1 /*
2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #ifndef SHARE_OPTO_TYPE_HPP
26 #define SHARE_OPTO_TYPE_HPP
27
28 #include "opto/adlcVMDeps.hpp"
29 #include "opto/compile.hpp"
30 #include "opto/rangeinference.hpp"
31 #include "runtime/handles.hpp"
32
33 // Portions of code courtesy of Clifford Click
34
35 // Optimization - Graph Style
36
37
38 // This class defines a Type lattice. The lattice is used in the constant
39 // propagation algorithms, and for some type-checking of the iloc code.
40 // Basic types include RSD's (lower bound, upper bound, stride for integers),
41 // float & double precision constants, sets of data-labels and code-labels.
42 // The complete lattice is described below. Subtypes have no relationship to
43 // up or down in the lattice; that is entirely determined by the behavior of
44 // the MEET/JOIN functions.
45
46 class Dict;
47 class Type;
48 class TypeD;
49 class TypeF;
50 class TypeH;
51 class TypeInteger;
127 Memory, // Abstract store
128 HalfFloatTop, // No float value
129 HalfFloatCon, // Floating point constant
130 HalfFloatBot, // Any float value
131 FloatTop, // No float value
132 FloatCon, // Floating point constant
133 FloatBot, // Any float value
134 DoubleTop, // No double value
135 DoubleCon, // Double precision constant
136 DoubleBot, // Any double value
137 Bottom, // Bottom of lattice
138 lastype // Bogus ending type (not in lattice)
139 };
140
141 // Signal values for offsets from a base pointer
142 enum OFFSET_SIGNALS {
143 OffsetTop = -2000000000, // undefined offset
144 OffsetBot = -2000000001 // any possible offset
145 };
146
147 // Min and max WIDEN values.
148 enum WIDEN {
149 WidenMin = 0,
150 WidenMax = 3
151 };
152
153 private:
154 typedef struct {
155 TYPES dual_type;
156 BasicType basic_type;
157 const char* msg;
158 bool isa_oop;
159 uint ideal_reg;
160 relocInfo::relocType reloc;
161 } TypeInfo;
162
163 // Dictionary of types shared among compilations.
164 static Dict* _shared_type_dict;
165 static const TypeInfo _type_info[];
166
328 const TypeInstPtr *isa_instptr() const; // Returns null if not InstPtr
329 const TypeInstPtr *is_instptr() const; // Instance
330 const TypeAryPtr *isa_aryptr() const; // Returns null if not AryPtr
331 const TypeAryPtr *is_aryptr() const; // Array oop
332
333 template <typename TypeClass>
334 const TypeClass* cast() const;
335
336 const TypeMetadataPtr *isa_metadataptr() const; // Returns null if not oop ptr type
337 const TypeMetadataPtr *is_metadataptr() const; // Java-style GC'd pointer
338 const TypeKlassPtr *isa_klassptr() const; // Returns null if not KlassPtr
339 const TypeKlassPtr *is_klassptr() const; // assert if not KlassPtr
340 const TypeInstKlassPtr *isa_instklassptr() const; // Returns null if not IntKlassPtr
341 const TypeInstKlassPtr *is_instklassptr() const; // assert if not IntKlassPtr
342 const TypeAryKlassPtr *isa_aryklassptr() const; // Returns null if not AryKlassPtr
343 const TypeAryKlassPtr *is_aryklassptr() const; // assert if not AryKlassPtr
344
345 virtual bool is_finite() const; // Has a finite value
346 virtual bool is_nan() const; // Is not a number (NaN)
347
348 // Returns this ptr type or the equivalent ptr type for this compressed pointer.
349 const TypePtr* make_ptr() const;
350
351 // Returns this oopptr type or the equivalent oopptr type for this compressed pointer.
352 // Asserts if the underlying type is not an oopptr or narrowoop.
353 const TypeOopPtr* make_oopptr() const;
354
355 // Returns this compressed pointer or the equivalent compressed version
356 // of this pointer type.
357 const TypeNarrowOop* make_narrowoop() const;
358
359 // Returns this compressed klass pointer or the equivalent
360 // compressed version of this pointer type.
361 const TypeNarrowKlass* make_narrowklass() const;
362
363 // Special test for register pressure heuristic
364 bool is_floatingpoint() const; // True if Float or Double base type
365
366 // Do you have memory, directly or through a tuple?
367 bool has_memory( ) const;
465 static const Type* get_typeflow_type(ciType* type);
466
467 static const Type* make_from_constant(ciConstant constant,
468 bool require_constant = false,
469 int stable_dimension = 0,
470 bool is_narrow = false,
471 bool is_autobox_cache = false);
472
473 static const Type* make_constant_from_field(ciInstance* holder,
474 int off,
475 bool is_unsigned_load,
476 BasicType loadbt);
477
478 static const Type* make_constant_from_field(ciField* field,
479 ciInstance* holder,
480 BasicType loadbt,
481 bool is_unsigned_load);
482
483 static const Type* make_constant_from_array_element(ciArray* array,
484 int off,
485 int stable_dimension,
486 BasicType loadbt,
487 bool is_unsigned_load);
488
489 // Speculative type helper methods. See TypePtr.
490 virtual const TypePtr* speculative() const { return nullptr; }
491 virtual ciKlass* speculative_type() const { return nullptr; }
492 virtual ciKlass* speculative_type_not_null() const { return nullptr; }
493 virtual bool speculative_maybe_null() const { return true; }
494 virtual bool speculative_always_null() const { return true; }
495 virtual const Type* remove_speculative() const { return this; }
496 virtual const Type* cleanup_speculative() const { return this; }
497 virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const { return exact_kls != nullptr; }
498 virtual bool would_improve_ptr(ProfilePtrKind ptr_kind) const { return ptr_kind == ProfileAlwaysNull || ptr_kind == ProfileNeverNull; }
499 const Type* maybe_remove_speculative(bool include_speculative) const;
500
501 virtual bool maybe_null() const { return true; }
502 virtual bool is_known_instance() const { return false; }
503
504 private:
937 const Type ** const _fields; // Array of field types
938
939 public:
940 virtual bool eq( const Type *t ) const;
941 virtual uint hash() const; // Type specific hashing
942 virtual bool singleton(void) const; // TRUE if type is a singleton
943 virtual bool empty(void) const; // TRUE if type is vacuous
944
945 // Accessors:
946 uint cnt() const { return _cnt; }
947 const Type* field_at(uint i) const {
948 assert(i < _cnt, "oob");
949 return _fields[i];
950 }
951 void set_field_at(uint i, const Type* t) {
952 assert(i < _cnt, "oob");
953 _fields[i] = t;
954 }
955
956 static const TypeTuple *make( uint cnt, const Type **fields );
957 static const TypeTuple *make_range(ciSignature *sig, InterfaceHandling interface_handling = ignore_interfaces);
958 static const TypeTuple *make_domain(ciInstanceKlass* recv, ciSignature *sig, InterfaceHandling interface_handling);
959
960 // Subroutine call type with space allocated for argument types
961 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
962 static const Type **fields( uint arg_cnt );
963
964 virtual const Type *xmeet( const Type *t ) const;
965 virtual const Type *xdual() const; // Compute dual right now.
966 // Convenience common pre-built types.
967 static const TypeTuple *IFBOTH;
968 static const TypeTuple *IFFALSE;
969 static const TypeTuple *IFTRUE;
970 static const TypeTuple *IFNEITHER;
971 static const TypeTuple *LOOPBODY;
972 static const TypeTuple *MEMBAR;
973 static const TypeTuple *STORECONDITIONAL;
974 static const TypeTuple *START_I2C;
975 static const TypeTuple *INT_PAIR;
976 static const TypeTuple *LONG_PAIR;
977 static const TypeTuple *INT_CC_PAIR;
978 static const TypeTuple *LONG_CC_PAIR;
979 #ifndef PRODUCT
980 virtual void dump2( Dict &d, uint, outputStream *st ) const; // Specialized per-Type dumping
981 #endif
982 };
983
984 //------------------------------TypeAry----------------------------------------
985 // Class of Array Types
986 class TypeAry : public Type {
987 TypeAry(const Type* elem, const TypeInt* size, bool stable) : Type(Array),
988 _elem(elem), _size(size), _stable(stable) {}
989 public:
990 virtual bool eq( const Type *t ) const;
991 virtual uint hash() const; // Type specific hashing
992 virtual bool singleton(void) const; // TRUE if type is a singleton
993 virtual bool empty(void) const; // TRUE if type is vacuous
994
995 private:
996 const Type *_elem; // Element type of array
997 const TypeInt *_size; // Elements in array
998 const bool _stable; // Are elements @Stable?
999 friend class TypeAryPtr;
1000
1001 public:
1002 static const TypeAry* make(const Type* elem, const TypeInt* size, bool stable = false);
1003
1004 virtual const Type *xmeet( const Type *t ) const;
1005 virtual const Type *xdual() const; // Compute dual right now.
1006 bool ary_must_be_exact() const; // true if arrays of such are never generic
1007 virtual const TypeAry* remove_speculative() const;
1008 virtual const Type* cleanup_speculative() const;
1009 #ifndef PRODUCT
1010 virtual void dump2( Dict &d, uint, outputStream *st ) const; // Specialized per-Type dumping
1011 #endif
1012 };
1013
1014 //------------------------------TypeVect---------------------------------------
1015 // Class of Vector Types
1016 class TypeVect : public Type {
1017 const BasicType _elem_bt; // Vector's element type
1018 const uint _length; // Elements in vector (power of 2)
1019
1020 protected:
1021 TypeVect(TYPES t, BasicType elem_bt, uint length) : Type(t),
1022 _elem_bt(elem_bt), _length(length) {}
1128
1129 const Type* xmeet(const Type* t) const;
1130
1131 bool singleton(void) const;
1132 bool has_non_array_interface() const;
1133 };
1134
1135 //------------------------------TypePtr----------------------------------------
1136 // Class of machine Pointer Types: raw data, instances or arrays.
1137 // If the _base enum is AnyPtr, then this refers to all of the above.
1138 // Otherwise the _base will indicate which subset of pointers is affected,
1139 // and the class will be inherited from.
1140 class TypePtr : public Type {
1141 friend class TypeNarrowPtr;
1142 friend class Type;
1143 protected:
1144 static const TypeInterfaces* interfaces(ciKlass*& k, bool klass, bool interface, bool array, InterfaceHandling interface_handling);
1145
1146 public:
1147 enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
1148 protected:
1149 TypePtr(TYPES t, PTR ptr, int offset,
1150 const TypePtr* speculative = nullptr,
1151 int inline_depth = InlineDepthBottom) :
1152 Type(t), _speculative(speculative), _inline_depth(inline_depth), _offset(offset),
1153 _ptr(ptr) {}
1154 static const PTR ptr_meet[lastPTR][lastPTR];
1155 static const PTR ptr_dual[lastPTR];
1156 static const char * const ptr_msg[lastPTR];
1157
1158 enum {
1159 InlineDepthBottom = INT_MAX,
1160 InlineDepthTop = -InlineDepthBottom
1161 };
1162
1163 // Extra type information profiling gave us. We propagate it the
1164 // same way the rest of the type info is propagated. If we want to
1165 // use it, then we have to emit a guard: this part of the type is
1166 // not something we know but something we speculate about the type.
1167 const TypePtr* _speculative;
1168 // For speculative types, we record at what inlining depth the
1169 // profiling point that provided the data is. We want to favor
1170 // profile data coming from outer scopes which are likely better for
1171 // the current compilation.
1172 int _inline_depth;
1173
1174 // utility methods to work on the speculative part of the type
1175 const TypePtr* dual_speculative() const;
1176 const TypePtr* xmeet_speculative(const TypePtr* other) const;
1177 bool eq_speculative(const TypePtr* other) const;
1186 #ifndef PRODUCT
1187 void dump_speculative(outputStream* st) const;
1188 void dump_inline_depth(outputStream* st) const;
1189 void dump_offset(outputStream* st) const;
1190 #endif
1191
1192 // TypeInstPtr (TypeAryPtr resp.) and TypeInstKlassPtr (TypeAryKlassPtr resp.) implement very similar meet logic.
1193 // The logic for meeting 2 instances (2 arrays resp.) is shared in the 2 utility methods below. However the logic for
1194 // the oop and klass versions can be slightly different and extra logic may have to be executed depending on what
1195 // exact case the meet falls into. The MeetResult struct is used by the utility methods to communicate what case was
1196 // encountered so the right logic specific to klasses or oops can be executed.,
1197 enum MeetResult {
1198 QUICK,
1199 UNLOADED,
1200 SUBTYPE,
1201 NOT_SUBTYPE,
1202 LCA
1203 };
1204 template<class T> static TypePtr::MeetResult meet_instptr(PTR& ptr, const TypeInterfaces*& interfaces, const T* this_type,
1205 const T* other_type, ciKlass*& res_klass, bool& res_xk);
1206
1207 template<class T> static MeetResult meet_aryptr(PTR& ptr, const Type*& elem, const T* this_ary, const T* other_ary,
1208 ciKlass*& res_klass, bool& res_xk);
1209
1210 template <class T1, class T2> static bool is_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1211 template <class T1, class T2> static bool is_same_java_type_as_helper_for_instance(const T1* this_one, const T2* other);
1212 template <class T1, class T2> static bool maybe_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1213 template <class T1, class T2> static bool is_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1214 template <class T1, class T2> static bool is_same_java_type_as_helper_for_array(const T1* this_one, const T2* other);
1215 template <class T1, class T2> static bool maybe_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1216 template <class T1, class T2> static bool is_meet_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_xk, bool other_xk);
1217 template <class T1, class T2> static bool is_meet_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_xk, bool other_xk);
1218 public:
1219 const int _offset; // Offset into oop, with TOP & BOT
1220 const PTR _ptr; // Pointer equivalence class
1221
1222 int offset() const { return _offset; }
1223 PTR ptr() const { return _ptr; }
1224
1225 static const TypePtr *make(TYPES t, PTR ptr, int offset,
1226 const TypePtr* speculative = nullptr,
1227 int inline_depth = InlineDepthBottom);
1228
1229 // Return a 'ptr' version of this type
1230 virtual const TypePtr* cast_to_ptr_type(PTR ptr) const;
1231
1232 virtual intptr_t get_con() const;
1233
1234 int xadd_offset( intptr_t offset ) const;
1235 virtual const TypePtr* add_offset(intptr_t offset) const;
1236 virtual const TypePtr* with_offset(intptr_t offset) const;
1237 virtual bool eq(const Type *t) const;
1238 virtual uint hash() const; // Type specific hashing
1239
1240 virtual bool singleton(void) const; // TRUE if type is a singleton
1241 virtual bool empty(void) const; // TRUE if type is vacuous
1242 virtual const Type *xmeet( const Type *t ) const;
1243 virtual const Type *xmeet_helper( const Type *t ) const;
1244 int meet_offset( int offset ) const;
1245 int dual_offset( ) const;
1246 virtual const Type *xdual() const; // Compute dual right now.
1247
1248 // meet, dual and join over pointer equivalence sets
1249 PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
1250 PTR dual_ptr() const { return ptr_dual[ptr()]; }
1251
1252 // This is textually confusing unless one recalls that
1253 // join(t) == dual()->meet(t->dual())->dual().
1254 PTR join_ptr( const PTR in_ptr ) const {
1255 return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
1256 }
1257
1258 // Speculative type helper methods.
1259 virtual const TypePtr* speculative() const { return _speculative; }
1260 int inline_depth() const { return _inline_depth; }
1261 virtual ciKlass* speculative_type() const;
1262 virtual ciKlass* speculative_type_not_null() const;
1263 virtual bool speculative_maybe_null() const;
1264 virtual bool speculative_always_null() const;
1265 virtual const TypePtr* remove_speculative() const;
1266 virtual const Type* cleanup_speculative() const;
1267 virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
1268 virtual bool would_improve_ptr(ProfilePtrKind maybe_null) const;
1269 virtual const TypePtr* with_inline_depth(int depth) const;
1270
1271 virtual bool maybe_null() const { return meet_ptr(Null) == ptr(); }
1272
1273 // Tests for relation to centerline of type lattice:
1274 static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
1275 static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
1276 // Convenience common pre-built types.
1277 static const TypePtr *NULL_PTR;
1278 static const TypePtr *NOTNULL;
1279 static const TypePtr *BOTTOM;
1280 #ifndef PRODUCT
1281 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1282 #endif
1283 };
1284
1285 //------------------------------TypeRawPtr-------------------------------------
1286 // Class of raw pointers, pointers to things other than Oops. Examples
1287 // include the stack pointer, top of heap, card-marking area, handles, etc.
1288 class TypeRawPtr : public TypePtr {
1289 protected:
1290 TypeRawPtr( PTR ptr, address bits ) : TypePtr(RawPtr,ptr,0), _bits(bits){}
1291 public:
1292 virtual bool eq( const Type *t ) const;
1293 virtual uint hash() const; // Type specific hashing
1294
1295 const address _bits; // Constant value, if applicable
1296
1297 static const TypeRawPtr *make( PTR ptr );
1298 static const TypeRawPtr *make( address bits );
1299
1300 // Return a 'ptr' version of this type
1301 virtual const TypeRawPtr* cast_to_ptr_type(PTR ptr) const;
1302
1303 virtual intptr_t get_con() const;
1304
1305 virtual const TypePtr* add_offset(intptr_t offset) const;
1306 virtual const TypeRawPtr* with_offset(intptr_t offset) const { ShouldNotReachHere(); return nullptr;}
1307
1308 virtual const Type *xmeet( const Type *t ) const;
1309 virtual const Type *xdual() const; // Compute dual right now.
1310 // Convenience common pre-built types.
1311 static const TypeRawPtr *BOTTOM;
1312 static const TypeRawPtr *NOTNULL;
1313 #ifndef PRODUCT
1314 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1315 #endif
1316 };
1317
1318 //------------------------------TypeOopPtr-------------------------------------
1319 // Some kind of oop (Java pointer), either instance or array.
1320 class TypeOopPtr : public TypePtr {
1321 friend class TypeAry;
1322 friend class TypePtr;
1323 friend class TypeInstPtr;
1324 friend class TypeAryPtr;
1325 protected:
1326 TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int offset, int instance_id,
1327 const TypePtr* speculative, int inline_depth);
1328 public:
1329 virtual bool eq( const Type *t ) const;
1330 virtual uint hash() const; // Type specific hashing
1331 virtual bool singleton(void) const; // TRUE if type is a singleton
1332 enum {
1333 InstanceTop = -1, // undefined instance
1334 InstanceBot = 0 // any possible instance
1335 };
1336 protected:
1337
1338 // Oop is null, unless this is a constant oop.
1339 ciObject* _const_oop; // Constant oop
1340 // If _klass is null, then so is _sig. This is an unloaded klass.
1341 ciKlass* _klass; // Klass object
1342
1343 const TypeInterfaces* _interfaces;
1344
1345 // Does the type exclude subclasses of the klass? (Inexact == polymorphic.)
1346 bool _klass_is_exact;
1347 bool _is_ptr_to_narrowoop;
1348 bool _is_ptr_to_narrowklass;
1349 bool _is_ptr_to_boxed_value;
1350
1351 // If not InstanceTop or InstanceBot, indicates that this is
1352 // a particular instance of this type which is distinct.
1353 // This is the node index of the allocation node creating this instance.
1354 int _instance_id;
1355
1356 static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact, InterfaceHandling interface_handling);
1357
1358 int dual_instance_id() const;
1359 int meet_instance_id(int uid) const;
1360
1361 const TypeInterfaces* meet_interfaces(const TypeOopPtr* other) const;
1362
1363 // Do not allow interface-vs.-noninterface joins to collapse to top.
1364 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1365
1366 virtual ciKlass* exact_klass_helper() const { return nullptr; }
1367 virtual ciKlass* klass() const { return _klass; }
1368
1369 #ifndef PRODUCT
1370 void dump_instance_id(outputStream* st) const;
1371 #endif // PRODUCT
1372
1373 public:
1374
1375 bool is_java_subtype_of(const TypeOopPtr* other) const {
1376 return is_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1377 }
1378
1379 bool is_same_java_type_as(const TypePtr* other) const {
1380 return is_same_java_type_as_helper(other->is_oopptr());
1381 }
1382
1383 virtual bool is_same_java_type_as_helper(const TypeOopPtr* other) const {
1384 ShouldNotReachHere(); return false;
1385 }
1386
1387 bool maybe_java_subtype_of(const TypeOopPtr* other) const {
1398 return make_from_klass_common(klass, true, false, interface_handling);
1399 }
1400 // Same as before, but will produce an exact type, even if
1401 // the klass is not final, as long as it has exactly one implementation.
1402 static const TypeOopPtr* make_from_klass_unique(ciKlass* klass, InterfaceHandling interface_handling= ignore_interfaces) {
1403 return make_from_klass_common(klass, true, true, interface_handling);
1404 }
1405 // Same as before, but does not respects UseUniqueSubclasses.
1406 // Use this only for creating array element types.
1407 static const TypeOopPtr* make_from_klass_raw(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) {
1408 return make_from_klass_common(klass, false, false, interface_handling);
1409 }
1410 // Creates a singleton type given an object.
1411 // If the object cannot be rendered as a constant,
1412 // may return a non-singleton type.
1413 // If require_constant, produce a null if a singleton is not possible.
1414 static const TypeOopPtr* make_from_constant(ciObject* o,
1415 bool require_constant = false);
1416
1417 // Make a generic (unclassed) pointer to an oop.
1418 static const TypeOopPtr* make(PTR ptr, int offset, int instance_id,
1419 const TypePtr* speculative = nullptr,
1420 int inline_depth = InlineDepthBottom);
1421
1422 ciObject* const_oop() const { return _const_oop; }
1423 // Exact klass, possibly an interface or an array of interface
1424 ciKlass* exact_klass(bool maybe_null = false) const { assert(klass_is_exact(), ""); ciKlass* k = exact_klass_helper(); assert(k != nullptr || maybe_null, ""); return k; }
1425 ciKlass* unloaded_klass() const { assert(!is_loaded(), "only for unloaded types"); return klass(); }
1426
1427 virtual bool is_loaded() const { return klass()->is_loaded(); }
1428 virtual bool klass_is_exact() const { return _klass_is_exact; }
1429
1430 // Returns true if this pointer points at memory which contains a
1431 // compressed oop references.
1432 bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
1433 bool is_ptr_to_narrowklass_nv() const { return _is_ptr_to_narrowklass; }
1434 bool is_ptr_to_boxed_value() const { return _is_ptr_to_boxed_value; }
1435 bool is_known_instance() const { return _instance_id > 0; }
1436 int instance_id() const { return _instance_id; }
1437 bool is_known_instance_field() const { return is_known_instance() && _offset >= 0; }
1438
1439 virtual intptr_t get_con() const;
1440
1441 virtual const TypeOopPtr* cast_to_ptr_type(PTR ptr) const;
1442
1443 virtual const TypeOopPtr* cast_to_exactness(bool klass_is_exact) const;
1444
1445 virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1446
1447 // corresponding pointer to klass, for a given instance
1448 virtual const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1449
1450 virtual const TypeOopPtr* with_offset(intptr_t offset) const;
1451 virtual const TypePtr* add_offset(intptr_t offset) const;
1452
1453 // Speculative type helper methods.
1454 virtual const TypeOopPtr* remove_speculative() const;
1455 virtual const Type* cleanup_speculative() const;
1456 virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
1457 virtual const TypePtr* with_inline_depth(int depth) const;
1480 return _interfaces;
1481 };
1482
1483 const TypeOopPtr* is_reference_type(const Type* other) const {
1484 return other->isa_oopptr();
1485 }
1486
1487 const TypeAryPtr* is_array_type(const TypeOopPtr* other) const {
1488 return other->isa_aryptr();
1489 }
1490
1491 const TypeInstPtr* is_instance_type(const TypeOopPtr* other) const {
1492 return other->isa_instptr();
1493 }
1494 };
1495
1496 //------------------------------TypeInstPtr------------------------------------
1497 // Class of Java object pointers, pointing either to non-array Java instances
1498 // or to a Klass* (including array klasses).
1499 class TypeInstPtr : public TypeOopPtr {
1500 TypeInstPtr(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int off, int instance_id,
1501 const TypePtr* speculative, int inline_depth);
1502 virtual bool eq( const Type *t ) const;
1503 virtual uint hash() const; // Type specific hashing
1504
1505 ciKlass* exact_klass_helper() const;
1506
1507 public:
1508
1509 // Instance klass, ignoring any interface
1510 ciInstanceKlass* instance_klass() const {
1511 assert(!(klass()->is_loaded() && klass()->is_interface()), "");
1512 return klass()->as_instance_klass();
1513 }
1514
1515 bool is_same_java_type_as_helper(const TypeOopPtr* other) const;
1516 bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1517 bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1518
1519 // Make a pointer to a constant oop.
1520 static const TypeInstPtr *make(ciObject* o) {
1521 ciKlass* k = o->klass();
1522 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1523 return make(TypePtr::Constant, k, interfaces, true, o, 0, InstanceBot);
1524 }
1525 // Make a pointer to a constant oop with offset.
1526 static const TypeInstPtr *make(ciObject* o, int offset) {
1527 ciKlass* k = o->klass();
1528 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1529 return make(TypePtr::Constant, k, interfaces, true, o, offset, InstanceBot);
1530 }
1531
1532 // Make a pointer to some value of type klass.
1533 static const TypeInstPtr *make(PTR ptr, ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) {
1534 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
1535 return make(ptr, klass, interfaces, false, nullptr, 0, InstanceBot);
1536 }
1537
1538 // Make a pointer to some non-polymorphic value of exactly type klass.
1539 static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
1540 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, false, false, ignore_interfaces);
1541 return make(ptr, klass, interfaces, true, nullptr, 0, InstanceBot);
1542 }
1543
1544 // Make a pointer to some value of type klass with offset.
1545 static const TypeInstPtr *make(PTR ptr, ciKlass* klass, int offset) {
1546 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, false, false, ignore_interfaces);
1547 return make(ptr, klass, interfaces, false, nullptr, offset, InstanceBot);
1548 }
1549
1550 static const TypeInstPtr *make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int offset,
1551 int instance_id = InstanceBot,
1552 const TypePtr* speculative = nullptr,
1553 int inline_depth = InlineDepthBottom);
1554
1555 static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id = InstanceBot) {
1556 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1557 return make(ptr, k, interfaces, xk, o, offset, instance_id);
1558 }
1559
1560 /** Create constant type for a constant boxed value */
1561 const Type* get_const_boxed_value() const;
1562
1563 // If this is a java.lang.Class constant, return the type for it or null.
1564 // Pass to Type::get_const_type to turn it to a type, which will usually
1565 // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
1566 ciType* java_mirror_type() const;
1567
1568 virtual const TypeInstPtr* cast_to_ptr_type(PTR ptr) const;
1569
1570 virtual const TypeInstPtr* cast_to_exactness(bool klass_is_exact) const;
1571
1572 virtual const TypeInstPtr* cast_to_instance_id(int instance_id) const;
1573
1574 virtual const TypePtr* add_offset(intptr_t offset) const;
1575 virtual const TypeInstPtr* with_offset(intptr_t offset) const;
1576
1577 // Speculative type helper methods.
1578 virtual const TypeInstPtr* remove_speculative() const;
1579 const TypeInstPtr* with_speculative(const TypePtr* speculative) const;
1580 virtual const TypePtr* with_inline_depth(int depth) const;
1581 virtual const TypePtr* with_instance_id(int instance_id) const;
1582
1583 // the core of the computation of the meet of 2 types
1584 virtual const Type *xmeet_helper(const Type *t) const;
1585 virtual const TypeInstPtr *xmeet_unloaded(const TypeInstPtr *tinst, const TypeInterfaces* interfaces) const;
1586 virtual const Type *xdual() const; // Compute dual right now.
1587
1588 const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1589
1590 // Convenience common pre-built types.
1591 static const TypeInstPtr *NOTNULL;
1592 static const TypeInstPtr *BOTTOM;
1593 static const TypeInstPtr *MIRROR;
1594 static const TypeInstPtr *MARK;
1595 static const TypeInstPtr *KLASS;
1596 #ifndef PRODUCT
1597 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1598 #endif
1599
1600 private:
1601 virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const;
1602
1603 virtual bool is_meet_same_type_as(const TypePtr* other) const {
1604 return _klass->equals(other->is_instptr()->_klass) && _interfaces->eq(other->is_instptr()->_interfaces);
1605 }
1606
1607 };
1608
1609 //------------------------------TypeAryPtr-------------------------------------
1610 // Class of Java array pointers
1611 class TypeAryPtr : public TypeOopPtr {
1612 friend class Type;
1613 friend class TypePtr;
1614 friend class TypeInterfaces;
1615
1616 TypeAryPtr( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk,
1617 int offset, int instance_id, bool is_autobox_cache,
1618 const TypePtr* speculative, int inline_depth)
1619 : TypeOopPtr(AryPtr,ptr,k,_array_interfaces,xk,o,offset, instance_id, speculative, inline_depth),
1620 _ary(ary),
1621 _is_autobox_cache(is_autobox_cache)
1622 {
1623 int dummy;
1624 bool top_or_bottom = (base_element_type(dummy) == Type::TOP || base_element_type(dummy) == Type::BOTTOM);
1625
1626 if (UseCompressedOops && (elem()->make_oopptr() != nullptr && !top_or_bottom) &&
1627 _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes() &&
1628 _offset != arrayOopDesc::klass_offset_in_bytes()) {
1629 _is_ptr_to_narrowoop = true;
1630 }
1631
1632 }
1633 virtual bool eq( const Type *t ) const;
1634 virtual uint hash() const; // Type specific hashing
1635 const TypeAry *_ary; // Array we point into
1636 const bool _is_autobox_cache;
1637
1638 ciKlass* compute_klass() const;
1639
1640 // A pointer to delay allocation to Type::Initialize_shared()
1641
1642 static const TypeInterfaces* _array_interfaces;
1643 ciKlass* exact_klass_helper() const;
1644 // Only guaranteed non null for array of basic types
1645 ciKlass* klass() const;
1646
1647 public:
1648
1649 bool is_same_java_type_as_helper(const TypeOopPtr* other) const;
1650 bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1651 bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1652
1653 // returns base element type, an instance klass (and not interface) for object arrays
1654 const Type* base_element_type(int& dims) const;
1655
1656 // Accessors
1657 bool is_loaded() const { return (_ary->_elem->make_oopptr() ? _ary->_elem->make_oopptr()->is_loaded() : true); }
1658
1659 const TypeAry* ary() const { return _ary; }
1660 const Type* elem() const { return _ary->_elem; }
1661 const TypeInt* size() const { return _ary->_size; }
1662 bool is_stable() const { return _ary->_stable; }
1663
1664 bool is_autobox_cache() const { return _is_autobox_cache; }
1665
1666 static const TypeAryPtr *make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset,
1667 int instance_id = InstanceBot,
1668 const TypePtr* speculative = nullptr,
1669 int inline_depth = InlineDepthBottom);
1670 // Constant pointer to array
1671 static const TypeAryPtr *make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset,
1672 int instance_id = InstanceBot,
1673 const TypePtr* speculative = nullptr,
1674 int inline_depth = InlineDepthBottom, bool is_autobox_cache = false);
1675
1676 // Return a 'ptr' version of this type
1677 virtual const TypeAryPtr* cast_to_ptr_type(PTR ptr) const;
1678
1679 virtual const TypeAryPtr* cast_to_exactness(bool klass_is_exact) const;
1680
1681 virtual const TypeAryPtr* cast_to_instance_id(int instance_id) const;
1682
1683 virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
1684 virtual const TypeInt* narrow_size_type(const TypeInt* size) const;
1685
1686 virtual bool empty(void) const; // TRUE if type is vacuous
1687 virtual const TypePtr *add_offset( intptr_t offset ) const;
1688 virtual const TypeAryPtr *with_offset( intptr_t offset ) const;
1689 const TypeAryPtr* with_ary(const TypeAry* ary) const;
1690
1691 // Speculative type helper methods.
1692 virtual const TypeAryPtr* remove_speculative() const;
1693 virtual const TypePtr* with_inline_depth(int depth) const;
1694 virtual const TypePtr* with_instance_id(int instance_id) const;
1695
1696 // the core of the computation of the meet of 2 types
1697 virtual const Type *xmeet_helper(const Type *t) const;
1698 virtual const Type *xdual() const; // Compute dual right now.
1699
1700 const TypeAryPtr* cast_to_stable(bool stable, int stable_dimension = 1) const;
1701 int stable_dimension() const;
1702
1703 const TypeAryPtr* cast_to_autobox_cache() const;
1704
1705 static jint max_array_length(BasicType etype) ;
1706 virtual const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1707
1708 // Convenience common pre-built types.
1709 static const TypeAryPtr* BOTTOM;
1710 static const TypeAryPtr* RANGE;
1711 static const TypeAryPtr* OOPS;
1712 static const TypeAryPtr* NARROWOOPS;
1713 static const TypeAryPtr* BYTES;
1714 static const TypeAryPtr* SHORTS;
1715 static const TypeAryPtr* CHARS;
1716 static const TypeAryPtr* INTS;
1717 static const TypeAryPtr* LONGS;
1718 static const TypeAryPtr* FLOATS;
1719 static const TypeAryPtr* DOUBLES;
1720 // selects one of the above:
1721 static const TypeAryPtr *get_array_body_type(BasicType elem) {
1722 assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != nullptr, "bad elem type");
1723 return _array_body_type[elem];
1724 }
1725 static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
1726 // sharpen the type of an int which is used as an array size
1727 #ifndef PRODUCT
1728 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1729 #endif
1730 private:
1731 virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const;
1732 };
1733
1734 //------------------------------TypeMetadataPtr-------------------------------------
1735 // Some kind of metadata, either Method*, MethodData* or CPCacheOop
1736 class TypeMetadataPtr : public TypePtr {
1737 protected:
1738 TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset);
1739 // Do not allow interface-vs.-noninterface joins to collapse to top.
1740 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1741 public:
1742 virtual bool eq( const Type *t ) const;
1743 virtual uint hash() const; // Type specific hashing
1744 virtual bool singleton(void) const; // TRUE if type is a singleton
1745
1746 private:
1747 ciMetadata* _metadata;
1748
1749 public:
1750 static const TypeMetadataPtr* make(PTR ptr, ciMetadata* m, int offset);
1751
1752 static const TypeMetadataPtr* make(ciMethod* m);
1753 static const TypeMetadataPtr* make(ciMethodData* m);
1754
1755 ciMetadata* metadata() const { return _metadata; }
1756
1757 virtual const TypeMetadataPtr* cast_to_ptr_type(PTR ptr) const;
1758
1759 virtual const TypePtr *add_offset( intptr_t offset ) const;
1760
1761 virtual const Type *xmeet( const Type *t ) const;
1762 virtual const Type *xdual() const; // Compute dual right now.
1763
1764 virtual intptr_t get_con() const;
1765
1766 // Convenience common pre-built types.
1767 static const TypeMetadataPtr *BOTTOM;
1768
1769 #ifndef PRODUCT
1770 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1771 #endif
1772 };
1773
1774 //------------------------------TypeKlassPtr-----------------------------------
1775 // Class of Java Klass pointers
1776 class TypeKlassPtr : public TypePtr {
1777 friend class TypeInstKlassPtr;
1778 friend class TypeAryKlassPtr;
1779 friend class TypePtr;
1780 protected:
1781 TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, int offset);
1782
1783 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1784
1785 public:
1786 virtual bool eq( const Type *t ) const;
1787 virtual uint hash() const;
1788 virtual bool singleton(void) const; // TRUE if type is a singleton
1789
1790 protected:
1791
1792 ciKlass* _klass;
1793 const TypeInterfaces* _interfaces;
1794 const TypeInterfaces* meet_interfaces(const TypeKlassPtr* other) const;
1795 virtual bool must_be_exact() const { ShouldNotReachHere(); return false; }
1796 virtual ciKlass* exact_klass_helper() const;
1797 virtual ciKlass* klass() const { return _klass; }
1798
1799 public:
1800
1801 bool is_java_subtype_of(const TypeKlassPtr* other) const {
1802 return is_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1803 }
1804 bool is_same_java_type_as(const TypePtr* other) const {
1805 return is_same_java_type_as_helper(other->is_klassptr());
1806 }
1807
1808 bool maybe_java_subtype_of(const TypeKlassPtr* other) const {
1809 return maybe_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1810 }
1811 virtual bool is_same_java_type_as_helper(const TypeKlassPtr* other) const { ShouldNotReachHere(); return false; }
1812 virtual bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1813 virtual bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1814
1815 // Exact klass, possibly an interface or an array of interface
1816 ciKlass* exact_klass(bool maybe_null = false) const { assert(klass_is_exact(), ""); ciKlass* k = exact_klass_helper(); assert(k != nullptr || maybe_null, ""); return k; }
1817 virtual bool klass_is_exact() const { return _ptr == Constant; }
1818
1819 static const TypeKlassPtr* make(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces);
1820 static const TypeKlassPtr *make(PTR ptr, ciKlass* klass, int offset, InterfaceHandling interface_handling = ignore_interfaces);
1821
1822 virtual bool is_loaded() const { return _klass->is_loaded(); }
1823
1824 virtual const TypeKlassPtr* cast_to_ptr_type(PTR ptr) const { ShouldNotReachHere(); return nullptr; }
1825
1826 virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const { ShouldNotReachHere(); return nullptr; }
1827
1828 // corresponding pointer to instance, for a given class
1829 virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const { ShouldNotReachHere(); return nullptr; }
1830
1831 virtual const TypePtr *add_offset( intptr_t offset ) const { ShouldNotReachHere(); return nullptr; }
1832 virtual const Type *xmeet( const Type *t ) const { ShouldNotReachHere(); return nullptr; }
1833 virtual const Type *xdual() const { ShouldNotReachHere(); return nullptr; }
1834
1835 virtual intptr_t get_con() const;
1836
1837 virtual const TypeKlassPtr* with_offset(intptr_t offset) const { ShouldNotReachHere(); return nullptr; }
1838
1839 virtual const TypeKlassPtr* try_improve() const { return this; }
1840
1841 private:
1842 virtual bool is_meet_subtype_of(const TypePtr* other) const {
1843 return is_meet_subtype_of_helper(other->is_klassptr(), klass_is_exact(), other->is_klassptr()->klass_is_exact());
1844 }
1845
1846 virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const {
1847 ShouldNotReachHere(); return false;
1848 }
1849
1850 virtual const TypeInterfaces* interfaces() const {
1851 return _interfaces;
1852 };
1853
1854 const TypeKlassPtr* is_reference_type(const Type* other) const {
1855 return other->isa_klassptr();
1856 }
1857
1858 const TypeAryKlassPtr* is_array_type(const TypeKlassPtr* other) const {
1859 return other->isa_aryklassptr();
1860 }
1861
1862 const TypeInstKlassPtr* is_instance_type(const TypeKlassPtr* other) const {
1863 return other->isa_instklassptr();
1864 }
1865 };
1866
1867 // Instance klass pointer, mirrors TypeInstPtr
1868 class TypeInstKlassPtr : public TypeKlassPtr {
1869
1870 TypeInstKlassPtr(PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, int offset)
1871 : TypeKlassPtr(InstKlassPtr, ptr, klass, interfaces, offset) {
1872 assert(klass->is_instance_klass() && (!klass->is_loaded() || !klass->is_interface()), "");
1873 }
1874
1875 virtual bool must_be_exact() const;
1876
1877 public:
1878 // Instance klass ignoring any interface
1879 ciInstanceKlass* instance_klass() const {
1880 assert(!klass()->is_interface(), "");
1881 return klass()->as_instance_klass();
1882 }
1883
1884 bool might_be_an_array() const;
1885
1886 bool is_same_java_type_as_helper(const TypeKlassPtr* other) const;
1887 bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
1888 bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
1889
1890 static const TypeInstKlassPtr *make(ciKlass* k, InterfaceHandling interface_handling) {
1891 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, true, false, interface_handling);
1892 return make(TypePtr::Constant, k, interfaces, 0);
1893 }
1894 static const TypeInstKlassPtr* make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, int offset);
1895
1896 static const TypeInstKlassPtr* make(PTR ptr, ciKlass* k, int offset) {
1897 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1898 return make(ptr, k, interfaces, offset);
1899 }
1900
1901 virtual const TypeInstKlassPtr* cast_to_ptr_type(PTR ptr) const;
1902
1903 virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const;
1904
1905 // corresponding pointer to instance, for a given class
1906 virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const;
1907 virtual uint hash() const;
1908 virtual bool eq(const Type *t) const;
1909
1910 virtual const TypePtr *add_offset( intptr_t offset ) const;
1911 virtual const Type *xmeet( const Type *t ) const;
1912 virtual const Type *xdual() const;
1913 virtual const TypeInstKlassPtr* with_offset(intptr_t offset) const;
1914
1915 virtual const TypeKlassPtr* try_improve() const;
1916
1917 // Convenience common pre-built types.
1918 static const TypeInstKlassPtr* OBJECT; // Not-null object klass or below
1919 static const TypeInstKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
1920
1921 #ifndef PRODUCT
1922 virtual void dump2(Dict& d, uint depth, outputStream* st) const;
1923 #endif // PRODUCT
1924
1925 private:
1926 virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const;
1927 };
1928
1929 // Array klass pointer, mirrors TypeAryPtr
1930 class TypeAryKlassPtr : public TypeKlassPtr {
1931 friend class TypeInstKlassPtr;
1932 friend class Type;
1933 friend class TypePtr;
1934
1935 const Type *_elem;
1936
1937 static const TypeInterfaces* _array_interfaces;
1938 TypeAryKlassPtr(PTR ptr, const Type *elem, ciKlass* klass, int offset)
1939 : TypeKlassPtr(AryKlassPtr, ptr, klass, _array_interfaces, offset), _elem(elem) {
1940 assert(klass == nullptr || klass->is_type_array_klass() || !klass->as_obj_array_klass()->base_element_klass()->is_interface(), "");
1941 }
1942
1943 virtual ciKlass* exact_klass_helper() const;
1944 // Only guaranteed non null for array of basic types
1945 virtual ciKlass* klass() const;
1946
1947 virtual bool must_be_exact() const;
1948
1949 public:
1950
1951 // returns base element type, an instance klass (and not interface) for object arrays
1952 const Type* base_element_type(int& dims) const;
1953
1954 static const TypeAryKlassPtr *make(PTR ptr, ciKlass* k, int offset, InterfaceHandling interface_handling);
1955
1956 bool is_same_java_type_as_helper(const TypeKlassPtr* other) const;
1957 bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
1958 bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
1959
1960 bool is_loaded() const { return (_elem->isa_klassptr() ? _elem->is_klassptr()->is_loaded() : true); }
1961
1962 static const TypeAryKlassPtr *make(PTR ptr, const Type *elem, ciKlass* k, int offset);
1963 static const TypeAryKlassPtr* make(ciKlass* klass, InterfaceHandling interface_handling);
1964
1965 const Type *elem() const { return _elem; }
1966
1967 virtual bool eq(const Type *t) const;
1968 virtual uint hash() const; // Type specific hashing
1969
1970 virtual const TypeAryKlassPtr* cast_to_ptr_type(PTR ptr) const;
1971
1972 virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const;
1973
1974 // corresponding pointer to instance, for a given class
1975 virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const;
1976
1977 virtual const TypePtr *add_offset( intptr_t offset ) const;
1978 virtual const Type *xmeet( const Type *t ) const;
1979 virtual const Type *xdual() const; // Compute dual right now.
1980
1981 virtual const TypeAryKlassPtr* with_offset(intptr_t offset) const;
1982
1983 virtual bool empty(void) const {
1984 return TypeKlassPtr::empty() || _elem->empty();
1985 }
1986
1987 #ifndef PRODUCT
1988 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1989 #endif
1990 private:
1991 virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const;
1992 };
1993
1994 class TypeNarrowPtr : public Type {
1995 protected:
1996 const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR
1997
1998 TypeNarrowPtr(TYPES t, const TypePtr* ptrtype): Type(t),
1999 _ptrtype(ptrtype) {
2000 assert(ptrtype->offset() == 0 ||
2001 ptrtype->offset() == OffsetBot ||
2002 ptrtype->offset() == OffsetTop, "no real offsets");
2003 }
2004
2005 virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const = 0;
2006 virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const = 0;
2102 }
2103
2104 virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
2105 return (const TypeNarrowPtr*)((new TypeNarrowKlass(t))->hashcons());
2106 }
2107
2108 public:
2109 static const TypeNarrowKlass *make( const TypePtr* type);
2110
2111 // static const TypeNarrowKlass *BOTTOM;
2112 static const TypeNarrowKlass *NULL_PTR;
2113
2114 #ifndef PRODUCT
2115 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
2116 #endif
2117 };
2118
2119 //------------------------------TypeFunc---------------------------------------
2120 // Class of Array Types
2121 class TypeFunc : public Type {
2122 TypeFunc( const TypeTuple *domain, const TypeTuple *range ) : Type(Function), _domain(domain), _range(range) {}
2123 virtual bool eq( const Type *t ) const;
2124 virtual uint hash() const; // Type specific hashing
2125 virtual bool singleton(void) const; // TRUE if type is a singleton
2126 virtual bool empty(void) const; // TRUE if type is vacuous
2127
2128 const TypeTuple* const _domain; // Domain of inputs
2129 const TypeTuple* const _range; // Range of results
2130
2131 public:
2132 // Constants are shared among ADLC and VM
2133 enum { Control = AdlcVMDeps::Control,
2134 I_O = AdlcVMDeps::I_O,
2135 Memory = AdlcVMDeps::Memory,
2136 FramePtr = AdlcVMDeps::FramePtr,
2137 ReturnAdr = AdlcVMDeps::ReturnAdr,
2138 Parms = AdlcVMDeps::Parms
2139 };
2140
2141
2142 // Accessors:
2143 const TypeTuple* domain() const { return _domain; }
2144 const TypeTuple* range() const { return _range; }
2145
2146 static const TypeFunc *make(ciMethod* method);
2147 static const TypeFunc *make(ciSignature signature, const Type* extra);
2148 static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
2149
2150 virtual const Type *xmeet( const Type *t ) const;
2151 virtual const Type *xdual() const; // Compute dual right now.
2152
2153 BasicType return_type() const;
2154
2155 #ifndef PRODUCT
2156 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
2157 #endif
2158 // Convenience common pre-built types.
2159 };
2160
2161 //------------------------------accessors--------------------------------------
2162 inline bool Type::is_ptr_to_narrowoop() const {
2163 #ifdef _LP64
2164 return (isa_oopptr() != nullptr && is_oopptr()->is_ptr_to_narrowoop_nv());
2165 #else
2166 return false;
2167 #endif
2168 }
2169
2170 inline bool Type::is_ptr_to_narrowklass() const {
2171 #ifdef _LP64
2172 return (isa_oopptr() != nullptr && is_oopptr()->is_ptr_to_narrowklass_nv());
2173 #else
2174 return false;
2411 }
2412
2413 inline const TypeNarrowOop* Type::make_narrowoop() const {
2414 return (_base == NarrowOop) ? is_narrowoop() :
2415 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : nullptr);
2416 }
2417
2418 inline const TypeNarrowKlass* Type::make_narrowklass() const {
2419 return (_base == NarrowKlass) ? is_narrowklass() :
2420 (isa_ptr() ? TypeNarrowKlass::make(is_ptr()) : nullptr);
2421 }
2422
2423 inline bool Type::is_floatingpoint() const {
2424 if( (_base == HalfFloatCon) || (_base == HalfFloatBot) ||
2425 (_base == FloatCon) || (_base == FloatBot) ||
2426 (_base == DoubleCon) || (_base == DoubleBot) )
2427 return true;
2428 return false;
2429 }
2430
2431 template <>
2432 inline const TypeInt* Type::cast<TypeInt>() const {
2433 return is_int();
2434 }
2435
2436 template <>
2437 inline const TypeLong* Type::cast<TypeLong>() const {
2438 return is_long();
2439 }
2440
2441 template <>
2442 inline const TypeInt* Type::try_cast<TypeInt>() const {
2443 return isa_int();
2444 }
2445
2446 template <>
2447 inline const TypeLong* Type::try_cast<TypeLong>() const {
2448 return isa_long();
2449 }
2450
2456
2457 // For type queries and asserts
2458 #define is_intptr_t is_long
2459 #define isa_intptr_t isa_long
2460 #define find_intptr_t_type find_long_type
2461 #define find_intptr_t_con find_long_con
2462 #define TypeX TypeLong
2463 #define Type_X Type::Long
2464 #define TypeX_X TypeLong::LONG
2465 #define TypeX_ZERO TypeLong::ZERO
2466 // For 'ideal_reg' machine registers
2467 #define Op_RegX Op_RegL
2468 // For phase->intcon variants
2469 #define MakeConX longcon
2470 #define ConXNode ConLNode
2471 // For array index arithmetic
2472 #define MulXNode MulLNode
2473 #define AndXNode AndLNode
2474 #define OrXNode OrLNode
2475 #define CmpXNode CmpLNode
2476 #define SubXNode SubLNode
2477 #define LShiftXNode LShiftLNode
2478 // For object size computation:
2479 #define AddXNode AddLNode
2480 #define RShiftXNode RShiftLNode
2481 // For card marks and hashcodes
2482 #define URShiftXNode URShiftLNode
2483 // For shenandoahSupport
2484 #define LoadXNode LoadLNode
2485 #define StoreXNode StoreLNode
2486 // Opcodes
2487 #define Op_LShiftX Op_LShiftL
2488 #define Op_AndX Op_AndL
2489 #define Op_AddX Op_AddL
2490 #define Op_SubX Op_SubL
2491 #define Op_XorX Op_XorL
2492 #define Op_URShiftX Op_URShiftL
2493 #define Op_LoadX Op_LoadL
2494 // conversions
2495 #define ConvI2X(x) ConvI2L(x)
2496 #define ConvL2X(x) (x)
2497 #define ConvX2I(x) ConvL2I(x)
2498 #define ConvX2L(x) (x)
2499 #define ConvX2UL(x) (x)
2500
2501 #else
2502
2503 // For type queries and asserts
2504 #define is_intptr_t is_int
2505 #define isa_intptr_t isa_int
2506 #define find_intptr_t_type find_int_type
2507 #define find_intptr_t_con find_int_con
2508 #define TypeX TypeInt
2509 #define Type_X Type::Int
2510 #define TypeX_X TypeInt::INT
2511 #define TypeX_ZERO TypeInt::ZERO
2512 // For 'ideal_reg' machine registers
2513 #define Op_RegX Op_RegI
2514 // For phase->intcon variants
2515 #define MakeConX intcon
2516 #define ConXNode ConINode
2517 // For array index arithmetic
2518 #define MulXNode MulINode
2519 #define AndXNode AndINode
2520 #define OrXNode OrINode
2521 #define CmpXNode CmpINode
2522 #define SubXNode SubINode
2523 #define LShiftXNode LShiftINode
2524 // For object size computation:
2525 #define AddXNode AddINode
2526 #define RShiftXNode RShiftINode
2527 // For card marks and hashcodes
2528 #define URShiftXNode URShiftINode
2529 // For shenandoahSupport
2530 #define LoadXNode LoadINode
2531 #define StoreXNode StoreINode
2532 // Opcodes
2533 #define Op_LShiftX Op_LShiftI
2534 #define Op_AndX Op_AndI
2535 #define Op_AddX Op_AddI
2536 #define Op_SubX Op_SubI
2537 #define Op_XorX Op_XorI
2538 #define Op_URShiftX Op_URShiftI
2539 #define Op_LoadX Op_LoadI
2540 // conversions
2541 #define ConvI2X(x) (x)
2542 #define ConvL2X(x) ConvL2I(x)
2543 #define ConvX2I(x) (x)
2544 #define ConvX2L(x) ConvI2L(x)
2545 #define ConvX2UL(x) ConvI2UL(x)
2546
2547 #endif
2548
2549 #endif // SHARE_OPTO_TYPE_HPP
|
1 /*
2 * Copyright (c) 1997, 2026, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #ifndef SHARE_OPTO_TYPE_HPP
26 #define SHARE_OPTO_TYPE_HPP
27
28 #include "ci/ciInlineKlass.hpp"
29 #include "opto/adlcVMDeps.hpp"
30 #include "opto/compile.hpp"
31 #include "opto/rangeinference.hpp"
32
33 // Portions of code courtesy of Clifford Click
34
35 // Optimization - Graph Style
36
37
38 // This class defines a Type lattice. The lattice is used in the constant
39 // propagation algorithms, and for some type-checking of the iloc code.
40 // Basic types include RSD's (lower bound, upper bound, stride for integers),
41 // float & double precision constants, sets of data-labels and code-labels.
42 // The complete lattice is described below. Subtypes have no relationship to
43 // up or down in the lattice; that is entirely determined by the behavior of
44 // the MEET/JOIN functions.
45
46 class Dict;
47 class Type;
48 class TypeD;
49 class TypeF;
50 class TypeH;
51 class TypeInteger;
127 Memory, // Abstract store
128 HalfFloatTop, // No float value
129 HalfFloatCon, // Floating point constant
130 HalfFloatBot, // Any float value
131 FloatTop, // No float value
132 FloatCon, // Floating point constant
133 FloatBot, // Any float value
134 DoubleTop, // No double value
135 DoubleCon, // Double precision constant
136 DoubleBot, // Any double value
137 Bottom, // Bottom of lattice
138 lastype // Bogus ending type (not in lattice)
139 };
140
141 // Signal values for offsets from a base pointer
142 enum OFFSET_SIGNALS {
143 OffsetTop = -2000000000, // undefined offset
144 OffsetBot = -2000000001 // any possible offset
145 };
146
147 class Offset {
148 private:
149 int _offset;
150
151 public:
152 explicit Offset(int offset) : _offset(offset) {}
153
154 const Offset meet(const Offset other) const;
155 const Offset dual() const;
156 const Offset add(intptr_t offset) const;
157 bool operator==(const Offset& other) const {
158 return _offset == other._offset;
159 }
160 bool operator!=(const Offset& other) const {
161 return _offset != other._offset;
162 }
163 int get() const { return _offset; }
164
165 void dump2(outputStream *st) const;
166
167 static const Offset top;
168 static const Offset bottom;
169 };
170
171 // Min and max WIDEN values.
172 enum WIDEN {
173 WidenMin = 0,
174 WidenMax = 3
175 };
176
177 private:
178 typedef struct {
179 TYPES dual_type;
180 BasicType basic_type;
181 const char* msg;
182 bool isa_oop;
183 uint ideal_reg;
184 relocInfo::relocType reloc;
185 } TypeInfo;
186
187 // Dictionary of types shared among compilations.
188 static Dict* _shared_type_dict;
189 static const TypeInfo _type_info[];
190
352 const TypeInstPtr *isa_instptr() const; // Returns null if not InstPtr
353 const TypeInstPtr *is_instptr() const; // Instance
354 const TypeAryPtr *isa_aryptr() const; // Returns null if not AryPtr
355 const TypeAryPtr *is_aryptr() const; // Array oop
356
357 template <typename TypeClass>
358 const TypeClass* cast() const;
359
360 const TypeMetadataPtr *isa_metadataptr() const; // Returns null if not oop ptr type
361 const TypeMetadataPtr *is_metadataptr() const; // Java-style GC'd pointer
362 const TypeKlassPtr *isa_klassptr() const; // Returns null if not KlassPtr
363 const TypeKlassPtr *is_klassptr() const; // assert if not KlassPtr
364 const TypeInstKlassPtr *isa_instklassptr() const; // Returns null if not IntKlassPtr
365 const TypeInstKlassPtr *is_instklassptr() const; // assert if not IntKlassPtr
366 const TypeAryKlassPtr *isa_aryklassptr() const; // Returns null if not AryKlassPtr
367 const TypeAryKlassPtr *is_aryklassptr() const; // assert if not AryKlassPtr
368
369 virtual bool is_finite() const; // Has a finite value
370 virtual bool is_nan() const; // Is not a number (NaN)
371
372 bool is_inlinetypeptr() const;
373 virtual ciInlineKlass* inline_klass() const;
374
375 // Returns this ptr type or the equivalent ptr type for this compressed pointer.
376 const TypePtr* make_ptr() const;
377
378 // Returns this oopptr type or the equivalent oopptr type for this compressed pointer.
379 // Asserts if the underlying type is not an oopptr or narrowoop.
380 const TypeOopPtr* make_oopptr() const;
381
382 // Returns this compressed pointer or the equivalent compressed version
383 // of this pointer type.
384 const TypeNarrowOop* make_narrowoop() const;
385
386 // Returns this compressed klass pointer or the equivalent
387 // compressed version of this pointer type.
388 const TypeNarrowKlass* make_narrowklass() const;
389
390 // Special test for register pressure heuristic
391 bool is_floatingpoint() const; // True if Float or Double base type
392
393 // Do you have memory, directly or through a tuple?
394 bool has_memory( ) const;
492 static const Type* get_typeflow_type(ciType* type);
493
494 static const Type* make_from_constant(ciConstant constant,
495 bool require_constant = false,
496 int stable_dimension = 0,
497 bool is_narrow = false,
498 bool is_autobox_cache = false);
499
500 static const Type* make_constant_from_field(ciInstance* holder,
501 int off,
502 bool is_unsigned_load,
503 BasicType loadbt);
504
505 static const Type* make_constant_from_field(ciField* field,
506 ciInstance* holder,
507 BasicType loadbt,
508 bool is_unsigned_load);
509
510 static const Type* make_constant_from_array_element(ciArray* array,
511 int off,
512 int field_offset,
513 int stable_dimension,
514 BasicType loadbt,
515 bool is_unsigned_load);
516
517 // Speculative type helper methods. See TypePtr.
518 virtual const TypePtr* speculative() const { return nullptr; }
519 virtual ciKlass* speculative_type() const { return nullptr; }
520 virtual ciKlass* speculative_type_not_null() const { return nullptr; }
521 virtual bool speculative_maybe_null() const { return true; }
522 virtual bool speculative_always_null() const { return true; }
523 virtual const Type* remove_speculative() const { return this; }
524 virtual const Type* cleanup_speculative() const { return this; }
525 virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const { return exact_kls != nullptr; }
526 virtual bool would_improve_ptr(ProfilePtrKind ptr_kind) const { return ptr_kind == ProfileAlwaysNull || ptr_kind == ProfileNeverNull; }
527 const Type* maybe_remove_speculative(bool include_speculative) const;
528
529 virtual bool maybe_null() const { return true; }
530 virtual bool is_known_instance() const { return false; }
531
532 private:
965 const Type ** const _fields; // Array of field types
966
967 public:
968 virtual bool eq( const Type *t ) const;
969 virtual uint hash() const; // Type specific hashing
970 virtual bool singleton(void) const; // TRUE if type is a singleton
971 virtual bool empty(void) const; // TRUE if type is vacuous
972
973 // Accessors:
974 uint cnt() const { return _cnt; }
975 const Type* field_at(uint i) const {
976 assert(i < _cnt, "oob");
977 return _fields[i];
978 }
979 void set_field_at(uint i, const Type* t) {
980 assert(i < _cnt, "oob");
981 _fields[i] = t;
982 }
983
984 static const TypeTuple *make( uint cnt, const Type **fields );
985 static const TypeTuple *make_range(ciSignature* sig, InterfaceHandling interface_handling = ignore_interfaces, bool ret_vt_fields = false);
986 static const TypeTuple *make_domain(ciMethod* method, InterfaceHandling interface_handling, bool vt_fields_as_args = false);
987
988 // Subroutine call type with space allocated for argument types
989 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
990 static const Type **fields( uint arg_cnt );
991
992 virtual const Type *xmeet( const Type *t ) const;
993 virtual const Type *xdual() const; // Compute dual right now.
994 // Convenience common pre-built types.
995 static const TypeTuple *IFBOTH;
996 static const TypeTuple *IFFALSE;
997 static const TypeTuple *IFTRUE;
998 static const TypeTuple *IFNEITHER;
999 static const TypeTuple *LOOPBODY;
1000 static const TypeTuple *MEMBAR;
1001 static const TypeTuple *STORECONDITIONAL;
1002 static const TypeTuple *START_I2C;
1003 static const TypeTuple *INT_PAIR;
1004 static const TypeTuple *LONG_PAIR;
1005 static const TypeTuple *INT_CC_PAIR;
1006 static const TypeTuple *LONG_CC_PAIR;
1007 #ifndef PRODUCT
1008 virtual void dump2( Dict &d, uint, outputStream *st ) const; // Specialized per-Type dumping
1009 #endif
1010 };
1011
1012 //------------------------------TypeAry----------------------------------------
1013 // Class of Array Types
1014 class TypeAry : public Type {
1015 TypeAry(const Type* elem, const TypeInt* size, bool stable, bool flat, bool not_flat, bool not_null_free, bool atomic) : Type(Array),
1016 _elem(elem), _size(size), _stable(stable), _flat(flat), _not_flat(not_flat), _not_null_free(not_null_free), _atomic(atomic) {}
1017 public:
1018 virtual bool eq( const Type *t ) const;
1019 virtual uint hash() const; // Type specific hashing
1020 virtual bool singleton(void) const; // TRUE if type is a singleton
1021 virtual bool empty(void) const; // TRUE if type is vacuous
1022
1023 private:
1024 const Type *_elem; // Element type of array
1025 const TypeInt *_size; // Elements in array
1026 const bool _stable; // Are elements @Stable?
1027
1028 // Inline type array properties
1029 const bool _flat; // Array is flat
1030 const bool _not_flat; // Array is never flat
1031 const bool _not_null_free; // Array is never null-free
1032 const bool _atomic; // Array is atomic
1033
1034 friend class TypeAryPtr;
1035
1036 public:
1037 static const TypeAry* make(const Type* elem, const TypeInt* size, bool stable,
1038 bool flat, bool not_flat, bool not_null_free, bool atomic);
1039
1040 virtual const Type *xmeet( const Type *t ) const;
1041 virtual const Type *xdual() const; // Compute dual right now.
1042 bool ary_must_be_exact() const; // true if arrays of such are never generic
1043 virtual const TypeAry* remove_speculative() const;
1044 virtual const Type* cleanup_speculative() const;
1045 #ifndef PRODUCT
1046 virtual void dump2( Dict &d, uint, outputStream *st ) const; // Specialized per-Type dumping
1047 #endif
1048 };
1049
1050 //------------------------------TypeVect---------------------------------------
1051 // Class of Vector Types
1052 class TypeVect : public Type {
1053 const BasicType _elem_bt; // Vector's element type
1054 const uint _length; // Elements in vector (power of 2)
1055
1056 protected:
1057 TypeVect(TYPES t, BasicType elem_bt, uint length) : Type(t),
1058 _elem_bt(elem_bt), _length(length) {}
1164
1165 const Type* xmeet(const Type* t) const;
1166
1167 bool singleton(void) const;
1168 bool has_non_array_interface() const;
1169 };
1170
1171 //------------------------------TypePtr----------------------------------------
1172 // Class of machine Pointer Types: raw data, instances or arrays.
1173 // If the _base enum is AnyPtr, then this refers to all of the above.
1174 // Otherwise the _base will indicate which subset of pointers is affected,
1175 // and the class will be inherited from.
1176 class TypePtr : public Type {
1177 friend class TypeNarrowPtr;
1178 friend class Type;
1179 protected:
1180 static const TypeInterfaces* interfaces(ciKlass*& k, bool klass, bool interface, bool array, InterfaceHandling interface_handling);
1181
1182 public:
1183 enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
1184
1185 // Only applies to TypeInstPtr and TypeInstKlassPtr. Since the common super class is TypePtr, it is defined here.
1186 //
1187 // FlatInArray defines the following Boolean Lattice structure
1188 //
1189 // TopFlat
1190 // / \
1191 // Flat NotFlat
1192 // \ /
1193 // MaybeFlat
1194 //
1195 // with meet (see TypePtr::meet_flat_in_array()) and join (implemented over dual, see TypePtr::flat_in_array_dual)
1196 enum FlatInArray {
1197 TopFlat, // Dedicated top element and dual of MaybeFlat. Result when joining Flat and NotFlat.
1198 Flat, // An instance is always flat in an array.
1199 NotFlat, // An instance is never flat in an array.
1200 MaybeFlat, // We don't know whether an instance is flat in an array.
1201 Uninitialized // Used when the flat in array property was not computed, yet - should never actually end up in a type.
1202 };
1203 protected:
1204 TypePtr(TYPES t, PTR ptr, Offset offset,
1205 const TypePtr* speculative = nullptr,
1206 int inline_depth = InlineDepthBottom) :
1207 Type(t), _speculative(speculative), _inline_depth(inline_depth), _offset(offset),
1208 _ptr(ptr) {}
1209 static const PTR ptr_meet[lastPTR][lastPTR];
1210 static const PTR ptr_dual[lastPTR];
1211 static const char * const ptr_msg[lastPTR];
1212
1213 static const FlatInArray flat_in_array_dual[Uninitialized];
1214 static const char* const flat_in_array_msg[Uninitialized];
1215
1216 enum {
1217 InlineDepthBottom = INT_MAX,
1218 InlineDepthTop = -InlineDepthBottom
1219 };
1220
1221 // Extra type information profiling gave us. We propagate it the
1222 // same way the rest of the type info is propagated. If we want to
1223 // use it, then we have to emit a guard: this part of the type is
1224 // not something we know but something we speculate about the type.
1225 const TypePtr* _speculative;
1226 // For speculative types, we record at what inlining depth the
1227 // profiling point that provided the data is. We want to favor
1228 // profile data coming from outer scopes which are likely better for
1229 // the current compilation.
1230 int _inline_depth;
1231
1232 // utility methods to work on the speculative part of the type
1233 const TypePtr* dual_speculative() const;
1234 const TypePtr* xmeet_speculative(const TypePtr* other) const;
1235 bool eq_speculative(const TypePtr* other) const;
1244 #ifndef PRODUCT
1245 void dump_speculative(outputStream* st) const;
1246 void dump_inline_depth(outputStream* st) const;
1247 void dump_offset(outputStream* st) const;
1248 #endif
1249
1250 // TypeInstPtr (TypeAryPtr resp.) and TypeInstKlassPtr (TypeAryKlassPtr resp.) implement very similar meet logic.
1251 // The logic for meeting 2 instances (2 arrays resp.) is shared in the 2 utility methods below. However the logic for
1252 // the oop and klass versions can be slightly different and extra logic may have to be executed depending on what
1253 // exact case the meet falls into. The MeetResult struct is used by the utility methods to communicate what case was
1254 // encountered so the right logic specific to klasses or oops can be executed.,
1255 enum MeetResult {
1256 QUICK,
1257 UNLOADED,
1258 SUBTYPE,
1259 NOT_SUBTYPE,
1260 LCA
1261 };
1262 template<class T> static TypePtr::MeetResult meet_instptr(PTR& ptr, const TypeInterfaces*& interfaces, const T* this_type,
1263 const T* other_type, ciKlass*& res_klass, bool& res_xk);
1264 protected:
1265 static FlatInArray meet_flat_in_array(FlatInArray left, FlatInArray other);
1266
1267 template<class T> static MeetResult meet_aryptr(PTR& ptr, const Type*& elem, const T* this_ary, const T* other_ary,
1268 ciKlass*& res_klass, bool& res_xk, bool &res_flat, bool &res_not_flat, bool &res_not_null_free, bool &res_atomic);
1269
1270 template <class T1, class T2> static bool is_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1271 template <class T1, class T2> static bool is_same_java_type_as_helper_for_instance(const T1* this_one, const T2* other);
1272 template <class T1, class T2> static bool maybe_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1273 template <class T1, class T2> static bool is_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1274 template <class T1, class T2> static bool is_same_java_type_as_helper_for_array(const T1* this_one, const T2* other);
1275 template <class T1, class T2> static bool maybe_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1276 template <class T1, class T2> static bool is_meet_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_xk, bool other_xk);
1277 template <class T1, class T2> static bool is_meet_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_xk, bool other_xk);
1278 public:
1279 const Offset _offset; // Offset into oop, with TOP & BOT
1280 const PTR _ptr; // Pointer equivalence class
1281
1282 int offset() const { return _offset.get(); }
1283 PTR ptr() const { return _ptr; }
1284
1285 static const TypePtr* make(TYPES t, PTR ptr, Offset offset,
1286 const TypePtr* speculative = nullptr,
1287 int inline_depth = InlineDepthBottom);
1288
1289 // Return a 'ptr' version of this type
1290 virtual const TypePtr* cast_to_ptr_type(PTR ptr) const;
1291
1292 virtual intptr_t get_con() const;
1293
1294 Type::Offset xadd_offset(intptr_t offset) const;
1295 virtual const TypePtr* add_offset(intptr_t offset) const;
1296 virtual const TypePtr* with_offset(intptr_t offset) const;
1297 virtual int flat_offset() const { return offset(); }
1298 virtual bool eq(const Type *t) const;
1299 virtual uint hash() const; // Type specific hashing
1300
1301 virtual bool singleton(void) const; // TRUE if type is a singleton
1302 virtual bool empty(void) const; // TRUE if type is vacuous
1303 virtual const Type *xmeet( const Type *t ) const;
1304 virtual const Type *xmeet_helper( const Type *t ) const;
1305 Offset meet_offset(int offset) const;
1306 Offset dual_offset() const;
1307 virtual const Type *xdual() const; // Compute dual right now.
1308
1309 // meet, dual and join over pointer equivalence sets
1310 PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
1311 PTR dual_ptr() const { return ptr_dual[ptr()]; }
1312
1313 // This is textually confusing unless one recalls that
1314 // join(t) == dual()->meet(t->dual())->dual().
1315 PTR join_ptr( const PTR in_ptr ) const {
1316 return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
1317 }
1318
1319 // Speculative type helper methods.
1320 virtual const TypePtr* speculative() const { return _speculative; }
1321 int inline_depth() const { return _inline_depth; }
1322 virtual ciKlass* speculative_type() const;
1323 virtual ciKlass* speculative_type_not_null() const;
1324 virtual bool speculative_maybe_null() const;
1325 virtual bool speculative_always_null() const;
1326 virtual const TypePtr* remove_speculative() const;
1327 virtual const Type* cleanup_speculative() const;
1328 virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
1329 virtual bool would_improve_ptr(ProfilePtrKind maybe_null) const;
1330 virtual const TypePtr* with_inline_depth(int depth) const;
1331
1332 virtual bool maybe_null() const { return meet_ptr(Null) == ptr(); }
1333
1334 NOT_PRODUCT(static void dump_flat_in_array(FlatInArray flat_in_array, outputStream* st);)
1335
1336 static FlatInArray compute_flat_in_array(ciInstanceKlass* instance_klass, bool is_exact);
1337 FlatInArray compute_flat_in_array_if_unknown(ciInstanceKlass* instance_klass, bool is_exact,
1338 FlatInArray old_flat_in_array) const;
1339
1340 virtual bool can_be_inline_type() const { return false; }
1341 virtual bool is_flat_in_array() const { return flat_in_array() == Flat; }
1342 virtual bool is_not_flat_in_array() const { return flat_in_array() == NotFlat; }
1343 virtual FlatInArray flat_in_array() const { return NotFlat; }
1344 virtual bool is_flat() const { return false; }
1345 virtual bool is_not_flat() const { return false; }
1346 virtual bool is_null_free() const { return false; }
1347 virtual bool is_not_null_free() const { return false; }
1348 virtual bool is_atomic() const { return false; }
1349
1350 // Tests for relation to centerline of type lattice:
1351 static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
1352 static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
1353 // Convenience common pre-built types.
1354 static const TypePtr *NULL_PTR;
1355 static const TypePtr *NOTNULL;
1356 static const TypePtr *BOTTOM;
1357 #ifndef PRODUCT
1358 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1359 #endif
1360 };
1361
1362 //------------------------------TypeRawPtr-------------------------------------
1363 // Class of raw pointers, pointers to things other than Oops. Examples
1364 // include the stack pointer, top of heap, card-marking area, handles, etc.
1365 class TypeRawPtr : public TypePtr {
1366 protected:
1367 TypeRawPtr(PTR ptr, address bits) : TypePtr(RawPtr,ptr,Offset(0)), _bits(bits){}
1368 public:
1369 virtual bool eq( const Type *t ) const;
1370 virtual uint hash() const; // Type specific hashing
1371
1372 const address _bits; // Constant value, if applicable
1373
1374 static const TypeRawPtr *make( PTR ptr );
1375 static const TypeRawPtr *make( address bits );
1376
1377 // Return a 'ptr' version of this type
1378 virtual const TypeRawPtr* cast_to_ptr_type(PTR ptr) const;
1379
1380 virtual intptr_t get_con() const;
1381
1382 virtual const TypePtr* add_offset(intptr_t offset) const;
1383 virtual const TypeRawPtr* with_offset(intptr_t offset) const { ShouldNotReachHere(); return nullptr;}
1384
1385 virtual const Type *xmeet( const Type *t ) const;
1386 virtual const Type *xdual() const; // Compute dual right now.
1387 // Convenience common pre-built types.
1388 static const TypeRawPtr *BOTTOM;
1389 static const TypeRawPtr *NOTNULL;
1390 #ifndef PRODUCT
1391 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1392 #endif
1393 };
1394
1395 //------------------------------TypeOopPtr-------------------------------------
1396 // Some kind of oop (Java pointer), either instance or array.
1397 class TypeOopPtr : public TypePtr {
1398 friend class TypeAry;
1399 friend class TypePtr;
1400 friend class TypeInstPtr;
1401 friend class TypeAryPtr;
1402 protected:
1403 TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset offset, Offset field_offset, int instance_id,
1404 const TypePtr* speculative, int inline_depth);
1405 public:
1406 virtual bool eq( const Type *t ) const;
1407 virtual uint hash() const; // Type specific hashing
1408 virtual bool singleton(void) const; // TRUE if type is a singleton
1409 enum {
1410 InstanceTop = -1, // undefined instance
1411 InstanceBot = 0 // any possible instance
1412 };
1413 protected:
1414
1415 // Oop is null, unless this is a constant oop.
1416 ciObject* _const_oop; // Constant oop
1417 // If _klass is null, then so is _sig. This is an unloaded klass.
1418 ciKlass* _klass; // Klass object
1419
1420 const TypeInterfaces* _interfaces;
1421
1422 // Does the type exclude subclasses of the klass? (Inexact == polymorphic.)
1423 bool _klass_is_exact;
1424 bool _is_ptr_to_narrowoop;
1425 bool _is_ptr_to_narrowklass;
1426 bool _is_ptr_to_boxed_value;
1427 bool _is_ptr_to_strict_final_field;
1428
1429 // If not InstanceTop or InstanceBot, indicates that this is
1430 // a particular instance of this type which is distinct.
1431 // This is the node index of the allocation node creating this instance.
1432 int _instance_id;
1433
1434 static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact, InterfaceHandling interface_handling);
1435
1436 int dual_instance_id() const;
1437 int meet_instance_id(int uid) const;
1438
1439 const TypeInterfaces* meet_interfaces(const TypeOopPtr* other) const;
1440
1441 // Do not allow interface-vs.-noninterface joins to collapse to top.
1442 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1443
1444 virtual ciKlass* exact_klass_helper() const { return nullptr; }
1445 virtual ciKlass* klass() const { return _klass; }
1446
1447 #ifndef PRODUCT
1448 void dump_instance_id(outputStream* st) const;
1449 #endif // PRODUCT
1450
1451 public:
1452
1453 bool is_java_subtype_of(const TypeOopPtr* other) const {
1454 return is_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1455 }
1456
1457 bool is_same_java_type_as(const TypePtr* other) const {
1458 return is_same_java_type_as_helper(other->is_oopptr());
1459 }
1460
1461 virtual bool is_same_java_type_as_helper(const TypeOopPtr* other) const {
1462 ShouldNotReachHere(); return false;
1463 }
1464
1465 bool maybe_java_subtype_of(const TypeOopPtr* other) const {
1476 return make_from_klass_common(klass, true, false, interface_handling);
1477 }
1478 // Same as before, but will produce an exact type, even if
1479 // the klass is not final, as long as it has exactly one implementation.
1480 static const TypeOopPtr* make_from_klass_unique(ciKlass* klass, InterfaceHandling interface_handling= ignore_interfaces) {
1481 return make_from_klass_common(klass, true, true, interface_handling);
1482 }
1483 // Same as before, but does not respects UseUniqueSubclasses.
1484 // Use this only for creating array element types.
1485 static const TypeOopPtr* make_from_klass_raw(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) {
1486 return make_from_klass_common(klass, false, false, interface_handling);
1487 }
1488 // Creates a singleton type given an object.
1489 // If the object cannot be rendered as a constant,
1490 // may return a non-singleton type.
1491 // If require_constant, produce a null if a singleton is not possible.
1492 static const TypeOopPtr* make_from_constant(ciObject* o,
1493 bool require_constant = false);
1494
1495 // Make a generic (unclassed) pointer to an oop.
1496 static const TypeOopPtr* make(PTR ptr, Offset offset, int instance_id,
1497 const TypePtr* speculative = nullptr,
1498 int inline_depth = InlineDepthBottom);
1499
1500 ciObject* const_oop() const { return _const_oop; }
1501 // Exact klass, possibly an interface or an array of interface
1502 ciKlass* exact_klass(bool maybe_null = false) const { assert(klass_is_exact(), ""); ciKlass* k = exact_klass_helper(); assert(k != nullptr || maybe_null, ""); return k; }
1503 ciKlass* unloaded_klass() const { assert(!is_loaded(), "only for unloaded types"); return klass(); }
1504
1505 virtual bool is_loaded() const { return klass()->is_loaded(); }
1506 virtual bool klass_is_exact() const { return _klass_is_exact; }
1507
1508 // Returns true if this pointer points at memory which contains a
1509 // compressed oop references.
1510 bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
1511 bool is_ptr_to_narrowklass_nv() const { return _is_ptr_to_narrowklass; }
1512 bool is_ptr_to_boxed_value() const { return _is_ptr_to_boxed_value; }
1513 bool is_ptr_to_strict_final_field() const { return _is_ptr_to_strict_final_field; }
1514 bool is_known_instance() const { return _instance_id > 0; }
1515 int instance_id() const { return _instance_id; }
1516 bool is_known_instance_field() const { return is_known_instance() && _offset.get() >= 0; }
1517
1518 virtual bool can_be_inline_type() const { return (_klass == nullptr || _klass->can_be_inline_klass(_klass_is_exact)); }
1519 virtual bool can_be_inline_array() const { ShouldNotReachHere(); return false; }
1520
1521 virtual intptr_t get_con() const;
1522
1523 virtual const TypeOopPtr* cast_to_ptr_type(PTR ptr) const;
1524
1525 virtual const TypeOopPtr* cast_to_exactness(bool klass_is_exact) const;
1526
1527 virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1528
1529 // corresponding pointer to klass, for a given instance
1530 virtual const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1531
1532 virtual const TypeOopPtr* with_offset(intptr_t offset) const;
1533 virtual const TypePtr* add_offset(intptr_t offset) const;
1534
1535 // Speculative type helper methods.
1536 virtual const TypeOopPtr* remove_speculative() const;
1537 virtual const Type* cleanup_speculative() const;
1538 virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
1539 virtual const TypePtr* with_inline_depth(int depth) const;
1562 return _interfaces;
1563 };
1564
1565 const TypeOopPtr* is_reference_type(const Type* other) const {
1566 return other->isa_oopptr();
1567 }
1568
1569 const TypeAryPtr* is_array_type(const TypeOopPtr* other) const {
1570 return other->isa_aryptr();
1571 }
1572
1573 const TypeInstPtr* is_instance_type(const TypeOopPtr* other) const {
1574 return other->isa_instptr();
1575 }
1576 };
1577
1578 //------------------------------TypeInstPtr------------------------------------
1579 // Class of Java object pointers, pointing either to non-array Java instances
1580 // or to a Klass* (including array klasses).
1581 class TypeInstPtr : public TypeOopPtr {
1582 // Can this instance be in a flat array?
1583 FlatInArray _flat_in_array;
1584
1585 TypeInstPtr(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset offset,
1586 FlatInArray flat_in_array, int instance_id, const TypePtr* speculative,
1587 int inline_depth);
1588 virtual bool eq( const Type *t ) const;
1589 virtual uint hash() const; // Type specific hashing
1590 ciKlass* exact_klass_helper() const;
1591
1592 public:
1593
1594 // Instance klass, ignoring any interface
1595 ciInstanceKlass* instance_klass() const {
1596 assert(!(klass()->is_loaded() && klass()->is_interface()), "");
1597 return klass()->as_instance_klass();
1598 }
1599
1600 bool is_same_java_type_as_helper(const TypeOopPtr* other) const;
1601 bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1602 bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1603
1604 // Make a pointer to a constant oop.
1605 static const TypeInstPtr *make(ciObject* o) {
1606 ciKlass* k = o->klass();
1607 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1608 return make(TypePtr::Constant, k, interfaces, true, o, Offset(0));
1609 }
1610 // Make a pointer to a constant oop with offset.
1611 static const TypeInstPtr *make(ciObject* o, Offset offset) {
1612 ciKlass* k = o->klass();
1613 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1614 return make(TypePtr::Constant, k, interfaces, true, o, offset);
1615 }
1616
1617 // Make a pointer to some value of type klass.
1618 static const TypeInstPtr *make(PTR ptr, ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) {
1619 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
1620 return make(ptr, klass, interfaces, false, nullptr, Offset(0));
1621 }
1622
1623 // Make a pointer to some non-polymorphic value of exactly type klass.
1624 static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
1625 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, false, false, ignore_interfaces);
1626 return make(ptr, klass, interfaces, true, nullptr, Offset(0));
1627 }
1628
1629 // Make a pointer to some value of type klass with offset.
1630 static const TypeInstPtr *make(PTR ptr, ciKlass* klass, Offset offset) {
1631 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, false, false, ignore_interfaces);
1632 return make(ptr, klass, interfaces, false, nullptr, offset);
1633 }
1634
1635 // Make a pointer to an oop.
1636 static const TypeInstPtr* make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset offset,
1637 FlatInArray flat_in_array = Uninitialized,
1638 int instance_id = InstanceBot,
1639 const TypePtr* speculative = nullptr,
1640 int inline_depth = InlineDepthBottom);
1641
1642 static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, Offset offset, int instance_id = InstanceBot,
1643 FlatInArray flat_in_array = Uninitialized) {
1644 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1645 return make(ptr, k, interfaces, xk, o, offset, flat_in_array, instance_id);
1646 }
1647
1648 /** Create constant type for a constant boxed value */
1649 const Type* get_const_boxed_value() const;
1650
1651 // If this is a java.lang.Class constant, return the type for it or null.
1652 // Pass to Type::get_const_type to turn it to a type, which will usually
1653 // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
1654 ciType* java_mirror_type() const;
1655
1656 virtual const TypeInstPtr* cast_to_ptr_type(PTR ptr) const;
1657
1658 virtual const TypeInstPtr* cast_to_exactness(bool klass_is_exact) const;
1659
1660 virtual const TypeInstPtr* cast_to_instance_id(int instance_id) const;
1661
1662 virtual bool empty() const;
1663 virtual const TypePtr* add_offset(intptr_t offset) const;
1664 virtual const TypeInstPtr* with_offset(intptr_t offset) const;
1665
1666 // Speculative type helper methods.
1667 virtual const TypeInstPtr* remove_speculative() const;
1668 const TypeInstPtr* with_speculative(const TypePtr* speculative) const;
1669 virtual const TypePtr* with_inline_depth(int depth) const;
1670 virtual const TypePtr* with_instance_id(int instance_id) const;
1671
1672 virtual const TypeInstPtr* cast_to_flat_in_array() const;
1673 virtual const TypeInstPtr* cast_to_maybe_flat_in_array() const;
1674 virtual FlatInArray flat_in_array() const { return _flat_in_array; }
1675
1676 FlatInArray dual_flat_in_array() const {
1677 return flat_in_array_dual[_flat_in_array];
1678 }
1679
1680 // the core of the computation of the meet of 2 types
1681 virtual const Type *xmeet_helper(const Type *t) const;
1682 virtual const TypeInstPtr *xmeet_unloaded(const TypeInstPtr *tinst, const TypeInterfaces* interfaces) const;
1683 virtual const Type *xdual() const; // Compute dual right now.
1684
1685 const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1686
1687 virtual bool can_be_inline_array() const;
1688
1689 // Convenience common pre-built types.
1690 static const TypeInstPtr *NOTNULL;
1691 static const TypeInstPtr *BOTTOM;
1692 static const TypeInstPtr *MIRROR;
1693 static const TypeInstPtr *MARK;
1694 static const TypeInstPtr *KLASS;
1695 #ifndef PRODUCT
1696 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1697 #endif
1698
1699 private:
1700 virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const;
1701
1702 virtual bool is_meet_same_type_as(const TypePtr* other) const {
1703 return _klass->equals(other->is_instptr()->_klass) && _interfaces->eq(other->is_instptr()->_interfaces);
1704 }
1705
1706 };
1707
1708 //------------------------------TypeAryPtr-------------------------------------
1709 // Class of Java array pointers
1710 class TypeAryPtr : public TypeOopPtr {
1711 friend class Type;
1712 friend class TypePtr;
1713 friend class TypeInstPtr;
1714 friend class TypeInterfaces;
1715
1716 TypeAryPtr(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk,
1717 Offset offset, Offset field_offset, int instance_id, bool is_autobox_cache,
1718 const TypePtr* speculative, int inline_depth)
1719 : TypeOopPtr(AryPtr, ptr, k, _array_interfaces, xk, o, offset, field_offset, instance_id, speculative, inline_depth),
1720 _ary(ary),
1721 _is_autobox_cache(is_autobox_cache),
1722 _field_offset(field_offset)
1723 {
1724 int dummy;
1725 bool top_or_bottom = (base_element_type(dummy) == Type::TOP || base_element_type(dummy) == Type::BOTTOM);
1726
1727 if (UseCompressedOops && (elem()->make_oopptr() != nullptr && !top_or_bottom) &&
1728 _offset.get() != 0 && _offset.get() != arrayOopDesc::length_offset_in_bytes() &&
1729 _offset.get() != arrayOopDesc::klass_offset_in_bytes()) {
1730 _is_ptr_to_narrowoop = true;
1731 }
1732
1733 }
1734 virtual bool eq( const Type *t ) const;
1735 virtual uint hash() const; // Type specific hashing
1736 const TypeAry *_ary; // Array we point into
1737 const bool _is_autobox_cache;
1738 // For flat inline type arrays, each field of the inline type in
1739 // the array has its own memory slice so we need to keep track of
1740 // which field is accessed
1741 const Offset _field_offset;
1742 Offset meet_field_offset(const Type::Offset offset) const;
1743 Offset dual_field_offset() const;
1744
1745 ciKlass* compute_klass() const;
1746
1747 // A pointer to delay allocation to Type::Initialize_shared()
1748
1749 static const TypeInterfaces* _array_interfaces;
1750 ciKlass* exact_klass_helper() const;
1751 // Only guaranteed non null for array of basic types
1752 ciKlass* klass() const;
1753
1754 public:
1755
1756 bool is_same_java_type_as_helper(const TypeOopPtr* other) const;
1757 bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1758 bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1759
1760 // returns base element type, an instance klass (and not interface) for object arrays
1761 const Type* base_element_type(int& dims) const;
1762
1763 // Accessors
1764 bool is_loaded() const { return (_ary->_elem->make_oopptr() ? _ary->_elem->make_oopptr()->is_loaded() : true); }
1765
1766 const TypeAry* ary() const { return _ary; }
1767 const Type* elem() const { return _ary->_elem; }
1768 const TypeInt* size() const { return _ary->_size; }
1769 bool is_stable() const { return _ary->_stable; }
1770
1771 // Inline type array properties
1772 bool is_flat() const { return _ary->_flat; }
1773 bool is_not_flat() const { return _ary->_not_flat; }
1774 bool is_null_free() const { return _ary->_elem->make_ptr() != nullptr && (_ary->_elem->make_ptr()->ptr() == NotNull || _ary->_elem->make_ptr()->ptr() == AnyNull); }
1775 bool is_not_null_free() const { return _ary->_not_null_free; }
1776 bool is_atomic() const { return _ary->_atomic; }
1777
1778 bool is_autobox_cache() const { return _is_autobox_cache; }
1779
1780 static const TypeAryPtr* make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, Offset offset,
1781 Offset field_offset = Offset::bottom,
1782 int instance_id = InstanceBot,
1783 const TypePtr* speculative = nullptr,
1784 int inline_depth = InlineDepthBottom);
1785 // Constant pointer to array
1786 static const TypeAryPtr* make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, Offset offset,
1787 Offset field_offset = Offset::bottom,
1788 int instance_id = InstanceBot,
1789 const TypePtr* speculative = nullptr,
1790 int inline_depth = InlineDepthBottom,
1791 bool is_autobox_cache = false);
1792
1793 // Return a 'ptr' version of this type
1794 virtual const TypeAryPtr* cast_to_ptr_type(PTR ptr) const;
1795
1796 virtual const TypeAryPtr* cast_to_exactness(bool klass_is_exact) const;
1797
1798 virtual const TypeAryPtr* cast_to_instance_id(int instance_id) const;
1799
1800 virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
1801 virtual const TypeInt* narrow_size_type(const TypeInt* size) const;
1802
1803 virtual bool empty(void) const; // TRUE if type is vacuous
1804 virtual const TypePtr *add_offset( intptr_t offset ) const;
1805 virtual const TypeAryPtr *with_offset( intptr_t offset ) const;
1806 const TypeAryPtr* with_ary(const TypeAry* ary) const;
1807
1808 // Speculative type helper methods.
1809 virtual const TypeAryPtr* remove_speculative() const;
1810 virtual const Type* cleanup_speculative() const;
1811 virtual const TypePtr* with_inline_depth(int depth) const;
1812 virtual const TypePtr* with_instance_id(int instance_id) const;
1813
1814 // the core of the computation of the meet of 2 types
1815 virtual const Type *xmeet_helper(const Type *t) const;
1816 virtual const Type *xdual() const; // Compute dual right now.
1817
1818 // Inline type array properties
1819 const TypeAryPtr* cast_to_flat(bool flat) const;
1820 const TypeAryPtr* cast_to_not_flat(bool not_flat = true) const;
1821 const TypeAryPtr* cast_to_null_free(bool null_free) const;
1822 const TypeAryPtr* cast_to_not_null_free(bool not_null_free = true) const;
1823 const TypeAryPtr* update_properties(const TypeAryPtr* new_type) const;
1824 jint flat_layout_helper() const;
1825 int flat_elem_size() const;
1826 int flat_log_elem_size() const;
1827
1828 const TypeAryPtr* cast_to_stable(bool stable, int stable_dimension = 1) const;
1829 int stable_dimension() const;
1830
1831 const TypeAryPtr* cast_to_autobox_cache() const;
1832
1833 static jint max_array_length(BasicType etype);
1834
1835 int flat_offset() const;
1836 const Offset field_offset() const { return _field_offset; }
1837 const TypeAryPtr* with_field_offset(int offset) const;
1838 const TypePtr* add_field_offset_and_offset(intptr_t offset) const;
1839
1840 virtual bool can_be_inline_type() const { return false; }
1841 virtual const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1842
1843 virtual bool can_be_inline_array() const;
1844
1845 // Convenience common pre-built types.
1846 static const TypeAryPtr* BOTTOM;
1847 static const TypeAryPtr *RANGE;
1848 static const TypeAryPtr *OOPS;
1849 static const TypeAryPtr *NARROWOOPS;
1850 static const TypeAryPtr *BYTES;
1851 static const TypeAryPtr *SHORTS;
1852 static const TypeAryPtr *CHARS;
1853 static const TypeAryPtr *INTS;
1854 static const TypeAryPtr *LONGS;
1855 static const TypeAryPtr *FLOATS;
1856 static const TypeAryPtr *DOUBLES;
1857 static const TypeAryPtr *INLINES;
1858 // selects one of the above:
1859 static const TypeAryPtr *get_array_body_type(BasicType elem) {
1860 assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != nullptr, "bad elem type");
1861 return _array_body_type[elem];
1862 }
1863 static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
1864 // sharpen the type of an int which is used as an array size
1865 #ifndef PRODUCT
1866 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1867 #endif
1868 private:
1869 virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const;
1870 };
1871
1872 //------------------------------TypeMetadataPtr-------------------------------------
1873 // Some kind of metadata, either Method*, MethodData* or CPCacheOop
1874 class TypeMetadataPtr : public TypePtr {
1875 protected:
1876 TypeMetadataPtr(PTR ptr, ciMetadata* metadata, Offset offset);
1877 // Do not allow interface-vs.-noninterface joins to collapse to top.
1878 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1879 public:
1880 virtual bool eq( const Type *t ) const;
1881 virtual uint hash() const; // Type specific hashing
1882 virtual bool singleton(void) const; // TRUE if type is a singleton
1883
1884 private:
1885 ciMetadata* _metadata;
1886
1887 public:
1888 static const TypeMetadataPtr* make(PTR ptr, ciMetadata* m, Offset offset);
1889
1890 static const TypeMetadataPtr* make(ciMethod* m);
1891 static const TypeMetadataPtr* make(ciMethodData* m);
1892
1893 ciMetadata* metadata() const { return _metadata; }
1894
1895 virtual const TypeMetadataPtr* cast_to_ptr_type(PTR ptr) const;
1896
1897 virtual const TypePtr *add_offset( intptr_t offset ) const;
1898
1899 virtual const Type *xmeet( const Type *t ) const;
1900 virtual const Type *xdual() const; // Compute dual right now.
1901
1902 virtual intptr_t get_con() const;
1903
1904 // Convenience common pre-built types.
1905 static const TypeMetadataPtr *BOTTOM;
1906
1907 #ifndef PRODUCT
1908 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1909 #endif
1910 };
1911
1912 //------------------------------TypeKlassPtr-----------------------------------
1913 // Class of Java Klass pointers
1914 class TypeKlassPtr : public TypePtr {
1915 friend class TypeInstKlassPtr;
1916 friend class TypeAryKlassPtr;
1917 friend class TypePtr;
1918 protected:
1919 TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, Offset offset);
1920
1921 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1922
1923 public:
1924 virtual bool eq( const Type *t ) const;
1925 virtual uint hash() const;
1926 virtual bool singleton(void) const; // TRUE if type is a singleton
1927
1928 protected:
1929
1930 ciKlass* _klass;
1931 const TypeInterfaces* _interfaces;
1932 const TypeInterfaces* meet_interfaces(const TypeKlassPtr* other) const;
1933 virtual bool must_be_exact() const { ShouldNotReachHere(); return false; }
1934 virtual ciKlass* exact_klass_helper() const;
1935 virtual ciKlass* klass() const { return _klass; }
1936
1937 public:
1938
1939 bool is_java_subtype_of(const TypeKlassPtr* other) const {
1940 return is_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1941 }
1942 bool is_same_java_type_as(const TypePtr* other) const {
1943 return is_same_java_type_as_helper(other->is_klassptr());
1944 }
1945
1946 bool maybe_java_subtype_of(const TypeKlassPtr* other) const {
1947 return maybe_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1948 }
1949 virtual bool is_same_java_type_as_helper(const TypeKlassPtr* other) const { ShouldNotReachHere(); return false; }
1950 virtual bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1951 virtual bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1952
1953 // Exact klass, possibly an interface or an array of interface
1954 ciKlass* exact_klass(bool maybe_null = false) const { assert(klass_is_exact(), ""); ciKlass* k = exact_klass_helper(); assert(k != nullptr || maybe_null, ""); return k; }
1955 virtual bool klass_is_exact() const { return _ptr == Constant; }
1956
1957 static const TypeKlassPtr* make(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces);
1958
1959 virtual bool is_loaded() const { return _klass->is_loaded(); }
1960
1961 virtual const TypeKlassPtr* cast_to_ptr_type(PTR ptr) const { ShouldNotReachHere(); return nullptr; }
1962
1963 virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const { ShouldNotReachHere(); return nullptr; }
1964
1965 // corresponding pointer to instance, for a given class
1966 virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const { ShouldNotReachHere(); return nullptr; }
1967
1968 virtual const TypePtr *add_offset( intptr_t offset ) const { ShouldNotReachHere(); return nullptr; }
1969 virtual const Type *xmeet( const Type *t ) const { ShouldNotReachHere(); return nullptr; }
1970 virtual const Type *xdual() const { ShouldNotReachHere(); return nullptr; }
1971
1972 virtual intptr_t get_con() const;
1973
1974 virtual const TypeKlassPtr* with_offset(intptr_t offset) const { ShouldNotReachHere(); return nullptr; }
1975
1976 virtual bool can_be_inline_array() const { ShouldNotReachHere(); return false; }
1977
1978 virtual const TypeKlassPtr* try_improve() const { return this; }
1979
1980 private:
1981 virtual bool is_meet_subtype_of(const TypePtr* other) const {
1982 return is_meet_subtype_of_helper(other->is_klassptr(), klass_is_exact(), other->is_klassptr()->klass_is_exact());
1983 }
1984
1985 virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const {
1986 ShouldNotReachHere(); return false;
1987 }
1988
1989 virtual const TypeInterfaces* interfaces() const {
1990 return _interfaces;
1991 };
1992
1993 const TypeKlassPtr* is_reference_type(const Type* other) const {
1994 return other->isa_klassptr();
1995 }
1996
1997 const TypeAryKlassPtr* is_array_type(const TypeKlassPtr* other) const {
1998 return other->isa_aryklassptr();
1999 }
2000
2001 const TypeInstKlassPtr* is_instance_type(const TypeKlassPtr* other) const {
2002 return other->isa_instklassptr();
2003 }
2004 };
2005
2006 // Instance klass pointer, mirrors TypeInstPtr
2007 class TypeInstKlassPtr : public TypeKlassPtr {
2008 // Can an instance of this class be in a flat array?
2009 const FlatInArray _flat_in_array;
2010
2011 TypeInstKlassPtr(PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, Offset offset, FlatInArray flat_in_array)
2012 : TypeKlassPtr(InstKlassPtr, ptr, klass, interfaces, offset), _flat_in_array(flat_in_array) {
2013 assert(flat_in_array != Uninitialized, "must be set now");
2014 assert(klass->is_instance_klass() && (!klass->is_loaded() || !klass->is_interface()), "");
2015 }
2016
2017 virtual bool must_be_exact() const;
2018
2019 public:
2020 // Instance klass ignoring any interface
2021 ciInstanceKlass* instance_klass() const {
2022 assert(!klass()->is_interface(), "");
2023 return klass()->as_instance_klass();
2024 }
2025
2026 bool might_be_an_array() const;
2027
2028 bool is_same_java_type_as_helper(const TypeKlassPtr* other) const;
2029 bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
2030 bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
2031
2032 virtual bool can_be_inline_type() const { return (_klass == nullptr || _klass->can_be_inline_klass(klass_is_exact())); }
2033
2034 static const TypeInstKlassPtr *make(ciKlass* k, InterfaceHandling interface_handling) {
2035 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, true, false, interface_handling);
2036 return make(TypePtr::Constant, k, interfaces, Offset(0));
2037 }
2038
2039 static const TypeInstKlassPtr* make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, Offset offset,
2040 FlatInArray flat_in_array = Uninitialized);
2041
2042 static const TypeInstKlassPtr* make(PTR ptr, ciKlass* k, Offset offset, FlatInArray flat_in_array = Uninitialized) {
2043 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
2044 return make(ptr, k, interfaces, offset, flat_in_array);
2045 }
2046
2047 virtual const TypeInstKlassPtr* cast_to_ptr_type(PTR ptr) const;
2048
2049 virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const;
2050
2051 // corresponding pointer to instance, for a given class
2052 virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const;
2053 virtual uint hash() const;
2054 virtual bool eq(const Type *t) const;
2055
2056
2057 virtual bool empty() const;
2058 virtual const TypePtr *add_offset( intptr_t offset ) const;
2059 virtual const Type *xmeet( const Type *t ) const;
2060 virtual const Type *xdual() const;
2061 virtual const TypeInstKlassPtr* with_offset(intptr_t offset) const;
2062
2063 virtual const TypeKlassPtr* try_improve() const;
2064
2065 virtual FlatInArray flat_in_array() const { return _flat_in_array; }
2066
2067 FlatInArray dual_flat_in_array() const {
2068 return flat_in_array_dual[_flat_in_array];
2069 }
2070
2071 virtual bool can_be_inline_array() const;
2072
2073 // Convenience common pre-built types.
2074 static const TypeInstKlassPtr* OBJECT; // Not-null object klass or below
2075 static const TypeInstKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
2076
2077 #ifndef PRODUCT
2078 virtual void dump2(Dict& d, uint depth, outputStream* st) const;
2079 #endif // PRODUCT
2080
2081 private:
2082 virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const;
2083 };
2084
2085 // Array klass pointer, mirrors TypeAryPtr
2086 class TypeAryKlassPtr : public TypeKlassPtr {
2087 friend class TypeInstKlassPtr;
2088 friend class Type;
2089 friend class TypePtr;
2090
2091 const Type *_elem;
2092 const bool _not_flat; // Array is never flat
2093 const bool _not_null_free; // Array is never null-free
2094 const bool _flat;
2095 const bool _null_free;
2096 const bool _atomic;
2097 const bool _refined_type;
2098
2099 static const TypeInterfaces* _array_interfaces;
2100 TypeAryKlassPtr(PTR ptr, const Type *elem, ciKlass* klass, Offset offset, bool not_flat, int not_null_free, bool flat, bool null_free, bool atomic, bool refined_type)
2101 : TypeKlassPtr(AryKlassPtr, ptr, klass, _array_interfaces, offset), _elem(elem), _not_flat(not_flat), _not_null_free(not_null_free), _flat(flat), _null_free(null_free), _atomic(atomic), _refined_type(refined_type) {
2102 assert(klass == nullptr || klass->is_type_array_klass() || klass->is_flat_array_klass() || !klass->as_obj_array_klass()->base_element_klass()->is_interface(), "");
2103 }
2104
2105 virtual ciKlass* exact_klass_helper() const;
2106 // Only guaranteed non null for array of basic types
2107 virtual ciKlass* klass() const;
2108
2109 virtual bool must_be_exact() const;
2110
2111 bool dual_flat() const {
2112 return _flat;
2113 }
2114
2115 bool meet_flat(bool other) const {
2116 return _flat && other;
2117 }
2118
2119 bool dual_null_free() const {
2120 return _null_free;
2121 }
2122
2123 bool meet_null_free(bool other) const {
2124 return _null_free && other;
2125 }
2126
2127 bool dual_atomic() const {
2128 return _atomic;
2129 }
2130
2131 bool meet_atomic(bool other) const {
2132 return _atomic && other;
2133 }
2134
2135 public:
2136
2137 // returns base element type, an instance klass (and not interface) for object arrays
2138 const Type* base_element_type(int& dims) const;
2139
2140 static const TypeAryKlassPtr* make(PTR ptr, ciKlass* k, Offset offset, InterfaceHandling interface_handling, bool not_flat, bool not_null_free, bool flat, bool null_free, bool atomic, bool refined_type);
2141
2142 bool is_same_java_type_as_helper(const TypeKlassPtr* other) const;
2143 bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
2144 bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
2145
2146 bool is_loaded() const { return (_elem->isa_klassptr() ? _elem->is_klassptr()->is_loaded() : true); }
2147
2148 static const TypeAryKlassPtr* make(PTR ptr, const Type* elem, ciKlass* k, Offset offset, bool not_flat, bool not_null_free, bool flat, bool null_free, bool atomic, bool refined_type);
2149 static const TypeAryKlassPtr* make(ciKlass* klass, InterfaceHandling interface_handling);
2150
2151 const TypeAryKlassPtr* cast_to_non_refined() const;
2152 const TypeAryKlassPtr* cast_to_refined_array_klass_ptr(bool refined = true) const;
2153
2154 const Type *elem() const { return _elem; }
2155
2156 virtual bool eq(const Type *t) const;
2157 virtual uint hash() const; // Type specific hashing
2158
2159 virtual const TypeAryKlassPtr* cast_to_ptr_type(PTR ptr) const;
2160
2161 virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const;
2162
2163 // corresponding pointer to instance, for a given class
2164 virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const;
2165
2166 virtual const TypePtr *add_offset( intptr_t offset ) const;
2167 virtual const Type *xmeet( const Type *t ) const;
2168 virtual const Type *xdual() const; // Compute dual right now.
2169
2170 virtual const TypeAryKlassPtr* with_offset(intptr_t offset) const;
2171
2172 virtual bool empty(void) const {
2173 return TypeKlassPtr::empty() || _elem->empty();
2174 }
2175
2176 bool is_flat() const { return _flat; }
2177 bool is_not_flat() const { return _not_flat; }
2178 bool is_null_free() const { return _null_free; }
2179 bool is_not_null_free() const { return _not_null_free; }
2180 bool is_atomic() const { return _atomic; }
2181 bool is_refined_type() const { return _refined_type; }
2182 virtual bool can_be_inline_array() const;
2183
2184 #ifndef PRODUCT
2185 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
2186 #endif
2187 private:
2188 virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const;
2189 };
2190
2191 class TypeNarrowPtr : public Type {
2192 protected:
2193 const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR
2194
2195 TypeNarrowPtr(TYPES t, const TypePtr* ptrtype): Type(t),
2196 _ptrtype(ptrtype) {
2197 assert(ptrtype->offset() == 0 ||
2198 ptrtype->offset() == OffsetBot ||
2199 ptrtype->offset() == OffsetTop, "no real offsets");
2200 }
2201
2202 virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const = 0;
2203 virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const = 0;
2299 }
2300
2301 virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
2302 return (const TypeNarrowPtr*)((new TypeNarrowKlass(t))->hashcons());
2303 }
2304
2305 public:
2306 static const TypeNarrowKlass *make( const TypePtr* type);
2307
2308 // static const TypeNarrowKlass *BOTTOM;
2309 static const TypeNarrowKlass *NULL_PTR;
2310
2311 #ifndef PRODUCT
2312 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
2313 #endif
2314 };
2315
2316 //------------------------------TypeFunc---------------------------------------
2317 // Class of Array Types
2318 class TypeFunc : public Type {
2319 TypeFunc(const TypeTuple *domain_sig, const TypeTuple *domain_cc, const TypeTuple *range_sig, const TypeTuple *range_cc)
2320 : Type(Function), _domain_sig(domain_sig), _domain_cc(domain_cc), _range_sig(range_sig), _range_cc(range_cc) {}
2321 virtual bool eq( const Type *t ) const;
2322 virtual uint hash() const; // Type specific hashing
2323 virtual bool singleton(void) const; // TRUE if type is a singleton
2324 virtual bool empty(void) const; // TRUE if type is vacuous
2325
2326 // Domains of inputs: inline type arguments are not passed by
2327 // reference, instead each field of the inline type is passed as an
2328 // argument. We maintain 2 views of the argument list here: one
2329 // based on the signature (with an inline type argument as a single
2330 // slot), one based on the actual calling convention (with a value
2331 // type argument as a list of its fields).
2332 const TypeTuple* const _domain_sig;
2333 const TypeTuple* const _domain_cc;
2334 // Range of results. Similar to domains: an inline type result can be
2335 // returned in registers in which case range_cc lists all fields and
2336 // is the actual calling convention.
2337 const TypeTuple* const _range_sig;
2338 const TypeTuple* const _range_cc;
2339
2340 public:
2341 // Constants are shared among ADLC and VM
2342 enum { Control = AdlcVMDeps::Control,
2343 I_O = AdlcVMDeps::I_O,
2344 Memory = AdlcVMDeps::Memory,
2345 FramePtr = AdlcVMDeps::FramePtr,
2346 ReturnAdr = AdlcVMDeps::ReturnAdr,
2347 Parms = AdlcVMDeps::Parms
2348 };
2349
2350
2351 // Accessors:
2352 const TypeTuple* domain_sig() const { return _domain_sig; }
2353 const TypeTuple* domain_cc() const { return _domain_cc; }
2354 const TypeTuple* range_sig() const { return _range_sig; }
2355 const TypeTuple* range_cc() const { return _range_cc; }
2356
2357 static const TypeFunc* make(ciMethod* method, bool is_osr_compilation = false);
2358 static const TypeFunc *make(const TypeTuple* domain_sig, const TypeTuple* domain_cc,
2359 const TypeTuple* range_sig, const TypeTuple* range_cc);
2360 static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
2361
2362 virtual const Type *xmeet( const Type *t ) const;
2363 virtual const Type *xdual() const; // Compute dual right now.
2364
2365 BasicType return_type() const;
2366
2367 bool returns_inline_type_as_fields() const { return range_sig() != range_cc(); }
2368
2369 #ifndef PRODUCT
2370 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
2371 #endif
2372 // Convenience common pre-built types.
2373 };
2374
2375 //------------------------------accessors--------------------------------------
2376 inline bool Type::is_ptr_to_narrowoop() const {
2377 #ifdef _LP64
2378 return (isa_oopptr() != nullptr && is_oopptr()->is_ptr_to_narrowoop_nv());
2379 #else
2380 return false;
2381 #endif
2382 }
2383
2384 inline bool Type::is_ptr_to_narrowklass() const {
2385 #ifdef _LP64
2386 return (isa_oopptr() != nullptr && is_oopptr()->is_ptr_to_narrowklass_nv());
2387 #else
2388 return false;
2625 }
2626
2627 inline const TypeNarrowOop* Type::make_narrowoop() const {
2628 return (_base == NarrowOop) ? is_narrowoop() :
2629 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : nullptr);
2630 }
2631
2632 inline const TypeNarrowKlass* Type::make_narrowklass() const {
2633 return (_base == NarrowKlass) ? is_narrowklass() :
2634 (isa_ptr() ? TypeNarrowKlass::make(is_ptr()) : nullptr);
2635 }
2636
2637 inline bool Type::is_floatingpoint() const {
2638 if( (_base == HalfFloatCon) || (_base == HalfFloatBot) ||
2639 (_base == FloatCon) || (_base == FloatBot) ||
2640 (_base == DoubleCon) || (_base == DoubleBot) )
2641 return true;
2642 return false;
2643 }
2644
2645 inline bool Type::is_inlinetypeptr() const {
2646 return isa_instptr() != nullptr && is_instptr()->instance_klass()->is_inlinetype();
2647 }
2648
2649 inline ciInlineKlass* Type::inline_klass() const {
2650 return make_ptr()->is_instptr()->instance_klass()->as_inline_klass();
2651 }
2652
2653 template <>
2654 inline const TypeInt* Type::cast<TypeInt>() const {
2655 return is_int();
2656 }
2657
2658 template <>
2659 inline const TypeLong* Type::cast<TypeLong>() const {
2660 return is_long();
2661 }
2662
2663 template <>
2664 inline const TypeInt* Type::try_cast<TypeInt>() const {
2665 return isa_int();
2666 }
2667
2668 template <>
2669 inline const TypeLong* Type::try_cast<TypeLong>() const {
2670 return isa_long();
2671 }
2672
2678
2679 // For type queries and asserts
2680 #define is_intptr_t is_long
2681 #define isa_intptr_t isa_long
2682 #define find_intptr_t_type find_long_type
2683 #define find_intptr_t_con find_long_con
2684 #define TypeX TypeLong
2685 #define Type_X Type::Long
2686 #define TypeX_X TypeLong::LONG
2687 #define TypeX_ZERO TypeLong::ZERO
2688 // For 'ideal_reg' machine registers
2689 #define Op_RegX Op_RegL
2690 // For phase->intcon variants
2691 #define MakeConX longcon
2692 #define ConXNode ConLNode
2693 // For array index arithmetic
2694 #define MulXNode MulLNode
2695 #define AndXNode AndLNode
2696 #define OrXNode OrLNode
2697 #define CmpXNode CmpLNode
2698 #define CmpUXNode CmpULNode
2699 #define SubXNode SubLNode
2700 #define LShiftXNode LShiftLNode
2701 // For object size computation:
2702 #define AddXNode AddLNode
2703 #define RShiftXNode RShiftLNode
2704 // For card marks and hashcodes
2705 #define URShiftXNode URShiftLNode
2706 // For shenandoahSupport
2707 #define LoadXNode LoadLNode
2708 #define StoreXNode StoreLNode
2709 // Opcodes
2710 #define Op_LShiftX Op_LShiftL
2711 #define Op_AndX Op_AndL
2712 #define Op_AddX Op_AddL
2713 #define Op_SubX Op_SubL
2714 #define Op_XorX Op_XorL
2715 #define Op_URShiftX Op_URShiftL
2716 #define Op_LoadX Op_LoadL
2717 #define Op_StoreX Op_StoreL
2718 // conversions
2719 #define ConvI2X(x) ConvI2L(x)
2720 #define ConvL2X(x) (x)
2721 #define ConvX2I(x) ConvL2I(x)
2722 #define ConvX2L(x) (x)
2723 #define ConvX2UL(x) (x)
2724
2725 #else
2726
2727 // For type queries and asserts
2728 #define is_intptr_t is_int
2729 #define isa_intptr_t isa_int
2730 #define find_intptr_t_type find_int_type
2731 #define find_intptr_t_con find_int_con
2732 #define TypeX TypeInt
2733 #define Type_X Type::Int
2734 #define TypeX_X TypeInt::INT
2735 #define TypeX_ZERO TypeInt::ZERO
2736 // For 'ideal_reg' machine registers
2737 #define Op_RegX Op_RegI
2738 // For phase->intcon variants
2739 #define MakeConX intcon
2740 #define ConXNode ConINode
2741 // For array index arithmetic
2742 #define MulXNode MulINode
2743 #define AndXNode AndINode
2744 #define OrXNode OrINode
2745 #define CmpXNode CmpINode
2746 #define CmpUXNode CmpUNode
2747 #define SubXNode SubINode
2748 #define LShiftXNode LShiftINode
2749 // For object size computation:
2750 #define AddXNode AddINode
2751 #define RShiftXNode RShiftINode
2752 // For card marks and hashcodes
2753 #define URShiftXNode URShiftINode
2754 // For shenandoahSupport
2755 #define LoadXNode LoadINode
2756 #define StoreXNode StoreINode
2757 // Opcodes
2758 #define Op_LShiftX Op_LShiftI
2759 #define Op_AndX Op_AndI
2760 #define Op_AddX Op_AddI
2761 #define Op_SubX Op_SubI
2762 #define Op_XorX Op_XorI
2763 #define Op_URShiftX Op_URShiftI
2764 #define Op_LoadX Op_LoadI
2765 #define Op_StoreX Op_StoreI
2766 // conversions
2767 #define ConvI2X(x) (x)
2768 #define ConvL2X(x) ConvL2I(x)
2769 #define ConvX2I(x) (x)
2770 #define ConvX2L(x) ConvI2L(x)
2771 #define ConvX2UL(x) ConvI2UL(x)
2772
2773 #endif
2774
2775 #endif // SHARE_OPTO_TYPE_HPP
|