< prev index next >

src/hotspot/share/opto/type.hpp

Print this page

   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_OPTO_TYPE_HPP
  26 #define SHARE_OPTO_TYPE_HPP
  27 

  28 #include "opto/adlcVMDeps.hpp"
  29 #include "runtime/handles.hpp"

  30 
  31 // Portions of code courtesy of Clifford Click
  32 
  33 // Optimization - Graph Style
  34 
  35 
  36 // This class defines a Type lattice.  The lattice is used in the constant
  37 // propagation algorithms, and for some type-checking of the iloc code.
  38 // Basic types include RSD's (lower bound, upper bound, stride for integers),
  39 // float & double precision constants, sets of data-labels and code-labels.
  40 // The complete lattice is described below.  Subtypes have no relationship to
  41 // up or down in the lattice; that is entirely determined by the behavior of
  42 // the MEET/JOIN functions.
  43 
  44 class Dict;
  45 class Type;
  46 class   TypeD;
  47 class   TypeF;
  48 class   TypeH;
  49 class   TypeInteger;

 122     Memory,                     // Abstract store
 123     HalfFloatTop,               // No float value
 124     HalfFloatCon,               // Floating point constant
 125     HalfFloatBot,               // Any float value
 126     FloatTop,                   // No float value
 127     FloatCon,                   // Floating point constant
 128     FloatBot,                   // Any float value
 129     DoubleTop,                  // No double value
 130     DoubleCon,                  // Double precision constant
 131     DoubleBot,                  // Any double value
 132     Bottom,                     // Bottom of lattice
 133     lastype                     // Bogus ending type (not in lattice)
 134   };
 135 
 136   // Signal values for offsets from a base pointer
 137   enum OFFSET_SIGNALS {
 138     OffsetTop = -2000000000,    // undefined offset
 139     OffsetBot = -2000000001     // any possible offset
 140   };
 141 
























 142   // Min and max WIDEN values.
 143   enum WIDEN {
 144     WidenMin = 0,
 145     WidenMax = 3
 146   };
 147 
 148 private:
 149   typedef struct {
 150     TYPES                dual_type;
 151     BasicType            basic_type;
 152     const char*          msg;
 153     bool                 isa_oop;
 154     uint                 ideal_reg;
 155     relocInfo::relocType reloc;
 156   } TypeInfo;
 157 
 158   // Dictionary of types shared among compilations.
 159   static Dict* _shared_type_dict;
 160   static const TypeInfo _type_info[];
 161 

 319   const TypeInstPtr  *isa_instptr() const;       // Returns null if not InstPtr
 320   const TypeInstPtr  *is_instptr() const;        // Instance
 321   const TypeAryPtr   *isa_aryptr() const;        // Returns null if not AryPtr
 322   const TypeAryPtr   *is_aryptr() const;         // Array oop
 323 
 324   template <typename TypeClass>
 325   const TypeClass* cast() const;
 326 
 327   const TypeMetadataPtr   *isa_metadataptr() const;   // Returns null if not oop ptr type
 328   const TypeMetadataPtr   *is_metadataptr() const;    // Java-style GC'd pointer
 329   const TypeKlassPtr      *isa_klassptr() const;      // Returns null if not KlassPtr
 330   const TypeKlassPtr      *is_klassptr() const;       // assert if not KlassPtr
 331   const TypeInstKlassPtr  *isa_instklassptr() const;  // Returns null if not IntKlassPtr
 332   const TypeInstKlassPtr  *is_instklassptr() const;   // assert if not IntKlassPtr
 333   const TypeAryKlassPtr   *isa_aryklassptr() const;   // Returns null if not AryKlassPtr
 334   const TypeAryKlassPtr   *is_aryklassptr() const;    // assert if not AryKlassPtr
 335 
 336   virtual bool      is_finite() const;           // Has a finite value
 337   virtual bool      is_nan()    const;           // Is not a number (NaN)
 338 



 339   // Returns this ptr type or the equivalent ptr type for this compressed pointer.
 340   const TypePtr* make_ptr() const;
 341 
 342   // Returns this oopptr type or the equivalent oopptr type for this compressed pointer.
 343   // Asserts if the underlying type is not an oopptr or narrowoop.
 344   const TypeOopPtr* make_oopptr() const;
 345 
 346   // Returns this compressed pointer or the equivalent compressed version
 347   // of this pointer type.
 348   const TypeNarrowOop* make_narrowoop() const;
 349 
 350   // Returns this compressed klass pointer or the equivalent
 351   // compressed version of this pointer type.
 352   const TypeNarrowKlass* make_narrowklass() const;
 353 
 354   // Special test for register pressure heuristic
 355   bool is_floatingpoint() const;        // True if Float or Double base type
 356 
 357   // Do you have memory, directly or through a tuple?
 358   bool has_memory( ) const;

 751   const Type ** const _fields;           // Array of field types
 752 
 753 public:
 754   virtual bool eq( const Type *t ) const;
 755   virtual uint hash() const;             // Type specific hashing
 756   virtual bool singleton(void) const;    // TRUE if type is a singleton
 757   virtual bool empty(void) const;        // TRUE if type is vacuous
 758 
 759   // Accessors:
 760   uint cnt() const { return _cnt; }
 761   const Type* field_at(uint i) const {
 762     assert(i < _cnt, "oob");
 763     return _fields[i];
 764   }
 765   void set_field_at(uint i, const Type* t) {
 766     assert(i < _cnt, "oob");
 767     _fields[i] = t;
 768   }
 769 
 770   static const TypeTuple *make( uint cnt, const Type **fields );
 771   static const TypeTuple *make_range(ciSignature *sig, InterfaceHandling interface_handling = ignore_interfaces);
 772   static const TypeTuple *make_domain(ciInstanceKlass* recv, ciSignature *sig, InterfaceHandling interface_handling);
 773 
 774   // Subroutine call type with space allocated for argument types
 775   // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
 776   static const Type **fields( uint arg_cnt );
 777 
 778   virtual const Type *xmeet( const Type *t ) const;
 779   virtual const Type *xdual() const;    // Compute dual right now.
 780   // Convenience common pre-built types.
 781   static const TypeTuple *IFBOTH;
 782   static const TypeTuple *IFFALSE;
 783   static const TypeTuple *IFTRUE;
 784   static const TypeTuple *IFNEITHER;
 785   static const TypeTuple *LOOPBODY;
 786   static const TypeTuple *MEMBAR;
 787   static const TypeTuple *STORECONDITIONAL;
 788   static const TypeTuple *START_I2C;
 789   static const TypeTuple *INT_PAIR;
 790   static const TypeTuple *LONG_PAIR;
 791   static const TypeTuple *INT_CC_PAIR;
 792   static const TypeTuple *LONG_CC_PAIR;
 793 #ifndef PRODUCT
 794   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
 795 #endif
 796 };
 797 
 798 //------------------------------TypeAry----------------------------------------
 799 // Class of Array Types
 800 class TypeAry : public Type {
 801   TypeAry(const Type* elem, const TypeInt* size, bool stable) : Type(Array),
 802       _elem(elem), _size(size), _stable(stable) {}
 803 public:
 804   virtual bool eq( const Type *t ) const;
 805   virtual uint hash() const;             // Type specific hashing
 806   virtual bool singleton(void) const;    // TRUE if type is a singleton
 807   virtual bool empty(void) const;        // TRUE if type is vacuous
 808 
 809 private:
 810   const Type *_elem;            // Element type of array
 811   const TypeInt *_size;         // Elements in array
 812   const bool _stable;           // Are elements @Stable?






 813   friend class TypeAryPtr;
 814 
 815 public:
 816   static const TypeAry* make(const Type* elem, const TypeInt* size, bool stable = false);

 817 
 818   virtual const Type *xmeet( const Type *t ) const;
 819   virtual const Type *xdual() const;    // Compute dual right now.
 820   bool ary_must_be_exact() const;  // true if arrays of such are never generic
 821   virtual const TypeAry* remove_speculative() const;
 822   virtual const Type* cleanup_speculative() const;
 823 #ifndef PRODUCT
 824   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
 825 #endif
 826 };
 827 
 828 //------------------------------TypeVect---------------------------------------
 829 // Class of Vector Types
 830 class TypeVect : public Type {
 831   const BasicType _elem_bt;  // Vector's element type
 832   const uint _length;  // Elements in vector (power of 2)
 833 
 834 protected:
 835   TypeVect(TYPES t, BasicType elem_bt, uint length) : Type(t),
 836     _elem_bt(elem_bt), _length(length) {}

 943   const Type* xmeet(const Type* t) const;
 944 
 945   bool singleton(void) const;
 946   bool has_non_array_interface() const;
 947 };
 948 
 949 //------------------------------TypePtr----------------------------------------
 950 // Class of machine Pointer Types: raw data, instances or arrays.
 951 // If the _base enum is AnyPtr, then this refers to all of the above.
 952 // Otherwise the _base will indicate which subset of pointers is affected,
 953 // and the class will be inherited from.
 954 class TypePtr : public Type {
 955   friend class TypeNarrowPtr;
 956   friend class Type;
 957 protected:
 958   static const TypeInterfaces* interfaces(ciKlass*& k, bool klass, bool interface, bool array, InterfaceHandling interface_handling);
 959 
 960 public:
 961   enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
 962 protected:
 963   TypePtr(TYPES t, PTR ptr, int offset,
 964           const TypePtr* speculative = nullptr,
 965           int inline_depth = InlineDepthBottom) :
 966     Type(t), _speculative(speculative), _inline_depth(inline_depth), _offset(offset),
 967     _ptr(ptr) {}
 968   static const PTR ptr_meet[lastPTR][lastPTR];
 969   static const PTR ptr_dual[lastPTR];
 970   static const char * const ptr_msg[lastPTR];
 971 
 972   enum {
 973     InlineDepthBottom = INT_MAX,
 974     InlineDepthTop = -InlineDepthBottom
 975   };
 976 
 977   // Extra type information profiling gave us. We propagate it the
 978   // same way the rest of the type info is propagated. If we want to
 979   // use it, then we have to emit a guard: this part of the type is
 980   // not something we know but something we speculate about the type.
 981   const TypePtr*   _speculative;
 982   // For speculative types, we record at what inlining depth the
 983   // profiling point that provided the data is. We want to favor

 999   // utility methods to work on the inline depth of the type
1000   int dual_inline_depth() const;
1001   int meet_inline_depth(int depth) const;
1002 #ifndef PRODUCT
1003   void dump_inline_depth(outputStream *st) const;
1004 #endif
1005 
1006   // TypeInstPtr (TypeAryPtr resp.) and TypeInstKlassPtr (TypeAryKlassPtr resp.) implement very similar meet logic.
1007   // The logic for meeting 2 instances (2 arrays resp.) is shared in the 2 utility methods below. However the logic for
1008   // the oop and klass versions can be slightly different and extra logic may have to be executed depending on what
1009   // exact case the meet falls into. The MeetResult struct is used by the utility methods to communicate what case was
1010   // encountered so the right logic specific to klasses or oops can be executed.,
1011   enum MeetResult {
1012     QUICK,
1013     UNLOADED,
1014     SUBTYPE,
1015     NOT_SUBTYPE,
1016     LCA
1017   };
1018   template<class T> static TypePtr::MeetResult meet_instptr(PTR& ptr, const TypeInterfaces*& interfaces, const T* this_type,
1019                                                             const T* other_type, ciKlass*& res_klass, bool& res_xk);



1020 
1021   template<class T> static MeetResult meet_aryptr(PTR& ptr, const Type*& elem, const T* this_ary, const T* other_ary,
1022                                                   ciKlass*& res_klass, bool& res_xk);
1023 
1024   template <class T1, class T2> static bool is_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1025   template <class T1, class T2> static bool is_same_java_type_as_helper_for_instance(const T1* this_one, const T2* other);
1026   template <class T1, class T2> static bool maybe_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1027   template <class T1, class T2> static bool is_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1028   template <class T1, class T2> static bool is_same_java_type_as_helper_for_array(const T1* this_one, const T2* other);
1029   template <class T1, class T2> static bool maybe_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1030   template <class T1, class T2> static bool is_meet_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_xk, bool other_xk);
1031   template <class T1, class T2> static bool is_meet_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_xk, bool other_xk);
1032 public:
1033   const int _offset;            // Offset into oop, with TOP & BOT
1034   const PTR _ptr;               // Pointer equivalence class
1035 
1036   int offset() const { return _offset; }
1037   PTR ptr()    const { return _ptr; }
1038 
1039   static const TypePtr *make(TYPES t, PTR ptr, int offset,
1040                              const TypePtr* speculative = nullptr,
1041                              int inline_depth = InlineDepthBottom);
1042 
1043   // Return a 'ptr' version of this type
1044   virtual const TypePtr* cast_to_ptr_type(PTR ptr) const;
1045 
1046   virtual intptr_t get_con() const;
1047 
1048   int xadd_offset( intptr_t offset ) const;
1049   virtual const TypePtr* add_offset(intptr_t offset) const;
1050   virtual const TypePtr* with_offset(intptr_t offset) const;

1051   virtual bool eq(const Type *t) const;
1052   virtual uint hash() const;             // Type specific hashing
1053 
1054   virtual bool singleton(void) const;    // TRUE if type is a singleton
1055   virtual bool empty(void) const;        // TRUE if type is vacuous
1056   virtual const Type *xmeet( const Type *t ) const;
1057   virtual const Type *xmeet_helper( const Type *t ) const;
1058   int meet_offset( int offset ) const;
1059   int dual_offset( ) const;
1060   virtual const Type *xdual() const;    // Compute dual right now.
1061 
1062   // meet, dual and join over pointer equivalence sets
1063   PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
1064   PTR dual_ptr()                   const { return ptr_dual[ptr()];      }
1065 
1066   // This is textually confusing unless one recalls that
1067   // join(t) == dual()->meet(t->dual())->dual().
1068   PTR join_ptr( const PTR in_ptr ) const {
1069     return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
1070   }
1071 
1072   // Speculative type helper methods.
1073   virtual const TypePtr* speculative() const { return _speculative; }
1074   int inline_depth() const                   { return _inline_depth; }
1075   virtual ciKlass* speculative_type() const;
1076   virtual ciKlass* speculative_type_not_null() const;
1077   virtual bool speculative_maybe_null() const;
1078   virtual bool speculative_always_null() const;
1079   virtual const TypePtr* remove_speculative() const;
1080   virtual const Type* cleanup_speculative() const;
1081   virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
1082   virtual bool would_improve_ptr(ProfilePtrKind maybe_null) const;
1083   virtual const TypePtr* with_inline_depth(int depth) const;
1084 
1085   virtual bool maybe_null() const { return meet_ptr(Null) == ptr(); }
1086 








1087   // Tests for relation to centerline of type lattice:
1088   static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
1089   static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
1090   // Convenience common pre-built types.
1091   static const TypePtr *NULL_PTR;
1092   static const TypePtr *NOTNULL;
1093   static const TypePtr *BOTTOM;
1094 #ifndef PRODUCT
1095   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
1096 #endif
1097 };
1098 
1099 //------------------------------TypeRawPtr-------------------------------------
1100 // Class of raw pointers, pointers to things other than Oops.  Examples
1101 // include the stack pointer, top of heap, card-marking area, handles, etc.
1102 class TypeRawPtr : public TypePtr {
1103 protected:
1104   TypeRawPtr( PTR ptr, address bits ) : TypePtr(RawPtr,ptr,0), _bits(bits){}
1105 public:
1106   virtual bool eq( const Type *t ) const;
1107   virtual uint hash() const;    // Type specific hashing
1108 
1109   const address _bits;          // Constant value, if applicable
1110 
1111   static const TypeRawPtr *make( PTR ptr );
1112   static const TypeRawPtr *make( address bits );
1113 
1114   // Return a 'ptr' version of this type
1115   virtual const TypeRawPtr* cast_to_ptr_type(PTR ptr) const;
1116 
1117   virtual intptr_t get_con() const;
1118 
1119   virtual const TypePtr* add_offset(intptr_t offset) const;
1120   virtual const TypeRawPtr* with_offset(intptr_t offset) const { ShouldNotReachHere(); return nullptr;}
1121 
1122   virtual const Type *xmeet( const Type *t ) const;
1123   virtual const Type *xdual() const;    // Compute dual right now.
1124   // Convenience common pre-built types.
1125   static const TypeRawPtr *BOTTOM;
1126   static const TypeRawPtr *NOTNULL;
1127 #ifndef PRODUCT
1128   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
1129 #endif
1130 };
1131 
1132 //------------------------------TypeOopPtr-------------------------------------
1133 // Some kind of oop (Java pointer), either instance or array.
1134 class TypeOopPtr : public TypePtr {
1135   friend class TypeAry;
1136   friend class TypePtr;
1137   friend class TypeInstPtr;
1138   friend class TypeAryPtr;
1139 protected:
1140  TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int offset, int instance_id,
1141             const TypePtr* speculative, int inline_depth);
1142 public:
1143   virtual bool eq( const Type *t ) const;
1144   virtual uint hash() const;             // Type specific hashing
1145   virtual bool singleton(void) const;    // TRUE if type is a singleton
1146   enum {
1147    InstanceTop = -1,   // undefined instance
1148    InstanceBot = 0     // any possible instance
1149   };
1150 protected:
1151 
1152   // Oop is null, unless this is a constant oop.
1153   ciObject*     _const_oop;   // Constant oop
1154   // If _klass is null, then so is _sig.  This is an unloaded klass.
1155   ciKlass*      _klass;       // Klass object
1156 
1157   const TypeInterfaces* _interfaces;
1158 
1159   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
1160   bool          _klass_is_exact;
1161   bool          _is_ptr_to_narrowoop;
1162   bool          _is_ptr_to_narrowklass;
1163   bool          _is_ptr_to_boxed_value;
1164 
1165   // If not InstanceTop or InstanceBot, indicates that this is
1166   // a particular instance of this type which is distinct.
1167   // This is the node index of the allocation node creating this instance.
1168   int           _instance_id;
1169 
1170   static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact, InterfaceHandling interface_handling);
1171 
1172   int dual_instance_id() const;
1173   int meet_instance_id(int uid) const;
1174 
1175   const TypeInterfaces* meet_interfaces(const TypeOopPtr* other) const;
1176 
1177   // Do not allow interface-vs.-noninterface joins to collapse to top.
1178   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1179 
1180   virtual ciKlass* exact_klass_helper() const { return nullptr; }
1181   virtual ciKlass* klass() const { return _klass;     }
1182 
1183 public:
1184 
1185   bool is_java_subtype_of(const TypeOopPtr* other) const {
1186     return is_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1187   }
1188 
1189   bool is_same_java_type_as(const TypePtr* other) const {
1190     return is_same_java_type_as_helper(other->is_oopptr());
1191   }
1192 
1193   virtual bool is_same_java_type_as_helper(const TypeOopPtr* other) const {
1194     ShouldNotReachHere(); return false;
1195   }
1196 
1197   bool maybe_java_subtype_of(const TypeOopPtr* other) const {
1198     return maybe_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1199   }
1200   virtual bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1201   virtual bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }

1208     return make_from_klass_common(klass, true, false, interface_handling);
1209   }
1210   // Same as before, but will produce an exact type, even if
1211   // the klass is not final, as long as it has exactly one implementation.
1212   static const TypeOopPtr* make_from_klass_unique(ciKlass* klass, InterfaceHandling interface_handling= ignore_interfaces) {
1213     return make_from_klass_common(klass, true, true, interface_handling);
1214   }
1215   // Same as before, but does not respects UseUniqueSubclasses.
1216   // Use this only for creating array element types.
1217   static const TypeOopPtr* make_from_klass_raw(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) {
1218     return make_from_klass_common(klass, false, false, interface_handling);
1219   }
1220   // Creates a singleton type given an object.
1221   // If the object cannot be rendered as a constant,
1222   // may return a non-singleton type.
1223   // If require_constant, produce a null if a singleton is not possible.
1224   static const TypeOopPtr* make_from_constant(ciObject* o,
1225                                               bool require_constant = false);
1226 
1227   // Make a generic (unclassed) pointer to an oop.
1228   static const TypeOopPtr* make(PTR ptr, int offset, int instance_id,
1229                                 const TypePtr* speculative = nullptr,
1230                                 int inline_depth = InlineDepthBottom);
1231 
1232   ciObject* const_oop()    const { return _const_oop; }
1233   // Exact klass, possibly an interface or an array of interface
1234   ciKlass* exact_klass(bool maybe_null = false) const { assert(klass_is_exact(), ""); ciKlass* k = exact_klass_helper(); assert(k != nullptr || maybe_null, ""); return k;  }
1235   ciKlass* unloaded_klass() const { assert(!is_loaded(), "only for unloaded types"); return klass(); }
1236 
1237   virtual bool  is_loaded() const { return klass()->is_loaded(); }
1238   virtual bool klass_is_exact()    const { return _klass_is_exact; }
1239 
1240   // Returns true if this pointer points at memory which contains a
1241   // compressed oop references.
1242   bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
1243   bool is_ptr_to_narrowklass_nv() const { return _is_ptr_to_narrowklass; }
1244   bool is_ptr_to_boxed_value()   const { return _is_ptr_to_boxed_value; }
1245   bool is_known_instance()       const { return _instance_id > 0; }
1246   int  instance_id()             const { return _instance_id; }
1247   bool is_known_instance_field() const { return is_known_instance() && _offset >= 0; }



1248 
1249   virtual intptr_t get_con() const;
1250 
1251   virtual const TypeOopPtr* cast_to_ptr_type(PTR ptr) const;
1252 
1253   virtual const TypeOopPtr* cast_to_exactness(bool klass_is_exact) const;
1254 
1255   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1256 
1257   // corresponding pointer to klass, for a given instance
1258   virtual const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1259 
1260   virtual const TypeOopPtr* with_offset(intptr_t offset) const;
1261   virtual const TypePtr* add_offset(intptr_t offset) const;
1262 
1263   // Speculative type helper methods.
1264   virtual const TypeOopPtr* remove_speculative() const;
1265   virtual const Type* cleanup_speculative() const;
1266   virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
1267   virtual const TypePtr* with_inline_depth(int depth) const;

1290     return _interfaces;
1291   };
1292 
1293   const TypeOopPtr* is_reference_type(const Type* other) const {
1294     return other->isa_oopptr();
1295   }
1296 
1297   const TypeAryPtr* is_array_type(const TypeOopPtr* other) const {
1298     return other->isa_aryptr();
1299   }
1300 
1301   const TypeInstPtr* is_instance_type(const TypeOopPtr* other) const {
1302     return other->isa_instptr();
1303   }
1304 };
1305 
1306 //------------------------------TypeInstPtr------------------------------------
1307 // Class of Java object pointers, pointing either to non-array Java instances
1308 // or to a Klass* (including array klasses).
1309 class TypeInstPtr : public TypeOopPtr {
1310   TypeInstPtr(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int off, int instance_id,
1311               const TypePtr* speculative, int inline_depth);

1312   virtual bool eq( const Type *t ) const;
1313   virtual uint hash() const;             // Type specific hashing
1314 
1315   ciKlass* exact_klass_helper() const;
1316 
1317 public:
1318 
1319   // Instance klass, ignoring any interface
1320   ciInstanceKlass* instance_klass() const {
1321     assert(!(klass()->is_loaded() && klass()->is_interface()), "");
1322     return klass()->as_instance_klass();
1323   }
1324 
1325   bool is_same_java_type_as_helper(const TypeOopPtr* other) const;
1326   bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1327   bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1328 
1329   // Make a pointer to a constant oop.
1330   static const TypeInstPtr *make(ciObject* o) {
1331     ciKlass* k = o->klass();
1332     const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1333     return make(TypePtr::Constant, k, interfaces, true, o, 0, InstanceBot);
1334   }
1335   // Make a pointer to a constant oop with offset.
1336   static const TypeInstPtr *make(ciObject* o, int offset) {
1337     ciKlass* k = o->klass();
1338     const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1339     return make(TypePtr::Constant, k, interfaces, true, o, offset, InstanceBot);
1340   }
1341 
1342   // Make a pointer to some value of type klass.
1343   static const TypeInstPtr *make(PTR ptr, ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) {
1344     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
1345     return make(ptr, klass, interfaces, false, nullptr, 0, InstanceBot);
1346   }
1347 
1348   // Make a pointer to some non-polymorphic value of exactly type klass.
1349   static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
1350     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, false, false, ignore_interfaces);
1351     return make(ptr, klass, interfaces, true, nullptr, 0, InstanceBot);
1352   }
1353 
1354   // Make a pointer to some value of type klass with offset.
1355   static const TypeInstPtr *make(PTR ptr, ciKlass* klass, int offset) {
1356     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, false, false, ignore_interfaces);
1357     return make(ptr, klass, interfaces, false, nullptr, offset, InstanceBot);
1358   }
1359 
1360   static const TypeInstPtr *make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int offset,


1361                                  int instance_id = InstanceBot,
1362                                  const TypePtr* speculative = nullptr,
1363                                  int inline_depth = InlineDepthBottom);
1364 
1365   static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id = InstanceBot) {
1366     const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1367     return make(ptr, k, interfaces, xk, o, offset, instance_id);
1368   }
1369 
1370   /** Create constant type for a constant boxed value */
1371   const Type* get_const_boxed_value() const;
1372 
1373   // If this is a java.lang.Class constant, return the type for it or null.
1374   // Pass to Type::get_const_type to turn it to a type, which will usually
1375   // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
1376   ciType* java_mirror_type() const;
1377 
1378   virtual const TypeInstPtr* cast_to_ptr_type(PTR ptr) const;
1379 
1380   virtual const TypeInstPtr* cast_to_exactness(bool klass_is_exact) const;
1381 
1382   virtual const TypeInstPtr* cast_to_instance_id(int instance_id) const;
1383 
1384   virtual const TypePtr* add_offset(intptr_t offset) const;
1385   virtual const TypeInstPtr* with_offset(intptr_t offset) const;
1386 
1387   // Speculative type helper methods.
1388   virtual const TypeInstPtr* remove_speculative() const;
1389   const TypeInstPtr* with_speculative(const TypePtr* speculative) const;
1390   virtual const TypePtr* with_inline_depth(int depth) const;
1391   virtual const TypePtr* with_instance_id(int instance_id) const;
1392 




1393   // the core of the computation of the meet of 2 types
1394   virtual const Type *xmeet_helper(const Type *t) const;
1395   virtual const TypeInstPtr *xmeet_unloaded(const TypeInstPtr *tinst, const TypeInterfaces* interfaces) const;
1396   virtual const Type *xdual() const;    // Compute dual right now.
1397 
1398   const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1399 


1400   // Convenience common pre-built types.
1401   static const TypeInstPtr *NOTNULL;
1402   static const TypeInstPtr *BOTTOM;
1403   static const TypeInstPtr *MIRROR;
1404   static const TypeInstPtr *MARK;
1405   static const TypeInstPtr *KLASS;
1406 #ifndef PRODUCT
1407   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1408 #endif
1409 
1410 private:
1411   virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const;
1412 
1413   virtual bool is_meet_same_type_as(const TypePtr* other) const {
1414     return _klass->equals(other->is_instptr()->_klass) && _interfaces->eq(other->is_instptr()->_interfaces);
1415   }
1416 
1417 };
1418 
1419 //------------------------------TypeAryPtr-------------------------------------
1420 // Class of Java array pointers
1421 class TypeAryPtr : public TypeOopPtr {
1422   friend class Type;
1423   friend class TypePtr;

1424   friend class TypeInterfaces;
1425 
1426   TypeAryPtr( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk,
1427               int offset, int instance_id, bool is_autobox_cache,
1428               const TypePtr* speculative, int inline_depth)
1429     : TypeOopPtr(AryPtr,ptr,k,_array_interfaces,xk,o,offset, instance_id, speculative, inline_depth),
1430     _ary(ary),
1431     _is_autobox_cache(is_autobox_cache)

1432  {
1433     int dummy;
1434     bool top_or_bottom = (base_element_type(dummy) == Type::TOP || base_element_type(dummy) == Type::BOTTOM);
1435 
1436     if (UseCompressedOops && (elem()->make_oopptr() != nullptr && !top_or_bottom) &&
1437         _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes() &&
1438         _offset != arrayOopDesc::klass_offset_in_bytes()) {
1439       _is_ptr_to_narrowoop = true;
1440     }
1441 
1442   }
1443   virtual bool eq( const Type *t ) const;
1444   virtual uint hash() const;    // Type specific hashing
1445   const TypeAry *_ary;          // Array we point into
1446   const bool     _is_autobox_cache;






1447 
1448   ciKlass* compute_klass() const;
1449 
1450   // A pointer to delay allocation to Type::Initialize_shared()
1451 
1452   static const TypeInterfaces* _array_interfaces;
1453   ciKlass* exact_klass_helper() const;
1454   // Only guaranteed non null for array of basic types
1455   ciKlass* klass() const;
1456 
1457 public:
1458 
1459   bool is_same_java_type_as_helper(const TypeOopPtr* other) const;
1460   bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1461   bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1462 
1463   // returns base element type, an instance klass (and not interface) for object arrays
1464   const Type* base_element_type(int& dims) const;
1465 
1466   // Accessors
1467   bool  is_loaded() const { return (_ary->_elem->make_oopptr() ? _ary->_elem->make_oopptr()->is_loaded() : true); }
1468 
1469   const TypeAry* ary() const  { return _ary; }
1470   const Type*    elem() const { return _ary->_elem; }
1471   const TypeInt* size() const { return _ary->_size; }
1472   bool      is_stable() const { return _ary->_stable; }
1473 






1474   bool is_autobox_cache() const { return _is_autobox_cache; }
1475 
1476   static const TypeAryPtr *make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset,

1477                                 int instance_id = InstanceBot,
1478                                 const TypePtr* speculative = nullptr,
1479                                 int inline_depth = InlineDepthBottom);
1480   // Constant pointer to array
1481   static const TypeAryPtr *make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset,

1482                                 int instance_id = InstanceBot,
1483                                 const TypePtr* speculative = nullptr,
1484                                 int inline_depth = InlineDepthBottom, bool is_autobox_cache = false);

1485 
1486   // Return a 'ptr' version of this type
1487   virtual const TypeAryPtr* cast_to_ptr_type(PTR ptr) const;
1488 
1489   virtual const TypeAryPtr* cast_to_exactness(bool klass_is_exact) const;
1490 
1491   virtual const TypeAryPtr* cast_to_instance_id(int instance_id) const;
1492 
1493   virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
1494   virtual const TypeInt* narrow_size_type(const TypeInt* size) const;
1495 
1496   virtual bool empty(void) const;        // TRUE if type is vacuous
1497   virtual const TypePtr *add_offset( intptr_t offset ) const;
1498   virtual const TypeAryPtr *with_offset( intptr_t offset ) const;
1499   const TypeAryPtr* with_ary(const TypeAry* ary) const;
1500 
1501   // Speculative type helper methods.
1502   virtual const TypeAryPtr* remove_speculative() const;

1503   virtual const TypePtr* with_inline_depth(int depth) const;
1504   virtual const TypePtr* with_instance_id(int instance_id) const;
1505 
1506   // the core of the computation of the meet of 2 types
1507   virtual const Type *xmeet_helper(const Type *t) const;
1508   virtual const Type *xdual() const;    // Compute dual right now.
1509 








1510   const TypeAryPtr* cast_to_stable(bool stable, int stable_dimension = 1) const;
1511   int stable_dimension() const;
1512 
1513   const TypeAryPtr* cast_to_autobox_cache() const;
1514 
1515   static jint max_array_length(BasicType etype) ;







1516   virtual const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1517 


1518   // Convenience common pre-built types.
1519   static const TypeAryPtr* BOTTOM;
1520   static const TypeAryPtr* RANGE;
1521   static const TypeAryPtr* OOPS;
1522   static const TypeAryPtr* NARROWOOPS;
1523   static const TypeAryPtr* BYTES;
1524   static const TypeAryPtr* SHORTS;
1525   static const TypeAryPtr* CHARS;
1526   static const TypeAryPtr* INTS;
1527   static const TypeAryPtr* LONGS;
1528   static const TypeAryPtr* FLOATS;
1529   static const TypeAryPtr* DOUBLES;

1530   // selects one of the above:
1531   static const TypeAryPtr *get_array_body_type(BasicType elem) {
1532     assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != nullptr, "bad elem type");
1533     return _array_body_type[elem];
1534   }
1535   static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
1536   // sharpen the type of an int which is used as an array size
1537 #ifndef PRODUCT
1538   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1539 #endif
1540 private:
1541   virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const;
1542 };
1543 
1544 //------------------------------TypeMetadataPtr-------------------------------------
1545 // Some kind of metadata, either Method*, MethodData* or CPCacheOop
1546 class TypeMetadataPtr : public TypePtr {
1547 protected:
1548   TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset);
1549   // Do not allow interface-vs.-noninterface joins to collapse to top.
1550   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1551 public:
1552   virtual bool eq( const Type *t ) const;
1553   virtual uint hash() const;             // Type specific hashing
1554   virtual bool singleton(void) const;    // TRUE if type is a singleton
1555 
1556 private:
1557   ciMetadata*   _metadata;
1558 
1559 public:
1560   static const TypeMetadataPtr* make(PTR ptr, ciMetadata* m, int offset);
1561 
1562   static const TypeMetadataPtr* make(ciMethod* m);
1563   static const TypeMetadataPtr* make(ciMethodData* m);
1564 
1565   ciMetadata* metadata() const { return _metadata; }
1566 
1567   virtual const TypeMetadataPtr* cast_to_ptr_type(PTR ptr) const;
1568 
1569   virtual const TypePtr *add_offset( intptr_t offset ) const;
1570 
1571   virtual const Type *xmeet( const Type *t ) const;
1572   virtual const Type *xdual() const;    // Compute dual right now.
1573 
1574   virtual intptr_t get_con() const;
1575 
1576   // Convenience common pre-built types.
1577   static const TypeMetadataPtr *BOTTOM;
1578 
1579 #ifndef PRODUCT
1580   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1581 #endif
1582 };
1583 
1584 //------------------------------TypeKlassPtr-----------------------------------
1585 // Class of Java Klass pointers
1586 class TypeKlassPtr : public TypePtr {
1587   friend class TypeInstKlassPtr;
1588   friend class TypeAryKlassPtr;
1589   friend class TypePtr;
1590 protected:
1591   TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, int offset);
1592 
1593   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1594 
1595 public:
1596   virtual bool eq( const Type *t ) const;
1597   virtual uint hash() const;
1598   virtual bool singleton(void) const;    // TRUE if type is a singleton
1599 
1600 protected:
1601 
1602   ciKlass* _klass;
1603   const TypeInterfaces* _interfaces;
1604   const TypeInterfaces* meet_interfaces(const TypeKlassPtr* other) const;
1605   virtual bool must_be_exact() const { ShouldNotReachHere(); return false; }
1606   virtual ciKlass* exact_klass_helper() const;
1607   virtual ciKlass* klass() const { return  _klass; }
1608 
1609 public:
1610 
1611   bool is_java_subtype_of(const TypeKlassPtr* other) const {
1612     return is_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1613   }
1614   bool is_same_java_type_as(const TypePtr* other) const {
1615     return is_same_java_type_as_helper(other->is_klassptr());
1616   }
1617 
1618   bool maybe_java_subtype_of(const TypeKlassPtr* other) const {
1619     return maybe_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1620   }
1621   virtual bool is_same_java_type_as_helper(const TypeKlassPtr* other) const { ShouldNotReachHere(); return false; }
1622   virtual bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1623   virtual bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1624 
1625   // Exact klass, possibly an interface or an array of interface
1626   ciKlass* exact_klass(bool maybe_null = false) const { assert(klass_is_exact(), ""); ciKlass* k = exact_klass_helper(); assert(k != nullptr || maybe_null, ""); return k;  }
1627   virtual bool klass_is_exact()    const { return _ptr == Constant; }
1628 
1629   static const TypeKlassPtr* make(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces);
1630   static const TypeKlassPtr *make(PTR ptr, ciKlass* klass, int offset, InterfaceHandling interface_handling = ignore_interfaces);
1631 
1632   virtual bool  is_loaded() const { return _klass->is_loaded(); }
1633 
1634   virtual const TypeKlassPtr* cast_to_ptr_type(PTR ptr) const { ShouldNotReachHere(); return nullptr; }
1635 
1636   virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const { ShouldNotReachHere(); return nullptr; }
1637 
1638   // corresponding pointer to instance, for a given class
1639   virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const { ShouldNotReachHere(); return nullptr; }
1640 
1641   virtual const TypePtr *add_offset( intptr_t offset ) const { ShouldNotReachHere(); return nullptr; }
1642   virtual const Type    *xmeet( const Type *t ) const { ShouldNotReachHere(); return nullptr; }
1643   virtual const Type    *xdual() const { ShouldNotReachHere(); return nullptr; }
1644 
1645   virtual intptr_t get_con() const;
1646 
1647   virtual const TypeKlassPtr* with_offset(intptr_t offset) const { ShouldNotReachHere(); return nullptr; }
1648 






1649   virtual const TypeKlassPtr* try_improve() const { return this; }
1650 
1651 #ifndef PRODUCT
1652   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1653 #endif
1654 private:
1655   virtual bool is_meet_subtype_of(const TypePtr* other) const {
1656     return is_meet_subtype_of_helper(other->is_klassptr(), klass_is_exact(), other->is_klassptr()->klass_is_exact());
1657   }
1658 
1659   virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const {
1660     ShouldNotReachHere(); return false;
1661   }
1662 
1663   virtual const TypeInterfaces* interfaces() const {
1664     return _interfaces;
1665   };
1666 
1667   const TypeKlassPtr* is_reference_type(const Type* other) const {
1668     return other->isa_klassptr();
1669   }
1670 
1671   const TypeAryKlassPtr* is_array_type(const TypeKlassPtr* other) const {
1672     return other->isa_aryklassptr();
1673   }
1674 
1675   const TypeInstKlassPtr* is_instance_type(const TypeKlassPtr* other) const {
1676     return other->isa_instklassptr();
1677   }
1678 };
1679 
1680 // Instance klass pointer, mirrors TypeInstPtr
1681 class TypeInstKlassPtr : public TypeKlassPtr {
1682 
1683   TypeInstKlassPtr(PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, int offset)
1684     : TypeKlassPtr(InstKlassPtr, ptr, klass, interfaces, offset) {
1685     assert(klass->is_instance_klass() && (!klass->is_loaded() || !klass->is_interface()), "");
1686   }
1687 
1688   virtual bool must_be_exact() const;
1689 


1690 public:
1691   // Instance klass ignoring any interface
1692   ciInstanceKlass* instance_klass() const {
1693     assert(!klass()->is_interface(), "");
1694     return klass()->as_instance_klass();
1695   }
1696 
1697   bool might_be_an_array() const;
1698 
1699   bool is_same_java_type_as_helper(const TypeKlassPtr* other) const;
1700   bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
1701   bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
1702 


1703   static const TypeInstKlassPtr *make(ciKlass* k, InterfaceHandling interface_handling) {
1704     const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, true, false, interface_handling);
1705     return make(TypePtr::Constant, k, interfaces, 0);
1706   }
1707   static const TypeInstKlassPtr* make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, int offset);
1708 
1709   static const TypeInstKlassPtr* make(PTR ptr, ciKlass* k, int offset) {
1710     const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1711     return make(ptr, k, interfaces, offset);
1712   }
1713 
1714   virtual const TypeInstKlassPtr* cast_to_ptr_type(PTR ptr) const;
1715 
1716   virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const;
1717 
1718   // corresponding pointer to instance, for a given class
1719   virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const;
1720   virtual uint hash() const;
1721   virtual bool eq(const Type *t) const;
1722 
1723   virtual const TypePtr *add_offset( intptr_t offset ) const;
1724   virtual const Type    *xmeet( const Type *t ) const;
1725   virtual const Type    *xdual() const;
1726   virtual const TypeInstKlassPtr* with_offset(intptr_t offset) const;
1727 
1728   virtual const TypeKlassPtr* try_improve() const;
1729 





















1730   // Convenience common pre-built types.
1731   static const TypeInstKlassPtr* OBJECT; // Not-null object klass or below
1732   static const TypeInstKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
1733 private:
1734   virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const;
1735 };
1736 
1737 // Array klass pointer, mirrors TypeAryPtr
1738 class TypeAryKlassPtr : public TypeKlassPtr {
1739   friend class TypeInstKlassPtr;
1740   friend class Type;
1741   friend class TypePtr;
1742 
1743   const Type *_elem;




1744 
1745   static const TypeInterfaces* _array_interfaces;
1746   TypeAryKlassPtr(PTR ptr, const Type *elem, ciKlass* klass, int offset)
1747     : TypeKlassPtr(AryKlassPtr, ptr, klass, _array_interfaces, offset), _elem(elem) {
1748     assert(klass == nullptr || klass->is_type_array_klass() || !klass->as_obj_array_klass()->base_element_klass()->is_interface(), "");
1749   }
1750 
1751   virtual ciKlass* exact_klass_helper() const;
1752   // Only guaranteed non null for array of basic types
1753   virtual ciKlass* klass() const;
1754 
1755   virtual bool must_be_exact() const;
1756 
















1757 public:
1758 
1759   // returns base element type, an instance klass (and not interface) for object arrays
1760   const Type* base_element_type(int& dims) const;
1761 
1762   static const TypeAryKlassPtr *make(PTR ptr, ciKlass* k, int offset, InterfaceHandling interface_handling);
1763 
1764   bool is_same_java_type_as_helper(const TypeKlassPtr* other) const;
1765   bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
1766   bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
1767 
1768   bool  is_loaded() const { return (_elem->isa_klassptr() ? _elem->is_klassptr()->is_loaded() : true); }
1769 
1770   static const TypeAryKlassPtr *make(PTR ptr, const Type *elem, ciKlass* k, int offset);

1771   static const TypeAryKlassPtr* make(ciKlass* klass, InterfaceHandling interface_handling);
1772 
1773   const Type *elem() const { return _elem; }
1774 
1775   virtual bool eq(const Type *t) const;
1776   virtual uint hash() const;             // Type specific hashing
1777 
1778   virtual const TypeAryKlassPtr* cast_to_ptr_type(PTR ptr) const;
1779 
1780   virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const;
1781 


1782   // corresponding pointer to instance, for a given class
1783   virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const;
1784 
1785   virtual const TypePtr *add_offset( intptr_t offset ) const;
1786   virtual const Type    *xmeet( const Type *t ) const;
1787   virtual const Type    *xdual() const;      // Compute dual right now.
1788 
1789   virtual const TypeAryKlassPtr* with_offset(intptr_t offset) const;
1790 
1791   virtual bool empty(void) const {
1792     return TypeKlassPtr::empty() || _elem->empty();
1793   }
1794 






1795 #ifndef PRODUCT
1796   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1797 #endif
1798 private:
1799   virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const;
1800 };
1801 
1802 class TypeNarrowPtr : public Type {
1803 protected:
1804   const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR
1805 
1806   TypeNarrowPtr(TYPES t, const TypePtr* ptrtype): Type(t),
1807                                                   _ptrtype(ptrtype) {
1808     assert(ptrtype->offset() == 0 ||
1809            ptrtype->offset() == OffsetBot ||
1810            ptrtype->offset() == OffsetTop, "no real offsets");
1811   }
1812 
1813   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const = 0;
1814   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const = 0;

1910   }
1911 
1912   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
1913     return (const TypeNarrowPtr*)((new TypeNarrowKlass(t))->hashcons());
1914   }
1915 
1916 public:
1917   static const TypeNarrowKlass *make( const TypePtr* type);
1918 
1919   // static const TypeNarrowKlass *BOTTOM;
1920   static const TypeNarrowKlass *NULL_PTR;
1921 
1922 #ifndef PRODUCT
1923   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1924 #endif
1925 };
1926 
1927 //------------------------------TypeFunc---------------------------------------
1928 // Class of Array Types
1929 class TypeFunc : public Type {
1930   TypeFunc( const TypeTuple *domain, const TypeTuple *range ) : Type(Function),  _domain(domain), _range(range) {}

1931   virtual bool eq( const Type *t ) const;
1932   virtual uint hash() const;             // Type specific hashing
1933   virtual bool singleton(void) const;    // TRUE if type is a singleton
1934   virtual bool empty(void) const;        // TRUE if type is vacuous
1935 
1936   const TypeTuple* const _domain;     // Domain of inputs
1937   const TypeTuple* const _range;      // Range of results











1938 
1939 public:
1940   // Constants are shared among ADLC and VM
1941   enum { Control    = AdlcVMDeps::Control,
1942          I_O        = AdlcVMDeps::I_O,
1943          Memory     = AdlcVMDeps::Memory,
1944          FramePtr   = AdlcVMDeps::FramePtr,
1945          ReturnAdr  = AdlcVMDeps::ReturnAdr,
1946          Parms      = AdlcVMDeps::Parms
1947   };
1948 
1949 
1950   // Accessors:
1951   const TypeTuple* domain() const { return _domain; }
1952   const TypeTuple* range()  const { return _range; }
1953 
1954   static const TypeFunc *make(ciMethod* method);
1955   static const TypeFunc *make(ciSignature signature, const Type* extra);



1956   static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
1957 
1958   virtual const Type *xmeet( const Type *t ) const;
1959   virtual const Type *xdual() const;    // Compute dual right now.
1960 
1961   BasicType return_type() const;
1962 


1963 #ifndef PRODUCT
1964   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1965 #endif
1966   // Convenience common pre-built types.
1967 };
1968 
1969 //------------------------------accessors--------------------------------------
1970 inline bool Type::is_ptr_to_narrowoop() const {
1971 #ifdef _LP64
1972   return (isa_oopptr() != nullptr && is_oopptr()->is_ptr_to_narrowoop_nv());
1973 #else
1974   return false;
1975 #endif
1976 }
1977 
1978 inline bool Type::is_ptr_to_narrowklass() const {
1979 #ifdef _LP64
1980   return (isa_oopptr() != nullptr && is_oopptr()->is_ptr_to_narrowklass_nv());
1981 #else
1982   return false;

2219 }
2220 
2221 inline const TypeNarrowOop* Type::make_narrowoop() const {
2222   return (_base == NarrowOop) ? is_narrowoop() :
2223                                 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : nullptr);
2224 }
2225 
2226 inline const TypeNarrowKlass* Type::make_narrowklass() const {
2227   return (_base == NarrowKlass) ? is_narrowklass() :
2228                                   (isa_ptr() ? TypeNarrowKlass::make(is_ptr()) : nullptr);
2229 }
2230 
2231 inline bool Type::is_floatingpoint() const {
2232   if( (_base == HalfFloatCon)  || (_base == HalfFloatBot) ||
2233       (_base == FloatCon)  || (_base == FloatBot) ||
2234       (_base == DoubleCon) || (_base == DoubleBot) )
2235     return true;
2236   return false;
2237 }
2238 








2239 template <>
2240 inline const TypeInt* Type::cast<TypeInt>() const {
2241   return is_int();
2242 }
2243 
2244 template <>
2245 inline const TypeLong* Type::cast<TypeLong>() const {
2246   return is_long();
2247 }
2248 
2249 // ===============================================================
2250 // Things that need to be 64-bits in the 64-bit build but
2251 // 32-bits in the 32-bit build.  Done this way to get full
2252 // optimization AND strong typing.
2253 #ifdef _LP64
2254 
2255 // For type queries and asserts
2256 #define is_intptr_t  is_long
2257 #define isa_intptr_t isa_long
2258 #define find_intptr_t_type find_long_type
2259 #define find_intptr_t_con  find_long_con
2260 #define TypeX        TypeLong
2261 #define Type_X       Type::Long
2262 #define TypeX_X      TypeLong::LONG
2263 #define TypeX_ZERO   TypeLong::ZERO
2264 // For 'ideal_reg' machine registers
2265 #define Op_RegX      Op_RegL
2266 // For phase->intcon variants
2267 #define MakeConX     longcon
2268 #define ConXNode     ConLNode
2269 // For array index arithmetic
2270 #define MulXNode     MulLNode
2271 #define AndXNode     AndLNode
2272 #define OrXNode      OrLNode
2273 #define CmpXNode     CmpLNode

2274 #define SubXNode     SubLNode
2275 #define LShiftXNode  LShiftLNode
2276 // For object size computation:
2277 #define AddXNode     AddLNode
2278 #define RShiftXNode  RShiftLNode
2279 // For card marks and hashcodes
2280 #define URShiftXNode URShiftLNode
2281 // For shenandoahSupport
2282 #define LoadXNode    LoadLNode
2283 #define StoreXNode   StoreLNode
2284 // Opcodes
2285 #define Op_LShiftX   Op_LShiftL
2286 #define Op_AndX      Op_AndL
2287 #define Op_AddX      Op_AddL
2288 #define Op_SubX      Op_SubL
2289 #define Op_XorX      Op_XorL
2290 #define Op_URShiftX  Op_URShiftL
2291 #define Op_LoadX     Op_LoadL

2292 // conversions
2293 #define ConvI2X(x)   ConvI2L(x)
2294 #define ConvL2X(x)   (x)
2295 #define ConvX2I(x)   ConvL2I(x)
2296 #define ConvX2L(x)   (x)
2297 #define ConvX2UL(x)  (x)
2298 
2299 #else
2300 
2301 // For type queries and asserts
2302 #define is_intptr_t  is_int
2303 #define isa_intptr_t isa_int
2304 #define find_intptr_t_type find_int_type
2305 #define find_intptr_t_con  find_int_con
2306 #define TypeX        TypeInt
2307 #define Type_X       Type::Int
2308 #define TypeX_X      TypeInt::INT
2309 #define TypeX_ZERO   TypeInt::ZERO
2310 // For 'ideal_reg' machine registers
2311 #define Op_RegX      Op_RegI
2312 // For phase->intcon variants
2313 #define MakeConX     intcon
2314 #define ConXNode     ConINode
2315 // For array index arithmetic
2316 #define MulXNode     MulINode
2317 #define AndXNode     AndINode
2318 #define OrXNode      OrINode
2319 #define CmpXNode     CmpINode

2320 #define SubXNode     SubINode
2321 #define LShiftXNode  LShiftINode
2322 // For object size computation:
2323 #define AddXNode     AddINode
2324 #define RShiftXNode  RShiftINode
2325 // For card marks and hashcodes
2326 #define URShiftXNode URShiftINode
2327 // For shenandoahSupport
2328 #define LoadXNode    LoadINode
2329 #define StoreXNode   StoreINode
2330 // Opcodes
2331 #define Op_LShiftX   Op_LShiftI
2332 #define Op_AndX      Op_AndI
2333 #define Op_AddX      Op_AddI
2334 #define Op_SubX      Op_SubI
2335 #define Op_XorX      Op_XorI
2336 #define Op_URShiftX  Op_URShiftI
2337 #define Op_LoadX     Op_LoadI

2338 // conversions
2339 #define ConvI2X(x)   (x)
2340 #define ConvL2X(x)   ConvL2I(x)
2341 #define ConvX2I(x)   (x)
2342 #define ConvX2L(x)   ConvI2L(x)
2343 #define ConvX2UL(x)  ConvI2UL(x)
2344 
2345 #endif
2346 
2347 #endif // SHARE_OPTO_TYPE_HPP

   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_OPTO_TYPE_HPP
  26 #define SHARE_OPTO_TYPE_HPP
  27 
  28 #include "ci/ciInlineKlass.hpp"
  29 #include "opto/adlcVMDeps.hpp"
  30 #include "runtime/handles.hpp"
  31 #include "runtime/sharedRuntime.hpp"
  32 
  33 // Portions of code courtesy of Clifford Click
  34 
  35 // Optimization - Graph Style
  36 
  37 
  38 // This class defines a Type lattice.  The lattice is used in the constant
  39 // propagation algorithms, and for some type-checking of the iloc code.
  40 // Basic types include RSD's (lower bound, upper bound, stride for integers),
  41 // float & double precision constants, sets of data-labels and code-labels.
  42 // The complete lattice is described below.  Subtypes have no relationship to
  43 // up or down in the lattice; that is entirely determined by the behavior of
  44 // the MEET/JOIN functions.
  45 
  46 class Dict;
  47 class Type;
  48 class   TypeD;
  49 class   TypeF;
  50 class   TypeH;
  51 class   TypeInteger;

 124     Memory,                     // Abstract store
 125     HalfFloatTop,               // No float value
 126     HalfFloatCon,               // Floating point constant
 127     HalfFloatBot,               // Any float value
 128     FloatTop,                   // No float value
 129     FloatCon,                   // Floating point constant
 130     FloatBot,                   // Any float value
 131     DoubleTop,                  // No double value
 132     DoubleCon,                  // Double precision constant
 133     DoubleBot,                  // Any double value
 134     Bottom,                     // Bottom of lattice
 135     lastype                     // Bogus ending type (not in lattice)
 136   };
 137 
 138   // Signal values for offsets from a base pointer
 139   enum OFFSET_SIGNALS {
 140     OffsetTop = -2000000000,    // undefined offset
 141     OffsetBot = -2000000001     // any possible offset
 142   };
 143 
 144   class Offset {
 145   private:
 146     int _offset;
 147 
 148   public:
 149     explicit Offset(int offset) : _offset(offset) {}
 150 
 151     const Offset meet(const Offset other) const;
 152     const Offset dual() const;
 153     const Offset add(intptr_t offset) const;
 154     bool operator==(const Offset& other) const {
 155       return _offset == other._offset;
 156     }
 157     bool operator!=(const Offset& other) const {
 158       return _offset != other._offset;
 159     }
 160     int get() const { return _offset; }
 161 
 162     void dump2(outputStream *st) const;
 163 
 164     static const Offset top;
 165     static const Offset bottom;
 166   };
 167 
 168   // Min and max WIDEN values.
 169   enum WIDEN {
 170     WidenMin = 0,
 171     WidenMax = 3
 172   };
 173 
 174 private:
 175   typedef struct {
 176     TYPES                dual_type;
 177     BasicType            basic_type;
 178     const char*          msg;
 179     bool                 isa_oop;
 180     uint                 ideal_reg;
 181     relocInfo::relocType reloc;
 182   } TypeInfo;
 183 
 184   // Dictionary of types shared among compilations.
 185   static Dict* _shared_type_dict;
 186   static const TypeInfo _type_info[];
 187 

 345   const TypeInstPtr  *isa_instptr() const;       // Returns null if not InstPtr
 346   const TypeInstPtr  *is_instptr() const;        // Instance
 347   const TypeAryPtr   *isa_aryptr() const;        // Returns null if not AryPtr
 348   const TypeAryPtr   *is_aryptr() const;         // Array oop
 349 
 350   template <typename TypeClass>
 351   const TypeClass* cast() const;
 352 
 353   const TypeMetadataPtr   *isa_metadataptr() const;   // Returns null if not oop ptr type
 354   const TypeMetadataPtr   *is_metadataptr() const;    // Java-style GC'd pointer
 355   const TypeKlassPtr      *isa_klassptr() const;      // Returns null if not KlassPtr
 356   const TypeKlassPtr      *is_klassptr() const;       // assert if not KlassPtr
 357   const TypeInstKlassPtr  *isa_instklassptr() const;  // Returns null if not IntKlassPtr
 358   const TypeInstKlassPtr  *is_instklassptr() const;   // assert if not IntKlassPtr
 359   const TypeAryKlassPtr   *isa_aryklassptr() const;   // Returns null if not AryKlassPtr
 360   const TypeAryKlassPtr   *is_aryklassptr() const;    // assert if not AryKlassPtr
 361 
 362   virtual bool      is_finite() const;           // Has a finite value
 363   virtual bool      is_nan()    const;           // Is not a number (NaN)
 364 
 365   bool is_inlinetypeptr() const;
 366   virtual ciInlineKlass* inline_klass() const;
 367 
 368   // Returns this ptr type or the equivalent ptr type for this compressed pointer.
 369   const TypePtr* make_ptr() const;
 370 
 371   // Returns this oopptr type or the equivalent oopptr type for this compressed pointer.
 372   // Asserts if the underlying type is not an oopptr or narrowoop.
 373   const TypeOopPtr* make_oopptr() const;
 374 
 375   // Returns this compressed pointer or the equivalent compressed version
 376   // of this pointer type.
 377   const TypeNarrowOop* make_narrowoop() const;
 378 
 379   // Returns this compressed klass pointer or the equivalent
 380   // compressed version of this pointer type.
 381   const TypeNarrowKlass* make_narrowklass() const;
 382 
 383   // Special test for register pressure heuristic
 384   bool is_floatingpoint() const;        // True if Float or Double base type
 385 
 386   // Do you have memory, directly or through a tuple?
 387   bool has_memory( ) const;

 780   const Type ** const _fields;           // Array of field types
 781 
 782 public:
 783   virtual bool eq( const Type *t ) const;
 784   virtual uint hash() const;             // Type specific hashing
 785   virtual bool singleton(void) const;    // TRUE if type is a singleton
 786   virtual bool empty(void) const;        // TRUE if type is vacuous
 787 
 788   // Accessors:
 789   uint cnt() const { return _cnt; }
 790   const Type* field_at(uint i) const {
 791     assert(i < _cnt, "oob");
 792     return _fields[i];
 793   }
 794   void set_field_at(uint i, const Type* t) {
 795     assert(i < _cnt, "oob");
 796     _fields[i] = t;
 797   }
 798 
 799   static const TypeTuple *make( uint cnt, const Type **fields );
 800   static const TypeTuple *make_range(ciSignature* sig, InterfaceHandling interface_handling = ignore_interfaces, bool ret_vt_fields = false);
 801   static const TypeTuple *make_domain(ciMethod* method, InterfaceHandling interface_handling, bool vt_fields_as_args = false);
 802 
 803   // Subroutine call type with space allocated for argument types
 804   // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
 805   static const Type **fields( uint arg_cnt );
 806 
 807   virtual const Type *xmeet( const Type *t ) const;
 808   virtual const Type *xdual() const;    // Compute dual right now.
 809   // Convenience common pre-built types.
 810   static const TypeTuple *IFBOTH;
 811   static const TypeTuple *IFFALSE;
 812   static const TypeTuple *IFTRUE;
 813   static const TypeTuple *IFNEITHER;
 814   static const TypeTuple *LOOPBODY;
 815   static const TypeTuple *MEMBAR;
 816   static const TypeTuple *STORECONDITIONAL;
 817   static const TypeTuple *START_I2C;
 818   static const TypeTuple *INT_PAIR;
 819   static const TypeTuple *LONG_PAIR;
 820   static const TypeTuple *INT_CC_PAIR;
 821   static const TypeTuple *LONG_CC_PAIR;
 822 #ifndef PRODUCT
 823   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
 824 #endif
 825 };
 826 
 827 //------------------------------TypeAry----------------------------------------
 828 // Class of Array Types
 829 class TypeAry : public Type {
 830   TypeAry(const Type* elem, const TypeInt* size, bool stable, bool flat, bool not_flat, bool not_null_free) : Type(Array),
 831       _elem(elem), _size(size), _stable(stable), _flat(flat), _not_flat(not_flat), _not_null_free(not_null_free) {}
 832 public:
 833   virtual bool eq( const Type *t ) const;
 834   virtual uint hash() const;             // Type specific hashing
 835   virtual bool singleton(void) const;    // TRUE if type is a singleton
 836   virtual bool empty(void) const;        // TRUE if type is vacuous
 837 
 838 private:
 839   const Type *_elem;            // Element type of array
 840   const TypeInt *_size;         // Elements in array
 841   const bool _stable;           // Are elements @Stable?
 842 
 843   // Inline type array properties
 844   const bool _flat;             // Array is flat
 845   const bool _not_flat;         // Array is never flat
 846   const bool _not_null_free;    // Array is never null-free
 847 
 848   friend class TypeAryPtr;
 849 
 850 public:
 851   static const TypeAry* make(const Type* elem, const TypeInt* size, bool stable = false,
 852                              bool flat = false, bool not_flat = false, bool not_null_free = false);
 853 
 854   virtual const Type *xmeet( const Type *t ) const;
 855   virtual const Type *xdual() const;    // Compute dual right now.
 856   bool ary_must_be_exact() const;  // true if arrays of such are never generic
 857   virtual const TypeAry* remove_speculative() const;
 858   virtual const Type* cleanup_speculative() const;
 859 #ifndef PRODUCT
 860   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
 861 #endif
 862 };
 863 
 864 //------------------------------TypeVect---------------------------------------
 865 // Class of Vector Types
 866 class TypeVect : public Type {
 867   const BasicType _elem_bt;  // Vector's element type
 868   const uint _length;  // Elements in vector (power of 2)
 869 
 870 protected:
 871   TypeVect(TYPES t, BasicType elem_bt, uint length) : Type(t),
 872     _elem_bt(elem_bt), _length(length) {}

 979   const Type* xmeet(const Type* t) const;
 980 
 981   bool singleton(void) const;
 982   bool has_non_array_interface() const;
 983 };
 984 
 985 //------------------------------TypePtr----------------------------------------
 986 // Class of machine Pointer Types: raw data, instances or arrays.
 987 // If the _base enum is AnyPtr, then this refers to all of the above.
 988 // Otherwise the _base will indicate which subset of pointers is affected,
 989 // and the class will be inherited from.
 990 class TypePtr : public Type {
 991   friend class TypeNarrowPtr;
 992   friend class Type;
 993 protected:
 994   static const TypeInterfaces* interfaces(ciKlass*& k, bool klass, bool interface, bool array, InterfaceHandling interface_handling);
 995 
 996 public:
 997   enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
 998 protected:
 999   TypePtr(TYPES t, PTR ptr, Offset offset,
1000           const TypePtr* speculative = nullptr,
1001           int inline_depth = InlineDepthBottom) :
1002     Type(t), _speculative(speculative), _inline_depth(inline_depth), _offset(offset),
1003     _ptr(ptr) {}
1004   static const PTR ptr_meet[lastPTR][lastPTR];
1005   static const PTR ptr_dual[lastPTR];
1006   static const char * const ptr_msg[lastPTR];
1007 
1008   enum {
1009     InlineDepthBottom = INT_MAX,
1010     InlineDepthTop = -InlineDepthBottom
1011   };
1012 
1013   // Extra type information profiling gave us. We propagate it the
1014   // same way the rest of the type info is propagated. If we want to
1015   // use it, then we have to emit a guard: this part of the type is
1016   // not something we know but something we speculate about the type.
1017   const TypePtr*   _speculative;
1018   // For speculative types, we record at what inlining depth the
1019   // profiling point that provided the data is. We want to favor

1035   // utility methods to work on the inline depth of the type
1036   int dual_inline_depth() const;
1037   int meet_inline_depth(int depth) const;
1038 #ifndef PRODUCT
1039   void dump_inline_depth(outputStream *st) const;
1040 #endif
1041 
1042   // TypeInstPtr (TypeAryPtr resp.) and TypeInstKlassPtr (TypeAryKlassPtr resp.) implement very similar meet logic.
1043   // The logic for meeting 2 instances (2 arrays resp.) is shared in the 2 utility methods below. However the logic for
1044   // the oop and klass versions can be slightly different and extra logic may have to be executed depending on what
1045   // exact case the meet falls into. The MeetResult struct is used by the utility methods to communicate what case was
1046   // encountered so the right logic specific to klasses or oops can be executed.,
1047   enum MeetResult {
1048     QUICK,
1049     UNLOADED,
1050     SUBTYPE,
1051     NOT_SUBTYPE,
1052     LCA
1053   };
1054   template<class T> static TypePtr::MeetResult meet_instptr(PTR& ptr, const TypeInterfaces*& interfaces, const T* this_type,
1055                                                             const T* other_type, ciKlass*& res_klass, bool& res_xk, bool& res_flat_array);
1056  private:
1057   template<class T> static bool is_meet_subtype_of(const T* sub_type, const T* super_type);
1058  protected:
1059 
1060   template<class T> static MeetResult meet_aryptr(PTR& ptr, const Type*& elem, const T* this_ary, const T* other_ary,
1061                                                   ciKlass*& res_klass, bool& res_xk, bool &res_flat, bool &res_not_flat, bool &res_not_null_free);
1062 
1063   template <class T1, class T2> static bool is_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1064   template <class T1, class T2> static bool is_same_java_type_as_helper_for_instance(const T1* this_one, const T2* other);
1065   template <class T1, class T2> static bool maybe_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1066   template <class T1, class T2> static bool is_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1067   template <class T1, class T2> static bool is_same_java_type_as_helper_for_array(const T1* this_one, const T2* other);
1068   template <class T1, class T2> static bool maybe_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1069   template <class T1, class T2> static bool is_meet_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_xk, bool other_xk);
1070   template <class T1, class T2> static bool is_meet_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_xk, bool other_xk);
1071 public:
1072   const Offset _offset;         // Offset into oop, with TOP & BOT
1073   const PTR _ptr;               // Pointer equivalence class
1074 
1075   int offset() const { return _offset.get(); }
1076   PTR ptr()    const { return _ptr; }
1077 
1078   static const TypePtr* make(TYPES t, PTR ptr, Offset offset,
1079                              const TypePtr* speculative = nullptr,
1080                              int inline_depth = InlineDepthBottom);
1081 
1082   // Return a 'ptr' version of this type
1083   virtual const TypePtr* cast_to_ptr_type(PTR ptr) const;
1084 
1085   virtual intptr_t get_con() const;
1086 
1087   Type::Offset xadd_offset(intptr_t offset) const;
1088   virtual const TypePtr* add_offset(intptr_t offset) const;
1089   virtual const TypePtr* with_offset(intptr_t offset) const;
1090   virtual int flat_offset() const { return offset(); }
1091   virtual bool eq(const Type *t) const;
1092   virtual uint hash() const;             // Type specific hashing
1093 
1094   virtual bool singleton(void) const;    // TRUE if type is a singleton
1095   virtual bool empty(void) const;        // TRUE if type is vacuous
1096   virtual const Type *xmeet( const Type *t ) const;
1097   virtual const Type *xmeet_helper( const Type *t ) const;
1098   Offset meet_offset(int offset) const;
1099   Offset dual_offset() const;
1100   virtual const Type *xdual() const;    // Compute dual right now.
1101 
1102   // meet, dual and join over pointer equivalence sets
1103   PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
1104   PTR dual_ptr()                   const { return ptr_dual[ptr()];      }
1105 
1106   // This is textually confusing unless one recalls that
1107   // join(t) == dual()->meet(t->dual())->dual().
1108   PTR join_ptr( const PTR in_ptr ) const {
1109     return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
1110   }
1111 
1112   // Speculative type helper methods.
1113   virtual const TypePtr* speculative() const { return _speculative; }
1114   int inline_depth() const                   { return _inline_depth; }
1115   virtual ciKlass* speculative_type() const;
1116   virtual ciKlass* speculative_type_not_null() const;
1117   virtual bool speculative_maybe_null() const;
1118   virtual bool speculative_always_null() const;
1119   virtual const TypePtr* remove_speculative() const;
1120   virtual const Type* cleanup_speculative() const;
1121   virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
1122   virtual bool would_improve_ptr(ProfilePtrKind maybe_null) const;
1123   virtual const TypePtr* with_inline_depth(int depth) const;
1124 
1125   virtual bool maybe_null() const { return meet_ptr(Null) == ptr(); }
1126 
1127   virtual bool can_be_inline_type() const { return false; }
1128   virtual bool flat_in_array()      const { return false; }
1129   virtual bool not_flat_in_array()  const { return true; }
1130   virtual bool is_flat()            const { return false; }
1131   virtual bool is_not_flat()        const { return false; }
1132   virtual bool is_null_free()       const { return false; }
1133   virtual bool is_not_null_free()   const { return false; }
1134 
1135   // Tests for relation to centerline of type lattice:
1136   static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
1137   static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
1138   // Convenience common pre-built types.
1139   static const TypePtr *NULL_PTR;
1140   static const TypePtr *NOTNULL;
1141   static const TypePtr *BOTTOM;
1142 #ifndef PRODUCT
1143   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
1144 #endif
1145 };
1146 
1147 //------------------------------TypeRawPtr-------------------------------------
1148 // Class of raw pointers, pointers to things other than Oops.  Examples
1149 // include the stack pointer, top of heap, card-marking area, handles, etc.
1150 class TypeRawPtr : public TypePtr {
1151 protected:
1152   TypeRawPtr(PTR ptr, address bits) : TypePtr(RawPtr,ptr,Offset(0)), _bits(bits){}
1153 public:
1154   virtual bool eq( const Type *t ) const;
1155   virtual uint hash() const;    // Type specific hashing
1156 
1157   const address _bits;          // Constant value, if applicable
1158 
1159   static const TypeRawPtr *make( PTR ptr );
1160   static const TypeRawPtr *make( address bits );
1161 
1162   // Return a 'ptr' version of this type
1163   virtual const TypeRawPtr* cast_to_ptr_type(PTR ptr) const;
1164 
1165   virtual intptr_t get_con() const;
1166 
1167   virtual const TypePtr* add_offset(intptr_t offset) const;
1168   virtual const TypeRawPtr* with_offset(intptr_t offset) const { ShouldNotReachHere(); return nullptr;}
1169 
1170   virtual const Type *xmeet( const Type *t ) const;
1171   virtual const Type *xdual() const;    // Compute dual right now.
1172   // Convenience common pre-built types.
1173   static const TypeRawPtr *BOTTOM;
1174   static const TypeRawPtr *NOTNULL;
1175 #ifndef PRODUCT
1176   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
1177 #endif
1178 };
1179 
1180 //------------------------------TypeOopPtr-------------------------------------
1181 // Some kind of oop (Java pointer), either instance or array.
1182 class TypeOopPtr : public TypePtr {
1183   friend class TypeAry;
1184   friend class TypePtr;
1185   friend class TypeInstPtr;
1186   friend class TypeAryPtr;
1187 protected:
1188  TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset offset, Offset field_offset, int instance_id,
1189             const TypePtr* speculative, int inline_depth);
1190 public:
1191   virtual bool eq( const Type *t ) const;
1192   virtual uint hash() const;             // Type specific hashing
1193   virtual bool singleton(void) const;    // TRUE if type is a singleton
1194   enum {
1195    InstanceTop = -1,   // undefined instance
1196    InstanceBot = 0     // any possible instance
1197   };
1198 protected:
1199 
1200   // Oop is null, unless this is a constant oop.
1201   ciObject*     _const_oop;   // Constant oop
1202   // If _klass is null, then so is _sig.  This is an unloaded klass.
1203   ciKlass*      _klass;       // Klass object
1204 
1205   const TypeInterfaces* _interfaces;
1206 
1207   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
1208   bool          _klass_is_exact;
1209   bool          _is_ptr_to_narrowoop;
1210   bool          _is_ptr_to_narrowklass;
1211   bool          _is_ptr_to_boxed_value;
1212 
1213   // If not InstanceTop or InstanceBot, indicates that this is
1214   // a particular instance of this type which is distinct.
1215   // This is the node index of the allocation node creating this instance.
1216   int           _instance_id;
1217 
1218   static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact, InterfaceHandling interface_handling);
1219 
1220   int dual_instance_id() const;
1221   int meet_instance_id(int uid) const;
1222 
1223   const TypeInterfaces* meet_interfaces(const TypeOopPtr* other) const;
1224 
1225   // Do not allow interface-vs.-noninterface joins to collapse to top.
1226   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1227 
1228   virtual ciKlass* exact_klass_helper() const { return nullptr; }
1229   virtual ciKlass* klass() const { return _klass; }
1230 
1231 public:
1232 
1233   bool is_java_subtype_of(const TypeOopPtr* other) const {
1234     return is_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1235   }
1236 
1237   bool is_same_java_type_as(const TypePtr* other) const {
1238     return is_same_java_type_as_helper(other->is_oopptr());
1239   }
1240 
1241   virtual bool is_same_java_type_as_helper(const TypeOopPtr* other) const {
1242     ShouldNotReachHere(); return false;
1243   }
1244 
1245   bool maybe_java_subtype_of(const TypeOopPtr* other) const {
1246     return maybe_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1247   }
1248   virtual bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1249   virtual bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }

1256     return make_from_klass_common(klass, true, false, interface_handling);
1257   }
1258   // Same as before, but will produce an exact type, even if
1259   // the klass is not final, as long as it has exactly one implementation.
1260   static const TypeOopPtr* make_from_klass_unique(ciKlass* klass, InterfaceHandling interface_handling= ignore_interfaces) {
1261     return make_from_klass_common(klass, true, true, interface_handling);
1262   }
1263   // Same as before, but does not respects UseUniqueSubclasses.
1264   // Use this only for creating array element types.
1265   static const TypeOopPtr* make_from_klass_raw(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) {
1266     return make_from_klass_common(klass, false, false, interface_handling);
1267   }
1268   // Creates a singleton type given an object.
1269   // If the object cannot be rendered as a constant,
1270   // may return a non-singleton type.
1271   // If require_constant, produce a null if a singleton is not possible.
1272   static const TypeOopPtr* make_from_constant(ciObject* o,
1273                                               bool require_constant = false);
1274 
1275   // Make a generic (unclassed) pointer to an oop.
1276   static const TypeOopPtr* make(PTR ptr, Offset offset, int instance_id,
1277                                 const TypePtr* speculative = nullptr,
1278                                 int inline_depth = InlineDepthBottom);
1279 
1280   ciObject* const_oop()    const { return _const_oop; }
1281   // Exact klass, possibly an interface or an array of interface
1282   ciKlass* exact_klass(bool maybe_null = false) const { assert(klass_is_exact(), ""); ciKlass* k = exact_klass_helper(); assert(k != nullptr || maybe_null, ""); return k;  }
1283   ciKlass* unloaded_klass() const { assert(!is_loaded(), "only for unloaded types"); return klass(); }
1284 
1285   virtual bool  is_loaded() const { return klass()->is_loaded(); }
1286   virtual bool klass_is_exact()    const { return _klass_is_exact; }
1287 
1288   // Returns true if this pointer points at memory which contains a
1289   // compressed oop references.
1290   bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
1291   bool is_ptr_to_narrowklass_nv() const { return _is_ptr_to_narrowklass; }
1292   bool is_ptr_to_boxed_value()   const { return _is_ptr_to_boxed_value; }
1293   bool is_known_instance()       const { return _instance_id > 0; }
1294   int  instance_id()             const { return _instance_id; }
1295   bool is_known_instance_field() const { return is_known_instance() && _offset.get() >= 0; }
1296 
1297   virtual bool can_be_inline_type() const { return (_klass == nullptr || _klass->can_be_inline_klass(_klass_is_exact)); }
1298   virtual bool can_be_inline_array() const { ShouldNotReachHere(); return false; }
1299 
1300   virtual intptr_t get_con() const;
1301 
1302   virtual const TypeOopPtr* cast_to_ptr_type(PTR ptr) const;
1303 
1304   virtual const TypeOopPtr* cast_to_exactness(bool klass_is_exact) const;
1305 
1306   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1307 
1308   // corresponding pointer to klass, for a given instance
1309   virtual const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1310 
1311   virtual const TypeOopPtr* with_offset(intptr_t offset) const;
1312   virtual const TypePtr* add_offset(intptr_t offset) const;
1313 
1314   // Speculative type helper methods.
1315   virtual const TypeOopPtr* remove_speculative() const;
1316   virtual const Type* cleanup_speculative() const;
1317   virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
1318   virtual const TypePtr* with_inline_depth(int depth) const;

1341     return _interfaces;
1342   };
1343 
1344   const TypeOopPtr* is_reference_type(const Type* other) const {
1345     return other->isa_oopptr();
1346   }
1347 
1348   const TypeAryPtr* is_array_type(const TypeOopPtr* other) const {
1349     return other->isa_aryptr();
1350   }
1351 
1352   const TypeInstPtr* is_instance_type(const TypeOopPtr* other) const {
1353     return other->isa_instptr();
1354   }
1355 };
1356 
1357 //------------------------------TypeInstPtr------------------------------------
1358 // Class of Java object pointers, pointing either to non-array Java instances
1359 // or to a Klass* (including array klasses).
1360 class TypeInstPtr : public TypeOopPtr {
1361   TypeInstPtr(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset offset,
1362               bool flat_in_array, int instance_id, const TypePtr* speculative,
1363               int inline_depth);
1364   virtual bool eq( const Type *t ) const;
1365   virtual uint hash() const;             // Type specific hashing
1366   bool _flat_in_array; // Type is flat in arrays
1367   ciKlass* exact_klass_helper() const;
1368 
1369 public:
1370 
1371   // Instance klass, ignoring any interface
1372   ciInstanceKlass* instance_klass() const {
1373     assert(!(klass()->is_loaded() && klass()->is_interface()), "");
1374     return klass()->as_instance_klass();
1375   }
1376 
1377   bool is_same_java_type_as_helper(const TypeOopPtr* other) const;
1378   bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1379   bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1380 
1381   // Make a pointer to a constant oop.
1382   static const TypeInstPtr *make(ciObject* o) {
1383     ciKlass* k = o->klass();
1384     const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1385     return make(TypePtr::Constant, k, interfaces, true, o, Offset(0));
1386   }
1387   // Make a pointer to a constant oop with offset.
1388   static const TypeInstPtr *make(ciObject* o, Offset offset) {
1389     ciKlass* k = o->klass();
1390     const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1391     return make(TypePtr::Constant, k, interfaces, true, o, offset);
1392   }
1393 
1394   // Make a pointer to some value of type klass.
1395   static const TypeInstPtr *make(PTR ptr, ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) {
1396     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
1397     return make(ptr, klass, interfaces, false, nullptr, Offset(0));
1398   }
1399 
1400   // Make a pointer to some non-polymorphic value of exactly type klass.
1401   static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
1402     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, false, false, ignore_interfaces);
1403     return make(ptr, klass, interfaces, true, nullptr, Offset(0));
1404   }
1405 
1406   // Make a pointer to some value of type klass with offset.
1407   static const TypeInstPtr *make(PTR ptr, ciKlass* klass, Offset offset) {
1408     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, false, false, ignore_interfaces);
1409     return make(ptr, klass, interfaces, false, nullptr, offset);
1410   }
1411 
1412   // Make a pointer to an oop.
1413   static const TypeInstPtr* make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset offset,
1414                                  bool flat_in_array = false,
1415                                  int instance_id = InstanceBot,
1416                                  const TypePtr* speculative = nullptr,
1417                                  int inline_depth = InlineDepthBottom);
1418 
1419   static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, Offset offset, int instance_id = InstanceBot) {
1420     const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1421     return make(ptr, k, interfaces, xk, o, offset, false, instance_id);
1422   }
1423 
1424   /** Create constant type for a constant boxed value */
1425   const Type* get_const_boxed_value() const;
1426 
1427   // If this is a java.lang.Class constant, return the type for it or null.
1428   // Pass to Type::get_const_type to turn it to a type, which will usually
1429   // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
1430   ciType* java_mirror_type(bool* is_null_free_array = nullptr) const;
1431 
1432   virtual const TypeInstPtr* cast_to_ptr_type(PTR ptr) const;
1433 
1434   virtual const TypeInstPtr* cast_to_exactness(bool klass_is_exact) const;
1435 
1436   virtual const TypeInstPtr* cast_to_instance_id(int instance_id) const;
1437 
1438   virtual const TypePtr* add_offset(intptr_t offset) const;
1439   virtual const TypeInstPtr* with_offset(intptr_t offset) const;
1440 
1441   // Speculative type helper methods.
1442   virtual const TypeInstPtr* remove_speculative() const;
1443   const TypeInstPtr* with_speculative(const TypePtr* speculative) const;
1444   virtual const TypePtr* with_inline_depth(int depth) const;
1445   virtual const TypePtr* with_instance_id(int instance_id) const;
1446 
1447   virtual const TypeInstPtr* cast_to_flat_in_array() const;
1448   virtual bool flat_in_array() const { return _flat_in_array; }
1449   virtual bool not_flat_in_array() const { return !can_be_inline_type() || (_klass->is_inlinetype() && !flat_in_array()); }
1450 
1451   // the core of the computation of the meet of 2 types
1452   virtual const Type *xmeet_helper(const Type *t) const;
1453   virtual const TypeInstPtr *xmeet_unloaded(const TypeInstPtr *tinst, const TypeInterfaces* interfaces) const;
1454   virtual const Type *xdual() const;    // Compute dual right now.
1455 
1456   const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1457 
1458   virtual bool can_be_inline_array() const;
1459 
1460   // Convenience common pre-built types.
1461   static const TypeInstPtr *NOTNULL;
1462   static const TypeInstPtr *BOTTOM;
1463   static const TypeInstPtr *MIRROR;
1464   static const TypeInstPtr *MARK;
1465   static const TypeInstPtr *KLASS;
1466 #ifndef PRODUCT
1467   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1468 #endif
1469 
1470 private:
1471   virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const;
1472 
1473   virtual bool is_meet_same_type_as(const TypePtr* other) const {
1474     return _klass->equals(other->is_instptr()->_klass) && _interfaces->eq(other->is_instptr()->_interfaces);
1475   }
1476 
1477 };
1478 
1479 //------------------------------TypeAryPtr-------------------------------------
1480 // Class of Java array pointers
1481 class TypeAryPtr : public TypeOopPtr {
1482   friend class Type;
1483   friend class TypePtr;
1484   friend class TypeInstPtr;
1485   friend class TypeInterfaces;
1486 
1487   TypeAryPtr(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk,
1488              Offset offset, Offset field_offset, int instance_id, bool is_autobox_cache,
1489              const TypePtr* speculative, int inline_depth)
1490     : TypeOopPtr(AryPtr, ptr, k, _array_interfaces, xk, o, offset, field_offset, instance_id, speculative, inline_depth),
1491     _ary(ary),
1492     _is_autobox_cache(is_autobox_cache),
1493     _field_offset(field_offset)
1494  {
1495     int dummy;
1496     bool top_or_bottom = (base_element_type(dummy) == Type::TOP || base_element_type(dummy) == Type::BOTTOM);
1497 
1498     if (UseCompressedOops && (elem()->make_oopptr() != nullptr && !top_or_bottom) &&
1499         _offset.get() != 0 && _offset.get() != arrayOopDesc::length_offset_in_bytes() &&
1500         _offset.get() != arrayOopDesc::klass_offset_in_bytes()) {
1501       _is_ptr_to_narrowoop = true;
1502     }
1503 
1504   }
1505   virtual bool eq( const Type *t ) const;
1506   virtual uint hash() const;    // Type specific hashing
1507   const TypeAry *_ary;          // Array we point into
1508   const bool     _is_autobox_cache;
1509   // For flat inline type arrays, each field of the inline type in
1510   // the array has its own memory slice so we need to keep track of
1511   // which field is accessed
1512   const Offset _field_offset;
1513   Offset meet_field_offset(const Type::Offset offset) const;
1514   Offset dual_field_offset() const;
1515 
1516   ciKlass* compute_klass() const;
1517 
1518   // A pointer to delay allocation to Type::Initialize_shared()
1519 
1520   static const TypeInterfaces* _array_interfaces;
1521   ciKlass* exact_klass_helper() const;
1522   // Only guaranteed non null for array of basic types
1523   ciKlass* klass() const;
1524 
1525 public:
1526 
1527   bool is_same_java_type_as_helper(const TypeOopPtr* other) const;
1528   bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1529   bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1530 
1531   // returns base element type, an instance klass (and not interface) for object arrays
1532   const Type* base_element_type(int& dims) const;
1533 
1534   // Accessors
1535   bool  is_loaded() const { return (_ary->_elem->make_oopptr() ? _ary->_elem->make_oopptr()->is_loaded() : true); }
1536 
1537   const TypeAry* ary() const  { return _ary; }
1538   const Type*    elem() const { return _ary->_elem; }
1539   const TypeInt* size() const { return _ary->_size; }
1540   bool      is_stable() const { return _ary->_stable; }
1541 
1542   // Inline type array properties
1543   bool is_flat()          const { return _ary->_flat; }
1544   bool is_not_flat()      const { return _ary->_not_flat; }
1545   bool is_null_free()     const { return _ary->_elem->make_ptr() != nullptr && (_ary->_elem->make_ptr()->ptr() == NotNull || _ary->_elem->make_ptr()->ptr() == AnyNull); }
1546   bool is_not_null_free() const { return _ary->_not_null_free; }
1547 
1548   bool is_autobox_cache() const { return _is_autobox_cache; }
1549 
1550   static const TypeAryPtr* make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, Offset offset,
1551                                 Offset field_offset = Offset::bottom,
1552                                 int instance_id = InstanceBot,
1553                                 const TypePtr* speculative = nullptr,
1554                                 int inline_depth = InlineDepthBottom);
1555   // Constant pointer to array
1556   static const TypeAryPtr* make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, Offset offset,
1557                                 Offset field_offset = Offset::bottom,
1558                                 int instance_id = InstanceBot,
1559                                 const TypePtr* speculative = nullptr,
1560                                 int inline_depth = InlineDepthBottom,
1561                                 bool is_autobox_cache = false);
1562 
1563   // Return a 'ptr' version of this type
1564   virtual const TypeAryPtr* cast_to_ptr_type(PTR ptr) const;
1565 
1566   virtual const TypeAryPtr* cast_to_exactness(bool klass_is_exact) const;
1567 
1568   virtual const TypeAryPtr* cast_to_instance_id(int instance_id) const;
1569 
1570   virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
1571   virtual const TypeInt* narrow_size_type(const TypeInt* size) const;
1572 
1573   virtual bool empty(void) const;        // TRUE if type is vacuous
1574   virtual const TypePtr *add_offset( intptr_t offset ) const;
1575   virtual const TypeAryPtr *with_offset( intptr_t offset ) const;
1576   const TypeAryPtr* with_ary(const TypeAry* ary) const;
1577 
1578   // Speculative type helper methods.
1579   virtual const TypeAryPtr* remove_speculative() const;
1580   virtual const Type* cleanup_speculative() const;
1581   virtual const TypePtr* with_inline_depth(int depth) const;
1582   virtual const TypePtr* with_instance_id(int instance_id) const;
1583 
1584   // the core of the computation of the meet of 2 types
1585   virtual const Type *xmeet_helper(const Type *t) const;
1586   virtual const Type *xdual() const;    // Compute dual right now.
1587 
1588   // Inline type array properties
1589   const TypeAryPtr* cast_to_not_flat(bool not_flat = true) const;
1590   const TypeAryPtr* cast_to_not_null_free(bool not_null_free = true) const;
1591   const TypeAryPtr* update_properties(const TypeAryPtr* new_type) const;
1592   jint flat_layout_helper() const;
1593   int flat_elem_size() const;
1594   int flat_log_elem_size() const;
1595 
1596   const TypeAryPtr* cast_to_stable(bool stable, int stable_dimension = 1) const;
1597   int stable_dimension() const;
1598 
1599   const TypeAryPtr* cast_to_autobox_cache() const;
1600 
1601   static jint max_array_length(BasicType etype);
1602 
1603   int flat_offset() const;
1604   const Offset field_offset() const { return _field_offset; }
1605   const TypeAryPtr* with_field_offset(int offset) const;
1606   const TypePtr* add_field_offset_and_offset(intptr_t offset) const;
1607 
1608   virtual bool can_be_inline_type() const { return false; }
1609   virtual const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1610 
1611   virtual bool can_be_inline_array() const;
1612 
1613   // Convenience common pre-built types.
1614   static const TypeAryPtr* BOTTOM;
1615   static const TypeAryPtr *RANGE;
1616   static const TypeAryPtr *OOPS;
1617   static const TypeAryPtr *NARROWOOPS;
1618   static const TypeAryPtr *BYTES;
1619   static const TypeAryPtr *SHORTS;
1620   static const TypeAryPtr *CHARS;
1621   static const TypeAryPtr *INTS;
1622   static const TypeAryPtr *LONGS;
1623   static const TypeAryPtr *FLOATS;
1624   static const TypeAryPtr *DOUBLES;
1625   static const TypeAryPtr *INLINES;
1626   // selects one of the above:
1627   static const TypeAryPtr *get_array_body_type(BasicType elem) {
1628     assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != nullptr, "bad elem type");
1629     return _array_body_type[elem];
1630   }
1631   static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
1632   // sharpen the type of an int which is used as an array size
1633 #ifndef PRODUCT
1634   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1635 #endif
1636 private:
1637   virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const;
1638 };
1639 
1640 //------------------------------TypeMetadataPtr-------------------------------------
1641 // Some kind of metadata, either Method*, MethodData* or CPCacheOop
1642 class TypeMetadataPtr : public TypePtr {
1643 protected:
1644   TypeMetadataPtr(PTR ptr, ciMetadata* metadata, Offset offset);
1645   // Do not allow interface-vs.-noninterface joins to collapse to top.
1646   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1647 public:
1648   virtual bool eq( const Type *t ) const;
1649   virtual uint hash() const;             // Type specific hashing
1650   virtual bool singleton(void) const;    // TRUE if type is a singleton
1651 
1652 private:
1653   ciMetadata*   _metadata;
1654 
1655 public:
1656   static const TypeMetadataPtr* make(PTR ptr, ciMetadata* m, Offset offset);
1657 
1658   static const TypeMetadataPtr* make(ciMethod* m);
1659   static const TypeMetadataPtr* make(ciMethodData* m);
1660 
1661   ciMetadata* metadata() const { return _metadata; }
1662 
1663   virtual const TypeMetadataPtr* cast_to_ptr_type(PTR ptr) const;
1664 
1665   virtual const TypePtr *add_offset( intptr_t offset ) const;
1666 
1667   virtual const Type *xmeet( const Type *t ) const;
1668   virtual const Type *xdual() const;    // Compute dual right now.
1669 
1670   virtual intptr_t get_con() const;
1671 
1672   // Convenience common pre-built types.
1673   static const TypeMetadataPtr *BOTTOM;
1674 
1675 #ifndef PRODUCT
1676   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1677 #endif
1678 };
1679 
1680 //------------------------------TypeKlassPtr-----------------------------------
1681 // Class of Java Klass pointers
1682 class TypeKlassPtr : public TypePtr {
1683   friend class TypeInstKlassPtr;
1684   friend class TypeAryKlassPtr;
1685   friend class TypePtr;
1686 protected:
1687   TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, Offset offset);
1688 
1689   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1690 
1691 public:
1692   virtual bool eq( const Type *t ) const;
1693   virtual uint hash() const;
1694   virtual bool singleton(void) const;    // TRUE if type is a singleton
1695 
1696 protected:
1697 
1698   ciKlass* _klass;
1699   const TypeInterfaces* _interfaces;
1700   const TypeInterfaces* meet_interfaces(const TypeKlassPtr* other) const;
1701   virtual bool must_be_exact() const { ShouldNotReachHere(); return false; }
1702   virtual ciKlass* exact_klass_helper() const;
1703   virtual ciKlass* klass() const { return  _klass; }
1704 
1705 public:
1706 
1707   bool is_java_subtype_of(const TypeKlassPtr* other) const {
1708     return is_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1709   }
1710   bool is_same_java_type_as(const TypePtr* other) const {
1711     return is_same_java_type_as_helper(other->is_klassptr());
1712   }
1713 
1714   bool maybe_java_subtype_of(const TypeKlassPtr* other) const {
1715     return maybe_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1716   }
1717   virtual bool is_same_java_type_as_helper(const TypeKlassPtr* other) const { ShouldNotReachHere(); return false; }
1718   virtual bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1719   virtual bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1720 
1721   // Exact klass, possibly an interface or an array of interface
1722   ciKlass* exact_klass(bool maybe_null = false) const { assert(klass_is_exact(), ""); ciKlass* k = exact_klass_helper(); assert(k != nullptr || maybe_null, ""); return k;  }
1723   virtual bool klass_is_exact()    const { return _ptr == Constant; }
1724 
1725   static const TypeKlassPtr* make(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces);
1726   static const TypeKlassPtr *make(PTR ptr, ciKlass* klass, Offset offset, InterfaceHandling interface_handling = ignore_interfaces);
1727 
1728   virtual bool  is_loaded() const { return _klass->is_loaded(); }
1729 
1730   virtual const TypeKlassPtr* cast_to_ptr_type(PTR ptr) const { ShouldNotReachHere(); return nullptr; }
1731 
1732   virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const { ShouldNotReachHere(); return nullptr; }
1733 
1734   // corresponding pointer to instance, for a given class
1735   virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const { ShouldNotReachHere(); return nullptr; }
1736 
1737   virtual const TypePtr *add_offset( intptr_t offset ) const { ShouldNotReachHere(); return nullptr; }
1738   virtual const Type    *xmeet( const Type *t ) const { ShouldNotReachHere(); return nullptr; }
1739   virtual const Type    *xdual() const { ShouldNotReachHere(); return nullptr; }
1740 
1741   virtual intptr_t get_con() const;
1742 
1743   virtual const TypeKlassPtr* with_offset(intptr_t offset) const { ShouldNotReachHere(); return nullptr; }
1744 
1745   virtual bool can_be_inline_array() const { ShouldNotReachHere(); return false; }
1746 
1747   virtual bool not_flat_in_array_inexact() const {
1748     return true;
1749   }
1750 
1751   virtual const TypeKlassPtr* try_improve() const { return this; }
1752 
1753 #ifndef PRODUCT
1754   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1755 #endif
1756 private:
1757   virtual bool is_meet_subtype_of(const TypePtr* other) const {
1758     return is_meet_subtype_of_helper(other->is_klassptr(), klass_is_exact(), other->is_klassptr()->klass_is_exact());
1759   }
1760 
1761   virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const {
1762     ShouldNotReachHere(); return false;
1763   }
1764 
1765   virtual const TypeInterfaces* interfaces() const {
1766     return _interfaces;
1767   };
1768 
1769   const TypeKlassPtr* is_reference_type(const Type* other) const {
1770     return other->isa_klassptr();
1771   }
1772 
1773   const TypeAryKlassPtr* is_array_type(const TypeKlassPtr* other) const {
1774     return other->isa_aryklassptr();
1775   }
1776 
1777   const TypeInstKlassPtr* is_instance_type(const TypeKlassPtr* other) const {
1778     return other->isa_instklassptr();
1779   }
1780 };
1781 
1782 // Instance klass pointer, mirrors TypeInstPtr
1783 class TypeInstKlassPtr : public TypeKlassPtr {
1784 
1785   TypeInstKlassPtr(PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, Offset offset, bool flat_in_array)
1786     : TypeKlassPtr(InstKlassPtr, ptr, klass, interfaces, offset), _flat_in_array(flat_in_array) {
1787     assert(klass->is_instance_klass() && (!klass->is_loaded() || !klass->is_interface()), "");
1788   }
1789 
1790   virtual bool must_be_exact() const;
1791 
1792   const bool _flat_in_array; // Type is flat in arrays
1793 
1794 public:
1795   // Instance klass ignoring any interface
1796   ciInstanceKlass* instance_klass() const {
1797     assert(!klass()->is_interface(), "");
1798     return klass()->as_instance_klass();
1799   }
1800 
1801   bool might_be_an_array() const;
1802 
1803   bool is_same_java_type_as_helper(const TypeKlassPtr* other) const;
1804   bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
1805   bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
1806 
1807   virtual bool can_be_inline_type() const { return (_klass == nullptr || _klass->can_be_inline_klass(klass_is_exact())); }
1808 
1809   static const TypeInstKlassPtr *make(ciKlass* k, InterfaceHandling interface_handling) {
1810     const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, true, false, interface_handling);
1811     return make(TypePtr::Constant, k, interfaces, Offset(0));
1812   }
1813   static const TypeInstKlassPtr* make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, Offset offset, bool flat_in_array = false);
1814 
1815   static const TypeInstKlassPtr* make(PTR ptr, ciKlass* k, Offset offset) {
1816     const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1817     return make(ptr, k, interfaces, offset);
1818   }
1819 
1820   virtual const TypeInstKlassPtr* cast_to_ptr_type(PTR ptr) const;
1821 
1822   virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const;
1823 
1824   // corresponding pointer to instance, for a given class
1825   virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const;
1826   virtual uint hash() const;
1827   virtual bool eq(const Type *t) const;
1828 
1829   virtual const TypePtr *add_offset( intptr_t offset ) const;
1830   virtual const Type    *xmeet( const Type *t ) const;
1831   virtual const Type    *xdual() const;
1832   virtual const TypeInstKlassPtr* with_offset(intptr_t offset) const;
1833 
1834   virtual const TypeKlassPtr* try_improve() const;
1835 
1836   virtual bool flat_in_array() const { return _flat_in_array; }
1837 
1838   // Checks if this klass pointer is not flat in array by also considering exactness information.
1839   virtual bool not_flat_in_array() const {
1840     return !_klass->can_be_inline_klass(klass_is_exact()) || (_klass->is_inlinetype() && !flat_in_array());
1841   }
1842 
1843   // not_flat_in_array() version that assumes that the klass is inexact. This is used for sub type checks where the
1844   // super klass is always an exact klass constant (and thus possibly known to be not flat in array), while a sub
1845   // klass could very well be flat in array:
1846   //
1847   //           MyValue       <:       Object
1848   //        flat in array       not flat in array
1849   //
1850   // Thus, this version checks if we know that the klass is not flat in array even if it's not exact.
1851   virtual bool not_flat_in_array_inexact() const {
1852     return !_klass->can_be_inline_klass() || (_klass->is_inlinetype() && !flat_in_array());
1853   }
1854 
1855   virtual bool can_be_inline_array() const;
1856 
1857   // Convenience common pre-built types.
1858   static const TypeInstKlassPtr* OBJECT; // Not-null object klass or below
1859   static const TypeInstKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
1860 private:
1861   virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const;
1862 };
1863 
1864 // Array klass pointer, mirrors TypeAryPtr
1865 class TypeAryKlassPtr : public TypeKlassPtr {
1866   friend class TypeInstKlassPtr;
1867   friend class Type;
1868   friend class TypePtr;
1869 
1870   const Type *_elem;
1871   const bool _not_flat;      // Array is never flat
1872   const bool _not_null_free; // Array is never null-free
1873   const bool _flat;
1874   const bool _null_free;
1875 
1876   static const TypeInterfaces* _array_interfaces;
1877   TypeAryKlassPtr(PTR ptr, const Type *elem, ciKlass* klass, Offset offset, bool not_flat, int not_null_free, bool flat, bool null_free)
1878     : TypeKlassPtr(AryKlassPtr, ptr, klass, _array_interfaces, offset), _elem(elem), _not_flat(not_flat), _not_null_free(not_null_free), _flat(flat), _null_free(null_free) {
1879     assert(klass == nullptr || klass->is_type_array_klass() || klass->is_flat_array_klass() || !klass->as_obj_array_klass()->base_element_klass()->is_interface(), "");
1880   }
1881 
1882   virtual ciKlass* exact_klass_helper() const;
1883   // Only guaranteed non null for array of basic types
1884   virtual ciKlass* klass() const;
1885 
1886   virtual bool must_be_exact() const;
1887 
1888   bool dual_flat() const {
1889     return _flat;
1890   }
1891 
1892   bool meet_flat(bool other) const {
1893     return _flat && other;
1894   }
1895 
1896   bool dual_null_free() const {
1897     return _null_free;
1898   }
1899 
1900   bool meet_null_free(bool other) const {
1901     return _null_free && other;
1902   }
1903 
1904 public:
1905 
1906   // returns base element type, an instance klass (and not interface) for object arrays
1907   const Type* base_element_type(int& dims) const;
1908 
1909   static const TypeAryKlassPtr* make(PTR ptr, ciKlass* k, Offset offset, InterfaceHandling interface_handling, bool not_flat, bool not_null_free, bool flat, bool null_free);
1910 
1911   bool is_same_java_type_as_helper(const TypeKlassPtr* other) const;
1912   bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
1913   bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
1914 
1915   bool  is_loaded() const { return (_elem->isa_klassptr() ? _elem->is_klassptr()->is_loaded() : true); }
1916 
1917   static const TypeAryKlassPtr* make(PTR ptr, const Type* elem, ciKlass* k, Offset offset, bool not_flat, bool not_null_free, bool flat, bool null_free);
1918   static const TypeAryKlassPtr* make(PTR ptr, ciKlass* k, Offset offset, InterfaceHandling interface_handling);
1919   static const TypeAryKlassPtr* make(ciKlass* klass, InterfaceHandling interface_handling);
1920 
1921   const Type *elem() const { return _elem; }
1922 
1923   virtual bool eq(const Type *t) const;
1924   virtual uint hash() const;             // Type specific hashing
1925 
1926   virtual const TypeAryKlassPtr* cast_to_ptr_type(PTR ptr) const;
1927 
1928   virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const;
1929 
1930   const TypeAryKlassPtr* cast_to_null_free() const;
1931 
1932   // corresponding pointer to instance, for a given class
1933   virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const;
1934 
1935   virtual const TypePtr *add_offset( intptr_t offset ) const;
1936   virtual const Type    *xmeet( const Type *t ) const;
1937   virtual const Type    *xdual() const;      // Compute dual right now.
1938 
1939   virtual const TypeAryKlassPtr* with_offset(intptr_t offset) const;
1940 
1941   virtual bool empty(void) const {
1942     return TypeKlassPtr::empty() || _elem->empty();
1943   }
1944 
1945   bool is_flat()          const { return _flat; }
1946   bool is_not_flat()      const { return _not_flat; }
1947   bool is_null_free()     const { return _null_free; }
1948   bool is_not_null_free() const { return _not_null_free; }
1949   virtual bool can_be_inline_array() const;
1950 
1951 #ifndef PRODUCT
1952   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1953 #endif
1954 private:
1955   virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const;
1956 };
1957 
1958 class TypeNarrowPtr : public Type {
1959 protected:
1960   const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR
1961 
1962   TypeNarrowPtr(TYPES t, const TypePtr* ptrtype): Type(t),
1963                                                   _ptrtype(ptrtype) {
1964     assert(ptrtype->offset() == 0 ||
1965            ptrtype->offset() == OffsetBot ||
1966            ptrtype->offset() == OffsetTop, "no real offsets");
1967   }
1968 
1969   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const = 0;
1970   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const = 0;

2066   }
2067 
2068   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
2069     return (const TypeNarrowPtr*)((new TypeNarrowKlass(t))->hashcons());
2070   }
2071 
2072 public:
2073   static const TypeNarrowKlass *make( const TypePtr* type);
2074 
2075   // static const TypeNarrowKlass *BOTTOM;
2076   static const TypeNarrowKlass *NULL_PTR;
2077 
2078 #ifndef PRODUCT
2079   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
2080 #endif
2081 };
2082 
2083 //------------------------------TypeFunc---------------------------------------
2084 // Class of Array Types
2085 class TypeFunc : public Type {
2086   TypeFunc(const TypeTuple *domain_sig, const TypeTuple *domain_cc, const TypeTuple *range_sig, const TypeTuple *range_cc)
2087     : Type(Function), _domain_sig(domain_sig), _domain_cc(domain_cc), _range_sig(range_sig), _range_cc(range_cc) {}
2088   virtual bool eq( const Type *t ) const;
2089   virtual uint hash() const;             // Type specific hashing
2090   virtual bool singleton(void) const;    // TRUE if type is a singleton
2091   virtual bool empty(void) const;        // TRUE if type is vacuous
2092 
2093   // Domains of inputs: inline type arguments are not passed by
2094   // reference, instead each field of the inline type is passed as an
2095   // argument. We maintain 2 views of the argument list here: one
2096   // based on the signature (with an inline type argument as a single
2097   // slot), one based on the actual calling convention (with a value
2098   // type argument as a list of its fields).
2099   const TypeTuple* const _domain_sig;
2100   const TypeTuple* const _domain_cc;
2101   // Range of results. Similar to domains: an inline type result can be
2102   // returned in registers in which case range_cc lists all fields and
2103   // is the actual calling convention.
2104   const TypeTuple* const _range_sig;
2105   const TypeTuple* const _range_cc;
2106 
2107 public:
2108   // Constants are shared among ADLC and VM
2109   enum { Control    = AdlcVMDeps::Control,
2110          I_O        = AdlcVMDeps::I_O,
2111          Memory     = AdlcVMDeps::Memory,
2112          FramePtr   = AdlcVMDeps::FramePtr,
2113          ReturnAdr  = AdlcVMDeps::ReturnAdr,
2114          Parms      = AdlcVMDeps::Parms
2115   };
2116 
2117 
2118   // Accessors:
2119   const TypeTuple* domain_sig() const { return _domain_sig; }
2120   const TypeTuple* domain_cc()  const { return _domain_cc; }
2121   const TypeTuple* range_sig()  const { return _range_sig; }
2122   const TypeTuple* range_cc()   const { return _range_cc; }
2123 
2124   static const TypeFunc* make(ciMethod* method, bool is_osr_compilation = false);
2125   static const TypeFunc *make(const TypeTuple* domain_sig, const TypeTuple* domain_cc,
2126                               const TypeTuple* range_sig, const TypeTuple* range_cc);
2127   static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
2128 
2129   virtual const Type *xmeet( const Type *t ) const;
2130   virtual const Type *xdual() const;    // Compute dual right now.
2131 
2132   BasicType return_type() const;
2133 
2134   bool returns_inline_type_as_fields() const { return range_sig() != range_cc(); }
2135 
2136 #ifndef PRODUCT
2137   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
2138 #endif
2139   // Convenience common pre-built types.
2140 };
2141 
2142 //------------------------------accessors--------------------------------------
2143 inline bool Type::is_ptr_to_narrowoop() const {
2144 #ifdef _LP64
2145   return (isa_oopptr() != nullptr && is_oopptr()->is_ptr_to_narrowoop_nv());
2146 #else
2147   return false;
2148 #endif
2149 }
2150 
2151 inline bool Type::is_ptr_to_narrowklass() const {
2152 #ifdef _LP64
2153   return (isa_oopptr() != nullptr && is_oopptr()->is_ptr_to_narrowklass_nv());
2154 #else
2155   return false;

2392 }
2393 
2394 inline const TypeNarrowOop* Type::make_narrowoop() const {
2395   return (_base == NarrowOop) ? is_narrowoop() :
2396                                 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : nullptr);
2397 }
2398 
2399 inline const TypeNarrowKlass* Type::make_narrowklass() const {
2400   return (_base == NarrowKlass) ? is_narrowklass() :
2401                                   (isa_ptr() ? TypeNarrowKlass::make(is_ptr()) : nullptr);
2402 }
2403 
2404 inline bool Type::is_floatingpoint() const {
2405   if( (_base == HalfFloatCon)  || (_base == HalfFloatBot) ||
2406       (_base == FloatCon)  || (_base == FloatBot) ||
2407       (_base == DoubleCon) || (_base == DoubleBot) )
2408     return true;
2409   return false;
2410 }
2411 
2412 inline bool Type::is_inlinetypeptr() const {
2413   return isa_instptr() != nullptr && is_instptr()->instance_klass()->is_inlinetype();
2414 }
2415 
2416 inline ciInlineKlass* Type::inline_klass() const {
2417   return make_ptr()->is_instptr()->instance_klass()->as_inline_klass();
2418 }
2419 
2420 template <>
2421 inline const TypeInt* Type::cast<TypeInt>() const {
2422   return is_int();
2423 }
2424 
2425 template <>
2426 inline const TypeLong* Type::cast<TypeLong>() const {
2427   return is_long();
2428 }
2429 
2430 // ===============================================================
2431 // Things that need to be 64-bits in the 64-bit build but
2432 // 32-bits in the 32-bit build.  Done this way to get full
2433 // optimization AND strong typing.
2434 #ifdef _LP64
2435 
2436 // For type queries and asserts
2437 #define is_intptr_t  is_long
2438 #define isa_intptr_t isa_long
2439 #define find_intptr_t_type find_long_type
2440 #define find_intptr_t_con  find_long_con
2441 #define TypeX        TypeLong
2442 #define Type_X       Type::Long
2443 #define TypeX_X      TypeLong::LONG
2444 #define TypeX_ZERO   TypeLong::ZERO
2445 // For 'ideal_reg' machine registers
2446 #define Op_RegX      Op_RegL
2447 // For phase->intcon variants
2448 #define MakeConX     longcon
2449 #define ConXNode     ConLNode
2450 // For array index arithmetic
2451 #define MulXNode     MulLNode
2452 #define AndXNode     AndLNode
2453 #define OrXNode      OrLNode
2454 #define CmpXNode     CmpLNode
2455 #define CmpUXNode    CmpULNode
2456 #define SubXNode     SubLNode
2457 #define LShiftXNode  LShiftLNode
2458 // For object size computation:
2459 #define AddXNode     AddLNode
2460 #define RShiftXNode  RShiftLNode
2461 // For card marks and hashcodes
2462 #define URShiftXNode URShiftLNode
2463 // For shenandoahSupport
2464 #define LoadXNode    LoadLNode
2465 #define StoreXNode   StoreLNode
2466 // Opcodes
2467 #define Op_LShiftX   Op_LShiftL
2468 #define Op_AndX      Op_AndL
2469 #define Op_AddX      Op_AddL
2470 #define Op_SubX      Op_SubL
2471 #define Op_XorX      Op_XorL
2472 #define Op_URShiftX  Op_URShiftL
2473 #define Op_LoadX     Op_LoadL
2474 #define Op_StoreX    Op_StoreL
2475 // conversions
2476 #define ConvI2X(x)   ConvI2L(x)
2477 #define ConvL2X(x)   (x)
2478 #define ConvX2I(x)   ConvL2I(x)
2479 #define ConvX2L(x)   (x)
2480 #define ConvX2UL(x)  (x)
2481 
2482 #else
2483 
2484 // For type queries and asserts
2485 #define is_intptr_t  is_int
2486 #define isa_intptr_t isa_int
2487 #define find_intptr_t_type find_int_type
2488 #define find_intptr_t_con  find_int_con
2489 #define TypeX        TypeInt
2490 #define Type_X       Type::Int
2491 #define TypeX_X      TypeInt::INT
2492 #define TypeX_ZERO   TypeInt::ZERO
2493 // For 'ideal_reg' machine registers
2494 #define Op_RegX      Op_RegI
2495 // For phase->intcon variants
2496 #define MakeConX     intcon
2497 #define ConXNode     ConINode
2498 // For array index arithmetic
2499 #define MulXNode     MulINode
2500 #define AndXNode     AndINode
2501 #define OrXNode      OrINode
2502 #define CmpXNode     CmpINode
2503 #define CmpUXNode    CmpUNode
2504 #define SubXNode     SubINode
2505 #define LShiftXNode  LShiftINode
2506 // For object size computation:
2507 #define AddXNode     AddINode
2508 #define RShiftXNode  RShiftINode
2509 // For card marks and hashcodes
2510 #define URShiftXNode URShiftINode
2511 // For shenandoahSupport
2512 #define LoadXNode    LoadINode
2513 #define StoreXNode   StoreINode
2514 // Opcodes
2515 #define Op_LShiftX   Op_LShiftI
2516 #define Op_AndX      Op_AndI
2517 #define Op_AddX      Op_AddI
2518 #define Op_SubX      Op_SubI
2519 #define Op_XorX      Op_XorI
2520 #define Op_URShiftX  Op_URShiftI
2521 #define Op_LoadX     Op_LoadI
2522 #define Op_StoreX    Op_StoreI
2523 // conversions
2524 #define ConvI2X(x)   (x)
2525 #define ConvL2X(x)   ConvL2I(x)
2526 #define ConvX2I(x)   (x)
2527 #define ConvX2L(x)   ConvI2L(x)
2528 #define ConvX2UL(x)  ConvI2UL(x)
2529 
2530 #endif
2531 
2532 #endif // SHARE_OPTO_TYPE_HPP
< prev index next >