8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #ifndef SHARE_OPTO_TYPE_HPP
26 #define SHARE_OPTO_TYPE_HPP
27
28 #include "opto/adlcVMDeps.hpp"
29 #include "runtime/handles.hpp"
30
31 // Portions of code courtesy of Clifford Click
32
33 // Optimization - Graph Style
34
35
36 // This class defines a Type lattice. The lattice is used in the constant
37 // propagation algorithms, and for some type-checking of the iloc code.
38 // Basic types include RSD's (lower bound, upper bound, stride for integers),
39 // float & double precision constants, sets of data-labels and code-labels.
40 // The complete lattice is described below. Subtypes have no relationship to
41 // up or down in the lattice; that is entirely determined by the behavior of
42 // the MEET/JOIN functions.
43
44 class Dict;
45 class Type;
46 class TypeD;
47 class TypeF;
48 class TypeInteger;
49 class TypeInt;
119 Function, // Function signature
120 Abio, // Abstract I/O
121 Return_Address, // Subroutine return address
122 Memory, // Abstract store
123 FloatTop, // No float value
124 FloatCon, // Floating point constant
125 FloatBot, // Any float value
126 DoubleTop, // No double value
127 DoubleCon, // Double precision constant
128 DoubleBot, // Any double value
129 Bottom, // Bottom of lattice
130 lastype // Bogus ending type (not in lattice)
131 };
132
133 // Signal values for offsets from a base pointer
134 enum OFFSET_SIGNALS {
135 OffsetTop = -2000000000, // undefined offset
136 OffsetBot = -2000000001 // any possible offset
137 };
138
139 // Min and max WIDEN values.
140 enum WIDEN {
141 WidenMin = 0,
142 WidenMax = 3
143 };
144
145 private:
146 typedef struct {
147 TYPES dual_type;
148 BasicType basic_type;
149 const char* msg;
150 bool isa_oop;
151 uint ideal_reg;
152 relocInfo::relocType reloc;
153 } TypeInfo;
154
155 // Dictionary of types shared among compilations.
156 static Dict* _shared_type_dict;
157 static const TypeInfo _type_info[];
158
309 const TypeNarrowKlass *isa_narrowklass() const;// Returns null if not oop ptr type
310 const TypeOopPtr *isa_oopptr() const; // Returns null if not oop ptr type
311 const TypeOopPtr *is_oopptr() const; // Java-style GC'd pointer
312 const TypeInstPtr *isa_instptr() const; // Returns null if not InstPtr
313 const TypeInstPtr *is_instptr() const; // Instance
314 const TypeAryPtr *isa_aryptr() const; // Returns null if not AryPtr
315 const TypeAryPtr *is_aryptr() const; // Array oop
316
317 const TypeMetadataPtr *isa_metadataptr() const; // Returns null if not oop ptr type
318 const TypeMetadataPtr *is_metadataptr() const; // Java-style GC'd pointer
319 const TypeKlassPtr *isa_klassptr() const; // Returns null if not KlassPtr
320 const TypeKlassPtr *is_klassptr() const; // assert if not KlassPtr
321 const TypeInstKlassPtr *isa_instklassptr() const; // Returns null if not IntKlassPtr
322 const TypeInstKlassPtr *is_instklassptr() const; // assert if not IntKlassPtr
323 const TypeAryKlassPtr *isa_aryklassptr() const; // Returns null if not AryKlassPtr
324 const TypeAryKlassPtr *is_aryklassptr() const; // assert if not AryKlassPtr
325
326 virtual bool is_finite() const; // Has a finite value
327 virtual bool is_nan() const; // Is not a number (NaN)
328
329 // Returns this ptr type or the equivalent ptr type for this compressed pointer.
330 const TypePtr* make_ptr() const;
331
332 // Returns this oopptr type or the equivalent oopptr type for this compressed pointer.
333 // Asserts if the underlying type is not an oopptr or narrowoop.
334 const TypeOopPtr* make_oopptr() const;
335
336 // Returns this compressed pointer or the equivalent compressed version
337 // of this pointer type.
338 const TypeNarrowOop* make_narrowoop() const;
339
340 // Returns this compressed klass pointer or the equivalent
341 // compressed version of this pointer type.
342 const TypeNarrowKlass* make_narrowklass() const;
343
344 // Special test for register pressure heuristic
345 bool is_floatingpoint() const; // True if Float or Double base type
346
347 // Do you have memory, directly or through a tuple?
348 bool has_memory( ) const;
707 const Type ** const _fields; // Array of field types
708
709 public:
710 virtual bool eq( const Type *t ) const;
711 virtual uint hash() const; // Type specific hashing
712 virtual bool singleton(void) const; // TRUE if type is a singleton
713 virtual bool empty(void) const; // TRUE if type is vacuous
714
715 // Accessors:
716 uint cnt() const { return _cnt; }
717 const Type* field_at(uint i) const {
718 assert(i < _cnt, "oob");
719 return _fields[i];
720 }
721 void set_field_at(uint i, const Type* t) {
722 assert(i < _cnt, "oob");
723 _fields[i] = t;
724 }
725
726 static const TypeTuple *make( uint cnt, const Type **fields );
727 static const TypeTuple *make_range(ciSignature *sig, InterfaceHandling interface_handling = ignore_interfaces);
728 static const TypeTuple *make_domain(ciInstanceKlass* recv, ciSignature *sig, InterfaceHandling interface_handling);
729
730 // Subroutine call type with space allocated for argument types
731 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
732 static const Type **fields( uint arg_cnt );
733
734 virtual const Type *xmeet( const Type *t ) const;
735 virtual const Type *xdual() const; // Compute dual right now.
736 // Convenience common pre-built types.
737 static const TypeTuple *IFBOTH;
738 static const TypeTuple *IFFALSE;
739 static const TypeTuple *IFTRUE;
740 static const TypeTuple *IFNEITHER;
741 static const TypeTuple *LOOPBODY;
742 static const TypeTuple *MEMBAR;
743 static const TypeTuple *STORECONDITIONAL;
744 static const TypeTuple *START_I2C;
745 static const TypeTuple *INT_PAIR;
746 static const TypeTuple *LONG_PAIR;
747 static const TypeTuple *INT_CC_PAIR;
748 static const TypeTuple *LONG_CC_PAIR;
749 #ifndef PRODUCT
750 virtual void dump2( Dict &d, uint, outputStream *st ) const; // Specialized per-Type dumping
751 #endif
752 };
753
754 //------------------------------TypeAry----------------------------------------
755 // Class of Array Types
756 class TypeAry : public Type {
757 TypeAry(const Type* elem, const TypeInt* size, bool stable) : Type(Array),
758 _elem(elem), _size(size), _stable(stable) {}
759 public:
760 virtual bool eq( const Type *t ) const;
761 virtual uint hash() const; // Type specific hashing
762 virtual bool singleton(void) const; // TRUE if type is a singleton
763 virtual bool empty(void) const; // TRUE if type is vacuous
764
765 private:
766 const Type *_elem; // Element type of array
767 const TypeInt *_size; // Elements in array
768 const bool _stable; // Are elements @Stable?
769 friend class TypeAryPtr;
770
771 public:
772 static const TypeAry* make(const Type* elem, const TypeInt* size, bool stable = false);
773
774 virtual const Type *xmeet( const Type *t ) const;
775 virtual const Type *xdual() const; // Compute dual right now.
776 bool ary_must_be_exact() const; // true if arrays of such are never generic
777 virtual const TypeAry* remove_speculative() const;
778 virtual const Type* cleanup_speculative() const;
779 #ifndef PRODUCT
780 virtual void dump2( Dict &d, uint, outputStream *st ) const; // Specialized per-Type dumping
781 #endif
782 };
783
784 //------------------------------TypeVect---------------------------------------
785 // Class of Vector Types
786 class TypeVect : public Type {
787 const BasicType _elem_bt; // Vector's element type
788 const uint _length; // Elements in vector (power of 2)
789
790 protected:
791 TypeVect(TYPES t, BasicType elem_bt, uint length) : Type(t),
792 _elem_bt(elem_bt), _length(length) {}
898
899 const Type* xmeet(const Type* t) const;
900
901 bool singleton(void) const;
902 };
903
904 //------------------------------TypePtr----------------------------------------
905 // Class of machine Pointer Types: raw data, instances or arrays.
906 // If the _base enum is AnyPtr, then this refers to all of the above.
907 // Otherwise the _base will indicate which subset of pointers is affected,
908 // and the class will be inherited from.
909 class TypePtr : public Type {
910 friend class TypeNarrowPtr;
911 friend class Type;
912 protected:
913 static const TypeInterfaces* interfaces(ciKlass*& k, bool klass, bool interface, bool array, InterfaceHandling interface_handling);
914
915 public:
916 enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
917 protected:
918 TypePtr(TYPES t, PTR ptr, int offset,
919 const TypePtr* speculative = nullptr,
920 int inline_depth = InlineDepthBottom) :
921 Type(t), _speculative(speculative), _inline_depth(inline_depth), _offset(offset),
922 _ptr(ptr) {}
923 static const PTR ptr_meet[lastPTR][lastPTR];
924 static const PTR ptr_dual[lastPTR];
925 static const char * const ptr_msg[lastPTR];
926
927 enum {
928 InlineDepthBottom = INT_MAX,
929 InlineDepthTop = -InlineDepthBottom
930 };
931
932 // Extra type information profiling gave us. We propagate it the
933 // same way the rest of the type info is propagated. If we want to
934 // use it, then we have to emit a guard: this part of the type is
935 // not something we know but something we speculate about the type.
936 const TypePtr* _speculative;
937 // For speculative types, we record at what inlining depth the
938 // profiling point that provided the data is. We want to favor
954 // utility methods to work on the inline depth of the type
955 int dual_inline_depth() const;
956 int meet_inline_depth(int depth) const;
957 #ifndef PRODUCT
958 void dump_inline_depth(outputStream *st) const;
959 #endif
960
961 // TypeInstPtr (TypeAryPtr resp.) and TypeInstKlassPtr (TypeAryKlassPtr resp.) implement very similar meet logic.
962 // The logic for meeting 2 instances (2 arrays resp.) is shared in the 2 utility methods below. However the logic for
963 // the oop and klass versions can be slightly different and extra logic may have to be executed depending on what
964 // exact case the meet falls into. The MeetResult struct is used by the utility methods to communicate what case was
965 // encountered so the right logic specific to klasses or oops can be executed.,
966 enum MeetResult {
967 QUICK,
968 UNLOADED,
969 SUBTYPE,
970 NOT_SUBTYPE,
971 LCA
972 };
973 template<class T> static TypePtr::MeetResult meet_instptr(PTR& ptr, const TypeInterfaces*& interfaces, const T* this_type,
974 const T* other_type, ciKlass*& res_klass, bool& res_xk);
975
976 template<class T> static MeetResult meet_aryptr(PTR& ptr, const Type*& elem, const T* this_ary, const T* other_ary,
977 ciKlass*& res_klass, bool& res_xk);
978
979 template <class T1, class T2> static bool is_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
980 template <class T1, class T2> static bool is_same_java_type_as_helper_for_instance(const T1* this_one, const T2* other);
981 template <class T1, class T2> static bool maybe_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
982 template <class T1, class T2> static bool is_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
983 template <class T1, class T2> static bool is_same_java_type_as_helper_for_array(const T1* this_one, const T2* other);
984 template <class T1, class T2> static bool maybe_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
985 template <class T1, class T2> static bool is_meet_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_xk, bool other_xk);
986 template <class T1, class T2> static bool is_meet_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_xk, bool other_xk);
987 public:
988 const int _offset; // Offset into oop, with TOP & BOT
989 const PTR _ptr; // Pointer equivalence class
990
991 int offset() const { return _offset; }
992 PTR ptr() const { return _ptr; }
993
994 static const TypePtr *make(TYPES t, PTR ptr, int offset,
995 const TypePtr* speculative = nullptr,
996 int inline_depth = InlineDepthBottom);
997
998 // Return a 'ptr' version of this type
999 virtual const TypePtr* cast_to_ptr_type(PTR ptr) const;
1000
1001 virtual intptr_t get_con() const;
1002
1003 int xadd_offset( intptr_t offset ) const;
1004 virtual const TypePtr* add_offset(intptr_t offset) const;
1005 virtual const TypePtr* with_offset(intptr_t offset) const;
1006 virtual bool eq(const Type *t) const;
1007 virtual uint hash() const; // Type specific hashing
1008
1009 virtual bool singleton(void) const; // TRUE if type is a singleton
1010 virtual bool empty(void) const; // TRUE if type is vacuous
1011 virtual const Type *xmeet( const Type *t ) const;
1012 virtual const Type *xmeet_helper( const Type *t ) const;
1013 int meet_offset( int offset ) const;
1014 int dual_offset( ) const;
1015 virtual const Type *xdual() const; // Compute dual right now.
1016
1017 // meet, dual and join over pointer equivalence sets
1018 PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
1019 PTR dual_ptr() const { return ptr_dual[ptr()]; }
1020
1021 // This is textually confusing unless one recalls that
1022 // join(t) == dual()->meet(t->dual())->dual().
1023 PTR join_ptr( const PTR in_ptr ) const {
1024 return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
1025 }
1026
1027 // Speculative type helper methods.
1028 virtual const TypePtr* speculative() const { return _speculative; }
1029 int inline_depth() const { return _inline_depth; }
1030 virtual ciKlass* speculative_type() const;
1031 virtual ciKlass* speculative_type_not_null() const;
1032 virtual bool speculative_maybe_null() const;
1033 virtual bool speculative_always_null() const;
1034 virtual const TypePtr* remove_speculative() const;
1035 virtual const Type* cleanup_speculative() const;
1036 virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
1037 virtual bool would_improve_ptr(ProfilePtrKind maybe_null) const;
1038 virtual const TypePtr* with_inline_depth(int depth) const;
1039
1040 virtual bool maybe_null() const { return meet_ptr(Null) == ptr(); }
1041
1042 // Tests for relation to centerline of type lattice:
1043 static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
1044 static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
1045 // Convenience common pre-built types.
1046 static const TypePtr *NULL_PTR;
1047 static const TypePtr *NOTNULL;
1048 static const TypePtr *BOTTOM;
1049 #ifndef PRODUCT
1050 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1051 #endif
1052 };
1053
1054 //------------------------------TypeRawPtr-------------------------------------
1055 // Class of raw pointers, pointers to things other than Oops. Examples
1056 // include the stack pointer, top of heap, card-marking area, handles, etc.
1057 class TypeRawPtr : public TypePtr {
1058 protected:
1059 TypeRawPtr( PTR ptr, address bits ) : TypePtr(RawPtr,ptr,0), _bits(bits){}
1060 public:
1061 virtual bool eq( const Type *t ) const;
1062 virtual uint hash() const; // Type specific hashing
1063
1064 const address _bits; // Constant value, if applicable
1065
1066 static const TypeRawPtr *make( PTR ptr );
1067 static const TypeRawPtr *make( address bits );
1068
1069 // Return a 'ptr' version of this type
1070 virtual const TypeRawPtr* cast_to_ptr_type(PTR ptr) const;
1071
1072 virtual intptr_t get_con() const;
1073
1074 virtual const TypePtr* add_offset(intptr_t offset) const;
1075 virtual const TypeRawPtr* with_offset(intptr_t offset) const { ShouldNotReachHere(); return nullptr;}
1076
1077 virtual const Type *xmeet( const Type *t ) const;
1078 virtual const Type *xdual() const; // Compute dual right now.
1079 // Convenience common pre-built types.
1080 static const TypeRawPtr *BOTTOM;
1081 static const TypeRawPtr *NOTNULL;
1082 #ifndef PRODUCT
1083 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1084 #endif
1085 };
1086
1087 //------------------------------TypeOopPtr-------------------------------------
1088 // Some kind of oop (Java pointer), either instance or array.
1089 class TypeOopPtr : public TypePtr {
1090 friend class TypeAry;
1091 friend class TypePtr;
1092 friend class TypeInstPtr;
1093 friend class TypeAryPtr;
1094 protected:
1095 TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int offset, int instance_id,
1096 const TypePtr* speculative, int inline_depth);
1097 public:
1098 virtual bool eq( const Type *t ) const;
1099 virtual uint hash() const; // Type specific hashing
1100 virtual bool singleton(void) const; // TRUE if type is a singleton
1101 enum {
1102 InstanceTop = -1, // undefined instance
1103 InstanceBot = 0 // any possible instance
1104 };
1105 protected:
1106
1107 // Oop is null, unless this is a constant oop.
1108 ciObject* _const_oop; // Constant oop
1109 // If _klass is null, then so is _sig. This is an unloaded klass.
1110 ciKlass* _klass; // Klass object
1111
1112 const TypeInterfaces* _interfaces;
1113
1114 // Does the type exclude subclasses of the klass? (Inexact == polymorphic.)
1115 bool _klass_is_exact;
1116 bool _is_ptr_to_narrowoop;
1117 bool _is_ptr_to_narrowklass;
1118 bool _is_ptr_to_boxed_value;
1119
1120 // If not InstanceTop or InstanceBot, indicates that this is
1121 // a particular instance of this type which is distinct.
1122 // This is the node index of the allocation node creating this instance.
1123 int _instance_id;
1124
1125 static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact, InterfaceHandling interface_handling);
1126
1127 int dual_instance_id() const;
1128 int meet_instance_id(int uid) const;
1129
1130 const TypeInterfaces* meet_interfaces(const TypeOopPtr* other) const;
1131
1132 // Do not allow interface-vs.-noninterface joins to collapse to top.
1133 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1134
1135 virtual ciKlass* exact_klass_helper() const { return nullptr; }
1136 virtual ciKlass* klass() const { return _klass; }
1137
1138 public:
1139
1140 bool is_java_subtype_of(const TypeOopPtr* other) const {
1141 return is_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1142 }
1143
1144 bool is_same_java_type_as(const TypePtr* other) const {
1145 return is_same_java_type_as_helper(other->is_oopptr());
1146 }
1147
1148 virtual bool is_same_java_type_as_helper(const TypeOopPtr* other) const {
1149 ShouldNotReachHere(); return false;
1150 }
1151
1152 bool maybe_java_subtype_of(const TypeOopPtr* other) const {
1153 return maybe_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1154 }
1155 virtual bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1156 virtual bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1163 return make_from_klass_common(klass, true, false, interface_handling);
1164 }
1165 // Same as before, but will produce an exact type, even if
1166 // the klass is not final, as long as it has exactly one implementation.
1167 static const TypeOopPtr* make_from_klass_unique(ciKlass* klass, InterfaceHandling interface_handling= ignore_interfaces) {
1168 return make_from_klass_common(klass, true, true, interface_handling);
1169 }
1170 // Same as before, but does not respects UseUniqueSubclasses.
1171 // Use this only for creating array element types.
1172 static const TypeOopPtr* make_from_klass_raw(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) {
1173 return make_from_klass_common(klass, false, false, interface_handling);
1174 }
1175 // Creates a singleton type given an object.
1176 // If the object cannot be rendered as a constant,
1177 // may return a non-singleton type.
1178 // If require_constant, produce a null if a singleton is not possible.
1179 static const TypeOopPtr* make_from_constant(ciObject* o,
1180 bool require_constant = false);
1181
1182 // Make a generic (unclassed) pointer to an oop.
1183 static const TypeOopPtr* make(PTR ptr, int offset, int instance_id,
1184 const TypePtr* speculative = nullptr,
1185 int inline_depth = InlineDepthBottom);
1186
1187 ciObject* const_oop() const { return _const_oop; }
1188 // Exact klass, possibly an interface or an array of interface
1189 ciKlass* exact_klass(bool maybe_null = false) const { assert(klass_is_exact(), ""); ciKlass* k = exact_klass_helper(); assert(k != nullptr || maybe_null, ""); return k; }
1190 ciKlass* unloaded_klass() const { assert(!is_loaded(), "only for unloaded types"); return klass(); }
1191
1192 virtual bool is_loaded() const { return klass()->is_loaded(); }
1193 virtual bool klass_is_exact() const { return _klass_is_exact; }
1194
1195 // Returns true if this pointer points at memory which contains a
1196 // compressed oop references.
1197 bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
1198 bool is_ptr_to_narrowklass_nv() const { return _is_ptr_to_narrowklass; }
1199 bool is_ptr_to_boxed_value() const { return _is_ptr_to_boxed_value; }
1200 bool is_known_instance() const { return _instance_id > 0; }
1201 int instance_id() const { return _instance_id; }
1202 bool is_known_instance_field() const { return is_known_instance() && _offset >= 0; }
1203
1204 virtual intptr_t get_con() const;
1205
1206 virtual const TypeOopPtr* cast_to_ptr_type(PTR ptr) const;
1207
1208 virtual const TypeOopPtr* cast_to_exactness(bool klass_is_exact) const;
1209
1210 virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1211
1212 // corresponding pointer to klass, for a given instance
1213 virtual const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1214
1215 virtual const TypeOopPtr* with_offset(intptr_t offset) const;
1216 virtual const TypePtr* add_offset(intptr_t offset) const;
1217
1218 // Speculative type helper methods.
1219 virtual const TypeOopPtr* remove_speculative() const;
1220 virtual const Type* cleanup_speculative() const;
1221 virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
1222 virtual const TypePtr* with_inline_depth(int depth) const;
1245 return _interfaces;
1246 };
1247
1248 const TypeOopPtr* is_reference_type(const Type* other) const {
1249 return other->isa_oopptr();
1250 }
1251
1252 const TypeAryPtr* is_array_type(const TypeOopPtr* other) const {
1253 return other->isa_aryptr();
1254 }
1255
1256 const TypeInstPtr* is_instance_type(const TypeOopPtr* other) const {
1257 return other->isa_instptr();
1258 }
1259 };
1260
1261 //------------------------------TypeInstPtr------------------------------------
1262 // Class of Java object pointers, pointing either to non-array Java instances
1263 // or to a Klass* (including array klasses).
1264 class TypeInstPtr : public TypeOopPtr {
1265 TypeInstPtr(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int off, int instance_id,
1266 const TypePtr* speculative, int inline_depth);
1267 virtual bool eq( const Type *t ) const;
1268 virtual uint hash() const; // Type specific hashing
1269
1270 ciKlass* exact_klass_helper() const;
1271
1272 public:
1273
1274 // Instance klass, ignoring any interface
1275 ciInstanceKlass* instance_klass() const {
1276 assert(!(klass()->is_loaded() && klass()->is_interface()), "");
1277 return klass()->as_instance_klass();
1278 }
1279
1280 bool is_same_java_type_as_helper(const TypeOopPtr* other) const;
1281 bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1282 bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1283
1284 // Make a pointer to a constant oop.
1285 static const TypeInstPtr *make(ciObject* o) {
1286 ciKlass* k = o->klass();
1287 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1288 return make(TypePtr::Constant, k, interfaces, true, o, 0, InstanceBot);
1289 }
1290 // Make a pointer to a constant oop with offset.
1291 static const TypeInstPtr *make(ciObject* o, int offset) {
1292 ciKlass* k = o->klass();
1293 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1294 return make(TypePtr::Constant, k, interfaces, true, o, offset, InstanceBot);
1295 }
1296
1297 // Make a pointer to some value of type klass.
1298 static const TypeInstPtr *make(PTR ptr, ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) {
1299 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
1300 return make(ptr, klass, interfaces, false, nullptr, 0, InstanceBot);
1301 }
1302
1303 // Make a pointer to some non-polymorphic value of exactly type klass.
1304 static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
1305 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, false, false, ignore_interfaces);
1306 return make(ptr, klass, interfaces, true, nullptr, 0, InstanceBot);
1307 }
1308
1309 // Make a pointer to some value of type klass with offset.
1310 static const TypeInstPtr *make(PTR ptr, ciKlass* klass, int offset) {
1311 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, false, false, ignore_interfaces);
1312 return make(ptr, klass, interfaces, false, nullptr, offset, InstanceBot);
1313 }
1314
1315 static const TypeInstPtr *make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int offset,
1316 int instance_id = InstanceBot,
1317 const TypePtr* speculative = nullptr,
1318 int inline_depth = InlineDepthBottom);
1319
1320 static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id = InstanceBot) {
1321 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1322 return make(ptr, k, interfaces, xk, o, offset, instance_id);
1323 }
1324
1325 /** Create constant type for a constant boxed value */
1326 const Type* get_const_boxed_value() const;
1327
1328 // If this is a java.lang.Class constant, return the type for it or null.
1329 // Pass to Type::get_const_type to turn it to a type, which will usually
1330 // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
1331 ciType* java_mirror_type() const;
1332
1333 virtual const TypeInstPtr* cast_to_ptr_type(PTR ptr) const;
1334
1335 virtual const TypeInstPtr* cast_to_exactness(bool klass_is_exact) const;
1336
1337 virtual const TypeInstPtr* cast_to_instance_id(int instance_id) const;
1338
1339 virtual const TypePtr* add_offset(intptr_t offset) const;
1340 virtual const TypeInstPtr* with_offset(intptr_t offset) const;
1341
1342 // Speculative type helper methods.
1343 virtual const TypeInstPtr* remove_speculative() const;
1344 const TypeInstPtr* with_speculative(const TypePtr* speculative) const;
1345 virtual const TypePtr* with_inline_depth(int depth) const;
1346 virtual const TypePtr* with_instance_id(int instance_id) const;
1347
1348 // the core of the computation of the meet of 2 types
1349 virtual const Type *xmeet_helper(const Type *t) const;
1350 virtual const TypeInstPtr *xmeet_unloaded(const TypeInstPtr *tinst, const TypeInterfaces* interfaces) const;
1351 virtual const Type *xdual() const; // Compute dual right now.
1352
1353 const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1354
1355 // Convenience common pre-built types.
1356 static const TypeInstPtr *NOTNULL;
1357 static const TypeInstPtr *BOTTOM;
1358 static const TypeInstPtr *MIRROR;
1359 static const TypeInstPtr *MARK;
1360 static const TypeInstPtr *KLASS;
1361 #ifndef PRODUCT
1362 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1363 #endif
1364
1365 private:
1366 virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const;
1367
1368 virtual bool is_meet_same_type_as(const TypePtr* other) const {
1369 return _klass->equals(other->is_instptr()->_klass) && _interfaces->eq(other->is_instptr()->_interfaces);
1370 }
1371
1372 };
1373
1374 //------------------------------TypeAryPtr-------------------------------------
1375 // Class of Java array pointers
1376 class TypeAryPtr : public TypeOopPtr {
1377 friend class Type;
1378 friend class TypePtr;
1379
1380 TypeAryPtr( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk,
1381 int offset, int instance_id, bool is_autobox_cache,
1382 const TypePtr* speculative, int inline_depth)
1383 : TypeOopPtr(AryPtr,ptr,k,_array_interfaces,xk,o,offset, instance_id, speculative, inline_depth),
1384 _ary(ary),
1385 _is_autobox_cache(is_autobox_cache)
1386 {
1387 int dummy;
1388 bool top_or_bottom = (base_element_type(dummy) == Type::TOP || base_element_type(dummy) == Type::BOTTOM);
1389
1390 if (UseCompressedOops && (elem()->make_oopptr() != nullptr && !top_or_bottom) &&
1391 _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes() &&
1392 _offset != arrayOopDesc::klass_offset_in_bytes()) {
1393 _is_ptr_to_narrowoop = true;
1394 }
1395
1396 }
1397 virtual bool eq( const Type *t ) const;
1398 virtual uint hash() const; // Type specific hashing
1399 const TypeAry *_ary; // Array we point into
1400 const bool _is_autobox_cache;
1401
1402 ciKlass* compute_klass() const;
1403
1404 // A pointer to delay allocation to Type::Initialize_shared()
1405
1406 static const TypeInterfaces* _array_interfaces;
1407 ciKlass* exact_klass_helper() const;
1408 // Only guaranteed non null for array of basic types
1409 ciKlass* klass() const;
1410
1411 public:
1412
1413 bool is_same_java_type_as_helper(const TypeOopPtr* other) const;
1414 bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1415 bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1416
1417 // returns base element type, an instance klass (and not interface) for object arrays
1418 const Type* base_element_type(int& dims) const;
1419
1420 // Accessors
1421 bool is_loaded() const { return (_ary->_elem->make_oopptr() ? _ary->_elem->make_oopptr()->is_loaded() : true); }
1422
1423 const TypeAry* ary() const { return _ary; }
1424 const Type* elem() const { return _ary->_elem; }
1425 const TypeInt* size() const { return _ary->_size; }
1426 bool is_stable() const { return _ary->_stable; }
1427
1428 bool is_autobox_cache() const { return _is_autobox_cache; }
1429
1430 static const TypeAryPtr *make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset,
1431 int instance_id = InstanceBot,
1432 const TypePtr* speculative = nullptr,
1433 int inline_depth = InlineDepthBottom);
1434 // Constant pointer to array
1435 static const TypeAryPtr *make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset,
1436 int instance_id = InstanceBot,
1437 const TypePtr* speculative = nullptr,
1438 int inline_depth = InlineDepthBottom, bool is_autobox_cache = false);
1439
1440 // Return a 'ptr' version of this type
1441 virtual const TypeAryPtr* cast_to_ptr_type(PTR ptr) const;
1442
1443 virtual const TypeAryPtr* cast_to_exactness(bool klass_is_exact) const;
1444
1445 virtual const TypeAryPtr* cast_to_instance_id(int instance_id) const;
1446
1447 virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
1448 virtual const TypeInt* narrow_size_type(const TypeInt* size) const;
1449
1450 virtual bool empty(void) const; // TRUE if type is vacuous
1451 virtual const TypePtr *add_offset( intptr_t offset ) const;
1452 virtual const TypeAryPtr *with_offset( intptr_t offset ) const;
1453 const TypeAryPtr* with_ary(const TypeAry* ary) const;
1454
1455 // Speculative type helper methods.
1456 virtual const TypeAryPtr* remove_speculative() const;
1457 virtual const TypePtr* with_inline_depth(int depth) const;
1458 virtual const TypePtr* with_instance_id(int instance_id) const;
1459
1460 // the core of the computation of the meet of 2 types
1461 virtual const Type *xmeet_helper(const Type *t) const;
1462 virtual const Type *xdual() const; // Compute dual right now.
1463
1464 const TypeAryPtr* cast_to_stable(bool stable, int stable_dimension = 1) const;
1465 int stable_dimension() const;
1466
1467 const TypeAryPtr* cast_to_autobox_cache() const;
1468
1469 static jint max_array_length(BasicType etype) ;
1470 virtual const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1471
1472 // Convenience common pre-built types.
1473 static const TypeAryPtr *RANGE;
1474 static const TypeAryPtr *OOPS;
1475 static const TypeAryPtr *NARROWOOPS;
1476 static const TypeAryPtr *BYTES;
1477 static const TypeAryPtr *SHORTS;
1478 static const TypeAryPtr *CHARS;
1479 static const TypeAryPtr *INTS;
1480 static const TypeAryPtr *LONGS;
1481 static const TypeAryPtr *FLOATS;
1482 static const TypeAryPtr *DOUBLES;
1483 // selects one of the above:
1484 static const TypeAryPtr *get_array_body_type(BasicType elem) {
1485 assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != nullptr, "bad elem type");
1486 return _array_body_type[elem];
1487 }
1488 static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
1489 // sharpen the type of an int which is used as an array size
1490 #ifndef PRODUCT
1491 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1492 #endif
1493 private:
1494 virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const;
1495 };
1496
1497 //------------------------------TypeMetadataPtr-------------------------------------
1498 // Some kind of metadata, either Method*, MethodData* or CPCacheOop
1499 class TypeMetadataPtr : public TypePtr {
1500 protected:
1501 TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset);
1502 // Do not allow interface-vs.-noninterface joins to collapse to top.
1503 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1504 public:
1505 virtual bool eq( const Type *t ) const;
1506 virtual uint hash() const; // Type specific hashing
1507 virtual bool singleton(void) const; // TRUE if type is a singleton
1508
1509 private:
1510 ciMetadata* _metadata;
1511
1512 public:
1513 static const TypeMetadataPtr* make(PTR ptr, ciMetadata* m, int offset);
1514
1515 static const TypeMetadataPtr* make(ciMethod* m);
1516 static const TypeMetadataPtr* make(ciMethodData* m);
1517
1518 ciMetadata* metadata() const { return _metadata; }
1519
1520 virtual const TypeMetadataPtr* cast_to_ptr_type(PTR ptr) const;
1521
1522 virtual const TypePtr *add_offset( intptr_t offset ) const;
1523
1524 virtual const Type *xmeet( const Type *t ) const;
1525 virtual const Type *xdual() const; // Compute dual right now.
1526
1527 virtual intptr_t get_con() const;
1528
1529 // Convenience common pre-built types.
1530 static const TypeMetadataPtr *BOTTOM;
1531
1532 #ifndef PRODUCT
1533 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1534 #endif
1535 };
1536
1537 //------------------------------TypeKlassPtr-----------------------------------
1538 // Class of Java Klass pointers
1539 class TypeKlassPtr : public TypePtr {
1540 friend class TypeInstKlassPtr;
1541 friend class TypeAryKlassPtr;
1542 friend class TypePtr;
1543 protected:
1544 TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, int offset);
1545
1546 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1547
1548 public:
1549 virtual bool eq( const Type *t ) const;
1550 virtual uint hash() const;
1551 virtual bool singleton(void) const; // TRUE if type is a singleton
1552
1553 protected:
1554
1555 ciKlass* _klass;
1556 const TypeInterfaces* _interfaces;
1557 const TypeInterfaces* meet_interfaces(const TypeKlassPtr* other) const;
1558 virtual bool must_be_exact() const { ShouldNotReachHere(); return false; }
1559 virtual ciKlass* exact_klass_helper() const;
1560 virtual ciKlass* klass() const { return _klass; }
1561
1562 public:
1563
1564 bool is_java_subtype_of(const TypeKlassPtr* other) const {
1565 return is_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1566 }
1567 bool is_same_java_type_as(const TypePtr* other) const {
1568 return is_same_java_type_as_helper(other->is_klassptr());
1569 }
1570
1571 bool maybe_java_subtype_of(const TypeKlassPtr* other) const {
1572 return maybe_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1573 }
1574 virtual bool is_same_java_type_as_helper(const TypeKlassPtr* other) const { ShouldNotReachHere(); return false; }
1575 virtual bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1576 virtual bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1577
1578 // Exact klass, possibly an interface or an array of interface
1579 ciKlass* exact_klass(bool maybe_null = false) const { assert(klass_is_exact(), ""); ciKlass* k = exact_klass_helper(); assert(k != nullptr || maybe_null, ""); return k; }
1580 virtual bool klass_is_exact() const { return _ptr == Constant; }
1581
1582 static const TypeKlassPtr* make(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces);
1583 static const TypeKlassPtr *make(PTR ptr, ciKlass* klass, int offset, InterfaceHandling interface_handling = ignore_interfaces);
1584
1585 virtual bool is_loaded() const { return _klass->is_loaded(); }
1586
1587 virtual const TypeKlassPtr* cast_to_ptr_type(PTR ptr) const { ShouldNotReachHere(); return nullptr; }
1588
1589 virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const { ShouldNotReachHere(); return nullptr; }
1590
1591 // corresponding pointer to instance, for a given class
1592 virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const { ShouldNotReachHere(); return nullptr; }
1593
1594 virtual const TypePtr *add_offset( intptr_t offset ) const { ShouldNotReachHere(); return nullptr; }
1595 virtual const Type *xmeet( const Type *t ) const { ShouldNotReachHere(); return nullptr; }
1596 virtual const Type *xdual() const { ShouldNotReachHere(); return nullptr; }
1597
1598 virtual intptr_t get_con() const;
1599
1600 virtual const TypeKlassPtr* with_offset(intptr_t offset) const { ShouldNotReachHere(); return nullptr; }
1601
1602 virtual const TypeKlassPtr* try_improve() const { return this; }
1603
1604 #ifndef PRODUCT
1605 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1606 #endif
1607 private:
1608 virtual bool is_meet_subtype_of(const TypePtr* other) const {
1609 return is_meet_subtype_of_helper(other->is_klassptr(), klass_is_exact(), other->is_klassptr()->klass_is_exact());
1610 }
1611
1612 virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const {
1613 ShouldNotReachHere(); return false;
1614 }
1615
1616 virtual const TypeInterfaces* interfaces() const {
1617 return _interfaces;
1618 };
1619
1620 const TypeKlassPtr* is_reference_type(const Type* other) const {
1621 return other->isa_klassptr();
1622 }
1623
1624 const TypeAryKlassPtr* is_array_type(const TypeKlassPtr* other) const {
1625 return other->isa_aryklassptr();
1626 }
1627
1628 const TypeInstKlassPtr* is_instance_type(const TypeKlassPtr* other) const {
1629 return other->isa_instklassptr();
1630 }
1631 };
1632
1633 // Instance klass pointer, mirrors TypeInstPtr
1634 class TypeInstKlassPtr : public TypeKlassPtr {
1635
1636 TypeInstKlassPtr(PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, int offset)
1637 : TypeKlassPtr(InstKlassPtr, ptr, klass, interfaces, offset) {
1638 assert(klass->is_instance_klass() && (!klass->is_loaded() || !klass->is_interface()), "");
1639 }
1640
1641 virtual bool must_be_exact() const;
1642
1643 public:
1644 // Instance klass ignoring any interface
1645 ciInstanceKlass* instance_klass() const {
1646 assert(!klass()->is_interface(), "");
1647 return klass()->as_instance_klass();
1648 }
1649
1650 bool is_same_java_type_as_helper(const TypeKlassPtr* other) const;
1651 bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
1652 bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
1653
1654 static const TypeInstKlassPtr *make(ciKlass* k, InterfaceHandling interface_handling) {
1655 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, true, false, interface_handling);
1656 return make(TypePtr::Constant, k, interfaces, 0);
1657 }
1658 static const TypeInstKlassPtr* make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, int offset);
1659
1660 static const TypeInstKlassPtr* make(PTR ptr, ciKlass* k, int offset) {
1661 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1662 return make(ptr, k, interfaces, offset);
1663 }
1664
1665 virtual const TypeInstKlassPtr* cast_to_ptr_type(PTR ptr) const;
1666
1667 virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const;
1668
1669 // corresponding pointer to instance, for a given class
1670 virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const;
1671 virtual uint hash() const;
1672 virtual bool eq(const Type *t) const;
1673
1674 virtual const TypePtr *add_offset( intptr_t offset ) const;
1675 virtual const Type *xmeet( const Type *t ) const;
1676 virtual const Type *xdual() const;
1677 virtual const TypeInstKlassPtr* with_offset(intptr_t offset) const;
1678
1679 virtual const TypeKlassPtr* try_improve() const;
1680
1681 // Convenience common pre-built types.
1682 static const TypeInstKlassPtr* OBJECT; // Not-null object klass or below
1683 static const TypeInstKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
1684 private:
1685 virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const;
1686 };
1687
1688 // Array klass pointer, mirrors TypeAryPtr
1689 class TypeAryKlassPtr : public TypeKlassPtr {
1690 friend class TypeInstKlassPtr;
1691 friend class Type;
1692 friend class TypePtr;
1693
1694 const Type *_elem;
1695
1696 static const TypeInterfaces* _array_interfaces;
1697 TypeAryKlassPtr(PTR ptr, const Type *elem, ciKlass* klass, int offset)
1698 : TypeKlassPtr(AryKlassPtr, ptr, klass, _array_interfaces, offset), _elem(elem) {
1699 assert(klass == nullptr || klass->is_type_array_klass() || !klass->as_obj_array_klass()->base_element_klass()->is_interface(), "");
1700 }
1701
1702 virtual ciKlass* exact_klass_helper() const;
1703 // Only guaranteed non null for array of basic types
1704 virtual ciKlass* klass() const;
1705
1706 virtual bool must_be_exact() const;
1707
1708 public:
1709
1710 // returns base element type, an instance klass (and not interface) for object arrays
1711 const Type* base_element_type(int& dims) const;
1712
1713 static const TypeAryKlassPtr *make(PTR ptr, ciKlass* k, int offset, InterfaceHandling interface_handling);
1714
1715 bool is_same_java_type_as_helper(const TypeKlassPtr* other) const;
1716 bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
1717 bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
1718
1719 bool is_loaded() const { return (_elem->isa_klassptr() ? _elem->is_klassptr()->is_loaded() : true); }
1720
1721 static const TypeAryKlassPtr *make(PTR ptr, const Type *elem, ciKlass* k, int offset);
1722 static const TypeAryKlassPtr* make(ciKlass* klass, InterfaceHandling interface_handling);
1723
1724 const Type *elem() const { return _elem; }
1725
1726 virtual bool eq(const Type *t) const;
1727 virtual uint hash() const; // Type specific hashing
1728
1729 virtual const TypeAryKlassPtr* cast_to_ptr_type(PTR ptr) const;
1730
1731 virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const;
1732
1733 // corresponding pointer to instance, for a given class
1734 virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const;
1735
1736 virtual const TypePtr *add_offset( intptr_t offset ) const;
1737 virtual const Type *xmeet( const Type *t ) const;
1738 virtual const Type *xdual() const; // Compute dual right now.
1739
1740 virtual const TypeAryKlassPtr* with_offset(intptr_t offset) const;
1741
1742 virtual bool empty(void) const {
1743 return TypeKlassPtr::empty() || _elem->empty();
1744 }
1745
1746 #ifndef PRODUCT
1747 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1748 #endif
1749 private:
1750 virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const;
1751 };
1752
1753 class TypeNarrowPtr : public Type {
1754 protected:
1755 const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR
1756
1757 TypeNarrowPtr(TYPES t, const TypePtr* ptrtype): Type(t),
1758 _ptrtype(ptrtype) {
1759 assert(ptrtype->offset() == 0 ||
1760 ptrtype->offset() == OffsetBot ||
1761 ptrtype->offset() == OffsetTop, "no real offsets");
1762 }
1763
1764 virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const = 0;
1765 virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const = 0;
1861 }
1862
1863 virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
1864 return (const TypeNarrowPtr*)((new TypeNarrowKlass(t))->hashcons());
1865 }
1866
1867 public:
1868 static const TypeNarrowKlass *make( const TypePtr* type);
1869
1870 // static const TypeNarrowKlass *BOTTOM;
1871 static const TypeNarrowKlass *NULL_PTR;
1872
1873 #ifndef PRODUCT
1874 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1875 #endif
1876 };
1877
1878 //------------------------------TypeFunc---------------------------------------
1879 // Class of Array Types
1880 class TypeFunc : public Type {
1881 TypeFunc( const TypeTuple *domain, const TypeTuple *range ) : Type(Function), _domain(domain), _range(range) {}
1882 virtual bool eq( const Type *t ) const;
1883 virtual uint hash() const; // Type specific hashing
1884 virtual bool singleton(void) const; // TRUE if type is a singleton
1885 virtual bool empty(void) const; // TRUE if type is vacuous
1886
1887 const TypeTuple* const _domain; // Domain of inputs
1888 const TypeTuple* const _range; // Range of results
1889
1890 public:
1891 // Constants are shared among ADLC and VM
1892 enum { Control = AdlcVMDeps::Control,
1893 I_O = AdlcVMDeps::I_O,
1894 Memory = AdlcVMDeps::Memory,
1895 FramePtr = AdlcVMDeps::FramePtr,
1896 ReturnAdr = AdlcVMDeps::ReturnAdr,
1897 Parms = AdlcVMDeps::Parms
1898 };
1899
1900
1901 // Accessors:
1902 const TypeTuple* domain() const { return _domain; }
1903 const TypeTuple* range() const { return _range; }
1904
1905 static const TypeFunc *make(ciMethod* method);
1906 static const TypeFunc *make(ciSignature signature, const Type* extra);
1907 static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
1908
1909 virtual const Type *xmeet( const Type *t ) const;
1910 virtual const Type *xdual() const; // Compute dual right now.
1911
1912 BasicType return_type() const;
1913
1914 #ifndef PRODUCT
1915 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1916 #endif
1917 // Convenience common pre-built types.
1918 };
1919
1920 //------------------------------accessors--------------------------------------
1921 inline bool Type::is_ptr_to_narrowoop() const {
1922 #ifdef _LP64
1923 return (isa_oopptr() != nullptr && is_oopptr()->is_ptr_to_narrowoop_nv());
1924 #else
1925 return false;
1926 #endif
1927 }
1928
1929 inline bool Type::is_ptr_to_narrowklass() const {
1930 #ifdef _LP64
1931 return (isa_oopptr() != nullptr && is_oopptr()->is_ptr_to_narrowklass_nv());
1932 #else
1933 return false;
2149 return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype()->isa_oopptr() : isa_oopptr();
2150 }
2151
2152 inline const TypeNarrowOop* Type::make_narrowoop() const {
2153 return (_base == NarrowOop) ? is_narrowoop() :
2154 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : nullptr);
2155 }
2156
2157 inline const TypeNarrowKlass* Type::make_narrowklass() const {
2158 return (_base == NarrowKlass) ? is_narrowklass() :
2159 (isa_ptr() ? TypeNarrowKlass::make(is_ptr()) : nullptr);
2160 }
2161
2162 inline bool Type::is_floatingpoint() const {
2163 if( (_base == FloatCon) || (_base == FloatBot) ||
2164 (_base == DoubleCon) || (_base == DoubleBot) )
2165 return true;
2166 return false;
2167 }
2168
2169
2170 // ===============================================================
2171 // Things that need to be 64-bits in the 64-bit build but
2172 // 32-bits in the 32-bit build. Done this way to get full
2173 // optimization AND strong typing.
2174 #ifdef _LP64
2175
2176 // For type queries and asserts
2177 #define is_intptr_t is_long
2178 #define isa_intptr_t isa_long
2179 #define find_intptr_t_type find_long_type
2180 #define find_intptr_t_con find_long_con
2181 #define TypeX TypeLong
2182 #define Type_X Type::Long
2183 #define TypeX_X TypeLong::LONG
2184 #define TypeX_ZERO TypeLong::ZERO
2185 // For 'ideal_reg' machine registers
2186 #define Op_RegX Op_RegL
2187 // For phase->intcon variants
2188 #define MakeConX longcon
2189 #define ConXNode ConLNode
2190 // For array index arithmetic
2191 #define MulXNode MulLNode
2192 #define AndXNode AndLNode
2193 #define OrXNode OrLNode
2194 #define CmpXNode CmpLNode
2195 #define SubXNode SubLNode
2196 #define LShiftXNode LShiftLNode
2197 // For object size computation:
2198 #define AddXNode AddLNode
2199 #define RShiftXNode RShiftLNode
2200 // For card marks and hashcodes
2201 #define URShiftXNode URShiftLNode
2202 // For shenandoahSupport
2203 #define LoadXNode LoadLNode
2204 #define StoreXNode StoreLNode
2205 // Opcodes
2206 #define Op_LShiftX Op_LShiftL
2207 #define Op_AndX Op_AndL
2208 #define Op_AddX Op_AddL
2209 #define Op_SubX Op_SubL
2210 #define Op_XorX Op_XorL
2211 #define Op_URShiftX Op_URShiftL
2212 #define Op_LoadX Op_LoadL
2213 // conversions
2214 #define ConvI2X(x) ConvI2L(x)
2215 #define ConvL2X(x) (x)
2216 #define ConvX2I(x) ConvL2I(x)
2217 #define ConvX2L(x) (x)
2218 #define ConvX2UL(x) (x)
2219
2220 #else
2221
2222 // For type queries and asserts
2223 #define is_intptr_t is_int
2224 #define isa_intptr_t isa_int
2225 #define find_intptr_t_type find_int_type
2226 #define find_intptr_t_con find_int_con
2227 #define TypeX TypeInt
2228 #define Type_X Type::Int
2229 #define TypeX_X TypeInt::INT
2230 #define TypeX_ZERO TypeInt::ZERO
2231 // For 'ideal_reg' machine registers
2232 #define Op_RegX Op_RegI
2233 // For phase->intcon variants
2234 #define MakeConX intcon
2235 #define ConXNode ConINode
2236 // For array index arithmetic
2237 #define MulXNode MulINode
2238 #define AndXNode AndINode
2239 #define OrXNode OrINode
2240 #define CmpXNode CmpINode
2241 #define SubXNode SubINode
2242 #define LShiftXNode LShiftINode
2243 // For object size computation:
2244 #define AddXNode AddINode
2245 #define RShiftXNode RShiftINode
2246 // For card marks and hashcodes
2247 #define URShiftXNode URShiftINode
2248 // For shenandoahSupport
2249 #define LoadXNode LoadINode
2250 #define StoreXNode StoreINode
2251 // Opcodes
2252 #define Op_LShiftX Op_LShiftI
2253 #define Op_AndX Op_AndI
2254 #define Op_AddX Op_AddI
2255 #define Op_SubX Op_SubI
2256 #define Op_XorX Op_XorI
2257 #define Op_URShiftX Op_URShiftI
2258 #define Op_LoadX Op_LoadI
2259 // conversions
2260 #define ConvI2X(x) (x)
2261 #define ConvL2X(x) ConvL2I(x)
2262 #define ConvX2I(x) (x)
2263 #define ConvX2L(x) ConvI2L(x)
2264 #define ConvX2UL(x) ConvI2UL(x)
2265
2266 #endif
2267
2268 #endif // SHARE_OPTO_TYPE_HPP
|
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #ifndef SHARE_OPTO_TYPE_HPP
26 #define SHARE_OPTO_TYPE_HPP
27
28 #include "ci/ciInlineKlass.hpp"
29 #include "opto/adlcVMDeps.hpp"
30 #include "runtime/handles.hpp"
31 #include "runtime/sharedRuntime.hpp"
32
33 // Portions of code courtesy of Clifford Click
34
35 // Optimization - Graph Style
36
37
38 // This class defines a Type lattice. The lattice is used in the constant
39 // propagation algorithms, and for some type-checking of the iloc code.
40 // Basic types include RSD's (lower bound, upper bound, stride for integers),
41 // float & double precision constants, sets of data-labels and code-labels.
42 // The complete lattice is described below. Subtypes have no relationship to
43 // up or down in the lattice; that is entirely determined by the behavior of
44 // the MEET/JOIN functions.
45
46 class Dict;
47 class Type;
48 class TypeD;
49 class TypeF;
50 class TypeInteger;
51 class TypeInt;
121 Function, // Function signature
122 Abio, // Abstract I/O
123 Return_Address, // Subroutine return address
124 Memory, // Abstract store
125 FloatTop, // No float value
126 FloatCon, // Floating point constant
127 FloatBot, // Any float value
128 DoubleTop, // No double value
129 DoubleCon, // Double precision constant
130 DoubleBot, // Any double value
131 Bottom, // Bottom of lattice
132 lastype // Bogus ending type (not in lattice)
133 };
134
135 // Signal values for offsets from a base pointer
136 enum OFFSET_SIGNALS {
137 OffsetTop = -2000000000, // undefined offset
138 OffsetBot = -2000000001 // any possible offset
139 };
140
141 class Offset {
142 private:
143 int _offset;
144
145 public:
146 explicit Offset(int offset) : _offset(offset) {}
147
148 const Offset meet(const Offset other) const;
149 const Offset dual() const;
150 const Offset add(intptr_t offset) const;
151 bool operator==(const Offset& other) const {
152 return _offset == other._offset;
153 }
154 bool operator!=(const Offset& other) const {
155 return _offset != other._offset;
156 }
157 int get() const { return _offset; }
158
159 void dump2(outputStream *st) const;
160
161 static const Offset top;
162 static const Offset bottom;
163 };
164
165 // Min and max WIDEN values.
166 enum WIDEN {
167 WidenMin = 0,
168 WidenMax = 3
169 };
170
171 private:
172 typedef struct {
173 TYPES dual_type;
174 BasicType basic_type;
175 const char* msg;
176 bool isa_oop;
177 uint ideal_reg;
178 relocInfo::relocType reloc;
179 } TypeInfo;
180
181 // Dictionary of types shared among compilations.
182 static Dict* _shared_type_dict;
183 static const TypeInfo _type_info[];
184
335 const TypeNarrowKlass *isa_narrowklass() const;// Returns null if not oop ptr type
336 const TypeOopPtr *isa_oopptr() const; // Returns null if not oop ptr type
337 const TypeOopPtr *is_oopptr() const; // Java-style GC'd pointer
338 const TypeInstPtr *isa_instptr() const; // Returns null if not InstPtr
339 const TypeInstPtr *is_instptr() const; // Instance
340 const TypeAryPtr *isa_aryptr() const; // Returns null if not AryPtr
341 const TypeAryPtr *is_aryptr() const; // Array oop
342
343 const TypeMetadataPtr *isa_metadataptr() const; // Returns null if not oop ptr type
344 const TypeMetadataPtr *is_metadataptr() const; // Java-style GC'd pointer
345 const TypeKlassPtr *isa_klassptr() const; // Returns null if not KlassPtr
346 const TypeKlassPtr *is_klassptr() const; // assert if not KlassPtr
347 const TypeInstKlassPtr *isa_instklassptr() const; // Returns null if not IntKlassPtr
348 const TypeInstKlassPtr *is_instklassptr() const; // assert if not IntKlassPtr
349 const TypeAryKlassPtr *isa_aryklassptr() const; // Returns null if not AryKlassPtr
350 const TypeAryKlassPtr *is_aryklassptr() const; // assert if not AryKlassPtr
351
352 virtual bool is_finite() const; // Has a finite value
353 virtual bool is_nan() const; // Is not a number (NaN)
354
355 bool is_inlinetypeptr() const;
356 virtual ciInlineKlass* inline_klass() const;
357
358 // Returns this ptr type or the equivalent ptr type for this compressed pointer.
359 const TypePtr* make_ptr() const;
360
361 // Returns this oopptr type or the equivalent oopptr type for this compressed pointer.
362 // Asserts if the underlying type is not an oopptr or narrowoop.
363 const TypeOopPtr* make_oopptr() const;
364
365 // Returns this compressed pointer or the equivalent compressed version
366 // of this pointer type.
367 const TypeNarrowOop* make_narrowoop() const;
368
369 // Returns this compressed klass pointer or the equivalent
370 // compressed version of this pointer type.
371 const TypeNarrowKlass* make_narrowklass() const;
372
373 // Special test for register pressure heuristic
374 bool is_floatingpoint() const; // True if Float or Double base type
375
376 // Do you have memory, directly or through a tuple?
377 bool has_memory( ) const;
736 const Type ** const _fields; // Array of field types
737
738 public:
739 virtual bool eq( const Type *t ) const;
740 virtual uint hash() const; // Type specific hashing
741 virtual bool singleton(void) const; // TRUE if type is a singleton
742 virtual bool empty(void) const; // TRUE if type is vacuous
743
744 // Accessors:
745 uint cnt() const { return _cnt; }
746 const Type* field_at(uint i) const {
747 assert(i < _cnt, "oob");
748 return _fields[i];
749 }
750 void set_field_at(uint i, const Type* t) {
751 assert(i < _cnt, "oob");
752 _fields[i] = t;
753 }
754
755 static const TypeTuple *make( uint cnt, const Type **fields );
756 static const TypeTuple *make_range(ciSignature* sig, InterfaceHandling interface_handling = ignore_interfaces, bool ret_vt_fields = false);
757 static const TypeTuple *make_domain(ciMethod* method, InterfaceHandling interface_handling, bool vt_fields_as_args = false);
758
759 // Subroutine call type with space allocated for argument types
760 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
761 static const Type **fields( uint arg_cnt );
762
763 virtual const Type *xmeet( const Type *t ) const;
764 virtual const Type *xdual() const; // Compute dual right now.
765 // Convenience common pre-built types.
766 static const TypeTuple *IFBOTH;
767 static const TypeTuple *IFFALSE;
768 static const TypeTuple *IFTRUE;
769 static const TypeTuple *IFNEITHER;
770 static const TypeTuple *LOOPBODY;
771 static const TypeTuple *MEMBAR;
772 static const TypeTuple *STORECONDITIONAL;
773 static const TypeTuple *START_I2C;
774 static const TypeTuple *INT_PAIR;
775 static const TypeTuple *LONG_PAIR;
776 static const TypeTuple *INT_CC_PAIR;
777 static const TypeTuple *LONG_CC_PAIR;
778 #ifndef PRODUCT
779 virtual void dump2( Dict &d, uint, outputStream *st ) const; // Specialized per-Type dumping
780 #endif
781 };
782
783 //------------------------------TypeAry----------------------------------------
784 // Class of Array Types
785 class TypeAry : public Type {
786 TypeAry(const Type* elem, const TypeInt* size, bool stable, bool flat, bool not_flat, bool not_null_free) : Type(Array),
787 _elem(elem), _size(size), _stable(stable), _flat(flat), _not_flat(not_flat), _not_null_free(not_null_free) {}
788 public:
789 virtual bool eq( const Type *t ) const;
790 virtual uint hash() const; // Type specific hashing
791 virtual bool singleton(void) const; // TRUE if type is a singleton
792 virtual bool empty(void) const; // TRUE if type is vacuous
793
794 private:
795 const Type *_elem; // Element type of array
796 const TypeInt *_size; // Elements in array
797 const bool _stable; // Are elements @Stable?
798
799 // Inline type array properties
800 const bool _flat; // Array is flat
801 const bool _not_flat; // Array is never flat
802 const bool _not_null_free; // Array is never null-free
803
804 friend class TypeAryPtr;
805
806 public:
807 static const TypeAry* make(const Type* elem, const TypeInt* size, bool stable = false,
808 bool flat = false, bool not_flat = false, bool not_null_free = false);
809
810 virtual const Type *xmeet( const Type *t ) const;
811 virtual const Type *xdual() const; // Compute dual right now.
812 bool ary_must_be_exact() const; // true if arrays of such are never generic
813 virtual const TypeAry* remove_speculative() const;
814 virtual const Type* cleanup_speculative() const;
815 #ifndef PRODUCT
816 virtual void dump2( Dict &d, uint, outputStream *st ) const; // Specialized per-Type dumping
817 #endif
818 };
819
820 //------------------------------TypeVect---------------------------------------
821 // Class of Vector Types
822 class TypeVect : public Type {
823 const BasicType _elem_bt; // Vector's element type
824 const uint _length; // Elements in vector (power of 2)
825
826 protected:
827 TypeVect(TYPES t, BasicType elem_bt, uint length) : Type(t),
828 _elem_bt(elem_bt), _length(length) {}
934
935 const Type* xmeet(const Type* t) const;
936
937 bool singleton(void) const;
938 };
939
940 //------------------------------TypePtr----------------------------------------
941 // Class of machine Pointer Types: raw data, instances or arrays.
942 // If the _base enum is AnyPtr, then this refers to all of the above.
943 // Otherwise the _base will indicate which subset of pointers is affected,
944 // and the class will be inherited from.
945 class TypePtr : public Type {
946 friend class TypeNarrowPtr;
947 friend class Type;
948 protected:
949 static const TypeInterfaces* interfaces(ciKlass*& k, bool klass, bool interface, bool array, InterfaceHandling interface_handling);
950
951 public:
952 enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
953 protected:
954 TypePtr(TYPES t, PTR ptr, Offset offset,
955 const TypePtr* speculative = nullptr,
956 int inline_depth = InlineDepthBottom) :
957 Type(t), _speculative(speculative), _inline_depth(inline_depth), _offset(offset),
958 _ptr(ptr) {}
959 static const PTR ptr_meet[lastPTR][lastPTR];
960 static const PTR ptr_dual[lastPTR];
961 static const char * const ptr_msg[lastPTR];
962
963 enum {
964 InlineDepthBottom = INT_MAX,
965 InlineDepthTop = -InlineDepthBottom
966 };
967
968 // Extra type information profiling gave us. We propagate it the
969 // same way the rest of the type info is propagated. If we want to
970 // use it, then we have to emit a guard: this part of the type is
971 // not something we know but something we speculate about the type.
972 const TypePtr* _speculative;
973 // For speculative types, we record at what inlining depth the
974 // profiling point that provided the data is. We want to favor
990 // utility methods to work on the inline depth of the type
991 int dual_inline_depth() const;
992 int meet_inline_depth(int depth) const;
993 #ifndef PRODUCT
994 void dump_inline_depth(outputStream *st) const;
995 #endif
996
997 // TypeInstPtr (TypeAryPtr resp.) and TypeInstKlassPtr (TypeAryKlassPtr resp.) implement very similar meet logic.
998 // The logic for meeting 2 instances (2 arrays resp.) is shared in the 2 utility methods below. However the logic for
999 // the oop and klass versions can be slightly different and extra logic may have to be executed depending on what
1000 // exact case the meet falls into. The MeetResult struct is used by the utility methods to communicate what case was
1001 // encountered so the right logic specific to klasses or oops can be executed.,
1002 enum MeetResult {
1003 QUICK,
1004 UNLOADED,
1005 SUBTYPE,
1006 NOT_SUBTYPE,
1007 LCA
1008 };
1009 template<class T> static TypePtr::MeetResult meet_instptr(PTR& ptr, const TypeInterfaces*& interfaces, const T* this_type,
1010 const T* other_type, ciKlass*& res_klass, bool& res_xk, bool& res_flat_array);
1011 private:
1012 template<class T> static bool is_meet_subtype_of(const T* sub_type, const T* super_type);
1013 protected:
1014
1015 template<class T> static MeetResult meet_aryptr(PTR& ptr, const Type*& elem, const T* this_ary, const T* other_ary,
1016 ciKlass*& res_klass, bool& res_xk, bool &res_flat, bool &res_not_flat, bool &res_not_null_free);
1017
1018 template <class T1, class T2> static bool is_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1019 template <class T1, class T2> static bool is_same_java_type_as_helper_for_instance(const T1* this_one, const T2* other);
1020 template <class T1, class T2> static bool maybe_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1021 template <class T1, class T2> static bool is_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1022 template <class T1, class T2> static bool is_same_java_type_as_helper_for_array(const T1* this_one, const T2* other);
1023 template <class T1, class T2> static bool maybe_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1024 template <class T1, class T2> static bool is_meet_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_xk, bool other_xk);
1025 template <class T1, class T2> static bool is_meet_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_xk, bool other_xk);
1026 public:
1027 const Offset _offset; // Offset into oop, with TOP & BOT
1028 const PTR _ptr; // Pointer equivalence class
1029
1030 int offset() const { return _offset.get(); }
1031 PTR ptr() const { return _ptr; }
1032
1033 static const TypePtr* make(TYPES t, PTR ptr, Offset offset,
1034 const TypePtr* speculative = nullptr,
1035 int inline_depth = InlineDepthBottom);
1036
1037 // Return a 'ptr' version of this type
1038 virtual const TypePtr* cast_to_ptr_type(PTR ptr) const;
1039
1040 virtual intptr_t get_con() const;
1041
1042 Type::Offset xadd_offset(intptr_t offset) const;
1043 virtual const TypePtr* add_offset(intptr_t offset) const;
1044 virtual const TypePtr* with_offset(intptr_t offset) const;
1045 virtual int flat_offset() const { return offset(); }
1046 virtual bool eq(const Type *t) const;
1047 virtual uint hash() const; // Type specific hashing
1048
1049 virtual bool singleton(void) const; // TRUE if type is a singleton
1050 virtual bool empty(void) const; // TRUE if type is vacuous
1051 virtual const Type *xmeet( const Type *t ) const;
1052 virtual const Type *xmeet_helper( const Type *t ) const;
1053 Offset meet_offset(int offset) const;
1054 Offset dual_offset() const;
1055 virtual const Type *xdual() const; // Compute dual right now.
1056
1057 // meet, dual and join over pointer equivalence sets
1058 PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
1059 PTR dual_ptr() const { return ptr_dual[ptr()]; }
1060
1061 // This is textually confusing unless one recalls that
1062 // join(t) == dual()->meet(t->dual())->dual().
1063 PTR join_ptr( const PTR in_ptr ) const {
1064 return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
1065 }
1066
1067 // Speculative type helper methods.
1068 virtual const TypePtr* speculative() const { return _speculative; }
1069 int inline_depth() const { return _inline_depth; }
1070 virtual ciKlass* speculative_type() const;
1071 virtual ciKlass* speculative_type_not_null() const;
1072 virtual bool speculative_maybe_null() const;
1073 virtual bool speculative_always_null() const;
1074 virtual const TypePtr* remove_speculative() const;
1075 virtual const Type* cleanup_speculative() const;
1076 virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
1077 virtual bool would_improve_ptr(ProfilePtrKind maybe_null) const;
1078 virtual const TypePtr* with_inline_depth(int depth) const;
1079
1080 virtual bool maybe_null() const { return meet_ptr(Null) == ptr(); }
1081
1082 virtual bool can_be_inline_type() const { return false; }
1083 virtual bool flat_in_array() const { return false; }
1084 virtual bool not_flat_in_array() const { return true; }
1085 virtual bool is_flat() const { return false; }
1086 virtual bool is_not_flat() const { return false; }
1087 virtual bool is_null_free() const { return false; }
1088 virtual bool is_not_null_free() const { return false; }
1089
1090 // Tests for relation to centerline of type lattice:
1091 static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
1092 static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
1093 // Convenience common pre-built types.
1094 static const TypePtr *NULL_PTR;
1095 static const TypePtr *NOTNULL;
1096 static const TypePtr *BOTTOM;
1097 #ifndef PRODUCT
1098 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1099 #endif
1100 };
1101
1102 //------------------------------TypeRawPtr-------------------------------------
1103 // Class of raw pointers, pointers to things other than Oops. Examples
1104 // include the stack pointer, top of heap, card-marking area, handles, etc.
1105 class TypeRawPtr : public TypePtr {
1106 protected:
1107 TypeRawPtr(PTR ptr, address bits) : TypePtr(RawPtr,ptr,Offset(0)), _bits(bits){}
1108 public:
1109 virtual bool eq( const Type *t ) const;
1110 virtual uint hash() const; // Type specific hashing
1111
1112 const address _bits; // Constant value, if applicable
1113
1114 static const TypeRawPtr *make( PTR ptr );
1115 static const TypeRawPtr *make( address bits );
1116
1117 // Return a 'ptr' version of this type
1118 virtual const TypeRawPtr* cast_to_ptr_type(PTR ptr) const;
1119
1120 virtual intptr_t get_con() const;
1121
1122 virtual const TypePtr* add_offset(intptr_t offset) const;
1123 virtual const TypeRawPtr* with_offset(intptr_t offset) const { ShouldNotReachHere(); return nullptr;}
1124
1125 virtual const Type *xmeet( const Type *t ) const;
1126 virtual const Type *xdual() const; // Compute dual right now.
1127 // Convenience common pre-built types.
1128 static const TypeRawPtr *BOTTOM;
1129 static const TypeRawPtr *NOTNULL;
1130 #ifndef PRODUCT
1131 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1132 #endif
1133 };
1134
1135 //------------------------------TypeOopPtr-------------------------------------
1136 // Some kind of oop (Java pointer), either instance or array.
1137 class TypeOopPtr : public TypePtr {
1138 friend class TypeAry;
1139 friend class TypePtr;
1140 friend class TypeInstPtr;
1141 friend class TypeAryPtr;
1142 protected:
1143 TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset offset, Offset field_offset, int instance_id,
1144 const TypePtr* speculative, int inline_depth);
1145 public:
1146 virtual bool eq( const Type *t ) const;
1147 virtual uint hash() const; // Type specific hashing
1148 virtual bool singleton(void) const; // TRUE if type is a singleton
1149 enum {
1150 InstanceTop = -1, // undefined instance
1151 InstanceBot = 0 // any possible instance
1152 };
1153 protected:
1154
1155 // Oop is null, unless this is a constant oop.
1156 ciObject* _const_oop; // Constant oop
1157 // If _klass is null, then so is _sig. This is an unloaded klass.
1158 ciKlass* _klass; // Klass object
1159
1160 const TypeInterfaces* _interfaces;
1161
1162 // Does the type exclude subclasses of the klass? (Inexact == polymorphic.)
1163 bool _klass_is_exact;
1164 bool _is_ptr_to_narrowoop;
1165 bool _is_ptr_to_narrowklass;
1166 bool _is_ptr_to_boxed_value;
1167
1168 // If not InstanceTop or InstanceBot, indicates that this is
1169 // a particular instance of this type which is distinct.
1170 // This is the node index of the allocation node creating this instance.
1171 int _instance_id;
1172
1173 static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact, InterfaceHandling interface_handling);
1174
1175 int dual_instance_id() const;
1176 int meet_instance_id(int uid) const;
1177
1178 const TypeInterfaces* meet_interfaces(const TypeOopPtr* other) const;
1179
1180 // Do not allow interface-vs.-noninterface joins to collapse to top.
1181 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1182
1183 virtual ciKlass* exact_klass_helper() const { return nullptr; }
1184 virtual ciKlass* klass() const { return _klass; }
1185
1186 public:
1187
1188 bool is_java_subtype_of(const TypeOopPtr* other) const {
1189 return is_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1190 }
1191
1192 bool is_same_java_type_as(const TypePtr* other) const {
1193 return is_same_java_type_as_helper(other->is_oopptr());
1194 }
1195
1196 virtual bool is_same_java_type_as_helper(const TypeOopPtr* other) const {
1197 ShouldNotReachHere(); return false;
1198 }
1199
1200 bool maybe_java_subtype_of(const TypeOopPtr* other) const {
1201 return maybe_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1202 }
1203 virtual bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1204 virtual bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1211 return make_from_klass_common(klass, true, false, interface_handling);
1212 }
1213 // Same as before, but will produce an exact type, even if
1214 // the klass is not final, as long as it has exactly one implementation.
1215 static const TypeOopPtr* make_from_klass_unique(ciKlass* klass, InterfaceHandling interface_handling= ignore_interfaces) {
1216 return make_from_klass_common(klass, true, true, interface_handling);
1217 }
1218 // Same as before, but does not respects UseUniqueSubclasses.
1219 // Use this only for creating array element types.
1220 static const TypeOopPtr* make_from_klass_raw(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) {
1221 return make_from_klass_common(klass, false, false, interface_handling);
1222 }
1223 // Creates a singleton type given an object.
1224 // If the object cannot be rendered as a constant,
1225 // may return a non-singleton type.
1226 // If require_constant, produce a null if a singleton is not possible.
1227 static const TypeOopPtr* make_from_constant(ciObject* o,
1228 bool require_constant = false);
1229
1230 // Make a generic (unclassed) pointer to an oop.
1231 static const TypeOopPtr* make(PTR ptr, Offset offset, int instance_id,
1232 const TypePtr* speculative = nullptr,
1233 int inline_depth = InlineDepthBottom);
1234
1235 ciObject* const_oop() const { return _const_oop; }
1236 // Exact klass, possibly an interface or an array of interface
1237 ciKlass* exact_klass(bool maybe_null = false) const { assert(klass_is_exact(), ""); ciKlass* k = exact_klass_helper(); assert(k != nullptr || maybe_null, ""); return k; }
1238 ciKlass* unloaded_klass() const { assert(!is_loaded(), "only for unloaded types"); return klass(); }
1239
1240 virtual bool is_loaded() const { return klass()->is_loaded(); }
1241 virtual bool klass_is_exact() const { return _klass_is_exact; }
1242
1243 // Returns true if this pointer points at memory which contains a
1244 // compressed oop references.
1245 bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
1246 bool is_ptr_to_narrowklass_nv() const { return _is_ptr_to_narrowklass; }
1247 bool is_ptr_to_boxed_value() const { return _is_ptr_to_boxed_value; }
1248 bool is_known_instance() const { return _instance_id > 0; }
1249 int instance_id() const { return _instance_id; }
1250 bool is_known_instance_field() const { return is_known_instance() && _offset.get() >= 0; }
1251
1252 virtual bool can_be_inline_type() const { return (_klass == nullptr || _klass->can_be_inline_klass(_klass_is_exact)); }
1253 virtual bool can_be_inline_array() const { ShouldNotReachHere(); return false; }
1254
1255 virtual intptr_t get_con() const;
1256
1257 virtual const TypeOopPtr* cast_to_ptr_type(PTR ptr) const;
1258
1259 virtual const TypeOopPtr* cast_to_exactness(bool klass_is_exact) const;
1260
1261 virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1262
1263 // corresponding pointer to klass, for a given instance
1264 virtual const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1265
1266 virtual const TypeOopPtr* with_offset(intptr_t offset) const;
1267 virtual const TypePtr* add_offset(intptr_t offset) const;
1268
1269 // Speculative type helper methods.
1270 virtual const TypeOopPtr* remove_speculative() const;
1271 virtual const Type* cleanup_speculative() const;
1272 virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
1273 virtual const TypePtr* with_inline_depth(int depth) const;
1296 return _interfaces;
1297 };
1298
1299 const TypeOopPtr* is_reference_type(const Type* other) const {
1300 return other->isa_oopptr();
1301 }
1302
1303 const TypeAryPtr* is_array_type(const TypeOopPtr* other) const {
1304 return other->isa_aryptr();
1305 }
1306
1307 const TypeInstPtr* is_instance_type(const TypeOopPtr* other) const {
1308 return other->isa_instptr();
1309 }
1310 };
1311
1312 //------------------------------TypeInstPtr------------------------------------
1313 // Class of Java object pointers, pointing either to non-array Java instances
1314 // or to a Klass* (including array klasses).
1315 class TypeInstPtr : public TypeOopPtr {
1316 TypeInstPtr(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset offset,
1317 bool flat_in_array, int instance_id, const TypePtr* speculative,
1318 int inline_depth);
1319 virtual bool eq( const Type *t ) const;
1320 virtual uint hash() const; // Type specific hashing
1321 bool _flat_in_array; // Type is flat in arrays
1322 ciKlass* exact_klass_helper() const;
1323
1324 public:
1325
1326 // Instance klass, ignoring any interface
1327 ciInstanceKlass* instance_klass() const {
1328 assert(!(klass()->is_loaded() && klass()->is_interface()), "");
1329 return klass()->as_instance_klass();
1330 }
1331
1332 bool is_same_java_type_as_helper(const TypeOopPtr* other) const;
1333 bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1334 bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1335
1336 // Make a pointer to a constant oop.
1337 static const TypeInstPtr *make(ciObject* o) {
1338 ciKlass* k = o->klass();
1339 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1340 return make(TypePtr::Constant, k, interfaces, true, o, Offset(0));
1341 }
1342 // Make a pointer to a constant oop with offset.
1343 static const TypeInstPtr *make(ciObject* o, Offset offset) {
1344 ciKlass* k = o->klass();
1345 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1346 return make(TypePtr::Constant, k, interfaces, true, o, offset);
1347 }
1348
1349 // Make a pointer to some value of type klass.
1350 static const TypeInstPtr *make(PTR ptr, ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) {
1351 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
1352 return make(ptr, klass, interfaces, false, nullptr, Offset(0));
1353 }
1354
1355 // Make a pointer to some non-polymorphic value of exactly type klass.
1356 static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
1357 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, false, false, ignore_interfaces);
1358 return make(ptr, klass, interfaces, true, nullptr, Offset(0));
1359 }
1360
1361 // Make a pointer to some value of type klass with offset.
1362 static const TypeInstPtr *make(PTR ptr, ciKlass* klass, Offset offset) {
1363 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, false, false, ignore_interfaces);
1364 return make(ptr, klass, interfaces, false, nullptr, offset);
1365 }
1366
1367 // Make a pointer to an oop.
1368 static const TypeInstPtr* make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset offset,
1369 bool flat_in_array = false,
1370 int instance_id = InstanceBot,
1371 const TypePtr* speculative = nullptr,
1372 int inline_depth = InlineDepthBottom);
1373
1374 static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, Offset offset, int instance_id = InstanceBot) {
1375 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1376 return make(ptr, k, interfaces, xk, o, offset, false, instance_id);
1377 }
1378
1379 /** Create constant type for a constant boxed value */
1380 const Type* get_const_boxed_value() const;
1381
1382 // If this is a java.lang.Class constant, return the type for it or null.
1383 // Pass to Type::get_const_type to turn it to a type, which will usually
1384 // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
1385 ciType* java_mirror_type(bool* is_null_free_array = nullptr) const;
1386
1387 virtual const TypeInstPtr* cast_to_ptr_type(PTR ptr) const;
1388
1389 virtual const TypeInstPtr* cast_to_exactness(bool klass_is_exact) const;
1390
1391 virtual const TypeInstPtr* cast_to_instance_id(int instance_id) const;
1392
1393 virtual const TypePtr* add_offset(intptr_t offset) const;
1394 virtual const TypeInstPtr* with_offset(intptr_t offset) const;
1395
1396 // Speculative type helper methods.
1397 virtual const TypeInstPtr* remove_speculative() const;
1398 const TypeInstPtr* with_speculative(const TypePtr* speculative) const;
1399 virtual const TypePtr* with_inline_depth(int depth) const;
1400 virtual const TypePtr* with_instance_id(int instance_id) const;
1401
1402 virtual const TypeInstPtr* cast_to_flat_in_array() const;
1403 virtual bool flat_in_array() const { return _flat_in_array; }
1404 virtual bool not_flat_in_array() const { return !can_be_inline_type() || (_klass->is_inlinetype() && !flat_in_array()); }
1405
1406 // the core of the computation of the meet of 2 types
1407 virtual const Type *xmeet_helper(const Type *t) const;
1408 virtual const TypeInstPtr *xmeet_unloaded(const TypeInstPtr *tinst, const TypeInterfaces* interfaces) const;
1409 virtual const Type *xdual() const; // Compute dual right now.
1410
1411 const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1412
1413 virtual bool can_be_inline_array() const;
1414
1415 // Convenience common pre-built types.
1416 static const TypeInstPtr *NOTNULL;
1417 static const TypeInstPtr *BOTTOM;
1418 static const TypeInstPtr *MIRROR;
1419 static const TypeInstPtr *MARK;
1420 static const TypeInstPtr *KLASS;
1421 #ifndef PRODUCT
1422 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1423 #endif
1424
1425 private:
1426 virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const;
1427
1428 virtual bool is_meet_same_type_as(const TypePtr* other) const {
1429 return _klass->equals(other->is_instptr()->_klass) && _interfaces->eq(other->is_instptr()->_interfaces);
1430 }
1431
1432 };
1433
1434 //------------------------------TypeAryPtr-------------------------------------
1435 // Class of Java array pointers
1436 class TypeAryPtr : public TypeOopPtr {
1437 friend class Type;
1438 friend class TypePtr;
1439 friend class TypeInstPtr;
1440
1441 TypeAryPtr(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk,
1442 Offset offset, Offset field_offset, int instance_id, bool is_autobox_cache,
1443 const TypePtr* speculative, int inline_depth)
1444 : TypeOopPtr(AryPtr, ptr, k, _array_interfaces, xk, o, offset, field_offset, instance_id, speculative, inline_depth),
1445 _ary(ary),
1446 _is_autobox_cache(is_autobox_cache),
1447 _field_offset(field_offset)
1448 {
1449 int dummy;
1450 bool top_or_bottom = (base_element_type(dummy) == Type::TOP || base_element_type(dummy) == Type::BOTTOM);
1451
1452 if (UseCompressedOops && (elem()->make_oopptr() != nullptr && !top_or_bottom) &&
1453 _offset.get() != 0 && _offset.get() != arrayOopDesc::length_offset_in_bytes() &&
1454 _offset.get() != arrayOopDesc::klass_offset_in_bytes()) {
1455 _is_ptr_to_narrowoop = true;
1456 }
1457
1458 }
1459 virtual bool eq( const Type *t ) const;
1460 virtual uint hash() const; // Type specific hashing
1461 const TypeAry *_ary; // Array we point into
1462 const bool _is_autobox_cache;
1463 // For flat inline type arrays, each field of the inline type in
1464 // the array has its own memory slice so we need to keep track of
1465 // which field is accessed
1466 const Offset _field_offset;
1467 Offset meet_field_offset(const Type::Offset offset) const;
1468 Offset dual_field_offset() const;
1469
1470 ciKlass* compute_klass() const;
1471
1472 // A pointer to delay allocation to Type::Initialize_shared()
1473
1474 static const TypeInterfaces* _array_interfaces;
1475 ciKlass* exact_klass_helper() const;
1476 // Only guaranteed non null for array of basic types
1477 ciKlass* klass() const;
1478
1479 public:
1480
1481 bool is_same_java_type_as_helper(const TypeOopPtr* other) const;
1482 bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1483 bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1484
1485 // returns base element type, an instance klass (and not interface) for object arrays
1486 const Type* base_element_type(int& dims) const;
1487
1488 // Accessors
1489 bool is_loaded() const { return (_ary->_elem->make_oopptr() ? _ary->_elem->make_oopptr()->is_loaded() : true); }
1490
1491 const TypeAry* ary() const { return _ary; }
1492 const Type* elem() const { return _ary->_elem; }
1493 const TypeInt* size() const { return _ary->_size; }
1494 bool is_stable() const { return _ary->_stable; }
1495
1496 // Inline type array properties
1497 bool is_flat() const { return _ary->_flat; }
1498 bool is_not_flat() const { return _ary->_not_flat; }
1499 bool is_null_free() const { return is_flat() || (_ary->_elem->make_ptr() != nullptr && _ary->_elem->make_ptr()->is_inlinetypeptr() && (_ary->_elem->make_ptr()->ptr() == NotNull || _ary->_elem->make_ptr()->ptr() == AnyNull)); }
1500 bool is_not_null_free() const { return _ary->_not_null_free; }
1501
1502 bool is_autobox_cache() const { return _is_autobox_cache; }
1503
1504 static const TypeAryPtr* make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, Offset offset,
1505 Offset field_offset = Offset::bottom,
1506 int instance_id = InstanceBot,
1507 const TypePtr* speculative = nullptr,
1508 int inline_depth = InlineDepthBottom);
1509 // Constant pointer to array
1510 static const TypeAryPtr* make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, Offset offset,
1511 Offset field_offset = Offset::bottom,
1512 int instance_id = InstanceBot,
1513 const TypePtr* speculative = nullptr,
1514 int inline_depth = InlineDepthBottom,
1515 bool is_autobox_cache = false);
1516
1517 // Return a 'ptr' version of this type
1518 virtual const TypeAryPtr* cast_to_ptr_type(PTR ptr) const;
1519
1520 virtual const TypeAryPtr* cast_to_exactness(bool klass_is_exact) const;
1521
1522 virtual const TypeAryPtr* cast_to_instance_id(int instance_id) const;
1523
1524 virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
1525 virtual const TypeInt* narrow_size_type(const TypeInt* size) const;
1526
1527 virtual bool empty(void) const; // TRUE if type is vacuous
1528 virtual const TypePtr *add_offset( intptr_t offset ) const;
1529 virtual const TypeAryPtr *with_offset( intptr_t offset ) const;
1530 const TypeAryPtr* with_ary(const TypeAry* ary) const;
1531
1532 // Speculative type helper methods.
1533 virtual const TypeAryPtr* remove_speculative() const;
1534 virtual const Type* cleanup_speculative() const;
1535 virtual const TypePtr* with_inline_depth(int depth) const;
1536 virtual const TypePtr* with_instance_id(int instance_id) const;
1537
1538 // the core of the computation of the meet of 2 types
1539 virtual const Type *xmeet_helper(const Type *t) const;
1540 virtual const Type *xdual() const; // Compute dual right now.
1541
1542 // Inline type array properties
1543 const TypeAryPtr* cast_to_not_flat(bool not_flat = true) const;
1544 const TypeAryPtr* cast_to_not_null_free(bool not_null_free = true) const;
1545 const TypeAryPtr* update_properties(const TypeAryPtr* new_type) const;
1546 jint flat_layout_helper() const;
1547 int flat_elem_size() const;
1548 int flat_log_elem_size() const;
1549
1550 const TypeAryPtr* cast_to_stable(bool stable, int stable_dimension = 1) const;
1551 int stable_dimension() const;
1552
1553 const TypeAryPtr* cast_to_autobox_cache() const;
1554
1555 static jint max_array_length(BasicType etype);
1556
1557 int flat_offset() const;
1558 const Offset field_offset() const { return _field_offset; }
1559 const TypeAryPtr* with_field_offset(int offset) const;
1560 const TypePtr* add_field_offset_and_offset(intptr_t offset) const;
1561
1562 virtual bool can_be_inline_type() const { return false; }
1563 virtual const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1564
1565 virtual bool can_be_inline_array() const;
1566
1567 // Convenience common pre-built types.
1568 static const TypeAryPtr *RANGE;
1569 static const TypeAryPtr *OOPS;
1570 static const TypeAryPtr *NARROWOOPS;
1571 static const TypeAryPtr *BYTES;
1572 static const TypeAryPtr *SHORTS;
1573 static const TypeAryPtr *CHARS;
1574 static const TypeAryPtr *INTS;
1575 static const TypeAryPtr *LONGS;
1576 static const TypeAryPtr *FLOATS;
1577 static const TypeAryPtr *DOUBLES;
1578 static const TypeAryPtr *INLINES;
1579 // selects one of the above:
1580 static const TypeAryPtr *get_array_body_type(BasicType elem) {
1581 assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != nullptr, "bad elem type");
1582 return _array_body_type[elem];
1583 }
1584 static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
1585 // sharpen the type of an int which is used as an array size
1586 #ifndef PRODUCT
1587 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1588 #endif
1589 private:
1590 virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const;
1591 };
1592
1593 //------------------------------TypeMetadataPtr-------------------------------------
1594 // Some kind of metadata, either Method*, MethodData* or CPCacheOop
1595 class TypeMetadataPtr : public TypePtr {
1596 protected:
1597 TypeMetadataPtr(PTR ptr, ciMetadata* metadata, Offset offset);
1598 // Do not allow interface-vs.-noninterface joins to collapse to top.
1599 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1600 public:
1601 virtual bool eq( const Type *t ) const;
1602 virtual uint hash() const; // Type specific hashing
1603 virtual bool singleton(void) const; // TRUE if type is a singleton
1604
1605 private:
1606 ciMetadata* _metadata;
1607
1608 public:
1609 static const TypeMetadataPtr* make(PTR ptr, ciMetadata* m, Offset offset);
1610
1611 static const TypeMetadataPtr* make(ciMethod* m);
1612 static const TypeMetadataPtr* make(ciMethodData* m);
1613
1614 ciMetadata* metadata() const { return _metadata; }
1615
1616 virtual const TypeMetadataPtr* cast_to_ptr_type(PTR ptr) const;
1617
1618 virtual const TypePtr *add_offset( intptr_t offset ) const;
1619
1620 virtual const Type *xmeet( const Type *t ) const;
1621 virtual const Type *xdual() const; // Compute dual right now.
1622
1623 virtual intptr_t get_con() const;
1624
1625 // Convenience common pre-built types.
1626 static const TypeMetadataPtr *BOTTOM;
1627
1628 #ifndef PRODUCT
1629 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1630 #endif
1631 };
1632
1633 //------------------------------TypeKlassPtr-----------------------------------
1634 // Class of Java Klass pointers
1635 class TypeKlassPtr : public TypePtr {
1636 friend class TypeInstKlassPtr;
1637 friend class TypeAryKlassPtr;
1638 friend class TypePtr;
1639 protected:
1640 TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, Offset offset);
1641
1642 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1643
1644 public:
1645 virtual bool eq( const Type *t ) const;
1646 virtual uint hash() const;
1647 virtual bool singleton(void) const; // TRUE if type is a singleton
1648
1649 protected:
1650
1651 ciKlass* _klass;
1652 const TypeInterfaces* _interfaces;
1653 const TypeInterfaces* meet_interfaces(const TypeKlassPtr* other) const;
1654 virtual bool must_be_exact() const { ShouldNotReachHere(); return false; }
1655 virtual ciKlass* exact_klass_helper() const;
1656 virtual ciKlass* klass() const { return _klass; }
1657
1658 public:
1659
1660 bool is_java_subtype_of(const TypeKlassPtr* other) const {
1661 return is_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1662 }
1663 bool is_same_java_type_as(const TypePtr* other) const {
1664 return is_same_java_type_as_helper(other->is_klassptr());
1665 }
1666
1667 bool maybe_java_subtype_of(const TypeKlassPtr* other) const {
1668 return maybe_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1669 }
1670 virtual bool is_same_java_type_as_helper(const TypeKlassPtr* other) const { ShouldNotReachHere(); return false; }
1671 virtual bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1672 virtual bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1673
1674 // Exact klass, possibly an interface or an array of interface
1675 ciKlass* exact_klass(bool maybe_null = false) const { assert(klass_is_exact(), ""); ciKlass* k = exact_klass_helper(); assert(k != nullptr || maybe_null, ""); return k; }
1676 virtual bool klass_is_exact() const { return _ptr == Constant; }
1677
1678 static const TypeKlassPtr* make(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces);
1679 static const TypeKlassPtr *make(PTR ptr, ciKlass* klass, Offset offset, InterfaceHandling interface_handling = ignore_interfaces);
1680
1681 virtual bool is_loaded() const { return _klass->is_loaded(); }
1682
1683 virtual const TypeKlassPtr* cast_to_ptr_type(PTR ptr) const { ShouldNotReachHere(); return nullptr; }
1684
1685 virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const { ShouldNotReachHere(); return nullptr; }
1686
1687 // corresponding pointer to instance, for a given class
1688 virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const { ShouldNotReachHere(); return nullptr; }
1689
1690 virtual const TypePtr *add_offset( intptr_t offset ) const { ShouldNotReachHere(); return nullptr; }
1691 virtual const Type *xmeet( const Type *t ) const { ShouldNotReachHere(); return nullptr; }
1692 virtual const Type *xdual() const { ShouldNotReachHere(); return nullptr; }
1693
1694 virtual intptr_t get_con() const;
1695
1696 virtual const TypeKlassPtr* with_offset(intptr_t offset) const { ShouldNotReachHere(); return nullptr; }
1697
1698 virtual bool can_be_inline_array() const { ShouldNotReachHere(); return false; }
1699 virtual const TypeKlassPtr* try_improve() const { return this; }
1700
1701 #ifndef PRODUCT
1702 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1703 #endif
1704 private:
1705 virtual bool is_meet_subtype_of(const TypePtr* other) const {
1706 return is_meet_subtype_of_helper(other->is_klassptr(), klass_is_exact(), other->is_klassptr()->klass_is_exact());
1707 }
1708
1709 virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const {
1710 ShouldNotReachHere(); return false;
1711 }
1712
1713 virtual const TypeInterfaces* interfaces() const {
1714 return _interfaces;
1715 };
1716
1717 const TypeKlassPtr* is_reference_type(const Type* other) const {
1718 return other->isa_klassptr();
1719 }
1720
1721 const TypeAryKlassPtr* is_array_type(const TypeKlassPtr* other) const {
1722 return other->isa_aryklassptr();
1723 }
1724
1725 const TypeInstKlassPtr* is_instance_type(const TypeKlassPtr* other) const {
1726 return other->isa_instklassptr();
1727 }
1728 };
1729
1730 // Instance klass pointer, mirrors TypeInstPtr
1731 class TypeInstKlassPtr : public TypeKlassPtr {
1732
1733 TypeInstKlassPtr(PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, Offset offset, bool flat_in_array)
1734 : TypeKlassPtr(InstKlassPtr, ptr, klass, interfaces, offset), _flat_in_array(flat_in_array) {
1735 assert(klass->is_instance_klass() && (!klass->is_loaded() || !klass->is_interface()), "");
1736 }
1737
1738 virtual bool must_be_exact() const;
1739
1740 const bool _flat_in_array; // Type is flat in arrays
1741
1742 public:
1743 // Instance klass ignoring any interface
1744 ciInstanceKlass* instance_klass() const {
1745 assert(!klass()->is_interface(), "");
1746 return klass()->as_instance_klass();
1747 }
1748
1749 bool is_same_java_type_as_helper(const TypeKlassPtr* other) const;
1750 bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
1751 bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
1752
1753 virtual bool can_be_inline_type() const { return (_klass == nullptr || _klass->can_be_inline_klass(klass_is_exact())); }
1754
1755 static const TypeInstKlassPtr *make(ciKlass* k, InterfaceHandling interface_handling) {
1756 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, true, false, interface_handling);
1757 return make(TypePtr::Constant, k, interfaces, Offset(0));
1758 }
1759 static const TypeInstKlassPtr* make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, Offset offset, bool flat_in_array = false);
1760
1761 static const TypeInstKlassPtr* make(PTR ptr, ciKlass* k, Offset offset) {
1762 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1763 return make(ptr, k, interfaces, offset);
1764 }
1765
1766 virtual const TypeInstKlassPtr* cast_to_ptr_type(PTR ptr) const;
1767
1768 virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const;
1769
1770 // corresponding pointer to instance, for a given class
1771 virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const;
1772 virtual uint hash() const;
1773 virtual bool eq(const Type *t) const;
1774
1775 virtual const TypePtr *add_offset( intptr_t offset ) const;
1776 virtual const Type *xmeet( const Type *t ) const;
1777 virtual const Type *xdual() const;
1778 virtual const TypeInstKlassPtr* with_offset(intptr_t offset) const;
1779
1780 virtual const TypeKlassPtr* try_improve() const;
1781
1782 virtual bool flat_in_array() const { return _flat_in_array; }
1783 virtual bool not_flat_in_array() const { return !_klass->can_be_inline_klass() || (_klass->is_inlinetype() && !flat_in_array()); }
1784
1785 virtual bool can_be_inline_array() const;
1786
1787 // Convenience common pre-built types.
1788 static const TypeInstKlassPtr* OBJECT; // Not-null object klass or below
1789 static const TypeInstKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
1790 private:
1791 virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const;
1792 };
1793
1794 // Array klass pointer, mirrors TypeAryPtr
1795 class TypeAryKlassPtr : public TypeKlassPtr {
1796 friend class TypeInstKlassPtr;
1797 friend class Type;
1798 friend class TypePtr;
1799
1800 const Type *_elem;
1801 const bool _not_flat; // Array is never flat
1802 const bool _not_null_free; // Array is never null-free
1803 const bool _null_free;
1804
1805 static const TypeInterfaces* _array_interfaces;
1806 TypeAryKlassPtr(PTR ptr, const Type *elem, ciKlass* klass, Offset offset, bool not_flat, int not_null_free, bool null_free)
1807 : TypeKlassPtr(AryKlassPtr, ptr, klass, _array_interfaces, offset), _elem(elem), _not_flat(not_flat), _not_null_free(not_null_free), _null_free(null_free) {
1808 assert(klass == nullptr || klass->is_type_array_klass() || klass->is_flat_array_klass() || !klass->as_obj_array_klass()->base_element_klass()->is_interface(), "");
1809 }
1810
1811 virtual ciKlass* exact_klass_helper() const;
1812 // Only guaranteed non null for array of basic types
1813 virtual ciKlass* klass() const;
1814
1815 virtual bool must_be_exact() const;
1816
1817 bool dual_null_free() const {
1818 return _null_free;
1819 }
1820
1821 bool meet_null_free(bool other) const {
1822 return _null_free && other;
1823 }
1824
1825 public:
1826
1827 // returns base element type, an instance klass (and not interface) for object arrays
1828 const Type* base_element_type(int& dims) const;
1829
1830 static const TypeAryKlassPtr* make(PTR ptr, ciKlass* k, Offset offset, InterfaceHandling interface_handling, bool not_flat, bool not_null_free, bool null_free);
1831
1832 bool is_same_java_type_as_helper(const TypeKlassPtr* other) const;
1833 bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
1834 bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
1835
1836 bool is_loaded() const { return (_elem->isa_klassptr() ? _elem->is_klassptr()->is_loaded() : true); }
1837
1838 static const TypeAryKlassPtr* make(PTR ptr, const Type* elem, ciKlass* k, Offset offset, bool not_flat, bool not_null_free, bool null_free);
1839 static const TypeAryKlassPtr* make(PTR ptr, ciKlass* k, Offset offset, InterfaceHandling interface_handling);
1840 static const TypeAryKlassPtr* make(ciKlass* klass, InterfaceHandling interface_handling);
1841
1842 const Type *elem() const { return _elem; }
1843
1844 virtual bool eq(const Type *t) const;
1845 virtual uint hash() const; // Type specific hashing
1846
1847 virtual const TypeAryKlassPtr* cast_to_ptr_type(PTR ptr) const;
1848
1849 virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const;
1850
1851 const TypeAryKlassPtr* cast_to_null_free() const;
1852
1853 // corresponding pointer to instance, for a given class
1854 virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const;
1855
1856 virtual const TypePtr *add_offset( intptr_t offset ) const;
1857 virtual const Type *xmeet( const Type *t ) const;
1858 virtual const Type *xdual() const; // Compute dual right now.
1859
1860 virtual const TypeAryKlassPtr* with_offset(intptr_t offset) const;
1861
1862 virtual bool empty(void) const {
1863 return TypeKlassPtr::empty() || _elem->empty();
1864 }
1865
1866 bool is_flat() const { return klass() != nullptr && klass()->is_flat_array_klass(); }
1867 bool is_not_flat() const { return _not_flat; }
1868 bool is_null_free() const { return _null_free; }
1869 bool is_not_null_free() const { return _not_null_free; }
1870 virtual bool can_be_inline_array() const;
1871
1872 #ifndef PRODUCT
1873 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1874 #endif
1875 private:
1876 virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const;
1877 };
1878
1879 class TypeNarrowPtr : public Type {
1880 protected:
1881 const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR
1882
1883 TypeNarrowPtr(TYPES t, const TypePtr* ptrtype): Type(t),
1884 _ptrtype(ptrtype) {
1885 assert(ptrtype->offset() == 0 ||
1886 ptrtype->offset() == OffsetBot ||
1887 ptrtype->offset() == OffsetTop, "no real offsets");
1888 }
1889
1890 virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const = 0;
1891 virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const = 0;
1987 }
1988
1989 virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
1990 return (const TypeNarrowPtr*)((new TypeNarrowKlass(t))->hashcons());
1991 }
1992
1993 public:
1994 static const TypeNarrowKlass *make( const TypePtr* type);
1995
1996 // static const TypeNarrowKlass *BOTTOM;
1997 static const TypeNarrowKlass *NULL_PTR;
1998
1999 #ifndef PRODUCT
2000 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
2001 #endif
2002 };
2003
2004 //------------------------------TypeFunc---------------------------------------
2005 // Class of Array Types
2006 class TypeFunc : public Type {
2007 TypeFunc(const TypeTuple *domain_sig, const TypeTuple *domain_cc, const TypeTuple *range_sig, const TypeTuple *range_cc)
2008 : Type(Function), _domain_sig(domain_sig), _domain_cc(domain_cc), _range_sig(range_sig), _range_cc(range_cc) {}
2009 virtual bool eq( const Type *t ) const;
2010 virtual uint hash() const; // Type specific hashing
2011 virtual bool singleton(void) const; // TRUE if type is a singleton
2012 virtual bool empty(void) const; // TRUE if type is vacuous
2013
2014 // Domains of inputs: inline type arguments are not passed by
2015 // reference, instead each field of the inline type is passed as an
2016 // argument. We maintain 2 views of the argument list here: one
2017 // based on the signature (with an inline type argument as a single
2018 // slot), one based on the actual calling convention (with a value
2019 // type argument as a list of its fields).
2020 const TypeTuple* const _domain_sig;
2021 const TypeTuple* const _domain_cc;
2022 // Range of results. Similar to domains: an inline type result can be
2023 // returned in registers in which case range_cc lists all fields and
2024 // is the actual calling convention.
2025 const TypeTuple* const _range_sig;
2026 const TypeTuple* const _range_cc;
2027
2028 public:
2029 // Constants are shared among ADLC and VM
2030 enum { Control = AdlcVMDeps::Control,
2031 I_O = AdlcVMDeps::I_O,
2032 Memory = AdlcVMDeps::Memory,
2033 FramePtr = AdlcVMDeps::FramePtr,
2034 ReturnAdr = AdlcVMDeps::ReturnAdr,
2035 Parms = AdlcVMDeps::Parms
2036 };
2037
2038
2039 // Accessors:
2040 const TypeTuple* domain_sig() const { return _domain_sig; }
2041 const TypeTuple* domain_cc() const { return _domain_cc; }
2042 const TypeTuple* range_sig() const { return _range_sig; }
2043 const TypeTuple* range_cc() const { return _range_cc; }
2044
2045 static const TypeFunc* make(ciMethod* method, bool is_osr_compilation = false);
2046 static const TypeFunc *make(const TypeTuple* domain_sig, const TypeTuple* domain_cc,
2047 const TypeTuple* range_sig, const TypeTuple* range_cc);
2048 static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
2049
2050 virtual const Type *xmeet( const Type *t ) const;
2051 virtual const Type *xdual() const; // Compute dual right now.
2052
2053 BasicType return_type() const;
2054
2055 bool returns_inline_type_as_fields() const { return range_sig() != range_cc(); }
2056
2057 #ifndef PRODUCT
2058 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
2059 #endif
2060 // Convenience common pre-built types.
2061 };
2062
2063 //------------------------------accessors--------------------------------------
2064 inline bool Type::is_ptr_to_narrowoop() const {
2065 #ifdef _LP64
2066 return (isa_oopptr() != nullptr && is_oopptr()->is_ptr_to_narrowoop_nv());
2067 #else
2068 return false;
2069 #endif
2070 }
2071
2072 inline bool Type::is_ptr_to_narrowklass() const {
2073 #ifdef _LP64
2074 return (isa_oopptr() != nullptr && is_oopptr()->is_ptr_to_narrowklass_nv());
2075 #else
2076 return false;
2292 return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype()->isa_oopptr() : isa_oopptr();
2293 }
2294
2295 inline const TypeNarrowOop* Type::make_narrowoop() const {
2296 return (_base == NarrowOop) ? is_narrowoop() :
2297 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : nullptr);
2298 }
2299
2300 inline const TypeNarrowKlass* Type::make_narrowklass() const {
2301 return (_base == NarrowKlass) ? is_narrowklass() :
2302 (isa_ptr() ? TypeNarrowKlass::make(is_ptr()) : nullptr);
2303 }
2304
2305 inline bool Type::is_floatingpoint() const {
2306 if( (_base == FloatCon) || (_base == FloatBot) ||
2307 (_base == DoubleCon) || (_base == DoubleBot) )
2308 return true;
2309 return false;
2310 }
2311
2312 inline bool Type::is_inlinetypeptr() const {
2313 return isa_instptr() != nullptr && is_instptr()->instance_klass()->is_inlinetype();
2314 }
2315
2316 inline ciInlineKlass* Type::inline_klass() const {
2317 return make_ptr()->is_instptr()->instance_klass()->as_inline_klass();
2318 }
2319
2320
2321 // ===============================================================
2322 // Things that need to be 64-bits in the 64-bit build but
2323 // 32-bits in the 32-bit build. Done this way to get full
2324 // optimization AND strong typing.
2325 #ifdef _LP64
2326
2327 // For type queries and asserts
2328 #define is_intptr_t is_long
2329 #define isa_intptr_t isa_long
2330 #define find_intptr_t_type find_long_type
2331 #define find_intptr_t_con find_long_con
2332 #define TypeX TypeLong
2333 #define Type_X Type::Long
2334 #define TypeX_X TypeLong::LONG
2335 #define TypeX_ZERO TypeLong::ZERO
2336 // For 'ideal_reg' machine registers
2337 #define Op_RegX Op_RegL
2338 // For phase->intcon variants
2339 #define MakeConX longcon
2340 #define ConXNode ConLNode
2341 // For array index arithmetic
2342 #define MulXNode MulLNode
2343 #define AndXNode AndLNode
2344 #define OrXNode OrLNode
2345 #define CmpXNode CmpLNode
2346 #define CmpUXNode CmpULNode
2347 #define SubXNode SubLNode
2348 #define LShiftXNode LShiftLNode
2349 // For object size computation:
2350 #define AddXNode AddLNode
2351 #define RShiftXNode RShiftLNode
2352 // For card marks and hashcodes
2353 #define URShiftXNode URShiftLNode
2354 // For shenandoahSupport
2355 #define LoadXNode LoadLNode
2356 #define StoreXNode StoreLNode
2357 // Opcodes
2358 #define Op_LShiftX Op_LShiftL
2359 #define Op_AndX Op_AndL
2360 #define Op_AddX Op_AddL
2361 #define Op_SubX Op_SubL
2362 #define Op_XorX Op_XorL
2363 #define Op_URShiftX Op_URShiftL
2364 #define Op_LoadX Op_LoadL
2365 #define Op_StoreX Op_StoreL
2366 // conversions
2367 #define ConvI2X(x) ConvI2L(x)
2368 #define ConvL2X(x) (x)
2369 #define ConvX2I(x) ConvL2I(x)
2370 #define ConvX2L(x) (x)
2371 #define ConvX2UL(x) (x)
2372
2373 #else
2374
2375 // For type queries and asserts
2376 #define is_intptr_t is_int
2377 #define isa_intptr_t isa_int
2378 #define find_intptr_t_type find_int_type
2379 #define find_intptr_t_con find_int_con
2380 #define TypeX TypeInt
2381 #define Type_X Type::Int
2382 #define TypeX_X TypeInt::INT
2383 #define TypeX_ZERO TypeInt::ZERO
2384 // For 'ideal_reg' machine registers
2385 #define Op_RegX Op_RegI
2386 // For phase->intcon variants
2387 #define MakeConX intcon
2388 #define ConXNode ConINode
2389 // For array index arithmetic
2390 #define MulXNode MulINode
2391 #define AndXNode AndINode
2392 #define OrXNode OrINode
2393 #define CmpXNode CmpINode
2394 #define CmpUXNode CmpUNode
2395 #define SubXNode SubINode
2396 #define LShiftXNode LShiftINode
2397 // For object size computation:
2398 #define AddXNode AddINode
2399 #define RShiftXNode RShiftINode
2400 // For card marks and hashcodes
2401 #define URShiftXNode URShiftINode
2402 // For shenandoahSupport
2403 #define LoadXNode LoadINode
2404 #define StoreXNode StoreINode
2405 // Opcodes
2406 #define Op_LShiftX Op_LShiftI
2407 #define Op_AndX Op_AndI
2408 #define Op_AddX Op_AddI
2409 #define Op_SubX Op_SubI
2410 #define Op_XorX Op_XorI
2411 #define Op_URShiftX Op_URShiftI
2412 #define Op_LoadX Op_LoadI
2413 #define Op_StoreX Op_StoreI
2414 // conversions
2415 #define ConvI2X(x) (x)
2416 #define ConvL2X(x) ConvL2I(x)
2417 #define ConvX2I(x) (x)
2418 #define ConvX2L(x) ConvI2L(x)
2419 #define ConvX2UL(x) ConvI2UL(x)
2420
2421 #endif
2422
2423 #endif // SHARE_OPTO_TYPE_HPP
|