5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "ci/ciMethodData.hpp"
26 #include "ci/ciTypeFlow.hpp"
27 #include "classfile/javaClasses.hpp"
28 #include "classfile/symbolTable.hpp"
29 #include "classfile/vmSymbols.hpp"
30 #include "compiler/compileLog.hpp"
31 #include "libadt/dict.hpp"
32 #include "memory/oopFactory.hpp"
33 #include "memory/resourceArea.hpp"
34 #include "oops/instanceKlass.hpp"
35 #include "oops/instanceMirrorKlass.hpp"
36 #include "oops/objArrayKlass.hpp"
37 #include "oops/typeArrayKlass.hpp"
38 #include "opto/arraycopynode.hpp"
39 #include "opto/callnode.hpp"
40 #include "opto/matcher.hpp"
41 #include "opto/node.hpp"
42 #include "opto/opcodes.hpp"
43 #include "opto/rangeinference.hpp"
44 #include "opto/runtime.hpp"
45 #include "opto/type.hpp"
46 #include "runtime/stubRoutines.hpp"
47 #include "utilities/checkedCast.hpp"
48 #include "utilities/powerOfTwo.hpp"
49 #include "utilities/stringUtils.hpp"
50
51 // Portions of code courtesy of Clifford Click
52
53 // Optimization - Graph Style
54
55 // Dictionary of types shared among compilations.
56 Dict* Type::_shared_type_dict = nullptr;
57
58 // Array which maps compiler types to Basic Types
59 const Type::TypeInfo Type::_type_info[Type::lastype] = {
60 { Bad, T_ILLEGAL, "bad", false, Node::NotAMachineReg, relocInfo::none }, // Bad
61 { Control, T_ILLEGAL, "control", false, 0, relocInfo::none }, // Control
62 { Bottom, T_VOID, "top", false, 0, relocInfo::none }, // Top
63 { Bad, T_INT, "int:", false, Op_RegI, relocInfo::none }, // Int
64 { Bad, T_LONG, "long:", false, Op_RegL, relocInfo::none }, // Long
65 { Half, T_VOID, "half", false, 0, relocInfo::none }, // Half
66 { Bad, T_NARROWOOP, "narrowoop:", false, Op_RegN, relocInfo::none }, // NarrowOop
67 { Bad, T_NARROWKLASS,"narrowklass:", false, Op_RegN, relocInfo::none }, // NarrowKlass
68 { Bad, T_ILLEGAL, "tuple:", false, Node::NotAMachineReg, relocInfo::none }, // Tuple
69 { Bad, T_ARRAY, "array:", false, Node::NotAMachineReg, relocInfo::none }, // Array
70 { Bad, T_ARRAY, "interfaces:", false, Node::NotAMachineReg, relocInfo::none }, // Interfaces
71
72 #if defined(PPC64)
73 { Bad, T_ILLEGAL, "vectormask:", false, Op_RegVectMask, relocInfo::none }, // VectorMask.
74 { Bad, T_ILLEGAL, "vectora:", false, Op_VecA, relocInfo::none }, // VectorA.
75 { Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS
76 { Bad, T_ILLEGAL, "vectord:", false, Op_RegL, relocInfo::none }, // VectorD
215 case ciTypeFlow::StateVector::T_NULL:
216 assert(type == ciTypeFlow::StateVector::null_type(), "");
217 return TypePtr::NULL_PTR;
218
219 case ciTypeFlow::StateVector::T_LONG2:
220 // The ciTypeFlow pass pushes a long, then the half.
221 // We do the same.
222 assert(type == ciTypeFlow::StateVector::long2_type(), "");
223 return TypeInt::TOP;
224
225 case ciTypeFlow::StateVector::T_DOUBLE2:
226 // The ciTypeFlow pass pushes double, then the half.
227 // Our convention is the same.
228 assert(type == ciTypeFlow::StateVector::double2_type(), "");
229 return Type::TOP;
230
231 case T_ADDRESS:
232 assert(type->is_return_address(), "");
233 return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
234
235 default:
236 // make sure we did not mix up the cases:
237 assert(type != ciTypeFlow::StateVector::bottom_type(), "");
238 assert(type != ciTypeFlow::StateVector::top_type(), "");
239 assert(type != ciTypeFlow::StateVector::null_type(), "");
240 assert(type != ciTypeFlow::StateVector::long2_type(), "");
241 assert(type != ciTypeFlow::StateVector::double2_type(), "");
242 assert(!type->is_return_address(), "");
243
244 return Type::get_const_type(type);
245 }
246 }
247
248
249 //-----------------------make_from_constant------------------------------------
250 const Type* Type::make_from_constant(ciConstant constant, bool require_constant,
251 int stable_dimension, bool is_narrow_oop,
252 bool is_autobox_cache) {
253 switch (constant.basic_type()) {
254 case T_BOOLEAN: return TypeInt::make(constant.as_boolean());
537 const Type **ffalse =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
538 ffalse[0] = Type::CONTROL;
539 ffalse[1] = Type::TOP;
540 TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
541
542 const Type **fneither =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
543 fneither[0] = Type::TOP;
544 fneither[1] = Type::TOP;
545 TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
546
547 const Type **ftrue =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
548 ftrue[0] = Type::TOP;
549 ftrue[1] = Type::CONTROL;
550 TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
551
552 const Type **floop =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
553 floop[0] = Type::CONTROL;
554 floop[1] = TypeInt::INT;
555 TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
556
557 TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, 0);
558 TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, OffsetBot);
559 TypePtr::BOTTOM = TypePtr::make(AnyPtr, TypePtr::BotPTR, OffsetBot);
560
561 TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
562 TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
563
564 const Type **fmembar = TypeTuple::fields(0);
565 TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
566
567 const Type **fsc = (const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
568 fsc[0] = TypeInt::CC;
569 fsc[1] = Type::MEMORY;
570 TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
571
572 TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
573 TypeInstPtr::BOTTOM = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass());
574 TypeInstPtr::MIRROR = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
575 TypeInstPtr::MARK = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
576 false, nullptr, oopDesc::mark_offset_in_bytes());
577 TypeInstPtr::KLASS = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
578 false, nullptr, oopDesc::klass_offset_in_bytes());
579 TypeOopPtr::BOTTOM = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
580
581 TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, nullptr, OffsetBot);
582
583 TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
584 TypeNarrowOop::BOTTOM = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
585
586 TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
587
588 mreg2type[Op_Node] = Type::BOTTOM;
589 mreg2type[Op_Set ] = nullptr;
590 mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
591 mreg2type[Op_RegI] = TypeInt::INT;
592 mreg2type[Op_RegP] = TypePtr::BOTTOM;
593 mreg2type[Op_RegF] = Type::FLOAT;
594 mreg2type[Op_RegD] = Type::DOUBLE;
595 mreg2type[Op_RegL] = TypeLong::LONG;
596 mreg2type[Op_RegFlags] = TypeInt::CC;
597
598 GrowableArray<ciInstanceKlass*> array_interfaces;
599 array_interfaces.push(current->env()->Cloneable_klass());
600 array_interfaces.push(current->env()->Serializable_klass());
601 TypeAryPtr::_array_interfaces = TypeInterfaces::make(&array_interfaces);
602 TypeAryKlassPtr::_array_interfaces = TypeAryPtr::_array_interfaces;
603
604 TypeAryPtr::BOTTOM = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::BOTTOM, TypeInt::POS), nullptr, false, Type::OffsetBot);
605 TypeAryPtr::RANGE = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), nullptr /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
606
607 TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), nullptr /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
608
609 #ifdef _LP64
610 if (UseCompressedOops) {
611 assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
612 TypeAryPtr::OOPS = TypeAryPtr::NARROWOOPS;
613 } else
614 #endif
615 {
616 // There is no shared klass for Object[]. See note in TypeAryPtr::klass().
617 TypeAryPtr::OOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), nullptr /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
618 }
619 TypeAryPtr::BYTES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE), true, Type::OffsetBot);
620 TypeAryPtr::SHORTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT), true, Type::OffsetBot);
621 TypeAryPtr::CHARS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, Type::OffsetBot);
622 TypeAryPtr::INTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT ,TypeInt::POS), ciTypeArrayKlass::make(T_INT), true, Type::OffsetBot);
623 TypeAryPtr::LONGS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG), true, Type::OffsetBot);
624 TypeAryPtr::FLOATS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT), true, Type::OffsetBot);
625 TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true, Type::OffsetBot);
626
627 // Nobody should ask _array_body_type[T_NARROWOOP]. Use null as assert.
628 TypeAryPtr::_array_body_type[T_NARROWOOP] = nullptr;
629 TypeAryPtr::_array_body_type[T_OBJECT] = TypeAryPtr::OOPS;
630 TypeAryPtr::_array_body_type[T_ARRAY] = TypeAryPtr::OOPS; // arrays are stored in oop arrays
631 TypeAryPtr::_array_body_type[T_BYTE] = TypeAryPtr::BYTES;
632 TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES; // boolean[] is a byte array
633 TypeAryPtr::_array_body_type[T_SHORT] = TypeAryPtr::SHORTS;
634 TypeAryPtr::_array_body_type[T_CHAR] = TypeAryPtr::CHARS;
635 TypeAryPtr::_array_body_type[T_INT] = TypeAryPtr::INTS;
636 TypeAryPtr::_array_body_type[T_LONG] = TypeAryPtr::LONGS;
637 TypeAryPtr::_array_body_type[T_FLOAT] = TypeAryPtr::FLOATS;
638 TypeAryPtr::_array_body_type[T_DOUBLE] = TypeAryPtr::DOUBLES;
639
640 TypeInstKlassPtr::OBJECT = TypeInstKlassPtr::make(TypePtr::NotNull, current->env()->Object_klass(), 0);
641 TypeInstKlassPtr::OBJECT_OR_NULL = TypeInstKlassPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), 0);
642
643 const Type **fi2c = TypeTuple::fields(2);
644 fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
645 fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
646 TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
647
648 const Type **intpair = TypeTuple::fields(2);
649 intpair[0] = TypeInt::INT;
650 intpair[1] = TypeInt::INT;
651 TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
652
653 const Type **longpair = TypeTuple::fields(2);
654 longpair[0] = TypeLong::LONG;
655 longpair[1] = TypeLong::LONG;
656 TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
657
658 const Type **intccpair = TypeTuple::fields(2);
659 intccpair[0] = TypeInt::INT;
660 intccpair[1] = TypeInt::CC;
661 TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
662
663 const Type **longccpair = TypeTuple::fields(2);
664 longccpair[0] = TypeLong::LONG;
665 longccpair[1] = TypeInt::CC;
666 TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
667
668 _const_basic_type[T_NARROWOOP] = TypeNarrowOop::BOTTOM;
669 _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
670 _const_basic_type[T_BOOLEAN] = TypeInt::BOOL;
671 _const_basic_type[T_CHAR] = TypeInt::CHAR;
672 _const_basic_type[T_BYTE] = TypeInt::BYTE;
673 _const_basic_type[T_SHORT] = TypeInt::SHORT;
674 _const_basic_type[T_INT] = TypeInt::INT;
675 _const_basic_type[T_LONG] = TypeLong::LONG;
676 _const_basic_type[T_FLOAT] = Type::FLOAT;
677 _const_basic_type[T_DOUBLE] = Type::DOUBLE;
678 _const_basic_type[T_OBJECT] = TypeInstPtr::BOTTOM;
679 _const_basic_type[T_ARRAY] = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
680 _const_basic_type[T_VOID] = TypePtr::NULL_PTR; // reflection represents void this way
681 _const_basic_type[T_ADDRESS] = TypeRawPtr::BOTTOM; // both interpreter return addresses & random raw ptrs
682 _const_basic_type[T_CONFLICT] = Type::BOTTOM; // why not?
683
684 _zero_type[T_NARROWOOP] = TypeNarrowOop::NULL_PTR;
685 _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
686 _zero_type[T_BOOLEAN] = TypeInt::ZERO; // false == 0
687 _zero_type[T_CHAR] = TypeInt::ZERO; // '\0' == 0
688 _zero_type[T_BYTE] = TypeInt::ZERO; // 0x00 == 0
689 _zero_type[T_SHORT] = TypeInt::ZERO; // 0x0000 == 0
690 _zero_type[T_INT] = TypeInt::ZERO;
691 _zero_type[T_LONG] = TypeLong::ZERO;
692 _zero_type[T_FLOAT] = TypeF::ZERO;
693 _zero_type[T_DOUBLE] = TypeD::ZERO;
694 _zero_type[T_OBJECT] = TypePtr::NULL_PTR;
695 _zero_type[T_ARRAY] = TypePtr::NULL_PTR; // null array is null oop
696 _zero_type[T_ADDRESS] = TypePtr::NULL_PTR; // raw pointers use the same null
697 _zero_type[T_VOID] = Type::TOP; // the only void value is no value at all
698
699 // get_zero_type() should not happen for T_CONFLICT
700 _zero_type[T_CONFLICT]= nullptr;
701
702 TypeVect::VECTMASK = (TypeVect*)(new TypeVectMask(T_BOOLEAN, MaxVectorSize))->hashcons();
703 mreg2type[Op_RegVectMask] = TypeVect::VECTMASK;
704
705 if (Matcher::supports_scalable_vector()) {
706 TypeVect::VECTA = TypeVect::make(T_BYTE, Matcher::scalable_vector_reg_size(T_BYTE));
707 }
708
709 // Vector predefined types, it needs initialized _const_basic_type[].
710 if (Matcher::vector_size_supported(T_BYTE, 4)) {
711 TypeVect::VECTS = TypeVect::make(T_BYTE, 4);
712 }
713 if (Matcher::vector_size_supported(T_FLOAT, 2)) {
714 TypeVect::VECTD = TypeVect::make(T_FLOAT, 2);
715 }
950 ~VerifyMeet() {
951 assert(_C->_type_verify->_depth != 0, "");
952 _C->_type_verify->_depth--;
953 if (_C->_type_verify->_depth == 0) {
954 _C->_type_verify->_cache.trunc_to(0);
955 }
956 }
957
958 const Type* meet(const Type* t1, const Type* t2) const {
959 return _C->_type_verify->meet(t1, t2);
960 }
961
962 void add(const Type* t1, const Type* t2, const Type* res) const {
963 _C->_type_verify->add(t1, t2, res);
964 }
965 };
966
967 void Type::check_symmetrical(const Type* t, const Type* mt, const VerifyMeet& verify) const {
968 Compile* C = Compile::current();
969 const Type* mt2 = verify.meet(t, this);
970 if (mt != mt2) {
971 tty->print_cr("=== Meet Not Commutative ===");
972 tty->print("t = "); t->dump(); tty->cr();
973 tty->print("this = "); dump(); tty->cr();
974 tty->print("t meet this = "); mt2->dump(); tty->cr();
975 tty->print("this meet t = "); mt->dump(); tty->cr();
976 fatal("meet not commutative");
977 }
978 const Type* dual_join = mt->_dual;
979 const Type* t2t = verify.meet(dual_join,t->_dual);
980 const Type* t2this = verify.meet(dual_join,this->_dual);
981
982 // Interface meet Oop is Not Symmetric:
983 // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
984 // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
985
986 if (t2t != t->_dual || t2this != this->_dual) {
987 tty->print_cr("=== Meet Not Symmetric ===");
988 tty->print("t = "); t->dump(); tty->cr();
989 tty->print("this= "); dump(); tty->cr();
990 tty->print("mt=(t meet this)= "); mt->dump(); tty->cr();
991
992 tty->print("t_dual= "); t->_dual->dump(); tty->cr();
993 tty->print("this_dual= "); _dual->dump(); tty->cr();
994 tty->print("mt_dual= "); mt->_dual->dump(); tty->cr();
995
996 tty->print("mt_dual meet t_dual= "); t2t ->dump(); tty->cr();
997 tty->print("mt_dual meet this_dual= "); t2this ->dump(); tty->cr();
998
999 fatal("meet not symmetric");
1000 }
1001 }
1002 #endif
1003
1004 //------------------------------meet-------------------------------------------
1005 // Compute the MEET of two types. NOT virtual. It enforces that meet is
1006 // commutative and the lattice is symmetric.
1007 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
1008 if (isa_narrowoop() && t->isa_narrowoop()) {
1009 const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
1010 return result->make_narrowoop();
1011 }
1012 if (isa_narrowklass() && t->isa_narrowklass()) {
1013 const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
1014 return result->make_narrowklass();
1015 }
1016
1017 #ifdef ASSERT
1018 Compile* C = Compile::current();
1019 VerifyMeet verify(C);
1020 #endif
1021
1022 const Type *this_t = maybe_remove_speculative(include_speculative);
1023 t = t->maybe_remove_speculative(include_speculative);
1024
1025 const Type *mt = this_t->xmeet(t);
1026 #ifdef ASSERT
1027 verify.add(this_t, t, mt);
1028 if (isa_narrowoop() || t->isa_narrowoop()) {
1029 return mt;
1030 }
1031 if (isa_narrowklass() || t->isa_narrowklass()) {
1032 return mt;
1033 }
1034 this_t->check_symmetrical(t, mt, verify);
1035 const Type *mt_dual = verify.meet(this_t->_dual, t->_dual);
1036 this_t->_dual->check_symmetrical(t->_dual, mt_dual, verify);
1037 #endif
1038 return mt;
1039 }
1040
1041 //------------------------------xmeet------------------------------------------
1042 // Compute the MEET of two types. It returns a new Type object.
1043 const Type *Type::xmeet( const Type *t ) const {
1044 // Perform a fast test for common case; meeting the same types together.
1045 if( this == t ) return this; // Meeting same type-rep?
1046
1047 // Meeting TOP with anything?
1048 if( _base == Top ) return t;
1049
1050 // Meeting BOTTOM with anything?
1051 if( _base == Bottom ) return BOTTOM;
1052
1053 // Current "this->_base" is one of: Bad, Multi, Control, Top,
2030 void TypeLong::dump_verbose() const {
2031 TypeIntHelper::int_type_dump(this, tty, true);
2032 }
2033 #endif
2034
2035 //=============================================================================
2036 // Convenience common pre-built types.
2037 const TypeTuple *TypeTuple::IFBOTH; // Return both arms of IF as reachable
2038 const TypeTuple *TypeTuple::IFFALSE;
2039 const TypeTuple *TypeTuple::IFTRUE;
2040 const TypeTuple *TypeTuple::IFNEITHER;
2041 const TypeTuple *TypeTuple::LOOPBODY;
2042 const TypeTuple *TypeTuple::MEMBAR;
2043 const TypeTuple *TypeTuple::STORECONDITIONAL;
2044 const TypeTuple *TypeTuple::START_I2C;
2045 const TypeTuple *TypeTuple::INT_PAIR;
2046 const TypeTuple *TypeTuple::LONG_PAIR;
2047 const TypeTuple *TypeTuple::INT_CC_PAIR;
2048 const TypeTuple *TypeTuple::LONG_CC_PAIR;
2049
2050 //------------------------------make-------------------------------------------
2051 // Make a TypeTuple from the range of a method signature
2052 const TypeTuple *TypeTuple::make_range(ciSignature* sig, InterfaceHandling interface_handling) {
2053 ciType* return_type = sig->return_type();
2054 uint arg_cnt = return_type->size();
2055 const Type **field_array = fields(arg_cnt);
2056 switch (return_type->basic_type()) {
2057 case T_LONG:
2058 field_array[TypeFunc::Parms] = TypeLong::LONG;
2059 field_array[TypeFunc::Parms+1] = Type::HALF;
2060 break;
2061 case T_DOUBLE:
2062 field_array[TypeFunc::Parms] = Type::DOUBLE;
2063 field_array[TypeFunc::Parms+1] = Type::HALF;
2064 break;
2065 case T_OBJECT:
2066 case T_ARRAY:
2067 case T_BOOLEAN:
2068 case T_CHAR:
2069 case T_FLOAT:
2070 case T_BYTE:
2071 case T_SHORT:
2072 case T_INT:
2073 field_array[TypeFunc::Parms] = get_const_type(return_type, interface_handling);
2074 break;
2075 case T_VOID:
2076 break;
2077 default:
2078 ShouldNotReachHere();
2079 }
2080 return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2081 }
2082
2083 // Make a TypeTuple from the domain of a method signature
2084 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig, InterfaceHandling interface_handling) {
2085 uint arg_cnt = sig->size();
2086
2087 uint pos = TypeFunc::Parms;
2088 const Type **field_array;
2089 if (recv != nullptr) {
2090 arg_cnt++;
2091 field_array = fields(arg_cnt);
2092 // Use get_const_type here because it respects UseUniqueSubclasses:
2093 field_array[pos++] = get_const_type(recv, interface_handling)->join_speculative(TypePtr::NOTNULL);
2094 } else {
2095 field_array = fields(arg_cnt);
2096 }
2097
2098 int i = 0;
2099 while (pos < TypeFunc::Parms + arg_cnt) {
2100 ciType* type = sig->type_at(i);
2101
2102 switch (type->basic_type()) {
2103 case T_LONG:
2104 field_array[pos++] = TypeLong::LONG;
2105 field_array[pos++] = Type::HALF;
2106 break;
2107 case T_DOUBLE:
2108 field_array[pos++] = Type::DOUBLE;
2109 field_array[pos++] = Type::HALF;
2110 break;
2111 case T_OBJECT:
2112 case T_ARRAY:
2113 case T_FLOAT:
2114 case T_INT:
2115 field_array[pos++] = get_const_type(type, interface_handling);
2116 break;
2117 case T_BOOLEAN:
2118 case T_CHAR:
2119 case T_BYTE:
2120 case T_SHORT:
2121 field_array[pos++] = TypeInt::INT;
2122 break;
2123 default:
2124 ShouldNotReachHere();
2125 }
2126 i++;
2127 }
2128
2129 return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2130 }
2131
2132 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
2133 return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
2134 }
2135
2136 //------------------------------fields-----------------------------------------
2137 // Subroutine call type with space allocated for argument types
2138 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
2139 const Type **TypeTuple::fields( uint arg_cnt ) {
2140 const Type **flds = (const Type **)(Compile::current()->type_arena()->AmallocWords((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
2141 flds[TypeFunc::Control ] = Type::CONTROL;
2142 flds[TypeFunc::I_O ] = Type::ABIO;
2143 flds[TypeFunc::Memory ] = Type::MEMORY;
2144 flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
2145 flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
2146
2147 return flds;
2242 if (_fields[i]->empty()) return true;
2243 }
2244 return false;
2245 }
2246
2247 //=============================================================================
2248 // Convenience common pre-built types.
2249
2250 inline const TypeInt* normalize_array_size(const TypeInt* size) {
2251 // Certain normalizations keep us sane when comparing types.
2252 // We do not want arrayOop variables to differ only by the wideness
2253 // of their index types. Pick minimum wideness, since that is the
2254 // forced wideness of small ranges anyway.
2255 if (size->_widen != Type::WidenMin)
2256 return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
2257 else
2258 return size;
2259 }
2260
2261 //------------------------------make-------------------------------------------
2262 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
2263 if (UseCompressedOops && elem->isa_oopptr()) {
2264 elem = elem->make_narrowoop();
2265 }
2266 size = normalize_array_size(size);
2267 return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
2268 }
2269
2270 //------------------------------meet-------------------------------------------
2271 // Compute the MEET of two types. It returns a new Type object.
2272 const Type *TypeAry::xmeet( const Type *t ) const {
2273 // Perform a fast test for common case; meeting the same types together.
2274 if( this == t ) return this; // Meeting same type-rep?
2275
2276 // Current "this->_base" is Ary
2277 switch (t->base()) { // switch on original type
2278
2279 case Bottom: // Ye Olde Default
2280 return t;
2281
2282 default: // All else is a mistake
2283 typerr(t);
2284
2285 case Array: { // Meeting 2 arrays?
2286 const TypeAry* a = t->is_ary();
2287 const Type* size = _size->xmeet(a->_size);
2288 const TypeInt* isize = size->isa_int();
2289 if (isize == nullptr) {
2290 assert(size == Type::TOP || size == Type::BOTTOM, "");
2291 return size;
2292 }
2293 return TypeAry::make(_elem->meet_speculative(a->_elem),
2294 isize, _stable && a->_stable);
2295 }
2296 case Top:
2297 break;
2298 }
2299 return this; // Return the double constant
2300 }
2301
2302 //------------------------------xdual------------------------------------------
2303 // Dual: compute field-by-field dual
2304 const Type *TypeAry::xdual() const {
2305 const TypeInt* size_dual = _size->dual()->is_int();
2306 size_dual = normalize_array_size(size_dual);
2307 return new TypeAry(_elem->dual(), size_dual, !_stable);
2308 }
2309
2310 //------------------------------eq---------------------------------------------
2311 // Structural equality check for Type representations
2312 bool TypeAry::eq( const Type *t ) const {
2313 const TypeAry *a = (const TypeAry*)t;
2314 return _elem == a->_elem &&
2315 _stable == a->_stable &&
2316 _size == a->_size;
2317 }
2318
2319 //------------------------------hash-------------------------------------------
2320 // Type-specific hashing function.
2321 uint TypeAry::hash(void) const {
2322 return (uint)(uintptr_t)_elem + (uint)(uintptr_t)_size + (uint)(_stable ? 43 : 0);
2323 }
2324
2325 /**
2326 * Return same type without a speculative part in the element
2327 */
2328 const TypeAry* TypeAry::remove_speculative() const {
2329 return make(_elem->remove_speculative(), _size, _stable);
2330 }
2331
2332 /**
2333 * Return same type with cleaned up speculative part of element
2334 */
2335 const Type* TypeAry::cleanup_speculative() const {
2336 return make(_elem->cleanup_speculative(), _size, _stable);
2337 }
2338
2339 /**
2340 * Return same type but with a different inline depth (used for speculation)
2341 *
2342 * @param depth depth to meet with
2343 */
2344 const TypePtr* TypePtr::with_inline_depth(int depth) const {
2345 if (!UseInlineDepthForSpeculativeTypes) {
2346 return this;
2347 }
2348 return make(AnyPtr, _ptr, _offset, _speculative, depth);
2349 }
2350
2351 //------------------------------dump2------------------------------------------
2352 #ifndef PRODUCT
2353 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2354 if (_stable) st->print("stable:");
2355 _elem->dump2(d, depth, st);
2356 st->print("[");
2357 _size->dump2(d, depth, st);
2358 st->print("]");
2359 }
2360 #endif
2361
2362 //------------------------------singleton--------------------------------------
2363 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
2364 // constants (Ldi nodes). Singletons are integer, float or double constants
2365 // or a single symbol.
2366 bool TypeAry::singleton(void) const {
2367 return false; // Never a singleton
2368 }
2369
2370 bool TypeAry::empty(void) const {
2371 return _elem->empty() || _size->empty();
2372 }
2373
2374 //--------------------------ary_must_be_exact----------------------------------
2375 bool TypeAry::ary_must_be_exact() const {
2376 // This logic looks at the element type of an array, and returns true
2377 // if the element type is either a primitive or a final instance class.
2378 // In such cases, an array built on this ary must have no subclasses.
2379 if (_elem == BOTTOM) return false; // general array not exact
2380 if (_elem == TOP ) return false; // inverted general array not exact
2381 const TypeOopPtr* toop = nullptr;
2382 if (UseCompressedOops && _elem->isa_narrowoop()) {
2383 toop = _elem->make_ptr()->isa_oopptr();
2384 } else {
2385 toop = _elem->isa_oopptr();
2386 }
2387 if (!toop) return true; // a primitive type, like int
2388 if (!toop->is_loaded()) return false; // unloaded class
2389 const TypeInstPtr* tinst;
2390 if (_elem->isa_narrowoop())
2391 tinst = _elem->make_ptr()->isa_instptr();
2392 else
2393 tinst = _elem->isa_instptr();
2394 if (tinst)
2395 return tinst->instance_klass()->is_final();
2396 const TypeAryPtr* tap;
2397 if (_elem->isa_narrowoop())
2398 tap = _elem->make_ptr()->isa_aryptr();
2399 else
2400 tap = _elem->isa_aryptr();
2401 if (tap)
2402 return tap->ary()->ary_must_be_exact();
2403 return false;
2404 }
2405
2406 //==============================TypeVect=======================================
2407 // Convenience common pre-built types.
2408 const TypeVect* TypeVect::VECTA = nullptr; // vector length agnostic
2409 const TypeVect* TypeVect::VECTS = nullptr; // 32-bit vectors
2410 const TypeVect* TypeVect::VECTD = nullptr; // 64-bit vectors
2411 const TypeVect* TypeVect::VECTX = nullptr; // 128-bit vectors
2412 const TypeVect* TypeVect::VECTY = nullptr; // 256-bit vectors
2413 const TypeVect* TypeVect::VECTZ = nullptr; // 512-bit vectors
2414 const TypeVect* TypeVect::VECTMASK = nullptr; // predicate/mask vector
2415
2550
2551 //=============================================================================
2552 // Convenience common pre-built types.
2553 const TypePtr *TypePtr::NULL_PTR;
2554 const TypePtr *TypePtr::NOTNULL;
2555 const TypePtr *TypePtr::BOTTOM;
2556
2557 //------------------------------meet-------------------------------------------
2558 // Meet over the PTR enum
2559 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2560 // TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,
2561 { /* Top */ TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,},
2562 { /* AnyNull */ AnyNull, AnyNull, Constant, BotPTR, NotNull, BotPTR,},
2563 { /* Constant*/ Constant, Constant, Constant, BotPTR, NotNull, BotPTR,},
2564 { /* Null */ Null, BotPTR, BotPTR, Null, BotPTR, BotPTR,},
2565 { /* NotNull */ NotNull, NotNull, NotNull, BotPTR, NotNull, BotPTR,},
2566 { /* BotPTR */ BotPTR, BotPTR, BotPTR, BotPTR, BotPTR, BotPTR,}
2567 };
2568
2569 //------------------------------make-------------------------------------------
2570 const TypePtr *TypePtr::make(TYPES t, enum PTR ptr, int offset, const TypePtr* speculative, int inline_depth) {
2571 return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2572 }
2573
2574 //------------------------------cast_to_ptr_type-------------------------------
2575 const TypePtr* TypePtr::cast_to_ptr_type(PTR ptr) const {
2576 assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2577 if( ptr == _ptr ) return this;
2578 return make(_base, ptr, _offset, _speculative, _inline_depth);
2579 }
2580
2581 //------------------------------get_con----------------------------------------
2582 intptr_t TypePtr::get_con() const {
2583 assert( _ptr == Null, "" );
2584 return _offset;
2585 }
2586
2587 //------------------------------meet-------------------------------------------
2588 // Compute the MEET of two types. It returns a new Type object.
2589 const Type *TypePtr::xmeet(const Type *t) const {
2590 const Type* res = xmeet_helper(t);
2591 if (res->isa_ptr() == nullptr) {
2592 return res;
2593 }
2594
2595 const TypePtr* res_ptr = res->is_ptr();
2596 if (res_ptr->speculative() != nullptr) {
2597 // type->speculative() is null means that speculation is no better
2598 // than type, i.e. type->speculative() == type. So there are 2
2599 // ways to represent the fact that we have no useful speculative
2600 // data and we should use a single one to be able to test for
2601 // equality between types. Check whether type->speculative() ==
2602 // type and set speculative to null if it is the case.
2603 if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2604 return res_ptr->remove_speculative();
2638 int depth = meet_inline_depth(tp->inline_depth());
2639 return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2640 }
2641 case RawPtr: // For these, flip the call around to cut down
2642 case OopPtr:
2643 case InstPtr: // on the cases I have to handle.
2644 case AryPtr:
2645 case MetadataPtr:
2646 case KlassPtr:
2647 case InstKlassPtr:
2648 case AryKlassPtr:
2649 return t->xmeet(this); // Call in reverse direction
2650 default: // All else is a mistake
2651 typerr(t);
2652
2653 }
2654 return this;
2655 }
2656
2657 //------------------------------meet_offset------------------------------------
2658 int TypePtr::meet_offset( int offset ) const {
2659 // Either is 'TOP' offset? Return the other offset!
2660 if( _offset == OffsetTop ) return offset;
2661 if( offset == OffsetTop ) return _offset;
2662 // If either is different, return 'BOTTOM' offset
2663 if( _offset != offset ) return OffsetBot;
2664 return _offset;
2665 }
2666
2667 //------------------------------dual_offset------------------------------------
2668 int TypePtr::dual_offset( ) const {
2669 if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
2670 if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
2671 return _offset; // Map everything else into self
2672 }
2673
2674 //------------------------------xdual------------------------------------------
2675 // Dual: compute field-by-field dual
2676 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2677 BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2678 };
2679 const Type *TypePtr::xdual() const {
2680 return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2681 }
2682
2683 //------------------------------xadd_offset------------------------------------
2684 int TypePtr::xadd_offset( intptr_t offset ) const {
2685 // Adding to 'TOP' offset? Return 'TOP'!
2686 if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
2687 // Adding to 'BOTTOM' offset? Return 'BOTTOM'!
2688 if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
2689 // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
2690 offset += (intptr_t)_offset;
2691 if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
2692
2693 // assert( _offset >= 0 && _offset+offset >= 0, "" );
2694 // It is possible to construct a negative offset during PhaseCCP
2695
2696 return (int)offset; // Sum valid offsets
2697 }
2698
2699 //------------------------------add_offset-------------------------------------
2700 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2701 return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2702 }
2703
2704 const TypePtr *TypePtr::with_offset(intptr_t offset) const {
2705 return make(AnyPtr, _ptr, offset, _speculative, _inline_depth);
2706 }
2707
2708 //------------------------------eq---------------------------------------------
2709 // Structural equality check for Type representations
2710 bool TypePtr::eq( const Type *t ) const {
2711 const TypePtr *a = (const TypePtr*)t;
2712 return _ptr == a->ptr() && _offset == a->offset() && eq_speculative(a) && _inline_depth == a->_inline_depth;
2713 }
2714
2715 //------------------------------hash-------------------------------------------
2716 // Type-specific hashing function.
2717 uint TypePtr::hash(void) const {
2718 return (uint)_ptr + (uint)_offset + (uint)hash_speculative() + (uint)_inline_depth;
2719 }
2720
2721 /**
2722 * Return same type without a speculative part
2723 */
2724 const TypePtr* TypePtr::remove_speculative() const {
2725 if (_speculative == nullptr) {
2726 return this;
2727 }
2728 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2729 return make(AnyPtr, _ptr, _offset, nullptr, _inline_depth);
2730 }
2731
2732 /**
2733 * Return same type but drop speculative part if we know we won't use
2734 * it
2735 */
2736 const Type* TypePtr::cleanup_speculative() const {
2737 if (speculative() == nullptr) {
2738 return this;
2964 }
2965 // We already know the speculative type is always null
2966 if (speculative_always_null()) {
2967 return false;
2968 }
2969 if (ptr_kind == ProfileAlwaysNull && speculative() != nullptr && speculative()->isa_oopptr()) {
2970 return false;
2971 }
2972 return true;
2973 }
2974
2975 //------------------------------dump2------------------------------------------
2976 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
2977 "TopPTR","AnyNull","Constant","null","NotNull","BotPTR"
2978 };
2979
2980 #ifndef PRODUCT
2981 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2982 if( _ptr == Null ) st->print("null");
2983 else st->print("%s *", ptr_msg[_ptr]);
2984 if( _offset == OffsetTop ) st->print("+top");
2985 else if( _offset == OffsetBot ) st->print("+bot");
2986 else if( _offset ) st->print("+%d", _offset);
2987 dump_inline_depth(st);
2988 dump_speculative(st);
2989 }
2990
2991 /**
2992 *dump the speculative part of the type
2993 */
2994 void TypePtr::dump_speculative(outputStream *st) const {
2995 if (_speculative != nullptr) {
2996 st->print(" (speculative=");
2997 _speculative->dump_on(st);
2998 st->print(")");
2999 }
3000 }
3001
3002 /**
3003 *dump the inline depth of the type
3004 */
3005 void TypePtr::dump_inline_depth(outputStream *st) const {
3006 if (_inline_depth != InlineDepthBottom) {
3007 if (_inline_depth == InlineDepthTop) {
3008 st->print(" (inline_depth=InlineDepthTop)");
3009 } else {
3010 st->print(" (inline_depth=%d)", _inline_depth);
3011 }
3012 }
3013 }
3014 #endif
3015
3016 //------------------------------singleton--------------------------------------
3017 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
3018 // constants
3019 bool TypePtr::singleton(void) const {
3020 // TopPTR, Null, AnyNull, Constant are all singletons
3021 return (_offset != OffsetBot) && !below_centerline(_ptr);
3022 }
3023
3024 bool TypePtr::empty(void) const {
3025 return (_offset == OffsetTop) || above_centerline(_ptr);
3026 }
3027
3028 //=============================================================================
3029 // Convenience common pre-built types.
3030 const TypeRawPtr *TypeRawPtr::BOTTOM;
3031 const TypeRawPtr *TypeRawPtr::NOTNULL;
3032
3033 //------------------------------make-------------------------------------------
3034 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
3035 assert( ptr != Constant, "what is the constant?" );
3036 assert( ptr != Null, "Use TypePtr for null" );
3037 return (TypeRawPtr*)(new TypeRawPtr(ptr,nullptr))->hashcons();
3038 }
3039
3040 const TypeRawPtr *TypeRawPtr::make(address bits) {
3041 assert(bits != nullptr, "Use TypePtr for null");
3042 return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
3043 }
3044
3045 //------------------------------cast_to_ptr_type-------------------------------
3412 #endif
3413
3414 // Can't be implemented because there's no way to know if the type is above or below the center line.
3415 const Type* TypeInterfaces::xmeet(const Type* t) const {
3416 ShouldNotReachHere();
3417 return Type::xmeet(t);
3418 }
3419
3420 bool TypeInterfaces::singleton(void) const {
3421 ShouldNotReachHere();
3422 return Type::singleton();
3423 }
3424
3425 bool TypeInterfaces::has_non_array_interface() const {
3426 assert(TypeAryPtr::_array_interfaces != nullptr, "How come Type::Initialize_shared wasn't called yet?");
3427
3428 return !TypeAryPtr::_array_interfaces->contains(this);
3429 }
3430
3431 //------------------------------TypeOopPtr-------------------------------------
3432 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int offset,
3433 int instance_id, const TypePtr* speculative, int inline_depth)
3434 : TypePtr(t, ptr, offset, speculative, inline_depth),
3435 _const_oop(o), _klass(k),
3436 _interfaces(interfaces),
3437 _klass_is_exact(xk),
3438 _is_ptr_to_narrowoop(false),
3439 _is_ptr_to_narrowklass(false),
3440 _is_ptr_to_boxed_value(false),
3441 _instance_id(instance_id) {
3442 #ifdef ASSERT
3443 if (klass() != nullptr && klass()->is_loaded()) {
3444 interfaces->verify_is_loaded();
3445 }
3446 #endif
3447 if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
3448 (offset > 0) && xk && (k != nullptr) && k->is_instance_klass()) {
3449 _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
3450 }
3451 #ifdef _LP64
3452 if (_offset > 0 || _offset == Type::OffsetTop || _offset == Type::OffsetBot) {
3453 if (_offset == oopDesc::klass_offset_in_bytes()) {
3454 _is_ptr_to_narrowklass = UseCompressedClassPointers;
3455 } else if (klass() == nullptr) {
3456 // Array with unknown body type
3457 assert(this->isa_aryptr(), "only arrays without klass");
3458 _is_ptr_to_narrowoop = UseCompressedOops;
3459 } else if (this->isa_aryptr()) {
3460 _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
3461 _offset != arrayOopDesc::length_offset_in_bytes());
3462 } else if (klass()->is_instance_klass()) {
3463 ciInstanceKlass* ik = klass()->as_instance_klass();
3464 if (this->isa_klassptr()) {
3465 // Perm objects don't use compressed references
3466 } else if (_offset == OffsetBot || _offset == OffsetTop) {
3467 // unsafe access
3468 _is_ptr_to_narrowoop = UseCompressedOops;
3469 } else {
3470 assert(this->isa_instptr(), "must be an instance ptr.");
3471
3472 if (klass() == ciEnv::current()->Class_klass() &&
3473 (_offset == java_lang_Class::klass_offset() ||
3474 _offset == java_lang_Class::array_klass_offset())) {
3475 // Special hidden fields from the Class.
3476 assert(this->isa_instptr(), "must be an instance ptr.");
3477 _is_ptr_to_narrowoop = false;
3478 } else if (klass() == ciEnv::current()->Class_klass() &&
3479 _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
3480 // Static fields
3481 ciField* field = nullptr;
3482 if (const_oop() != nullptr) {
3483 ciInstanceKlass* k = const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
3484 field = k->get_field_by_offset(_offset, true);
3485 }
3486 if (field != nullptr) {
3487 BasicType basic_elem_type = field->layout_type();
3488 _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type);
3489 } else {
3490 // unsafe access
3491 _is_ptr_to_narrowoop = UseCompressedOops;
3492 }
3493 } else {
3494 // Instance fields which contains a compressed oop references.
3495 ciField* field = ik->get_field_by_offset(_offset, false);
3496 if (field != nullptr) {
3497 BasicType basic_elem_type = field->layout_type();
3498 _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type);
3499 } else if (klass()->equals(ciEnv::current()->Object_klass())) {
3500 // Compile::find_alias_type() cast exactness on all types to verify
3501 // that it does not affect alias type.
3502 _is_ptr_to_narrowoop = UseCompressedOops;
3503 } else {
3504 // Type for the copy start in LibraryCallKit::inline_native_clone().
3505 _is_ptr_to_narrowoop = UseCompressedOops;
3506 }
3507 }
3508 }
3509 }
3510 }
3511 #endif
3512 }
3513
3514 //------------------------------make-------------------------------------------
3515 const TypeOopPtr *TypeOopPtr::make(PTR ptr, int offset, int instance_id,
3516 const TypePtr* speculative, int inline_depth) {
3517 assert(ptr != Constant, "no constant generic pointers");
3518 ciKlass* k = Compile::current()->env()->Object_klass();
3519 bool xk = false;
3520 ciObject* o = nullptr;
3521 const TypeInterfaces* interfaces = TypeInterfaces::make();
3522 return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, interfaces, xk, o, offset, instance_id, speculative, inline_depth))->hashcons();
3523 }
3524
3525
3526 //------------------------------cast_to_ptr_type-------------------------------
3527 const TypeOopPtr* TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
3528 assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
3529 if( ptr == _ptr ) return this;
3530 return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
3531 }
3532
3533 //-----------------------------cast_to_instance_id----------------------------
3534 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
3535 // There are no instances of a general oop.
3536 // Return self unchanged.
3537 return this;
3538 }
3539
3540 //-----------------------------cast_to_exactness-------------------------------
3541 const TypeOopPtr* TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
3542 // There is no such thing as an exact general oop.
3543 // Return self unchanged.
3544 return this;
3545 }
3546
3547
3548 //------------------------------as_klass_type----------------------------------
3549 // Return the klass type corresponding to this instance or array type.
3550 // It is the type that is loaded from an object of this type.
3551 const TypeKlassPtr* TypeOopPtr::as_klass_type(bool try_for_exact) const {
3552 ShouldNotReachHere();
3553 return nullptr;
3554 }
3555
3556 //------------------------------meet-------------------------------------------
3557 // Compute the MEET of two types. It returns a new Type object.
3558 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
3559 // Perform a fast test for common case; meeting the same types together.
3560 if( this == t ) return this; // Meeting same type-rep?
3561
3562 // Current "this->_base" is OopPtr
3563 switch (t->base()) { // switch on original type
3564
3565 case Int: // Mixing ints & oops happens when javac
3566 case Long: // reuses local variables
3567 case HalfFloatTop:
3576 case NarrowOop:
3577 case NarrowKlass:
3578 case Bottom: // Ye Olde Default
3579 return Type::BOTTOM;
3580 case Top:
3581 return this;
3582
3583 default: // All else is a mistake
3584 typerr(t);
3585
3586 case RawPtr:
3587 case MetadataPtr:
3588 case KlassPtr:
3589 case InstKlassPtr:
3590 case AryKlassPtr:
3591 return TypePtr::BOTTOM; // Oop meet raw is not well defined
3592
3593 case AnyPtr: {
3594 // Found an AnyPtr type vs self-OopPtr type
3595 const TypePtr *tp = t->is_ptr();
3596 int offset = meet_offset(tp->offset());
3597 PTR ptr = meet_ptr(tp->ptr());
3598 const TypePtr* speculative = xmeet_speculative(tp);
3599 int depth = meet_inline_depth(tp->inline_depth());
3600 switch (tp->ptr()) {
3601 case Null:
3602 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3603 // else fall through:
3604 case TopPTR:
3605 case AnyNull: {
3606 int instance_id = meet_instance_id(InstanceTop);
3607 return make(ptr, offset, instance_id, speculative, depth);
3608 }
3609 case BotPTR:
3610 case NotNull:
3611 return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3612 default: typerr(t);
3613 }
3614 }
3615
3616 case OopPtr: { // Meeting to other OopPtrs
3618 int instance_id = meet_instance_id(tp->instance_id());
3619 const TypePtr* speculative = xmeet_speculative(tp);
3620 int depth = meet_inline_depth(tp->inline_depth());
3621 return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
3622 }
3623
3624 case InstPtr: // For these, flip the call around to cut down
3625 case AryPtr:
3626 return t->xmeet(this); // Call in reverse direction
3627
3628 } // End of switch
3629 return this; // Return the double constant
3630 }
3631
3632
3633 //------------------------------xdual------------------------------------------
3634 // Dual of a pure heap pointer. No relevant klass or oop information.
3635 const Type *TypeOopPtr::xdual() const {
3636 assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
3637 assert(const_oop() == nullptr, "no constants here");
3638 return new TypeOopPtr(_base, dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
3639 }
3640
3641 //--------------------------make_from_klass_common-----------------------------
3642 // Computes the element-type given a klass.
3643 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact, InterfaceHandling interface_handling) {
3644 if (klass->is_instance_klass()) {
3645 Compile* C = Compile::current();
3646 Dependencies* deps = C->dependencies();
3647 assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
3648 // Element is an instance
3649 bool klass_is_exact = false;
3650 if (klass->is_loaded()) {
3651 // Try to set klass_is_exact.
3652 ciInstanceKlass* ik = klass->as_instance_klass();
3653 klass_is_exact = ik->is_final();
3654 if (!klass_is_exact && klass_change
3655 && deps != nullptr && UseUniqueSubclasses) {
3656 ciInstanceKlass* sub = ik->unique_concrete_subklass();
3657 if (sub != nullptr) {
3658 deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3659 klass = ik = sub;
3660 klass_is_exact = sub->is_final();
3661 }
3662 }
3663 if (!klass_is_exact && try_for_exact && deps != nullptr &&
3664 !ik->is_interface() && !ik->has_subklass()) {
3665 // Add a dependence; if concrete subclass added we need to recompile
3666 deps->assert_leaf_type(ik);
3667 klass_is_exact = true;
3668 }
3669 }
3670 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
3671 return TypeInstPtr::make(TypePtr::BotPTR, klass, interfaces, klass_is_exact, nullptr, 0);
3672 } else if (klass->is_obj_array_klass()) {
3673 // Element is an object array. Recursively call ourself.
3674 ciKlass* eklass = klass->as_obj_array_klass()->element_klass();
3675 const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(eklass, false, try_for_exact, interface_handling);
3676 bool xk = etype->klass_is_exact();
3677 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3678 // We used to pass NotNull in here, asserting that the sub-arrays
3679 // are all not-null. This is not true in generally, as code can
3680 // slam nulls down in the subarrays.
3681 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, nullptr, xk, 0);
3682 return arr;
3683 } else if (klass->is_type_array_klass()) {
3684 // Element is an typeArray
3685 const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3686 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3687 // We used to pass NotNull in here, asserting that the array pointer
3688 // is not-null. That was not true in general.
3689 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
3690 return arr;
3691 } else {
3692 ShouldNotReachHere();
3693 return nullptr;
3694 }
3695 }
3696
3697 //------------------------------make_from_constant-----------------------------
3698 // Make a java pointer from an oop constant
3699 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
3700 assert(!o->is_null_object(), "null object not yet handled here.");
3701
3702 const bool make_constant = require_constant || o->should_be_constant();
3703
3704 ciKlass* klass = o->klass();
3705 if (klass->is_instance_klass()) {
3706 // Element is an instance
3707 if (make_constant) {
3708 return TypeInstPtr::make(o);
3709 } else {
3710 return TypeInstPtr::make(TypePtr::NotNull, klass, true, nullptr, 0);
3711 }
3712 } else if (klass->is_obj_array_klass()) {
3713 // Element is an object array. Recursively call ourself.
3714 const TypeOopPtr *etype =
3715 TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass(), trust_interfaces);
3716 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3717 // We used to pass NotNull in here, asserting that the sub-arrays
3718 // are all not-null. This is not true in generally, as code can
3719 // slam nulls down in the subarrays.
3720 if (make_constant) {
3721 return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3722 } else {
3723 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3724 }
3725 } else if (klass->is_type_array_klass()) {
3726 // Element is an typeArray
3727 const Type* etype =
3728 (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3729 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3730 // We used to pass NotNull in here, asserting that the array pointer
3731 // is not-null. That was not true in general.
3732 if (make_constant) {
3733 return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3734 } else {
3735 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3736 }
3737 }
3738
3739 fatal("unhandled object type");
3740 return nullptr;
3741 }
3742
3743 //------------------------------get_con----------------------------------------
3744 intptr_t TypeOopPtr::get_con() const {
3745 assert( _ptr == Null || _ptr == Constant, "" );
3746 assert( _offset >= 0, "" );
3747
3748 if (_offset != 0) {
3749 // After being ported to the compiler interface, the compiler no longer
3750 // directly manipulates the addresses of oops. Rather, it only has a pointer
3751 // to a handle at compile time. This handle is embedded in the generated
3752 // code and dereferenced at the time the nmethod is made. Until that time,
3753 // it is not reasonable to do arithmetic with the addresses of oops (we don't
3754 // have access to the addresses!). This does not seem to currently happen,
3755 // but this assertion here is to help prevent its occurrence.
3756 tty->print_cr("Found oop constant with non-zero offset");
3757 ShouldNotReachHere();
3758 }
3759
3760 return (intptr_t)const_oop()->constant_encoding();
3761 }
3762
3763
3764 //-----------------------------filter------------------------------------------
3765 // Do not allow interface-vs.-noninterface joins to collapse to top.
3766 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
3767
3768 const Type* ft = join_helper(kills, include_speculative);
3787 } else {
3788 return one->equals(two) && TypePtr::eq(t);
3789 }
3790 }
3791
3792 //------------------------------hash-------------------------------------------
3793 // Type-specific hashing function.
3794 uint TypeOopPtr::hash(void) const {
3795 return
3796 (uint)(const_oop() ? const_oop()->hash() : 0) +
3797 (uint)_klass_is_exact +
3798 (uint)_instance_id + TypePtr::hash();
3799 }
3800
3801 //------------------------------dump2------------------------------------------
3802 #ifndef PRODUCT
3803 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3804 st->print("oopptr:%s", ptr_msg[_ptr]);
3805 if( _klass_is_exact ) st->print(":exact");
3806 if( const_oop() ) st->print(INTPTR_FORMAT, p2i(const_oop()));
3807 switch( _offset ) {
3808 case OffsetTop: st->print("+top"); break;
3809 case OffsetBot: st->print("+any"); break;
3810 case 0: break;
3811 default: st->print("+%d",_offset); break;
3812 }
3813 if (_instance_id == InstanceTop)
3814 st->print(",iid=top");
3815 else if (_instance_id != InstanceBot)
3816 st->print(",iid=%d",_instance_id);
3817
3818 dump_inline_depth(st);
3819 dump_speculative(st);
3820 }
3821 #endif
3822
3823 //------------------------------singleton--------------------------------------
3824 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
3825 // constants
3826 bool TypeOopPtr::singleton(void) const {
3827 // detune optimizer to not generate constant oop + constant offset as a constant!
3828 // TopPTR, Null, AnyNull, Constant are all singletons
3829 return (_offset == 0) && !below_centerline(_ptr);
3830 }
3831
3832 //------------------------------add_offset-------------------------------------
3833 const TypePtr* TypeOopPtr::add_offset(intptr_t offset) const {
3834 return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
3835 }
3836
3837 const TypeOopPtr* TypeOopPtr::with_offset(intptr_t offset) const {
3838 return make(_ptr, offset, _instance_id, with_offset_speculative(offset), _inline_depth);
3839 }
3840
3841 /**
3842 * Return same type without a speculative part
3843 */
3844 const TypeOopPtr* TypeOopPtr::remove_speculative() const {
3845 if (_speculative == nullptr) {
3846 return this;
3847 }
3848 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3849 return make(_ptr, _offset, _instance_id, nullptr, _inline_depth);
3850 }
3851
3852 /**
3853 * Return same type but drop speculative part if we know we won't use
3854 * it
3855 */
3856 const Type* TypeOopPtr::cleanup_speculative() const {
3857 // If the klass is exact and the ptr is not null then there's
3858 // nothing that the speculative type can help us with
3931 const TypeInstPtr *TypeInstPtr::BOTTOM;
3932 const TypeInstPtr *TypeInstPtr::MIRROR;
3933 const TypeInstPtr *TypeInstPtr::MARK;
3934 const TypeInstPtr *TypeInstPtr::KLASS;
3935
3936 // Is there a single ciKlass* that can represent that type?
3937 ciKlass* TypeInstPtr::exact_klass_helper() const {
3938 if (_interfaces->empty()) {
3939 return _klass;
3940 }
3941 if (_klass != ciEnv::current()->Object_klass()) {
3942 if (_interfaces->eq(_klass->as_instance_klass())) {
3943 return _klass;
3944 }
3945 return nullptr;
3946 }
3947 return _interfaces->exact_klass();
3948 }
3949
3950 //------------------------------TypeInstPtr-------------------------------------
3951 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int off,
3952 int instance_id, const TypePtr* speculative, int inline_depth)
3953 : TypeOopPtr(InstPtr, ptr, k, interfaces, xk, o, off, instance_id, speculative, inline_depth) {
3954 assert(k == nullptr || !k->is_loaded() || !k->is_interface(), "no interface here");
3955 assert(k != nullptr &&
3956 (k->is_loaded() || o == nullptr),
3957 "cannot have constants with non-loaded klass");
3958 };
3959
3960 //------------------------------make-------------------------------------------
3961 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
3962 ciKlass* k,
3963 const TypeInterfaces* interfaces,
3964 bool xk,
3965 ciObject* o,
3966 int offset,
3967 int instance_id,
3968 const TypePtr* speculative,
3969 int inline_depth) {
3970 assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
3971 // Either const_oop() is null or else ptr is Constant
3972 assert( (!o && ptr != Constant) || (o && ptr == Constant),
3973 "constant pointers must have a value supplied" );
3974 // Ptr is never Null
3975 assert( ptr != Null, "null pointers are not typed" );
3976
3977 assert(instance_id <= 0 || xk, "instances are always exactly typed");
3978 if (ptr == Constant) {
3979 // Note: This case includes meta-object constants, such as methods.
3980 xk = true;
3981 } else if (k->is_loaded()) {
3982 ciInstanceKlass* ik = k->as_instance_klass();
3983 if (!xk && ik->is_final()) xk = true; // no inexact final klass
3984 assert(!ik->is_interface(), "no interface here");
3985 if (xk && ik->is_interface()) xk = false; // no exact interface
3986 }
3987
3988 // Now hash this baby
3989 TypeInstPtr *result =
3990 (TypeInstPtr*)(new TypeInstPtr(ptr, k, interfaces, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
3991
3992 return result;
3993 }
3994
3995 const TypeInterfaces* TypePtr::interfaces(ciKlass*& k, bool klass, bool interface, bool array, InterfaceHandling interface_handling) {
3996 if (k->is_instance_klass()) {
3997 if (k->is_loaded()) {
3998 if (k->is_interface() && interface_handling == ignore_interfaces) {
3999 assert(interface, "no interface expected");
4000 k = ciEnv::current()->Object_klass();
4001 const TypeInterfaces* interfaces = TypeInterfaces::make();
4002 return interfaces;
4003 }
4004 GrowableArray<ciInstanceKlass *>* k_interfaces = k->as_instance_klass()->transitive_interfaces();
4005 const TypeInterfaces* interfaces = TypeInterfaces::make(k_interfaces);
4006 if (k->is_interface()) {
4007 assert(interface, "no interface expected");
4008 k = ciEnv::current()->Object_klass();
4009 } else {
4010 assert(klass, "no instance klass expected");
4036 switch (bt) {
4037 case T_BOOLEAN: return TypeInt::make(constant.as_boolean());
4038 case T_INT: return TypeInt::make(constant.as_int());
4039 case T_CHAR: return TypeInt::make(constant.as_char());
4040 case T_BYTE: return TypeInt::make(constant.as_byte());
4041 case T_SHORT: return TypeInt::make(constant.as_short());
4042 case T_FLOAT: return TypeF::make(constant.as_float());
4043 case T_DOUBLE: return TypeD::make(constant.as_double());
4044 case T_LONG: return TypeLong::make(constant.as_long());
4045 default: break;
4046 }
4047 fatal("Invalid boxed value type '%s'", type2name(bt));
4048 return nullptr;
4049 }
4050
4051 //------------------------------cast_to_ptr_type-------------------------------
4052 const TypeInstPtr* TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
4053 if( ptr == _ptr ) return this;
4054 // Reconstruct _sig info here since not a problem with later lazy
4055 // construction, _sig will show up on demand.
4056 return make(ptr, klass(), _interfaces, klass_is_exact(), ptr == Constant ? const_oop() : nullptr, _offset, _instance_id, _speculative, _inline_depth);
4057 }
4058
4059
4060 //-----------------------------cast_to_exactness-------------------------------
4061 const TypeInstPtr* TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
4062 if( klass_is_exact == _klass_is_exact ) return this;
4063 if (!_klass->is_loaded()) return this;
4064 ciInstanceKlass* ik = _klass->as_instance_klass();
4065 if( (ik->is_final() || _const_oop) ) return this; // cannot clear xk
4066 assert(!ik->is_interface(), "no interface here");
4067 return make(ptr(), klass(), _interfaces, klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
4068 }
4069
4070 //-----------------------------cast_to_instance_id----------------------------
4071 const TypeInstPtr* TypeInstPtr::cast_to_instance_id(int instance_id) const {
4072 if( instance_id == _instance_id ) return this;
4073 return make(_ptr, klass(), _interfaces, _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
4074 }
4075
4076 //------------------------------xmeet_unloaded---------------------------------
4077 // Compute the MEET of two InstPtrs when at least one is unloaded.
4078 // Assume classes are different since called after check for same name/class-loader
4079 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst, const TypeInterfaces* interfaces) const {
4080 int off = meet_offset(tinst->offset());
4081 PTR ptr = meet_ptr(tinst->ptr());
4082 int instance_id = meet_instance_id(tinst->instance_id());
4083 const TypePtr* speculative = xmeet_speculative(tinst);
4084 int depth = meet_inline_depth(tinst->inline_depth());
4085
4086 const TypeInstPtr *loaded = is_loaded() ? this : tinst;
4087 const TypeInstPtr *unloaded = is_loaded() ? tinst : this;
4088 if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
4089 //
4090 // Meet unloaded class with java/lang/Object
4091 //
4092 // Meet
4093 // | Unloaded Class
4094 // Object | TOP | AnyNull | Constant | NotNull | BOTTOM |
4095 // ===================================================================
4096 // TOP | ..........................Unloaded......................|
4097 // AnyNull | U-AN |................Unloaded......................|
4098 // Constant | ... O-NN .................................. | O-BOT |
4099 // NotNull | ... O-NN .................................. | O-BOT |
4100 // BOTTOM | ........................Object-BOTTOM ..................|
4101 //
4102 assert(loaded->ptr() != TypePtr::Null, "insanity check");
4103 //
4104 if (loaded->ptr() == TypePtr::TopPTR) { return unloaded->with_speculative(speculative); }
4105 else if (loaded->ptr() == TypePtr::AnyNull) { return make(ptr, unloaded->klass(), interfaces, false, nullptr, off, instance_id, speculative, depth); }
4106 else if (loaded->ptr() == TypePtr::BotPTR) { return TypeInstPtr::BOTTOM->with_speculative(speculative); }
4107 else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
4108 if (unloaded->ptr() == TypePtr::BotPTR) { return TypeInstPtr::BOTTOM->with_speculative(speculative); }
4109 else { return TypeInstPtr::NOTNULL->with_speculative(speculative); }
4110 }
4111 else if (unloaded->ptr() == TypePtr::TopPTR) { return unloaded->with_speculative(speculative); }
4112
4113 return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr()->with_speculative(speculative);
4114 }
4115
4116 // Both are unloaded, not the same class, not Object
4117 // Or meet unloaded with a different loaded class, not java/lang/Object
4118 if (ptr != TypePtr::BotPTR) {
4119 return TypeInstPtr::NOTNULL->with_speculative(speculative);
4120 }
4121 return TypeInstPtr::BOTTOM->with_speculative(speculative);
4122 }
4123
4124
4125 //------------------------------meet-------------------------------------------
4149 case Top:
4150 return this;
4151
4152 default: // All else is a mistake
4153 typerr(t);
4154
4155 case MetadataPtr:
4156 case KlassPtr:
4157 case InstKlassPtr:
4158 case AryKlassPtr:
4159 case RawPtr: return TypePtr::BOTTOM;
4160
4161 case AryPtr: { // All arrays inherit from Object class
4162 // Call in reverse direction to avoid duplication
4163 return t->is_aryptr()->xmeet_helper(this);
4164 }
4165
4166 case OopPtr: { // Meeting to OopPtrs
4167 // Found a OopPtr type vs self-InstPtr type
4168 const TypeOopPtr *tp = t->is_oopptr();
4169 int offset = meet_offset(tp->offset());
4170 PTR ptr = meet_ptr(tp->ptr());
4171 switch (tp->ptr()) {
4172 case TopPTR:
4173 case AnyNull: {
4174 int instance_id = meet_instance_id(InstanceTop);
4175 const TypePtr* speculative = xmeet_speculative(tp);
4176 int depth = meet_inline_depth(tp->inline_depth());
4177 return make(ptr, klass(), _interfaces, klass_is_exact(),
4178 (ptr == Constant ? const_oop() : nullptr), offset, instance_id, speculative, depth);
4179 }
4180 case NotNull:
4181 case BotPTR: {
4182 int instance_id = meet_instance_id(tp->instance_id());
4183 const TypePtr* speculative = xmeet_speculative(tp);
4184 int depth = meet_inline_depth(tp->inline_depth());
4185 return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4186 }
4187 default: typerr(t);
4188 }
4189 }
4190
4191 case AnyPtr: { // Meeting to AnyPtrs
4192 // Found an AnyPtr type vs self-InstPtr type
4193 const TypePtr *tp = t->is_ptr();
4194 int offset = meet_offset(tp->offset());
4195 PTR ptr = meet_ptr(tp->ptr());
4196 int instance_id = meet_instance_id(InstanceTop);
4197 const TypePtr* speculative = xmeet_speculative(tp);
4198 int depth = meet_inline_depth(tp->inline_depth());
4199 switch (tp->ptr()) {
4200 case Null:
4201 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4202 // else fall through to AnyNull
4203 case TopPTR:
4204 case AnyNull: {
4205 return make(ptr, klass(), _interfaces, klass_is_exact(),
4206 (ptr == Constant ? const_oop() : nullptr), offset, instance_id, speculative, depth);
4207 }
4208 case NotNull:
4209 case BotPTR:
4210 return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
4211 default: typerr(t);
4212 }
4213 }
4214
4215 /*
4216 A-top }
4217 / | \ } Tops
4218 B-top A-any C-top }
4219 | / | \ | } Any-nulls
4220 B-any | C-any }
4221 | | |
4222 B-con A-con C-con } constants; not comparable across classes
4223 | | |
4224 B-not | C-not }
4225 | \ | / | } not-nulls
4226 B-bot A-not C-bot }
4227 \ | / } Bottoms
4228 A-bot }
4229 */
4230
4231 case InstPtr: { // Meeting 2 Oops?
4232 // Found an InstPtr sub-type vs self-InstPtr type
4233 const TypeInstPtr *tinst = t->is_instptr();
4234 int off = meet_offset(tinst->offset());
4235 PTR ptr = meet_ptr(tinst->ptr());
4236 int instance_id = meet_instance_id(tinst->instance_id());
4237 const TypePtr* speculative = xmeet_speculative(tinst);
4238 int depth = meet_inline_depth(tinst->inline_depth());
4239 const TypeInterfaces* interfaces = meet_interfaces(tinst);
4240
4241 ciKlass* tinst_klass = tinst->klass();
4242 ciKlass* this_klass = klass();
4243
4244 ciKlass* res_klass = nullptr;
4245 bool res_xk = false;
4246 const Type* res;
4247 MeetResult kind = meet_instptr(ptr, interfaces, this, tinst, res_klass, res_xk);
4248
4249 if (kind == UNLOADED) {
4250 // One of these classes has not been loaded
4251 const TypeInstPtr* unloaded_meet = xmeet_unloaded(tinst, interfaces);
4252 #ifndef PRODUCT
4253 if (PrintOpto && Verbose) {
4254 tty->print("meet of unloaded classes resulted in: ");
4255 unloaded_meet->dump();
4256 tty->cr();
4257 tty->print(" this == ");
4258 dump();
4259 tty->cr();
4260 tty->print(" tinst == ");
4261 tinst->dump();
4262 tty->cr();
4263 }
4264 #endif
4265 res = unloaded_meet;
4266 } else {
4267 if (kind == NOT_SUBTYPE && instance_id > 0) {
4268 instance_id = InstanceBot;
4269 } else if (kind == LCA) {
4270 instance_id = InstanceBot;
4271 }
4272 ciObject* o = nullptr; // Assume not constant when done
4273 ciObject* this_oop = const_oop();
4274 ciObject* tinst_oop = tinst->const_oop();
4275 if (ptr == Constant) {
4276 if (this_oop != nullptr && tinst_oop != nullptr &&
4277 this_oop->equals(tinst_oop))
4278 o = this_oop;
4279 else if (above_centerline(_ptr)) {
4280 assert(!tinst_klass->is_interface(), "");
4281 o = tinst_oop;
4282 } else if (above_centerline(tinst->_ptr)) {
4283 assert(!this_klass->is_interface(), "");
4284 o = this_oop;
4285 } else
4286 ptr = NotNull;
4287 }
4288 res = make(ptr, res_klass, interfaces, res_xk, o, off, instance_id, speculative, depth);
4289 }
4290
4291 return res;
4292
4293 } // End of case InstPtr
4294
4295 } // End of switch
4296 return this; // Return the double constant
4297 }
4298
4299 template<class T> TypePtr::MeetResult TypePtr::meet_instptr(PTR& ptr, const TypeInterfaces*& interfaces, const T* this_type, const T* other_type,
4300 ciKlass*& res_klass, bool& res_xk) {
4301 ciKlass* this_klass = this_type->klass();
4302 ciKlass* other_klass = other_type->klass();
4303 bool this_xk = this_type->klass_is_exact();
4304 bool other_xk = other_type->klass_is_exact();
4305 PTR this_ptr = this_type->ptr();
4306 PTR other_ptr = other_type->ptr();
4307 const TypeInterfaces* this_interfaces = this_type->interfaces();
4308 const TypeInterfaces* other_interfaces = other_type->interfaces();
4309 // Check for easy case; klasses are equal (and perhaps not loaded!)
4310 // If we have constants, then we created oops so classes are loaded
4311 // and we can handle the constants further down. This case handles
4312 // both-not-loaded or both-loaded classes
4313 if (ptr != Constant && this_klass->equals(other_klass) && this_xk == other_xk) {
4314 res_klass = this_klass;
4315 res_xk = this_xk;
4316 return QUICK;
4317 }
4318
4319 // Classes require inspection in the Java klass hierarchy. Must be loaded.
4320 if (!other_klass->is_loaded() || !this_klass->is_loaded()) {
4321 return UNLOADED;
4322 }
4323
4324 // !!! Here's how the symmetry requirement breaks down into invariants:
4325 // If we split one up & one down AND they subtype, take the down man.
4326 // If we split one up & one down AND they do NOT subtype, "fall hard".
4327 // If both are up and they subtype, take the subtype class.
4328 // If both are up and they do NOT subtype, "fall hard".
4329 // If both are down and they subtype, take the supertype class.
4330 // If both are down and they do NOT subtype, "fall hard".
4331 // Constants treated as down.
4332
4333 // Now, reorder the above list; observe that both-down+subtype is also
4334 // "fall hard"; "fall hard" becomes the default case:
4335 // If we split one up & one down AND they subtype, take the down man.
4336 // If both are up and they subtype, take the subtype class.
4337
4338 // If both are down and they subtype, "fall hard".
4339 // If both are down and they do NOT subtype, "fall hard".
4340 // If both are up and they do NOT subtype, "fall hard".
4341 // If we split one up & one down AND they do NOT subtype, "fall hard".
4342
4343 // If a proper subtype is exact, and we return it, we return it exactly.
4344 // If a proper supertype is exact, there can be no subtyping relationship!
4345 // If both types are equal to the subtype, exactness is and-ed below the
4346 // centerline and or-ed above it. (N.B. Constants are always exact.)
4347
4348 // Check for subtyping:
4349 const T* subtype = nullptr;
4350 bool subtype_exact = false;
4351 if (this_type->is_same_java_type_as(other_type)) {
4352 subtype = this_type;
4353 subtype_exact = below_centerline(ptr) ? (this_xk && other_xk) : (this_xk || other_xk);
4354 } else if (!other_xk && this_type->is_meet_subtype_of(other_type)) {
4355 subtype = this_type; // Pick subtyping class
4356 subtype_exact = this_xk;
4357 } else if(!this_xk && other_type->is_meet_subtype_of(this_type)) {
4358 subtype = other_type; // Pick subtyping class
4359 subtype_exact = other_xk;
4360 }
4361
4362 if (subtype) {
4363 if (above_centerline(ptr)) { // both are up?
4364 this_type = other_type = subtype;
4365 this_xk = other_xk = subtype_exact;
4366 } else if (above_centerline(this_ptr) && !above_centerline(other_ptr)) {
4367 this_type = other_type; // tinst is down; keep down man
4368 this_xk = other_xk;
4369 } else if (above_centerline(other_ptr) && !above_centerline(this_ptr)) {
4370 other_type = this_type; // this is down; keep down man
4371 other_xk = this_xk;
4372 } else {
4373 this_xk = subtype_exact; // either they are equal, or we'll do an LCA
4374 }
4375 }
4376
4377 // Check for classes now being equal
4378 if (this_type->is_same_java_type_as(other_type)) {
4379 // If the klasses are equal, the constants may still differ. Fall to
4380 // NotNull if they do (neither constant is null; that is a special case
4381 // handled elsewhere).
4382 res_klass = this_type->klass();
4383 res_xk = this_xk;
4384 return SUBTYPE;
4385 } // Else classes are not equal
4386
4387 // Since klasses are different, we require a LCA in the Java
4388 // class hierarchy - which means we have to fall to at least NotNull.
4389 if (ptr == TopPTR || ptr == AnyNull || ptr == Constant) {
4390 ptr = NotNull;
4391 }
4392
4393 interfaces = this_interfaces->intersection_with(other_interfaces);
4394
4395 // Now we find the LCA of Java classes
4396 ciKlass* k = this_klass->least_common_ancestor(other_klass);
4397
4398 res_klass = k;
4399 res_xk = false;
4400
4401 return LCA;
4402 }
4403
4404 //------------------------java_mirror_type--------------------------------------
4405 ciType* TypeInstPtr::java_mirror_type() const {
4406 // must be a singleton type
4407 if( const_oop() == nullptr ) return nullptr;
4408
4409 // must be of type java.lang.Class
4410 if( klass() != ciEnv::current()->Class_klass() ) return nullptr;
4411
4412 return const_oop()->as_instance()->java_mirror_type();
4413 }
4414
4415
4416 //------------------------------xdual------------------------------------------
4417 // Dual: do NOT dual on klasses. This means I do NOT understand the Java
4418 // inheritance mechanism.
4419 const Type *TypeInstPtr::xdual() const {
4420 return new TypeInstPtr(dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
4421 }
4422
4423 //------------------------------eq---------------------------------------------
4424 // Structural equality check for Type representations
4425 bool TypeInstPtr::eq( const Type *t ) const {
4426 const TypeInstPtr *p = t->is_instptr();
4427 return
4428 klass()->equals(p->klass()) &&
4429 _interfaces->eq(p->_interfaces) &&
4430 TypeOopPtr::eq(p); // Check sub-type stuff
4431 }
4432
4433 //------------------------------hash-------------------------------------------
4434 // Type-specific hashing function.
4435 uint TypeInstPtr::hash(void) const {
4436 return klass()->hash() + TypeOopPtr::hash() + _interfaces->hash();
4437 }
4438
4439 bool TypeInstPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4440 return TypePtr::is_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
4441 }
4442
4443
4444 bool TypeInstPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const {
4445 return TypePtr::is_same_java_type_as_helper_for_instance(this, other);
4446 }
4447
4448 bool TypeInstPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4449 return TypePtr::maybe_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
4450 }
4451
4452
4453 //------------------------------dump2------------------------------------------
4454 // Dump oop Type
4455 #ifndef PRODUCT
4456 void TypeInstPtr::dump2(Dict &d, uint depth, outputStream* st) const {
4470 // suppress newlines from it so -XX:+Verbose -XX:+PrintIdeal dumps one-liner for each node.
4471 char* buf = ss.as_string(/* c_heap= */false);
4472 StringUtils::replace_no_expand(buf, "\n", "");
4473 st->print_raw(buf);
4474 }
4475 case BotPTR:
4476 if (!WizardMode && !Verbose) {
4477 if( _klass_is_exact ) st->print(":exact");
4478 break;
4479 }
4480 case TopPTR:
4481 case AnyNull:
4482 case NotNull:
4483 st->print(":%s", ptr_msg[_ptr]);
4484 if( _klass_is_exact ) st->print(":exact");
4485 break;
4486 default:
4487 break;
4488 }
4489
4490 if( _offset ) { // Dump offset, if any
4491 if( _offset == OffsetBot ) st->print("+any");
4492 else if( _offset == OffsetTop ) st->print("+unknown");
4493 else st->print("+%d", _offset);
4494 }
4495
4496 st->print(" *");
4497 if (_instance_id == InstanceTop)
4498 st->print(",iid=top");
4499 else if (_instance_id != InstanceBot)
4500 st->print(",iid=%d",_instance_id);
4501
4502 dump_inline_depth(st);
4503 dump_speculative(st);
4504 }
4505 #endif
4506
4507 //------------------------------add_offset-------------------------------------
4508 const TypePtr* TypeInstPtr::add_offset(intptr_t offset) const {
4509 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), xadd_offset(offset),
4510 _instance_id, add_offset_speculative(offset), _inline_depth);
4511 }
4512
4513 const TypeInstPtr* TypeInstPtr::with_offset(intptr_t offset) const {
4514 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), offset,
4515 _instance_id, with_offset_speculative(offset), _inline_depth);
4516 }
4517
4518 const TypeInstPtr* TypeInstPtr::remove_speculative() const {
4519 if (_speculative == nullptr) {
4520 return this;
4521 }
4522 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4523 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset,
4524 _instance_id, nullptr, _inline_depth);
4525 }
4526
4527 const TypeInstPtr* TypeInstPtr::with_speculative(const TypePtr* speculative) const {
4528 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, _instance_id, speculative, _inline_depth);
4529 }
4530
4531 const TypePtr* TypeInstPtr::with_inline_depth(int depth) const {
4532 if (!UseInlineDepthForSpeculativeTypes) {
4533 return this;
4534 }
4535 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
4536 }
4537
4538 const TypePtr* TypeInstPtr::with_instance_id(int instance_id) const {
4539 assert(is_known_instance(), "should be known");
4540 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, instance_id, _speculative, _inline_depth);
4541 }
4542
4543 const TypeKlassPtr* TypeInstPtr::as_klass_type(bool try_for_exact) const {
4544 bool xk = klass_is_exact();
4545 ciInstanceKlass* ik = klass()->as_instance_klass();
4546 if (try_for_exact && !xk && !ik->has_subklass() && !ik->is_final()) {
4547 if (_interfaces->eq(ik)) {
4548 Compile* C = Compile::current();
4549 Dependencies* deps = C->dependencies();
4550 deps->assert_leaf_type(ik);
4551 xk = true;
4552 }
4553 }
4554 return TypeInstKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, klass(), _interfaces, 0);
4555 }
4556
4557 template <class T1, class T2> bool TypePtr::is_meet_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_xk, bool other_xk) {
4558 static_assert(std::is_base_of<T2, T1>::value, "");
4559
4560 if (!this_one->is_instance_type(other)) {
4561 return false;
4562 }
4563
4564 if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty()) {
4565 return true;
4566 }
4567
4568 return this_one->klass()->is_subtype_of(other->klass()) &&
4569 (!this_xk || this_one->_interfaces->contains(other->_interfaces));
4570 }
4571
4572
4573 bool TypeInstPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const {
4574 return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk);
4579 if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty()) {
4580 return true;
4581 }
4582
4583 if (this_one->is_instance_type(other)) {
4584 return other->klass() == ciEnv::current()->Object_klass() && this_one->_interfaces->contains(other->_interfaces);
4585 }
4586
4587 int dummy;
4588 bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
4589 if (this_top_or_bottom) {
4590 return false;
4591 }
4592
4593 const T1* other_ary = this_one->is_array_type(other);
4594 const TypePtr* other_elem = other_ary->elem()->make_ptr();
4595 const TypePtr* this_elem = this_one->elem()->make_ptr();
4596 if (other_elem != nullptr && this_elem != nullptr) {
4597 return this_one->is_reference_type(this_elem)->is_meet_subtype_of_helper(this_one->is_reference_type(other_elem), this_xk, other_xk);
4598 }
4599
4600 if (other_elem == nullptr && this_elem == nullptr) {
4601 return this_one->klass()->is_subtype_of(other->klass());
4602 }
4603
4604 return false;
4605 }
4606
4607 bool TypeAryPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const {
4608 return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk);
4609 }
4610
4611 bool TypeInstKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const {
4612 return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk);
4613 }
4614
4615 bool TypeAryKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const {
4616 return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk);
4617 }
4618
4619 //=============================================================================
4620 // Convenience common pre-built types.
4621 const TypeAryPtr* TypeAryPtr::BOTTOM;
4622 const TypeAryPtr* TypeAryPtr::RANGE;
4623 const TypeAryPtr* TypeAryPtr::OOPS;
4624 const TypeAryPtr* TypeAryPtr::NARROWOOPS;
4625 const TypeAryPtr* TypeAryPtr::BYTES;
4626 const TypeAryPtr* TypeAryPtr::SHORTS;
4627 const TypeAryPtr* TypeAryPtr::CHARS;
4628 const TypeAryPtr* TypeAryPtr::INTS;
4629 const TypeAryPtr* TypeAryPtr::LONGS;
4630 const TypeAryPtr* TypeAryPtr::FLOATS;
4631 const TypeAryPtr* TypeAryPtr::DOUBLES;
4632
4633 //------------------------------make-------------------------------------------
4634 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset,
4635 int instance_id, const TypePtr* speculative, int inline_depth) {
4636 assert(!(k == nullptr && ary->_elem->isa_int()),
4637 "integral arrays must be pre-equipped with a class");
4638 if (!xk) xk = ary->ary_must_be_exact();
4639 assert(instance_id <= 0 || xk, "instances are always exactly typed");
4640 if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() &&
4641 k->as_obj_array_klass()->base_element_klass()->is_interface()) {
4642 k = nullptr;
4643 }
4644 return (TypeAryPtr*)(new TypeAryPtr(ptr, nullptr, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons();
4645 }
4646
4647 //------------------------------make-------------------------------------------
4648 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset,
4649 int instance_id, const TypePtr* speculative, int inline_depth,
4650 bool is_autobox_cache) {
4651 assert(!(k == nullptr && ary->_elem->isa_int()),
4652 "integral arrays must be pre-equipped with a class");
4653 assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
4654 if (!xk) xk = (o != nullptr) || ary->ary_must_be_exact();
4655 assert(instance_id <= 0 || xk, "instances are always exactly typed");
4656 if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() &&
4657 k->as_obj_array_klass()->base_element_klass()->is_interface()) {
4658 k = nullptr;
4659 }
4660 return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
4661 }
4662
4663 //------------------------------cast_to_ptr_type-------------------------------
4664 const TypeAryPtr* TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
4665 if( ptr == _ptr ) return this;
4666 return make(ptr, ptr == Constant ? const_oop() : nullptr, _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4667 }
4668
4669
4670 //-----------------------------cast_to_exactness-------------------------------
4671 const TypeAryPtr* TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
4672 if( klass_is_exact == _klass_is_exact ) return this;
4673 if (_ary->ary_must_be_exact()) return this; // cannot clear xk
4674 return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
4675 }
4676
4677 //-----------------------------cast_to_instance_id----------------------------
4678 const TypeAryPtr* TypeAryPtr::cast_to_instance_id(int instance_id) const {
4679 if( instance_id == _instance_id ) return this;
4680 return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
4681 }
4682
4683
4684 //-----------------------------max_array_length-------------------------------
4685 // A wrapper around arrayOopDesc::max_array_length(etype) with some input normalization.
4686 jint TypeAryPtr::max_array_length(BasicType etype) {
4687 if (!is_java_primitive(etype) && !::is_reference_type(etype)) {
4688 if (etype == T_NARROWOOP) {
4689 etype = T_OBJECT;
4690 } else if (etype == T_ILLEGAL) { // bottom[]
4691 etype = T_BYTE; // will produce conservatively high value
4692 } else {
4693 fatal("not an element type: %s", type2name(etype));
4694 }
4695 }
4696 return arrayOopDesc::max_array_length(etype);
4697 }
4698
4699 //-----------------------------narrow_size_type-------------------------------
4700 // Narrow the given size type to the index range for the given array base type.
4718 if (size->is_con()) {
4719 lo = hi;
4720 }
4721 chg = true;
4722 }
4723 // Negative length arrays will produce weird intermediate dead fast-path code
4724 if (lo > hi) {
4725 return TypeInt::ZERO;
4726 }
4727 if (!chg) {
4728 return size;
4729 }
4730 return TypeInt::make(lo, hi, Type::WidenMin);
4731 }
4732
4733 //-------------------------------cast_to_size----------------------------------
4734 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
4735 assert(new_size != nullptr, "");
4736 new_size = narrow_size_type(new_size);
4737 if (new_size == size()) return this;
4738 const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
4739 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4740 }
4741
4742 //------------------------------cast_to_stable---------------------------------
4743 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
4744 if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
4745 return this;
4746
4747 const Type* elem = this->elem();
4748 const TypePtr* elem_ptr = elem->make_ptr();
4749
4750 if (stable_dimension > 1 && elem_ptr != nullptr && elem_ptr->isa_aryptr()) {
4751 // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
4752 elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
4753 }
4754
4755 const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
4756
4757 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4758 }
4759
4760 //-----------------------------stable_dimension--------------------------------
4761 int TypeAryPtr::stable_dimension() const {
4762 if (!is_stable()) return 0;
4763 int dim = 1;
4764 const TypePtr* elem_ptr = elem()->make_ptr();
4765 if (elem_ptr != nullptr && elem_ptr->isa_aryptr())
4766 dim += elem_ptr->is_aryptr()->stable_dimension();
4767 return dim;
4768 }
4769
4770 //----------------------cast_to_autobox_cache-----------------------------------
4771 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache() const {
4772 if (is_autobox_cache()) return this;
4773 const TypeOopPtr* etype = elem()->make_oopptr();
4774 if (etype == nullptr) return this;
4775 // The pointers in the autobox arrays are always non-null.
4776 etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4777 const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable());
4778 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth, /*is_autobox_cache=*/true);
4779 }
4780
4781 //------------------------------eq---------------------------------------------
4782 // Structural equality check for Type representations
4783 bool TypeAryPtr::eq( const Type *t ) const {
4784 const TypeAryPtr *p = t->is_aryptr();
4785 return
4786 _ary == p->_ary && // Check array
4787 TypeOopPtr::eq(p); // Check sub-parts
4788 }
4789
4790 //------------------------------hash-------------------------------------------
4791 // Type-specific hashing function.
4792 uint TypeAryPtr::hash(void) const {
4793 return (uint)(uintptr_t)_ary + TypeOopPtr::hash();
4794 }
4795
4796 bool TypeAryPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4797 return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
4798 }
4799
4800 bool TypeAryPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const {
4801 return TypePtr::is_same_java_type_as_helper_for_array(this, other);
4802 }
4803
4804 bool TypeAryPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4805 return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
4806 }
4807 //------------------------------meet-------------------------------------------
4808 // Compute the MEET of two types. It returns a new Type object.
4809 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
4810 // Perform a fast test for common case; meeting the same types together.
4811 if( this == t ) return this; // Meeting same type-rep?
4812 // Current "this->_base" is Pointer
4813 switch (t->base()) { // switch on original type
4820 case HalfFloatBot:
4821 case FloatTop:
4822 case FloatCon:
4823 case FloatBot:
4824 case DoubleTop:
4825 case DoubleCon:
4826 case DoubleBot:
4827 case NarrowOop:
4828 case NarrowKlass:
4829 case Bottom: // Ye Olde Default
4830 return Type::BOTTOM;
4831 case Top:
4832 return this;
4833
4834 default: // All else is a mistake
4835 typerr(t);
4836
4837 case OopPtr: { // Meeting to OopPtrs
4838 // Found a OopPtr type vs self-AryPtr type
4839 const TypeOopPtr *tp = t->is_oopptr();
4840 int offset = meet_offset(tp->offset());
4841 PTR ptr = meet_ptr(tp->ptr());
4842 int depth = meet_inline_depth(tp->inline_depth());
4843 const TypePtr* speculative = xmeet_speculative(tp);
4844 switch (tp->ptr()) {
4845 case TopPTR:
4846 case AnyNull: {
4847 int instance_id = meet_instance_id(InstanceTop);
4848 return make(ptr, (ptr == Constant ? const_oop() : nullptr),
4849 _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4850 }
4851 case BotPTR:
4852 case NotNull: {
4853 int instance_id = meet_instance_id(tp->instance_id());
4854 return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4855 }
4856 default: ShouldNotReachHere();
4857 }
4858 }
4859
4860 case AnyPtr: { // Meeting two AnyPtrs
4861 // Found an AnyPtr type vs self-AryPtr type
4862 const TypePtr *tp = t->is_ptr();
4863 int offset = meet_offset(tp->offset());
4864 PTR ptr = meet_ptr(tp->ptr());
4865 const TypePtr* speculative = xmeet_speculative(tp);
4866 int depth = meet_inline_depth(tp->inline_depth());
4867 switch (tp->ptr()) {
4868 case TopPTR:
4869 return this;
4870 case BotPTR:
4871 case NotNull:
4872 return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4873 case Null:
4874 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4875 // else fall through to AnyNull
4876 case AnyNull: {
4877 int instance_id = meet_instance_id(InstanceTop);
4878 return make(ptr, (ptr == Constant ? const_oop() : nullptr),
4879 _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4880 }
4881 default: ShouldNotReachHere();
4882 }
4883 }
4884
4885 case MetadataPtr:
4886 case KlassPtr:
4887 case InstKlassPtr:
4888 case AryKlassPtr:
4889 case RawPtr: return TypePtr::BOTTOM;
4890
4891 case AryPtr: { // Meeting 2 references?
4892 const TypeAryPtr *tap = t->is_aryptr();
4893 int off = meet_offset(tap->offset());
4894 const Type* tm = _ary->meet_speculative(tap->_ary);
4895 const TypeAry* tary = tm->isa_ary();
4896 if (tary == nullptr) {
4897 assert(tm == Type::TOP || tm == Type::BOTTOM, "");
4898 return tm;
4899 }
4900 PTR ptr = meet_ptr(tap->ptr());
4901 int instance_id = meet_instance_id(tap->instance_id());
4902 const TypePtr* speculative = xmeet_speculative(tap);
4903 int depth = meet_inline_depth(tap->inline_depth());
4904
4905 ciKlass* res_klass = nullptr;
4906 bool res_xk = false;
4907 const Type* elem = tary->_elem;
4908 if (meet_aryptr(ptr, elem, this, tap, res_klass, res_xk) == NOT_SUBTYPE) {
4909 instance_id = InstanceBot;
4910 }
4911
4912 ciObject* o = nullptr; // Assume not constant when done
4913 ciObject* this_oop = const_oop();
4914 ciObject* tap_oop = tap->const_oop();
4915 if (ptr == Constant) {
4916 if (this_oop != nullptr && tap_oop != nullptr &&
4917 this_oop->equals(tap_oop)) {
4918 o = tap_oop;
4919 } else if (above_centerline(_ptr)) {
4920 o = tap_oop;
4921 } else if (above_centerline(tap->_ptr)) {
4922 o = this_oop;
4923 } else {
4924 ptr = NotNull;
4925 }
4926 }
4927 return make(ptr, o, TypeAry::make(elem, tary->_size, tary->_stable), res_klass, res_xk, off, instance_id, speculative, depth);
4928 }
4929
4930 // All arrays inherit from Object class
4931 case InstPtr: {
4932 const TypeInstPtr *tp = t->is_instptr();
4933 int offset = meet_offset(tp->offset());
4934 PTR ptr = meet_ptr(tp->ptr());
4935 int instance_id = meet_instance_id(tp->instance_id());
4936 const TypePtr* speculative = xmeet_speculative(tp);
4937 int depth = meet_inline_depth(tp->inline_depth());
4938 const TypeInterfaces* interfaces = meet_interfaces(tp);
4939 const TypeInterfaces* tp_interfaces = tp->_interfaces;
4940 const TypeInterfaces* this_interfaces = _interfaces;
4941
4942 switch (ptr) {
4943 case TopPTR:
4944 case AnyNull: // Fall 'down' to dual of object klass
4945 // For instances when a subclass meets a superclass we fall
4946 // below the centerline when the superclass is exact. We need to
4947 // do the same here.
4948 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) && !tp->klass_is_exact()) {
4949 return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4950 } else {
4951 // cannot subclass, so the meet has to fall badly below the centerline
4952 ptr = NotNull;
4953 instance_id = InstanceBot;
4954 interfaces = this_interfaces->intersection_with(tp_interfaces);
4955 return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr,offset, instance_id, speculative, depth);
4956 }
4957 case Constant:
4958 case NotNull:
4959 case BotPTR: // Fall down to object klass
4960 // LCA is object_klass, but if we subclass from the top we can do better
4961 if (above_centerline(tp->ptr())) {
4962 // If 'tp' is above the centerline and it is Object class
4963 // then we can subclass in the Java class hierarchy.
4964 // For instances when a subclass meets a superclass we fall
4965 // below the centerline when the superclass is exact. We need
4966 // to do the same here.
4967 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) && !tp->klass_is_exact()) {
4968 // that is, my array type is a subtype of 'tp' klass
4969 return make(ptr, (ptr == Constant ? const_oop() : nullptr),
4970 _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4971 }
4972 }
4973 // The other case cannot happen, since t cannot be a subtype of an array.
4974 // The meet falls down to Object class below centerline.
4975 if (ptr == Constant) {
4976 ptr = NotNull;
4977 }
4978 if (instance_id > 0) {
4979 instance_id = InstanceBot;
4980 }
4981 interfaces = this_interfaces->intersection_with(tp_interfaces);
4982 return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr, offset, instance_id, speculative, depth);
4983 default: typerr(t);
4984 }
4985 }
4986 }
4987 return this; // Lint noise
4988 }
4989
4990
4991 template<class T> TypePtr::MeetResult TypePtr::meet_aryptr(PTR& ptr, const Type*& elem, const T* this_ary,
4992 const T* other_ary, ciKlass*& res_klass, bool& res_xk) {
4993 int dummy;
4994 bool this_top_or_bottom = (this_ary->base_element_type(dummy) == Type::TOP || this_ary->base_element_type(dummy) == Type::BOTTOM);
4995 bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
4996 ciKlass* this_klass = this_ary->klass();
4997 ciKlass* other_klass = other_ary->klass();
4998 bool this_xk = this_ary->klass_is_exact();
4999 bool other_xk = other_ary->klass_is_exact();
5000 PTR this_ptr = this_ary->ptr();
5001 PTR other_ptr = other_ary->ptr();
5002 res_klass = nullptr;
5003 MeetResult result = SUBTYPE;
5004 if (elem->isa_int()) {
5005 // Integral array element types have irrelevant lattice relations.
5006 // It is the klass that determines array layout, not the element type.
5007 if (this_top_or_bottom)
5008 res_klass = other_klass;
5009 else if (other_top_or_bottom || other_klass == this_klass) {
5010 res_klass = this_klass;
5011 } else {
5012 // Something like byte[int+] meets char[int+].
5013 // This must fall to bottom, not (int[-128..65535])[int+].
5014 // instance_id = InstanceBot;
5015 elem = Type::BOTTOM;
5016 result = NOT_SUBTYPE;
5017 if (above_centerline(ptr) || ptr == Constant) {
5018 ptr = NotNull;
5019 res_xk = false;
5020 return NOT_SUBTYPE;
5021 }
5022 }
5023 } else {// Non integral arrays.
5024 // Must fall to bottom if exact klasses in upper lattice
5025 // are not equal or super klass is exact.
5026 if ((above_centerline(ptr) || ptr == Constant) && !this_ary->is_same_java_type_as(other_ary) &&
5027 // meet with top[] and bottom[] are processed further down:
5028 !this_top_or_bottom && !other_top_or_bottom &&
5029 // both are exact and not equal:
5031 // 'tap' is exact and super or unrelated:
5032 (other_xk && !other_ary->is_meet_subtype_of(this_ary)) ||
5033 // 'this' is exact and super or unrelated:
5034 (this_xk && !this_ary->is_meet_subtype_of(other_ary)))) {
5035 if (above_centerline(ptr) || (elem->make_ptr() && above_centerline(elem->make_ptr()->_ptr))) {
5036 elem = Type::BOTTOM;
5037 }
5038 ptr = NotNull;
5039 res_xk = false;
5040 return NOT_SUBTYPE;
5041 }
5042 }
5043
5044 res_xk = false;
5045 switch (other_ptr) {
5046 case AnyNull:
5047 case TopPTR:
5048 // Compute new klass on demand, do not use tap->_klass
5049 if (below_centerline(this_ptr)) {
5050 res_xk = this_xk;
5051 } else {
5052 res_xk = (other_xk || this_xk);
5053 }
5054 return result;
5055 case Constant: {
5056 if (this_ptr == Constant) {
5057 res_xk = true;
5058 } else if(above_centerline(this_ptr)) {
5059 res_xk = true;
5060 } else {
5061 // Only precise for identical arrays
5062 res_xk = this_xk && (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom));
5063 }
5064 return result;
5065 }
5066 case NotNull:
5067 case BotPTR:
5068 // Compute new klass on demand, do not use tap->_klass
5069 if (above_centerline(this_ptr)) {
5070 res_xk = other_xk;
5071 } else {
5072 res_xk = (other_xk && this_xk) &&
5073 (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom)); // Only precise for identical arrays
5074 }
5075 return result;
5076 default: {
5077 ShouldNotReachHere();
5078 return result;
5079 }
5080 }
5081 return result;
5082 }
5083
5084
5085 //------------------------------xdual------------------------------------------
5086 // Dual: compute field-by-field dual
5087 const Type *TypeAryPtr::xdual() const {
5088 return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
5089 }
5090
5091 //------------------------------dump2------------------------------------------
5092 #ifndef PRODUCT
5093 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5094 _ary->dump2(d,depth,st);
5095 _interfaces->dump(st);
5096
5097 switch( _ptr ) {
5098 case Constant:
5099 const_oop()->print(st);
5100 break;
5101 case BotPTR:
5102 if (!WizardMode && !Verbose) {
5103 if( _klass_is_exact ) st->print(":exact");
5104 break;
5105 }
5106 case TopPTR:
5107 case AnyNull:
5108 case NotNull:
5109 st->print(":%s", ptr_msg[_ptr]);
5110 if( _klass_is_exact ) st->print(":exact");
5111 break;
5112 default:
5113 break;
5114 }
5115
5116 if( _offset != 0 ) {
5117 BasicType basic_elem_type = elem()->basic_type();
5118 int header_size = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5119 if( _offset == OffsetTop ) st->print("+undefined");
5120 else if( _offset == OffsetBot ) st->print("+any");
5121 else if( _offset < header_size ) st->print("+%d", _offset);
5122 else {
5123 if (basic_elem_type == T_ILLEGAL) {
5124 st->print("+any");
5125 } else {
5126 int elem_size = type2aelembytes(basic_elem_type);
5127 st->print("[%d]", (_offset - header_size)/elem_size);
5128 }
5129 }
5130 }
5131 st->print(" *");
5132 if (_instance_id == InstanceTop)
5133 st->print(",iid=top");
5134 else if (_instance_id != InstanceBot)
5135 st->print(",iid=%d",_instance_id);
5136
5137 dump_inline_depth(st);
5138 dump_speculative(st);
5139 }
5140 #endif
5141
5142 bool TypeAryPtr::empty(void) const {
5143 if (_ary->empty()) return true;
5144 return TypeOopPtr::empty();
5145 }
5146
5147 //------------------------------add_offset-------------------------------------
5148 const TypePtr* TypeAryPtr::add_offset(intptr_t offset) const {
5149 return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
5150 }
5151
5152 const TypeAryPtr* TypeAryPtr::with_offset(intptr_t offset) const {
5153 return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, offset, _instance_id, with_offset_speculative(offset), _inline_depth);
5154 }
5155
5156 const TypeAryPtr* TypeAryPtr::with_ary(const TypeAry* ary) const {
5157 return make(_ptr, _const_oop, ary, _klass, _klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
5158 }
5159
5160 const TypeAryPtr* TypeAryPtr::remove_speculative() const {
5161 if (_speculative == nullptr) {
5162 return this;
5163 }
5164 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
5165 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, nullptr, _inline_depth);
5166 }
5167
5168 const TypePtr* TypeAryPtr::with_inline_depth(int depth) const {
5169 if (!UseInlineDepthForSpeculativeTypes) {
5170 return this;
5171 }
5172 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth);
5173 }
5174
5175 const TypePtr* TypeAryPtr::with_instance_id(int instance_id) const {
5176 assert(is_known_instance(), "should be known");
5177 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
5178 }
5179
5180 //=============================================================================
5181
5182 //------------------------------hash-------------------------------------------
5183 // Type-specific hashing function.
5184 uint TypeNarrowPtr::hash(void) const {
5185 return _ptrtype->hash() + 7;
5186 }
5187
5188 bool TypeNarrowPtr::singleton(void) const { // TRUE if type is a singleton
5189 return _ptrtype->singleton();
5190 }
5191
5192 bool TypeNarrowPtr::empty(void) const {
5193 return _ptrtype->empty();
5194 }
5195
5196 intptr_t TypeNarrowPtr::get_con() const {
5197 return _ptrtype->get_con();
5198 }
5199
5200 bool TypeNarrowPtr::eq( const Type *t ) const {
5201 const TypeNarrowPtr* tc = isa_same_narrowptr(t);
5255 case HalfFloatTop:
5256 case HalfFloatCon:
5257 case HalfFloatBot:
5258 case FloatTop:
5259 case FloatCon:
5260 case FloatBot:
5261 case DoubleTop:
5262 case DoubleCon:
5263 case DoubleBot:
5264 case AnyPtr:
5265 case RawPtr:
5266 case OopPtr:
5267 case InstPtr:
5268 case AryPtr:
5269 case MetadataPtr:
5270 case KlassPtr:
5271 case InstKlassPtr:
5272 case AryKlassPtr:
5273 case NarrowOop:
5274 case NarrowKlass:
5275
5276 case Bottom: // Ye Olde Default
5277 return Type::BOTTOM;
5278 case Top:
5279 return this;
5280
5281 default: // All else is a mistake
5282 typerr(t);
5283
5284 } // End of switch
5285
5286 return this;
5287 }
5288
5289 #ifndef PRODUCT
5290 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5291 _ptrtype->dump2(d, depth, st);
5292 }
5293 #endif
5294
5295 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
5339 return (one == two) && TypePtr::eq(t);
5340 } else {
5341 return one->equals(two) && TypePtr::eq(t);
5342 }
5343 }
5344
5345 //------------------------------hash-------------------------------------------
5346 // Type-specific hashing function.
5347 uint TypeMetadataPtr::hash(void) const {
5348 return
5349 (metadata() ? metadata()->hash() : 0) +
5350 TypePtr::hash();
5351 }
5352
5353 //------------------------------singleton--------------------------------------
5354 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
5355 // constants
5356 bool TypeMetadataPtr::singleton(void) const {
5357 // detune optimizer to not generate constant metadata + constant offset as a constant!
5358 // TopPTR, Null, AnyNull, Constant are all singletons
5359 return (_offset == 0) && !below_centerline(_ptr);
5360 }
5361
5362 //------------------------------add_offset-------------------------------------
5363 const TypePtr* TypeMetadataPtr::add_offset( intptr_t offset ) const {
5364 return make( _ptr, _metadata, xadd_offset(offset));
5365 }
5366
5367 //-----------------------------filter------------------------------------------
5368 // Do not allow interface-vs.-noninterface joins to collapse to top.
5369 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
5370 const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
5371 if (ft == nullptr || ft->empty())
5372 return Type::TOP; // Canonical empty value
5373 return ft;
5374 }
5375
5376 //------------------------------get_con----------------------------------------
5377 intptr_t TypeMetadataPtr::get_con() const {
5378 assert( _ptr == Null || _ptr == Constant, "" );
5379 assert( _offset >= 0, "" );
5380
5381 if (_offset != 0) {
5382 // After being ported to the compiler interface, the compiler no longer
5383 // directly manipulates the addresses of oops. Rather, it only has a pointer
5384 // to a handle at compile time. This handle is embedded in the generated
5385 // code and dereferenced at the time the nmethod is made. Until that time,
5386 // it is not reasonable to do arithmetic with the addresses of oops (we don't
5387 // have access to the addresses!). This does not seem to currently happen,
5388 // but this assertion here is to help prevent its occurrence.
5389 tty->print_cr("Found oop constant with non-zero offset");
5390 ShouldNotReachHere();
5391 }
5392
5393 return (intptr_t)metadata()->constant_encoding();
5394 }
5395
5396 //------------------------------cast_to_ptr_type-------------------------------
5397 const TypeMetadataPtr* TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
5398 if( ptr == _ptr ) return this;
5399 return make(ptr, metadata(), _offset);
5400 }
5401
5415 case HalfFloatBot:
5416 case FloatTop:
5417 case FloatCon:
5418 case FloatBot:
5419 case DoubleTop:
5420 case DoubleCon:
5421 case DoubleBot:
5422 case NarrowOop:
5423 case NarrowKlass:
5424 case Bottom: // Ye Olde Default
5425 return Type::BOTTOM;
5426 case Top:
5427 return this;
5428
5429 default: // All else is a mistake
5430 typerr(t);
5431
5432 case AnyPtr: {
5433 // Found an AnyPtr type vs self-OopPtr type
5434 const TypePtr *tp = t->is_ptr();
5435 int offset = meet_offset(tp->offset());
5436 PTR ptr = meet_ptr(tp->ptr());
5437 switch (tp->ptr()) {
5438 case Null:
5439 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5440 // else fall through:
5441 case TopPTR:
5442 case AnyNull: {
5443 return make(ptr, _metadata, offset);
5444 }
5445 case BotPTR:
5446 case NotNull:
5447 return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5448 default: typerr(t);
5449 }
5450 }
5451
5452 case RawPtr:
5453 case KlassPtr:
5454 case InstKlassPtr:
5455 case AryKlassPtr:
5456 case OopPtr:
5457 case InstPtr:
5458 case AryPtr:
5459 return TypePtr::BOTTOM; // Oop meet raw is not well defined
5460
5461 case MetadataPtr: {
5462 const TypeMetadataPtr *tp = t->is_metadataptr();
5463 int offset = meet_offset(tp->offset());
5464 PTR tptr = tp->ptr();
5465 PTR ptr = meet_ptr(tptr);
5466 ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
5467 if (tptr == TopPTR || _ptr == TopPTR ||
5468 metadata()->equals(tp->metadata())) {
5469 return make(ptr, md, offset);
5470 }
5471 // metadata is different
5472 if( ptr == Constant ) { // Cannot be equal constants, so...
5473 if( tptr == Constant && _ptr != Constant) return t;
5474 if( _ptr == Constant && tptr != Constant) return this;
5475 ptr = NotNull; // Fall down in lattice
5476 }
5477 return make(ptr, nullptr, offset);
5478 break;
5479 }
5480 } // End of switch
5481 return this; // Return the double constant
5482 }
5483
5484
5485 //------------------------------xdual------------------------------------------
5486 // Dual of a pure metadata pointer.
5487 const Type *TypeMetadataPtr::xdual() const {
5488 return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
5489 }
5490
5491 //------------------------------dump2------------------------------------------
5492 #ifndef PRODUCT
5493 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5494 st->print("metadataptr:%s", ptr_msg[_ptr]);
5495 if( metadata() ) st->print(INTPTR_FORMAT, p2i(metadata()));
5496 switch( _offset ) {
5497 case OffsetTop: st->print("+top"); break;
5498 case OffsetBot: st->print("+any"); break;
5499 case 0: break;
5500 default: st->print("+%d",_offset); break;
5501 }
5502 }
5503 #endif
5504
5505
5506 //=============================================================================
5507 // Convenience common pre-built type.
5508 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
5509
5510 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
5511 TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
5512 }
5513
5514 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
5515 return make(Constant, m, 0);
5516 }
5517 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
5518 return make(Constant, m, 0);
5519 }
5520
5521 //------------------------------make-------------------------------------------
5522 // Create a meta data constant
5523 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
5524 assert(m == nullptr || !m->is_klass(), "wrong type");
5525 return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
5526 }
5527
5528
5529 const TypeKlassPtr* TypeAryPtr::as_klass_type(bool try_for_exact) const {
5530 const Type* elem = _ary->_elem;
5531 bool xk = klass_is_exact();
5532 if (elem->make_oopptr() != nullptr) {
5533 elem = elem->make_oopptr()->as_klass_type(try_for_exact);
5534 if (elem->is_klassptr()->klass_is_exact()) {
5535 xk = true;
5536 }
5537 }
5538 return TypeAryKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, elem, klass(), 0);
5539 }
5540
5541 const TypeKlassPtr* TypeKlassPtr::make(ciKlass *klass, InterfaceHandling interface_handling) {
5542 if (klass->is_instance_klass()) {
5543 return TypeInstKlassPtr::make(klass, interface_handling);
5544 }
5545 return TypeAryKlassPtr::make(klass, interface_handling);
5546 }
5547
5548 const TypeKlassPtr* TypeKlassPtr::make(PTR ptr, ciKlass* klass, int offset, InterfaceHandling interface_handling) {
5549 if (klass->is_instance_klass()) {
5550 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
5551 return TypeInstKlassPtr::make(ptr, klass, interfaces, offset);
5552 }
5553 return TypeAryKlassPtr::make(ptr, klass, offset, interface_handling);
5554 }
5555
5556
5557 //------------------------------TypeKlassPtr-----------------------------------
5558 TypeKlassPtr::TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, int offset)
5559 : TypePtr(t, ptr, offset), _klass(klass), _interfaces(interfaces) {
5560 assert(klass == nullptr || !klass->is_loaded() || (klass->is_instance_klass() && !klass->is_interface()) ||
5561 klass->is_type_array_klass() || !klass->as_obj_array_klass()->base_element_klass()->is_interface(), "no interface here");
5562 }
5563
5564 // Is there a single ciKlass* that can represent that type?
5565 ciKlass* TypeKlassPtr::exact_klass_helper() const {
5566 assert(_klass->is_instance_klass() && !_klass->is_interface(), "No interface");
5567 if (_interfaces->empty()) {
5568 return _klass;
5569 }
5570 if (_klass != ciEnv::current()->Object_klass()) {
5571 if (_interfaces->eq(_klass->as_instance_klass())) {
5572 return _klass;
5573 }
5574 return nullptr;
5575 }
5576 return _interfaces->exact_klass();
5577 }
5578
5579 //------------------------------eq---------------------------------------------
5580 // Structural equality check for Type representations
5581 bool TypeKlassPtr::eq(const Type *t) const {
5582 const TypeKlassPtr *p = t->is_klassptr();
5583 return
5584 _interfaces->eq(p->_interfaces) &&
5585 TypePtr::eq(p);
5586 }
5587
5588 //------------------------------hash-------------------------------------------
5589 // Type-specific hashing function.
5590 uint TypeKlassPtr::hash(void) const {
5591 return TypePtr::hash() + _interfaces->hash();
5592 }
5593
5594 //------------------------------singleton--------------------------------------
5595 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
5596 // constants
5597 bool TypeKlassPtr::singleton(void) const {
5598 // detune optimizer to not generate constant klass + constant offset as a constant!
5599 // TopPTR, Null, AnyNull, Constant are all singletons
5600 return (_offset == 0) && !below_centerline(_ptr);
5601 }
5602
5603 // Do not allow interface-vs.-noninterface joins to collapse to top.
5604 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
5605 // logic here mirrors the one from TypeOopPtr::filter. See comments
5606 // there.
5607 const Type* ft = join_helper(kills, include_speculative);
5608
5609 if (ft->empty()) {
5610 return Type::TOP; // Canonical empty value
5611 }
5612
5613 return ft;
5614 }
5615
5616 const TypeInterfaces* TypeKlassPtr::meet_interfaces(const TypeKlassPtr* other) const {
5617 if (above_centerline(_ptr) && above_centerline(other->_ptr)) {
5618 return _interfaces->union_with(other->_interfaces);
5619 } else if (above_centerline(_ptr) && !above_centerline(other->_ptr)) {
5620 return other->_interfaces;
5621 } else if (above_centerline(other->_ptr) && !above_centerline(_ptr)) {
5622 return _interfaces;
5623 }
5624 return _interfaces->intersection_with(other->_interfaces);
5625 }
5626
5627 //------------------------------get_con----------------------------------------
5628 intptr_t TypeKlassPtr::get_con() const {
5629 assert( _ptr == Null || _ptr == Constant, "" );
5630 assert( _offset >= 0, "" );
5631
5632 if (_offset != 0) {
5633 // After being ported to the compiler interface, the compiler no longer
5634 // directly manipulates the addresses of oops. Rather, it only has a pointer
5635 // to a handle at compile time. This handle is embedded in the generated
5636 // code and dereferenced at the time the nmethod is made. Until that time,
5637 // it is not reasonable to do arithmetic with the addresses of oops (we don't
5638 // have access to the addresses!). This does not seem to currently happen,
5639 // but this assertion here is to help prevent its occurrence.
5640 tty->print_cr("Found oop constant with non-zero offset");
5641 ShouldNotReachHere();
5642 }
5643
5644 ciKlass* k = exact_klass();
5645
5646 return (intptr_t)k->constant_encoding();
5647 }
5648
5649 //------------------------------dump2------------------------------------------
5650 // Dump Klass Type
5651 #ifndef PRODUCT
5652 void TypeKlassPtr::dump2(Dict & d, uint depth, outputStream *st) const {
5656 case NotNull:
5657 {
5658 const char *name = klass()->name()->as_utf8();
5659 if (name) {
5660 st->print("%s: " INTPTR_FORMAT, name, p2i(klass()));
5661 } else {
5662 ShouldNotReachHere();
5663 }
5664 _interfaces->dump(st);
5665 }
5666 case BotPTR:
5667 if (!WizardMode && !Verbose && _ptr != Constant) break;
5668 case TopPTR:
5669 case AnyNull:
5670 st->print(":%s", ptr_msg[_ptr]);
5671 if (_ptr == Constant) st->print(":exact");
5672 break;
5673 default:
5674 break;
5675 }
5676
5677 if (_offset) { // Dump offset, if any
5678 if (_offset == OffsetBot) { st->print("+any"); }
5679 else if (_offset == OffsetTop) { st->print("+unknown"); }
5680 else { st->print("+%d", _offset); }
5681 }
5682
5683 st->print(" *");
5684 }
5685 #endif
5686
5687 //=============================================================================
5688 // Convenience common pre-built types.
5689
5690 // Not-null object klass or below
5691 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT;
5692 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT_OR_NULL;
5693
5694 bool TypeInstKlassPtr::eq(const Type *t) const {
5695 const TypeKlassPtr *p = t->is_klassptr();
5696 return
5697 klass()->equals(p->klass()) &&
5698 TypeKlassPtr::eq(p);
5699 }
5700
5701 uint TypeInstKlassPtr::hash(void) const {
5702 return klass()->hash() + TypeKlassPtr::hash();
5703 }
5704
5705 const TypeInstKlassPtr *TypeInstKlassPtr::make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, int offset) {
5706 TypeInstKlassPtr *r =
5707 (TypeInstKlassPtr*)(new TypeInstKlassPtr(ptr, k, interfaces, offset))->hashcons();
5708
5709 return r;
5710 }
5711
5712 //------------------------------add_offset-------------------------------------
5713 // Access internals of klass object
5714 const TypePtr* TypeInstKlassPtr::add_offset( intptr_t offset ) const {
5715 return make( _ptr, klass(), _interfaces, xadd_offset(offset) );
5716 }
5717
5718 const TypeInstKlassPtr* TypeInstKlassPtr::with_offset(intptr_t offset) const {
5719 return make(_ptr, klass(), _interfaces, offset);
5720 }
5721
5722 //------------------------------cast_to_ptr_type-------------------------------
5723 const TypeInstKlassPtr* TypeInstKlassPtr::cast_to_ptr_type(PTR ptr) const {
5724 assert(_base == InstKlassPtr, "subclass must override cast_to_ptr_type");
5725 if( ptr == _ptr ) return this;
5726 return make(ptr, _klass, _interfaces, _offset);
5727 }
5728
5729
5730 bool TypeInstKlassPtr::must_be_exact() const {
5731 if (!_klass->is_loaded()) return false;
5732 ciInstanceKlass* ik = _klass->as_instance_klass();
5733 if (ik->is_final()) return true; // cannot clear xk
5734 return false;
5735 }
5736
5737 //-----------------------------cast_to_exactness-------------------------------
5738 const TypeKlassPtr* TypeInstKlassPtr::cast_to_exactness(bool klass_is_exact) const {
5739 if (klass_is_exact == (_ptr == Constant)) return this;
5740 if (must_be_exact()) return this;
5741 ciKlass* k = klass();
5742 return make(klass_is_exact ? Constant : NotNull, k, _interfaces, _offset);
5743 }
5744
5745
5746 //-----------------------------as_instance_type--------------------------------
5747 // Corresponding type for an instance of the given class.
5748 // It will be NotNull, and exact if and only if the klass type is exact.
5749 const TypeOopPtr* TypeInstKlassPtr::as_instance_type(bool klass_change) const {
5750 ciKlass* k = klass();
5751 bool xk = klass_is_exact();
5752 Compile* C = Compile::current();
5753 Dependencies* deps = C->dependencies();
5754 assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
5755 // Element is an instance
5756 bool klass_is_exact = false;
5757 const TypeInterfaces* interfaces = _interfaces;
5758 if (k->is_loaded()) {
5759 // Try to set klass_is_exact.
5760 ciInstanceKlass* ik = k->as_instance_klass();
5761 klass_is_exact = ik->is_final();
5762 if (!klass_is_exact && klass_change
5763 && deps != nullptr && UseUniqueSubclasses) {
5764 ciInstanceKlass* sub = ik->unique_concrete_subklass();
5765 if (sub != nullptr) {
5766 if (_interfaces->eq(sub)) {
5767 deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
5768 k = ik = sub;
5769 xk = sub->is_final();
5770 }
5771 }
5772 }
5773 }
5774 return TypeInstPtr::make(TypePtr::BotPTR, k, interfaces, xk, nullptr, 0);
5775 }
5776
5777 //------------------------------xmeet------------------------------------------
5778 // Compute the MEET of two types, return a new Type object.
5779 const Type *TypeInstKlassPtr::xmeet( const Type *t ) const {
5780 // Perform a fast test for common case; meeting the same types together.
5781 if( this == t ) return this; // Meeting same type-rep?
5782
5783 // Current "this->_base" is Pointer
5784 switch (t->base()) { // switch on original type
5785
5786 case Int: // Mixing ints & oops happens when javac
5787 case Long: // reuses local variables
5788 case HalfFloatTop:
5789 case HalfFloatCon:
5790 case HalfFloatBot:
5791 case FloatTop:
5792 case FloatCon:
5793 case FloatBot:
5794 case DoubleTop:
5795 case DoubleCon:
5796 case DoubleBot:
5797 case NarrowOop:
5798 case NarrowKlass:
5799 case Bottom: // Ye Olde Default
5800 return Type::BOTTOM;
5801 case Top:
5802 return this;
5803
5804 default: // All else is a mistake
5805 typerr(t);
5806
5807 case AnyPtr: { // Meeting to AnyPtrs
5808 // Found an AnyPtr type vs self-KlassPtr type
5809 const TypePtr *tp = t->is_ptr();
5810 int offset = meet_offset(tp->offset());
5811 PTR ptr = meet_ptr(tp->ptr());
5812 switch (tp->ptr()) {
5813 case TopPTR:
5814 return this;
5815 case Null:
5816 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5817 case AnyNull:
5818 return make( ptr, klass(), _interfaces, offset );
5819 case BotPTR:
5820 case NotNull:
5821 return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5822 default: typerr(t);
5823 }
5824 }
5825
5826 case RawPtr:
5827 case MetadataPtr:
5828 case OopPtr:
5829 case AryPtr: // Meet with AryPtr
5830 case InstPtr: // Meet with InstPtr
5831 return TypePtr::BOTTOM;
5832
5833 //
5834 // A-top }
5835 // / | \ } Tops
5836 // B-top A-any C-top }
5837 // | / | \ | } Any-nulls
5838 // B-any | C-any }
5839 // | | |
5840 // B-con A-con C-con } constants; not comparable across classes
5841 // | | |
5842 // B-not | C-not }
5843 // | \ | / | } not-nulls
5844 // B-bot A-not C-bot }
5845 // \ | / } Bottoms
5846 // A-bot }
5847 //
5848
5849 case InstKlassPtr: { // Meet two KlassPtr types
5850 const TypeInstKlassPtr *tkls = t->is_instklassptr();
5851 int off = meet_offset(tkls->offset());
5852 PTR ptr = meet_ptr(tkls->ptr());
5853 const TypeInterfaces* interfaces = meet_interfaces(tkls);
5854
5855 ciKlass* res_klass = nullptr;
5856 bool res_xk = false;
5857 switch(meet_instptr(ptr, interfaces, this, tkls, res_klass, res_xk)) {
5858 case UNLOADED:
5859 ShouldNotReachHere();
5860 case SUBTYPE:
5861 case NOT_SUBTYPE:
5862 case LCA:
5863 case QUICK: {
5864 assert(res_xk == (ptr == Constant), "");
5865 const Type* res = make(ptr, res_klass, interfaces, off);
5866 return res;
5867 }
5868 default:
5869 ShouldNotReachHere();
5870 }
5871 } // End of case KlassPtr
5872 case AryKlassPtr: { // All arrays inherit from Object class
5873 const TypeAryKlassPtr *tp = t->is_aryklassptr();
5874 int offset = meet_offset(tp->offset());
5875 PTR ptr = meet_ptr(tp->ptr());
5876 const TypeInterfaces* interfaces = meet_interfaces(tp);
5877 const TypeInterfaces* tp_interfaces = tp->_interfaces;
5878 const TypeInterfaces* this_interfaces = _interfaces;
5879
5880 switch (ptr) {
5881 case TopPTR:
5882 case AnyNull: // Fall 'down' to dual of object klass
5883 // For instances when a subclass meets a superclass we fall
5884 // below the centerline when the superclass is exact. We need to
5885 // do the same here.
5886 if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces->contains(this_interfaces) && !klass_is_exact()) {
5887 return TypeAryKlassPtr::make(ptr, tp->elem(), tp->klass(), offset);
5888 } else {
5889 // cannot subclass, so the meet has to fall badly below the centerline
5890 ptr = NotNull;
5891 interfaces = _interfaces->intersection_with(tp->_interfaces);
5892 return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset);
5893 }
5894 case Constant:
5895 case NotNull:
5896 case BotPTR: // Fall down to object klass
5897 // LCA is object_klass, but if we subclass from the top we can do better
5898 if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
5899 // If 'this' (InstPtr) is above the centerline and it is Object class
5900 // then we can subclass in the Java class hierarchy.
5901 // For instances when a subclass meets a superclass we fall
5902 // below the centerline when the superclass is exact. We need
5903 // to do the same here.
5904 if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces->contains(this_interfaces) && !klass_is_exact()) {
5905 // that is, tp's array type is a subtype of my klass
5906 return TypeAryKlassPtr::make(ptr,
5907 tp->elem(), tp->klass(), offset);
5908 }
5909 }
5910 // The other case cannot happen, since I cannot be a subtype of an array.
5911 // The meet falls down to Object class below centerline.
5912 if( ptr == Constant )
5913 ptr = NotNull;
5914 interfaces = this_interfaces->intersection_with(tp_interfaces);
5915 return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset);
5916 default: typerr(t);
5917 }
5918 }
5919
5920 } // End of switch
5921 return this; // Return the double constant
5922 }
5923
5924 //------------------------------xdual------------------------------------------
5925 // Dual: compute field-by-field dual
5926 const Type *TypeInstKlassPtr::xdual() const {
5927 return new TypeInstKlassPtr(dual_ptr(), klass(), _interfaces, dual_offset());
5928 }
5929
5930 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
5931 static_assert(std::is_base_of<T2, T1>::value, "");
5932 if (!this_one->is_loaded() || !other->is_loaded()) {
5933 return false;
5934 }
5935 if (!this_one->is_instance_type(other)) {
5936 return false;
5937 }
5938
5939 if (!other_exact) {
5940 return false;
5941 }
5942
5943 if (other->klass()->equals(ciEnv::current()->Object_klass()) && other->_interfaces->empty()) {
5944 return true;
5945 }
5946
5947 return this_one->klass()->is_subtype_of(other->klass()) && this_one->_interfaces->contains(other->_interfaces);
6021 const TypeInterfaces* interfaces = _interfaces;
6022 if (k->is_loaded()) {
6023 ciInstanceKlass* ik = k->as_instance_klass();
6024 bool klass_is_exact = ik->is_final();
6025 if (!klass_is_exact &&
6026 deps != nullptr) {
6027 ciInstanceKlass* sub = ik->unique_concrete_subklass();
6028 if (sub != nullptr) {
6029 if (_interfaces->eq(sub)) {
6030 deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
6031 k = ik = sub;
6032 klass_is_exact = sub->is_final();
6033 return TypeKlassPtr::make(klass_is_exact ? Constant : _ptr, k, _offset);
6034 }
6035 }
6036 }
6037 }
6038 return this;
6039 }
6040
6041
6042 const TypeAryKlassPtr *TypeAryKlassPtr::make(PTR ptr, const Type* elem, ciKlass* k, int offset) {
6043 return (TypeAryKlassPtr*)(new TypeAryKlassPtr(ptr, elem, k, offset))->hashcons();
6044 }
6045
6046 const TypeAryKlassPtr *TypeAryKlassPtr::make(PTR ptr, ciKlass* k, int offset, InterfaceHandling interface_handling) {
6047 if (k->is_obj_array_klass()) {
6048 // Element is an object array. Recursively call ourself.
6049 ciKlass* eklass = k->as_obj_array_klass()->element_klass();
6050 const TypeKlassPtr *etype = TypeKlassPtr::make(eklass, interface_handling)->cast_to_exactness(false);
6051 return TypeAryKlassPtr::make(ptr, etype, nullptr, offset);
6052 } else if (k->is_type_array_klass()) {
6053 // Element is an typeArray
6054 const Type* etype = get_const_basic_type(k->as_type_array_klass()->element_type());
6055 return TypeAryKlassPtr::make(ptr, etype, k, offset);
6056 } else {
6057 ShouldNotReachHere();
6058 return nullptr;
6059 }
6060 }
6061
6062 const TypeAryKlassPtr* TypeAryKlassPtr::make(ciKlass* klass, InterfaceHandling interface_handling) {
6063 return TypeAryKlassPtr::make(Constant, klass, 0, interface_handling);
6064 }
6065
6066 //------------------------------eq---------------------------------------------
6067 // Structural equality check for Type representations
6068 bool TypeAryKlassPtr::eq(const Type *t) const {
6069 const TypeAryKlassPtr *p = t->is_aryklassptr();
6070 return
6071 _elem == p->_elem && // Check array
6072 TypeKlassPtr::eq(p); // Check sub-parts
6073 }
6074
6075 //------------------------------hash-------------------------------------------
6076 // Type-specific hashing function.
6077 uint TypeAryKlassPtr::hash(void) const {
6078 return (uint)(uintptr_t)_elem + TypeKlassPtr::hash();
6079 }
6080
6081 //----------------------compute_klass------------------------------------------
6082 // Compute the defining klass for this class
6083 ciKlass* TypeAryPtr::compute_klass() const {
6084 // Compute _klass based on element type.
6085 ciKlass* k_ary = nullptr;
6086 const TypeInstPtr *tinst;
6087 const TypeAryPtr *tary;
6088 const Type* el = elem();
6089 if (el->isa_narrowoop()) {
6090 el = el->make_ptr();
6091 }
6092
6093 // Get element klass
6094 if ((tinst = el->isa_instptr()) != nullptr) {
6095 // Leave k_ary at null.
6096 } else if ((tary = el->isa_aryptr()) != nullptr) {
6097 // Leave k_ary at null.
6098 } else if ((el->base() == Type::Top) ||
6099 (el->base() == Type::Bottom)) {
6100 // element type of Bottom occurs from meet of basic type
6101 // and object; Top occurs when doing join on Bottom.
6102 // Leave k_ary at null.
6103 } else {
6104 assert(!el->isa_int(), "integral arrays must be pre-equipped with a class");
6105 // Compute array klass directly from basic type
6106 k_ary = ciTypeArrayKlass::make(el->basic_type());
6107 }
6108 return k_ary;
6109 }
6110
6111 //------------------------------klass------------------------------------------
6112 // Return the defining klass for this class
6113 ciKlass* TypeAryPtr::klass() const {
6114 if( _klass ) return _klass; // Return cached value, if possible
6115
6116 // Oops, need to compute _klass and cache it
6117 ciKlass* k_ary = compute_klass();
6125 // type TypeAryPtr::OOPS. This Type is shared between all
6126 // active compilations. However, the ciKlass which represents
6127 // this Type is *not* shared between compilations, so caching
6128 // this value would result in fetching a dangling pointer.
6129 //
6130 // Recomputing the underlying ciKlass for each request is
6131 // a bit less efficient than caching, but calls to
6132 // TypeAryPtr::OOPS->klass() are not common enough to matter.
6133 ((TypeAryPtr*)this)->_klass = k_ary;
6134 }
6135 return k_ary;
6136 }
6137
6138 // Is there a single ciKlass* that can represent that type?
6139 ciKlass* TypeAryPtr::exact_klass_helper() const {
6140 if (_ary->_elem->make_ptr() && _ary->_elem->make_ptr()->isa_oopptr()) {
6141 ciKlass* k = _ary->_elem->make_ptr()->is_oopptr()->exact_klass_helper();
6142 if (k == nullptr) {
6143 return nullptr;
6144 }
6145 k = ciObjArrayKlass::make(k);
6146 return k;
6147 }
6148
6149 return klass();
6150 }
6151
6152 const Type* TypeAryPtr::base_element_type(int& dims) const {
6153 const Type* elem = this->elem();
6154 dims = 1;
6155 while (elem->make_ptr() && elem->make_ptr()->isa_aryptr()) {
6156 elem = elem->make_ptr()->is_aryptr()->elem();
6157 dims++;
6158 }
6159 return elem;
6160 }
6161
6162 //------------------------------add_offset-------------------------------------
6163 // Access internals of klass object
6164 const TypePtr* TypeAryKlassPtr::add_offset(intptr_t offset) const {
6165 return make(_ptr, elem(), klass(), xadd_offset(offset));
6166 }
6167
6168 const TypeAryKlassPtr* TypeAryKlassPtr::with_offset(intptr_t offset) const {
6169 return make(_ptr, elem(), klass(), offset);
6170 }
6171
6172 //------------------------------cast_to_ptr_type-------------------------------
6173 const TypeAryKlassPtr* TypeAryKlassPtr::cast_to_ptr_type(PTR ptr) const {
6174 assert(_base == AryKlassPtr, "subclass must override cast_to_ptr_type");
6175 if (ptr == _ptr) return this;
6176 return make(ptr, elem(), _klass, _offset);
6177 }
6178
6179 bool TypeAryKlassPtr::must_be_exact() const {
6180 if (_elem == Type::BOTTOM) return false;
6181 if (_elem == Type::TOP ) return false;
6182 const TypeKlassPtr* tk = _elem->isa_klassptr();
6183 if (!tk) return true; // a primitive type, like int
6184 return tk->must_be_exact();
6185 }
6186
6187
6188 //-----------------------------cast_to_exactness-------------------------------
6189 const TypeKlassPtr *TypeAryKlassPtr::cast_to_exactness(bool klass_is_exact) const {
6190 if (must_be_exact()) return this; // cannot clear xk
6191 ciKlass* k = _klass;
6192 const Type* elem = this->elem();
6193 if (elem->isa_klassptr() && !klass_is_exact) {
6194 elem = elem->is_klassptr()->cast_to_exactness(klass_is_exact);
6195 }
6196 return make(klass_is_exact ? Constant : NotNull, elem, k, _offset);
6197 }
6198
6199
6200 //-----------------------------as_instance_type--------------------------------
6201 // Corresponding type for an instance of the given class.
6202 // It will be NotNull, and exact if and only if the klass type is exact.
6203 const TypeOopPtr* TypeAryKlassPtr::as_instance_type(bool klass_change) const {
6204 ciKlass* k = klass();
6205 bool xk = klass_is_exact();
6206 const Type* el = nullptr;
6207 if (elem()->isa_klassptr()) {
6208 el = elem()->is_klassptr()->as_instance_type(false)->cast_to_exactness(false);
6209 k = nullptr;
6210 } else {
6211 el = elem();
6212 }
6213 return TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(el, TypeInt::POS), k, xk, 0);
6214 }
6215
6216
6217 //------------------------------xmeet------------------------------------------
6218 // Compute the MEET of two types, return a new Type object.
6219 const Type *TypeAryKlassPtr::xmeet( const Type *t ) const {
6220 // Perform a fast test for common case; meeting the same types together.
6221 if( this == t ) return this; // Meeting same type-rep?
6222
6223 // Current "this->_base" is Pointer
6224 switch (t->base()) { // switch on original type
6225
6226 case Int: // Mixing ints & oops happens when javac
6227 case Long: // reuses local variables
6228 case HalfFloatTop:
6229 case HalfFloatCon:
6230 case HalfFloatBot:
6231 case FloatTop:
6232 case FloatCon:
6233 case FloatBot:
6234 case DoubleTop:
6235 case DoubleCon:
6236 case DoubleBot:
6237 case NarrowOop:
6238 case NarrowKlass:
6239 case Bottom: // Ye Olde Default
6240 return Type::BOTTOM;
6241 case Top:
6242 return this;
6243
6244 default: // All else is a mistake
6245 typerr(t);
6246
6247 case AnyPtr: { // Meeting to AnyPtrs
6248 // Found an AnyPtr type vs self-KlassPtr type
6249 const TypePtr *tp = t->is_ptr();
6250 int offset = meet_offset(tp->offset());
6251 PTR ptr = meet_ptr(tp->ptr());
6252 switch (tp->ptr()) {
6253 case TopPTR:
6254 return this;
6255 case Null:
6256 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6257 case AnyNull:
6258 return make( ptr, _elem, klass(), offset );
6259 case BotPTR:
6260 case NotNull:
6261 return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6262 default: typerr(t);
6263 }
6264 }
6265
6266 case RawPtr:
6267 case MetadataPtr:
6268 case OopPtr:
6269 case AryPtr: // Meet with AryPtr
6270 case InstPtr: // Meet with InstPtr
6271 return TypePtr::BOTTOM;
6272
6273 //
6274 // A-top }
6275 // / | \ } Tops
6276 // B-top A-any C-top }
6277 // | / | \ | } Any-nulls
6278 // B-any | C-any }
6279 // | | |
6280 // B-con A-con C-con } constants; not comparable across classes
6281 // | | |
6282 // B-not | C-not }
6283 // | \ | / | } not-nulls
6284 // B-bot A-not C-bot }
6285 // \ | / } Bottoms
6286 // A-bot }
6287 //
6288
6289 case AryKlassPtr: { // Meet two KlassPtr types
6290 const TypeAryKlassPtr *tap = t->is_aryklassptr();
6291 int off = meet_offset(tap->offset());
6292 const Type* elem = _elem->meet(tap->_elem);
6293
6294 PTR ptr = meet_ptr(tap->ptr());
6295 ciKlass* res_klass = nullptr;
6296 bool res_xk = false;
6297 meet_aryptr(ptr, elem, this, tap, res_klass, res_xk);
6298 assert(res_xk == (ptr == Constant), "");
6299 return make(ptr, elem, res_klass, off);
6300 } // End of case KlassPtr
6301 case InstKlassPtr: {
6302 const TypeInstKlassPtr *tp = t->is_instklassptr();
6303 int offset = meet_offset(tp->offset());
6304 PTR ptr = meet_ptr(tp->ptr());
6305 const TypeInterfaces* interfaces = meet_interfaces(tp);
6306 const TypeInterfaces* tp_interfaces = tp->_interfaces;
6307 const TypeInterfaces* this_interfaces = _interfaces;
6308
6309 switch (ptr) {
6310 case TopPTR:
6311 case AnyNull: // Fall 'down' to dual of object klass
6312 // For instances when a subclass meets a superclass we fall
6313 // below the centerline when the superclass is exact. We need to
6314 // do the same here.
6315 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) &&
6316 !tp->klass_is_exact()) {
6317 return TypeAryKlassPtr::make(ptr, _elem, _klass, offset);
6318 } else {
6319 // cannot subclass, so the meet has to fall badly below the centerline
6320 ptr = NotNull;
6321 interfaces = this_interfaces->intersection_with(tp->_interfaces);
6322 return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset);
6323 }
6324 case Constant:
6325 case NotNull:
6326 case BotPTR: // Fall down to object klass
6327 // LCA is object_klass, but if we subclass from the top we can do better
6328 if (above_centerline(tp->ptr())) {
6329 // If 'tp' is above the centerline and it is Object class
6330 // then we can subclass in the Java class hierarchy.
6331 // For instances when a subclass meets a superclass we fall
6332 // below the centerline when the superclass is exact. We need
6333 // to do the same here.
6334 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) &&
6335 !tp->klass_is_exact()) {
6336 // that is, my array type is a subtype of 'tp' klass
6337 return make(ptr, _elem, _klass, offset);
6338 }
6339 }
6340 // The other case cannot happen, since t cannot be a subtype of an array.
6341 // The meet falls down to Object class below centerline.
6342 if (ptr == Constant)
6343 ptr = NotNull;
6344 interfaces = this_interfaces->intersection_with(tp_interfaces);
6345 return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset);
6346 default: typerr(t);
6347 }
6348 }
6349
6350 } // End of switch
6351 return this; // Return the double constant
6352 }
6353
6354 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
6355 static_assert(std::is_base_of<T2, T1>::value, "");
6356
6357 if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty() && other_exact) {
6358 return true;
6359 }
6360
6361 int dummy;
6362 bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
6363
6364 if (!this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) {
6365 return false;
6366 }
6367
6368 if (this_one->is_instance_type(other)) {
6369 return other->klass() == ciEnv::current()->Object_klass() && this_one->_interfaces->contains(other->_interfaces) &&
6370 other_exact;
6371 }
6372
6373 assert(this_one->is_array_type(other), "");
6374 const T1* other_ary = this_one->is_array_type(other);
6375 bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
6376 if (other_top_or_bottom) {
6377 return false;
6378 }
6379
6380 const TypePtr* other_elem = other_ary->elem()->make_ptr();
6381 const TypePtr* this_elem = this_one->elem()->make_ptr();
6382 if (this_elem != nullptr && other_elem != nullptr) {
6383 return this_one->is_reference_type(this_elem)->is_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact);
6384 }
6385 if (this_elem == nullptr && other_elem == nullptr) {
6386 return this_one->klass()->is_subtype_of(other->klass());
6387 }
6388 return false;
6389 }
6390
6391 bool TypeAryKlassPtr::is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
6392 return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
6393 }
6394
6395 template <class T1, class T2> bool TypePtr::is_same_java_type_as_helper_for_array(const T1* this_one, const T2* other) {
6396 static_assert(std::is_base_of<T2, T1>::value, "");
6397
6398 int dummy;
6399 bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
6400
6401 if (!this_one->is_array_type(other) ||
6402 !this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) {
6455 }
6456
6457 const TypePtr* this_elem = this_one->elem()->make_ptr();
6458 const TypePtr* other_elem = other_ary->elem()->make_ptr();
6459 if (other_elem != nullptr && this_elem != nullptr) {
6460 return this_one->is_reference_type(this_elem)->maybe_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact);
6461 }
6462 if (other_elem == nullptr && this_elem == nullptr) {
6463 return this_one->klass()->is_subtype_of(other->klass());
6464 }
6465 return false;
6466 }
6467
6468 bool TypeAryKlassPtr::maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
6469 return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
6470 }
6471
6472 //------------------------------xdual------------------------------------------
6473 // Dual: compute field-by-field dual
6474 const Type *TypeAryKlassPtr::xdual() const {
6475 return new TypeAryKlassPtr(dual_ptr(), elem()->dual(), klass(), dual_offset());
6476 }
6477
6478 // Is there a single ciKlass* that can represent that type?
6479 ciKlass* TypeAryKlassPtr::exact_klass_helper() const {
6480 if (elem()->isa_klassptr()) {
6481 ciKlass* k = elem()->is_klassptr()->exact_klass_helper();
6482 if (k == nullptr) {
6483 return nullptr;
6484 }
6485 k = ciObjArrayKlass::make(k);
6486 return k;
6487 }
6488
6489 return klass();
6490 }
6491
6492 ciKlass* TypeAryKlassPtr::klass() const {
6493 if (_klass != nullptr) {
6494 return _klass;
6495 }
6496 ciKlass* k = nullptr;
6497 if (elem()->isa_klassptr()) {
6498 // leave null
6499 } else if ((elem()->base() == Type::Top) ||
6500 (elem()->base() == Type::Bottom)) {
6501 } else {
6502 k = ciTypeArrayKlass::make(elem()->basic_type());
6503 ((TypeAryKlassPtr*)this)->_klass = k;
6504 }
6505 return k;
6512 switch( _ptr ) {
6513 case Constant:
6514 st->print("precise ");
6515 case NotNull:
6516 {
6517 st->print("[");
6518 _elem->dump2(d, depth, st);
6519 _interfaces->dump(st);
6520 st->print(": ");
6521 }
6522 case BotPTR:
6523 if( !WizardMode && !Verbose && _ptr != Constant ) break;
6524 case TopPTR:
6525 case AnyNull:
6526 st->print(":%s", ptr_msg[_ptr]);
6527 if( _ptr == Constant ) st->print(":exact");
6528 break;
6529 default:
6530 break;
6531 }
6532
6533 if( _offset ) { // Dump offset, if any
6534 if( _offset == OffsetBot ) { st->print("+any"); }
6535 else if( _offset == OffsetTop ) { st->print("+unknown"); }
6536 else { st->print("+%d", _offset); }
6537 }
6538
6539 st->print(" *");
6540 }
6541 #endif
6542
6543 const Type* TypeAryKlassPtr::base_element_type(int& dims) const {
6544 const Type* elem = this->elem();
6545 dims = 1;
6546 while (elem->isa_aryklassptr()) {
6547 elem = elem->is_aryklassptr()->elem();
6548 dims++;
6549 }
6550 return elem;
6551 }
6552
6553 //=============================================================================
6554 // Convenience common pre-built types.
6555
6556 //------------------------------make-------------------------------------------
6557 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
6558 return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
6559 }
6560
6561 //------------------------------make-------------------------------------------
6562 const TypeFunc *TypeFunc::make(ciMethod* method) {
6563 Compile* C = Compile::current();
6564 const TypeFunc* tf = C->last_tf(method); // check cache
6565 if (tf != nullptr) return tf; // The hit rate here is almost 50%.
6566 const TypeTuple *domain;
6567 if (method->is_static()) {
6568 domain = TypeTuple::make_domain(nullptr, method->signature(), ignore_interfaces);
6569 } else {
6570 domain = TypeTuple::make_domain(method->holder(), method->signature(), ignore_interfaces);
6571 }
6572 const TypeTuple *range = TypeTuple::make_range(method->signature(), ignore_interfaces);
6573 tf = TypeFunc::make(domain, range);
6574 C->set_last_tf(method, tf); // fill cache
6575 return tf;
6576 }
6577
6578 //------------------------------meet-------------------------------------------
6579 // Compute the MEET of two types. It returns a new Type object.
6580 const Type *TypeFunc::xmeet( const Type *t ) const {
6581 // Perform a fast test for common case; meeting the same types together.
6582 if( this == t ) return this; // Meeting same type-rep?
6583
6584 // Current "this->_base" is Func
6585 switch (t->base()) { // switch on original type
6586
6587 case Bottom: // Ye Olde Default
6588 return t;
6589
6590 default: // All else is a mistake
6591 typerr(t);
6592
6593 case Top:
6594 break;
6595 }
6596 return this; // Return the double constant
6597 }
6598
6599 //------------------------------xdual------------------------------------------
6600 // Dual: compute field-by-field dual
6601 const Type *TypeFunc::xdual() const {
6602 return this;
6603 }
6604
6605 //------------------------------eq---------------------------------------------
6606 // Structural equality check for Type representations
6607 bool TypeFunc::eq( const Type *t ) const {
6608 const TypeFunc *a = (const TypeFunc*)t;
6609 return _domain == a->_domain &&
6610 _range == a->_range;
6611 }
6612
6613 //------------------------------hash-------------------------------------------
6614 // Type-specific hashing function.
6615 uint TypeFunc::hash(void) const {
6616 return (uint)(uintptr_t)_domain + (uint)(uintptr_t)_range;
6617 }
6618
6619 //------------------------------dump2------------------------------------------
6620 // Dump Function Type
6621 #ifndef PRODUCT
6622 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
6623 if( _range->cnt() <= Parms )
6624 st->print("void");
6625 else {
6626 uint i;
6627 for (i = Parms; i < _range->cnt()-1; i++) {
6628 _range->field_at(i)->dump2(d,depth,st);
6629 st->print("/");
6630 }
6631 _range->field_at(i)->dump2(d,depth,st);
6632 }
6633 st->print(" ");
6634 st->print("( ");
6635 if( !depth || d[this] ) { // Check for recursive dump
6636 st->print("...)");
6637 return;
6638 }
6639 d.Insert((void*)this,(void*)this); // Stop recursion
6640 if (Parms < _domain->cnt())
6641 _domain->field_at(Parms)->dump2(d,depth-1,st);
6642 for (uint i = Parms+1; i < _domain->cnt(); i++) {
6643 st->print(", ");
6644 _domain->field_at(i)->dump2(d,depth-1,st);
6645 }
6646 st->print(" )");
6647 }
6648 #endif
6649
6650 //------------------------------singleton--------------------------------------
6651 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
6652 // constants (Ldi nodes). Singletons are integer, float or double constants
6653 // or a single symbol.
6654 bool TypeFunc::singleton(void) const {
6655 return false; // Never a singleton
6656 }
6657
6658 bool TypeFunc::empty(void) const {
6659 return false; // Never empty
6660 }
6661
6662
6663 BasicType TypeFunc::return_type() const{
6664 if (range()->cnt() == TypeFunc::Parms) {
6665 return T_VOID;
6666 }
6667 return range()->field_at(TypeFunc::Parms)->basic_type();
6668 }
|
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "ci/ciField.hpp"
26 #include "ci/ciFlatArrayKlass.hpp"
27 #include "ci/ciInlineKlass.hpp"
28 #include "ci/ciMethodData.hpp"
29 #include "ci/ciTypeFlow.hpp"
30 #include "classfile/javaClasses.hpp"
31 #include "classfile/symbolTable.hpp"
32 #include "classfile/vmSymbols.hpp"
33 #include "compiler/compileLog.hpp"
34 #include "libadt/dict.hpp"
35 #include "memory/oopFactory.hpp"
36 #include "memory/resourceArea.hpp"
37 #include "oops/instanceKlass.hpp"
38 #include "oops/instanceMirrorKlass.hpp"
39 #include "oops/objArrayKlass.hpp"
40 #include "oops/typeArrayKlass.hpp"
41 #include "opto/arraycopynode.hpp"
42 #include "opto/callnode.hpp"
43 #include "opto/matcher.hpp"
44 #include "opto/node.hpp"
45 #include "opto/opcodes.hpp"
46 #include "opto/rangeinference.hpp"
47 #include "opto/runtime.hpp"
48 #include "opto/type.hpp"
49 #include "runtime/stubRoutines.hpp"
50 #include "utilities/checkedCast.hpp"
51 #include "utilities/globalDefinitions.hpp"
52 #include "utilities/powerOfTwo.hpp"
53 #include "utilities/stringUtils.hpp"
54
55 // Portions of code courtesy of Clifford Click
56
57 // Optimization - Graph Style
58
59 // Dictionary of types shared among compilations.
60 Dict* Type::_shared_type_dict = nullptr;
61 const Type::Offset Type::Offset::top(Type::OffsetTop);
62 const Type::Offset Type::Offset::bottom(Type::OffsetBot);
63
64 const Type::Offset Type::Offset::meet(const Type::Offset other) const {
65 // Either is 'TOP' offset? Return the other offset!
66 if (_offset == OffsetTop) return other;
67 if (other._offset == OffsetTop) return *this;
68 // If either is different, return 'BOTTOM' offset
69 if (_offset != other._offset) return bottom;
70 return Offset(_offset);
71 }
72
73 const Type::Offset Type::Offset::dual() const {
74 if (_offset == OffsetTop) return bottom;// Map 'TOP' into 'BOTTOM'
75 if (_offset == OffsetBot) return top;// Map 'BOTTOM' into 'TOP'
76 return Offset(_offset); // Map everything else into self
77 }
78
79 const Type::Offset Type::Offset::add(intptr_t offset) const {
80 // Adding to 'TOP' offset? Return 'TOP'!
81 if (_offset == OffsetTop || offset == OffsetTop) return top;
82 // Adding to 'BOTTOM' offset? Return 'BOTTOM'!
83 if (_offset == OffsetBot || offset == OffsetBot) return bottom;
84 // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
85 offset += (intptr_t)_offset;
86 if (offset != (int)offset || offset == OffsetTop) return bottom;
87
88 // assert( _offset >= 0 && _offset+offset >= 0, "" );
89 // It is possible to construct a negative offset during PhaseCCP
90
91 return Offset((int)offset); // Sum valid offsets
92 }
93
94 void Type::Offset::dump2(outputStream *st) const {
95 if (_offset == 0) {
96 return;
97 } else if (_offset == OffsetTop) {
98 st->print("+top");
99 }
100 else if (_offset == OffsetBot) {
101 st->print("+bot");
102 } else if (_offset) {
103 st->print("+%d", _offset);
104 }
105 }
106
107 // Array which maps compiler types to Basic Types
108 const Type::TypeInfo Type::_type_info[Type::lastype] = {
109 { Bad, T_ILLEGAL, "bad", false, Node::NotAMachineReg, relocInfo::none }, // Bad
110 { Control, T_ILLEGAL, "control", false, 0, relocInfo::none }, // Control
111 { Bottom, T_VOID, "top", false, 0, relocInfo::none }, // Top
112 { Bad, T_INT, "int:", false, Op_RegI, relocInfo::none }, // Int
113 { Bad, T_LONG, "long:", false, Op_RegL, relocInfo::none }, // Long
114 { Half, T_VOID, "half", false, 0, relocInfo::none }, // Half
115 { Bad, T_NARROWOOP, "narrowoop:", false, Op_RegN, relocInfo::none }, // NarrowOop
116 { Bad, T_NARROWKLASS,"narrowklass:", false, Op_RegN, relocInfo::none }, // NarrowKlass
117 { Bad, T_ILLEGAL, "tuple:", false, Node::NotAMachineReg, relocInfo::none }, // Tuple
118 { Bad, T_ARRAY, "array:", false, Node::NotAMachineReg, relocInfo::none }, // Array
119 { Bad, T_ARRAY, "interfaces:", false, Node::NotAMachineReg, relocInfo::none }, // Interfaces
120
121 #if defined(PPC64)
122 { Bad, T_ILLEGAL, "vectormask:", false, Op_RegVectMask, relocInfo::none }, // VectorMask.
123 { Bad, T_ILLEGAL, "vectora:", false, Op_VecA, relocInfo::none }, // VectorA.
124 { Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS
125 { Bad, T_ILLEGAL, "vectord:", false, Op_RegL, relocInfo::none }, // VectorD
264 case ciTypeFlow::StateVector::T_NULL:
265 assert(type == ciTypeFlow::StateVector::null_type(), "");
266 return TypePtr::NULL_PTR;
267
268 case ciTypeFlow::StateVector::T_LONG2:
269 // The ciTypeFlow pass pushes a long, then the half.
270 // We do the same.
271 assert(type == ciTypeFlow::StateVector::long2_type(), "");
272 return TypeInt::TOP;
273
274 case ciTypeFlow::StateVector::T_DOUBLE2:
275 // The ciTypeFlow pass pushes double, then the half.
276 // Our convention is the same.
277 assert(type == ciTypeFlow::StateVector::double2_type(), "");
278 return Type::TOP;
279
280 case T_ADDRESS:
281 assert(type->is_return_address(), "");
282 return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
283
284 case T_OBJECT:
285 return Type::get_const_type(type->unwrap())->join_speculative(type->is_null_free() ? TypePtr::NOTNULL : TypePtr::BOTTOM);
286
287 default:
288 // make sure we did not mix up the cases:
289 assert(type != ciTypeFlow::StateVector::bottom_type(), "");
290 assert(type != ciTypeFlow::StateVector::top_type(), "");
291 assert(type != ciTypeFlow::StateVector::null_type(), "");
292 assert(type != ciTypeFlow::StateVector::long2_type(), "");
293 assert(type != ciTypeFlow::StateVector::double2_type(), "");
294 assert(!type->is_return_address(), "");
295
296 return Type::get_const_type(type);
297 }
298 }
299
300
301 //-----------------------make_from_constant------------------------------------
302 const Type* Type::make_from_constant(ciConstant constant, bool require_constant,
303 int stable_dimension, bool is_narrow_oop,
304 bool is_autobox_cache) {
305 switch (constant.basic_type()) {
306 case T_BOOLEAN: return TypeInt::make(constant.as_boolean());
589 const Type **ffalse =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
590 ffalse[0] = Type::CONTROL;
591 ffalse[1] = Type::TOP;
592 TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
593
594 const Type **fneither =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
595 fneither[0] = Type::TOP;
596 fneither[1] = Type::TOP;
597 TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
598
599 const Type **ftrue =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
600 ftrue[0] = Type::TOP;
601 ftrue[1] = Type::CONTROL;
602 TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
603
604 const Type **floop =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
605 floop[0] = Type::CONTROL;
606 floop[1] = TypeInt::INT;
607 TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
608
609 TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, Offset(0));
610 TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, Offset::bottom);
611 TypePtr::BOTTOM = TypePtr::make(AnyPtr, TypePtr::BotPTR, Offset::bottom);
612
613 TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
614 TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
615
616 const Type **fmembar = TypeTuple::fields(0);
617 TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
618
619 const Type **fsc = (const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
620 fsc[0] = TypeInt::CC;
621 fsc[1] = Type::MEMORY;
622 TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
623
624 TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
625 TypeInstPtr::BOTTOM = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass());
626 TypeInstPtr::MIRROR = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
627 TypeInstPtr::MARK = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
628 false, nullptr, Offset(oopDesc::mark_offset_in_bytes()));
629 TypeInstPtr::KLASS = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
630 false, nullptr, Offset(oopDesc::klass_offset_in_bytes()));
631 TypeOopPtr::BOTTOM = TypeOopPtr::make(TypePtr::BotPTR, Offset::bottom, TypeOopPtr::InstanceBot);
632
633 TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, nullptr, Offset::bottom);
634
635 TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
636 TypeNarrowOop::BOTTOM = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
637
638 TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
639
640 mreg2type[Op_Node] = Type::BOTTOM;
641 mreg2type[Op_Set ] = nullptr;
642 mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
643 mreg2type[Op_RegI] = TypeInt::INT;
644 mreg2type[Op_RegP] = TypePtr::BOTTOM;
645 mreg2type[Op_RegF] = Type::FLOAT;
646 mreg2type[Op_RegD] = Type::DOUBLE;
647 mreg2type[Op_RegL] = TypeLong::LONG;
648 mreg2type[Op_RegFlags] = TypeInt::CC;
649
650 GrowableArray<ciInstanceKlass*> array_interfaces;
651 array_interfaces.push(current->env()->Cloneable_klass());
652 array_interfaces.push(current->env()->Serializable_klass());
653 TypeAryPtr::_array_interfaces = TypeInterfaces::make(&array_interfaces);
654 TypeAryKlassPtr::_array_interfaces = TypeAryPtr::_array_interfaces;
655
656 TypeAryPtr::BOTTOM = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::BOTTOM, TypeInt::POS), nullptr, false, Offset::bottom);
657 TypeAryPtr::RANGE = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), nullptr /* current->env()->Object_klass() */, false, Offset(arrayOopDesc::length_offset_in_bytes()));
658
659 TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), nullptr /*ciArrayKlass::make(o)*/, false, Offset::bottom);
660
661 #ifdef _LP64
662 if (UseCompressedOops) {
663 assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
664 TypeAryPtr::OOPS = TypeAryPtr::NARROWOOPS;
665 } else
666 #endif
667 {
668 // There is no shared klass for Object[]. See note in TypeAryPtr::klass().
669 TypeAryPtr::OOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), nullptr /*ciArrayKlass::make(o)*/, false, Offset::bottom);
670 }
671 TypeAryPtr::BYTES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE), true, Offset::bottom);
672 TypeAryPtr::SHORTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT), true, Offset::bottom);
673 TypeAryPtr::CHARS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, Offset::bottom);
674 TypeAryPtr::INTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT ,TypeInt::POS), ciTypeArrayKlass::make(T_INT), true, Offset::bottom);
675 TypeAryPtr::LONGS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG), true, Offset::bottom);
676 TypeAryPtr::FLOATS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT), true, Offset::bottom);
677 TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true, Offset::bottom);
678 TypeAryPtr::INLINES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS, /* stable= */ false, /* flat= */ true), nullptr, false, Offset::bottom);
679
680 // Nobody should ask _array_body_type[T_NARROWOOP]. Use null as assert.
681 TypeAryPtr::_array_body_type[T_NARROWOOP] = nullptr;
682 TypeAryPtr::_array_body_type[T_OBJECT] = TypeAryPtr::OOPS;
683 TypeAryPtr::_array_body_type[T_FLAT_ELEMENT] = TypeAryPtr::OOPS;
684 TypeAryPtr::_array_body_type[T_ARRAY] = TypeAryPtr::OOPS; // arrays are stored in oop arrays
685 TypeAryPtr::_array_body_type[T_BYTE] = TypeAryPtr::BYTES;
686 TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES; // boolean[] is a byte array
687 TypeAryPtr::_array_body_type[T_SHORT] = TypeAryPtr::SHORTS;
688 TypeAryPtr::_array_body_type[T_CHAR] = TypeAryPtr::CHARS;
689 TypeAryPtr::_array_body_type[T_INT] = TypeAryPtr::INTS;
690 TypeAryPtr::_array_body_type[T_LONG] = TypeAryPtr::LONGS;
691 TypeAryPtr::_array_body_type[T_FLOAT] = TypeAryPtr::FLOATS;
692 TypeAryPtr::_array_body_type[T_DOUBLE] = TypeAryPtr::DOUBLES;
693
694 TypeInstKlassPtr::OBJECT = TypeInstKlassPtr::make(TypePtr::NotNull, current->env()->Object_klass(), Offset(0));
695 TypeInstKlassPtr::OBJECT_OR_NULL = TypeInstKlassPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), Offset(0));
696
697 const Type **fi2c = TypeTuple::fields(2);
698 fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
699 fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
700 TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
701
702 const Type **intpair = TypeTuple::fields(2);
703 intpair[0] = TypeInt::INT;
704 intpair[1] = TypeInt::INT;
705 TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
706
707 const Type **longpair = TypeTuple::fields(2);
708 longpair[0] = TypeLong::LONG;
709 longpair[1] = TypeLong::LONG;
710 TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
711
712 const Type **intccpair = TypeTuple::fields(2);
713 intccpair[0] = TypeInt::INT;
714 intccpair[1] = TypeInt::CC;
715 TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
716
717 const Type **longccpair = TypeTuple::fields(2);
718 longccpair[0] = TypeLong::LONG;
719 longccpair[1] = TypeInt::CC;
720 TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
721
722 _const_basic_type[T_NARROWOOP] = TypeNarrowOop::BOTTOM;
723 _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
724 _const_basic_type[T_BOOLEAN] = TypeInt::BOOL;
725 _const_basic_type[T_CHAR] = TypeInt::CHAR;
726 _const_basic_type[T_BYTE] = TypeInt::BYTE;
727 _const_basic_type[T_SHORT] = TypeInt::SHORT;
728 _const_basic_type[T_INT] = TypeInt::INT;
729 _const_basic_type[T_LONG] = TypeLong::LONG;
730 _const_basic_type[T_FLOAT] = Type::FLOAT;
731 _const_basic_type[T_DOUBLE] = Type::DOUBLE;
732 _const_basic_type[T_OBJECT] = TypeInstPtr::BOTTOM;
733 _const_basic_type[T_ARRAY] = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
734 _const_basic_type[T_FLAT_ELEMENT] = TypeInstPtr::BOTTOM;
735 _const_basic_type[T_VOID] = TypePtr::NULL_PTR; // reflection represents void this way
736 _const_basic_type[T_ADDRESS] = TypeRawPtr::BOTTOM; // both interpreter return addresses & random raw ptrs
737 _const_basic_type[T_CONFLICT] = Type::BOTTOM; // why not?
738
739 _zero_type[T_NARROWOOP] = TypeNarrowOop::NULL_PTR;
740 _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
741 _zero_type[T_BOOLEAN] = TypeInt::ZERO; // false == 0
742 _zero_type[T_CHAR] = TypeInt::ZERO; // '\0' == 0
743 _zero_type[T_BYTE] = TypeInt::ZERO; // 0x00 == 0
744 _zero_type[T_SHORT] = TypeInt::ZERO; // 0x0000 == 0
745 _zero_type[T_INT] = TypeInt::ZERO;
746 _zero_type[T_LONG] = TypeLong::ZERO;
747 _zero_type[T_FLOAT] = TypeF::ZERO;
748 _zero_type[T_DOUBLE] = TypeD::ZERO;
749 _zero_type[T_OBJECT] = TypePtr::NULL_PTR;
750 _zero_type[T_ARRAY] = TypePtr::NULL_PTR; // null array is null oop
751 _zero_type[T_FLAT_ELEMENT] = TypePtr::NULL_PTR;
752 _zero_type[T_ADDRESS] = TypePtr::NULL_PTR; // raw pointers use the same null
753 _zero_type[T_VOID] = Type::TOP; // the only void value is no value at all
754
755 // get_zero_type() should not happen for T_CONFLICT
756 _zero_type[T_CONFLICT]= nullptr;
757
758 TypeVect::VECTMASK = (TypeVect*)(new TypeVectMask(T_BOOLEAN, MaxVectorSize))->hashcons();
759 mreg2type[Op_RegVectMask] = TypeVect::VECTMASK;
760
761 if (Matcher::supports_scalable_vector()) {
762 TypeVect::VECTA = TypeVect::make(T_BYTE, Matcher::scalable_vector_reg_size(T_BYTE));
763 }
764
765 // Vector predefined types, it needs initialized _const_basic_type[].
766 if (Matcher::vector_size_supported(T_BYTE, 4)) {
767 TypeVect::VECTS = TypeVect::make(T_BYTE, 4);
768 }
769 if (Matcher::vector_size_supported(T_FLOAT, 2)) {
770 TypeVect::VECTD = TypeVect::make(T_FLOAT, 2);
771 }
1006 ~VerifyMeet() {
1007 assert(_C->_type_verify->_depth != 0, "");
1008 _C->_type_verify->_depth--;
1009 if (_C->_type_verify->_depth == 0) {
1010 _C->_type_verify->_cache.trunc_to(0);
1011 }
1012 }
1013
1014 const Type* meet(const Type* t1, const Type* t2) const {
1015 return _C->_type_verify->meet(t1, t2);
1016 }
1017
1018 void add(const Type* t1, const Type* t2, const Type* res) const {
1019 _C->_type_verify->add(t1, t2, res);
1020 }
1021 };
1022
1023 void Type::check_symmetrical(const Type* t, const Type* mt, const VerifyMeet& verify) const {
1024 Compile* C = Compile::current();
1025 const Type* mt2 = verify.meet(t, this);
1026
1027 // Verify that:
1028 // this meet t == t meet this
1029 if (mt != mt2) {
1030 tty->print_cr("=== Meet Not Commutative ===");
1031 tty->print("t = "); t->dump(); tty->cr();
1032 tty->print("this = "); dump(); tty->cr();
1033 tty->print("t meet this = "); mt2->dump(); tty->cr();
1034 tty->print("this meet t = "); mt->dump(); tty->cr();
1035 fatal("meet not commutative");
1036 }
1037 const Type* dual_join = mt->_dual;
1038 const Type* t2t = verify.meet(dual_join,t->_dual);
1039 const Type* t2this = verify.meet(dual_join,this->_dual);
1040
1041 // Interface meet Oop is Not Symmetric:
1042 // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
1043 // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
1044
1045 // Verify that:
1046 // 1) mt_dual meet t_dual == t_dual
1047 // which corresponds to
1048 // !(t meet this) meet !t ==
1049 // (!t join !this) meet !t == !t
1050 // 2) mt_dual meet this_dual == this_dual
1051 // which corresponds to
1052 // !(t meet this) meet !this ==
1053 // (!t join !this) meet !this == !this
1054 // TODO 8332406 Fix this
1055 if (( isa_instptr() != nullptr && is_instptr()->flat_in_array()) ||
1056 (t->isa_instptr() != nullptr && t->is_instptr()->flat_in_array())) {
1057 return;
1058 }
1059 if (t2t != t->_dual || t2this != this->_dual) {
1060 tty->print_cr("=== Meet Not Symmetric ===");
1061 tty->print("t = "); t->dump(); tty->cr();
1062 tty->print("this= "); dump(); tty->cr();
1063 tty->print("mt=(t meet this)= "); mt->dump(); tty->cr();
1064
1065 tty->print("t_dual= "); t->_dual->dump(); tty->cr();
1066 tty->print("this_dual= "); _dual->dump(); tty->cr();
1067 tty->print("mt_dual= "); mt->_dual->dump(); tty->cr();
1068
1069 // 1)
1070 tty->print("mt_dual meet t_dual= "); t2t ->dump(); tty->cr();
1071 // 2)
1072 tty->print("mt_dual meet this_dual= "); t2this ->dump(); tty->cr();
1073
1074 fatal("meet not symmetric");
1075 }
1076 }
1077 #endif
1078
1079 //------------------------------meet-------------------------------------------
1080 // Compute the MEET of two types. NOT virtual. It enforces that meet is
1081 // commutative and the lattice is symmetric.
1082 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
1083 if (isa_narrowoop() && t->isa_narrowoop()) {
1084 const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
1085 return result->make_narrowoop();
1086 }
1087 if (isa_narrowklass() && t->isa_narrowklass()) {
1088 const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
1089 return result->make_narrowklass();
1090 }
1091
1092 #ifdef ASSERT
1093 Compile* C = Compile::current();
1094 VerifyMeet verify(C);
1095 #endif
1096
1097 const Type *this_t = maybe_remove_speculative(include_speculative);
1098 t = t->maybe_remove_speculative(include_speculative);
1099
1100 const Type *mt = this_t->xmeet(t);
1101 #ifdef ASSERT
1102 verify.add(this_t, t, mt);
1103 if (isa_narrowoop() || t->isa_narrowoop()) {
1104 return mt;
1105 }
1106 if (isa_narrowklass() || t->isa_narrowklass()) {
1107 return mt;
1108 }
1109 // TODO 8350865 This currently triggers a verification failure, the code around "// Even though MyValue is final" needs adjustments
1110 if ((this_t->isa_ptr() && this_t->is_ptr()->is_not_flat()) ||
1111 (this_t->_dual->isa_ptr() && this_t->_dual->is_ptr()->is_not_flat())) return mt;
1112 this_t->check_symmetrical(t, mt, verify);
1113 const Type *mt_dual = verify.meet(this_t->_dual, t->_dual);
1114 this_t->_dual->check_symmetrical(t->_dual, mt_dual, verify);
1115 #endif
1116 return mt;
1117 }
1118
1119 //------------------------------xmeet------------------------------------------
1120 // Compute the MEET of two types. It returns a new Type object.
1121 const Type *Type::xmeet( const Type *t ) const {
1122 // Perform a fast test for common case; meeting the same types together.
1123 if( this == t ) return this; // Meeting same type-rep?
1124
1125 // Meeting TOP with anything?
1126 if( _base == Top ) return t;
1127
1128 // Meeting BOTTOM with anything?
1129 if( _base == Bottom ) return BOTTOM;
1130
1131 // Current "this->_base" is one of: Bad, Multi, Control, Top,
2108 void TypeLong::dump_verbose() const {
2109 TypeIntHelper::int_type_dump(this, tty, true);
2110 }
2111 #endif
2112
2113 //=============================================================================
2114 // Convenience common pre-built types.
2115 const TypeTuple *TypeTuple::IFBOTH; // Return both arms of IF as reachable
2116 const TypeTuple *TypeTuple::IFFALSE;
2117 const TypeTuple *TypeTuple::IFTRUE;
2118 const TypeTuple *TypeTuple::IFNEITHER;
2119 const TypeTuple *TypeTuple::LOOPBODY;
2120 const TypeTuple *TypeTuple::MEMBAR;
2121 const TypeTuple *TypeTuple::STORECONDITIONAL;
2122 const TypeTuple *TypeTuple::START_I2C;
2123 const TypeTuple *TypeTuple::INT_PAIR;
2124 const TypeTuple *TypeTuple::LONG_PAIR;
2125 const TypeTuple *TypeTuple::INT_CC_PAIR;
2126 const TypeTuple *TypeTuple::LONG_CC_PAIR;
2127
2128 static void collect_inline_fields(ciInlineKlass* vk, const Type** field_array, uint& pos) {
2129 for (int i = 0; i < vk->nof_declared_nonstatic_fields(); i++) {
2130 ciField* field = vk->declared_nonstatic_field_at(i);
2131 if (field->is_flat()) {
2132 collect_inline_fields(field->type()->as_inline_klass(), field_array, pos);
2133 if (!field->is_null_free()) {
2134 // Use T_INT instead of T_BOOLEAN here because the upper bits can contain garbage if the holder
2135 // is null and C2 will only zero them for T_INT assuming that T_BOOLEAN is already canonicalized.
2136 field_array[pos++] = Type::get_const_basic_type(T_INT);
2137 }
2138 } else {
2139 BasicType bt = field->type()->basic_type();
2140 const Type* ft = Type::get_const_type(field->type());
2141 field_array[pos++] = ft;
2142 if (type2size[bt] == 2) {
2143 field_array[pos++] = Type::HALF;
2144 }
2145 }
2146 }
2147 }
2148
2149 //------------------------------make-------------------------------------------
2150 // Make a TypeTuple from the range of a method signature
2151 const TypeTuple *TypeTuple::make_range(ciSignature* sig, InterfaceHandling interface_handling, bool ret_vt_fields) {
2152 ciType* return_type = sig->return_type();
2153 uint arg_cnt = return_type->size();
2154 if (ret_vt_fields) {
2155 arg_cnt = return_type->as_inline_klass()->inline_arg_slots() + 1;
2156 // InlineTypeNode::NullMarker field used for null checking
2157 arg_cnt++;
2158 }
2159 const Type **field_array = fields(arg_cnt);
2160 switch (return_type->basic_type()) {
2161 case T_LONG:
2162 field_array[TypeFunc::Parms] = TypeLong::LONG;
2163 field_array[TypeFunc::Parms+1] = Type::HALF;
2164 break;
2165 case T_DOUBLE:
2166 field_array[TypeFunc::Parms] = Type::DOUBLE;
2167 field_array[TypeFunc::Parms+1] = Type::HALF;
2168 break;
2169 case T_OBJECT:
2170 if (return_type->is_inlinetype() && ret_vt_fields) {
2171 uint pos = TypeFunc::Parms;
2172 field_array[pos++] = get_const_type(return_type); // Oop might be null when returning as fields
2173 collect_inline_fields(return_type->as_inline_klass(), field_array, pos);
2174 // InlineTypeNode::NullMarker field used for null checking
2175 field_array[pos++] = get_const_basic_type(T_BOOLEAN);
2176 assert(pos == (TypeFunc::Parms + arg_cnt), "out of bounds");
2177 break;
2178 } else {
2179 field_array[TypeFunc::Parms] = get_const_type(return_type, interface_handling)->join_speculative(TypePtr::BOTTOM);
2180 }
2181 break;
2182 case T_ARRAY:
2183 case T_BOOLEAN:
2184 case T_CHAR:
2185 case T_FLOAT:
2186 case T_BYTE:
2187 case T_SHORT:
2188 case T_INT:
2189 field_array[TypeFunc::Parms] = get_const_type(return_type, interface_handling);
2190 break;
2191 case T_VOID:
2192 break;
2193 default:
2194 ShouldNotReachHere();
2195 }
2196 return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2197 }
2198
2199 // Make a TypeTuple from the domain of a method signature
2200 const TypeTuple *TypeTuple::make_domain(ciMethod* method, InterfaceHandling interface_handling, bool vt_fields_as_args) {
2201 ciSignature* sig = method->signature();
2202 uint arg_cnt = sig->size() + (method->is_static() ? 0 : 1);
2203 if (vt_fields_as_args) {
2204 arg_cnt = 0;
2205 assert(method->get_sig_cc() != nullptr, "Should have scalarized signature");
2206 for (ExtendedSignature sig_cc = ExtendedSignature(method->get_sig_cc(), SigEntryFilter()); !sig_cc.at_end(); ++sig_cc) {
2207 arg_cnt += type2size[(*sig_cc)._bt];
2208 }
2209 }
2210
2211 uint pos = TypeFunc::Parms;
2212 const Type** field_array = fields(arg_cnt);
2213 if (!method->is_static()) {
2214 ciInstanceKlass* recv = method->holder();
2215 if (vt_fields_as_args && recv->is_inlinetype() && recv->as_inline_klass()->can_be_passed_as_fields() && method->is_scalarized_arg(0)) {
2216 collect_inline_fields(recv->as_inline_klass(), field_array, pos);
2217 } else {
2218 field_array[pos++] = get_const_type(recv, interface_handling)->join_speculative(TypePtr::NOTNULL);
2219 }
2220 }
2221
2222 int i = 0;
2223 while (pos < TypeFunc::Parms + arg_cnt) {
2224 ciType* type = sig->type_at(i);
2225 BasicType bt = type->basic_type();
2226
2227 switch (bt) {
2228 case T_LONG:
2229 field_array[pos++] = TypeLong::LONG;
2230 field_array[pos++] = Type::HALF;
2231 break;
2232 case T_DOUBLE:
2233 field_array[pos++] = Type::DOUBLE;
2234 field_array[pos++] = Type::HALF;
2235 break;
2236 case T_OBJECT:
2237 if (type->is_inlinetype() && vt_fields_as_args && method->is_scalarized_arg(i + (method->is_static() ? 0 : 1))) {
2238 // InlineTypeNode::NullMarker field used for null checking
2239 field_array[pos++] = get_const_basic_type(T_BOOLEAN);
2240 collect_inline_fields(type->as_inline_klass(), field_array, pos);
2241 } else {
2242 field_array[pos++] = get_const_type(type, interface_handling);
2243 }
2244 break;
2245 case T_ARRAY:
2246 case T_FLOAT:
2247 case T_INT:
2248 field_array[pos++] = get_const_type(type, interface_handling);
2249 break;
2250 case T_BOOLEAN:
2251 case T_CHAR:
2252 case T_BYTE:
2253 case T_SHORT:
2254 field_array[pos++] = TypeInt::INT;
2255 break;
2256 default:
2257 ShouldNotReachHere();
2258 }
2259 i++;
2260 }
2261 assert(pos == TypeFunc::Parms + arg_cnt, "wrong number of arguments");
2262
2263 return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2264 }
2265
2266 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
2267 return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
2268 }
2269
2270 //------------------------------fields-----------------------------------------
2271 // Subroutine call type with space allocated for argument types
2272 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
2273 const Type **TypeTuple::fields( uint arg_cnt ) {
2274 const Type **flds = (const Type **)(Compile::current()->type_arena()->AmallocWords((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
2275 flds[TypeFunc::Control ] = Type::CONTROL;
2276 flds[TypeFunc::I_O ] = Type::ABIO;
2277 flds[TypeFunc::Memory ] = Type::MEMORY;
2278 flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
2279 flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
2280
2281 return flds;
2376 if (_fields[i]->empty()) return true;
2377 }
2378 return false;
2379 }
2380
2381 //=============================================================================
2382 // Convenience common pre-built types.
2383
2384 inline const TypeInt* normalize_array_size(const TypeInt* size) {
2385 // Certain normalizations keep us sane when comparing types.
2386 // We do not want arrayOop variables to differ only by the wideness
2387 // of their index types. Pick minimum wideness, since that is the
2388 // forced wideness of small ranges anyway.
2389 if (size->_widen != Type::WidenMin)
2390 return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
2391 else
2392 return size;
2393 }
2394
2395 //------------------------------make-------------------------------------------
2396 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable,
2397 bool flat, bool not_flat, bool not_null_free, bool atomic) {
2398 if (UseCompressedOops && elem->isa_oopptr()) {
2399 elem = elem->make_narrowoop();
2400 }
2401 size = normalize_array_size(size);
2402 return (TypeAry*)(new TypeAry(elem, size, stable, flat, not_flat, not_null_free, atomic))->hashcons();
2403 }
2404
2405 //------------------------------meet-------------------------------------------
2406 // Compute the MEET of two types. It returns a new Type object.
2407 const Type *TypeAry::xmeet( const Type *t ) const {
2408 // Perform a fast test for common case; meeting the same types together.
2409 if( this == t ) return this; // Meeting same type-rep?
2410
2411 // Current "this->_base" is Ary
2412 switch (t->base()) { // switch on original type
2413
2414 case Bottom: // Ye Olde Default
2415 return t;
2416
2417 default: // All else is a mistake
2418 typerr(t);
2419
2420 case Array: { // Meeting 2 arrays?
2421 const TypeAry* a = t->is_ary();
2422 const Type* size = _size->xmeet(a->_size);
2423 const TypeInt* isize = size->isa_int();
2424 if (isize == nullptr) {
2425 assert(size == Type::TOP || size == Type::BOTTOM, "");
2426 return size;
2427 }
2428 return TypeAry::make(_elem->meet_speculative(a->_elem),
2429 isize, _stable && a->_stable,
2430 _flat && a->_flat,
2431 _not_flat && a->_not_flat,
2432 _not_null_free && a->_not_null_free,
2433 _atomic && a->_atomic);
2434 }
2435 case Top:
2436 break;
2437 }
2438 return this; // Return the double constant
2439 }
2440
2441 //------------------------------xdual------------------------------------------
2442 // Dual: compute field-by-field dual
2443 const Type *TypeAry::xdual() const {
2444 const TypeInt* size_dual = _size->dual()->is_int();
2445 size_dual = normalize_array_size(size_dual);
2446 return new TypeAry(_elem->dual(), size_dual, !_stable, !_flat, !_not_flat, !_not_null_free, !_atomic);
2447 }
2448
2449 //------------------------------eq---------------------------------------------
2450 // Structural equality check for Type representations
2451 bool TypeAry::eq( const Type *t ) const {
2452 const TypeAry *a = (const TypeAry*)t;
2453 return _elem == a->_elem &&
2454 _stable == a->_stable &&
2455 _size == a->_size &&
2456 _flat == a->_flat &&
2457 _not_flat == a->_not_flat &&
2458 _not_null_free == a->_not_null_free &&
2459 _atomic == a->_atomic;
2460
2461 }
2462
2463 //------------------------------hash-------------------------------------------
2464 // Type-specific hashing function.
2465 uint TypeAry::hash(void) const {
2466 return (uint)(uintptr_t)_elem + (uint)(uintptr_t)_size + (uint)(_stable ? 43 : 0) +
2467 (uint)(_flat ? 44 : 0) + (uint)(_not_flat ? 45 : 0) + (uint)(_not_null_free ? 46 : 0) + (uint)(_atomic ? 47 : 0);
2468 }
2469
2470 /**
2471 * Return same type without a speculative part in the element
2472 */
2473 const TypeAry* TypeAry::remove_speculative() const {
2474 return make(_elem->remove_speculative(), _size, _stable, _flat, _not_flat, _not_null_free, _atomic);
2475 }
2476
2477 /**
2478 * Return same type with cleaned up speculative part of element
2479 */
2480 const Type* TypeAry::cleanup_speculative() const {
2481 return make(_elem->cleanup_speculative(), _size, _stable, _flat, _not_flat, _not_null_free, _atomic);
2482 }
2483
2484 /**
2485 * Return same type but with a different inline depth (used for speculation)
2486 *
2487 * @param depth depth to meet with
2488 */
2489 const TypePtr* TypePtr::with_inline_depth(int depth) const {
2490 if (!UseInlineDepthForSpeculativeTypes) {
2491 return this;
2492 }
2493 return make(AnyPtr, _ptr, _offset, _speculative, depth);
2494 }
2495
2496 //------------------------------dump2------------------------------------------
2497 #ifndef PRODUCT
2498 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2499 if (_stable) st->print("stable:");
2500 if (_flat) st->print("flat:");
2501 if (Verbose) {
2502 if (_not_flat) st->print("not flat:");
2503 if (_not_null_free) st->print("not null free:");
2504 }
2505 if (_atomic) st->print("atomic:");
2506 _elem->dump2(d, depth, st);
2507 st->print("[");
2508 _size->dump2(d, depth, st);
2509 st->print("]");
2510 }
2511 #endif
2512
2513 //------------------------------singleton--------------------------------------
2514 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
2515 // constants (Ldi nodes). Singletons are integer, float or double constants
2516 // or a single symbol.
2517 bool TypeAry::singleton(void) const {
2518 return false; // Never a singleton
2519 }
2520
2521 bool TypeAry::empty(void) const {
2522 return _elem->empty() || _size->empty();
2523 }
2524
2525 //--------------------------ary_must_be_exact----------------------------------
2526 bool TypeAry::ary_must_be_exact() const {
2527 // This logic looks at the element type of an array, and returns true
2528 // if the element type is either a primitive or a final instance class.
2529 // In such cases, an array built on this ary must have no subclasses.
2530 if (_elem == BOTTOM) return false; // general array not exact
2531 if (_elem == TOP ) return false; // inverted general array not exact
2532 const TypeOopPtr* toop = nullptr;
2533 if (UseCompressedOops && _elem->isa_narrowoop()) {
2534 toop = _elem->make_ptr()->isa_oopptr();
2535 } else {
2536 toop = _elem->isa_oopptr();
2537 }
2538 if (!toop) return true; // a primitive type, like int
2539 if (!toop->is_loaded()) return false; // unloaded class
2540 const TypeInstPtr* tinst;
2541 if (_elem->isa_narrowoop())
2542 tinst = _elem->make_ptr()->isa_instptr();
2543 else
2544 tinst = _elem->isa_instptr();
2545 if (tinst) {
2546 if (tinst->instance_klass()->is_final()) {
2547 // Even though MyValue is final, [LMyValue is only exact if the array
2548 // is (not) null-free due to null-free [LMyValue <: null-able [LMyValue.
2549 // TODO 8350865 If we know that the array can't be null-free, it's allowed to be exact, right?
2550 // If so, we should add '&& !_not_null_free'
2551 if (tinst->is_inlinetypeptr() && (tinst->ptr() != TypePtr::NotNull)) {
2552 return false;
2553 }
2554 return true;
2555 }
2556 return false;
2557 }
2558 const TypeAryPtr* tap;
2559 if (_elem->isa_narrowoop())
2560 tap = _elem->make_ptr()->isa_aryptr();
2561 else
2562 tap = _elem->isa_aryptr();
2563 if (tap)
2564 return tap->ary()->ary_must_be_exact();
2565 return false;
2566 }
2567
2568 //==============================TypeVect=======================================
2569 // Convenience common pre-built types.
2570 const TypeVect* TypeVect::VECTA = nullptr; // vector length agnostic
2571 const TypeVect* TypeVect::VECTS = nullptr; // 32-bit vectors
2572 const TypeVect* TypeVect::VECTD = nullptr; // 64-bit vectors
2573 const TypeVect* TypeVect::VECTX = nullptr; // 128-bit vectors
2574 const TypeVect* TypeVect::VECTY = nullptr; // 256-bit vectors
2575 const TypeVect* TypeVect::VECTZ = nullptr; // 512-bit vectors
2576 const TypeVect* TypeVect::VECTMASK = nullptr; // predicate/mask vector
2577
2712
2713 //=============================================================================
2714 // Convenience common pre-built types.
2715 const TypePtr *TypePtr::NULL_PTR;
2716 const TypePtr *TypePtr::NOTNULL;
2717 const TypePtr *TypePtr::BOTTOM;
2718
2719 //------------------------------meet-------------------------------------------
2720 // Meet over the PTR enum
2721 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2722 // TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,
2723 { /* Top */ TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,},
2724 { /* AnyNull */ AnyNull, AnyNull, Constant, BotPTR, NotNull, BotPTR,},
2725 { /* Constant*/ Constant, Constant, Constant, BotPTR, NotNull, BotPTR,},
2726 { /* Null */ Null, BotPTR, BotPTR, Null, BotPTR, BotPTR,},
2727 { /* NotNull */ NotNull, NotNull, NotNull, BotPTR, NotNull, BotPTR,},
2728 { /* BotPTR */ BotPTR, BotPTR, BotPTR, BotPTR, BotPTR, BotPTR,}
2729 };
2730
2731 //------------------------------make-------------------------------------------
2732 const TypePtr* TypePtr::make(TYPES t, enum PTR ptr, Offset offset, const TypePtr* speculative, int inline_depth) {
2733 return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2734 }
2735
2736 //------------------------------cast_to_ptr_type-------------------------------
2737 const TypePtr* TypePtr::cast_to_ptr_type(PTR ptr) const {
2738 assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2739 if( ptr == _ptr ) return this;
2740 return make(_base, ptr, _offset, _speculative, _inline_depth);
2741 }
2742
2743 //------------------------------get_con----------------------------------------
2744 intptr_t TypePtr::get_con() const {
2745 assert( _ptr == Null, "" );
2746 return offset();
2747 }
2748
2749 //------------------------------meet-------------------------------------------
2750 // Compute the MEET of two types. It returns a new Type object.
2751 const Type *TypePtr::xmeet(const Type *t) const {
2752 const Type* res = xmeet_helper(t);
2753 if (res->isa_ptr() == nullptr) {
2754 return res;
2755 }
2756
2757 const TypePtr* res_ptr = res->is_ptr();
2758 if (res_ptr->speculative() != nullptr) {
2759 // type->speculative() is null means that speculation is no better
2760 // than type, i.e. type->speculative() == type. So there are 2
2761 // ways to represent the fact that we have no useful speculative
2762 // data and we should use a single one to be able to test for
2763 // equality between types. Check whether type->speculative() ==
2764 // type and set speculative to null if it is the case.
2765 if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2766 return res_ptr->remove_speculative();
2800 int depth = meet_inline_depth(tp->inline_depth());
2801 return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2802 }
2803 case RawPtr: // For these, flip the call around to cut down
2804 case OopPtr:
2805 case InstPtr: // on the cases I have to handle.
2806 case AryPtr:
2807 case MetadataPtr:
2808 case KlassPtr:
2809 case InstKlassPtr:
2810 case AryKlassPtr:
2811 return t->xmeet(this); // Call in reverse direction
2812 default: // All else is a mistake
2813 typerr(t);
2814
2815 }
2816 return this;
2817 }
2818
2819 //------------------------------meet_offset------------------------------------
2820 Type::Offset TypePtr::meet_offset(int offset) const {
2821 return _offset.meet(Offset(offset));
2822 }
2823
2824 //------------------------------dual_offset------------------------------------
2825 Type::Offset TypePtr::dual_offset() const {
2826 return _offset.dual();
2827 }
2828
2829 //------------------------------xdual------------------------------------------
2830 // Dual: compute field-by-field dual
2831 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2832 BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2833 };
2834 const Type *TypePtr::xdual() const {
2835 return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2836 }
2837
2838 //------------------------------xadd_offset------------------------------------
2839 Type::Offset TypePtr::xadd_offset(intptr_t offset) const {
2840 return _offset.add(offset);
2841 }
2842
2843 //------------------------------add_offset-------------------------------------
2844 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2845 return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2846 }
2847
2848 const TypePtr *TypePtr::with_offset(intptr_t offset) const {
2849 return make(AnyPtr, _ptr, Offset(offset), _speculative, _inline_depth);
2850 }
2851
2852 //------------------------------eq---------------------------------------------
2853 // Structural equality check for Type representations
2854 bool TypePtr::eq( const Type *t ) const {
2855 const TypePtr *a = (const TypePtr*)t;
2856 return _ptr == a->ptr() && _offset == a->_offset && eq_speculative(a) && _inline_depth == a->_inline_depth;
2857 }
2858
2859 //------------------------------hash-------------------------------------------
2860 // Type-specific hashing function.
2861 uint TypePtr::hash(void) const {
2862 return (uint)_ptr + (uint)offset() + (uint)hash_speculative() + (uint)_inline_depth;
2863 }
2864
2865 /**
2866 * Return same type without a speculative part
2867 */
2868 const TypePtr* TypePtr::remove_speculative() const {
2869 if (_speculative == nullptr) {
2870 return this;
2871 }
2872 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2873 return make(AnyPtr, _ptr, _offset, nullptr, _inline_depth);
2874 }
2875
2876 /**
2877 * Return same type but drop speculative part if we know we won't use
2878 * it
2879 */
2880 const Type* TypePtr::cleanup_speculative() const {
2881 if (speculative() == nullptr) {
2882 return this;
3108 }
3109 // We already know the speculative type is always null
3110 if (speculative_always_null()) {
3111 return false;
3112 }
3113 if (ptr_kind == ProfileAlwaysNull && speculative() != nullptr && speculative()->isa_oopptr()) {
3114 return false;
3115 }
3116 return true;
3117 }
3118
3119 //------------------------------dump2------------------------------------------
3120 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
3121 "TopPTR","AnyNull","Constant","null","NotNull","BotPTR"
3122 };
3123
3124 #ifndef PRODUCT
3125 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3126 if( _ptr == Null ) st->print("null");
3127 else st->print("%s *", ptr_msg[_ptr]);
3128 _offset.dump2(st);
3129 dump_inline_depth(st);
3130 dump_speculative(st);
3131 }
3132
3133 /**
3134 *dump the speculative part of the type
3135 */
3136 void TypePtr::dump_speculative(outputStream *st) const {
3137 if (_speculative != nullptr) {
3138 st->print(" (speculative=");
3139 _speculative->dump_on(st);
3140 st->print(")");
3141 }
3142 }
3143
3144 /**
3145 *dump the inline depth of the type
3146 */
3147 void TypePtr::dump_inline_depth(outputStream *st) const {
3148 if (_inline_depth != InlineDepthBottom) {
3149 if (_inline_depth == InlineDepthTop) {
3150 st->print(" (inline_depth=InlineDepthTop)");
3151 } else {
3152 st->print(" (inline_depth=%d)", _inline_depth);
3153 }
3154 }
3155 }
3156 #endif
3157
3158 //------------------------------singleton--------------------------------------
3159 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
3160 // constants
3161 bool TypePtr::singleton(void) const {
3162 // TopPTR, Null, AnyNull, Constant are all singletons
3163 return (_offset != Offset::bottom) && !below_centerline(_ptr);
3164 }
3165
3166 bool TypePtr::empty(void) const {
3167 return (_offset == Offset::top) || above_centerline(_ptr);
3168 }
3169
3170 //=============================================================================
3171 // Convenience common pre-built types.
3172 const TypeRawPtr *TypeRawPtr::BOTTOM;
3173 const TypeRawPtr *TypeRawPtr::NOTNULL;
3174
3175 //------------------------------make-------------------------------------------
3176 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
3177 assert( ptr != Constant, "what is the constant?" );
3178 assert( ptr != Null, "Use TypePtr for null" );
3179 return (TypeRawPtr*)(new TypeRawPtr(ptr,nullptr))->hashcons();
3180 }
3181
3182 const TypeRawPtr *TypeRawPtr::make(address bits) {
3183 assert(bits != nullptr, "Use TypePtr for null");
3184 return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
3185 }
3186
3187 //------------------------------cast_to_ptr_type-------------------------------
3554 #endif
3555
3556 // Can't be implemented because there's no way to know if the type is above or below the center line.
3557 const Type* TypeInterfaces::xmeet(const Type* t) const {
3558 ShouldNotReachHere();
3559 return Type::xmeet(t);
3560 }
3561
3562 bool TypeInterfaces::singleton(void) const {
3563 ShouldNotReachHere();
3564 return Type::singleton();
3565 }
3566
3567 bool TypeInterfaces::has_non_array_interface() const {
3568 assert(TypeAryPtr::_array_interfaces != nullptr, "How come Type::Initialize_shared wasn't called yet?");
3569
3570 return !TypeAryPtr::_array_interfaces->contains(this);
3571 }
3572
3573 //------------------------------TypeOopPtr-------------------------------------
3574 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset offset, Offset field_offset,
3575 int instance_id, const TypePtr* speculative, int inline_depth)
3576 : TypePtr(t, ptr, offset, speculative, inline_depth),
3577 _const_oop(o), _klass(k),
3578 _interfaces(interfaces),
3579 _klass_is_exact(xk),
3580 _is_ptr_to_narrowoop(false),
3581 _is_ptr_to_narrowklass(false),
3582 _is_ptr_to_boxed_value(false),
3583 _is_ptr_to_strict_final_field(false),
3584 _instance_id(instance_id) {
3585 #ifdef ASSERT
3586 if (klass() != nullptr && klass()->is_loaded()) {
3587 interfaces->verify_is_loaded();
3588 }
3589 #endif
3590 if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
3591 (offset.get() > 0) && xk && (k != nullptr) && k->is_instance_klass()) {
3592 _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset.get());
3593 _is_ptr_to_strict_final_field = _is_ptr_to_boxed_value;
3594 }
3595
3596 if (klass() != nullptr && klass()->is_instance_klass() && klass()->is_loaded() &&
3597 this->offset() != Type::OffsetBot && this->offset() != Type::OffsetTop) {
3598 ciField* field = klass()->as_instance_klass()->get_field_by_offset(this->offset(), false);
3599 if (field != nullptr && field->is_strict() && field->is_final()) {
3600 _is_ptr_to_strict_final_field = true;
3601 }
3602 }
3603
3604 #ifdef _LP64
3605 if (this->offset() > 0 || this->offset() == Type::OffsetTop || this->offset() == Type::OffsetBot) {
3606 if (this->offset() == oopDesc::klass_offset_in_bytes()) {
3607 _is_ptr_to_narrowklass = UseCompressedClassPointers;
3608 } else if (klass() == nullptr) {
3609 // Array with unknown body type
3610 assert(this->isa_aryptr(), "only arrays without klass");
3611 _is_ptr_to_narrowoop = UseCompressedOops;
3612 } else if (UseCompressedOops && this->isa_aryptr() && this->offset() != arrayOopDesc::length_offset_in_bytes()) {
3613 if (klass()->is_obj_array_klass()) {
3614 _is_ptr_to_narrowoop = true;
3615 } else if (klass()->is_flat_array_klass() && field_offset != Offset::top && field_offset != Offset::bottom) {
3616 // Check if the field of the inline type array element contains oops
3617 ciInlineKlass* vk = klass()->as_flat_array_klass()->element_klass()->as_inline_klass();
3618 int foffset = field_offset.get() + vk->payload_offset();
3619 BasicType field_bt;
3620 ciField* field = vk->get_field_by_offset(foffset, false);
3621 if (field != nullptr) {
3622 field_bt = field->layout_type();
3623 } else {
3624 assert(field_offset.get() == vk->null_marker_offset_in_payload(), "no field or null marker of %s at offset %d", vk->name()->as_utf8(), foffset);
3625 field_bt = T_BOOLEAN;
3626 }
3627 _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(field_bt);
3628 }
3629 } else if (klass()->is_instance_klass()) {
3630 if (this->isa_klassptr()) {
3631 // Perm objects don't use compressed references
3632 } else if (_offset == Offset::bottom || _offset == Offset::top) {
3633 // unsafe access
3634 _is_ptr_to_narrowoop = UseCompressedOops;
3635 } else {
3636 assert(this->isa_instptr(), "must be an instance ptr.");
3637 if (klass() == ciEnv::current()->Class_klass() &&
3638 (this->offset() == java_lang_Class::klass_offset() ||
3639 this->offset() == java_lang_Class::array_klass_offset())) {
3640 // Special hidden fields from the Class.
3641 assert(this->isa_instptr(), "must be an instance ptr.");
3642 _is_ptr_to_narrowoop = false;
3643 } else if (klass() == ciEnv::current()->Class_klass() &&
3644 this->offset() >= InstanceMirrorKlass::offset_of_static_fields()) {
3645 // Static fields
3646 ciField* field = nullptr;
3647 if (const_oop() != nullptr) {
3648 ciInstanceKlass* k = const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
3649 field = k->get_field_by_offset(this->offset(), true);
3650 }
3651 if (field != nullptr) {
3652 BasicType basic_elem_type = field->layout_type();
3653 _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type);
3654 } else {
3655 // unsafe access
3656 _is_ptr_to_narrowoop = UseCompressedOops;
3657 }
3658 } else {
3659 // Instance fields which contains a compressed oop references.
3660 ciInstanceKlass* ik = klass()->as_instance_klass();
3661 ciField* field = ik->get_field_by_offset(this->offset(), false);
3662 if (field != nullptr) {
3663 BasicType basic_elem_type = field->layout_type();
3664 _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type);
3665 } else if (klass()->equals(ciEnv::current()->Object_klass())) {
3666 // Compile::find_alias_type() cast exactness on all types to verify
3667 // that it does not affect alias type.
3668 _is_ptr_to_narrowoop = UseCompressedOops;
3669 } else {
3670 // Type for the copy start in LibraryCallKit::inline_native_clone().
3671 _is_ptr_to_narrowoop = UseCompressedOops;
3672 }
3673 }
3674 }
3675 }
3676 }
3677 #endif // _LP64
3678 }
3679
3680 //------------------------------make-------------------------------------------
3681 const TypeOopPtr *TypeOopPtr::make(PTR ptr, Offset offset, int instance_id,
3682 const TypePtr* speculative, int inline_depth) {
3683 assert(ptr != Constant, "no constant generic pointers");
3684 ciKlass* k = Compile::current()->env()->Object_klass();
3685 bool xk = false;
3686 ciObject* o = nullptr;
3687 const TypeInterfaces* interfaces = TypeInterfaces::make();
3688 return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, interfaces, xk, o, offset, Offset::bottom, instance_id, speculative, inline_depth))->hashcons();
3689 }
3690
3691
3692 //------------------------------cast_to_ptr_type-------------------------------
3693 const TypeOopPtr* TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
3694 assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
3695 if( ptr == _ptr ) return this;
3696 return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
3697 }
3698
3699 //-----------------------------cast_to_instance_id----------------------------
3700 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
3701 // There are no instances of a general oop.
3702 // Return self unchanged.
3703 return this;
3704 }
3705
3706 //-----------------------------cast_to_exactness-------------------------------
3707 const TypeOopPtr* TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
3708 // There is no such thing as an exact general oop.
3709 // Return self unchanged.
3710 return this;
3711 }
3712
3713 //------------------------------as_klass_type----------------------------------
3714 // Return the klass type corresponding to this instance or array type.
3715 // It is the type that is loaded from an object of this type.
3716 const TypeKlassPtr* TypeOopPtr::as_klass_type(bool try_for_exact) const {
3717 ShouldNotReachHere();
3718 return nullptr;
3719 }
3720
3721 //------------------------------meet-------------------------------------------
3722 // Compute the MEET of two types. It returns a new Type object.
3723 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
3724 // Perform a fast test for common case; meeting the same types together.
3725 if( this == t ) return this; // Meeting same type-rep?
3726
3727 // Current "this->_base" is OopPtr
3728 switch (t->base()) { // switch on original type
3729
3730 case Int: // Mixing ints & oops happens when javac
3731 case Long: // reuses local variables
3732 case HalfFloatTop:
3741 case NarrowOop:
3742 case NarrowKlass:
3743 case Bottom: // Ye Olde Default
3744 return Type::BOTTOM;
3745 case Top:
3746 return this;
3747
3748 default: // All else is a mistake
3749 typerr(t);
3750
3751 case RawPtr:
3752 case MetadataPtr:
3753 case KlassPtr:
3754 case InstKlassPtr:
3755 case AryKlassPtr:
3756 return TypePtr::BOTTOM; // Oop meet raw is not well defined
3757
3758 case AnyPtr: {
3759 // Found an AnyPtr type vs self-OopPtr type
3760 const TypePtr *tp = t->is_ptr();
3761 Offset offset = meet_offset(tp->offset());
3762 PTR ptr = meet_ptr(tp->ptr());
3763 const TypePtr* speculative = xmeet_speculative(tp);
3764 int depth = meet_inline_depth(tp->inline_depth());
3765 switch (tp->ptr()) {
3766 case Null:
3767 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3768 // else fall through:
3769 case TopPTR:
3770 case AnyNull: {
3771 int instance_id = meet_instance_id(InstanceTop);
3772 return make(ptr, offset, instance_id, speculative, depth);
3773 }
3774 case BotPTR:
3775 case NotNull:
3776 return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3777 default: typerr(t);
3778 }
3779 }
3780
3781 case OopPtr: { // Meeting to other OopPtrs
3783 int instance_id = meet_instance_id(tp->instance_id());
3784 const TypePtr* speculative = xmeet_speculative(tp);
3785 int depth = meet_inline_depth(tp->inline_depth());
3786 return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
3787 }
3788
3789 case InstPtr: // For these, flip the call around to cut down
3790 case AryPtr:
3791 return t->xmeet(this); // Call in reverse direction
3792
3793 } // End of switch
3794 return this; // Return the double constant
3795 }
3796
3797
3798 //------------------------------xdual------------------------------------------
3799 // Dual of a pure heap pointer. No relevant klass or oop information.
3800 const Type *TypeOopPtr::xdual() const {
3801 assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
3802 assert(const_oop() == nullptr, "no constants here");
3803 return new TypeOopPtr(_base, dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), Offset::bottom, dual_instance_id(), dual_speculative(), dual_inline_depth());
3804 }
3805
3806 //--------------------------make_from_klass_common-----------------------------
3807 // Computes the element-type given a klass.
3808 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact, InterfaceHandling interface_handling) {
3809 if (klass->is_instance_klass() || klass->is_inlinetype()) {
3810 Compile* C = Compile::current();
3811 Dependencies* deps = C->dependencies();
3812 assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
3813 // Element is an instance
3814 bool klass_is_exact = false;
3815 if (klass->is_loaded()) {
3816 // Try to set klass_is_exact.
3817 ciInstanceKlass* ik = klass->as_instance_klass();
3818 klass_is_exact = ik->is_final();
3819 if (!klass_is_exact && klass_change
3820 && deps != nullptr && UseUniqueSubclasses) {
3821 ciInstanceKlass* sub = ik->unique_concrete_subklass();
3822 if (sub != nullptr) {
3823 deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3824 klass = ik = sub;
3825 klass_is_exact = sub->is_final();
3826 }
3827 }
3828 if (!klass_is_exact && try_for_exact && deps != nullptr &&
3829 !ik->is_interface() && !ik->has_subklass()) {
3830 // Add a dependence; if concrete subclass added we need to recompile
3831 deps->assert_leaf_type(ik);
3832 klass_is_exact = true;
3833 }
3834 }
3835 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
3836 return TypeInstPtr::make(TypePtr::BotPTR, klass, interfaces, klass_is_exact, nullptr, Offset(0));
3837 } else if (klass->is_obj_array_klass()) {
3838 // Element is an object or inline type array. Recursively call ourself.
3839 const TypeOopPtr* etype = TypeOopPtr::make_from_klass_common(klass->as_array_klass()->element_klass(), /* klass_change= */ false, try_for_exact, interface_handling);
3840 // Determine null-free/flat properties
3841 const bool is_null_free = klass->as_array_klass()->is_elem_null_free();
3842 if (is_null_free) {
3843 etype = etype->join_speculative(NOTNULL)->is_oopptr();
3844 }
3845 const TypeOopPtr* exact_etype = etype;
3846 if (etype->can_be_inline_type()) {
3847 // Use exact type if element can be an inline type
3848 exact_etype = TypeOopPtr::make_from_klass_common(klass->as_array_klass()->element_klass(), /* klass_change= */ true, /* try_for_exact= */ true, interface_handling);
3849 }
3850 bool not_inline = !exact_etype->can_be_inline_type();
3851 bool not_null_free = not_inline;
3852 bool not_flat = !UseArrayFlattening || not_inline || (exact_etype->is_inlinetypeptr() && !exact_etype->inline_klass()->maybe_flat_in_array());
3853 bool atomic = klass->as_array_klass()->is_elem_atomic();
3854 // Even though MyValue is final, [LMyValue is not exact because null-free [LMyValue is a subtype.
3855 bool xk = etype->klass_is_exact() && !etype->is_inlinetypeptr();
3856 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS, /* stable= */ false, /* flat= */ false, not_flat, not_null_free, atomic);
3857 // We used to pass NotNull in here, asserting that the sub-arrays
3858 // are all not-null. This is not true in generally, as code can
3859 // slam nullptrs down in the subarrays.
3860 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, nullptr, xk, Offset(0));
3861 return arr;
3862 } else if (klass->is_type_array_klass()) {
3863 // Element is an typeArray
3864 const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3865 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS,
3866 /* stable= */ false, /* flat= */ false, /* not_flat= */ true, /* not_null_free= */ true);
3867 // We used to pass NotNull in here, asserting that the array pointer
3868 // is not-null. That was not true in general.
3869 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, Offset(0));
3870 return arr;
3871 } else if (klass->is_flat_array_klass()) {
3872 const TypeOopPtr* etype = TypeOopPtr::make_from_klass_raw(klass->as_array_klass()->element_klass(), trust_interfaces);
3873 const bool is_null_free = klass->as_array_klass()->is_elem_null_free();
3874 if (is_null_free) {
3875 etype = etype->join_speculative(NOTNULL)->is_oopptr();
3876 }
3877 bool atomic = klass->as_array_klass()->is_elem_atomic();
3878 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS, /* stable= */ false, /* flat= */ true, /* not_flat= */ false, /* not_null_free= */ false, atomic);
3879 const bool exact = is_null_free; // Only exact if null-free because "null-free [LMyValue <: null-able [LMyValue".
3880 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, exact, Offset(0));
3881 return arr;
3882 } else {
3883 ShouldNotReachHere();
3884 return nullptr;
3885 }
3886 }
3887
3888 //------------------------------make_from_constant-----------------------------
3889 // Make a java pointer from an oop constant
3890 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
3891 assert(!o->is_null_object(), "null object not yet handled here.");
3892
3893 const bool make_constant = require_constant || o->should_be_constant();
3894
3895 ciKlass* klass = o->klass();
3896 if (klass->is_instance_klass() || klass->is_inlinetype()) {
3897 // Element is an instance or inline type
3898 if (make_constant) {
3899 return TypeInstPtr::make(o);
3900 } else {
3901 return TypeInstPtr::make(TypePtr::NotNull, klass, true, nullptr, Offset(0));
3902 }
3903 } else if (klass->is_obj_array_klass()) {
3904 // Element is an object array. Recursively call ourself.
3905 const TypeOopPtr* etype = TypeOopPtr::make_from_klass_raw(klass->as_array_klass()->element_klass(), trust_interfaces);
3906 bool is_flat = o->as_array()->is_flat();
3907 bool is_null_free = o->as_array()->is_null_free();
3908 if (is_null_free) {
3909 etype = etype->join_speculative(TypePtr::NOTNULL)->is_oopptr();
3910 }
3911 bool is_atomic = o->as_array()->is_atomic();
3912 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()), /* stable= */ false, /* flat= */ false,
3913 /* not_flat= */ !is_flat, /* not_null_free= */ !is_null_free, /* atomic= */ is_atomic);
3914 // We used to pass NotNull in here, asserting that the sub-arrays
3915 // are all not-null. This is not true in generally, as code can
3916 // slam nulls down in the subarrays.
3917 if (make_constant) {
3918 return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3919 } else {
3920 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3921 }
3922 } else if (klass->is_type_array_klass()) {
3923 // Element is an typeArray
3924 const Type* etype = (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3925 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()), /* stable= */ false, /* flat= */ false,
3926 /* not_flat= */ true, /* not_null_free= */ true);
3927 // We used to pass NotNull in here, asserting that the array pointer
3928 // is not-null. That was not true in general.
3929 if (make_constant) {
3930 return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3931 } else {
3932 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3933 }
3934 } else if (klass->is_flat_array_klass()) {
3935 const TypeOopPtr* etype = TypeOopPtr::make_from_klass_raw(klass->as_array_klass()->element_klass(), trust_interfaces);
3936 bool is_null_free = o->as_array()->is_null_free();
3937 if (is_null_free) {
3938 etype = etype->join_speculative(TypePtr::NOTNULL)->is_oopptr();
3939 }
3940 bool is_atomic = o->as_array()->is_atomic();
3941 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()), /* stable= */ false, /* flat= */ true,
3942 /* not_flat= */ false, /* not_null_free= */ !is_null_free, /* atomic= */ is_atomic);
3943 // We used to pass NotNull in here, asserting that the sub-arrays
3944 // are all not-null. This is not true in generally, as code can
3945 // slam nullptrs down in the subarrays.
3946 if (make_constant) {
3947 return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3948 } else {
3949 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3950 }
3951 }
3952
3953 fatal("unhandled object type");
3954 return nullptr;
3955 }
3956
3957 //------------------------------get_con----------------------------------------
3958 intptr_t TypeOopPtr::get_con() const {
3959 assert( _ptr == Null || _ptr == Constant, "" );
3960 assert(offset() >= 0, "");
3961
3962 if (offset() != 0) {
3963 // After being ported to the compiler interface, the compiler no longer
3964 // directly manipulates the addresses of oops. Rather, it only has a pointer
3965 // to a handle at compile time. This handle is embedded in the generated
3966 // code and dereferenced at the time the nmethod is made. Until that time,
3967 // it is not reasonable to do arithmetic with the addresses of oops (we don't
3968 // have access to the addresses!). This does not seem to currently happen,
3969 // but this assertion here is to help prevent its occurrence.
3970 tty->print_cr("Found oop constant with non-zero offset");
3971 ShouldNotReachHere();
3972 }
3973
3974 return (intptr_t)const_oop()->constant_encoding();
3975 }
3976
3977
3978 //-----------------------------filter------------------------------------------
3979 // Do not allow interface-vs.-noninterface joins to collapse to top.
3980 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
3981
3982 const Type* ft = join_helper(kills, include_speculative);
4001 } else {
4002 return one->equals(two) && TypePtr::eq(t);
4003 }
4004 }
4005
4006 //------------------------------hash-------------------------------------------
4007 // Type-specific hashing function.
4008 uint TypeOopPtr::hash(void) const {
4009 return
4010 (uint)(const_oop() ? const_oop()->hash() : 0) +
4011 (uint)_klass_is_exact +
4012 (uint)_instance_id + TypePtr::hash();
4013 }
4014
4015 //------------------------------dump2------------------------------------------
4016 #ifndef PRODUCT
4017 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4018 st->print("oopptr:%s", ptr_msg[_ptr]);
4019 if( _klass_is_exact ) st->print(":exact");
4020 if( const_oop() ) st->print(INTPTR_FORMAT, p2i(const_oop()));
4021 _offset.dump2(st);
4022 if (_instance_id == InstanceTop)
4023 st->print(",iid=top");
4024 else if (_instance_id != InstanceBot)
4025 st->print(",iid=%d",_instance_id);
4026
4027 dump_inline_depth(st);
4028 dump_speculative(st);
4029 }
4030 #endif
4031
4032 //------------------------------singleton--------------------------------------
4033 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
4034 // constants
4035 bool TypeOopPtr::singleton(void) const {
4036 // detune optimizer to not generate constant oop + constant offset as a constant!
4037 // TopPTR, Null, AnyNull, Constant are all singletons
4038 return (offset() == 0) && !below_centerline(_ptr);
4039 }
4040
4041 //------------------------------add_offset-------------------------------------
4042 const TypePtr* TypeOopPtr::add_offset(intptr_t offset) const {
4043 return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
4044 }
4045
4046 const TypeOopPtr* TypeOopPtr::with_offset(intptr_t offset) const {
4047 return make(_ptr, Offset(offset), _instance_id, with_offset_speculative(offset), _inline_depth);
4048 }
4049
4050 /**
4051 * Return same type without a speculative part
4052 */
4053 const TypeOopPtr* TypeOopPtr::remove_speculative() const {
4054 if (_speculative == nullptr) {
4055 return this;
4056 }
4057 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4058 return make(_ptr, _offset, _instance_id, nullptr, _inline_depth);
4059 }
4060
4061 /**
4062 * Return same type but drop speculative part if we know we won't use
4063 * it
4064 */
4065 const Type* TypeOopPtr::cleanup_speculative() const {
4066 // If the klass is exact and the ptr is not null then there's
4067 // nothing that the speculative type can help us with
4140 const TypeInstPtr *TypeInstPtr::BOTTOM;
4141 const TypeInstPtr *TypeInstPtr::MIRROR;
4142 const TypeInstPtr *TypeInstPtr::MARK;
4143 const TypeInstPtr *TypeInstPtr::KLASS;
4144
4145 // Is there a single ciKlass* that can represent that type?
4146 ciKlass* TypeInstPtr::exact_klass_helper() const {
4147 if (_interfaces->empty()) {
4148 return _klass;
4149 }
4150 if (_klass != ciEnv::current()->Object_klass()) {
4151 if (_interfaces->eq(_klass->as_instance_klass())) {
4152 return _klass;
4153 }
4154 return nullptr;
4155 }
4156 return _interfaces->exact_klass();
4157 }
4158
4159 //------------------------------TypeInstPtr-------------------------------------
4160 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset off,
4161 bool flat_in_array, int instance_id, const TypePtr* speculative, int inline_depth)
4162 : TypeOopPtr(InstPtr, ptr, k, interfaces, xk, o, off, Offset::bottom, instance_id, speculative, inline_depth),
4163 _flat_in_array(flat_in_array) {
4164 assert(k == nullptr || !k->is_loaded() || !k->is_interface(), "no interface here");
4165 assert(k != nullptr &&
4166 (k->is_loaded() || o == nullptr),
4167 "cannot have constants with non-loaded klass");
4168 assert(!klass()->maybe_flat_in_array() || flat_in_array, "Should be flat in array");
4169 assert(!flat_in_array || can_be_inline_type(), "Only inline types can be flat in array");
4170 };
4171
4172 //------------------------------make-------------------------------------------
4173 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
4174 ciKlass* k,
4175 const TypeInterfaces* interfaces,
4176 bool xk,
4177 ciObject* o,
4178 Offset offset,
4179 bool flat_in_array,
4180 int instance_id,
4181 const TypePtr* speculative,
4182 int inline_depth) {
4183 assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
4184 // Either const_oop() is null or else ptr is Constant
4185 assert( (!o && ptr != Constant) || (o && ptr == Constant),
4186 "constant pointers must have a value supplied" );
4187 // Ptr is never Null
4188 assert( ptr != Null, "null pointers are not typed" );
4189
4190 assert(instance_id <= 0 || xk, "instances are always exactly typed");
4191 if (ptr == Constant) {
4192 // Note: This case includes meta-object constants, such as methods.
4193 xk = true;
4194 } else if (k->is_loaded()) {
4195 ciInstanceKlass* ik = k->as_instance_klass();
4196 if (!xk && ik->is_final()) xk = true; // no inexact final klass
4197 assert(!ik->is_interface(), "no interface here");
4198 if (xk && ik->is_interface()) xk = false; // no exact interface
4199 }
4200
4201 // Check if this type is known to be flat in arrays
4202 flat_in_array = flat_in_array || k->maybe_flat_in_array();
4203
4204 // Now hash this baby
4205 TypeInstPtr *result =
4206 (TypeInstPtr*)(new TypeInstPtr(ptr, k, interfaces, xk, o, offset, flat_in_array, instance_id, speculative, inline_depth))->hashcons();
4207
4208 return result;
4209 }
4210
4211 const TypeInterfaces* TypePtr::interfaces(ciKlass*& k, bool klass, bool interface, bool array, InterfaceHandling interface_handling) {
4212 if (k->is_instance_klass()) {
4213 if (k->is_loaded()) {
4214 if (k->is_interface() && interface_handling == ignore_interfaces) {
4215 assert(interface, "no interface expected");
4216 k = ciEnv::current()->Object_klass();
4217 const TypeInterfaces* interfaces = TypeInterfaces::make();
4218 return interfaces;
4219 }
4220 GrowableArray<ciInstanceKlass *>* k_interfaces = k->as_instance_klass()->transitive_interfaces();
4221 const TypeInterfaces* interfaces = TypeInterfaces::make(k_interfaces);
4222 if (k->is_interface()) {
4223 assert(interface, "no interface expected");
4224 k = ciEnv::current()->Object_klass();
4225 } else {
4226 assert(klass, "no instance klass expected");
4252 switch (bt) {
4253 case T_BOOLEAN: return TypeInt::make(constant.as_boolean());
4254 case T_INT: return TypeInt::make(constant.as_int());
4255 case T_CHAR: return TypeInt::make(constant.as_char());
4256 case T_BYTE: return TypeInt::make(constant.as_byte());
4257 case T_SHORT: return TypeInt::make(constant.as_short());
4258 case T_FLOAT: return TypeF::make(constant.as_float());
4259 case T_DOUBLE: return TypeD::make(constant.as_double());
4260 case T_LONG: return TypeLong::make(constant.as_long());
4261 default: break;
4262 }
4263 fatal("Invalid boxed value type '%s'", type2name(bt));
4264 return nullptr;
4265 }
4266
4267 //------------------------------cast_to_ptr_type-------------------------------
4268 const TypeInstPtr* TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
4269 if( ptr == _ptr ) return this;
4270 // Reconstruct _sig info here since not a problem with later lazy
4271 // construction, _sig will show up on demand.
4272 return make(ptr, klass(), _interfaces, klass_is_exact(), ptr == Constant ? const_oop() : nullptr, _offset, _flat_in_array, _instance_id, _speculative, _inline_depth);
4273 }
4274
4275
4276 //-----------------------------cast_to_exactness-------------------------------
4277 const TypeInstPtr* TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
4278 if( klass_is_exact == _klass_is_exact ) return this;
4279 if (!_klass->is_loaded()) return this;
4280 ciInstanceKlass* ik = _klass->as_instance_klass();
4281 if( (ik->is_final() || _const_oop) ) return this; // cannot clear xk
4282 assert(!ik->is_interface(), "no interface here");
4283 return make(ptr(), klass(), _interfaces, klass_is_exact, const_oop(), _offset, _flat_in_array, _instance_id, _speculative, _inline_depth);
4284 }
4285
4286 //-----------------------------cast_to_instance_id----------------------------
4287 const TypeInstPtr* TypeInstPtr::cast_to_instance_id(int instance_id) const {
4288 if( instance_id == _instance_id ) return this;
4289 return make(_ptr, klass(), _interfaces, _klass_is_exact, const_oop(), _offset, _flat_in_array, instance_id, _speculative, _inline_depth);
4290 }
4291
4292 //------------------------------xmeet_unloaded---------------------------------
4293 // Compute the MEET of two InstPtrs when at least one is unloaded.
4294 // Assume classes are different since called after check for same name/class-loader
4295 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst, const TypeInterfaces* interfaces) const {
4296 Offset off = meet_offset(tinst->offset());
4297 PTR ptr = meet_ptr(tinst->ptr());
4298 int instance_id = meet_instance_id(tinst->instance_id());
4299 const TypePtr* speculative = xmeet_speculative(tinst);
4300 int depth = meet_inline_depth(tinst->inline_depth());
4301
4302 const TypeInstPtr *loaded = is_loaded() ? this : tinst;
4303 const TypeInstPtr *unloaded = is_loaded() ? tinst : this;
4304 if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
4305 //
4306 // Meet unloaded class with java/lang/Object
4307 //
4308 // Meet
4309 // | Unloaded Class
4310 // Object | TOP | AnyNull | Constant | NotNull | BOTTOM |
4311 // ===================================================================
4312 // TOP | ..........................Unloaded......................|
4313 // AnyNull | U-AN |................Unloaded......................|
4314 // Constant | ... O-NN .................................. | O-BOT |
4315 // NotNull | ... O-NN .................................. | O-BOT |
4316 // BOTTOM | ........................Object-BOTTOM ..................|
4317 //
4318 assert(loaded->ptr() != TypePtr::Null, "insanity check");
4319 //
4320 if (loaded->ptr() == TypePtr::TopPTR) { return unloaded->with_speculative(speculative); }
4321 else if (loaded->ptr() == TypePtr::AnyNull) { return make(ptr, unloaded->klass(), interfaces, false, nullptr, off, false, instance_id, speculative, depth); }
4322 else if (loaded->ptr() == TypePtr::BotPTR) { return TypeInstPtr::BOTTOM->with_speculative(speculative); }
4323 else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
4324 if (unloaded->ptr() == TypePtr::BotPTR) { return TypeInstPtr::BOTTOM->with_speculative(speculative); }
4325 else { return TypeInstPtr::NOTNULL->with_speculative(speculative); }
4326 }
4327 else if (unloaded->ptr() == TypePtr::TopPTR) { return unloaded->with_speculative(speculative); }
4328
4329 return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr()->with_speculative(speculative);
4330 }
4331
4332 // Both are unloaded, not the same class, not Object
4333 // Or meet unloaded with a different loaded class, not java/lang/Object
4334 if (ptr != TypePtr::BotPTR) {
4335 return TypeInstPtr::NOTNULL->with_speculative(speculative);
4336 }
4337 return TypeInstPtr::BOTTOM->with_speculative(speculative);
4338 }
4339
4340
4341 //------------------------------meet-------------------------------------------
4365 case Top:
4366 return this;
4367
4368 default: // All else is a mistake
4369 typerr(t);
4370
4371 case MetadataPtr:
4372 case KlassPtr:
4373 case InstKlassPtr:
4374 case AryKlassPtr:
4375 case RawPtr: return TypePtr::BOTTOM;
4376
4377 case AryPtr: { // All arrays inherit from Object class
4378 // Call in reverse direction to avoid duplication
4379 return t->is_aryptr()->xmeet_helper(this);
4380 }
4381
4382 case OopPtr: { // Meeting to OopPtrs
4383 // Found a OopPtr type vs self-InstPtr type
4384 const TypeOopPtr *tp = t->is_oopptr();
4385 Offset offset = meet_offset(tp->offset());
4386 PTR ptr = meet_ptr(tp->ptr());
4387 switch (tp->ptr()) {
4388 case TopPTR:
4389 case AnyNull: {
4390 int instance_id = meet_instance_id(InstanceTop);
4391 const TypePtr* speculative = xmeet_speculative(tp);
4392 int depth = meet_inline_depth(tp->inline_depth());
4393 return make(ptr, klass(), _interfaces, klass_is_exact(),
4394 (ptr == Constant ? const_oop() : nullptr), offset, flat_in_array(), instance_id, speculative, depth);
4395 }
4396 case NotNull:
4397 case BotPTR: {
4398 int instance_id = meet_instance_id(tp->instance_id());
4399 const TypePtr* speculative = xmeet_speculative(tp);
4400 int depth = meet_inline_depth(tp->inline_depth());
4401 return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4402 }
4403 default: typerr(t);
4404 }
4405 }
4406
4407 case AnyPtr: { // Meeting to AnyPtrs
4408 // Found an AnyPtr type vs self-InstPtr type
4409 const TypePtr *tp = t->is_ptr();
4410 Offset offset = meet_offset(tp->offset());
4411 PTR ptr = meet_ptr(tp->ptr());
4412 int instance_id = meet_instance_id(InstanceTop);
4413 const TypePtr* speculative = xmeet_speculative(tp);
4414 int depth = meet_inline_depth(tp->inline_depth());
4415 switch (tp->ptr()) {
4416 case Null:
4417 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4418 // else fall through to AnyNull
4419 case TopPTR:
4420 case AnyNull: {
4421 return make(ptr, klass(), _interfaces, klass_is_exact(),
4422 (ptr == Constant ? const_oop() : nullptr), offset, flat_in_array(), instance_id, speculative, depth);
4423 }
4424 case NotNull:
4425 case BotPTR:
4426 return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
4427 default: typerr(t);
4428 }
4429 }
4430
4431 /*
4432 A-top }
4433 / | \ } Tops
4434 B-top A-any C-top }
4435 | / | \ | } Any-nulls
4436 B-any | C-any }
4437 | | |
4438 B-con A-con C-con } constants; not comparable across classes
4439 | | |
4440 B-not | C-not }
4441 | \ | / | } not-nulls
4442 B-bot A-not C-bot }
4443 \ | / } Bottoms
4444 A-bot }
4445 */
4446
4447 case InstPtr: { // Meeting 2 Oops?
4448 // Found an InstPtr sub-type vs self-InstPtr type
4449 const TypeInstPtr *tinst = t->is_instptr();
4450 Offset off = meet_offset(tinst->offset());
4451 PTR ptr = meet_ptr(tinst->ptr());
4452 int instance_id = meet_instance_id(tinst->instance_id());
4453 const TypePtr* speculative = xmeet_speculative(tinst);
4454 int depth = meet_inline_depth(tinst->inline_depth());
4455 const TypeInterfaces* interfaces = meet_interfaces(tinst);
4456
4457 ciKlass* tinst_klass = tinst->klass();
4458 ciKlass* this_klass = klass();
4459
4460 ciKlass* res_klass = nullptr;
4461 bool res_xk = false;
4462 bool res_flat_in_array = false;
4463 const Type* res;
4464 MeetResult kind = meet_instptr(ptr, interfaces, this, tinst, res_klass, res_xk, res_flat_in_array);
4465
4466 if (kind == UNLOADED) {
4467 // One of these classes has not been loaded
4468 const TypeInstPtr* unloaded_meet = xmeet_unloaded(tinst, interfaces);
4469 #ifndef PRODUCT
4470 if (PrintOpto && Verbose) {
4471 tty->print("meet of unloaded classes resulted in: ");
4472 unloaded_meet->dump();
4473 tty->cr();
4474 tty->print(" this == ");
4475 dump();
4476 tty->cr();
4477 tty->print(" tinst == ");
4478 tinst->dump();
4479 tty->cr();
4480 }
4481 #endif
4482 res = unloaded_meet;
4483 } else {
4484 if (kind == NOT_SUBTYPE && instance_id > 0) {
4485 instance_id = InstanceBot;
4486 } else if (kind == LCA) {
4487 instance_id = InstanceBot;
4488 }
4489 ciObject* o = nullptr; // Assume not constant when done
4490 ciObject* this_oop = const_oop();
4491 ciObject* tinst_oop = tinst->const_oop();
4492 if (ptr == Constant) {
4493 if (this_oop != nullptr && tinst_oop != nullptr &&
4494 this_oop->equals(tinst_oop))
4495 o = this_oop;
4496 else if (above_centerline(_ptr)) {
4497 assert(!tinst_klass->is_interface(), "");
4498 o = tinst_oop;
4499 } else if (above_centerline(tinst->_ptr)) {
4500 assert(!this_klass->is_interface(), "");
4501 o = this_oop;
4502 } else
4503 ptr = NotNull;
4504 }
4505 res = make(ptr, res_klass, interfaces, res_xk, o, off, res_flat_in_array, instance_id, speculative, depth);
4506 }
4507
4508 return res;
4509
4510 } // End of case InstPtr
4511
4512 } // End of switch
4513 return this; // Return the double constant
4514 }
4515
4516 template<class T> TypePtr::MeetResult TypePtr::meet_instptr(PTR& ptr, const TypeInterfaces*& interfaces, const T* this_type, const T* other_type,
4517 ciKlass*& res_klass, bool& res_xk, bool& res_flat_in_array) {
4518 ciKlass* this_klass = this_type->klass();
4519 ciKlass* other_klass = other_type->klass();
4520 const bool this_flat_in_array = this_type->flat_in_array();
4521 const bool other_flat_in_array = other_type->flat_in_array();
4522 const bool this_not_flat_in_array = this_type->not_flat_in_array();
4523 const bool other_not_flat_in_array = other_type->not_flat_in_array();
4524
4525 bool this_xk = this_type->klass_is_exact();
4526 bool other_xk = other_type->klass_is_exact();
4527 PTR this_ptr = this_type->ptr();
4528 PTR other_ptr = other_type->ptr();
4529 const TypeInterfaces* this_interfaces = this_type->interfaces();
4530 const TypeInterfaces* other_interfaces = other_type->interfaces();
4531 // Check for easy case; klasses are equal (and perhaps not loaded!)
4532 // If we have constants, then we created oops so classes are loaded
4533 // and we can handle the constants further down. This case handles
4534 // both-not-loaded or both-loaded classes
4535 if (ptr != Constant && this_klass->equals(other_klass) && this_xk == other_xk && this_flat_in_array == other_flat_in_array) {
4536 res_klass = this_klass;
4537 res_xk = this_xk;
4538 res_flat_in_array = this_flat_in_array;
4539 return QUICK;
4540 }
4541
4542 // Classes require inspection in the Java klass hierarchy. Must be loaded.
4543 if (!other_klass->is_loaded() || !this_klass->is_loaded()) {
4544 return UNLOADED;
4545 }
4546
4547 // !!! Here's how the symmetry requirement breaks down into invariants:
4548 // If we split one up & one down AND they subtype, take the down man.
4549 // If we split one up & one down AND they do NOT subtype, "fall hard".
4550 // If both are up and they subtype, take the subtype class.
4551 // If both are up and they do NOT subtype, "fall hard".
4552 // If both are down and they subtype, take the supertype class.
4553 // If both are down and they do NOT subtype, "fall hard".
4554 // Constants treated as down.
4555
4556 // Now, reorder the above list; observe that both-down+subtype is also
4557 // "fall hard"; "fall hard" becomes the default case:
4558 // If we split one up & one down AND they subtype, take the down man.
4559 // If both are up and they subtype, take the subtype class.
4560
4561 // If both are down and they subtype, "fall hard".
4562 // If both are down and they do NOT subtype, "fall hard".
4563 // If both are up and they do NOT subtype, "fall hard".
4564 // If we split one up & one down AND they do NOT subtype, "fall hard".
4565
4566 // If a proper subtype is exact, and we return it, we return it exactly.
4567 // If a proper supertype is exact, there can be no subtyping relationship!
4568 // If both types are equal to the subtype, exactness is and-ed below the
4569 // centerline and or-ed above it. (N.B. Constants are always exact.)
4570
4571 // Flat in Array property _flat_in_array.
4572 // For simplicity, _flat_in_array is a boolean but we actually have a tri state:
4573 // - Flat in array -> flat_in_array()
4574 // - Not flat in array -> not_flat_in_array()
4575 // - Maybe flat in array -> !not_flat_in_array()
4576 //
4577 // Maybe we should convert _flat_in_array to a proper lattice with four elements at some point:
4578 //
4579 // Top
4580 // Flat in Array Not Flat in Array
4581 // Maybe Flat in Array
4582 //
4583 // where
4584 // Top = dual(maybe Flat In Array) = "Flat in Array AND Not Flat in Array"
4585 //
4586 // But for now we stick with the current model with _flat_in_array as a boolean.
4587 //
4588 // When meeting two InstPtr types, we want to have the following behavior:
4589 //
4590 // (FiA-M) Meet(this, other):
4591 // 'this' and 'other' are either the same klass OR sub klasses:
4592 //
4593 // yes maybe no
4594 // yes y m m y = Flat in Array
4595 // maybe m m m n = Not Flat in Array
4596 // no m m n m = Maybe Flat in Array
4597 //
4598 // Join(this, other):
4599 // (FiA-J-Same) 'this' and 'other' are the SAME klass:
4600 //
4601 // yes maybe no E = Empty set
4602 // yes y y E y = Flat in Array
4603 // maybe y m m n = Not Flat in Array
4604 // no E m n m = Maybe Flat in Array
4605 //
4606 // (FiA-J-Sub) 'this' and 'other' are SUB klasses:
4607 //
4608 // yes maybe no -> Super Klass E = Empty set
4609 // yes y y y y = Flat in Array
4610 // maybe y m m n = Not Flat in Array
4611 // no E m n m = Maybe Flat in Array
4612 // |
4613 // v
4614 // Sub Klass
4615 //
4616 // Note the difference when joining a super klass that is not flat in array with a sub klass that is compared to
4617 // the same klass case. We will take over the flat in array property of the sub klass. This can be done because
4618 // the super klass could be Object (i.e. not an inline type and thus not flat in array) while the sub klass is a
4619 // value class which can be flat in array.
4620 //
4621 // The empty set is only a possible result when matching 'ptr' above the center line (i.e. joining). In this case,
4622 // we can "fall hard" by setting 'ptr' to NotNull such that when we take the dual of that meet above the center
4623 // line, we get an empty set again.
4624 //
4625 // Note: When changing to a separate lattice with _flat_in_array we may want to add TypeInst(Klass)Ptr::empty()
4626 // that returns true when the meet result is FlatInArray::Top (i.e. dual(maybe flat in array)).
4627
4628 const T* subtype = nullptr;
4629 bool subtype_exact = false;
4630 bool flat_in_array = false;
4631 bool is_empty = false;
4632 if (this_type->is_same_java_type_as(other_type)) {
4633 // Same klass
4634 subtype = this_type;
4635 subtype_exact = below_centerline(ptr) ? (this_xk && other_xk) : (this_xk || other_xk);
4636 if (above_centerline(ptr)) {
4637 // Case (FiA-J-Same)
4638 // One is flat in array and the other not? Result is empty/"fall hard".
4639 is_empty = (this_flat_in_array && other_not_flat_in_array) || (this_not_flat_in_array && other_flat_in_array);
4640 }
4641 } else if (!other_xk && is_meet_subtype_of(this_type, other_type)) {
4642 subtype = this_type; // Pick subtyping class
4643 subtype_exact = this_xk;
4644 if (above_centerline(ptr)) {
4645 // Case (FiA-J-Sub)
4646 is_empty = this_not_flat_in_array && other_flat_in_array;
4647 if (!is_empty) {
4648 bool other_flat_this_maybe_flat = other_flat_in_array && (!this_flat_in_array && !this_not_flat_in_array);
4649 flat_in_array = this_flat_in_array || other_flat_this_maybe_flat;
4650 }
4651 }
4652 } else if (!this_xk && is_meet_subtype_of(other_type, this_type)) {
4653 subtype = other_type; // Pick subtyping class
4654 subtype_exact = other_xk;
4655 if (above_centerline(ptr)) {
4656 // Case (FiA-J-Sub)
4657 is_empty = this_flat_in_array && other_not_flat_in_array;
4658 if (!is_empty) {
4659 bool this_flat_other_maybe_flat = this_flat_in_array && (!other_flat_in_array && !other_not_flat_in_array);
4660 flat_in_array = other_flat_in_array || this_flat_other_maybe_flat;
4661 }
4662 }
4663 }
4664
4665
4666 if (subtype && !is_empty) {
4667 if (above_centerline(ptr)) {
4668 // Both types are empty.
4669 this_type = other_type = subtype;
4670 this_xk = other_xk = subtype_exact;
4671 // Case (FiA-J-Sub)
4672 bool other_flat_this_maybe_flat = other_flat_in_array && (!this_flat_in_array && !this_not_flat_in_array);
4673 flat_in_array = this_flat_in_array || other_flat_this_maybe_flat;
4674 // One is flat in array and the other not? Result is empty/"fall hard".
4675 is_empty = (this_flat_in_array && other_not_flat_in_array) || (this_not_flat_in_array && other_flat_in_array);
4676 } else if (above_centerline(this_ptr) && !above_centerline(other_ptr)) {
4677 // this_type is empty while other_type is not. Take other_type.
4678 this_type = other_type;
4679 this_xk = other_xk;
4680 flat_in_array = other_flat_in_array;
4681 } else if (above_centerline(other_ptr) && !above_centerline(this_ptr)) {
4682 // other_type is empty while this_type is not. Take this_type.
4683 other_type = this_type; // this is down; keep down man
4684 flat_in_array = this_flat_in_array;
4685 } else {
4686 // this_type and other_type are both non-empty.
4687 this_xk = subtype_exact; // either they are equal, or we'll do an LCA
4688 // Case (FiA-M)
4689 // Meeting two types below the center line: Only flat in array if both are.
4690 flat_in_array = this_flat_in_array && other_flat_in_array;
4691 }
4692 }
4693
4694 // Check for classes now being equal
4695 if (this_type->is_same_java_type_as(other_type) && !is_empty) {
4696 // If the klasses are equal, the constants may still differ. Fall to
4697 // NotNull if they do (neither constant is null; that is a special case
4698 // handled elsewhere).
4699 res_klass = this_type->klass();
4700 res_xk = this_xk;
4701 res_flat_in_array = flat_in_array;
4702 return SUBTYPE;
4703 } // Else classes are not equal
4704
4705 // Since klasses are different, we require a LCA in the Java
4706 // class hierarchy - which means we have to fall to at least NotNull.
4707 if (ptr == TopPTR || ptr == AnyNull || ptr == Constant) {
4708 ptr = NotNull;
4709 }
4710
4711 interfaces = this_interfaces->intersection_with(other_interfaces);
4712
4713 // Now we find the LCA of Java classes
4714 ciKlass* k = this_klass->least_common_ancestor(other_klass);
4715
4716 res_klass = k;
4717 res_xk = false;
4718 res_flat_in_array = this_flat_in_array && other_flat_in_array;
4719
4720 return LCA;
4721 }
4722
4723 template<class T> bool TypePtr::is_meet_subtype_of(const T* sub_type, const T* super_type) {
4724 return sub_type->is_meet_subtype_of(super_type) && !(super_type->flat_in_array() && sub_type->not_flat_in_array());
4725 }
4726
4727 //------------------------java_mirror_type--------------------------------------
4728 ciType* TypeInstPtr::java_mirror_type() const {
4729 // must be a singleton type
4730 if( const_oop() == nullptr ) return nullptr;
4731
4732 // must be of type java.lang.Class
4733 if( klass() != ciEnv::current()->Class_klass() ) return nullptr;
4734 return const_oop()->as_instance()->java_mirror_type();
4735 }
4736
4737
4738 //------------------------------xdual------------------------------------------
4739 // Dual: do NOT dual on klasses. This means I do NOT understand the Java
4740 // inheritance mechanism.
4741 const Type *TypeInstPtr::xdual() const {
4742 return new TypeInstPtr(dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), flat_in_array(), dual_instance_id(), dual_speculative(), dual_inline_depth());
4743 }
4744
4745 //------------------------------eq---------------------------------------------
4746 // Structural equality check for Type representations
4747 bool TypeInstPtr::eq( const Type *t ) const {
4748 const TypeInstPtr *p = t->is_instptr();
4749 return
4750 klass()->equals(p->klass()) &&
4751 flat_in_array() == p->flat_in_array() &&
4752 _interfaces->eq(p->_interfaces) &&
4753 TypeOopPtr::eq(p); // Check sub-type stuff
4754 }
4755
4756 //------------------------------hash-------------------------------------------
4757 // Type-specific hashing function.
4758 uint TypeInstPtr::hash(void) const {
4759 return klass()->hash() + TypeOopPtr::hash() + _interfaces->hash() + (uint)flat_in_array();
4760 }
4761
4762 bool TypeInstPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4763 return TypePtr::is_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
4764 }
4765
4766
4767 bool TypeInstPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const {
4768 return TypePtr::is_same_java_type_as_helper_for_instance(this, other);
4769 }
4770
4771 bool TypeInstPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4772 return TypePtr::maybe_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
4773 }
4774
4775
4776 //------------------------------dump2------------------------------------------
4777 // Dump oop Type
4778 #ifndef PRODUCT
4779 void TypeInstPtr::dump2(Dict &d, uint depth, outputStream* st) const {
4793 // suppress newlines from it so -XX:+Verbose -XX:+PrintIdeal dumps one-liner for each node.
4794 char* buf = ss.as_string(/* c_heap= */false);
4795 StringUtils::replace_no_expand(buf, "\n", "");
4796 st->print_raw(buf);
4797 }
4798 case BotPTR:
4799 if (!WizardMode && !Verbose) {
4800 if( _klass_is_exact ) st->print(":exact");
4801 break;
4802 }
4803 case TopPTR:
4804 case AnyNull:
4805 case NotNull:
4806 st->print(":%s", ptr_msg[_ptr]);
4807 if( _klass_is_exact ) st->print(":exact");
4808 break;
4809 default:
4810 break;
4811 }
4812
4813 _offset.dump2(st);
4814
4815 st->print(" *");
4816
4817 if (flat_in_array() && !klass()->is_inlinetype()) {
4818 st->print(" (flat in array)");
4819 }
4820
4821 if (_instance_id == InstanceTop)
4822 st->print(",iid=top");
4823 else if (_instance_id != InstanceBot)
4824 st->print(",iid=%d",_instance_id);
4825
4826 dump_inline_depth(st);
4827 dump_speculative(st);
4828 }
4829 #endif
4830
4831 //------------------------------add_offset-------------------------------------
4832 const TypePtr* TypeInstPtr::add_offset(intptr_t offset) const {
4833 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), xadd_offset(offset), flat_in_array(),
4834 _instance_id, add_offset_speculative(offset), _inline_depth);
4835 }
4836
4837 const TypeInstPtr* TypeInstPtr::with_offset(intptr_t offset) const {
4838 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), Offset(offset), flat_in_array(),
4839 _instance_id, with_offset_speculative(offset), _inline_depth);
4840 }
4841
4842 const TypeInstPtr* TypeInstPtr::remove_speculative() const {
4843 if (_speculative == nullptr) {
4844 return this;
4845 }
4846 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4847 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, flat_in_array(),
4848 _instance_id, nullptr, _inline_depth);
4849 }
4850
4851 const TypeInstPtr* TypeInstPtr::with_speculative(const TypePtr* speculative) const {
4852 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, flat_in_array(), _instance_id, speculative, _inline_depth);
4853 }
4854
4855 const TypePtr* TypeInstPtr::with_inline_depth(int depth) const {
4856 if (!UseInlineDepthForSpeculativeTypes) {
4857 return this;
4858 }
4859 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, flat_in_array(), _instance_id, _speculative, depth);
4860 }
4861
4862 const TypePtr* TypeInstPtr::with_instance_id(int instance_id) const {
4863 assert(is_known_instance(), "should be known");
4864 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, flat_in_array(), instance_id, _speculative, _inline_depth);
4865 }
4866
4867 const TypeInstPtr *TypeInstPtr::cast_to_flat_in_array() const {
4868 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, true, _instance_id, _speculative, _inline_depth);
4869 }
4870
4871 const TypeKlassPtr* TypeInstPtr::as_klass_type(bool try_for_exact) const {
4872 bool xk = klass_is_exact();
4873 ciInstanceKlass* ik = klass()->as_instance_klass();
4874 if (try_for_exact && !xk && !ik->has_subklass() && !ik->is_final()) {
4875 if (_interfaces->eq(ik)) {
4876 Compile* C = Compile::current();
4877 Dependencies* deps = C->dependencies();
4878 deps->assert_leaf_type(ik);
4879 xk = true;
4880 }
4881 }
4882 return TypeInstKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, klass(), _interfaces, Offset(0), flat_in_array());
4883 }
4884
4885 template <class T1, class T2> bool TypePtr::is_meet_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_xk, bool other_xk) {
4886 static_assert(std::is_base_of<T2, T1>::value, "");
4887
4888 if (!this_one->is_instance_type(other)) {
4889 return false;
4890 }
4891
4892 if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty()) {
4893 return true;
4894 }
4895
4896 return this_one->klass()->is_subtype_of(other->klass()) &&
4897 (!this_xk || this_one->_interfaces->contains(other->_interfaces));
4898 }
4899
4900
4901 bool TypeInstPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const {
4902 return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk);
4907 if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty()) {
4908 return true;
4909 }
4910
4911 if (this_one->is_instance_type(other)) {
4912 return other->klass() == ciEnv::current()->Object_klass() && this_one->_interfaces->contains(other->_interfaces);
4913 }
4914
4915 int dummy;
4916 bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
4917 if (this_top_or_bottom) {
4918 return false;
4919 }
4920
4921 const T1* other_ary = this_one->is_array_type(other);
4922 const TypePtr* other_elem = other_ary->elem()->make_ptr();
4923 const TypePtr* this_elem = this_one->elem()->make_ptr();
4924 if (other_elem != nullptr && this_elem != nullptr) {
4925 return this_one->is_reference_type(this_elem)->is_meet_subtype_of_helper(this_one->is_reference_type(other_elem), this_xk, other_xk);
4926 }
4927 if (other_elem == nullptr && this_elem == nullptr) {
4928 return this_one->klass()->is_subtype_of(other->klass());
4929 }
4930
4931 return false;
4932 }
4933
4934 bool TypeAryPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const {
4935 return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk);
4936 }
4937
4938 bool TypeInstKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const {
4939 return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk);
4940 }
4941
4942 bool TypeAryKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const {
4943 return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk);
4944 }
4945
4946 //=============================================================================
4947 // Convenience common pre-built types.
4948 const TypeAryPtr* TypeAryPtr::BOTTOM;
4949 const TypeAryPtr *TypeAryPtr::RANGE;
4950 const TypeAryPtr *TypeAryPtr::OOPS;
4951 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
4952 const TypeAryPtr *TypeAryPtr::BYTES;
4953 const TypeAryPtr *TypeAryPtr::SHORTS;
4954 const TypeAryPtr *TypeAryPtr::CHARS;
4955 const TypeAryPtr *TypeAryPtr::INTS;
4956 const TypeAryPtr *TypeAryPtr::LONGS;
4957 const TypeAryPtr *TypeAryPtr::FLOATS;
4958 const TypeAryPtr *TypeAryPtr::DOUBLES;
4959 const TypeAryPtr *TypeAryPtr::INLINES;
4960
4961 //------------------------------make-------------------------------------------
4962 const TypeAryPtr* TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, Offset offset, Offset field_offset,
4963 int instance_id, const TypePtr* speculative, int inline_depth) {
4964 assert(!(k == nullptr && ary->_elem->isa_int()),
4965 "integral arrays must be pre-equipped with a class");
4966 if (!xk) xk = ary->ary_must_be_exact();
4967 assert(instance_id <= 0 || xk, "instances are always exactly typed");
4968 if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() &&
4969 k->as_obj_array_klass()->base_element_klass()->is_interface()) {
4970 k = nullptr;
4971 }
4972 return (TypeAryPtr*)(new TypeAryPtr(ptr, nullptr, ary, k, xk, offset, field_offset, instance_id, false, speculative, inline_depth))->hashcons();
4973 }
4974
4975 //------------------------------make-------------------------------------------
4976 const TypeAryPtr* TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, Offset offset, Offset field_offset,
4977 int instance_id, const TypePtr* speculative, int inline_depth,
4978 bool is_autobox_cache) {
4979 assert(!(k == nullptr && ary->_elem->isa_int()),
4980 "integral arrays must be pre-equipped with a class");
4981 assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
4982 if (!xk) xk = (o != nullptr) || ary->ary_must_be_exact();
4983 assert(instance_id <= 0 || xk, "instances are always exactly typed");
4984 if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() &&
4985 k->as_obj_array_klass()->base_element_klass()->is_interface()) {
4986 k = nullptr;
4987 }
4988 return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, field_offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
4989 }
4990
4991 //------------------------------cast_to_ptr_type-------------------------------
4992 const TypeAryPtr* TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
4993 if( ptr == _ptr ) return this;
4994 return make(ptr, ptr == Constant ? const_oop() : nullptr, _ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4995 }
4996
4997
4998 //-----------------------------cast_to_exactness-------------------------------
4999 const TypeAryPtr* TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
5000 if( klass_is_exact == _klass_is_exact ) return this;
5001 if (_ary->ary_must_be_exact()) return this; // cannot clear xk
5002 return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5003 }
5004
5005 //-----------------------------cast_to_instance_id----------------------------
5006 const TypeAryPtr* TypeAryPtr::cast_to_instance_id(int instance_id) const {
5007 if( instance_id == _instance_id ) return this;
5008 return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, _field_offset, instance_id, _speculative, _inline_depth, _is_autobox_cache);
5009 }
5010
5011
5012 //-----------------------------max_array_length-------------------------------
5013 // A wrapper around arrayOopDesc::max_array_length(etype) with some input normalization.
5014 jint TypeAryPtr::max_array_length(BasicType etype) {
5015 if (!is_java_primitive(etype) && !::is_reference_type(etype)) {
5016 if (etype == T_NARROWOOP) {
5017 etype = T_OBJECT;
5018 } else if (etype == T_ILLEGAL) { // bottom[]
5019 etype = T_BYTE; // will produce conservatively high value
5020 } else {
5021 fatal("not an element type: %s", type2name(etype));
5022 }
5023 }
5024 return arrayOopDesc::max_array_length(etype);
5025 }
5026
5027 //-----------------------------narrow_size_type-------------------------------
5028 // Narrow the given size type to the index range for the given array base type.
5046 if (size->is_con()) {
5047 lo = hi;
5048 }
5049 chg = true;
5050 }
5051 // Negative length arrays will produce weird intermediate dead fast-path code
5052 if (lo > hi) {
5053 return TypeInt::ZERO;
5054 }
5055 if (!chg) {
5056 return size;
5057 }
5058 return TypeInt::make(lo, hi, Type::WidenMin);
5059 }
5060
5061 //-------------------------------cast_to_size----------------------------------
5062 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
5063 assert(new_size != nullptr, "");
5064 new_size = narrow_size_type(new_size);
5065 if (new_size == size()) return this;
5066 const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable(), is_flat(), is_not_flat(), is_not_null_free(), is_atomic());
5067 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5068 }
5069
5070 //-------------------------------cast_to_not_flat------------------------------
5071 const TypeAryPtr* TypeAryPtr::cast_to_not_flat(bool not_flat) const {
5072 if (not_flat == is_not_flat()) {
5073 return this;
5074 }
5075 assert(!not_flat || !is_flat(), "inconsistency");
5076 const TypeAry* new_ary = TypeAry::make(elem(), size(), is_stable(), is_flat(), not_flat, is_not_null_free(), is_atomic());
5077 const TypeAryPtr* res = make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5078 // We keep the speculative part if it contains information about flat-/nullability.
5079 // Make sure it's removed if it's not better than the non-speculative type anymore.
5080 if (res->speculative() == res->remove_speculative()) {
5081 return res->remove_speculative();
5082 }
5083 return res;
5084 }
5085
5086 //-------------------------------cast_to_not_null_free-------------------------
5087 const TypeAryPtr* TypeAryPtr::cast_to_not_null_free(bool not_null_free) const {
5088 if (not_null_free == is_not_null_free()) {
5089 return this;
5090 }
5091 assert(!not_null_free || !is_null_free(), "inconsistency");
5092 const TypeAry* new_ary = TypeAry::make(elem(), size(), is_stable(), is_flat(), is_not_flat(), not_null_free, is_atomic());
5093 const TypeAryPtr* res = make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset,
5094 _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5095 // We keep the speculative part if it contains information about flat-/nullability.
5096 // Make sure it's removed if it's not better than the non-speculative type anymore.
5097 if (res->speculative() == res->remove_speculative()) {
5098 return res->remove_speculative();
5099 }
5100 return res;
5101 }
5102
5103 //---------------------------------update_properties---------------------------
5104 const TypeAryPtr* TypeAryPtr::update_properties(const TypeAryPtr* from) const {
5105 if ((from->is_flat() && is_not_flat()) ||
5106 (from->is_not_flat() && is_flat()) ||
5107 (from->is_null_free() && is_not_null_free()) ||
5108 (from->is_not_null_free() && is_null_free())) {
5109 return nullptr; // Inconsistent properties
5110 }
5111 const TypeAryPtr* res = this;
5112 if (from->is_not_null_free()) {
5113 res = res->cast_to_not_null_free();
5114 }
5115 if (from->is_not_flat()) {
5116 res = res->cast_to_not_flat();
5117 }
5118 return res;
5119 }
5120
5121 jint TypeAryPtr::flat_layout_helper() const {
5122 return exact_klass()->as_flat_array_klass()->layout_helper();
5123 }
5124
5125 int TypeAryPtr::flat_elem_size() const {
5126 return exact_klass()->as_flat_array_klass()->element_byte_size();
5127 }
5128
5129 int TypeAryPtr::flat_log_elem_size() const {
5130 return exact_klass()->as_flat_array_klass()->log2_element_size();
5131 }
5132
5133 //------------------------------cast_to_stable---------------------------------
5134 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
5135 if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
5136 return this;
5137
5138 const Type* elem = this->elem();
5139 const TypePtr* elem_ptr = elem->make_ptr();
5140
5141 if (stable_dimension > 1 && elem_ptr != nullptr && elem_ptr->isa_aryptr()) {
5142 // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
5143 elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
5144 }
5145
5146 const TypeAry* new_ary = TypeAry::make(elem, size(), stable, is_flat(), is_not_flat(), is_not_null_free(), is_atomic());
5147
5148 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5149 }
5150
5151 //-----------------------------stable_dimension--------------------------------
5152 int TypeAryPtr::stable_dimension() const {
5153 if (!is_stable()) return 0;
5154 int dim = 1;
5155 const TypePtr* elem_ptr = elem()->make_ptr();
5156 if (elem_ptr != nullptr && elem_ptr->isa_aryptr())
5157 dim += elem_ptr->is_aryptr()->stable_dimension();
5158 return dim;
5159 }
5160
5161 //----------------------cast_to_autobox_cache-----------------------------------
5162 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache() const {
5163 if (is_autobox_cache()) return this;
5164 const TypeOopPtr* etype = elem()->make_oopptr();
5165 if (etype == nullptr) return this;
5166 // The pointers in the autobox arrays are always non-null.
5167 etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
5168 const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable(), is_flat(), is_not_flat(), is_not_null_free(), is_atomic());
5169 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, /*is_autobox_cache=*/true);
5170 }
5171
5172 //------------------------------eq---------------------------------------------
5173 // Structural equality check for Type representations
5174 bool TypeAryPtr::eq( const Type *t ) const {
5175 const TypeAryPtr *p = t->is_aryptr();
5176 return
5177 _ary == p->_ary && // Check array
5178 TypeOopPtr::eq(p) &&// Check sub-parts
5179 _field_offset == p->_field_offset;
5180 }
5181
5182 //------------------------------hash-------------------------------------------
5183 // Type-specific hashing function.
5184 uint TypeAryPtr::hash(void) const {
5185 return (uint)(uintptr_t)_ary + TypeOopPtr::hash() + _field_offset.get();
5186 }
5187
5188 bool TypeAryPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
5189 return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
5190 }
5191
5192 bool TypeAryPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const {
5193 return TypePtr::is_same_java_type_as_helper_for_array(this, other);
5194 }
5195
5196 bool TypeAryPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
5197 return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
5198 }
5199 //------------------------------meet-------------------------------------------
5200 // Compute the MEET of two types. It returns a new Type object.
5201 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
5202 // Perform a fast test for common case; meeting the same types together.
5203 if( this == t ) return this; // Meeting same type-rep?
5204 // Current "this->_base" is Pointer
5205 switch (t->base()) { // switch on original type
5212 case HalfFloatBot:
5213 case FloatTop:
5214 case FloatCon:
5215 case FloatBot:
5216 case DoubleTop:
5217 case DoubleCon:
5218 case DoubleBot:
5219 case NarrowOop:
5220 case NarrowKlass:
5221 case Bottom: // Ye Olde Default
5222 return Type::BOTTOM;
5223 case Top:
5224 return this;
5225
5226 default: // All else is a mistake
5227 typerr(t);
5228
5229 case OopPtr: { // Meeting to OopPtrs
5230 // Found a OopPtr type vs self-AryPtr type
5231 const TypeOopPtr *tp = t->is_oopptr();
5232 Offset offset = meet_offset(tp->offset());
5233 PTR ptr = meet_ptr(tp->ptr());
5234 int depth = meet_inline_depth(tp->inline_depth());
5235 const TypePtr* speculative = xmeet_speculative(tp);
5236 switch (tp->ptr()) {
5237 case TopPTR:
5238 case AnyNull: {
5239 int instance_id = meet_instance_id(InstanceTop);
5240 return make(ptr, (ptr == Constant ? const_oop() : nullptr),
5241 _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
5242 }
5243 case BotPTR:
5244 case NotNull: {
5245 int instance_id = meet_instance_id(tp->instance_id());
5246 return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
5247 }
5248 default: ShouldNotReachHere();
5249 }
5250 }
5251
5252 case AnyPtr: { // Meeting two AnyPtrs
5253 // Found an AnyPtr type vs self-AryPtr type
5254 const TypePtr *tp = t->is_ptr();
5255 Offset offset = meet_offset(tp->offset());
5256 PTR ptr = meet_ptr(tp->ptr());
5257 const TypePtr* speculative = xmeet_speculative(tp);
5258 int depth = meet_inline_depth(tp->inline_depth());
5259 switch (tp->ptr()) {
5260 case TopPTR:
5261 return this;
5262 case BotPTR:
5263 case NotNull:
5264 return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
5265 case Null:
5266 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
5267 // else fall through to AnyNull
5268 case AnyNull: {
5269 int instance_id = meet_instance_id(InstanceTop);
5270 return make(ptr, (ptr == Constant ? const_oop() : nullptr),
5271 _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
5272 }
5273 default: ShouldNotReachHere();
5274 }
5275 }
5276
5277 case MetadataPtr:
5278 case KlassPtr:
5279 case InstKlassPtr:
5280 case AryKlassPtr:
5281 case RawPtr: return TypePtr::BOTTOM;
5282
5283 case AryPtr: { // Meeting 2 references?
5284 const TypeAryPtr *tap = t->is_aryptr();
5285 Offset off = meet_offset(tap->offset());
5286 Offset field_off = meet_field_offset(tap->field_offset());
5287 const Type* tm = _ary->meet_speculative(tap->_ary);
5288 const TypeAry* tary = tm->isa_ary();
5289 if (tary == nullptr) {
5290 assert(tm == Type::TOP || tm == Type::BOTTOM, "");
5291 return tm;
5292 }
5293 PTR ptr = meet_ptr(tap->ptr());
5294 int instance_id = meet_instance_id(tap->instance_id());
5295 const TypePtr* speculative = xmeet_speculative(tap);
5296 int depth = meet_inline_depth(tap->inline_depth());
5297
5298 ciKlass* res_klass = nullptr;
5299 bool res_xk = false;
5300 bool res_flat = false;
5301 bool res_not_flat = false;
5302 bool res_not_null_free = false;
5303 bool res_atomic = false;
5304 const Type* elem = tary->_elem;
5305 if (meet_aryptr(ptr, elem, this, tap, res_klass, res_xk, res_flat, res_not_flat, res_not_null_free, res_atomic) == NOT_SUBTYPE) {
5306 instance_id = InstanceBot;
5307 } else if (this->is_flat() != tap->is_flat()) {
5308 // Meeting flat inline type array with non-flat array. Adjust (field) offset accordingly.
5309 if (tary->_flat) {
5310 // Result is in a flat representation
5311 off = Offset(is_flat() ? offset() : tap->offset());
5312 field_off = is_flat() ? field_offset() : tap->field_offset();
5313 } else if (below_centerline(ptr)) {
5314 // Result is in a non-flat representation
5315 off = Offset(flat_offset()).meet(Offset(tap->flat_offset()));
5316 field_off = (field_off == Offset::top) ? Offset::top : Offset::bottom;
5317 } else if (flat_offset() == tap->flat_offset()) {
5318 off = Offset(!is_flat() ? offset() : tap->offset());
5319 field_off = !is_flat() ? field_offset() : tap->field_offset();
5320 }
5321 }
5322
5323 ciObject* o = nullptr; // Assume not constant when done
5324 ciObject* this_oop = const_oop();
5325 ciObject* tap_oop = tap->const_oop();
5326 if (ptr == Constant) {
5327 if (this_oop != nullptr && tap_oop != nullptr &&
5328 this_oop->equals(tap_oop)) {
5329 o = tap_oop;
5330 } else if (above_centerline(_ptr)) {
5331 o = tap_oop;
5332 } else if (above_centerline(tap->_ptr)) {
5333 o = this_oop;
5334 } else {
5335 ptr = NotNull;
5336 }
5337 }
5338 return make(ptr, o, TypeAry::make(elem, tary->_size, tary->_stable, res_flat, res_not_flat, res_not_null_free, res_atomic), res_klass, res_xk, off, field_off, instance_id, speculative, depth);
5339 }
5340
5341 // All arrays inherit from Object class
5342 case InstPtr: {
5343 const TypeInstPtr *tp = t->is_instptr();
5344 Offset offset = meet_offset(tp->offset());
5345 PTR ptr = meet_ptr(tp->ptr());
5346 int instance_id = meet_instance_id(tp->instance_id());
5347 const TypePtr* speculative = xmeet_speculative(tp);
5348 int depth = meet_inline_depth(tp->inline_depth());
5349 const TypeInterfaces* interfaces = meet_interfaces(tp);
5350 const TypeInterfaces* tp_interfaces = tp->_interfaces;
5351 const TypeInterfaces* this_interfaces = _interfaces;
5352
5353 switch (ptr) {
5354 case TopPTR:
5355 case AnyNull: // Fall 'down' to dual of object klass
5356 // For instances when a subclass meets a superclass we fall
5357 // below the centerline when the superclass is exact. We need to
5358 // do the same here.
5359 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) && !tp->klass_is_exact() && !tp->flat_in_array()) {
5360 return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
5361 } else {
5362 // cannot subclass, so the meet has to fall badly below the centerline
5363 ptr = NotNull;
5364 instance_id = InstanceBot;
5365 interfaces = this_interfaces->intersection_with(tp_interfaces);
5366 return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr, offset, false, instance_id, speculative, depth);
5367 }
5368 case Constant:
5369 case NotNull:
5370 case BotPTR: // Fall down to object klass
5371 // LCA is object_klass, but if we subclass from the top we can do better
5372 if (above_centerline(tp->ptr())) {
5373 // If 'tp' is above the centerline and it is Object class
5374 // then we can subclass in the Java class hierarchy.
5375 // For instances when a subclass meets a superclass we fall
5376 // below the centerline when the superclass is exact. We need
5377 // to do the same here.
5378 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) && !tp->klass_is_exact() && !tp->flat_in_array()) {
5379 // that is, my array type is a subtype of 'tp' klass
5380 return make(ptr, (ptr == Constant ? const_oop() : nullptr),
5381 _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
5382 }
5383 }
5384 // The other case cannot happen, since t cannot be a subtype of an array.
5385 // The meet falls down to Object class below centerline.
5386 if (ptr == Constant) {
5387 ptr = NotNull;
5388 }
5389 if (instance_id > 0) {
5390 instance_id = InstanceBot;
5391 }
5392 interfaces = this_interfaces->intersection_with(tp_interfaces);
5393 return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr, offset, false, instance_id, speculative, depth);
5394 default: typerr(t);
5395 }
5396 }
5397 }
5398 return this; // Lint noise
5399 }
5400
5401
5402 template<class T> TypePtr::MeetResult TypePtr::meet_aryptr(PTR& ptr, const Type*& elem, const T* this_ary, const T* other_ary,
5403 ciKlass*& res_klass, bool& res_xk, bool &res_flat, bool& res_not_flat, bool& res_not_null_free, bool &res_atomic) {
5404 int dummy;
5405 bool this_top_or_bottom = (this_ary->base_element_type(dummy) == Type::TOP || this_ary->base_element_type(dummy) == Type::BOTTOM);
5406 bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
5407 ciKlass* this_klass = this_ary->klass();
5408 ciKlass* other_klass = other_ary->klass();
5409 bool this_xk = this_ary->klass_is_exact();
5410 bool other_xk = other_ary->klass_is_exact();
5411 PTR this_ptr = this_ary->ptr();
5412 PTR other_ptr = other_ary->ptr();
5413 bool this_flat = this_ary->is_flat();
5414 bool this_not_flat = this_ary->is_not_flat();
5415 bool other_flat = other_ary->is_flat();
5416 bool other_not_flat = other_ary->is_not_flat();
5417 bool this_not_null_free = this_ary->is_not_null_free();
5418 bool other_not_null_free = other_ary->is_not_null_free();
5419 bool this_atomic = this_ary->is_atomic();
5420 bool other_atomic = other_ary->is_atomic();
5421 const bool same_nullness = this_ary->is_null_free() == other_ary->is_null_free();
5422 res_klass = nullptr;
5423 MeetResult result = SUBTYPE;
5424 res_flat = this_flat && other_flat;
5425 bool res_null_free = this_ary->is_null_free() && other_ary->is_null_free();
5426 res_not_flat = this_not_flat && other_not_flat;
5427 res_not_null_free = this_not_null_free && other_not_null_free;
5428 res_atomic = this_atomic && other_atomic;
5429
5430 if (elem->isa_int()) {
5431 // Integral array element types have irrelevant lattice relations.
5432 // It is the klass that determines array layout, not the element type.
5433 if (this_top_or_bottom) {
5434 res_klass = other_klass;
5435 } else if (other_top_or_bottom || other_klass == this_klass) {
5436 res_klass = this_klass;
5437 } else {
5438 // Something like byte[int+] meets char[int+].
5439 // This must fall to bottom, not (int[-128..65535])[int+].
5440 // instance_id = InstanceBot;
5441 elem = Type::BOTTOM;
5442 result = NOT_SUBTYPE;
5443 if (above_centerline(ptr) || ptr == Constant) {
5444 ptr = NotNull;
5445 res_xk = false;
5446 return NOT_SUBTYPE;
5447 }
5448 }
5449 } else {// Non integral arrays.
5450 // Must fall to bottom if exact klasses in upper lattice
5451 // are not equal or super klass is exact.
5452 if ((above_centerline(ptr) || ptr == Constant) && !this_ary->is_same_java_type_as(other_ary) &&
5453 // meet with top[] and bottom[] are processed further down:
5454 !this_top_or_bottom && !other_top_or_bottom &&
5455 // both are exact and not equal:
5457 // 'tap' is exact and super or unrelated:
5458 (other_xk && !other_ary->is_meet_subtype_of(this_ary)) ||
5459 // 'this' is exact and super or unrelated:
5460 (this_xk && !this_ary->is_meet_subtype_of(other_ary)))) {
5461 if (above_centerline(ptr) || (elem->make_ptr() && above_centerline(elem->make_ptr()->_ptr))) {
5462 elem = Type::BOTTOM;
5463 }
5464 ptr = NotNull;
5465 res_xk = false;
5466 return NOT_SUBTYPE;
5467 }
5468 }
5469
5470 res_xk = false;
5471 switch (other_ptr) {
5472 case AnyNull:
5473 case TopPTR:
5474 // Compute new klass on demand, do not use tap->_klass
5475 if (below_centerline(this_ptr)) {
5476 res_xk = this_xk;
5477 if (this_ary->is_flat()) {
5478 elem = this_ary->elem();
5479 }
5480 } else {
5481 res_xk = (other_xk || this_xk);
5482 }
5483 break;
5484 case Constant: {
5485 if (this_ptr == Constant && same_nullness) {
5486 // Only exact if same nullness since:
5487 // null-free [LMyValue <: nullable [LMyValue.
5488 res_xk = true;
5489 } else if (above_centerline(this_ptr)) {
5490 res_xk = true;
5491 } else {
5492 // Only precise for identical arrays
5493 res_xk = this_xk && (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom));
5494 // Even though MyValue is final, [LMyValue is only exact if the array
5495 // is (not) null-free due to null-free [LMyValue <: null-able [LMyValue.
5496 if (res_xk && !res_null_free && !res_not_null_free) {
5497 ptr = NotNull;
5498 res_xk = false;
5499 }
5500 }
5501 break;
5502 }
5503 case NotNull:
5504 case BotPTR:
5505 // Compute new klass on demand, do not use tap->_klass
5506 if (above_centerline(this_ptr)) {
5507 res_xk = other_xk;
5508 if (other_ary->is_flat()) {
5509 elem = other_ary->elem();
5510 }
5511 } else {
5512 res_xk = (other_xk && this_xk) &&
5513 (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom)); // Only precise for identical arrays
5514 // Even though MyValue is final, [LMyValue is only exact if the array
5515 // is (not) null-free due to null-free [LMyValue <: null-able [LMyValue.
5516 if (res_xk && !res_null_free && !res_not_null_free) {
5517 ptr = NotNull;
5518 res_xk = false;
5519 }
5520 }
5521 break;
5522 default: {
5523 ShouldNotReachHere();
5524 return result;
5525 }
5526 }
5527 return result;
5528 }
5529
5530
5531 //------------------------------xdual------------------------------------------
5532 // Dual: compute field-by-field dual
5533 const Type *TypeAryPtr::xdual() const {
5534 bool xk = _klass_is_exact;
5535 return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(), _klass, xk, dual_offset(), dual_field_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
5536 }
5537
5538 Type::Offset TypeAryPtr::meet_field_offset(const Type::Offset offset) const {
5539 return _field_offset.meet(offset);
5540 }
5541
5542 //------------------------------dual_offset------------------------------------
5543 Type::Offset TypeAryPtr::dual_field_offset() const {
5544 return _field_offset.dual();
5545 }
5546
5547 //------------------------------dump2------------------------------------------
5548 #ifndef PRODUCT
5549 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5550 _ary->dump2(d,depth,st);
5551 _interfaces->dump(st);
5552
5553 switch( _ptr ) {
5554 case Constant:
5555 const_oop()->print(st);
5556 break;
5557 case BotPTR:
5558 if (!WizardMode && !Verbose) {
5559 if( _klass_is_exact ) st->print(":exact");
5560 break;
5561 }
5562 case TopPTR:
5563 case AnyNull:
5564 case NotNull:
5565 st->print(":%s", ptr_msg[_ptr]);
5566 if( _klass_is_exact ) st->print(":exact");
5567 break;
5568 default:
5569 break;
5570 }
5571
5572 if (is_flat()) {
5573 st->print(":flat");
5574 st->print("(");
5575 _field_offset.dump2(st);
5576 st->print(")");
5577 } else if (is_not_flat()) {
5578 st->print(":not_flat");
5579 }
5580 if (is_null_free()) {
5581 st->print(":null free");
5582 }
5583 if (is_atomic()) {
5584 st->print(":atomic");
5585 }
5586 if (Verbose) {
5587 if (is_not_flat()) {
5588 st->print(":not flat");
5589 }
5590 if (is_not_null_free()) {
5591 st->print(":nullable");
5592 }
5593 }
5594 if (offset() != 0) {
5595 BasicType basic_elem_type = elem()->basic_type();
5596 int header_size = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5597 if( _offset == Offset::top ) st->print("+undefined");
5598 else if( _offset == Offset::bottom ) st->print("+any");
5599 else if( offset() < header_size ) st->print("+%d", offset());
5600 else {
5601 if (basic_elem_type == T_ILLEGAL) {
5602 st->print("+any");
5603 } else {
5604 int elem_size = type2aelembytes(basic_elem_type);
5605 st->print("[%d]", (offset() - header_size)/elem_size);
5606 }
5607 }
5608 }
5609 st->print(" *");
5610 if (_instance_id == InstanceTop)
5611 st->print(",iid=top");
5612 else if (_instance_id != InstanceBot)
5613 st->print(",iid=%d",_instance_id);
5614
5615 dump_inline_depth(st);
5616 dump_speculative(st);
5617 }
5618 #endif
5619
5620 bool TypeAryPtr::empty(void) const {
5621 if (_ary->empty()) return true;
5622 // FIXME: Does this belong here? Or in the meet code itself?
5623 if (is_flat() && is_not_flat()) {
5624 return true;
5625 }
5626 return TypeOopPtr::empty();
5627 }
5628
5629 //------------------------------add_offset-------------------------------------
5630 const TypePtr* TypeAryPtr::add_offset(intptr_t offset) const {
5631 return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _field_offset, _instance_id, add_offset_speculative(offset), _inline_depth, _is_autobox_cache);
5632 }
5633
5634 const TypeAryPtr* TypeAryPtr::with_offset(intptr_t offset) const {
5635 return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, Offset(offset), _field_offset, _instance_id, with_offset_speculative(offset), _inline_depth, _is_autobox_cache);
5636 }
5637
5638 const TypeAryPtr* TypeAryPtr::with_ary(const TypeAry* ary) const {
5639 return make(_ptr, _const_oop, ary, _klass, _klass_is_exact, _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5640 }
5641
5642 const TypeAryPtr* TypeAryPtr::remove_speculative() const {
5643 if (_speculative == nullptr) {
5644 return this;
5645 }
5646 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
5647 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, _instance_id, nullptr, _inline_depth, _is_autobox_cache);
5648 }
5649
5650 const Type* TypeAryPtr::cleanup_speculative() const {
5651 if (speculative() == nullptr) {
5652 return this;
5653 }
5654 // Keep speculative part if it contains information about flat-/nullability
5655 const TypeAryPtr* spec_aryptr = speculative()->isa_aryptr();
5656 if (spec_aryptr != nullptr && !above_centerline(spec_aryptr->ptr()) &&
5657 (spec_aryptr->is_not_flat() || spec_aryptr->is_not_null_free())) {
5658 return this;
5659 }
5660 return TypeOopPtr::cleanup_speculative();
5661 }
5662
5663 const TypePtr* TypeAryPtr::with_inline_depth(int depth) const {
5664 if (!UseInlineDepthForSpeculativeTypes) {
5665 return this;
5666 }
5667 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, _instance_id, _speculative, depth, _is_autobox_cache);
5668 }
5669
5670 const TypeAryPtr* TypeAryPtr::with_field_offset(int offset) const {
5671 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, Offset(offset), _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5672 }
5673
5674 const TypePtr* TypeAryPtr::add_field_offset_and_offset(intptr_t offset) const {
5675 int adj = 0;
5676 if (is_flat() && klass_is_exact() && offset != Type::OffsetBot && offset != Type::OffsetTop) {
5677 if (_offset.get() != OffsetBot && _offset.get() != OffsetTop) {
5678 adj = _offset.get();
5679 offset += _offset.get();
5680 }
5681 uint header = arrayOopDesc::base_offset_in_bytes(T_FLAT_ELEMENT);
5682 if (_field_offset.get() != OffsetBot && _field_offset.get() != OffsetTop) {
5683 offset += _field_offset.get();
5684 if (_offset.get() == OffsetBot || _offset.get() == OffsetTop) {
5685 offset += header;
5686 }
5687 }
5688 if (elem()->make_oopptr()->is_inlinetypeptr() && (offset >= (intptr_t)header || offset < 0)) {
5689 // Try to get the field of the inline type array element we are pointing to
5690 ciInlineKlass* vk = elem()->inline_klass();
5691 int shift = flat_log_elem_size();
5692 int mask = (1 << shift) - 1;
5693 intptr_t field_offset = ((offset - header) & mask);
5694 ciField* field = vk->get_field_by_offset(field_offset + vk->payload_offset(), false);
5695 if (field != nullptr || field_offset == vk->null_marker_offset_in_payload()) {
5696 return with_field_offset(field_offset)->add_offset(offset - field_offset - adj);
5697 }
5698 }
5699 }
5700 return add_offset(offset - adj);
5701 }
5702
5703 // Return offset incremented by field_offset for flat inline type arrays
5704 int TypeAryPtr::flat_offset() const {
5705 int offset = _offset.get();
5706 if (offset != Type::OffsetBot && offset != Type::OffsetTop &&
5707 _field_offset != Offset::bottom && _field_offset != Offset::top) {
5708 offset += _field_offset.get();
5709 }
5710 return offset;
5711 }
5712
5713 const TypePtr* TypeAryPtr::with_instance_id(int instance_id) const {
5714 assert(is_known_instance(), "should be known");
5715 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, instance_id, _speculative, _inline_depth);
5716 }
5717
5718 //=============================================================================
5719
5720
5721 //------------------------------hash-------------------------------------------
5722 // Type-specific hashing function.
5723 uint TypeNarrowPtr::hash(void) const {
5724 return _ptrtype->hash() + 7;
5725 }
5726
5727 bool TypeNarrowPtr::singleton(void) const { // TRUE if type is a singleton
5728 return _ptrtype->singleton();
5729 }
5730
5731 bool TypeNarrowPtr::empty(void) const {
5732 return _ptrtype->empty();
5733 }
5734
5735 intptr_t TypeNarrowPtr::get_con() const {
5736 return _ptrtype->get_con();
5737 }
5738
5739 bool TypeNarrowPtr::eq( const Type *t ) const {
5740 const TypeNarrowPtr* tc = isa_same_narrowptr(t);
5794 case HalfFloatTop:
5795 case HalfFloatCon:
5796 case HalfFloatBot:
5797 case FloatTop:
5798 case FloatCon:
5799 case FloatBot:
5800 case DoubleTop:
5801 case DoubleCon:
5802 case DoubleBot:
5803 case AnyPtr:
5804 case RawPtr:
5805 case OopPtr:
5806 case InstPtr:
5807 case AryPtr:
5808 case MetadataPtr:
5809 case KlassPtr:
5810 case InstKlassPtr:
5811 case AryKlassPtr:
5812 case NarrowOop:
5813 case NarrowKlass:
5814 case Bottom: // Ye Olde Default
5815 return Type::BOTTOM;
5816 case Top:
5817 return this;
5818
5819 default: // All else is a mistake
5820 typerr(t);
5821
5822 } // End of switch
5823
5824 return this;
5825 }
5826
5827 #ifndef PRODUCT
5828 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5829 _ptrtype->dump2(d, depth, st);
5830 }
5831 #endif
5832
5833 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
5877 return (one == two) && TypePtr::eq(t);
5878 } else {
5879 return one->equals(two) && TypePtr::eq(t);
5880 }
5881 }
5882
5883 //------------------------------hash-------------------------------------------
5884 // Type-specific hashing function.
5885 uint TypeMetadataPtr::hash(void) const {
5886 return
5887 (metadata() ? metadata()->hash() : 0) +
5888 TypePtr::hash();
5889 }
5890
5891 //------------------------------singleton--------------------------------------
5892 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
5893 // constants
5894 bool TypeMetadataPtr::singleton(void) const {
5895 // detune optimizer to not generate constant metadata + constant offset as a constant!
5896 // TopPTR, Null, AnyNull, Constant are all singletons
5897 return (offset() == 0) && !below_centerline(_ptr);
5898 }
5899
5900 //------------------------------add_offset-------------------------------------
5901 const TypePtr* TypeMetadataPtr::add_offset( intptr_t offset ) const {
5902 return make( _ptr, _metadata, xadd_offset(offset));
5903 }
5904
5905 //-----------------------------filter------------------------------------------
5906 // Do not allow interface-vs.-noninterface joins to collapse to top.
5907 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
5908 const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
5909 if (ft == nullptr || ft->empty())
5910 return Type::TOP; // Canonical empty value
5911 return ft;
5912 }
5913
5914 //------------------------------get_con----------------------------------------
5915 intptr_t TypeMetadataPtr::get_con() const {
5916 assert( _ptr == Null || _ptr == Constant, "" );
5917 assert(offset() >= 0, "");
5918
5919 if (offset() != 0) {
5920 // After being ported to the compiler interface, the compiler no longer
5921 // directly manipulates the addresses of oops. Rather, it only has a pointer
5922 // to a handle at compile time. This handle is embedded in the generated
5923 // code and dereferenced at the time the nmethod is made. Until that time,
5924 // it is not reasonable to do arithmetic with the addresses of oops (we don't
5925 // have access to the addresses!). This does not seem to currently happen,
5926 // but this assertion here is to help prevent its occurrence.
5927 tty->print_cr("Found oop constant with non-zero offset");
5928 ShouldNotReachHere();
5929 }
5930
5931 return (intptr_t)metadata()->constant_encoding();
5932 }
5933
5934 //------------------------------cast_to_ptr_type-------------------------------
5935 const TypeMetadataPtr* TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
5936 if( ptr == _ptr ) return this;
5937 return make(ptr, metadata(), _offset);
5938 }
5939
5953 case HalfFloatBot:
5954 case FloatTop:
5955 case FloatCon:
5956 case FloatBot:
5957 case DoubleTop:
5958 case DoubleCon:
5959 case DoubleBot:
5960 case NarrowOop:
5961 case NarrowKlass:
5962 case Bottom: // Ye Olde Default
5963 return Type::BOTTOM;
5964 case Top:
5965 return this;
5966
5967 default: // All else is a mistake
5968 typerr(t);
5969
5970 case AnyPtr: {
5971 // Found an AnyPtr type vs self-OopPtr type
5972 const TypePtr *tp = t->is_ptr();
5973 Offset offset = meet_offset(tp->offset());
5974 PTR ptr = meet_ptr(tp->ptr());
5975 switch (tp->ptr()) {
5976 case Null:
5977 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5978 // else fall through:
5979 case TopPTR:
5980 case AnyNull: {
5981 return make(ptr, _metadata, offset);
5982 }
5983 case BotPTR:
5984 case NotNull:
5985 return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5986 default: typerr(t);
5987 }
5988 }
5989
5990 case RawPtr:
5991 case KlassPtr:
5992 case InstKlassPtr:
5993 case AryKlassPtr:
5994 case OopPtr:
5995 case InstPtr:
5996 case AryPtr:
5997 return TypePtr::BOTTOM; // Oop meet raw is not well defined
5998
5999 case MetadataPtr: {
6000 const TypeMetadataPtr *tp = t->is_metadataptr();
6001 Offset offset = meet_offset(tp->offset());
6002 PTR tptr = tp->ptr();
6003 PTR ptr = meet_ptr(tptr);
6004 ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
6005 if (tptr == TopPTR || _ptr == TopPTR ||
6006 metadata()->equals(tp->metadata())) {
6007 return make(ptr, md, offset);
6008 }
6009 // metadata is different
6010 if( ptr == Constant ) { // Cannot be equal constants, so...
6011 if( tptr == Constant && _ptr != Constant) return t;
6012 if( _ptr == Constant && tptr != Constant) return this;
6013 ptr = NotNull; // Fall down in lattice
6014 }
6015 return make(ptr, nullptr, offset);
6016 break;
6017 }
6018 } // End of switch
6019 return this; // Return the double constant
6020 }
6021
6022
6023 //------------------------------xdual------------------------------------------
6024 // Dual of a pure metadata pointer.
6025 const Type *TypeMetadataPtr::xdual() const {
6026 return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
6027 }
6028
6029 //------------------------------dump2------------------------------------------
6030 #ifndef PRODUCT
6031 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
6032 st->print("metadataptr:%s", ptr_msg[_ptr]);
6033 if( metadata() ) st->print(INTPTR_FORMAT, p2i(metadata()));
6034 switch (offset()) {
6035 case OffsetTop: st->print("+top"); break;
6036 case OffsetBot: st->print("+any"); break;
6037 case 0: break;
6038 default: st->print("+%d",offset()); break;
6039 }
6040 }
6041 #endif
6042
6043
6044 //=============================================================================
6045 // Convenience common pre-built type.
6046 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
6047
6048 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, Offset offset):
6049 TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
6050 }
6051
6052 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
6053 return make(Constant, m, Offset(0));
6054 }
6055 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
6056 return make(Constant, m, Offset(0));
6057 }
6058
6059 //------------------------------make-------------------------------------------
6060 // Create a meta data constant
6061 const TypeMetadataPtr* TypeMetadataPtr::make(PTR ptr, ciMetadata* m, Offset offset) {
6062 assert(m == nullptr || !m->is_klass(), "wrong type");
6063 return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
6064 }
6065
6066
6067 const TypeKlassPtr* TypeAryPtr::as_klass_type(bool try_for_exact) const {
6068 const Type* elem = _ary->_elem;
6069 bool xk = klass_is_exact();
6070 if (elem->make_oopptr() != nullptr) {
6071 elem = elem->make_oopptr()->as_klass_type(try_for_exact);
6072 if (elem->is_klassptr()->klass_is_exact() &&
6073 // Even though MyValue is final, [LMyValue is only exact if the array
6074 // is (not) null-free due to null-free [LMyValue <: null-able [LMyValue.
6075 // TODO 8350865 If we know that the array can't be null-free, it's allowed to be exact, right?
6076 // If so, we should add '|| is_not_null_free()'
6077 (is_null_free() || !_ary->_elem->make_oopptr()->is_inlinetypeptr())) {
6078 xk = true;
6079 }
6080 }
6081 return TypeAryKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, elem, klass(), Offset(0), is_not_flat(), is_not_null_free(), is_flat(), is_null_free(), is_atomic(), is_flat() || is_null_free());
6082 }
6083
6084 const TypeKlassPtr* TypeKlassPtr::make(ciKlass* klass, InterfaceHandling interface_handling) {
6085 if (klass->is_instance_klass()) {
6086 return TypeInstKlassPtr::make(klass, interface_handling);
6087 }
6088 return TypeAryKlassPtr::make(klass, interface_handling);
6089 }
6090
6091 const TypeKlassPtr* TypeKlassPtr::make(PTR ptr, ciKlass* klass, Offset offset, InterfaceHandling interface_handling) {
6092 if (klass->is_instance_klass()) {
6093 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
6094 return TypeInstKlassPtr::make(ptr, klass, interfaces, offset);
6095 }
6096 return TypeAryKlassPtr::make(ptr, klass, offset, interface_handling);
6097 }
6098
6099 TypeKlassPtr::TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, Offset offset)
6100 : TypePtr(t, ptr, offset), _klass(klass), _interfaces(interfaces) {
6101 assert(klass == nullptr || !klass->is_loaded() || (klass->is_instance_klass() && !klass->is_interface()) ||
6102 klass->is_type_array_klass() || klass->is_flat_array_klass() || !klass->as_obj_array_klass()->base_element_klass()->is_interface(), "no interface here");
6103 }
6104
6105 // Is there a single ciKlass* that can represent that type?
6106 ciKlass* TypeKlassPtr::exact_klass_helper() const {
6107 assert(_klass->is_instance_klass() && !_klass->is_interface(), "No interface");
6108 if (_interfaces->empty()) {
6109 return _klass;
6110 }
6111 if (_klass != ciEnv::current()->Object_klass()) {
6112 if (_interfaces->eq(_klass->as_instance_klass())) {
6113 return _klass;
6114 }
6115 return nullptr;
6116 }
6117 return _interfaces->exact_klass();
6118 }
6119
6120 //------------------------------eq---------------------------------------------
6121 // Structural equality check for Type representations
6122 bool TypeKlassPtr::eq(const Type *t) const {
6123 const TypeKlassPtr *p = t->is_klassptr();
6124 return
6125 _interfaces->eq(p->_interfaces) &&
6126 TypePtr::eq(p);
6127 }
6128
6129 //------------------------------hash-------------------------------------------
6130 // Type-specific hashing function.
6131 uint TypeKlassPtr::hash(void) const {
6132 return TypePtr::hash() + _interfaces->hash();
6133 }
6134
6135 //------------------------------singleton--------------------------------------
6136 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
6137 // constants
6138 bool TypeKlassPtr::singleton(void) const {
6139 // detune optimizer to not generate constant klass + constant offset as a constant!
6140 // TopPTR, Null, AnyNull, Constant are all singletons
6141 return (offset() == 0) && !below_centerline(_ptr);
6142 }
6143
6144 // Do not allow interface-vs.-noninterface joins to collapse to top.
6145 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
6146 // logic here mirrors the one from TypeOopPtr::filter. See comments
6147 // there.
6148 const Type* ft = join_helper(kills, include_speculative);
6149
6150 if (ft->empty()) {
6151 return Type::TOP; // Canonical empty value
6152 }
6153
6154 return ft;
6155 }
6156
6157 const TypeInterfaces* TypeKlassPtr::meet_interfaces(const TypeKlassPtr* other) const {
6158 if (above_centerline(_ptr) && above_centerline(other->_ptr)) {
6159 return _interfaces->union_with(other->_interfaces);
6160 } else if (above_centerline(_ptr) && !above_centerline(other->_ptr)) {
6161 return other->_interfaces;
6162 } else if (above_centerline(other->_ptr) && !above_centerline(_ptr)) {
6163 return _interfaces;
6164 }
6165 return _interfaces->intersection_with(other->_interfaces);
6166 }
6167
6168 //------------------------------get_con----------------------------------------
6169 intptr_t TypeKlassPtr::get_con() const {
6170 assert( _ptr == Null || _ptr == Constant, "" );
6171 assert( offset() >= 0, "" );
6172
6173 if (offset() != 0) {
6174 // After being ported to the compiler interface, the compiler no longer
6175 // directly manipulates the addresses of oops. Rather, it only has a pointer
6176 // to a handle at compile time. This handle is embedded in the generated
6177 // code and dereferenced at the time the nmethod is made. Until that time,
6178 // it is not reasonable to do arithmetic with the addresses of oops (we don't
6179 // have access to the addresses!). This does not seem to currently happen,
6180 // but this assertion here is to help prevent its occurrence.
6181 tty->print_cr("Found oop constant with non-zero offset");
6182 ShouldNotReachHere();
6183 }
6184
6185 ciKlass* k = exact_klass();
6186
6187 return (intptr_t)k->constant_encoding();
6188 }
6189
6190 //------------------------------dump2------------------------------------------
6191 // Dump Klass Type
6192 #ifndef PRODUCT
6193 void TypeKlassPtr::dump2(Dict & d, uint depth, outputStream *st) const {
6197 case NotNull:
6198 {
6199 const char *name = klass()->name()->as_utf8();
6200 if (name) {
6201 st->print("%s: " INTPTR_FORMAT, name, p2i(klass()));
6202 } else {
6203 ShouldNotReachHere();
6204 }
6205 _interfaces->dump(st);
6206 }
6207 case BotPTR:
6208 if (!WizardMode && !Verbose && _ptr != Constant) break;
6209 case TopPTR:
6210 case AnyNull:
6211 st->print(":%s", ptr_msg[_ptr]);
6212 if (_ptr == Constant) st->print(":exact");
6213 break;
6214 default:
6215 break;
6216 }
6217 if (Verbose) {
6218 if (isa_instklassptr() && is_instklassptr()->flat_in_array()) st->print(":flat in array");
6219 }
6220 _offset.dump2(st);
6221 st->print(" *");
6222
6223 if (flat_in_array() && !klass()->is_inlinetype()) {
6224 st->print(" (flat in array)");
6225 }
6226 }
6227 #endif
6228
6229 //=============================================================================
6230 // Convenience common pre-built types.
6231
6232 // Not-null object klass or below
6233 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT;
6234 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT_OR_NULL;
6235
6236 bool TypeInstKlassPtr::eq(const Type *t) const {
6237 const TypeKlassPtr *p = t->is_klassptr();
6238 return
6239 klass()->equals(p->klass()) &&
6240 flat_in_array() == p->flat_in_array() &&
6241 TypeKlassPtr::eq(p);
6242 }
6243
6244 uint TypeInstKlassPtr::hash(void) const {
6245 return klass()->hash() + TypeKlassPtr::hash() + (uint)flat_in_array();
6246 }
6247
6248 const TypeInstKlassPtr *TypeInstKlassPtr::make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, Offset offset, bool flat_in_array) {
6249 flat_in_array = flat_in_array || k->maybe_flat_in_array();
6250
6251 TypeInstKlassPtr *r =
6252 (TypeInstKlassPtr*)(new TypeInstKlassPtr(ptr, k, interfaces, offset, flat_in_array))->hashcons();
6253
6254 return r;
6255 }
6256
6257 //------------------------------add_offset-------------------------------------
6258 // Access internals of klass object
6259 const TypePtr *TypeInstKlassPtr::add_offset( intptr_t offset ) const {
6260 return make(_ptr, klass(), _interfaces, xadd_offset(offset), flat_in_array());
6261 }
6262
6263 const TypeInstKlassPtr* TypeInstKlassPtr::with_offset(intptr_t offset) const {
6264 return make(_ptr, klass(), _interfaces, Offset(offset), flat_in_array());
6265 }
6266
6267 //------------------------------cast_to_ptr_type-------------------------------
6268 const TypeInstKlassPtr* TypeInstKlassPtr::cast_to_ptr_type(PTR ptr) const {
6269 assert(_base == InstKlassPtr, "subclass must override cast_to_ptr_type");
6270 if( ptr == _ptr ) return this;
6271 return make(ptr, _klass, _interfaces, _offset, flat_in_array());
6272 }
6273
6274
6275 bool TypeInstKlassPtr::must_be_exact() const {
6276 if (!_klass->is_loaded()) return false;
6277 ciInstanceKlass* ik = _klass->as_instance_klass();
6278 if (ik->is_final()) return true; // cannot clear xk
6279 return false;
6280 }
6281
6282 //-----------------------------cast_to_exactness-------------------------------
6283 const TypeKlassPtr* TypeInstKlassPtr::cast_to_exactness(bool klass_is_exact) const {
6284 if (klass_is_exact == (_ptr == Constant)) return this;
6285 if (must_be_exact()) return this;
6286 ciKlass* k = klass();
6287 return make(klass_is_exact ? Constant : NotNull, k, _interfaces, _offset, flat_in_array());
6288 }
6289
6290
6291 //-----------------------------as_instance_type--------------------------------
6292 // Corresponding type for an instance of the given class.
6293 // It will be NotNull, and exact if and only if the klass type is exact.
6294 const TypeOopPtr* TypeInstKlassPtr::as_instance_type(bool klass_change) const {
6295 ciKlass* k = klass();
6296 bool xk = klass_is_exact();
6297 Compile* C = Compile::current();
6298 Dependencies* deps = C->dependencies();
6299 assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
6300 // Element is an instance
6301 bool klass_is_exact = false;
6302 const TypeInterfaces* interfaces = _interfaces;
6303 if (k->is_loaded()) {
6304 // Try to set klass_is_exact.
6305 ciInstanceKlass* ik = k->as_instance_klass();
6306 klass_is_exact = ik->is_final();
6307 if (!klass_is_exact && klass_change
6308 && deps != nullptr && UseUniqueSubclasses) {
6309 ciInstanceKlass* sub = ik->unique_concrete_subklass();
6310 if (sub != nullptr) {
6311 if (_interfaces->eq(sub)) {
6312 deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
6313 k = ik = sub;
6314 xk = sub->is_final();
6315 }
6316 }
6317 }
6318 }
6319 return TypeInstPtr::make(TypePtr::BotPTR, k, interfaces, xk, nullptr, Offset(0), flat_in_array() && !klass()->is_inlinetype());
6320 }
6321
6322 //------------------------------xmeet------------------------------------------
6323 // Compute the MEET of two types, return a new Type object.
6324 const Type *TypeInstKlassPtr::xmeet( const Type *t ) const {
6325 // Perform a fast test for common case; meeting the same types together.
6326 if( this == t ) return this; // Meeting same type-rep?
6327
6328 // Current "this->_base" is Pointer
6329 switch (t->base()) { // switch on original type
6330
6331 case Int: // Mixing ints & oops happens when javac
6332 case Long: // reuses local variables
6333 case HalfFloatTop:
6334 case HalfFloatCon:
6335 case HalfFloatBot:
6336 case FloatTop:
6337 case FloatCon:
6338 case FloatBot:
6339 case DoubleTop:
6340 case DoubleCon:
6341 case DoubleBot:
6342 case NarrowOop:
6343 case NarrowKlass:
6344 case Bottom: // Ye Olde Default
6345 return Type::BOTTOM;
6346 case Top:
6347 return this;
6348
6349 default: // All else is a mistake
6350 typerr(t);
6351
6352 case AnyPtr: { // Meeting to AnyPtrs
6353 // Found an AnyPtr type vs self-KlassPtr type
6354 const TypePtr *tp = t->is_ptr();
6355 Offset offset = meet_offset(tp->offset());
6356 PTR ptr = meet_ptr(tp->ptr());
6357 switch (tp->ptr()) {
6358 case TopPTR:
6359 return this;
6360 case Null:
6361 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6362 case AnyNull:
6363 return make(ptr, klass(), _interfaces, offset, flat_in_array());
6364 case BotPTR:
6365 case NotNull:
6366 return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6367 default: typerr(t);
6368 }
6369 }
6370
6371 case RawPtr:
6372 case MetadataPtr:
6373 case OopPtr:
6374 case AryPtr: // Meet with AryPtr
6375 case InstPtr: // Meet with InstPtr
6376 return TypePtr::BOTTOM;
6377
6378 //
6379 // A-top }
6380 // / | \ } Tops
6381 // B-top A-any C-top }
6382 // | / | \ | } Any-nulls
6383 // B-any | C-any }
6384 // | | |
6385 // B-con A-con C-con } constants; not comparable across classes
6386 // | | |
6387 // B-not | C-not }
6388 // | \ | / | } not-nulls
6389 // B-bot A-not C-bot }
6390 // \ | / } Bottoms
6391 // A-bot }
6392 //
6393
6394 case InstKlassPtr: { // Meet two KlassPtr types
6395 const TypeInstKlassPtr *tkls = t->is_instklassptr();
6396 Offset off = meet_offset(tkls->offset());
6397 PTR ptr = meet_ptr(tkls->ptr());
6398 const TypeInterfaces* interfaces = meet_interfaces(tkls);
6399
6400 ciKlass* res_klass = nullptr;
6401 bool res_xk = false;
6402 bool res_flat_in_array = false;
6403 switch(meet_instptr(ptr, interfaces, this, tkls, res_klass, res_xk, res_flat_in_array)) {
6404 case UNLOADED:
6405 ShouldNotReachHere();
6406 case SUBTYPE:
6407 case NOT_SUBTYPE:
6408 case LCA:
6409 case QUICK: {
6410 assert(res_xk == (ptr == Constant), "");
6411 const Type* res = make(ptr, res_klass, interfaces, off, res_flat_in_array);
6412 return res;
6413 }
6414 default:
6415 ShouldNotReachHere();
6416 }
6417 } // End of case KlassPtr
6418 case AryKlassPtr: { // All arrays inherit from Object class
6419 const TypeAryKlassPtr *tp = t->is_aryklassptr();
6420 Offset offset = meet_offset(tp->offset());
6421 PTR ptr = meet_ptr(tp->ptr());
6422 const TypeInterfaces* interfaces = meet_interfaces(tp);
6423 const TypeInterfaces* tp_interfaces = tp->_interfaces;
6424 const TypeInterfaces* this_interfaces = _interfaces;
6425
6426 switch (ptr) {
6427 case TopPTR:
6428 case AnyNull: // Fall 'down' to dual of object klass
6429 // For instances when a subclass meets a superclass we fall
6430 // below the centerline when the superclass is exact. We need to
6431 // do the same here.
6432 if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces->contains(this_interfaces) && !klass_is_exact()) {
6433 return TypeAryKlassPtr::make(ptr, tp->elem(), tp->klass(), offset, tp->is_not_flat(), tp->is_not_null_free(), tp->is_flat(), tp->is_null_free(), tp->is_atomic(), tp->is_refined_type());
6434 } else {
6435 // cannot subclass, so the meet has to fall badly below the centerline
6436 ptr = NotNull;
6437 interfaces = _interfaces->intersection_with(tp->_interfaces);
6438 return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset, false);
6439 }
6440 case Constant:
6441 case NotNull:
6442 case BotPTR: // Fall down to object klass
6443 // LCA is object_klass, but if we subclass from the top we can do better
6444 if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
6445 // If 'this' (InstPtr) is above the centerline and it is Object class
6446 // then we can subclass in the Java class hierarchy.
6447 // For instances when a subclass meets a superclass we fall
6448 // below the centerline when the superclass is exact. We need
6449 // to do the same here.
6450 if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces->contains(this_interfaces) && !klass_is_exact()) {
6451 // that is, tp's array type is a subtype of my klass
6452 return TypeAryKlassPtr::make(ptr, tp->elem(), tp->klass(), offset, tp->is_not_flat(), tp->is_not_null_free(), tp->is_flat(), tp->is_null_free(), tp->is_atomic(), tp->is_refined_type());
6453 }
6454 }
6455 // The other case cannot happen, since I cannot be a subtype of an array.
6456 // The meet falls down to Object class below centerline.
6457 if( ptr == Constant )
6458 ptr = NotNull;
6459 interfaces = this_interfaces->intersection_with(tp_interfaces);
6460 return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset, false);
6461 default: typerr(t);
6462 }
6463 }
6464
6465 } // End of switch
6466 return this; // Return the double constant
6467 }
6468
6469 //------------------------------xdual------------------------------------------
6470 // Dual: compute field-by-field dual
6471 const Type *TypeInstKlassPtr::xdual() const {
6472 return new TypeInstKlassPtr(dual_ptr(), klass(), _interfaces, dual_offset(), flat_in_array());
6473 }
6474
6475 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
6476 static_assert(std::is_base_of<T2, T1>::value, "");
6477 if (!this_one->is_loaded() || !other->is_loaded()) {
6478 return false;
6479 }
6480 if (!this_one->is_instance_type(other)) {
6481 return false;
6482 }
6483
6484 if (!other_exact) {
6485 return false;
6486 }
6487
6488 if (other->klass()->equals(ciEnv::current()->Object_klass()) && other->_interfaces->empty()) {
6489 return true;
6490 }
6491
6492 return this_one->klass()->is_subtype_of(other->klass()) && this_one->_interfaces->contains(other->_interfaces);
6566 const TypeInterfaces* interfaces = _interfaces;
6567 if (k->is_loaded()) {
6568 ciInstanceKlass* ik = k->as_instance_klass();
6569 bool klass_is_exact = ik->is_final();
6570 if (!klass_is_exact &&
6571 deps != nullptr) {
6572 ciInstanceKlass* sub = ik->unique_concrete_subklass();
6573 if (sub != nullptr) {
6574 if (_interfaces->eq(sub)) {
6575 deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
6576 k = ik = sub;
6577 klass_is_exact = sub->is_final();
6578 return TypeKlassPtr::make(klass_is_exact ? Constant : _ptr, k, _offset);
6579 }
6580 }
6581 }
6582 }
6583 return this;
6584 }
6585
6586 bool TypeInstKlassPtr::can_be_inline_array() const {
6587 return _klass->equals(ciEnv::current()->Object_klass()) && TypeAryKlassPtr::_array_interfaces->contains(_interfaces);
6588 }
6589
6590 bool TypeAryKlassPtr::can_be_inline_array() const {
6591 return _elem->isa_instklassptr() && _elem->is_instklassptr()->_klass->can_be_inline_klass();
6592 }
6593
6594 bool TypeInstPtr::can_be_inline_array() const {
6595 return _klass->equals(ciEnv::current()->Object_klass()) && TypeAryPtr::_array_interfaces->contains(_interfaces);
6596 }
6597
6598 bool TypeAryPtr::can_be_inline_array() const {
6599 return elem()->make_ptr() && elem()->make_ptr()->isa_instptr() && elem()->make_ptr()->is_instptr()->_klass->can_be_inline_klass();
6600 }
6601
6602 const TypeAryKlassPtr *TypeAryKlassPtr::make(PTR ptr, const Type* elem, ciKlass* k, Offset offset, bool not_flat, bool not_null_free, bool flat, bool null_free, bool atomic, bool refined_type) {
6603 return (TypeAryKlassPtr*)(new TypeAryKlassPtr(ptr, elem, k, offset, not_flat, not_null_free, flat, null_free, atomic, refined_type))->hashcons();
6604 }
6605
6606 const TypeAryKlassPtr* TypeAryKlassPtr::make(PTR ptr, ciKlass* k, Offset offset, InterfaceHandling interface_handling, bool not_flat, bool not_null_free, bool flat, bool null_free, bool atomic, bool refined_type) {
6607 if (k->is_obj_array_klass()) {
6608 // Element is an object array. Recursively call ourself.
6609 ciKlass* eklass = k->as_obj_array_klass()->element_klass();
6610 const TypeKlassPtr* etype = TypeKlassPtr::make(eklass, interface_handling)->cast_to_exactness(false);
6611 return TypeAryKlassPtr::make(ptr, etype, nullptr, offset, not_flat, not_null_free, flat, null_free, atomic, refined_type);
6612 } else if (k->is_type_array_klass()) {
6613 // Element is an typeArray
6614 const Type* etype = get_const_basic_type(k->as_type_array_klass()->element_type());
6615 return TypeAryKlassPtr::make(ptr, etype, k, offset, not_flat, not_null_free, flat, null_free, atomic);
6616 } else if (k->is_flat_array_klass()) {
6617 ciKlass* eklass = k->as_flat_array_klass()->element_klass();
6618 const TypeKlassPtr* etype = TypeKlassPtr::make(eklass, interface_handling)->cast_to_exactness(false);
6619 return TypeAryKlassPtr::make(ptr, etype, k, offset, not_flat, not_null_free, flat, null_free, atomic, refined_type);
6620 } else {
6621 ShouldNotReachHere();
6622 return nullptr;
6623 }
6624 }
6625
6626 const TypeAryKlassPtr* TypeAryKlassPtr::make(PTR ptr, ciKlass* k, Offset offset, InterfaceHandling interface_handling, bool refined_type) {
6627 bool flat = k->is_flat_array_klass();
6628 bool null_free = k->as_array_klass()->is_elem_null_free();
6629 bool atomic = k->as_array_klass()->is_elem_atomic();
6630
6631 bool not_inline = k->is_type_array_klass() || !k->as_array_klass()->element_klass()->can_be_inline_klass(false);
6632 bool not_null_free = (ptr == Constant) ? !null_free : not_inline;
6633 bool not_flat = (ptr == Constant) ? !flat : (!UseArrayFlattening || not_inline ||
6634 (k->as_array_klass()->element_klass() != nullptr &&
6635 k->as_array_klass()->element_klass()->is_inlinetype() &&
6636 !k->as_array_klass()->element_klass()->maybe_flat_in_array()));
6637
6638 return TypeAryKlassPtr::make(ptr, k, offset, interface_handling, not_flat, not_null_free, flat, null_free, atomic, refined_type);
6639 }
6640
6641 const TypeAryKlassPtr* TypeAryKlassPtr::make(ciKlass* klass, InterfaceHandling interface_handling, bool refined_type) {
6642 return TypeAryKlassPtr::make(Constant, klass, Offset(0), interface_handling, refined_type);
6643 }
6644
6645 // Get the (non-)refined array klass ptr
6646 const TypeAryKlassPtr* TypeAryKlassPtr::cast_to_refined_array_klass_ptr(bool refined) const {
6647 if ((refined == is_refined_type()) || !klass_is_exact() || (!exact_klass()->is_obj_array_klass() && !exact_klass()->is_flat_array_klass())) {
6648 return this;
6649 }
6650 ciKlass* eklass = elem()->is_klassptr()->exact_klass_helper();
6651 if (elem()->isa_aryklassptr()) {
6652 eklass = exact_klass()->as_obj_array_klass()->element_klass();
6653 }
6654 ciKlass* array_klass = ciArrayKlass::make(eklass, eklass->is_inlinetype() ? is_null_free() : false, eklass->is_inlinetype() ? is_atomic() : true, refined);
6655 return make(_ptr, array_klass, Offset(0), trust_interfaces, refined);
6656 }
6657
6658 //------------------------------eq---------------------------------------------
6659 // Structural equality check for Type representations
6660 bool TypeAryKlassPtr::eq(const Type *t) const {
6661 const TypeAryKlassPtr *p = t->is_aryklassptr();
6662 return
6663 _elem == p->_elem && // Check array
6664 _flat == p->_flat &&
6665 _not_flat == p->_not_flat &&
6666 _null_free == p->_null_free &&
6667 _not_null_free == p->_not_null_free &&
6668 _atomic == p->_atomic &&
6669 _refined_type == p->_refined_type &&
6670 TypeKlassPtr::eq(p); // Check sub-parts
6671 }
6672
6673 //------------------------------hash-------------------------------------------
6674 // Type-specific hashing function.
6675 uint TypeAryKlassPtr::hash(void) const {
6676 return (uint)(uintptr_t)_elem + TypeKlassPtr::hash() + (uint)(_not_flat ? 43 : 0) +
6677 (uint)(_not_null_free ? 44 : 0) + (uint)(_flat ? 45 : 0) + (uint)(_null_free ? 46 : 0) + (uint)(_atomic ? 47 : 0) + (uint)(_refined_type ? 48 : 0);
6678 }
6679
6680 //----------------------compute_klass------------------------------------------
6681 // Compute the defining klass for this class
6682 ciKlass* TypeAryPtr::compute_klass() const {
6683 // Compute _klass based on element type.
6684 ciKlass* k_ary = nullptr;
6685 const TypeInstPtr *tinst;
6686 const TypeAryPtr *tary;
6687 const Type* el = elem();
6688 if (el->isa_narrowoop()) {
6689 el = el->make_ptr();
6690 }
6691
6692 // Get element klass
6693 if ((tinst = el->isa_instptr()) != nullptr) {
6694 // Leave k_ary at nullptr.
6695 } else if ((tary = el->isa_aryptr()) != nullptr) {
6696 // Leave k_ary at nullptr.
6697 } else if ((el->base() == Type::Top) ||
6698 (el->base() == Type::Bottom)) {
6699 // element type of Bottom occurs from meet of basic type
6700 // and object; Top occurs when doing join on Bottom.
6701 // Leave k_ary at null.
6702 } else {
6703 assert(!el->isa_int(), "integral arrays must be pre-equipped with a class");
6704 // Compute array klass directly from basic type
6705 k_ary = ciTypeArrayKlass::make(el->basic_type());
6706 }
6707 return k_ary;
6708 }
6709
6710 //------------------------------klass------------------------------------------
6711 // Return the defining klass for this class
6712 ciKlass* TypeAryPtr::klass() const {
6713 if( _klass ) return _klass; // Return cached value, if possible
6714
6715 // Oops, need to compute _klass and cache it
6716 ciKlass* k_ary = compute_klass();
6724 // type TypeAryPtr::OOPS. This Type is shared between all
6725 // active compilations. However, the ciKlass which represents
6726 // this Type is *not* shared between compilations, so caching
6727 // this value would result in fetching a dangling pointer.
6728 //
6729 // Recomputing the underlying ciKlass for each request is
6730 // a bit less efficient than caching, but calls to
6731 // TypeAryPtr::OOPS->klass() are not common enough to matter.
6732 ((TypeAryPtr*)this)->_klass = k_ary;
6733 }
6734 return k_ary;
6735 }
6736
6737 // Is there a single ciKlass* that can represent that type?
6738 ciKlass* TypeAryPtr::exact_klass_helper() const {
6739 if (_ary->_elem->make_ptr() && _ary->_elem->make_ptr()->isa_oopptr()) {
6740 ciKlass* k = _ary->_elem->make_ptr()->is_oopptr()->exact_klass_helper();
6741 if (k == nullptr) {
6742 return nullptr;
6743 }
6744 k = ciArrayKlass::make(k, is_null_free(), is_atomic(), is_flat() || is_null_free());
6745 return k;
6746 }
6747
6748 return klass();
6749 }
6750
6751 const Type* TypeAryPtr::base_element_type(int& dims) const {
6752 const Type* elem = this->elem();
6753 dims = 1;
6754 while (elem->make_ptr() && elem->make_ptr()->isa_aryptr()) {
6755 elem = elem->make_ptr()->is_aryptr()->elem();
6756 dims++;
6757 }
6758 return elem;
6759 }
6760
6761 //------------------------------add_offset-------------------------------------
6762 // Access internals of klass object
6763 const TypePtr* TypeAryKlassPtr::add_offset(intptr_t offset) const {
6764 return make(_ptr, elem(), klass(), xadd_offset(offset), is_not_flat(), is_not_null_free(), _flat, _null_free, _atomic, _refined_type);
6765 }
6766
6767 const TypeAryKlassPtr* TypeAryKlassPtr::with_offset(intptr_t offset) const {
6768 return make(_ptr, elem(), klass(), Offset(offset), is_not_flat(), is_not_null_free(), _flat, _null_free, _atomic, _refined_type);
6769 }
6770
6771 //------------------------------cast_to_ptr_type-------------------------------
6772 const TypeAryKlassPtr* TypeAryKlassPtr::cast_to_ptr_type(PTR ptr) const {
6773 assert(_base == AryKlassPtr, "subclass must override cast_to_ptr_type");
6774 if (ptr == _ptr) return this;
6775 return make(ptr, elem(), _klass, _offset, is_not_flat(), is_not_null_free(), _flat, _null_free, _atomic, _refined_type);
6776 }
6777
6778 bool TypeAryKlassPtr::must_be_exact() const {
6779 if (_elem == Type::BOTTOM) return false;
6780 if (_elem == Type::TOP ) return false;
6781 const TypeKlassPtr* tk = _elem->isa_klassptr();
6782 if (!tk) return true; // a primitive type, like int
6783 // Even though MyValue is final, [LMyValue is only exact if the array
6784 // is (not) null-free due to null-free [LMyValue <: null-able [LMyValue.
6785 // TODO 8350865 If we know that the array can't be null-free, it's allowed to be exact, right?
6786 // If so, we should add '&& !is_not_null_free()'
6787 if (tk->isa_instklassptr() && tk->klass()->is_inlinetype() && !is_null_free()) {
6788 return false;
6789 }
6790 return tk->must_be_exact();
6791 }
6792
6793
6794 //-----------------------------cast_to_exactness-------------------------------
6795 const TypeKlassPtr *TypeAryKlassPtr::cast_to_exactness(bool klass_is_exact) const {
6796 if (must_be_exact() && !klass_is_exact) return this; // cannot clear xk
6797 if (klass_is_exact == this->klass_is_exact()) {
6798 return this;
6799 }
6800 ciKlass* k = _klass;
6801 const Type* elem = this->elem();
6802 if (elem->isa_klassptr() && !klass_is_exact) {
6803 elem = elem->is_klassptr()->cast_to_exactness(klass_is_exact);
6804 }
6805 bool not_flat = is_not_flat();
6806 bool not_null_free = is_not_null_free();
6807 if (_elem->isa_klassptr()) {
6808 if (klass_is_exact || _elem->isa_aryklassptr()) {
6809 assert((!is_null_free() && !is_flat()) ||
6810 _elem->is_klassptr()->klass()->is_abstract() || _elem->is_klassptr()->klass()->is_java_lang_Object(),
6811 "null-free (or flat) concrete inline type arrays should always be exact");
6812 // An array can't be null-free (or flat) if the klass is exact
6813 not_null_free = true;
6814 not_flat = true;
6815 } else {
6816 // Klass is not exact (anymore), re-compute null-free/flat properties
6817 const TypeOopPtr* exact_etype = TypeOopPtr::make_from_klass_unique(_elem->is_instklassptr()->instance_klass());
6818 bool not_inline = !exact_etype->can_be_inline_type();
6819 not_null_free = not_inline;
6820 not_flat = !UseArrayFlattening || not_inline || (exact_etype->is_inlinetypeptr() && !exact_etype->inline_klass()->maybe_flat_in_array());
6821 }
6822 }
6823 return make(klass_is_exact ? Constant : NotNull, elem, k, _offset, not_flat, not_null_free, _flat, _null_free, _atomic, _refined_type);
6824 }
6825
6826 //-----------------------------as_instance_type--------------------------------
6827 // Corresponding type for an instance of the given class.
6828 // It will be NotNull, and exact if and only if the klass type is exact.
6829 const TypeOopPtr* TypeAryKlassPtr::as_instance_type(bool klass_change) const {
6830 ciKlass* k = klass();
6831 bool xk = klass_is_exact();
6832 const Type* el = nullptr;
6833 if (elem()->isa_klassptr()) {
6834 el = elem()->is_klassptr()->as_instance_type(false)->cast_to_exactness(false);
6835 k = nullptr;
6836 } else {
6837 el = elem();
6838 }
6839 bool null_free = _null_free;
6840 if (null_free && el->isa_ptr()) {
6841 el = el->is_ptr()->join_speculative(TypePtr::NOTNULL);
6842 }
6843 return TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(el, TypeInt::POS, false, is_flat(), is_not_flat(), is_not_null_free(), is_atomic()), k, xk, Offset(0));
6844 }
6845
6846
6847 //------------------------------xmeet------------------------------------------
6848 // Compute the MEET of two types, return a new Type object.
6849 const Type *TypeAryKlassPtr::xmeet( const Type *t ) const {
6850 // Perform a fast test for common case; meeting the same types together.
6851 if( this == t ) return this; // Meeting same type-rep?
6852
6853 // Current "this->_base" is Pointer
6854 switch (t->base()) { // switch on original type
6855
6856 case Int: // Mixing ints & oops happens when javac
6857 case Long: // reuses local variables
6858 case HalfFloatTop:
6859 case HalfFloatCon:
6860 case HalfFloatBot:
6861 case FloatTop:
6862 case FloatCon:
6863 case FloatBot:
6864 case DoubleTop:
6865 case DoubleCon:
6866 case DoubleBot:
6867 case NarrowOop:
6868 case NarrowKlass:
6869 case Bottom: // Ye Olde Default
6870 return Type::BOTTOM;
6871 case Top:
6872 return this;
6873
6874 default: // All else is a mistake
6875 typerr(t);
6876
6877 case AnyPtr: { // Meeting to AnyPtrs
6878 // Found an AnyPtr type vs self-KlassPtr type
6879 const TypePtr *tp = t->is_ptr();
6880 Offset offset = meet_offset(tp->offset());
6881 PTR ptr = meet_ptr(tp->ptr());
6882 switch (tp->ptr()) {
6883 case TopPTR:
6884 return this;
6885 case Null:
6886 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6887 case AnyNull:
6888 return make(ptr, _elem, klass(), offset, is_not_flat(), is_not_null_free(), is_flat(), is_null_free(), is_atomic(), is_refined_type());
6889 case BotPTR:
6890 case NotNull:
6891 return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6892 default: typerr(t);
6893 }
6894 }
6895
6896 case RawPtr:
6897 case MetadataPtr:
6898 case OopPtr:
6899 case AryPtr: // Meet with AryPtr
6900 case InstPtr: // Meet with InstPtr
6901 return TypePtr::BOTTOM;
6902
6903 //
6904 // A-top }
6905 // / | \ } Tops
6906 // B-top A-any C-top }
6907 // | / | \ | } Any-nulls
6908 // B-any | C-any }
6909 // | | |
6910 // B-con A-con C-con } constants; not comparable across classes
6911 // | | |
6912 // B-not | C-not }
6913 // | \ | / | } not-nulls
6914 // B-bot A-not C-bot }
6915 // \ | / } Bottoms
6916 // A-bot }
6917 //
6918
6919 case AryKlassPtr: { // Meet two KlassPtr types
6920 const TypeAryKlassPtr *tap = t->is_aryklassptr();
6921 Offset off = meet_offset(tap->offset());
6922 const Type* elem = _elem->meet(tap->_elem);
6923 PTR ptr = meet_ptr(tap->ptr());
6924 ciKlass* res_klass = nullptr;
6925 bool res_xk = false;
6926 bool res_flat = false;
6927 bool res_not_flat = false;
6928 bool res_not_null_free = false;
6929 bool res_atomic = false;
6930 MeetResult res = meet_aryptr(ptr, elem, this, tap,
6931 res_klass, res_xk, res_flat, res_not_flat, res_not_null_free, res_atomic);
6932 assert(res_xk == (ptr == Constant), "");
6933 bool flat = meet_flat(tap->_flat);
6934 bool null_free = meet_null_free(tap->_null_free);
6935 bool atomic = meet_atomic(tap->_atomic);
6936 bool refined_type = _refined_type && tap->_refined_type;
6937 if (res == NOT_SUBTYPE) {
6938 flat = false;
6939 null_free = false;
6940 atomic = false;
6941 refined_type = false;
6942 } else if (res == SUBTYPE) {
6943 if (above_centerline(tap->ptr()) && !above_centerline(this->ptr())) {
6944 flat = _flat;
6945 null_free = _null_free;
6946 atomic = _atomic;
6947 refined_type = _refined_type;
6948 } else if (above_centerline(this->ptr()) && !above_centerline(tap->ptr())) {
6949 flat = tap->_flat;
6950 null_free = tap->_null_free;
6951 atomic = tap->_atomic;
6952 refined_type = tap->_refined_type;
6953 } else if (above_centerline(this->ptr()) && above_centerline(tap->ptr())) {
6954 flat = _flat || tap->_flat;
6955 null_free = _null_free || tap->_null_free;
6956 atomic = _atomic || tap->_atomic;
6957 refined_type = _refined_type || tap->_refined_type;
6958 } else if (res_xk && _refined_type != tap->_refined_type) {
6959 // This can happen if the phi emitted by LibraryCallKit::load_default_refined_array_klass/load_non_refined_array_klass
6960 // is processed before the typeArray guard is folded. Both inputs are constant but the input corresponding to the
6961 // typeArray will go away. Don't constant fold it yet but wait for the control input to collapse.
6962 ptr = PTR::NotNull;
6963 }
6964 }
6965 return make(ptr, elem, res_klass, off, res_not_flat, res_not_null_free, flat, null_free, atomic, refined_type);
6966 } // End of case KlassPtr
6967 case InstKlassPtr: {
6968 const TypeInstKlassPtr *tp = t->is_instklassptr();
6969 Offset offset = meet_offset(tp->offset());
6970 PTR ptr = meet_ptr(tp->ptr());
6971 const TypeInterfaces* interfaces = meet_interfaces(tp);
6972 const TypeInterfaces* tp_interfaces = tp->_interfaces;
6973 const TypeInterfaces* this_interfaces = _interfaces;
6974
6975 switch (ptr) {
6976 case TopPTR:
6977 case AnyNull: // Fall 'down' to dual of object klass
6978 // For instances when a subclass meets a superclass we fall
6979 // below the centerline when the superclass is exact. We need to
6980 // do the same here.
6981 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) &&
6982 !tp->klass_is_exact()) {
6983 return TypeAryKlassPtr::make(ptr, _elem, _klass, offset, is_not_flat(), is_not_null_free(), is_flat(), is_null_free(), is_atomic(), is_refined_type());
6984 } else {
6985 // cannot subclass, so the meet has to fall badly below the centerline
6986 ptr = NotNull;
6987 interfaces = this_interfaces->intersection_with(tp->_interfaces);
6988 return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset, false);
6989 }
6990 case Constant:
6991 case NotNull:
6992 case BotPTR: // Fall down to object klass
6993 // LCA is object_klass, but if we subclass from the top we can do better
6994 if (above_centerline(tp->ptr())) {
6995 // If 'tp' is above the centerline and it is Object class
6996 // then we can subclass in the Java class hierarchy.
6997 // For instances when a subclass meets a superclass we fall
6998 // below the centerline when the superclass is exact. We need
6999 // to do the same here.
7000 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) &&
7001 !tp->klass_is_exact()) {
7002 // that is, my array type is a subtype of 'tp' klass
7003 return make(ptr, _elem, _klass, offset, is_not_flat(), is_not_null_free(), is_flat(), is_null_free(), is_atomic(), is_refined_type());
7004 }
7005 }
7006 // The other case cannot happen, since t cannot be a subtype of an array.
7007 // The meet falls down to Object class below centerline.
7008 if (ptr == Constant)
7009 ptr = NotNull;
7010 interfaces = this_interfaces->intersection_with(tp_interfaces);
7011 return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset, false);
7012 default: typerr(t);
7013 }
7014 }
7015
7016 } // End of switch
7017 return this; // Return the double constant
7018 }
7019
7020 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
7021 static_assert(std::is_base_of<T2, T1>::value, "");
7022
7023 if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty() && other_exact) {
7024 return true;
7025 }
7026
7027 int dummy;
7028 bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
7029
7030 if (!this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) {
7031 return false;
7032 }
7033
7034 if (this_one->is_instance_type(other)) {
7035 return other->klass() == ciEnv::current()->Object_klass() && this_one->_interfaces->contains(other->_interfaces) &&
7036 other_exact;
7037 }
7038
7039 assert(this_one->is_array_type(other), "");
7040 const T1* other_ary = this_one->is_array_type(other);
7041 bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
7042 if (other_top_or_bottom) {
7043 return false;
7044 }
7045
7046 const TypePtr* other_elem = other_ary->elem()->make_ptr();
7047 const TypePtr* this_elem = this_one->elem()->make_ptr();
7048 if (this_elem != nullptr && other_elem != nullptr) {
7049 if (other->is_null_free() && !this_one->is_null_free()) {
7050 return false; // A nullable array can't be a subtype of a null-free array
7051 }
7052 return this_one->is_reference_type(this_elem)->is_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact);
7053 }
7054 if (this_elem == nullptr && other_elem == nullptr) {
7055 return this_one->klass()->is_subtype_of(other->klass());
7056 }
7057 return false;
7058 }
7059
7060 bool TypeAryKlassPtr::is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
7061 return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
7062 }
7063
7064 template <class T1, class T2> bool TypePtr::is_same_java_type_as_helper_for_array(const T1* this_one, const T2* other) {
7065 static_assert(std::is_base_of<T2, T1>::value, "");
7066
7067 int dummy;
7068 bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
7069
7070 if (!this_one->is_array_type(other) ||
7071 !this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) {
7124 }
7125
7126 const TypePtr* this_elem = this_one->elem()->make_ptr();
7127 const TypePtr* other_elem = other_ary->elem()->make_ptr();
7128 if (other_elem != nullptr && this_elem != nullptr) {
7129 return this_one->is_reference_type(this_elem)->maybe_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact);
7130 }
7131 if (other_elem == nullptr && this_elem == nullptr) {
7132 return this_one->klass()->is_subtype_of(other->klass());
7133 }
7134 return false;
7135 }
7136
7137 bool TypeAryKlassPtr::maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
7138 return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
7139 }
7140
7141 //------------------------------xdual------------------------------------------
7142 // Dual: compute field-by-field dual
7143 const Type *TypeAryKlassPtr::xdual() const {
7144 return new TypeAryKlassPtr(dual_ptr(), elem()->dual(), klass(), dual_offset(), !is_not_flat(), !is_not_null_free(), dual_flat(), dual_null_free(), dual_atomic(), _refined_type);
7145 }
7146
7147 // Is there a single ciKlass* that can represent that type?
7148 ciKlass* TypeAryKlassPtr::exact_klass_helper() const {
7149 if (elem()->isa_klassptr()) {
7150 ciKlass* k = elem()->is_klassptr()->exact_klass_helper();
7151 if (k == nullptr) {
7152 return nullptr;
7153 }
7154 k = ciArrayKlass::make(k, k->is_inlinetype() ? is_null_free() : false, k->is_inlinetype() ? is_atomic() : true, _refined_type);
7155 return k;
7156 }
7157
7158 return klass();
7159 }
7160
7161 ciKlass* TypeAryKlassPtr::klass() const {
7162 if (_klass != nullptr) {
7163 return _klass;
7164 }
7165 ciKlass* k = nullptr;
7166 if (elem()->isa_klassptr()) {
7167 // leave null
7168 } else if ((elem()->base() == Type::Top) ||
7169 (elem()->base() == Type::Bottom)) {
7170 } else {
7171 k = ciTypeArrayKlass::make(elem()->basic_type());
7172 ((TypeAryKlassPtr*)this)->_klass = k;
7173 }
7174 return k;
7181 switch( _ptr ) {
7182 case Constant:
7183 st->print("precise ");
7184 case NotNull:
7185 {
7186 st->print("[");
7187 _elem->dump2(d, depth, st);
7188 _interfaces->dump(st);
7189 st->print(": ");
7190 }
7191 case BotPTR:
7192 if( !WizardMode && !Verbose && _ptr != Constant ) break;
7193 case TopPTR:
7194 case AnyNull:
7195 st->print(":%s", ptr_msg[_ptr]);
7196 if( _ptr == Constant ) st->print(":exact");
7197 break;
7198 default:
7199 break;
7200 }
7201 if (_flat) st->print(":flat");
7202 if (_null_free) st->print(":null free");
7203 if (_atomic) st->print(":atomic");
7204 if (_refined_type) st->print(":refined_type");
7205 if (Verbose) {
7206 if (_not_flat) st->print(":not flat");
7207 if (_not_null_free) st->print(":nullable");
7208 }
7209
7210 _offset.dump2(st);
7211
7212 st->print(" *");
7213 }
7214 #endif
7215
7216 const Type* TypeAryKlassPtr::base_element_type(int& dims) const {
7217 const Type* elem = this->elem();
7218 dims = 1;
7219 while (elem->isa_aryklassptr()) {
7220 elem = elem->is_aryklassptr()->elem();
7221 dims++;
7222 }
7223 return elem;
7224 }
7225
7226 //=============================================================================
7227 // Convenience common pre-built types.
7228
7229 //------------------------------make-------------------------------------------
7230 const TypeFunc *TypeFunc::make(const TypeTuple *domain_sig, const TypeTuple* domain_cc,
7231 const TypeTuple *range_sig, const TypeTuple *range_cc) {
7232 return (TypeFunc*)(new TypeFunc(domain_sig, domain_cc, range_sig, range_cc))->hashcons();
7233 }
7234
7235 const TypeFunc *TypeFunc::make(const TypeTuple *domain, const TypeTuple *range) {
7236 return make(domain, domain, range, range);
7237 }
7238
7239 //------------------------------osr_domain-----------------------------
7240 const TypeTuple* osr_domain() {
7241 const Type **fields = TypeTuple::fields(2);
7242 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // address of osr buffer
7243 return TypeTuple::make(TypeFunc::Parms+1, fields);
7244 }
7245
7246 //------------------------------make-------------------------------------------
7247 const TypeFunc* TypeFunc::make(ciMethod* method, bool is_osr_compilation) {
7248 Compile* C = Compile::current();
7249 const TypeFunc* tf = nullptr;
7250 if (!is_osr_compilation) {
7251 tf = C->last_tf(method); // check cache
7252 if (tf != nullptr) return tf; // The hit rate here is almost 50%.
7253 }
7254 // Inline types are not passed/returned by reference, instead each field of
7255 // the inline type is passed/returned as an argument. We maintain two views of
7256 // the argument/return list here: one based on the signature (with an inline
7257 // type argument/return as a single slot), one based on the actual calling
7258 // convention (with an inline type argument/return as a list of its fields).
7259 bool has_scalar_args = method->has_scalarized_args() && !is_osr_compilation;
7260 // Fall back to the non-scalarized calling convention when compiling a call via a mismatching method
7261 if (method != C->method() && method->get_Method()->mismatch()) {
7262 has_scalar_args = false;
7263 }
7264 const TypeTuple* domain_sig = is_osr_compilation ? osr_domain() : TypeTuple::make_domain(method, ignore_interfaces, false);
7265 const TypeTuple* domain_cc = has_scalar_args ? TypeTuple::make_domain(method, ignore_interfaces, true) : domain_sig;
7266 ciSignature* sig = method->signature();
7267 bool has_scalar_ret = !method->is_native() && sig->return_type()->is_inlinetype() && sig->return_type()->as_inline_klass()->can_be_returned_as_fields();
7268 const TypeTuple* range_sig = TypeTuple::make_range(sig, ignore_interfaces, false);
7269 const TypeTuple* range_cc = has_scalar_ret ? TypeTuple::make_range(sig, ignore_interfaces, true) : range_sig;
7270 tf = TypeFunc::make(domain_sig, domain_cc, range_sig, range_cc);
7271 if (!is_osr_compilation) {
7272 C->set_last_tf(method, tf); // fill cache
7273 }
7274 return tf;
7275 }
7276
7277 //------------------------------meet-------------------------------------------
7278 // Compute the MEET of two types. It returns a new Type object.
7279 const Type *TypeFunc::xmeet( const Type *t ) const {
7280 // Perform a fast test for common case; meeting the same types together.
7281 if( this == t ) return this; // Meeting same type-rep?
7282
7283 // Current "this->_base" is Func
7284 switch (t->base()) { // switch on original type
7285
7286 case Bottom: // Ye Olde Default
7287 return t;
7288
7289 default: // All else is a mistake
7290 typerr(t);
7291
7292 case Top:
7293 break;
7294 }
7295 return this; // Return the double constant
7296 }
7297
7298 //------------------------------xdual------------------------------------------
7299 // Dual: compute field-by-field dual
7300 const Type *TypeFunc::xdual() const {
7301 return this;
7302 }
7303
7304 //------------------------------eq---------------------------------------------
7305 // Structural equality check for Type representations
7306 bool TypeFunc::eq( const Type *t ) const {
7307 const TypeFunc *a = (const TypeFunc*)t;
7308 return _domain_sig == a->_domain_sig &&
7309 _domain_cc == a->_domain_cc &&
7310 _range_sig == a->_range_sig &&
7311 _range_cc == a->_range_cc;
7312 }
7313
7314 //------------------------------hash-------------------------------------------
7315 // Type-specific hashing function.
7316 uint TypeFunc::hash(void) const {
7317 return (uint)(intptr_t)_domain_sig + (uint)(intptr_t)_domain_cc + (uint)(intptr_t)_range_sig + (uint)(intptr_t)_range_cc;
7318 }
7319
7320 //------------------------------dump2------------------------------------------
7321 // Dump Function Type
7322 #ifndef PRODUCT
7323 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
7324 if( _range_sig->cnt() <= Parms )
7325 st->print("void");
7326 else {
7327 uint i;
7328 for (i = Parms; i < _range_sig->cnt()-1; i++) {
7329 _range_sig->field_at(i)->dump2(d,depth,st);
7330 st->print("/");
7331 }
7332 _range_sig->field_at(i)->dump2(d,depth,st);
7333 }
7334 st->print(" ");
7335 st->print("( ");
7336 if( !depth || d[this] ) { // Check for recursive dump
7337 st->print("...)");
7338 return;
7339 }
7340 d.Insert((void*)this,(void*)this); // Stop recursion
7341 if (Parms < _domain_sig->cnt())
7342 _domain_sig->field_at(Parms)->dump2(d,depth-1,st);
7343 for (uint i = Parms+1; i < _domain_sig->cnt(); i++) {
7344 st->print(", ");
7345 _domain_sig->field_at(i)->dump2(d,depth-1,st);
7346 }
7347 st->print(" )");
7348 }
7349 #endif
7350
7351 //------------------------------singleton--------------------------------------
7352 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
7353 // constants (Ldi nodes). Singletons are integer, float or double constants
7354 // or a single symbol.
7355 bool TypeFunc::singleton(void) const {
7356 return false; // Never a singleton
7357 }
7358
7359 bool TypeFunc::empty(void) const {
7360 return false; // Never empty
7361 }
7362
7363
7364 BasicType TypeFunc::return_type() const{
7365 if (range_sig()->cnt() == TypeFunc::Parms) {
7366 return T_VOID;
7367 }
7368 return range_sig()->field_at(TypeFunc::Parms)->basic_type();
7369 }
|