8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #ifndef SHARE_OPTO_TYPE_HPP
26 #define SHARE_OPTO_TYPE_HPP
27
28 #include "opto/adlcVMDeps.hpp"
29 #include "opto/compile.hpp"
30 #include "opto/rangeinference.hpp"
31 #include "runtime/handles.hpp"
32
33 // Portions of code courtesy of Clifford Click
34
35 // Optimization - Graph Style
36
37
38 // This class defines a Type lattice. The lattice is used in the constant
39 // propagation algorithms, and for some type-checking of the iloc code.
40 // Basic types include RSD's (lower bound, upper bound, stride for integers),
41 // float & double precision constants, sets of data-labels and code-labels.
42 // The complete lattice is described below. Subtypes have no relationship to
43 // up or down in the lattice; that is entirely determined by the behavior of
44 // the MEET/JOIN functions.
45
46 class Dict;
47 class Type;
48 class TypeD;
49 class TypeF;
50 class TypeH;
51 class TypeInteger;
127 Memory, // Abstract store
128 HalfFloatTop, // No float value
129 HalfFloatCon, // Floating point constant
130 HalfFloatBot, // Any float value
131 FloatTop, // No float value
132 FloatCon, // Floating point constant
133 FloatBot, // Any float value
134 DoubleTop, // No double value
135 DoubleCon, // Double precision constant
136 DoubleBot, // Any double value
137 Bottom, // Bottom of lattice
138 lastype // Bogus ending type (not in lattice)
139 };
140
141 // Signal values for offsets from a base pointer
142 enum OFFSET_SIGNALS {
143 OffsetTop = -2000000000, // undefined offset
144 OffsetBot = -2000000001 // any possible offset
145 };
146
147 // Min and max WIDEN values.
148 enum WIDEN {
149 WidenMin = 0,
150 WidenMax = 3
151 };
152
153 private:
154 typedef struct {
155 TYPES dual_type;
156 BasicType basic_type;
157 const char* msg;
158 bool isa_oop;
159 uint ideal_reg;
160 relocInfo::relocType reloc;
161 } TypeInfo;
162
163 // Dictionary of types shared among compilations.
164 static Dict* _shared_type_dict;
165 static const TypeInfo _type_info[];
166
328 const TypeInstPtr *isa_instptr() const; // Returns null if not InstPtr
329 const TypeInstPtr *is_instptr() const; // Instance
330 const TypeAryPtr *isa_aryptr() const; // Returns null if not AryPtr
331 const TypeAryPtr *is_aryptr() const; // Array oop
332
333 template <typename TypeClass>
334 const TypeClass* cast() const;
335
336 const TypeMetadataPtr *isa_metadataptr() const; // Returns null if not oop ptr type
337 const TypeMetadataPtr *is_metadataptr() const; // Java-style GC'd pointer
338 const TypeKlassPtr *isa_klassptr() const; // Returns null if not KlassPtr
339 const TypeKlassPtr *is_klassptr() const; // assert if not KlassPtr
340 const TypeInstKlassPtr *isa_instklassptr() const; // Returns null if not IntKlassPtr
341 const TypeInstKlassPtr *is_instklassptr() const; // assert if not IntKlassPtr
342 const TypeAryKlassPtr *isa_aryklassptr() const; // Returns null if not AryKlassPtr
343 const TypeAryKlassPtr *is_aryklassptr() const; // assert if not AryKlassPtr
344
345 virtual bool is_finite() const; // Has a finite value
346 virtual bool is_nan() const; // Is not a number (NaN)
347
348 // Returns this ptr type or the equivalent ptr type for this compressed pointer.
349 const TypePtr* make_ptr() const;
350
351 // Returns this oopptr type or the equivalent oopptr type for this compressed pointer.
352 // Asserts if the underlying type is not an oopptr or narrowoop.
353 const TypeOopPtr* make_oopptr() const;
354
355 // Returns this compressed pointer or the equivalent compressed version
356 // of this pointer type.
357 const TypeNarrowOop* make_narrowoop() const;
358
359 // Returns this compressed klass pointer or the equivalent
360 // compressed version of this pointer type.
361 const TypeNarrowKlass* make_narrowklass() const;
362
363 // Special test for register pressure heuristic
364 bool is_floatingpoint() const; // True if Float or Double base type
365
366 // Do you have memory, directly or through a tuple?
367 bool has_memory( ) const;
937 const Type ** const _fields; // Array of field types
938
939 public:
940 virtual bool eq( const Type *t ) const;
941 virtual uint hash() const; // Type specific hashing
942 virtual bool singleton(void) const; // TRUE if type is a singleton
943 virtual bool empty(void) const; // TRUE if type is vacuous
944
945 // Accessors:
946 uint cnt() const { return _cnt; }
947 const Type* field_at(uint i) const {
948 assert(i < _cnt, "oob");
949 return _fields[i];
950 }
951 void set_field_at(uint i, const Type* t) {
952 assert(i < _cnt, "oob");
953 _fields[i] = t;
954 }
955
956 static const TypeTuple *make( uint cnt, const Type **fields );
957 static const TypeTuple *make_range(ciSignature *sig, InterfaceHandling interface_handling = ignore_interfaces);
958 static const TypeTuple *make_domain(ciInstanceKlass* recv, ciSignature *sig, InterfaceHandling interface_handling);
959
960 // Subroutine call type with space allocated for argument types
961 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
962 static const Type **fields( uint arg_cnt );
963
964 virtual const Type *xmeet( const Type *t ) const;
965 virtual const Type *xdual() const; // Compute dual right now.
966 // Convenience common pre-built types.
967 static const TypeTuple *IFBOTH;
968 static const TypeTuple *IFFALSE;
969 static const TypeTuple *IFTRUE;
970 static const TypeTuple *IFNEITHER;
971 static const TypeTuple *LOOPBODY;
972 static const TypeTuple *MEMBAR;
973 static const TypeTuple *STORECONDITIONAL;
974 static const TypeTuple *START_I2C;
975 static const TypeTuple *INT_PAIR;
976 static const TypeTuple *LONG_PAIR;
977 static const TypeTuple *INT_CC_PAIR;
978 static const TypeTuple *LONG_CC_PAIR;
979 #ifndef PRODUCT
980 virtual void dump2( Dict &d, uint, outputStream *st ) const; // Specialized per-Type dumping
981 #endif
982 };
983
984 //------------------------------TypeAry----------------------------------------
985 // Class of Array Types
986 class TypeAry : public Type {
987 TypeAry(const Type* elem, const TypeInt* size, bool stable) : Type(Array),
988 _elem(elem), _size(size), _stable(stable) {}
989 public:
990 virtual bool eq( const Type *t ) const;
991 virtual uint hash() const; // Type specific hashing
992 virtual bool singleton(void) const; // TRUE if type is a singleton
993 virtual bool empty(void) const; // TRUE if type is vacuous
994
995 private:
996 const Type *_elem; // Element type of array
997 const TypeInt *_size; // Elements in array
998 const bool _stable; // Are elements @Stable?
999 friend class TypeAryPtr;
1000
1001 public:
1002 static const TypeAry* make(const Type* elem, const TypeInt* size, bool stable = false);
1003
1004 virtual const Type *xmeet( const Type *t ) const;
1005 virtual const Type *xdual() const; // Compute dual right now.
1006 bool ary_must_be_exact() const; // true if arrays of such are never generic
1007 virtual const TypeAry* remove_speculative() const;
1008 virtual const Type* cleanup_speculative() const;
1009 #ifndef PRODUCT
1010 virtual void dump2( Dict &d, uint, outputStream *st ) const; // Specialized per-Type dumping
1011 #endif
1012 };
1013
1014 //------------------------------TypeVect---------------------------------------
1015 // Class of Vector Types
1016 class TypeVect : public Type {
1017 const BasicType _elem_bt; // Vector's element type
1018 const uint _length; // Elements in vector (power of 2)
1019
1020 protected:
1021 TypeVect(TYPES t, BasicType elem_bt, uint length) : Type(t),
1022 _elem_bt(elem_bt), _length(length) {}
1128
1129 const Type* xmeet(const Type* t) const;
1130
1131 bool singleton(void) const;
1132 bool has_non_array_interface() const;
1133 };
1134
1135 //------------------------------TypePtr----------------------------------------
1136 // Class of machine Pointer Types: raw data, instances or arrays.
1137 // If the _base enum is AnyPtr, then this refers to all of the above.
1138 // Otherwise the _base will indicate which subset of pointers is affected,
1139 // and the class will be inherited from.
1140 class TypePtr : public Type {
1141 friend class TypeNarrowPtr;
1142 friend class Type;
1143 protected:
1144 static const TypeInterfaces* interfaces(ciKlass*& k, bool klass, bool interface, bool array, InterfaceHandling interface_handling);
1145
1146 public:
1147 enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
1148 protected:
1149 TypePtr(TYPES t, PTR ptr, int offset,
1150 const TypePtr* speculative = nullptr,
1151 int inline_depth = InlineDepthBottom) :
1152 Type(t), _speculative(speculative), _inline_depth(inline_depth), _offset(offset),
1153 _ptr(ptr) {}
1154 static const PTR ptr_meet[lastPTR][lastPTR];
1155 static const PTR ptr_dual[lastPTR];
1156 static const char * const ptr_msg[lastPTR];
1157
1158 enum {
1159 InlineDepthBottom = INT_MAX,
1160 InlineDepthTop = -InlineDepthBottom
1161 };
1162
1163 // Extra type information profiling gave us. We propagate it the
1164 // same way the rest of the type info is propagated. If we want to
1165 // use it, then we have to emit a guard: this part of the type is
1166 // not something we know but something we speculate about the type.
1167 const TypePtr* _speculative;
1168 // For speculative types, we record at what inlining depth the
1169 // profiling point that provided the data is. We want to favor
1170 // profile data coming from outer scopes which are likely better for
1171 // the current compilation.
1172 int _inline_depth;
1173
1174 // utility methods to work on the speculative part of the type
1175 const TypePtr* dual_speculative() const;
1176 const TypePtr* xmeet_speculative(const TypePtr* other) const;
1177 bool eq_speculative(const TypePtr* other) const;
1186 #ifndef PRODUCT
1187 void dump_speculative(outputStream* st) const;
1188 void dump_inline_depth(outputStream* st) const;
1189 void dump_offset(outputStream* st) const;
1190 #endif
1191
1192 // TypeInstPtr (TypeAryPtr resp.) and TypeInstKlassPtr (TypeAryKlassPtr resp.) implement very similar meet logic.
1193 // The logic for meeting 2 instances (2 arrays resp.) is shared in the 2 utility methods below. However the logic for
1194 // the oop and klass versions can be slightly different and extra logic may have to be executed depending on what
1195 // exact case the meet falls into. The MeetResult struct is used by the utility methods to communicate what case was
1196 // encountered so the right logic specific to klasses or oops can be executed.,
1197 enum MeetResult {
1198 QUICK,
1199 UNLOADED,
1200 SUBTYPE,
1201 NOT_SUBTYPE,
1202 LCA
1203 };
1204 template<class T> static TypePtr::MeetResult meet_instptr(PTR& ptr, const TypeInterfaces*& interfaces, const T* this_type,
1205 const T* other_type, ciKlass*& res_klass, bool& res_xk);
1206
1207 template<class T> static MeetResult meet_aryptr(PTR& ptr, const Type*& elem, const T* this_ary, const T* other_ary,
1208 ciKlass*& res_klass, bool& res_xk);
1209
1210 template <class T1, class T2> static bool is_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1211 template <class T1, class T2> static bool is_same_java_type_as_helper_for_instance(const T1* this_one, const T2* other);
1212 template <class T1, class T2> static bool maybe_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1213 template <class T1, class T2> static bool is_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1214 template <class T1, class T2> static bool is_same_java_type_as_helper_for_array(const T1* this_one, const T2* other);
1215 template <class T1, class T2> static bool maybe_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1216 template <class T1, class T2> static bool is_meet_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_xk, bool other_xk);
1217 template <class T1, class T2> static bool is_meet_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_xk, bool other_xk);
1218 public:
1219 const int _offset; // Offset into oop, with TOP & BOT
1220 const PTR _ptr; // Pointer equivalence class
1221
1222 int offset() const { return _offset; }
1223 PTR ptr() const { return _ptr; }
1224
1225 static const TypePtr *make(TYPES t, PTR ptr, int offset,
1226 const TypePtr* speculative = nullptr,
1227 int inline_depth = InlineDepthBottom);
1228
1229 // Return a 'ptr' version of this type
1230 virtual const TypePtr* cast_to_ptr_type(PTR ptr) const;
1231
1232 virtual intptr_t get_con() const;
1233
1234 int xadd_offset( intptr_t offset ) const;
1235 virtual const TypePtr* add_offset(intptr_t offset) const;
1236 virtual const TypePtr* with_offset(intptr_t offset) const;
1237 virtual bool eq(const Type *t) const;
1238 virtual uint hash() const; // Type specific hashing
1239
1240 virtual bool singleton(void) const; // TRUE if type is a singleton
1241 virtual bool empty(void) const; // TRUE if type is vacuous
1242 virtual const Type *xmeet( const Type *t ) const;
1243 virtual const Type *xmeet_helper( const Type *t ) const;
1244 int meet_offset( int offset ) const;
1245 int dual_offset( ) const;
1246 virtual const Type *xdual() const; // Compute dual right now.
1247
1248 // meet, dual and join over pointer equivalence sets
1249 PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
1250 PTR dual_ptr() const { return ptr_dual[ptr()]; }
1251
1252 // This is textually confusing unless one recalls that
1253 // join(t) == dual()->meet(t->dual())->dual().
1254 PTR join_ptr( const PTR in_ptr ) const {
1255 return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
1256 }
1257
1258 // Speculative type helper methods.
1259 virtual const TypePtr* speculative() const { return _speculative; }
1260 int inline_depth() const { return _inline_depth; }
1261 virtual ciKlass* speculative_type() const;
1262 virtual ciKlass* speculative_type_not_null() const;
1263 virtual bool speculative_maybe_null() const;
1264 virtual bool speculative_always_null() const;
1265 virtual const TypePtr* remove_speculative() const;
1266 virtual const Type* cleanup_speculative() const;
1267 virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
1268 virtual bool would_improve_ptr(ProfilePtrKind maybe_null) const;
1269 virtual const TypePtr* with_inline_depth(int depth) const;
1270
1271 virtual bool maybe_null() const { return meet_ptr(Null) == ptr(); }
1272
1273 // Tests for relation to centerline of type lattice:
1274 static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
1275 static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
1276 // Convenience common pre-built types.
1277 static const TypePtr *NULL_PTR;
1278 static const TypePtr *NOTNULL;
1279 static const TypePtr *BOTTOM;
1280 #ifndef PRODUCT
1281 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1282 #endif
1283 };
1284
1285 //------------------------------TypeRawPtr-------------------------------------
1286 // Class of raw pointers, pointers to things other than Oops. Examples
1287 // include the stack pointer, top of heap, card-marking area, handles, etc.
1288 class TypeRawPtr : public TypePtr {
1289 protected:
1290 TypeRawPtr( PTR ptr, address bits ) : TypePtr(RawPtr,ptr,0), _bits(bits){}
1291 public:
1292 virtual bool eq( const Type *t ) const;
1293 virtual uint hash() const; // Type specific hashing
1294
1295 const address _bits; // Constant value, if applicable
1296
1297 static const TypeRawPtr *make( PTR ptr );
1298 static const TypeRawPtr *make( address bits );
1299
1300 // Return a 'ptr' version of this type
1301 virtual const TypeRawPtr* cast_to_ptr_type(PTR ptr) const;
1302
1303 virtual intptr_t get_con() const;
1304
1305 virtual const TypePtr* add_offset(intptr_t offset) const;
1306 virtual const TypeRawPtr* with_offset(intptr_t offset) const { ShouldNotReachHere(); return nullptr;}
1307
1308 virtual const Type *xmeet( const Type *t ) const;
1309 virtual const Type *xdual() const; // Compute dual right now.
1310 // Convenience common pre-built types.
1311 static const TypeRawPtr *BOTTOM;
1312 static const TypeRawPtr *NOTNULL;
1313 #ifndef PRODUCT
1314 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1315 #endif
1316 };
1317
1318 //------------------------------TypeOopPtr-------------------------------------
1319 // Some kind of oop (Java pointer), either instance or array.
1320 class TypeOopPtr : public TypePtr {
1321 friend class TypeAry;
1322 friend class TypePtr;
1323 friend class TypeInstPtr;
1324 friend class TypeAryPtr;
1325 protected:
1326 TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int offset, int instance_id,
1327 const TypePtr* speculative, int inline_depth);
1328 public:
1329 virtual bool eq( const Type *t ) const;
1330 virtual uint hash() const; // Type specific hashing
1331 virtual bool singleton(void) const; // TRUE if type is a singleton
1332 enum {
1333 InstanceTop = -1, // undefined instance
1334 InstanceBot = 0 // any possible instance
1335 };
1336 protected:
1337
1338 // Oop is null, unless this is a constant oop.
1339 ciObject* _const_oop; // Constant oop
1340 // If _klass is null, then so is _sig. This is an unloaded klass.
1341 ciKlass* _klass; // Klass object
1342
1343 const TypeInterfaces* _interfaces;
1344
1345 // Does the type exclude subclasses of the klass? (Inexact == polymorphic.)
1346 bool _klass_is_exact;
1347 bool _is_ptr_to_narrowoop;
1348 bool _is_ptr_to_narrowklass;
1349 bool _is_ptr_to_boxed_value;
1350
1351 // If not InstanceTop or InstanceBot, indicates that this is
1352 // a particular instance of this type which is distinct.
1353 // This is the node index of the allocation node creating this instance.
1354 int _instance_id;
1355
1356 static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact, InterfaceHandling interface_handling);
1357
1358 int dual_instance_id() const;
1359 int meet_instance_id(int uid) const;
1360
1361 const TypeInterfaces* meet_interfaces(const TypeOopPtr* other) const;
1362
1363 // Do not allow interface-vs.-noninterface joins to collapse to top.
1364 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1365
1366 virtual ciKlass* exact_klass_helper() const { return nullptr; }
1367 virtual ciKlass* klass() const { return _klass; }
1368
1369 #ifndef PRODUCT
1370 void dump_instance_id(outputStream* st) const;
1371 #endif // PRODUCT
1372
1373 public:
1374
1375 bool is_java_subtype_of(const TypeOopPtr* other) const {
1376 return is_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1377 }
1378
1379 bool is_same_java_type_as(const TypePtr* other) const {
1380 return is_same_java_type_as_helper(other->is_oopptr());
1381 }
1382
1383 virtual bool is_same_java_type_as_helper(const TypeOopPtr* other) const {
1384 ShouldNotReachHere(); return false;
1385 }
1386
1387 bool maybe_java_subtype_of(const TypeOopPtr* other) const {
1398 return make_from_klass_common(klass, true, false, interface_handling);
1399 }
1400 // Same as before, but will produce an exact type, even if
1401 // the klass is not final, as long as it has exactly one implementation.
1402 static const TypeOopPtr* make_from_klass_unique(ciKlass* klass, InterfaceHandling interface_handling= ignore_interfaces) {
1403 return make_from_klass_common(klass, true, true, interface_handling);
1404 }
1405 // Same as before, but does not respects UseUniqueSubclasses.
1406 // Use this only for creating array element types.
1407 static const TypeOopPtr* make_from_klass_raw(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) {
1408 return make_from_klass_common(klass, false, false, interface_handling);
1409 }
1410 // Creates a singleton type given an object.
1411 // If the object cannot be rendered as a constant,
1412 // may return a non-singleton type.
1413 // If require_constant, produce a null if a singleton is not possible.
1414 static const TypeOopPtr* make_from_constant(ciObject* o,
1415 bool require_constant = false);
1416
1417 // Make a generic (unclassed) pointer to an oop.
1418 static const TypeOopPtr* make(PTR ptr, int offset, int instance_id,
1419 const TypePtr* speculative = nullptr,
1420 int inline_depth = InlineDepthBottom);
1421
1422 ciObject* const_oop() const { return _const_oop; }
1423 // Exact klass, possibly an interface or an array of interface
1424 ciKlass* exact_klass(bool maybe_null = false) const { assert(klass_is_exact(), ""); ciKlass* k = exact_klass_helper(); assert(k != nullptr || maybe_null, ""); return k; }
1425 ciKlass* unloaded_klass() const { assert(!is_loaded(), "only for unloaded types"); return klass(); }
1426
1427 virtual bool is_loaded() const { return klass()->is_loaded(); }
1428 virtual bool klass_is_exact() const { return _klass_is_exact; }
1429
1430 // Returns true if this pointer points at memory which contains a
1431 // compressed oop references.
1432 bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
1433 bool is_ptr_to_narrowklass_nv() const { return _is_ptr_to_narrowklass; }
1434 bool is_ptr_to_boxed_value() const { return _is_ptr_to_boxed_value; }
1435 bool is_known_instance() const { return _instance_id > 0; }
1436 int instance_id() const { return _instance_id; }
1437 bool is_known_instance_field() const { return is_known_instance() && _offset >= 0; }
1438
1439 virtual intptr_t get_con() const;
1440
1441 virtual const TypeOopPtr* cast_to_ptr_type(PTR ptr) const;
1442
1443 virtual const TypeOopPtr* cast_to_exactness(bool klass_is_exact) const;
1444
1445 virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1446
1447 // corresponding pointer to klass, for a given instance
1448 virtual const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1449
1450 virtual const TypeOopPtr* with_offset(intptr_t offset) const;
1451 virtual const TypePtr* add_offset(intptr_t offset) const;
1452
1453 // Speculative type helper methods.
1454 virtual const TypeOopPtr* remove_speculative() const;
1455 virtual const Type* cleanup_speculative() const;
1456 virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
1457 virtual const TypePtr* with_inline_depth(int depth) const;
1480 return _interfaces;
1481 };
1482
1483 const TypeOopPtr* is_reference_type(const Type* other) const {
1484 return other->isa_oopptr();
1485 }
1486
1487 const TypeAryPtr* is_array_type(const TypeOopPtr* other) const {
1488 return other->isa_aryptr();
1489 }
1490
1491 const TypeInstPtr* is_instance_type(const TypeOopPtr* other) const {
1492 return other->isa_instptr();
1493 }
1494 };
1495
1496 //------------------------------TypeInstPtr------------------------------------
1497 // Class of Java object pointers, pointing either to non-array Java instances
1498 // or to a Klass* (including array klasses).
1499 class TypeInstPtr : public TypeOopPtr {
1500 TypeInstPtr(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int off, int instance_id,
1501 const TypePtr* speculative, int inline_depth);
1502 virtual bool eq( const Type *t ) const;
1503 virtual uint hash() const; // Type specific hashing
1504
1505 ciKlass* exact_klass_helper() const;
1506
1507 public:
1508
1509 // Instance klass, ignoring any interface
1510 ciInstanceKlass* instance_klass() const {
1511 assert(!(klass()->is_loaded() && klass()->is_interface()), "");
1512 return klass()->as_instance_klass();
1513 }
1514
1515 bool is_same_java_type_as_helper(const TypeOopPtr* other) const;
1516 bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1517 bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1518
1519 // Make a pointer to a constant oop.
1520 static const TypeInstPtr *make(ciObject* o) {
1521 ciKlass* k = o->klass();
1522 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1523 return make(TypePtr::Constant, k, interfaces, true, o, 0, InstanceBot);
1524 }
1525 // Make a pointer to a constant oop with offset.
1526 static const TypeInstPtr *make(ciObject* o, int offset) {
1527 ciKlass* k = o->klass();
1528 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1529 return make(TypePtr::Constant, k, interfaces, true, o, offset, InstanceBot);
1530 }
1531
1532 // Make a pointer to some value of type klass.
1533 static const TypeInstPtr *make(PTR ptr, ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) {
1534 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
1535 return make(ptr, klass, interfaces, false, nullptr, 0, InstanceBot);
1536 }
1537
1538 // Make a pointer to some non-polymorphic value of exactly type klass.
1539 static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
1540 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, false, false, ignore_interfaces);
1541 return make(ptr, klass, interfaces, true, nullptr, 0, InstanceBot);
1542 }
1543
1544 // Make a pointer to some value of type klass with offset.
1545 static const TypeInstPtr *make(PTR ptr, ciKlass* klass, int offset) {
1546 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, false, false, ignore_interfaces);
1547 return make(ptr, klass, interfaces, false, nullptr, offset, InstanceBot);
1548 }
1549
1550 static const TypeInstPtr *make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int offset,
1551 int instance_id = InstanceBot,
1552 const TypePtr* speculative = nullptr,
1553 int inline_depth = InlineDepthBottom);
1554
1555 static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id = InstanceBot) {
1556 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1557 return make(ptr, k, interfaces, xk, o, offset, instance_id);
1558 }
1559
1560 /** Create constant type for a constant boxed value */
1561 const Type* get_const_boxed_value() const;
1562
1563 // If this is a java.lang.Class constant, return the type for it or null.
1564 // Pass to Type::get_const_type to turn it to a type, which will usually
1565 // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
1566 ciType* java_mirror_type() const;
1567
1568 virtual const TypeInstPtr* cast_to_ptr_type(PTR ptr) const;
1569
1570 virtual const TypeInstPtr* cast_to_exactness(bool klass_is_exact) const;
1571
1572 virtual const TypeInstPtr* cast_to_instance_id(int instance_id) const;
1573
1574 virtual const TypePtr* add_offset(intptr_t offset) const;
1575 virtual const TypeInstPtr* with_offset(intptr_t offset) const;
1576
1577 // Speculative type helper methods.
1578 virtual const TypeInstPtr* remove_speculative() const;
1579 const TypeInstPtr* with_speculative(const TypePtr* speculative) const;
1580 virtual const TypePtr* with_inline_depth(int depth) const;
1581 virtual const TypePtr* with_instance_id(int instance_id) const;
1582
1583 // the core of the computation of the meet of 2 types
1584 virtual const Type *xmeet_helper(const Type *t) const;
1585 virtual const TypeInstPtr *xmeet_unloaded(const TypeInstPtr *tinst, const TypeInterfaces* interfaces) const;
1586 virtual const Type *xdual() const; // Compute dual right now.
1587
1588 const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1589
1590 // Convenience common pre-built types.
1591 static const TypeInstPtr *NOTNULL;
1592 static const TypeInstPtr *BOTTOM;
1593 static const TypeInstPtr *MIRROR;
1594 static const TypeInstPtr *MARK;
1595 static const TypeInstPtr *KLASS;
1596 #ifndef PRODUCT
1597 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1598 #endif
1599
1600 private:
1601 virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const;
1602
1603 virtual bool is_meet_same_type_as(const TypePtr* other) const {
1604 return _klass->equals(other->is_instptr()->_klass) && _interfaces->eq(other->is_instptr()->_interfaces);
1605 }
1606
1607 };
1608
1609 //------------------------------TypeAryPtr-------------------------------------
1610 // Class of Java array pointers
1611 class TypeAryPtr : public TypeOopPtr {
1612 friend class Type;
1613 friend class TypePtr;
1614 friend class TypeInterfaces;
1615
1616 TypeAryPtr( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk,
1617 int offset, int instance_id, bool is_autobox_cache,
1618 const TypePtr* speculative, int inline_depth)
1619 : TypeOopPtr(AryPtr,ptr,k,_array_interfaces,xk,o,offset, instance_id, speculative, inline_depth),
1620 _ary(ary),
1621 _is_autobox_cache(is_autobox_cache)
1622 {
1623 int dummy;
1624 bool top_or_bottom = (base_element_type(dummy) == Type::TOP || base_element_type(dummy) == Type::BOTTOM);
1625
1626 if (UseCompressedOops && (elem()->make_oopptr() != nullptr && !top_or_bottom) &&
1627 _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes() &&
1628 _offset != arrayOopDesc::klass_offset_in_bytes()) {
1629 _is_ptr_to_narrowoop = true;
1630 }
1631
1632 }
1633 virtual bool eq( const Type *t ) const;
1634 virtual uint hash() const; // Type specific hashing
1635 const TypeAry *_ary; // Array we point into
1636 const bool _is_autobox_cache;
1637
1638 ciKlass* compute_klass() const;
1639
1640 // A pointer to delay allocation to Type::Initialize_shared()
1641
1642 static const TypeInterfaces* _array_interfaces;
1643 ciKlass* exact_klass_helper() const;
1644 // Only guaranteed non null for array of basic types
1645 ciKlass* klass() const;
1646
1647 public:
1648
1649 bool is_same_java_type_as_helper(const TypeOopPtr* other) const;
1650 bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1651 bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1652
1653 // returns base element type, an instance klass (and not interface) for object arrays
1654 const Type* base_element_type(int& dims) const;
1655
1656 // Accessors
1657 bool is_loaded() const { return (_ary->_elem->make_oopptr() ? _ary->_elem->make_oopptr()->is_loaded() : true); }
1658
1659 const TypeAry* ary() const { return _ary; }
1660 const Type* elem() const { return _ary->_elem; }
1661 const TypeInt* size() const { return _ary->_size; }
1662 bool is_stable() const { return _ary->_stable; }
1663
1664 bool is_autobox_cache() const { return _is_autobox_cache; }
1665
1666 static const TypeAryPtr *make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset,
1667 int instance_id = InstanceBot,
1668 const TypePtr* speculative = nullptr,
1669 int inline_depth = InlineDepthBottom);
1670 // Constant pointer to array
1671 static const TypeAryPtr *make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset,
1672 int instance_id = InstanceBot,
1673 const TypePtr* speculative = nullptr,
1674 int inline_depth = InlineDepthBottom, bool is_autobox_cache = false);
1675
1676 // Return a 'ptr' version of this type
1677 virtual const TypeAryPtr* cast_to_ptr_type(PTR ptr) const;
1678
1679 virtual const TypeAryPtr* cast_to_exactness(bool klass_is_exact) const;
1680
1681 virtual const TypeAryPtr* cast_to_instance_id(int instance_id) const;
1682
1683 virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
1684 virtual const TypeInt* narrow_size_type(const TypeInt* size) const;
1685
1686 virtual bool empty(void) const; // TRUE if type is vacuous
1687 virtual const TypePtr *add_offset( intptr_t offset ) const;
1688 virtual const TypeAryPtr *with_offset( intptr_t offset ) const;
1689 const TypeAryPtr* with_ary(const TypeAry* ary) const;
1690
1691 // Speculative type helper methods.
1692 virtual const TypeAryPtr* remove_speculative() const;
1693 virtual const TypePtr* with_inline_depth(int depth) const;
1694 virtual const TypePtr* with_instance_id(int instance_id) const;
1695
1696 // the core of the computation of the meet of 2 types
1697 virtual const Type *xmeet_helper(const Type *t) const;
1698 virtual const Type *xdual() const; // Compute dual right now.
1699
1700 const TypeAryPtr* cast_to_stable(bool stable, int stable_dimension = 1) const;
1701 int stable_dimension() const;
1702
1703 const TypeAryPtr* cast_to_autobox_cache() const;
1704
1705 static jint max_array_length(BasicType etype) ;
1706 virtual const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1707
1708 // Convenience common pre-built types.
1709 static const TypeAryPtr* BOTTOM;
1710 static const TypeAryPtr* RANGE;
1711 static const TypeAryPtr* OOPS;
1712 static const TypeAryPtr* NARROWOOPS;
1713 static const TypeAryPtr* BYTES;
1714 static const TypeAryPtr* SHORTS;
1715 static const TypeAryPtr* CHARS;
1716 static const TypeAryPtr* INTS;
1717 static const TypeAryPtr* LONGS;
1718 static const TypeAryPtr* FLOATS;
1719 static const TypeAryPtr* DOUBLES;
1720 // selects one of the above:
1721 static const TypeAryPtr *get_array_body_type(BasicType elem) {
1722 assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != nullptr, "bad elem type");
1723 return _array_body_type[elem];
1724 }
1725 static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
1726 // sharpen the type of an int which is used as an array size
1727 #ifndef PRODUCT
1728 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1729 #endif
1730 private:
1731 virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const;
1732 };
1733
1734 //------------------------------TypeMetadataPtr-------------------------------------
1735 // Some kind of metadata, either Method*, MethodData* or CPCacheOop
1736 class TypeMetadataPtr : public TypePtr {
1737 protected:
1738 TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset);
1739 // Do not allow interface-vs.-noninterface joins to collapse to top.
1740 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1741 public:
1742 virtual bool eq( const Type *t ) const;
1743 virtual uint hash() const; // Type specific hashing
1744 virtual bool singleton(void) const; // TRUE if type is a singleton
1745
1746 private:
1747 ciMetadata* _metadata;
1748
1749 public:
1750 static const TypeMetadataPtr* make(PTR ptr, ciMetadata* m, int offset);
1751
1752 static const TypeMetadataPtr* make(ciMethod* m);
1753 static const TypeMetadataPtr* make(ciMethodData* m);
1754
1755 ciMetadata* metadata() const { return _metadata; }
1756
1757 virtual const TypeMetadataPtr* cast_to_ptr_type(PTR ptr) const;
1758
1759 virtual const TypePtr *add_offset( intptr_t offset ) const;
1760
1761 virtual const Type *xmeet( const Type *t ) const;
1762 virtual const Type *xdual() const; // Compute dual right now.
1763
1764 virtual intptr_t get_con() const;
1765
1766 // Convenience common pre-built types.
1767 static const TypeMetadataPtr *BOTTOM;
1768
1769 #ifndef PRODUCT
1770 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1771 #endif
1772 };
1773
1774 //------------------------------TypeKlassPtr-----------------------------------
1775 // Class of Java Klass pointers
1776 class TypeKlassPtr : public TypePtr {
1777 friend class TypeInstKlassPtr;
1778 friend class TypeAryKlassPtr;
1779 friend class TypePtr;
1780 protected:
1781 TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, int offset);
1782
1783 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1784
1785 public:
1786 virtual bool eq( const Type *t ) const;
1787 virtual uint hash() const;
1788 virtual bool singleton(void) const; // TRUE if type is a singleton
1789
1790 protected:
1791
1792 ciKlass* _klass;
1793 const TypeInterfaces* _interfaces;
1794 const TypeInterfaces* meet_interfaces(const TypeKlassPtr* other) const;
1795 virtual bool must_be_exact() const { ShouldNotReachHere(); return false; }
1796 virtual ciKlass* exact_klass_helper() const;
1797 virtual ciKlass* klass() const { return _klass; }
1798
1799 public:
1800
1801 bool is_java_subtype_of(const TypeKlassPtr* other) const {
1802 return is_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1803 }
1804 bool is_same_java_type_as(const TypePtr* other) const {
1805 return is_same_java_type_as_helper(other->is_klassptr());
1806 }
1807
1808 bool maybe_java_subtype_of(const TypeKlassPtr* other) const {
1809 return maybe_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1810 }
1811 virtual bool is_same_java_type_as_helper(const TypeKlassPtr* other) const { ShouldNotReachHere(); return false; }
1812 virtual bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1813 virtual bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1814
1815 // Exact klass, possibly an interface or an array of interface
1816 ciKlass* exact_klass(bool maybe_null = false) const { assert(klass_is_exact(), ""); ciKlass* k = exact_klass_helper(); assert(k != nullptr || maybe_null, ""); return k; }
1817 virtual bool klass_is_exact() const { return _ptr == Constant; }
1818
1819 static const TypeKlassPtr* make(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces);
1820 static const TypeKlassPtr *make(PTR ptr, ciKlass* klass, int offset, InterfaceHandling interface_handling = ignore_interfaces);
1821
1822 virtual bool is_loaded() const { return _klass->is_loaded(); }
1823
1824 virtual const TypeKlassPtr* cast_to_ptr_type(PTR ptr) const { ShouldNotReachHere(); return nullptr; }
1825
1826 virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const { ShouldNotReachHere(); return nullptr; }
1827
1828 // corresponding pointer to instance, for a given class
1829 virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const { ShouldNotReachHere(); return nullptr; }
1830
1831 virtual const TypePtr *add_offset( intptr_t offset ) const { ShouldNotReachHere(); return nullptr; }
1832 virtual const Type *xmeet( const Type *t ) const { ShouldNotReachHere(); return nullptr; }
1833 virtual const Type *xdual() const { ShouldNotReachHere(); return nullptr; }
1834
1835 virtual intptr_t get_con() const;
1836
1837 virtual const TypeKlassPtr* with_offset(intptr_t offset) const { ShouldNotReachHere(); return nullptr; }
1838
1839 virtual const TypeKlassPtr* try_improve() const { return this; }
1840
1841 private:
1842 virtual bool is_meet_subtype_of(const TypePtr* other) const {
1843 return is_meet_subtype_of_helper(other->is_klassptr(), klass_is_exact(), other->is_klassptr()->klass_is_exact());
1844 }
1845
1846 virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const {
1847 ShouldNotReachHere(); return false;
1848 }
1849
1850 virtual const TypeInterfaces* interfaces() const {
1851 return _interfaces;
1852 };
1853
1854 const TypeKlassPtr* is_reference_type(const Type* other) const {
1855 return other->isa_klassptr();
1856 }
1857
1858 const TypeAryKlassPtr* is_array_type(const TypeKlassPtr* other) const {
1859 return other->isa_aryklassptr();
1860 }
1861
1862 const TypeInstKlassPtr* is_instance_type(const TypeKlassPtr* other) const {
1863 return other->isa_instklassptr();
1864 }
1865 };
1866
1867 // Instance klass pointer, mirrors TypeInstPtr
1868 class TypeInstKlassPtr : public TypeKlassPtr {
1869
1870 TypeInstKlassPtr(PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, int offset)
1871 : TypeKlassPtr(InstKlassPtr, ptr, klass, interfaces, offset) {
1872 assert(klass->is_instance_klass() && (!klass->is_loaded() || !klass->is_interface()), "");
1873 }
1874
1875 virtual bool must_be_exact() const;
1876
1877 public:
1878 // Instance klass ignoring any interface
1879 ciInstanceKlass* instance_klass() const {
1880 assert(!klass()->is_interface(), "");
1881 return klass()->as_instance_klass();
1882 }
1883
1884 bool might_be_an_array() const;
1885
1886 bool is_same_java_type_as_helper(const TypeKlassPtr* other) const;
1887 bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
1888 bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
1889
1890 static const TypeInstKlassPtr *make(ciKlass* k, InterfaceHandling interface_handling) {
1891 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, true, false, interface_handling);
1892 return make(TypePtr::Constant, k, interfaces, 0);
1893 }
1894 static const TypeInstKlassPtr* make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, int offset);
1895
1896 static const TypeInstKlassPtr* make(PTR ptr, ciKlass* k, int offset) {
1897 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1898 return make(ptr, k, interfaces, offset);
1899 }
1900
1901 virtual const TypeInstKlassPtr* cast_to_ptr_type(PTR ptr) const;
1902
1903 virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const;
1904
1905 // corresponding pointer to instance, for a given class
1906 virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const;
1907 virtual uint hash() const;
1908 virtual bool eq(const Type *t) const;
1909
1910 virtual const TypePtr *add_offset( intptr_t offset ) const;
1911 virtual const Type *xmeet( const Type *t ) const;
1912 virtual const Type *xdual() const;
1913 virtual const TypeInstKlassPtr* with_offset(intptr_t offset) const;
1914
1915 virtual const TypeKlassPtr* try_improve() const;
1916
1917 // Convenience common pre-built types.
1918 static const TypeInstKlassPtr* OBJECT; // Not-null object klass or below
1919 static const TypeInstKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
1920
1921 #ifndef PRODUCT
1922 virtual void dump2(Dict& d, uint depth, outputStream* st) const;
1923 #endif // PRODUCT
1924
1925 private:
1926 virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const;
1927 };
1928
1929 // Array klass pointer, mirrors TypeAryPtr
1930 class TypeAryKlassPtr : public TypeKlassPtr {
1931 friend class TypeInstKlassPtr;
1932 friend class Type;
1933 friend class TypePtr;
1934
1935 const Type *_elem;
1936
1937 static const TypeInterfaces* _array_interfaces;
1938 TypeAryKlassPtr(PTR ptr, const Type *elem, ciKlass* klass, int offset)
1939 : TypeKlassPtr(AryKlassPtr, ptr, klass, _array_interfaces, offset), _elem(elem) {
1940 assert(klass == nullptr || klass->is_type_array_klass() || !klass->as_obj_array_klass()->base_element_klass()->is_interface(), "");
1941 }
1942
1943 virtual ciKlass* exact_klass_helper() const;
1944 // Only guaranteed non null for array of basic types
1945 virtual ciKlass* klass() const;
1946
1947 virtual bool must_be_exact() const;
1948
1949 public:
1950
1951 // returns base element type, an instance klass (and not interface) for object arrays
1952 const Type* base_element_type(int& dims) const;
1953
1954 static const TypeAryKlassPtr *make(PTR ptr, ciKlass* k, int offset, InterfaceHandling interface_handling);
1955
1956 bool is_same_java_type_as_helper(const TypeKlassPtr* other) const;
1957 bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
1958 bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
1959
1960 bool is_loaded() const { return (_elem->isa_klassptr() ? _elem->is_klassptr()->is_loaded() : true); }
1961
1962 static const TypeAryKlassPtr *make(PTR ptr, const Type *elem, ciKlass* k, int offset);
1963 static const TypeAryKlassPtr* make(ciKlass* klass, InterfaceHandling interface_handling);
1964
1965 const Type *elem() const { return _elem; }
1966
1967 virtual bool eq(const Type *t) const;
1968 virtual uint hash() const; // Type specific hashing
1969
1970 virtual const TypeAryKlassPtr* cast_to_ptr_type(PTR ptr) const;
1971
1972 virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const;
1973
1974 // corresponding pointer to instance, for a given class
1975 virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const;
1976
1977 virtual const TypePtr *add_offset( intptr_t offset ) const;
1978 virtual const Type *xmeet( const Type *t ) const;
1979 virtual const Type *xdual() const; // Compute dual right now.
1980
1981 virtual const TypeAryKlassPtr* with_offset(intptr_t offset) const;
1982
1983 virtual bool empty(void) const {
1984 return TypeKlassPtr::empty() || _elem->empty();
1985 }
1986
1987 #ifndef PRODUCT
1988 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1989 #endif
1990 private:
1991 virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const;
1992 };
1993
1994 class TypeNarrowPtr : public Type {
1995 protected:
1996 const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR
1997
1998 TypeNarrowPtr(TYPES t, const TypePtr* ptrtype): Type(t),
1999 _ptrtype(ptrtype) {
2000 assert(ptrtype->offset() == 0 ||
2001 ptrtype->offset() == OffsetBot ||
2002 ptrtype->offset() == OffsetTop, "no real offsets");
2003 }
2004
2005 virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const = 0;
2006 virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const = 0;
2102 }
2103
2104 virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
2105 return (const TypeNarrowPtr*)((new TypeNarrowKlass(t))->hashcons());
2106 }
2107
2108 public:
2109 static const TypeNarrowKlass *make( const TypePtr* type);
2110
2111 // static const TypeNarrowKlass *BOTTOM;
2112 static const TypeNarrowKlass *NULL_PTR;
2113
2114 #ifndef PRODUCT
2115 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
2116 #endif
2117 };
2118
2119 //------------------------------TypeFunc---------------------------------------
2120 // Class of Array Types
2121 class TypeFunc : public Type {
2122 TypeFunc( const TypeTuple *domain, const TypeTuple *range ) : Type(Function), _domain(domain), _range(range) {}
2123 virtual bool eq( const Type *t ) const;
2124 virtual uint hash() const; // Type specific hashing
2125 virtual bool singleton(void) const; // TRUE if type is a singleton
2126 virtual bool empty(void) const; // TRUE if type is vacuous
2127
2128 const TypeTuple* const _domain; // Domain of inputs
2129 const TypeTuple* const _range; // Range of results
2130
2131 public:
2132 // Constants are shared among ADLC and VM
2133 enum { Control = AdlcVMDeps::Control,
2134 I_O = AdlcVMDeps::I_O,
2135 Memory = AdlcVMDeps::Memory,
2136 FramePtr = AdlcVMDeps::FramePtr,
2137 ReturnAdr = AdlcVMDeps::ReturnAdr,
2138 Parms = AdlcVMDeps::Parms
2139 };
2140
2141
2142 // Accessors:
2143 const TypeTuple* domain() const { return _domain; }
2144 const TypeTuple* range() const { return _range; }
2145
2146 static const TypeFunc *make(ciMethod* method);
2147 static const TypeFunc *make(ciSignature signature, const Type* extra);
2148 static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
2149
2150 virtual const Type *xmeet( const Type *t ) const;
2151 virtual const Type *xdual() const; // Compute dual right now.
2152
2153 BasicType return_type() const;
2154
2155 #ifndef PRODUCT
2156 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
2157 #endif
2158 // Convenience common pre-built types.
2159 };
2160
2161 //------------------------------accessors--------------------------------------
2162 inline bool Type::is_ptr_to_narrowoop() const {
2163 #ifdef _LP64
2164 return (isa_oopptr() != nullptr && is_oopptr()->is_ptr_to_narrowoop_nv());
2165 #else
2166 return false;
2167 #endif
2168 }
2169
2170 inline bool Type::is_ptr_to_narrowklass() const {
2171 #ifdef _LP64
2172 return (isa_oopptr() != nullptr && is_oopptr()->is_ptr_to_narrowklass_nv());
2173 #else
2174 return false;
2411 }
2412
2413 inline const TypeNarrowOop* Type::make_narrowoop() const {
2414 return (_base == NarrowOop) ? is_narrowoop() :
2415 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : nullptr);
2416 }
2417
2418 inline const TypeNarrowKlass* Type::make_narrowklass() const {
2419 return (_base == NarrowKlass) ? is_narrowklass() :
2420 (isa_ptr() ? TypeNarrowKlass::make(is_ptr()) : nullptr);
2421 }
2422
2423 inline bool Type::is_floatingpoint() const {
2424 if( (_base == HalfFloatCon) || (_base == HalfFloatBot) ||
2425 (_base == FloatCon) || (_base == FloatBot) ||
2426 (_base == DoubleCon) || (_base == DoubleBot) )
2427 return true;
2428 return false;
2429 }
2430
2431 template <>
2432 inline const TypeInt* Type::cast<TypeInt>() const {
2433 return is_int();
2434 }
2435
2436 template <>
2437 inline const TypeLong* Type::cast<TypeLong>() const {
2438 return is_long();
2439 }
2440
2441 template <>
2442 inline const TypeInt* Type::try_cast<TypeInt>() const {
2443 return isa_int();
2444 }
2445
2446 template <>
2447 inline const TypeLong* Type::try_cast<TypeLong>() const {
2448 return isa_long();
2449 }
2450
2456
2457 // For type queries and asserts
2458 #define is_intptr_t is_long
2459 #define isa_intptr_t isa_long
2460 #define find_intptr_t_type find_long_type
2461 #define find_intptr_t_con find_long_con
2462 #define TypeX TypeLong
2463 #define Type_X Type::Long
2464 #define TypeX_X TypeLong::LONG
2465 #define TypeX_ZERO TypeLong::ZERO
2466 // For 'ideal_reg' machine registers
2467 #define Op_RegX Op_RegL
2468 // For phase->intcon variants
2469 #define MakeConX longcon
2470 #define ConXNode ConLNode
2471 // For array index arithmetic
2472 #define MulXNode MulLNode
2473 #define AndXNode AndLNode
2474 #define OrXNode OrLNode
2475 #define CmpXNode CmpLNode
2476 #define SubXNode SubLNode
2477 #define LShiftXNode LShiftLNode
2478 // For object size computation:
2479 #define AddXNode AddLNode
2480 #define RShiftXNode RShiftLNode
2481 // For card marks and hashcodes
2482 #define URShiftXNode URShiftLNode
2483 // For shenandoahSupport
2484 #define LoadXNode LoadLNode
2485 #define StoreXNode StoreLNode
2486 // Opcodes
2487 #define Op_LShiftX Op_LShiftL
2488 #define Op_AndX Op_AndL
2489 #define Op_AddX Op_AddL
2490 #define Op_SubX Op_SubL
2491 #define Op_XorX Op_XorL
2492 #define Op_URShiftX Op_URShiftL
2493 #define Op_LoadX Op_LoadL
2494 // conversions
2495 #define ConvI2X(x) ConvI2L(x)
2496 #define ConvL2X(x) (x)
2497 #define ConvX2I(x) ConvL2I(x)
2498 #define ConvX2L(x) (x)
2499 #define ConvX2UL(x) (x)
2500
2501 #else
2502
2503 // For type queries and asserts
2504 #define is_intptr_t is_int
2505 #define isa_intptr_t isa_int
2506 #define find_intptr_t_type find_int_type
2507 #define find_intptr_t_con find_int_con
2508 #define TypeX TypeInt
2509 #define Type_X Type::Int
2510 #define TypeX_X TypeInt::INT
2511 #define TypeX_ZERO TypeInt::ZERO
2512 // For 'ideal_reg' machine registers
2513 #define Op_RegX Op_RegI
2514 // For phase->intcon variants
2515 #define MakeConX intcon
2516 #define ConXNode ConINode
2517 // For array index arithmetic
2518 #define MulXNode MulINode
2519 #define AndXNode AndINode
2520 #define OrXNode OrINode
2521 #define CmpXNode CmpINode
2522 #define SubXNode SubINode
2523 #define LShiftXNode LShiftINode
2524 // For object size computation:
2525 #define AddXNode AddINode
2526 #define RShiftXNode RShiftINode
2527 // For card marks and hashcodes
2528 #define URShiftXNode URShiftINode
2529 // For shenandoahSupport
2530 #define LoadXNode LoadINode
2531 #define StoreXNode StoreINode
2532 // Opcodes
2533 #define Op_LShiftX Op_LShiftI
2534 #define Op_AndX Op_AndI
2535 #define Op_AddX Op_AddI
2536 #define Op_SubX Op_SubI
2537 #define Op_XorX Op_XorI
2538 #define Op_URShiftX Op_URShiftI
2539 #define Op_LoadX Op_LoadI
2540 // conversions
2541 #define ConvI2X(x) (x)
2542 #define ConvL2X(x) ConvL2I(x)
2543 #define ConvX2I(x) (x)
2544 #define ConvX2L(x) ConvI2L(x)
2545 #define ConvX2UL(x) ConvI2UL(x)
2546
2547 #endif
2548
2549 #endif // SHARE_OPTO_TYPE_HPP
|
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #ifndef SHARE_OPTO_TYPE_HPP
26 #define SHARE_OPTO_TYPE_HPP
27
28 #include "ci/ciInlineKlass.hpp"
29 #include "opto/adlcVMDeps.hpp"
30 #include "opto/compile.hpp"
31 #include "opto/rangeinference.hpp"
32
33 // Portions of code courtesy of Clifford Click
34
35 // Optimization - Graph Style
36
37
38 // This class defines a Type lattice. The lattice is used in the constant
39 // propagation algorithms, and for some type-checking of the iloc code.
40 // Basic types include RSD's (lower bound, upper bound, stride for integers),
41 // float & double precision constants, sets of data-labels and code-labels.
42 // The complete lattice is described below. Subtypes have no relationship to
43 // up or down in the lattice; that is entirely determined by the behavior of
44 // the MEET/JOIN functions.
45
46 class Dict;
47 class Type;
48 class TypeD;
49 class TypeF;
50 class TypeH;
51 class TypeInteger;
127 Memory, // Abstract store
128 HalfFloatTop, // No float value
129 HalfFloatCon, // Floating point constant
130 HalfFloatBot, // Any float value
131 FloatTop, // No float value
132 FloatCon, // Floating point constant
133 FloatBot, // Any float value
134 DoubleTop, // No double value
135 DoubleCon, // Double precision constant
136 DoubleBot, // Any double value
137 Bottom, // Bottom of lattice
138 lastype // Bogus ending type (not in lattice)
139 };
140
141 // Signal values for offsets from a base pointer
142 enum OFFSET_SIGNALS {
143 OffsetTop = -2000000000, // undefined offset
144 OffsetBot = -2000000001 // any possible offset
145 };
146
147 class Offset {
148 private:
149 int _offset;
150
151 public:
152 explicit Offset(int offset) : _offset(offset) {}
153
154 const Offset meet(const Offset other) const;
155 const Offset dual() const;
156 const Offset add(intptr_t offset) const;
157 bool operator==(const Offset& other) const {
158 return _offset == other._offset;
159 }
160 bool operator!=(const Offset& other) const {
161 return _offset != other._offset;
162 }
163 int get() const { return _offset; }
164
165 void dump2(outputStream *st) const;
166
167 static const Offset top;
168 static const Offset bottom;
169 };
170
171 // Min and max WIDEN values.
172 enum WIDEN {
173 WidenMin = 0,
174 WidenMax = 3
175 };
176
177 private:
178 typedef struct {
179 TYPES dual_type;
180 BasicType basic_type;
181 const char* msg;
182 bool isa_oop;
183 uint ideal_reg;
184 relocInfo::relocType reloc;
185 } TypeInfo;
186
187 // Dictionary of types shared among compilations.
188 static Dict* _shared_type_dict;
189 static const TypeInfo _type_info[];
190
352 const TypeInstPtr *isa_instptr() const; // Returns null if not InstPtr
353 const TypeInstPtr *is_instptr() const; // Instance
354 const TypeAryPtr *isa_aryptr() const; // Returns null if not AryPtr
355 const TypeAryPtr *is_aryptr() const; // Array oop
356
357 template <typename TypeClass>
358 const TypeClass* cast() const;
359
360 const TypeMetadataPtr *isa_metadataptr() const; // Returns null if not oop ptr type
361 const TypeMetadataPtr *is_metadataptr() const; // Java-style GC'd pointer
362 const TypeKlassPtr *isa_klassptr() const; // Returns null if not KlassPtr
363 const TypeKlassPtr *is_klassptr() const; // assert if not KlassPtr
364 const TypeInstKlassPtr *isa_instklassptr() const; // Returns null if not IntKlassPtr
365 const TypeInstKlassPtr *is_instklassptr() const; // assert if not IntKlassPtr
366 const TypeAryKlassPtr *isa_aryklassptr() const; // Returns null if not AryKlassPtr
367 const TypeAryKlassPtr *is_aryklassptr() const; // assert if not AryKlassPtr
368
369 virtual bool is_finite() const; // Has a finite value
370 virtual bool is_nan() const; // Is not a number (NaN)
371
372 bool is_inlinetypeptr() const;
373 virtual ciInlineKlass* inline_klass() const;
374
375 // Returns this ptr type or the equivalent ptr type for this compressed pointer.
376 const TypePtr* make_ptr() const;
377
378 // Returns this oopptr type or the equivalent oopptr type for this compressed pointer.
379 // Asserts if the underlying type is not an oopptr or narrowoop.
380 const TypeOopPtr* make_oopptr() const;
381
382 // Returns this compressed pointer or the equivalent compressed version
383 // of this pointer type.
384 const TypeNarrowOop* make_narrowoop() const;
385
386 // Returns this compressed klass pointer or the equivalent
387 // compressed version of this pointer type.
388 const TypeNarrowKlass* make_narrowklass() const;
389
390 // Special test for register pressure heuristic
391 bool is_floatingpoint() const; // True if Float or Double base type
392
393 // Do you have memory, directly or through a tuple?
394 bool has_memory( ) const;
964 const Type ** const _fields; // Array of field types
965
966 public:
967 virtual bool eq( const Type *t ) const;
968 virtual uint hash() const; // Type specific hashing
969 virtual bool singleton(void) const; // TRUE if type is a singleton
970 virtual bool empty(void) const; // TRUE if type is vacuous
971
972 // Accessors:
973 uint cnt() const { return _cnt; }
974 const Type* field_at(uint i) const {
975 assert(i < _cnt, "oob");
976 return _fields[i];
977 }
978 void set_field_at(uint i, const Type* t) {
979 assert(i < _cnt, "oob");
980 _fields[i] = t;
981 }
982
983 static const TypeTuple *make( uint cnt, const Type **fields );
984 static const TypeTuple *make_range(ciSignature* sig, InterfaceHandling interface_handling = ignore_interfaces, bool ret_vt_fields = false);
985 static const TypeTuple *make_domain(ciMethod* method, InterfaceHandling interface_handling, bool vt_fields_as_args = false);
986
987 // Subroutine call type with space allocated for argument types
988 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
989 static const Type **fields( uint arg_cnt );
990
991 virtual const Type *xmeet( const Type *t ) const;
992 virtual const Type *xdual() const; // Compute dual right now.
993 // Convenience common pre-built types.
994 static const TypeTuple *IFBOTH;
995 static const TypeTuple *IFFALSE;
996 static const TypeTuple *IFTRUE;
997 static const TypeTuple *IFNEITHER;
998 static const TypeTuple *LOOPBODY;
999 static const TypeTuple *MEMBAR;
1000 static const TypeTuple *STORECONDITIONAL;
1001 static const TypeTuple *START_I2C;
1002 static const TypeTuple *INT_PAIR;
1003 static const TypeTuple *LONG_PAIR;
1004 static const TypeTuple *INT_CC_PAIR;
1005 static const TypeTuple *LONG_CC_PAIR;
1006 #ifndef PRODUCT
1007 virtual void dump2( Dict &d, uint, outputStream *st ) const; // Specialized per-Type dumping
1008 #endif
1009 };
1010
1011 //------------------------------TypeAry----------------------------------------
1012 // Class of Array Types
1013 class TypeAry : public Type {
1014 TypeAry(const Type* elem, const TypeInt* size, bool stable, bool flat, bool not_flat, bool not_null_free, bool atomic) : Type(Array),
1015 _elem(elem), _size(size), _stable(stable), _flat(flat), _not_flat(not_flat), _not_null_free(not_null_free), _atomic(atomic) {}
1016 public:
1017 virtual bool eq( const Type *t ) const;
1018 virtual uint hash() const; // Type specific hashing
1019 virtual bool singleton(void) const; // TRUE if type is a singleton
1020 virtual bool empty(void) const; // TRUE if type is vacuous
1021
1022 private:
1023 const Type *_elem; // Element type of array
1024 const TypeInt *_size; // Elements in array
1025 const bool _stable; // Are elements @Stable?
1026
1027 // Inline type array properties
1028 const bool _flat; // Array is flat
1029 const bool _not_flat; // Array is never flat
1030 const bool _not_null_free; // Array is never null-free
1031 const bool _atomic; // Array is atomic
1032
1033 friend class TypeAryPtr;
1034
1035 public:
1036 static const TypeAry* make(const Type* elem, const TypeInt* size, bool stable,
1037 bool flat, bool not_flat, bool not_null_free, bool atomic);
1038
1039 virtual const Type *xmeet( const Type *t ) const;
1040 virtual const Type *xdual() const; // Compute dual right now.
1041 bool ary_must_be_exact() const; // true if arrays of such are never generic
1042 virtual const TypeAry* remove_speculative() const;
1043 virtual const Type* cleanup_speculative() const;
1044 #ifndef PRODUCT
1045 virtual void dump2( Dict &d, uint, outputStream *st ) const; // Specialized per-Type dumping
1046 #endif
1047 };
1048
1049 //------------------------------TypeVect---------------------------------------
1050 // Class of Vector Types
1051 class TypeVect : public Type {
1052 const BasicType _elem_bt; // Vector's element type
1053 const uint _length; // Elements in vector (power of 2)
1054
1055 protected:
1056 TypeVect(TYPES t, BasicType elem_bt, uint length) : Type(t),
1057 _elem_bt(elem_bt), _length(length) {}
1163
1164 const Type* xmeet(const Type* t) const;
1165
1166 bool singleton(void) const;
1167 bool has_non_array_interface() const;
1168 };
1169
1170 //------------------------------TypePtr----------------------------------------
1171 // Class of machine Pointer Types: raw data, instances or arrays.
1172 // If the _base enum is AnyPtr, then this refers to all of the above.
1173 // Otherwise the _base will indicate which subset of pointers is affected,
1174 // and the class will be inherited from.
1175 class TypePtr : public Type {
1176 friend class TypeNarrowPtr;
1177 friend class Type;
1178 protected:
1179 static const TypeInterfaces* interfaces(ciKlass*& k, bool klass, bool interface, bool array, InterfaceHandling interface_handling);
1180
1181 public:
1182 enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
1183
1184 // Only applies to TypeInstPtr and TypeInstKlassPtr. Since the common super class is TypePtr, it is defined here.
1185 //
1186 // FlatInArray defines the following Boolean Lattice structure
1187 //
1188 // TopFlat
1189 // / \
1190 // Flat NotFlat
1191 // \ /
1192 // MaybeFlat
1193 //
1194 // with meet (see TypePtr::meet_flat_in_array()) and join (implemented over dual, see TypePtr::flat_in_array_dual)
1195 enum FlatInArray {
1196 TopFlat, // Dedicated top element and dual of MaybeFlat. Result when joining Flat and NotFlat.
1197 Flat, // An instance is always flat in an array.
1198 NotFlat, // An instance is never flat in an array.
1199 MaybeFlat, // We don't know whether an instance is flat in an array.
1200 Uninitialized // Used when the flat in array property was not computed, yet - should never actually end up in a type.
1201 };
1202 protected:
1203 TypePtr(TYPES t, PTR ptr, Offset offset,
1204 const TypePtr* speculative = nullptr,
1205 int inline_depth = InlineDepthBottom) :
1206 Type(t), _speculative(speculative), _inline_depth(inline_depth), _offset(offset),
1207 _ptr(ptr) {}
1208 static const PTR ptr_meet[lastPTR][lastPTR];
1209 static const PTR ptr_dual[lastPTR];
1210 static const char * const ptr_msg[lastPTR];
1211
1212 static const FlatInArray flat_in_array_dual[Uninitialized];
1213 static const char* const flat_in_array_msg[Uninitialized];
1214
1215 enum {
1216 InlineDepthBottom = INT_MAX,
1217 InlineDepthTop = -InlineDepthBottom
1218 };
1219
1220 // Extra type information profiling gave us. We propagate it the
1221 // same way the rest of the type info is propagated. If we want to
1222 // use it, then we have to emit a guard: this part of the type is
1223 // not something we know but something we speculate about the type.
1224 const TypePtr* _speculative;
1225 // For speculative types, we record at what inlining depth the
1226 // profiling point that provided the data is. We want to favor
1227 // profile data coming from outer scopes which are likely better for
1228 // the current compilation.
1229 int _inline_depth;
1230
1231 // utility methods to work on the speculative part of the type
1232 const TypePtr* dual_speculative() const;
1233 const TypePtr* xmeet_speculative(const TypePtr* other) const;
1234 bool eq_speculative(const TypePtr* other) const;
1243 #ifndef PRODUCT
1244 void dump_speculative(outputStream* st) const;
1245 void dump_inline_depth(outputStream* st) const;
1246 void dump_offset(outputStream* st) const;
1247 #endif
1248
1249 // TypeInstPtr (TypeAryPtr resp.) and TypeInstKlassPtr (TypeAryKlassPtr resp.) implement very similar meet logic.
1250 // The logic for meeting 2 instances (2 arrays resp.) is shared in the 2 utility methods below. However the logic for
1251 // the oop and klass versions can be slightly different and extra logic may have to be executed depending on what
1252 // exact case the meet falls into. The MeetResult struct is used by the utility methods to communicate what case was
1253 // encountered so the right logic specific to klasses or oops can be executed.,
1254 enum MeetResult {
1255 QUICK,
1256 UNLOADED,
1257 SUBTYPE,
1258 NOT_SUBTYPE,
1259 LCA
1260 };
1261 template<class T> static TypePtr::MeetResult meet_instptr(PTR& ptr, const TypeInterfaces*& interfaces, const T* this_type,
1262 const T* other_type, ciKlass*& res_klass, bool& res_xk);
1263 protected:
1264 static FlatInArray meet_flat_in_array(FlatInArray left, FlatInArray other);
1265
1266 template<class T> static MeetResult meet_aryptr(PTR& ptr, const Type*& elem, const T* this_ary, const T* other_ary,
1267 ciKlass*& res_klass, bool& res_xk, bool &res_flat, bool &res_not_flat, bool &res_not_null_free, bool &res_atomic);
1268
1269 template <class T1, class T2> static bool is_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1270 template <class T1, class T2> static bool is_same_java_type_as_helper_for_instance(const T1* this_one, const T2* other);
1271 template <class T1, class T2> static bool maybe_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1272 template <class T1, class T2> static bool is_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1273 template <class T1, class T2> static bool is_same_java_type_as_helper_for_array(const T1* this_one, const T2* other);
1274 template <class T1, class T2> static bool maybe_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1275 template <class T1, class T2> static bool is_meet_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_xk, bool other_xk);
1276 template <class T1, class T2> static bool is_meet_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_xk, bool other_xk);
1277 public:
1278 const Offset _offset; // Offset into oop, with TOP & BOT
1279 const PTR _ptr; // Pointer equivalence class
1280
1281 int offset() const { return _offset.get(); }
1282 PTR ptr() const { return _ptr; }
1283
1284 static const TypePtr* make(TYPES t, PTR ptr, Offset offset,
1285 const TypePtr* speculative = nullptr,
1286 int inline_depth = InlineDepthBottom);
1287
1288 // Return a 'ptr' version of this type
1289 virtual const TypePtr* cast_to_ptr_type(PTR ptr) const;
1290
1291 virtual intptr_t get_con() const;
1292
1293 Type::Offset xadd_offset(intptr_t offset) const;
1294 virtual const TypePtr* add_offset(intptr_t offset) const;
1295 virtual const TypePtr* with_offset(intptr_t offset) const;
1296 virtual int flat_offset() const { return offset(); }
1297 virtual bool eq(const Type *t) const;
1298 virtual uint hash() const; // Type specific hashing
1299
1300 virtual bool singleton(void) const; // TRUE if type is a singleton
1301 virtual bool empty(void) const; // TRUE if type is vacuous
1302 virtual const Type *xmeet( const Type *t ) const;
1303 virtual const Type *xmeet_helper( const Type *t ) const;
1304 Offset meet_offset(int offset) const;
1305 Offset dual_offset() const;
1306 virtual const Type *xdual() const; // Compute dual right now.
1307
1308 // meet, dual and join over pointer equivalence sets
1309 PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
1310 PTR dual_ptr() const { return ptr_dual[ptr()]; }
1311
1312 // This is textually confusing unless one recalls that
1313 // join(t) == dual()->meet(t->dual())->dual().
1314 PTR join_ptr( const PTR in_ptr ) const {
1315 return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
1316 }
1317
1318 // Speculative type helper methods.
1319 virtual const TypePtr* speculative() const { return _speculative; }
1320 int inline_depth() const { return _inline_depth; }
1321 virtual ciKlass* speculative_type() const;
1322 virtual ciKlass* speculative_type_not_null() const;
1323 virtual bool speculative_maybe_null() const;
1324 virtual bool speculative_always_null() const;
1325 virtual const TypePtr* remove_speculative() const;
1326 virtual const Type* cleanup_speculative() const;
1327 virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
1328 virtual bool would_improve_ptr(ProfilePtrKind maybe_null) const;
1329 virtual const TypePtr* with_inline_depth(int depth) const;
1330
1331 virtual bool maybe_null() const { return meet_ptr(Null) == ptr(); }
1332
1333 NOT_PRODUCT(static void dump_flat_in_array(FlatInArray flat_in_array, outputStream* st);)
1334
1335 static FlatInArray compute_flat_in_array(ciInstanceKlass* instance_klass, bool is_exact);
1336 FlatInArray compute_flat_in_array_if_unknown(ciInstanceKlass* instance_klass, bool is_exact,
1337 FlatInArray old_flat_in_array) const;
1338
1339 virtual bool can_be_inline_type() const { return false; }
1340 virtual bool is_flat_in_array() const { return flat_in_array() == Flat; }
1341 virtual bool is_not_flat_in_array() const { return flat_in_array() == NotFlat; }
1342 virtual FlatInArray flat_in_array() const { return NotFlat; }
1343 virtual bool is_flat() const { return false; }
1344 virtual bool is_not_flat() const { return false; }
1345 virtual bool is_null_free() const { return false; }
1346 virtual bool is_not_null_free() const { return false; }
1347 virtual bool is_atomic() const { return false; }
1348
1349 // Tests for relation to centerline of type lattice:
1350 static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
1351 static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
1352 // Convenience common pre-built types.
1353 static const TypePtr *NULL_PTR;
1354 static const TypePtr *NOTNULL;
1355 static const TypePtr *BOTTOM;
1356 #ifndef PRODUCT
1357 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1358 #endif
1359 };
1360
1361 //------------------------------TypeRawPtr-------------------------------------
1362 // Class of raw pointers, pointers to things other than Oops. Examples
1363 // include the stack pointer, top of heap, card-marking area, handles, etc.
1364 class TypeRawPtr : public TypePtr {
1365 protected:
1366 TypeRawPtr(PTR ptr, address bits) : TypePtr(RawPtr,ptr,Offset(0)), _bits(bits){}
1367 public:
1368 virtual bool eq( const Type *t ) const;
1369 virtual uint hash() const; // Type specific hashing
1370
1371 const address _bits; // Constant value, if applicable
1372
1373 static const TypeRawPtr *make( PTR ptr );
1374 static const TypeRawPtr *make( address bits );
1375
1376 // Return a 'ptr' version of this type
1377 virtual const TypeRawPtr* cast_to_ptr_type(PTR ptr) const;
1378
1379 virtual intptr_t get_con() const;
1380
1381 virtual const TypePtr* add_offset(intptr_t offset) const;
1382 virtual const TypeRawPtr* with_offset(intptr_t offset) const { ShouldNotReachHere(); return nullptr;}
1383
1384 virtual const Type *xmeet( const Type *t ) const;
1385 virtual const Type *xdual() const; // Compute dual right now.
1386 // Convenience common pre-built types.
1387 static const TypeRawPtr *BOTTOM;
1388 static const TypeRawPtr *NOTNULL;
1389 #ifndef PRODUCT
1390 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1391 #endif
1392 };
1393
1394 //------------------------------TypeOopPtr-------------------------------------
1395 // Some kind of oop (Java pointer), either instance or array.
1396 class TypeOopPtr : public TypePtr {
1397 friend class TypeAry;
1398 friend class TypePtr;
1399 friend class TypeInstPtr;
1400 friend class TypeAryPtr;
1401 protected:
1402 TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset offset, Offset field_offset, int instance_id,
1403 const TypePtr* speculative, int inline_depth);
1404 public:
1405 virtual bool eq( const Type *t ) const;
1406 virtual uint hash() const; // Type specific hashing
1407 virtual bool singleton(void) const; // TRUE if type is a singleton
1408 enum {
1409 InstanceTop = -1, // undefined instance
1410 InstanceBot = 0 // any possible instance
1411 };
1412 protected:
1413
1414 // Oop is null, unless this is a constant oop.
1415 ciObject* _const_oop; // Constant oop
1416 // If _klass is null, then so is _sig. This is an unloaded klass.
1417 ciKlass* _klass; // Klass object
1418
1419 const TypeInterfaces* _interfaces;
1420
1421 // Does the type exclude subclasses of the klass? (Inexact == polymorphic.)
1422 bool _klass_is_exact;
1423 bool _is_ptr_to_narrowoop;
1424 bool _is_ptr_to_narrowklass;
1425 bool _is_ptr_to_boxed_value;
1426 bool _is_ptr_to_strict_final_field;
1427
1428 // If not InstanceTop or InstanceBot, indicates that this is
1429 // a particular instance of this type which is distinct.
1430 // This is the node index of the allocation node creating this instance.
1431 int _instance_id;
1432
1433 static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact, InterfaceHandling interface_handling);
1434
1435 int dual_instance_id() const;
1436 int meet_instance_id(int uid) const;
1437
1438 const TypeInterfaces* meet_interfaces(const TypeOopPtr* other) const;
1439
1440 // Do not allow interface-vs.-noninterface joins to collapse to top.
1441 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1442
1443 virtual ciKlass* exact_klass_helper() const { return nullptr; }
1444 virtual ciKlass* klass() const { return _klass; }
1445
1446 #ifndef PRODUCT
1447 void dump_instance_id(outputStream* st) const;
1448 #endif // PRODUCT
1449
1450 public:
1451
1452 bool is_java_subtype_of(const TypeOopPtr* other) const {
1453 return is_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1454 }
1455
1456 bool is_same_java_type_as(const TypePtr* other) const {
1457 return is_same_java_type_as_helper(other->is_oopptr());
1458 }
1459
1460 virtual bool is_same_java_type_as_helper(const TypeOopPtr* other) const {
1461 ShouldNotReachHere(); return false;
1462 }
1463
1464 bool maybe_java_subtype_of(const TypeOopPtr* other) const {
1475 return make_from_klass_common(klass, true, false, interface_handling);
1476 }
1477 // Same as before, but will produce an exact type, even if
1478 // the klass is not final, as long as it has exactly one implementation.
1479 static const TypeOopPtr* make_from_klass_unique(ciKlass* klass, InterfaceHandling interface_handling= ignore_interfaces) {
1480 return make_from_klass_common(klass, true, true, interface_handling);
1481 }
1482 // Same as before, but does not respects UseUniqueSubclasses.
1483 // Use this only for creating array element types.
1484 static const TypeOopPtr* make_from_klass_raw(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) {
1485 return make_from_klass_common(klass, false, false, interface_handling);
1486 }
1487 // Creates a singleton type given an object.
1488 // If the object cannot be rendered as a constant,
1489 // may return a non-singleton type.
1490 // If require_constant, produce a null if a singleton is not possible.
1491 static const TypeOopPtr* make_from_constant(ciObject* o,
1492 bool require_constant = false);
1493
1494 // Make a generic (unclassed) pointer to an oop.
1495 static const TypeOopPtr* make(PTR ptr, Offset offset, int instance_id,
1496 const TypePtr* speculative = nullptr,
1497 int inline_depth = InlineDepthBottom);
1498
1499 ciObject* const_oop() const { return _const_oop; }
1500 // Exact klass, possibly an interface or an array of interface
1501 ciKlass* exact_klass(bool maybe_null = false) const { assert(klass_is_exact(), ""); ciKlass* k = exact_klass_helper(); assert(k != nullptr || maybe_null, ""); return k; }
1502 ciKlass* unloaded_klass() const { assert(!is_loaded(), "only for unloaded types"); return klass(); }
1503
1504 virtual bool is_loaded() const { return klass()->is_loaded(); }
1505 virtual bool klass_is_exact() const { return _klass_is_exact; }
1506
1507 // Returns true if this pointer points at memory which contains a
1508 // compressed oop references.
1509 bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
1510 bool is_ptr_to_narrowklass_nv() const { return _is_ptr_to_narrowklass; }
1511 bool is_ptr_to_boxed_value() const { return _is_ptr_to_boxed_value; }
1512 bool is_ptr_to_strict_final_field() const { return _is_ptr_to_strict_final_field; }
1513 bool is_known_instance() const { return _instance_id > 0; }
1514 int instance_id() const { return _instance_id; }
1515 bool is_known_instance_field() const { return is_known_instance() && _offset.get() >= 0; }
1516
1517 virtual bool can_be_inline_type() const { return (_klass == nullptr || _klass->can_be_inline_klass(_klass_is_exact)); }
1518 virtual bool can_be_inline_array() const { ShouldNotReachHere(); return false; }
1519
1520 virtual intptr_t get_con() const;
1521
1522 virtual const TypeOopPtr* cast_to_ptr_type(PTR ptr) const;
1523
1524 virtual const TypeOopPtr* cast_to_exactness(bool klass_is_exact) const;
1525
1526 virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1527
1528 // corresponding pointer to klass, for a given instance
1529 virtual const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1530
1531 virtual const TypeOopPtr* with_offset(intptr_t offset) const;
1532 virtual const TypePtr* add_offset(intptr_t offset) const;
1533
1534 // Speculative type helper methods.
1535 virtual const TypeOopPtr* remove_speculative() const;
1536 virtual const Type* cleanup_speculative() const;
1537 virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
1538 virtual const TypePtr* with_inline_depth(int depth) const;
1561 return _interfaces;
1562 };
1563
1564 const TypeOopPtr* is_reference_type(const Type* other) const {
1565 return other->isa_oopptr();
1566 }
1567
1568 const TypeAryPtr* is_array_type(const TypeOopPtr* other) const {
1569 return other->isa_aryptr();
1570 }
1571
1572 const TypeInstPtr* is_instance_type(const TypeOopPtr* other) const {
1573 return other->isa_instptr();
1574 }
1575 };
1576
1577 //------------------------------TypeInstPtr------------------------------------
1578 // Class of Java object pointers, pointing either to non-array Java instances
1579 // or to a Klass* (including array klasses).
1580 class TypeInstPtr : public TypeOopPtr {
1581 // Can this instance be in a flat array?
1582 FlatInArray _flat_in_array;
1583
1584 TypeInstPtr(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset offset,
1585 FlatInArray flat_in_array, int instance_id, const TypePtr* speculative,
1586 int inline_depth);
1587 virtual bool eq( const Type *t ) const;
1588 virtual uint hash() const; // Type specific hashing
1589 ciKlass* exact_klass_helper() const;
1590
1591 public:
1592
1593 // Instance klass, ignoring any interface
1594 ciInstanceKlass* instance_klass() const {
1595 assert(!(klass()->is_loaded() && klass()->is_interface()), "");
1596 return klass()->as_instance_klass();
1597 }
1598
1599 bool is_same_java_type_as_helper(const TypeOopPtr* other) const;
1600 bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1601 bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1602
1603 // Make a pointer to a constant oop.
1604 static const TypeInstPtr *make(ciObject* o) {
1605 ciKlass* k = o->klass();
1606 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1607 return make(TypePtr::Constant, k, interfaces, true, o, Offset(0));
1608 }
1609 // Make a pointer to a constant oop with offset.
1610 static const TypeInstPtr *make(ciObject* o, Offset offset) {
1611 ciKlass* k = o->klass();
1612 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1613 return make(TypePtr::Constant, k, interfaces, true, o, offset);
1614 }
1615
1616 // Make a pointer to some value of type klass.
1617 static const TypeInstPtr *make(PTR ptr, ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) {
1618 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
1619 return make(ptr, klass, interfaces, false, nullptr, Offset(0));
1620 }
1621
1622 // Make a pointer to some non-polymorphic value of exactly type klass.
1623 static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
1624 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, false, false, ignore_interfaces);
1625 return make(ptr, klass, interfaces, true, nullptr, Offset(0));
1626 }
1627
1628 // Make a pointer to some value of type klass with offset.
1629 static const TypeInstPtr *make(PTR ptr, ciKlass* klass, Offset offset) {
1630 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, false, false, ignore_interfaces);
1631 return make(ptr, klass, interfaces, false, nullptr, offset);
1632 }
1633
1634 // Make a pointer to an oop.
1635 static const TypeInstPtr* make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset offset,
1636 FlatInArray flat_in_array = Uninitialized,
1637 int instance_id = InstanceBot,
1638 const TypePtr* speculative = nullptr,
1639 int inline_depth = InlineDepthBottom);
1640
1641 static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, Offset offset, int instance_id = InstanceBot,
1642 FlatInArray flat_in_array = Uninitialized) {
1643 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1644 return make(ptr, k, interfaces, xk, o, offset, flat_in_array, instance_id);
1645 }
1646
1647 /** Create constant type for a constant boxed value */
1648 const Type* get_const_boxed_value() const;
1649
1650 // If this is a java.lang.Class constant, return the type for it or null.
1651 // Pass to Type::get_const_type to turn it to a type, which will usually
1652 // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
1653 ciType* java_mirror_type() const;
1654
1655 virtual const TypeInstPtr* cast_to_ptr_type(PTR ptr) const;
1656
1657 virtual const TypeInstPtr* cast_to_exactness(bool klass_is_exact) const;
1658
1659 virtual const TypeInstPtr* cast_to_instance_id(int instance_id) const;
1660
1661 virtual bool empty() const;
1662 virtual const TypePtr* add_offset(intptr_t offset) const;
1663 virtual const TypeInstPtr* with_offset(intptr_t offset) const;
1664
1665 // Speculative type helper methods.
1666 virtual const TypeInstPtr* remove_speculative() const;
1667 const TypeInstPtr* with_speculative(const TypePtr* speculative) const;
1668 virtual const TypePtr* with_inline_depth(int depth) const;
1669 virtual const TypePtr* with_instance_id(int instance_id) const;
1670
1671 virtual const TypeInstPtr* cast_to_flat_in_array() const;
1672 virtual const TypeInstPtr* cast_to_maybe_flat_in_array() const;
1673 virtual FlatInArray flat_in_array() const { return _flat_in_array; }
1674
1675 FlatInArray dual_flat_in_array() const {
1676 return flat_in_array_dual[_flat_in_array];
1677 }
1678
1679 // the core of the computation of the meet of 2 types
1680 virtual const Type *xmeet_helper(const Type *t) const;
1681 virtual const TypeInstPtr *xmeet_unloaded(const TypeInstPtr *tinst, const TypeInterfaces* interfaces) const;
1682 virtual const Type *xdual() const; // Compute dual right now.
1683
1684 const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1685
1686 virtual bool can_be_inline_array() const;
1687
1688 // Convenience common pre-built types.
1689 static const TypeInstPtr *NOTNULL;
1690 static const TypeInstPtr *BOTTOM;
1691 static const TypeInstPtr *MIRROR;
1692 static const TypeInstPtr *MARK;
1693 static const TypeInstPtr *KLASS;
1694 #ifndef PRODUCT
1695 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1696 #endif
1697
1698 private:
1699 virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const;
1700
1701 virtual bool is_meet_same_type_as(const TypePtr* other) const {
1702 return _klass->equals(other->is_instptr()->_klass) && _interfaces->eq(other->is_instptr()->_interfaces);
1703 }
1704
1705 };
1706
1707 //------------------------------TypeAryPtr-------------------------------------
1708 // Class of Java array pointers
1709 class TypeAryPtr : public TypeOopPtr {
1710 friend class Type;
1711 friend class TypePtr;
1712 friend class TypeInstPtr;
1713 friend class TypeInterfaces;
1714
1715 TypeAryPtr(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk,
1716 Offset offset, Offset field_offset, int instance_id, bool is_autobox_cache,
1717 const TypePtr* speculative, int inline_depth)
1718 : TypeOopPtr(AryPtr, ptr, k, _array_interfaces, xk, o, offset, field_offset, instance_id, speculative, inline_depth),
1719 _ary(ary),
1720 _is_autobox_cache(is_autobox_cache),
1721 _field_offset(field_offset)
1722 {
1723 int dummy;
1724 bool top_or_bottom = (base_element_type(dummy) == Type::TOP || base_element_type(dummy) == Type::BOTTOM);
1725
1726 if (UseCompressedOops && (elem()->make_oopptr() != nullptr && !top_or_bottom) &&
1727 _offset.get() != 0 && _offset.get() != arrayOopDesc::length_offset_in_bytes() &&
1728 _offset.get() != arrayOopDesc::klass_offset_in_bytes()) {
1729 _is_ptr_to_narrowoop = true;
1730 }
1731
1732 }
1733 virtual bool eq( const Type *t ) const;
1734 virtual uint hash() const; // Type specific hashing
1735 const TypeAry *_ary; // Array we point into
1736 const bool _is_autobox_cache;
1737 // For flat inline type arrays, each field of the inline type in
1738 // the array has its own memory slice so we need to keep track of
1739 // which field is accessed
1740 const Offset _field_offset;
1741 Offset meet_field_offset(const Type::Offset offset) const;
1742 Offset dual_field_offset() const;
1743
1744 ciKlass* compute_klass() const;
1745
1746 // A pointer to delay allocation to Type::Initialize_shared()
1747
1748 static const TypeInterfaces* _array_interfaces;
1749 ciKlass* exact_klass_helper() const;
1750 // Only guaranteed non null for array of basic types
1751 ciKlass* klass() const;
1752
1753 public:
1754
1755 bool is_same_java_type_as_helper(const TypeOopPtr* other) const;
1756 bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1757 bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1758
1759 // returns base element type, an instance klass (and not interface) for object arrays
1760 const Type* base_element_type(int& dims) const;
1761
1762 // Accessors
1763 bool is_loaded() const { return (_ary->_elem->make_oopptr() ? _ary->_elem->make_oopptr()->is_loaded() : true); }
1764
1765 const TypeAry* ary() const { return _ary; }
1766 const Type* elem() const { return _ary->_elem; }
1767 const TypeInt* size() const { return _ary->_size; }
1768 bool is_stable() const { return _ary->_stable; }
1769
1770 // Inline type array properties
1771 bool is_flat() const { return _ary->_flat; }
1772 bool is_not_flat() const { return _ary->_not_flat; }
1773 bool is_null_free() const { return _ary->_elem->make_ptr() != nullptr && (_ary->_elem->make_ptr()->ptr() == NotNull || _ary->_elem->make_ptr()->ptr() == AnyNull); }
1774 bool is_not_null_free() const { return _ary->_not_null_free; }
1775 bool is_atomic() const { return _ary->_atomic; }
1776
1777 bool is_autobox_cache() const { return _is_autobox_cache; }
1778
1779 static const TypeAryPtr* make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, Offset offset,
1780 Offset field_offset = Offset::bottom,
1781 int instance_id = InstanceBot,
1782 const TypePtr* speculative = nullptr,
1783 int inline_depth = InlineDepthBottom);
1784 // Constant pointer to array
1785 static const TypeAryPtr* make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, Offset offset,
1786 Offset field_offset = Offset::bottom,
1787 int instance_id = InstanceBot,
1788 const TypePtr* speculative = nullptr,
1789 int inline_depth = InlineDepthBottom,
1790 bool is_autobox_cache = false);
1791
1792 // Return a 'ptr' version of this type
1793 virtual const TypeAryPtr* cast_to_ptr_type(PTR ptr) const;
1794
1795 virtual const TypeAryPtr* cast_to_exactness(bool klass_is_exact) const;
1796
1797 virtual const TypeAryPtr* cast_to_instance_id(int instance_id) const;
1798
1799 virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
1800 virtual const TypeInt* narrow_size_type(const TypeInt* size) const;
1801
1802 virtual bool empty(void) const; // TRUE if type is vacuous
1803 virtual const TypePtr *add_offset( intptr_t offset ) const;
1804 virtual const TypeAryPtr *with_offset( intptr_t offset ) const;
1805 const TypeAryPtr* with_ary(const TypeAry* ary) const;
1806
1807 // Speculative type helper methods.
1808 virtual const TypeAryPtr* remove_speculative() const;
1809 virtual const Type* cleanup_speculative() const;
1810 virtual const TypePtr* with_inline_depth(int depth) const;
1811 virtual const TypePtr* with_instance_id(int instance_id) const;
1812
1813 // the core of the computation of the meet of 2 types
1814 virtual const Type *xmeet_helper(const Type *t) const;
1815 virtual const Type *xdual() const; // Compute dual right now.
1816
1817 // Inline type array properties
1818 const TypeAryPtr* cast_to_flat(bool flat) const;
1819 const TypeAryPtr* cast_to_not_flat(bool not_flat = true) const;
1820 const TypeAryPtr* cast_to_null_free(bool null_free) const;
1821 const TypeAryPtr* cast_to_not_null_free(bool not_null_free = true) const;
1822 const TypeAryPtr* update_properties(const TypeAryPtr* new_type) const;
1823 jint flat_layout_helper() const;
1824 int flat_elem_size() const;
1825 int flat_log_elem_size() const;
1826
1827 const TypeAryPtr* cast_to_stable(bool stable, int stable_dimension = 1) const;
1828 int stable_dimension() const;
1829
1830 const TypeAryPtr* cast_to_autobox_cache() const;
1831
1832 static jint max_array_length(BasicType etype);
1833
1834 int flat_offset() const;
1835 const Offset field_offset() const { return _field_offset; }
1836 const TypeAryPtr* with_field_offset(int offset) const;
1837 const TypePtr* add_field_offset_and_offset(intptr_t offset) const;
1838
1839 virtual bool can_be_inline_type() const { return false; }
1840 virtual const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1841
1842 virtual bool can_be_inline_array() const;
1843
1844 // Convenience common pre-built types.
1845 static const TypeAryPtr* BOTTOM;
1846 static const TypeAryPtr *RANGE;
1847 static const TypeAryPtr *OOPS;
1848 static const TypeAryPtr *NARROWOOPS;
1849 static const TypeAryPtr *BYTES;
1850 static const TypeAryPtr *SHORTS;
1851 static const TypeAryPtr *CHARS;
1852 static const TypeAryPtr *INTS;
1853 static const TypeAryPtr *LONGS;
1854 static const TypeAryPtr *FLOATS;
1855 static const TypeAryPtr *DOUBLES;
1856 static const TypeAryPtr *INLINES;
1857 // selects one of the above:
1858 static const TypeAryPtr *get_array_body_type(BasicType elem) {
1859 assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != nullptr, "bad elem type");
1860 return _array_body_type[elem];
1861 }
1862 static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
1863 // sharpen the type of an int which is used as an array size
1864 #ifndef PRODUCT
1865 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1866 #endif
1867 private:
1868 virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const;
1869 };
1870
1871 //------------------------------TypeMetadataPtr-------------------------------------
1872 // Some kind of metadata, either Method*, MethodData* or CPCacheOop
1873 class TypeMetadataPtr : public TypePtr {
1874 protected:
1875 TypeMetadataPtr(PTR ptr, ciMetadata* metadata, Offset offset);
1876 // Do not allow interface-vs.-noninterface joins to collapse to top.
1877 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1878 public:
1879 virtual bool eq( const Type *t ) const;
1880 virtual uint hash() const; // Type specific hashing
1881 virtual bool singleton(void) const; // TRUE if type is a singleton
1882
1883 private:
1884 ciMetadata* _metadata;
1885
1886 public:
1887 static const TypeMetadataPtr* make(PTR ptr, ciMetadata* m, Offset offset);
1888
1889 static const TypeMetadataPtr* make(ciMethod* m);
1890 static const TypeMetadataPtr* make(ciMethodData* m);
1891
1892 ciMetadata* metadata() const { return _metadata; }
1893
1894 virtual const TypeMetadataPtr* cast_to_ptr_type(PTR ptr) const;
1895
1896 virtual const TypePtr *add_offset( intptr_t offset ) const;
1897
1898 virtual const Type *xmeet( const Type *t ) const;
1899 virtual const Type *xdual() const; // Compute dual right now.
1900
1901 virtual intptr_t get_con() const;
1902
1903 // Convenience common pre-built types.
1904 static const TypeMetadataPtr *BOTTOM;
1905
1906 #ifndef PRODUCT
1907 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1908 #endif
1909 };
1910
1911 //------------------------------TypeKlassPtr-----------------------------------
1912 // Class of Java Klass pointers
1913 class TypeKlassPtr : public TypePtr {
1914 friend class TypeInstKlassPtr;
1915 friend class TypeAryKlassPtr;
1916 friend class TypePtr;
1917 protected:
1918 TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, Offset offset);
1919
1920 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1921
1922 public:
1923 virtual bool eq( const Type *t ) const;
1924 virtual uint hash() const;
1925 virtual bool singleton(void) const; // TRUE if type is a singleton
1926
1927 protected:
1928
1929 ciKlass* _klass;
1930 const TypeInterfaces* _interfaces;
1931 const TypeInterfaces* meet_interfaces(const TypeKlassPtr* other) const;
1932 virtual bool must_be_exact() const { ShouldNotReachHere(); return false; }
1933 virtual ciKlass* exact_klass_helper() const;
1934 virtual ciKlass* klass() const { return _klass; }
1935
1936 public:
1937
1938 bool is_java_subtype_of(const TypeKlassPtr* other) const {
1939 return is_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1940 }
1941 bool is_same_java_type_as(const TypePtr* other) const {
1942 return is_same_java_type_as_helper(other->is_klassptr());
1943 }
1944
1945 bool maybe_java_subtype_of(const TypeKlassPtr* other) const {
1946 return maybe_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1947 }
1948 virtual bool is_same_java_type_as_helper(const TypeKlassPtr* other) const { ShouldNotReachHere(); return false; }
1949 virtual bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1950 virtual bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1951
1952 // Exact klass, possibly an interface or an array of interface
1953 ciKlass* exact_klass(bool maybe_null = false) const { assert(klass_is_exact(), ""); ciKlass* k = exact_klass_helper(); assert(k != nullptr || maybe_null, ""); return k; }
1954 virtual bool klass_is_exact() const { return _ptr == Constant; }
1955
1956 static const TypeKlassPtr* make(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces);
1957
1958 virtual bool is_loaded() const { return _klass->is_loaded(); }
1959
1960 virtual const TypeKlassPtr* cast_to_ptr_type(PTR ptr) const { ShouldNotReachHere(); return nullptr; }
1961
1962 virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const { ShouldNotReachHere(); return nullptr; }
1963
1964 // corresponding pointer to instance, for a given class
1965 virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const { ShouldNotReachHere(); return nullptr; }
1966
1967 virtual const TypePtr *add_offset( intptr_t offset ) const { ShouldNotReachHere(); return nullptr; }
1968 virtual const Type *xmeet( const Type *t ) const { ShouldNotReachHere(); return nullptr; }
1969 virtual const Type *xdual() const { ShouldNotReachHere(); return nullptr; }
1970
1971 virtual intptr_t get_con() const;
1972
1973 virtual const TypeKlassPtr* with_offset(intptr_t offset) const { ShouldNotReachHere(); return nullptr; }
1974
1975 virtual bool can_be_inline_array() const { ShouldNotReachHere(); return false; }
1976
1977 virtual const TypeKlassPtr* try_improve() const { return this; }
1978
1979 private:
1980 virtual bool is_meet_subtype_of(const TypePtr* other) const {
1981 return is_meet_subtype_of_helper(other->is_klassptr(), klass_is_exact(), other->is_klassptr()->klass_is_exact());
1982 }
1983
1984 virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const {
1985 ShouldNotReachHere(); return false;
1986 }
1987
1988 virtual const TypeInterfaces* interfaces() const {
1989 return _interfaces;
1990 };
1991
1992 const TypeKlassPtr* is_reference_type(const Type* other) const {
1993 return other->isa_klassptr();
1994 }
1995
1996 const TypeAryKlassPtr* is_array_type(const TypeKlassPtr* other) const {
1997 return other->isa_aryklassptr();
1998 }
1999
2000 const TypeInstKlassPtr* is_instance_type(const TypeKlassPtr* other) const {
2001 return other->isa_instklassptr();
2002 }
2003 };
2004
2005 // Instance klass pointer, mirrors TypeInstPtr
2006 class TypeInstKlassPtr : public TypeKlassPtr {
2007 // Can an instance of this class be in a flat array?
2008 const FlatInArray _flat_in_array;
2009
2010 TypeInstKlassPtr(PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, Offset offset, FlatInArray flat_in_array)
2011 : TypeKlassPtr(InstKlassPtr, ptr, klass, interfaces, offset), _flat_in_array(flat_in_array) {
2012 assert(flat_in_array != Uninitialized, "must be set now");
2013 assert(klass->is_instance_klass() && (!klass->is_loaded() || !klass->is_interface()), "");
2014 }
2015
2016 virtual bool must_be_exact() const;
2017
2018 public:
2019 // Instance klass ignoring any interface
2020 ciInstanceKlass* instance_klass() const {
2021 assert(!klass()->is_interface(), "");
2022 return klass()->as_instance_klass();
2023 }
2024
2025 bool might_be_an_array() const;
2026
2027 bool is_same_java_type_as_helper(const TypeKlassPtr* other) const;
2028 bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
2029 bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
2030
2031 virtual bool can_be_inline_type() const { return (_klass == nullptr || _klass->can_be_inline_klass(klass_is_exact())); }
2032
2033 static const TypeInstKlassPtr *make(ciKlass* k, InterfaceHandling interface_handling) {
2034 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, true, false, interface_handling);
2035 return make(TypePtr::Constant, k, interfaces, Offset(0));
2036 }
2037
2038 static const TypeInstKlassPtr* make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, Offset offset,
2039 FlatInArray flat_in_array = Uninitialized);
2040
2041 static const TypeInstKlassPtr* make(PTR ptr, ciKlass* k, Offset offset, FlatInArray flat_in_array = Uninitialized) {
2042 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
2043 return make(ptr, k, interfaces, offset, flat_in_array);
2044 }
2045
2046 virtual const TypeInstKlassPtr* cast_to_ptr_type(PTR ptr) const;
2047
2048 virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const;
2049
2050 // corresponding pointer to instance, for a given class
2051 virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const;
2052 virtual uint hash() const;
2053 virtual bool eq(const Type *t) const;
2054
2055
2056 virtual bool empty() const;
2057 virtual const TypePtr *add_offset( intptr_t offset ) const;
2058 virtual const Type *xmeet( const Type *t ) const;
2059 virtual const Type *xdual() const;
2060 virtual const TypeInstKlassPtr* with_offset(intptr_t offset) const;
2061
2062 virtual const TypeKlassPtr* try_improve() const;
2063
2064 virtual FlatInArray flat_in_array() const { return _flat_in_array; }
2065
2066 FlatInArray dual_flat_in_array() const {
2067 return flat_in_array_dual[_flat_in_array];
2068 }
2069
2070 virtual bool can_be_inline_array() const;
2071
2072 // Convenience common pre-built types.
2073 static const TypeInstKlassPtr* OBJECT; // Not-null object klass or below
2074 static const TypeInstKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
2075
2076 #ifndef PRODUCT
2077 virtual void dump2(Dict& d, uint depth, outputStream* st) const;
2078 #endif // PRODUCT
2079
2080 private:
2081 virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const;
2082 };
2083
2084 // Array klass pointer, mirrors TypeAryPtr
2085 class TypeAryKlassPtr : public TypeKlassPtr {
2086 friend class TypeInstKlassPtr;
2087 friend class Type;
2088 friend class TypePtr;
2089
2090 const Type *_elem;
2091 const bool _not_flat; // Array is never flat
2092 const bool _not_null_free; // Array is never null-free
2093 const bool _flat;
2094 const bool _null_free;
2095 const bool _atomic;
2096 const bool _refined_type;
2097
2098 static const TypeInterfaces* _array_interfaces;
2099 TypeAryKlassPtr(PTR ptr, const Type *elem, ciKlass* klass, Offset offset, bool not_flat, int not_null_free, bool flat, bool null_free, bool atomic, bool refined_type)
2100 : TypeKlassPtr(AryKlassPtr, ptr, klass, _array_interfaces, offset), _elem(elem), _not_flat(not_flat), _not_null_free(not_null_free), _flat(flat), _null_free(null_free), _atomic(atomic), _refined_type(refined_type) {
2101 assert(klass == nullptr || klass->is_type_array_klass() || klass->is_flat_array_klass() || !klass->as_obj_array_klass()->base_element_klass()->is_interface(), "");
2102 }
2103
2104 virtual ciKlass* exact_klass_helper() const;
2105 // Only guaranteed non null for array of basic types
2106 virtual ciKlass* klass() const;
2107
2108 virtual bool must_be_exact() const;
2109
2110 bool dual_flat() const {
2111 return _flat;
2112 }
2113
2114 bool meet_flat(bool other) const {
2115 return _flat && other;
2116 }
2117
2118 bool dual_null_free() const {
2119 return _null_free;
2120 }
2121
2122 bool meet_null_free(bool other) const {
2123 return _null_free && other;
2124 }
2125
2126 bool dual_atomic() const {
2127 return _atomic;
2128 }
2129
2130 bool meet_atomic(bool other) const {
2131 return _atomic && other;
2132 }
2133
2134 public:
2135
2136 // returns base element type, an instance klass (and not interface) for object arrays
2137 const Type* base_element_type(int& dims) const;
2138
2139 static const TypeAryKlassPtr* make(PTR ptr, ciKlass* k, Offset offset, InterfaceHandling interface_handling, bool not_flat, bool not_null_free, bool flat, bool null_free, bool atomic, bool refined_type);
2140
2141 bool is_same_java_type_as_helper(const TypeKlassPtr* other) const;
2142 bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
2143 bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
2144
2145 bool is_loaded() const { return (_elem->isa_klassptr() ? _elem->is_klassptr()->is_loaded() : true); }
2146
2147 static const TypeAryKlassPtr* make(PTR ptr, const Type* elem, ciKlass* k, Offset offset, bool not_flat, bool not_null_free, bool flat, bool null_free, bool atomic, bool refined_type);
2148 static const TypeAryKlassPtr* make(ciKlass* klass, InterfaceHandling interface_handling);
2149
2150 const TypeAryKlassPtr* cast_to_non_refined() const;
2151 const TypeAryKlassPtr* cast_to_refined_array_klass_ptr(bool refined = true) const;
2152
2153 const Type *elem() const { return _elem; }
2154
2155 virtual bool eq(const Type *t) const;
2156 virtual uint hash() const; // Type specific hashing
2157
2158 virtual const TypeAryKlassPtr* cast_to_ptr_type(PTR ptr) const;
2159
2160 virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const;
2161
2162 // corresponding pointer to instance, for a given class
2163 virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const;
2164
2165 virtual const TypePtr *add_offset( intptr_t offset ) const;
2166 virtual const Type *xmeet( const Type *t ) const;
2167 virtual const Type *xdual() const; // Compute dual right now.
2168
2169 virtual const TypeAryKlassPtr* with_offset(intptr_t offset) const;
2170
2171 virtual bool empty(void) const {
2172 return TypeKlassPtr::empty() || _elem->empty();
2173 }
2174
2175 bool is_flat() const { return _flat; }
2176 bool is_not_flat() const { return _not_flat; }
2177 bool is_null_free() const { return _null_free; }
2178 bool is_not_null_free() const { return _not_null_free; }
2179 bool is_atomic() const { return _atomic; }
2180 bool is_refined_type() const { return _refined_type; }
2181 virtual bool can_be_inline_array() const;
2182
2183 #ifndef PRODUCT
2184 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
2185 #endif
2186 private:
2187 virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const;
2188 };
2189
2190 class TypeNarrowPtr : public Type {
2191 protected:
2192 const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR
2193
2194 TypeNarrowPtr(TYPES t, const TypePtr* ptrtype): Type(t),
2195 _ptrtype(ptrtype) {
2196 assert(ptrtype->offset() == 0 ||
2197 ptrtype->offset() == OffsetBot ||
2198 ptrtype->offset() == OffsetTop, "no real offsets");
2199 }
2200
2201 virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const = 0;
2202 virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const = 0;
2298 }
2299
2300 virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
2301 return (const TypeNarrowPtr*)((new TypeNarrowKlass(t))->hashcons());
2302 }
2303
2304 public:
2305 static const TypeNarrowKlass *make( const TypePtr* type);
2306
2307 // static const TypeNarrowKlass *BOTTOM;
2308 static const TypeNarrowKlass *NULL_PTR;
2309
2310 #ifndef PRODUCT
2311 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
2312 #endif
2313 };
2314
2315 //------------------------------TypeFunc---------------------------------------
2316 // Class of Array Types
2317 class TypeFunc : public Type {
2318 TypeFunc(const TypeTuple *domain_sig, const TypeTuple *domain_cc, const TypeTuple *range_sig, const TypeTuple *range_cc)
2319 : Type(Function), _domain_sig(domain_sig), _domain_cc(domain_cc), _range_sig(range_sig), _range_cc(range_cc) {}
2320 virtual bool eq( const Type *t ) const;
2321 virtual uint hash() const; // Type specific hashing
2322 virtual bool singleton(void) const; // TRUE if type is a singleton
2323 virtual bool empty(void) const; // TRUE if type is vacuous
2324
2325 // Domains of inputs: inline type arguments are not passed by
2326 // reference, instead each field of the inline type is passed as an
2327 // argument. We maintain 2 views of the argument list here: one
2328 // based on the signature (with an inline type argument as a single
2329 // slot), one based on the actual calling convention (with a value
2330 // type argument as a list of its fields).
2331 const TypeTuple* const _domain_sig;
2332 const TypeTuple* const _domain_cc;
2333 // Range of results. Similar to domains: an inline type result can be
2334 // returned in registers in which case range_cc lists all fields and
2335 // is the actual calling convention.
2336 const TypeTuple* const _range_sig;
2337 const TypeTuple* const _range_cc;
2338
2339 public:
2340 // Constants are shared among ADLC and VM
2341 enum { Control = AdlcVMDeps::Control,
2342 I_O = AdlcVMDeps::I_O,
2343 Memory = AdlcVMDeps::Memory,
2344 FramePtr = AdlcVMDeps::FramePtr,
2345 ReturnAdr = AdlcVMDeps::ReturnAdr,
2346 Parms = AdlcVMDeps::Parms
2347 };
2348
2349
2350 // Accessors:
2351 const TypeTuple* domain_sig() const { return _domain_sig; }
2352 const TypeTuple* domain_cc() const { return _domain_cc; }
2353 const TypeTuple* range_sig() const { return _range_sig; }
2354 const TypeTuple* range_cc() const { return _range_cc; }
2355
2356 static const TypeFunc* make(ciMethod* method, bool is_osr_compilation = false);
2357 static const TypeFunc *make(const TypeTuple* domain_sig, const TypeTuple* domain_cc,
2358 const TypeTuple* range_sig, const TypeTuple* range_cc);
2359 static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
2360
2361 virtual const Type *xmeet( const Type *t ) const;
2362 virtual const Type *xdual() const; // Compute dual right now.
2363
2364 BasicType return_type() const;
2365
2366 bool returns_inline_type_as_fields() const { return range_sig() != range_cc(); }
2367
2368 #ifndef PRODUCT
2369 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
2370 #endif
2371 // Convenience common pre-built types.
2372 };
2373
2374 //------------------------------accessors--------------------------------------
2375 inline bool Type::is_ptr_to_narrowoop() const {
2376 #ifdef _LP64
2377 return (isa_oopptr() != nullptr && is_oopptr()->is_ptr_to_narrowoop_nv());
2378 #else
2379 return false;
2380 #endif
2381 }
2382
2383 inline bool Type::is_ptr_to_narrowklass() const {
2384 #ifdef _LP64
2385 return (isa_oopptr() != nullptr && is_oopptr()->is_ptr_to_narrowklass_nv());
2386 #else
2387 return false;
2624 }
2625
2626 inline const TypeNarrowOop* Type::make_narrowoop() const {
2627 return (_base == NarrowOop) ? is_narrowoop() :
2628 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : nullptr);
2629 }
2630
2631 inline const TypeNarrowKlass* Type::make_narrowklass() const {
2632 return (_base == NarrowKlass) ? is_narrowklass() :
2633 (isa_ptr() ? TypeNarrowKlass::make(is_ptr()) : nullptr);
2634 }
2635
2636 inline bool Type::is_floatingpoint() const {
2637 if( (_base == HalfFloatCon) || (_base == HalfFloatBot) ||
2638 (_base == FloatCon) || (_base == FloatBot) ||
2639 (_base == DoubleCon) || (_base == DoubleBot) )
2640 return true;
2641 return false;
2642 }
2643
2644 inline bool Type::is_inlinetypeptr() const {
2645 return isa_instptr() != nullptr && is_instptr()->instance_klass()->is_inlinetype();
2646 }
2647
2648 inline ciInlineKlass* Type::inline_klass() const {
2649 return make_ptr()->is_instptr()->instance_klass()->as_inline_klass();
2650 }
2651
2652 template <>
2653 inline const TypeInt* Type::cast<TypeInt>() const {
2654 return is_int();
2655 }
2656
2657 template <>
2658 inline const TypeLong* Type::cast<TypeLong>() const {
2659 return is_long();
2660 }
2661
2662 template <>
2663 inline const TypeInt* Type::try_cast<TypeInt>() const {
2664 return isa_int();
2665 }
2666
2667 template <>
2668 inline const TypeLong* Type::try_cast<TypeLong>() const {
2669 return isa_long();
2670 }
2671
2677
2678 // For type queries and asserts
2679 #define is_intptr_t is_long
2680 #define isa_intptr_t isa_long
2681 #define find_intptr_t_type find_long_type
2682 #define find_intptr_t_con find_long_con
2683 #define TypeX TypeLong
2684 #define Type_X Type::Long
2685 #define TypeX_X TypeLong::LONG
2686 #define TypeX_ZERO TypeLong::ZERO
2687 // For 'ideal_reg' machine registers
2688 #define Op_RegX Op_RegL
2689 // For phase->intcon variants
2690 #define MakeConX longcon
2691 #define ConXNode ConLNode
2692 // For array index arithmetic
2693 #define MulXNode MulLNode
2694 #define AndXNode AndLNode
2695 #define OrXNode OrLNode
2696 #define CmpXNode CmpLNode
2697 #define CmpUXNode CmpULNode
2698 #define SubXNode SubLNode
2699 #define LShiftXNode LShiftLNode
2700 // For object size computation:
2701 #define AddXNode AddLNode
2702 #define RShiftXNode RShiftLNode
2703 // For card marks and hashcodes
2704 #define URShiftXNode URShiftLNode
2705 // For shenandoahSupport
2706 #define LoadXNode LoadLNode
2707 #define StoreXNode StoreLNode
2708 // Opcodes
2709 #define Op_LShiftX Op_LShiftL
2710 #define Op_AndX Op_AndL
2711 #define Op_AddX Op_AddL
2712 #define Op_SubX Op_SubL
2713 #define Op_XorX Op_XorL
2714 #define Op_URShiftX Op_URShiftL
2715 #define Op_LoadX Op_LoadL
2716 #define Op_StoreX Op_StoreL
2717 // conversions
2718 #define ConvI2X(x) ConvI2L(x)
2719 #define ConvL2X(x) (x)
2720 #define ConvX2I(x) ConvL2I(x)
2721 #define ConvX2L(x) (x)
2722 #define ConvX2UL(x) (x)
2723
2724 #else
2725
2726 // For type queries and asserts
2727 #define is_intptr_t is_int
2728 #define isa_intptr_t isa_int
2729 #define find_intptr_t_type find_int_type
2730 #define find_intptr_t_con find_int_con
2731 #define TypeX TypeInt
2732 #define Type_X Type::Int
2733 #define TypeX_X TypeInt::INT
2734 #define TypeX_ZERO TypeInt::ZERO
2735 // For 'ideal_reg' machine registers
2736 #define Op_RegX Op_RegI
2737 // For phase->intcon variants
2738 #define MakeConX intcon
2739 #define ConXNode ConINode
2740 // For array index arithmetic
2741 #define MulXNode MulINode
2742 #define AndXNode AndINode
2743 #define OrXNode OrINode
2744 #define CmpXNode CmpINode
2745 #define CmpUXNode CmpUNode
2746 #define SubXNode SubINode
2747 #define LShiftXNode LShiftINode
2748 // For object size computation:
2749 #define AddXNode AddINode
2750 #define RShiftXNode RShiftINode
2751 // For card marks and hashcodes
2752 #define URShiftXNode URShiftINode
2753 // For shenandoahSupport
2754 #define LoadXNode LoadINode
2755 #define StoreXNode StoreINode
2756 // Opcodes
2757 #define Op_LShiftX Op_LShiftI
2758 #define Op_AndX Op_AndI
2759 #define Op_AddX Op_AddI
2760 #define Op_SubX Op_SubI
2761 #define Op_XorX Op_XorI
2762 #define Op_URShiftX Op_URShiftI
2763 #define Op_LoadX Op_LoadI
2764 #define Op_StoreX Op_StoreI
2765 // conversions
2766 #define ConvI2X(x) (x)
2767 #define ConvL2X(x) ConvL2I(x)
2768 #define ConvX2I(x) (x)
2769 #define ConvX2L(x) ConvI2L(x)
2770 #define ConvX2UL(x) ConvI2UL(x)
2771
2772 #endif
2773
2774 #endif // SHARE_OPTO_TYPE_HPP
|