   _interfaces->dump(st);
7248   st->print(":%s", ptr_msg[_ptr]);
7249   if (_flat) st->print(":flat");
7250   if (_null_free) st->print(":null free");
7251   if (_atomic) st->print(":atomic");
7252   if (_refined_type) st->print(":refined_type");
7253   if (Verbose) {
7254     if (_not_flat) st->print(":not flat");
7255     if (_not_null_free) st->print(":nullable");
7256   }
7257   dump_offset(st);
7258 }
7259 #endif
7260 
7261 const Type* TypeAryKlassPtr::base_element_type(int& dims) const {
7262   const Type* elem = this->elem();
7263   dims = 1;
7264   while (elem->isa_aryklassptr()) {
7265     elem = elem->is_aryklassptr()->elem();
7266     dims++;
7267   }
7268   return elem;
7269 }
7270 
7271 //=============================================================================
7272 // Convenience common pre-built types.
7273 
7274 //------------------------------make-------------------------------------------
7275 const TypeFunc *TypeFunc::make(const TypeTuple *domain_sig, const TypeTuple* domain_cc,
7276                                const TypeTuple *range_sig, const TypeTuple *range_cc) {
7277   return (TypeFunc*)(new TypeFunc(domain_sig, domain_cc, range_sig, range_cc))->hashcons();
7278 }
7279 
7280 const TypeFunc *TypeFunc::make(const TypeTuple *domain, const TypeTuple *range) {
7281   return make(domain, domain, range, range);
7282 }
7283 
7284 //------------------------------osr_domain-----------------------------
7285 const TypeTuple* osr_domain() {
7286   const Type **fields = TypeTuple::fields(2);
7287   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM;  // address of osr buffer
7288   return TypeTuple::make(TypeFunc::Parms+1, fields);
7289 }
7290 
7291 //------------------------------make-------------------------------------------
7292 const TypeFunc* TypeFunc::make(ciMethod* method, bool is_osr_compilation) {
7293   Compile* C = Compile::current();
7294   const TypeFunc* tf = nullptr;
7295   if (!is_osr_compilation) {
7296     tf = C->last_tf(method); // check cache
7297     if (tf != nullptr)  return tf;  // The hit rate here is almost 50%.
7298   }
7299   // Inline types are not passed/returned by reference, instead each field of
7300   // the inline type is passed/returned as an argument. We maintain two views of
7301   // the argument/return list here: one based on the signature (with an inline
7302   // type argument/return as a single slot), one based on the actual calling
7303   // convention (with an inline type argument/return as a list of its fields).
7304   bool has_scalar_args = method->has_scalarized_args() && !is_osr_compilation;
7305   // Fall back to the non-scalarized calling convention when compiling a call via a mismatching method
7306   if (method != C->method() && method->get_Method()->mismatch()) {
7307     has_scalar_args = false;
7308   }
7309   const TypeTuple* domain_sig = is_osr_compilation ? osr_domain() : TypeTuple::make_domain(method, ignore_interfaces, false);
7310   const TypeTuple* domain_cc = has_scalar_args ? TypeTuple::make_domain(method, ignore_interfaces, true) : domain_sig;
7311   ciSignature* sig = method->signature();
7312   bool has_scalar_ret = !method->is_native() && sig->return_type()->is_inlinetype() && sig->return_type()->as_inline_klass()->can_be_returned_as_fields();
7313   const TypeTuple* range_sig = TypeTuple::make_range(sig, ignore_interfaces, false);
7314   const TypeTuple* range_cc = has_scalar_ret ? TypeTuple::make_range(sig, ignore_interfaces, true) : range_sig;
7315   tf = TypeFunc::make(domain_sig, domain_cc, range_sig, range_cc);
7316   if (!is_osr_compilation) {
7317     C->set_last_tf(method, tf);  // fill cache
7318   }



7319   return tf;
7320 }
7321 
7322 //------------------------------meet-------------------------------------------
7323 // Compute the MEET of two types.  It returns a new Type object.
7324 const Type *TypeFunc::xmeet( const Type *t ) const {
7325   // Perform a fast test for common case; meeting the same types together.
7326   if( this == t ) return this;  // Meeting same type-rep?
7327 
7328   // Current "this->_base" is Func
7329   switch (t->base()) {          // switch on original type
7330 
7331   case Bottom:                  // Ye Olde Default
7332     return t;
7333 
7334   default:                      // All else is a mistake
7335     typerr(t);
7336 
7337   case Top:
7338     break;
7339   }
7340   return this;                  // Return the double constant
7341 }
7342 
7343 //------------------------------xdual------------------------------------------
7344 // Dual: compute field-by-field dual
7345 const Type *TypeFunc::xdual() const {
7346   return this;
7347 }
7348 
7349 //------------------------------eq---------------------------------------------
7350 // Structural equality check for Type representations
7351 bool TypeFunc::eq( const Type *t ) const {
7352   const TypeFunc *a = (const TypeFunc*)t;
7353   return _domain_sig == a->_domain_sig &&
7354     _domain_cc == a->_domain_cc &&
7355     _range_sig == a->_range_sig &&
7356     _range_cc == a->_range_cc;
7357 }
7358 
7359 //------------------------------hash-------------------------------------------
7360 // Type-specific hashing function.
7361 uint TypeFunc::hash(void) const {
7362   return (uint)(intptr_t)_domain_sig + (uint)(intptr_t)_domain_cc + (uint)(intptr_t)_range_sig + (uint)(intptr_t)_range_cc;
7363 }
7364 
7365 //------------------------------dump2------------------------------------------
7366 // Dump Function Type
7367 #ifndef PRODUCT
7368 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
7369   if( _range_sig->cnt() <= Parms )
7370     st->print("void");
7371   else {
7372     uint i;
7373     for (i = Parms; i < _range_sig->cnt()-1; i++) {
7374       _range_sig->field_at(i)->dump2(d,depth,st);
7375       st->print("/");
7376     }
7377     _range_sig->field_at(i)->dump2(d,depth,st);
7378   }
7379   st->print(" ");
7380   st->print("( ");
7381   if( !depth || d[this] ) {     // Check for recursive dump
7382     st->print("...)");
7383     return;
7384   }
7385   d.Insert((void*)this,(void*)this);    // Stop recursion
7386   if (Parms < _domain_sig->cnt())
7387     _domain_sig->field_at(Parms)->dump2(d,depth-1,st);
7388   for (uint i = Parms+1; i < _domain_sig->cnt(); i++) {
7389     st->print(", ");
7390     _domain_sig->field_at(i)->dump2(d,depth-1,st);
7391   }
7392   st->print(" )");
7393 }
7394 #endif
7395 
7396 //------------------------------singleton--------------------------------------
7397 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
7398 // constants (Ldi nodes).  Singletons are integer, float or double constants
7399 // or a single symbol.
7400 bool TypeFunc::singleton(void) const {
7401   return false;                 // Never a singleton
7402 }
7403 
7404 bool TypeFunc::empty(void) const {
7405   return false;                 // Never empty
7406 }
7407 
7408 
7409 BasicType TypeFunc::return_type() const{
7410   if (range_sig()->cnt() == TypeFunc::Parms) {
7411     return T_VOID;
7412   }
7413   return range_sig()->field_at(TypeFunc::Parms)->basic_type();
7414 }
< prev index next >