8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #ifndef SHARE_OPTO_TYPE_HPP
26 #define SHARE_OPTO_TYPE_HPP
27
28 #include "opto/adlcVMDeps.hpp"
29 #include "opto/compile.hpp"
30 #include "opto/rangeinference.hpp"
31 #include "runtime/handles.hpp"
32
33 // Portions of code courtesy of Clifford Click
34
35 // Optimization - Graph Style
36
37
38 // This class defines a Type lattice. The lattice is used in the constant
39 // propagation algorithms, and for some type-checking of the iloc code.
40 // Basic types include RSD's (lower bound, upper bound, stride for integers),
41 // float & double precision constants, sets of data-labels and code-labels.
42 // The complete lattice is described below. Subtypes have no relationship to
43 // up or down in the lattice; that is entirely determined by the behavior of
44 // the MEET/JOIN functions.
45
46 class Dict;
47 class Type;
48 class TypeD;
49 class TypeF;
50 class TypeH;
51 class TypeInteger;
127 Memory, // Abstract store
128 HalfFloatTop, // No float value
129 HalfFloatCon, // Floating point constant
130 HalfFloatBot, // Any float value
131 FloatTop, // No float value
132 FloatCon, // Floating point constant
133 FloatBot, // Any float value
134 DoubleTop, // No double value
135 DoubleCon, // Double precision constant
136 DoubleBot, // Any double value
137 Bottom, // Bottom of lattice
138 lastype // Bogus ending type (not in lattice)
139 };
140
141 // Signal values for offsets from a base pointer
142 enum OFFSET_SIGNALS {
143 OffsetTop = -2000000000, // undefined offset
144 OffsetBot = -2000000001 // any possible offset
145 };
146
147 // Min and max WIDEN values.
148 enum WIDEN {
149 WidenMin = 0,
150 WidenMax = 3
151 };
152
153 private:
154 typedef struct {
155 TYPES dual_type;
156 BasicType basic_type;
157 const char* msg;
158 bool isa_oop;
159 uint ideal_reg;
160 relocInfo::relocType reloc;
161 } TypeInfo;
162
163 // Dictionary of types shared among compilations.
164 static Dict* _shared_type_dict;
165 static const TypeInfo _type_info[];
166
328 const TypeInstPtr *isa_instptr() const; // Returns null if not InstPtr
329 const TypeInstPtr *is_instptr() const; // Instance
330 const TypeAryPtr *isa_aryptr() const; // Returns null if not AryPtr
331 const TypeAryPtr *is_aryptr() const; // Array oop
332
333 template <typename TypeClass>
334 const TypeClass* cast() const;
335
336 const TypeMetadataPtr *isa_metadataptr() const; // Returns null if not oop ptr type
337 const TypeMetadataPtr *is_metadataptr() const; // Java-style GC'd pointer
338 const TypeKlassPtr *isa_klassptr() const; // Returns null if not KlassPtr
339 const TypeKlassPtr *is_klassptr() const; // assert if not KlassPtr
340 const TypeInstKlassPtr *isa_instklassptr() const; // Returns null if not IntKlassPtr
341 const TypeInstKlassPtr *is_instklassptr() const; // assert if not IntKlassPtr
342 const TypeAryKlassPtr *isa_aryklassptr() const; // Returns null if not AryKlassPtr
343 const TypeAryKlassPtr *is_aryklassptr() const; // assert if not AryKlassPtr
344
345 virtual bool is_finite() const; // Has a finite value
346 virtual bool is_nan() const; // Is not a number (NaN)
347
348 // Returns this ptr type or the equivalent ptr type for this compressed pointer.
349 const TypePtr* make_ptr() const;
350
351 // Returns this oopptr type or the equivalent oopptr type for this compressed pointer.
352 // Asserts if the underlying type is not an oopptr or narrowoop.
353 const TypeOopPtr* make_oopptr() const;
354
355 // Returns this compressed pointer or the equivalent compressed version
356 // of this pointer type.
357 const TypeNarrowOop* make_narrowoop() const;
358
359 // Returns this compressed klass pointer or the equivalent
360 // compressed version of this pointer type.
361 const TypeNarrowKlass* make_narrowklass() const;
362
363 // Special test for register pressure heuristic
364 bool is_floatingpoint() const; // True if Float or Double base type
365
366 // Do you have memory, directly or through a tuple?
367 bool has_memory( ) const;
465 static const Type* get_typeflow_type(ciType* type);
466
467 static const Type* make_from_constant(ciConstant constant,
468 bool require_constant = false,
469 int stable_dimension = 0,
470 bool is_narrow = false,
471 bool is_autobox_cache = false);
472
473 static const Type* make_constant_from_field(ciInstance* holder,
474 int off,
475 bool is_unsigned_load,
476 BasicType loadbt);
477
478 static const Type* make_constant_from_field(ciField* field,
479 ciInstance* holder,
480 BasicType loadbt,
481 bool is_unsigned_load);
482
483 static const Type* make_constant_from_array_element(ciArray* array,
484 int off,
485 int stable_dimension,
486 BasicType loadbt,
487 bool is_unsigned_load);
488
489 // Speculative type helper methods. See TypePtr.
490 virtual const TypePtr* speculative() const { return nullptr; }
491 virtual ciKlass* speculative_type() const { return nullptr; }
492 virtual ciKlass* speculative_type_not_null() const { return nullptr; }
493 virtual bool speculative_maybe_null() const { return true; }
494 virtual bool speculative_always_null() const { return true; }
495 virtual const Type* remove_speculative() const { return this; }
496 virtual const Type* cleanup_speculative() const { return this; }
497 virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const { return exact_kls != nullptr; }
498 virtual bool would_improve_ptr(ProfilePtrKind ptr_kind) const { return ptr_kind == ProfileAlwaysNull || ptr_kind == ProfileNeverNull; }
499 const Type* maybe_remove_speculative(bool include_speculative) const;
500
501 virtual bool maybe_null() const { return true; }
502 virtual bool is_known_instance() const { return false; }
503
504 private:
953 const Type ** const _fields; // Array of field types
954
955 public:
956 virtual bool eq( const Type *t ) const;
957 virtual uint hash() const; // Type specific hashing
958 virtual bool singleton(void) const; // TRUE if type is a singleton
959 virtual bool empty(void) const; // TRUE if type is vacuous
960
961 // Accessors:
962 uint cnt() const { return _cnt; }
963 const Type* field_at(uint i) const {
964 assert(i < _cnt, "oob");
965 return _fields[i];
966 }
967 void set_field_at(uint i, const Type* t) {
968 assert(i < _cnt, "oob");
969 _fields[i] = t;
970 }
971
972 static const TypeTuple *make( uint cnt, const Type **fields );
973 static const TypeTuple *make_range(ciSignature *sig, InterfaceHandling interface_handling = ignore_interfaces);
974 static const TypeTuple *make_domain(ciInstanceKlass* recv, ciSignature *sig, InterfaceHandling interface_handling);
975
976 // Subroutine call type with space allocated for argument types
977 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
978 static const Type **fields( uint arg_cnt );
979
980 virtual const Type *xmeet( const Type *t ) const;
981 virtual const Type *xdual() const; // Compute dual right now.
982 // Convenience common pre-built types.
983 static const TypeTuple *IFBOTH;
984 static const TypeTuple *IFFALSE;
985 static const TypeTuple *IFTRUE;
986 static const TypeTuple *IFNEITHER;
987 static const TypeTuple *LOOPBODY;
988 static const TypeTuple *MEMBAR;
989 static const TypeTuple *STORECONDITIONAL;
990 static const TypeTuple *START_I2C;
991 static const TypeTuple *INT_PAIR;
992 static const TypeTuple *LONG_PAIR;
993 static const TypeTuple *INT_CC_PAIR;
994 static const TypeTuple *LONG_CC_PAIR;
995 #ifndef PRODUCT
996 virtual void dump2( Dict &d, uint, outputStream *st ) const; // Specialized per-Type dumping
997 #endif
998 };
999
1000 //------------------------------TypeAry----------------------------------------
1001 // Class of Array Types
1002 class TypeAry : public Type {
1003 TypeAry(const Type* elem, const TypeInt* size, bool stable) : Type(Array),
1004 _elem(elem), _size(size), _stable(stable) {}
1005 public:
1006 virtual bool eq( const Type *t ) const;
1007 virtual uint hash() const; // Type specific hashing
1008 virtual bool singleton(void) const; // TRUE if type is a singleton
1009 virtual bool empty(void) const; // TRUE if type is vacuous
1010
1011 private:
1012 const Type *_elem; // Element type of array
1013 const TypeInt *_size; // Elements in array
1014 const bool _stable; // Are elements @Stable?
1015 friend class TypeAryPtr;
1016
1017 public:
1018 static const TypeAry* make(const Type* elem, const TypeInt* size, bool stable = false);
1019
1020 virtual const Type *xmeet( const Type *t ) const;
1021 virtual const Type *xdual() const; // Compute dual right now.
1022 bool ary_must_be_exact() const; // true if arrays of such are never generic
1023 virtual const TypeAry* remove_speculative() const;
1024 virtual const Type* cleanup_speculative() const;
1025 #ifndef PRODUCT
1026 virtual void dump2( Dict &d, uint, outputStream *st ) const; // Specialized per-Type dumping
1027 #endif
1028 };
1029
1030 //------------------------------TypeVect---------------------------------------
1031 // Basic class of vector (mask) types.
1032 class TypeVect : public Type {
1033 const BasicType _elem_bt; // Vector's element type
1034 const uint _length; // Elements in vector (power of 2)
1035
1036 protected:
1037 TypeVect(TYPES t, BasicType elem_bt, uint length) : Type(t),
1038 _elem_bt(elem_bt), _length(length) {}
1157
1158 const Type* xmeet(const Type* t) const;
1159
1160 bool singleton(void) const;
1161 bool has_non_array_interface() const;
1162 };
1163
1164 //------------------------------TypePtr----------------------------------------
1165 // Class of machine Pointer Types: raw data, instances or arrays.
1166 // If the _base enum is AnyPtr, then this refers to all of the above.
1167 // Otherwise the _base will indicate which subset of pointers is affected,
1168 // and the class will be inherited from.
1169 class TypePtr : public Type {
1170 friend class TypeNarrowPtr;
1171 friend class Type;
1172 protected:
1173 static const TypeInterfaces* interfaces(ciKlass*& k, bool klass, bool interface, bool array, InterfaceHandling interface_handling);
1174
1175 public:
1176 enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
1177 protected:
1178 TypePtr(TYPES t, PTR ptr, int offset,
1179 const TypePtr* speculative = nullptr,
1180 int inline_depth = InlineDepthBottom) :
1181 Type(t), _speculative(speculative), _inline_depth(inline_depth), _offset(offset),
1182 _ptr(ptr) {}
1183 static const PTR ptr_meet[lastPTR][lastPTR];
1184 static const PTR ptr_dual[lastPTR];
1185 static const char * const ptr_msg[lastPTR];
1186
1187 enum {
1188 InlineDepthBottom = INT_MAX,
1189 InlineDepthTop = -InlineDepthBottom
1190 };
1191
1192 // Extra type information profiling gave us. We propagate it the
1193 // same way the rest of the type info is propagated. If we want to
1194 // use it, then we have to emit a guard: this part of the type is
1195 // not something we know but something we speculate about the type.
1196 const TypePtr* _speculative;
1197 // For speculative types, we record at what inlining depth the
1198 // profiling point that provided the data is. We want to favor
1199 // profile data coming from outer scopes which are likely better for
1200 // the current compilation.
1201 int _inline_depth;
1202
1203 // utility methods to work on the speculative part of the type
1204 const TypePtr* dual_speculative() const;
1205 const TypePtr* xmeet_speculative(const TypePtr* other) const;
1206 bool eq_speculative(const TypePtr* other) const;
1215 #ifndef PRODUCT
1216 void dump_speculative(outputStream* st) const;
1217 void dump_inline_depth(outputStream* st) const;
1218 void dump_offset(outputStream* st) const;
1219 #endif
1220
1221 // TypeInstPtr (TypeAryPtr resp.) and TypeInstKlassPtr (TypeAryKlassPtr resp.) implement very similar meet logic.
1222 // The logic for meeting 2 instances (2 arrays resp.) is shared in the 2 utility methods below. However the logic for
1223 // the oop and klass versions can be slightly different and extra logic may have to be executed depending on what
1224 // exact case the meet falls into. The MeetResult struct is used by the utility methods to communicate what case was
1225 // encountered so the right logic specific to klasses or oops can be executed.,
1226 enum MeetResult {
1227 QUICK,
1228 UNLOADED,
1229 SUBTYPE,
1230 NOT_SUBTYPE,
1231 LCA
1232 };
1233 template<class T> static TypePtr::MeetResult meet_instptr(PTR& ptr, const TypeInterfaces*& interfaces, const T* this_type,
1234 const T* other_type, ciKlass*& res_klass, bool& res_xk);
1235
1236 template<class T> static MeetResult meet_aryptr(PTR& ptr, const Type*& elem, const T* this_ary, const T* other_ary,
1237 ciKlass*& res_klass, bool& res_xk);
1238
1239 template <class T1, class T2> static bool is_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1240 template <class T1, class T2> static bool is_same_java_type_as_helper_for_instance(const T1* this_one, const T2* other);
1241 template <class T1, class T2> static bool maybe_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1242 template <class T1, class T2> static bool is_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1243 template <class T1, class T2> static bool is_same_java_type_as_helper_for_array(const T1* this_one, const T2* other);
1244 template <class T1, class T2> static bool maybe_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1245 template <class T1, class T2> static bool is_meet_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_xk, bool other_xk);
1246 template <class T1, class T2> static bool is_meet_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_xk, bool other_xk);
1247 public:
1248 const int _offset; // Offset into oop, with TOP & BOT
1249 const PTR _ptr; // Pointer equivalence class
1250
1251 int offset() const { return _offset; }
1252 PTR ptr() const { return _ptr; }
1253
1254 static const TypePtr *make(TYPES t, PTR ptr, int offset,
1255 const TypePtr* speculative = nullptr,
1256 int inline_depth = InlineDepthBottom);
1257
1258 // Return a 'ptr' version of this type
1259 virtual const TypePtr* cast_to_ptr_type(PTR ptr) const;
1260
1261 virtual intptr_t get_con() const;
1262
1263 int xadd_offset( intptr_t offset ) const;
1264 virtual const TypePtr* add_offset(intptr_t offset) const;
1265 virtual const TypePtr* with_offset(intptr_t offset) const;
1266 virtual bool eq(const Type *t) const;
1267 virtual uint hash() const; // Type specific hashing
1268
1269 virtual bool singleton(void) const; // TRUE if type is a singleton
1270 virtual bool empty(void) const; // TRUE if type is vacuous
1271 virtual const Type *xmeet( const Type *t ) const;
1272 virtual const Type *xmeet_helper( const Type *t ) const;
1273 int meet_offset( int offset ) const;
1274 int dual_offset( ) const;
1275 virtual const Type *xdual() const; // Compute dual right now.
1276
1277 // meet, dual and join over pointer equivalence sets
1278 PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
1279 PTR dual_ptr() const { return ptr_dual[ptr()]; }
1280
1281 // This is textually confusing unless one recalls that
1282 // join(t) == dual()->meet(t->dual())->dual().
1283 PTR join_ptr( const PTR in_ptr ) const {
1284 return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
1285 }
1286
1287 // Speculative type helper methods.
1288 virtual const TypePtr* speculative() const { return _speculative; }
1289 int inline_depth() const { return _inline_depth; }
1290 virtual ciKlass* speculative_type() const;
1291 virtual ciKlass* speculative_type_not_null() const;
1292 virtual bool speculative_maybe_null() const;
1293 virtual bool speculative_always_null() const;
1294 virtual const TypePtr* remove_speculative() const;
1295 virtual const Type* cleanup_speculative() const;
1296 virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
1297 virtual bool would_improve_ptr(ProfilePtrKind maybe_null) const;
1298 virtual const TypePtr* with_inline_depth(int depth) const;
1299
1300 virtual bool maybe_null() const { return meet_ptr(Null) == ptr(); }
1301
1302 // Tests for relation to centerline of type lattice:
1303 static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
1304 static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
1305 // Convenience common pre-built types.
1306 static const TypePtr *NULL_PTR;
1307 static const TypePtr *NOTNULL;
1308 static const TypePtr *BOTTOM;
1309 #ifndef PRODUCT
1310 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1311 #endif
1312 };
1313
1314 //------------------------------TypeRawPtr-------------------------------------
1315 // Class of raw pointers, pointers to things other than Oops. Examples
1316 // include the stack pointer, top of heap, card-marking area, handles, etc.
1317 class TypeRawPtr : public TypePtr {
1318 protected:
1319 TypeRawPtr( PTR ptr, address bits ) : TypePtr(RawPtr,ptr,0), _bits(bits){}
1320 public:
1321 virtual bool eq( const Type *t ) const;
1322 virtual uint hash() const; // Type specific hashing
1323
1324 const address _bits; // Constant value, if applicable
1325
1326 static const TypeRawPtr *make( PTR ptr );
1327 static const TypeRawPtr *make( address bits );
1328
1329 // Return a 'ptr' version of this type
1330 virtual const TypeRawPtr* cast_to_ptr_type(PTR ptr) const;
1331
1332 virtual intptr_t get_con() const;
1333
1334 virtual const TypePtr* add_offset(intptr_t offset) const;
1335 virtual const TypeRawPtr* with_offset(intptr_t offset) const { ShouldNotReachHere(); return nullptr;}
1336
1337 virtual const Type *xmeet( const Type *t ) const;
1338 virtual const Type *xdual() const; // Compute dual right now.
1339 // Convenience common pre-built types.
1340 static const TypeRawPtr *BOTTOM;
1341 static const TypeRawPtr *NOTNULL;
1342 #ifndef PRODUCT
1343 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1344 #endif
1345 };
1346
1347 //------------------------------TypeOopPtr-------------------------------------
1348 // Some kind of oop (Java pointer), either instance or array.
1349 class TypeOopPtr : public TypePtr {
1350 friend class TypeAry;
1351 friend class TypePtr;
1352 friend class TypeInstPtr;
1353 friend class TypeAryPtr;
1354 protected:
1355 TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int offset, int instance_id,
1356 const TypePtr* speculative, int inline_depth);
1357 public:
1358 virtual bool eq( const Type *t ) const;
1359 virtual uint hash() const; // Type specific hashing
1360 virtual bool singleton(void) const; // TRUE if type is a singleton
1361 enum {
1362 InstanceTop = -1, // undefined instance
1363 InstanceBot = 0 // any possible instance
1364 };
1365 protected:
1366
1367 // Oop is null, unless this is a constant oop.
1368 ciObject* _const_oop; // Constant oop
1369 // If _klass is null, then so is _sig. This is an unloaded klass.
1370 ciKlass* _klass; // Klass object
1371
1372 const TypeInterfaces* _interfaces;
1373
1374 // Does the type exclude subclasses of the klass? (Inexact == polymorphic.)
1375 bool _klass_is_exact;
1376 bool _is_ptr_to_narrowoop;
1377 bool _is_ptr_to_narrowklass;
1378 bool _is_ptr_to_boxed_value;
1379
1380 // If not InstanceTop or InstanceBot, indicates that this is
1381 // a particular instance of this type which is distinct.
1382 // This is the node index of the allocation node creating this instance.
1383 int _instance_id;
1384
1385 static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact, InterfaceHandling interface_handling);
1386
1387 int dual_instance_id() const;
1388 int meet_instance_id(int uid) const;
1389
1390 const TypeInterfaces* meet_interfaces(const TypeOopPtr* other) const;
1391
1392 // Do not allow interface-vs.-noninterface joins to collapse to top.
1393 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1394
1395 virtual ciKlass* exact_klass_helper() const { return nullptr; }
1396 virtual ciKlass* klass() const { return _klass; }
1397
1398 #ifndef PRODUCT
1399 void dump_instance_id(outputStream* st) const;
1400 #endif // PRODUCT
1401
1402 public:
1403
1404 bool is_java_subtype_of(const TypeOopPtr* other) const {
1405 return is_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1406 }
1407
1408 bool is_same_java_type_as(const TypePtr* other) const {
1409 return is_same_java_type_as_helper(other->is_oopptr());
1410 }
1411
1412 virtual bool is_same_java_type_as_helper(const TypeOopPtr* other) const {
1413 ShouldNotReachHere(); return false;
1414 }
1415
1416 bool maybe_java_subtype_of(const TypeOopPtr* other) const {
1427 return make_from_klass_common(klass, true, false, interface_handling);
1428 }
1429 // Same as before, but will produce an exact type, even if
1430 // the klass is not final, as long as it has exactly one implementation.
1431 static const TypeOopPtr* make_from_klass_unique(ciKlass* klass, InterfaceHandling interface_handling= ignore_interfaces) {
1432 return make_from_klass_common(klass, true, true, interface_handling);
1433 }
1434 // Same as before, but does not respects UseUniqueSubclasses.
1435 // Use this only for creating array element types.
1436 static const TypeOopPtr* make_from_klass_raw(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) {
1437 return make_from_klass_common(klass, false, false, interface_handling);
1438 }
1439 // Creates a singleton type given an object.
1440 // If the object cannot be rendered as a constant,
1441 // may return a non-singleton type.
1442 // If require_constant, produce a null if a singleton is not possible.
1443 static const TypeOopPtr* make_from_constant(ciObject* o,
1444 bool require_constant = false);
1445
1446 // Make a generic (unclassed) pointer to an oop.
1447 static const TypeOopPtr* make(PTR ptr, int offset, int instance_id,
1448 const TypePtr* speculative = nullptr,
1449 int inline_depth = InlineDepthBottom);
1450
1451 ciObject* const_oop() const { return _const_oop; }
1452 // Exact klass, possibly an interface or an array of interface
1453 ciKlass* exact_klass(bool maybe_null = false) const { assert(klass_is_exact(), ""); ciKlass* k = exact_klass_helper(); assert(k != nullptr || maybe_null, ""); return k; }
1454 ciKlass* unloaded_klass() const { assert(!is_loaded(), "only for unloaded types"); return klass(); }
1455
1456 virtual bool is_loaded() const { return klass()->is_loaded(); }
1457 virtual bool klass_is_exact() const { return _klass_is_exact; }
1458
1459 // Returns true if this pointer points at memory which contains a
1460 // compressed oop references.
1461 bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
1462 bool is_ptr_to_narrowklass_nv() const { return _is_ptr_to_narrowklass; }
1463 bool is_ptr_to_boxed_value() const { return _is_ptr_to_boxed_value; }
1464 bool is_known_instance() const { return _instance_id > 0; }
1465 int instance_id() const { return _instance_id; }
1466 bool is_known_instance_field() const { return is_known_instance() && _offset >= 0; }
1467
1468 virtual intptr_t get_con() const;
1469
1470 virtual const TypeOopPtr* cast_to_ptr_type(PTR ptr) const;
1471
1472 virtual const TypeOopPtr* cast_to_exactness(bool klass_is_exact) const;
1473
1474 virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1475
1476 // corresponding pointer to klass, for a given instance
1477 virtual const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1478
1479 virtual const TypeOopPtr* with_offset(intptr_t offset) const;
1480 virtual const TypePtr* add_offset(intptr_t offset) const;
1481
1482 // Speculative type helper methods.
1483 virtual const TypeOopPtr* remove_speculative() const;
1484 virtual const Type* cleanup_speculative() const;
1485 virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
1486 virtual const TypePtr* with_inline_depth(int depth) const;
1509 return _interfaces;
1510 };
1511
1512 const TypeOopPtr* is_reference_type(const Type* other) const {
1513 return other->isa_oopptr();
1514 }
1515
1516 const TypeAryPtr* is_array_type(const TypeOopPtr* other) const {
1517 return other->isa_aryptr();
1518 }
1519
1520 const TypeInstPtr* is_instance_type(const TypeOopPtr* other) const {
1521 return other->isa_instptr();
1522 }
1523 };
1524
1525 //------------------------------TypeInstPtr------------------------------------
1526 // Class of Java object pointers, pointing either to non-array Java instances
1527 // or to a Klass* (including array klasses).
1528 class TypeInstPtr : public TypeOopPtr {
1529 TypeInstPtr(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int off, int instance_id,
1530 const TypePtr* speculative, int inline_depth);
1531 virtual bool eq( const Type *t ) const;
1532 virtual uint hash() const; // Type specific hashing
1533
1534 ciKlass* exact_klass_helper() const;
1535
1536 public:
1537
1538 // Instance klass, ignoring any interface
1539 ciInstanceKlass* instance_klass() const {
1540 assert(!(klass()->is_loaded() && klass()->is_interface()), "");
1541 return klass()->as_instance_klass();
1542 }
1543
1544 bool is_same_java_type_as_helper(const TypeOopPtr* other) const;
1545 bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1546 bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1547
1548 // Make a pointer to a constant oop.
1549 static const TypeInstPtr *make(ciObject* o) {
1550 ciKlass* k = o->klass();
1551 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1552 return make(TypePtr::Constant, k, interfaces, true, o, 0, InstanceBot);
1553 }
1554 // Make a pointer to a constant oop with offset.
1555 static const TypeInstPtr *make(ciObject* o, int offset) {
1556 ciKlass* k = o->klass();
1557 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1558 return make(TypePtr::Constant, k, interfaces, true, o, offset, InstanceBot);
1559 }
1560
1561 // Make a pointer to some value of type klass.
1562 static const TypeInstPtr *make(PTR ptr, ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) {
1563 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
1564 return make(ptr, klass, interfaces, false, nullptr, 0, InstanceBot);
1565 }
1566
1567 // Make a pointer to some non-polymorphic value of exactly type klass.
1568 static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
1569 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, false, false, ignore_interfaces);
1570 return make(ptr, klass, interfaces, true, nullptr, 0, InstanceBot);
1571 }
1572
1573 // Make a pointer to some value of type klass with offset.
1574 static const TypeInstPtr *make(PTR ptr, ciKlass* klass, int offset) {
1575 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, false, false, ignore_interfaces);
1576 return make(ptr, klass, interfaces, false, nullptr, offset, InstanceBot);
1577 }
1578
1579 static const TypeInstPtr *make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int offset,
1580 int instance_id = InstanceBot,
1581 const TypePtr* speculative = nullptr,
1582 int inline_depth = InlineDepthBottom);
1583
1584 static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id = InstanceBot) {
1585 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1586 return make(ptr, k, interfaces, xk, o, offset, instance_id);
1587 }
1588
1589 /** Create constant type for a constant boxed value */
1590 const Type* get_const_boxed_value() const;
1591
1592 // If this is a java.lang.Class constant, return the type for it or null.
1593 // Pass to Type::get_const_type to turn it to a type, which will usually
1594 // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
1595 ciType* java_mirror_type() const;
1596
1597 virtual const TypeInstPtr* cast_to_ptr_type(PTR ptr) const;
1598
1599 virtual const TypeInstPtr* cast_to_exactness(bool klass_is_exact) const;
1600
1601 virtual const TypeInstPtr* cast_to_instance_id(int instance_id) const;
1602
1603 virtual const TypePtr* add_offset(intptr_t offset) const;
1604 virtual const TypeInstPtr* with_offset(intptr_t offset) const;
1605
1606 // Speculative type helper methods.
1607 virtual const TypeInstPtr* remove_speculative() const;
1608 const TypeInstPtr* with_speculative(const TypePtr* speculative) const;
1609 virtual const TypePtr* with_inline_depth(int depth) const;
1610 virtual const TypePtr* with_instance_id(int instance_id) const;
1611
1612 // the core of the computation of the meet of 2 types
1613 virtual const Type *xmeet_helper(const Type *t) const;
1614 virtual const TypeInstPtr *xmeet_unloaded(const TypeInstPtr *tinst, const TypeInterfaces* interfaces) const;
1615 virtual const Type *xdual() const; // Compute dual right now.
1616
1617 const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1618
1619 // Convenience common pre-built types.
1620 static const TypeInstPtr *NOTNULL;
1621 static const TypeInstPtr *BOTTOM;
1622 static const TypeInstPtr *MIRROR;
1623 static const TypeInstPtr *MARK;
1624 static const TypeInstPtr *KLASS;
1625 #ifndef PRODUCT
1626 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1627 #endif
1628
1629 private:
1630 virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const;
1631
1632 virtual bool is_meet_same_type_as(const TypePtr* other) const {
1633 return _klass->equals(other->is_instptr()->_klass) && _interfaces->eq(other->is_instptr()->_interfaces);
1634 }
1635
1636 };
1637
1638 //------------------------------TypeAryPtr-------------------------------------
1639 // Class of Java array pointers
1640 class TypeAryPtr : public TypeOopPtr {
1641 friend class Type;
1642 friend class TypePtr;
1643 friend class TypeInterfaces;
1644
1645 TypeAryPtr( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk,
1646 int offset, int instance_id, bool is_autobox_cache,
1647 const TypePtr* speculative, int inline_depth)
1648 : TypeOopPtr(AryPtr,ptr,k,_array_interfaces,xk,o,offset, instance_id, speculative, inline_depth),
1649 _ary(ary),
1650 _is_autobox_cache(is_autobox_cache)
1651 {
1652 int dummy;
1653 bool top_or_bottom = (base_element_type(dummy) == Type::TOP || base_element_type(dummy) == Type::BOTTOM);
1654
1655 if (UseCompressedOops && (elem()->make_oopptr() != nullptr && !top_or_bottom) &&
1656 _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes() &&
1657 _offset != arrayOopDesc::klass_offset_in_bytes()) {
1658 _is_ptr_to_narrowoop = true;
1659 }
1660
1661 }
1662 virtual bool eq( const Type *t ) const;
1663 virtual uint hash() const; // Type specific hashing
1664 const TypeAry *_ary; // Array we point into
1665 const bool _is_autobox_cache;
1666
1667 ciKlass* compute_klass() const;
1668
1669 // A pointer to delay allocation to Type::Initialize_shared()
1670
1671 static const TypeInterfaces* _array_interfaces;
1672 ciKlass* exact_klass_helper() const;
1673 // Only guaranteed non null for array of basic types
1674 ciKlass* klass() const;
1675
1676 public:
1677
1678 bool is_same_java_type_as_helper(const TypeOopPtr* other) const;
1679 bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1680 bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1681
1682 // returns base element type, an instance klass (and not interface) for object arrays
1683 const Type* base_element_type(int& dims) const;
1684
1685 // Accessors
1686 bool is_loaded() const { return (_ary->_elem->make_oopptr() ? _ary->_elem->make_oopptr()->is_loaded() : true); }
1687
1688 const TypeAry* ary() const { return _ary; }
1689 const Type* elem() const { return _ary->_elem; }
1690 const TypeInt* size() const { return _ary->_size; }
1691 bool is_stable() const { return _ary->_stable; }
1692
1693 bool is_autobox_cache() const { return _is_autobox_cache; }
1694
1695 static const TypeAryPtr *make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset,
1696 int instance_id = InstanceBot,
1697 const TypePtr* speculative = nullptr,
1698 int inline_depth = InlineDepthBottom);
1699 // Constant pointer to array
1700 static const TypeAryPtr *make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset,
1701 int instance_id = InstanceBot,
1702 const TypePtr* speculative = nullptr,
1703 int inline_depth = InlineDepthBottom, bool is_autobox_cache = false);
1704
1705 // Return a 'ptr' version of this type
1706 virtual const TypeAryPtr* cast_to_ptr_type(PTR ptr) const;
1707
1708 virtual const TypeAryPtr* cast_to_exactness(bool klass_is_exact) const;
1709
1710 virtual const TypeAryPtr* cast_to_instance_id(int instance_id) const;
1711
1712 virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
1713 virtual const TypeInt* narrow_size_type(const TypeInt* size) const;
1714
1715 virtual bool empty(void) const; // TRUE if type is vacuous
1716 virtual const TypePtr *add_offset( intptr_t offset ) const;
1717 virtual const TypeAryPtr *with_offset( intptr_t offset ) const;
1718 const TypeAryPtr* with_ary(const TypeAry* ary) const;
1719
1720 // Speculative type helper methods.
1721 virtual const TypeAryPtr* remove_speculative() const;
1722 virtual const TypePtr* with_inline_depth(int depth) const;
1723 virtual const TypePtr* with_instance_id(int instance_id) const;
1724
1725 // the core of the computation of the meet of 2 types
1726 virtual const Type *xmeet_helper(const Type *t) const;
1727 virtual const Type *xdual() const; // Compute dual right now.
1728
1729 const TypeAryPtr* cast_to_stable(bool stable, int stable_dimension = 1) const;
1730 int stable_dimension() const;
1731
1732 const TypeAryPtr* cast_to_autobox_cache() const;
1733
1734 static jint max_array_length(BasicType etype) ;
1735 virtual const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1736
1737 // Convenience common pre-built types.
1738 static const TypeAryPtr* BOTTOM;
1739 static const TypeAryPtr* RANGE;
1740 static const TypeAryPtr* OOPS;
1741 static const TypeAryPtr* NARROWOOPS;
1742 static const TypeAryPtr* BYTES;
1743 static const TypeAryPtr* SHORTS;
1744 static const TypeAryPtr* CHARS;
1745 static const TypeAryPtr* INTS;
1746 static const TypeAryPtr* LONGS;
1747 static const TypeAryPtr* FLOATS;
1748 static const TypeAryPtr* DOUBLES;
1749 // selects one of the above:
1750 static const TypeAryPtr *get_array_body_type(BasicType elem) {
1751 assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != nullptr, "bad elem type");
1752 return _array_body_type[elem];
1753 }
1754 static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
1755 // sharpen the type of an int which is used as an array size
1756 #ifndef PRODUCT
1757 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1758 #endif
1759 private:
1760 virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const;
1761 };
1762
1763 //------------------------------TypeMetadataPtr-------------------------------------
1764 // Some kind of metadata, either Method*, MethodData* or CPCacheOop
1765 class TypeMetadataPtr : public TypePtr {
1766 protected:
1767 TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset);
1768 // Do not allow interface-vs.-noninterface joins to collapse to top.
1769 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1770 public:
1771 virtual bool eq( const Type *t ) const;
1772 virtual uint hash() const; // Type specific hashing
1773 virtual bool singleton(void) const; // TRUE if type is a singleton
1774
1775 private:
1776 ciMetadata* _metadata;
1777
1778 public:
1779 static const TypeMetadataPtr* make(PTR ptr, ciMetadata* m, int offset);
1780
1781 static const TypeMetadataPtr* make(ciMethod* m);
1782 static const TypeMetadataPtr* make(ciMethodData* m);
1783
1784 ciMetadata* metadata() const { return _metadata; }
1785
1786 virtual const TypeMetadataPtr* cast_to_ptr_type(PTR ptr) const;
1787
1788 virtual const TypePtr *add_offset( intptr_t offset ) const;
1789
1790 virtual const Type *xmeet( const Type *t ) const;
1791 virtual const Type *xdual() const; // Compute dual right now.
1792
1793 virtual intptr_t get_con() const;
1794
1795 // Convenience common pre-built types.
1796 static const TypeMetadataPtr *BOTTOM;
1797
1798 #ifndef PRODUCT
1799 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1800 #endif
1801 };
1802
1803 //------------------------------TypeKlassPtr-----------------------------------
1804 // Class of Java Klass pointers
1805 class TypeKlassPtr : public TypePtr {
1806 friend class TypeInstKlassPtr;
1807 friend class TypeAryKlassPtr;
1808 friend class TypePtr;
1809 protected:
1810 TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, int offset);
1811
1812 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1813
1814 public:
1815 virtual bool eq( const Type *t ) const;
1816 virtual uint hash() const;
1817 virtual bool singleton(void) const; // TRUE if type is a singleton
1818
1819 protected:
1820
1821 ciKlass* _klass;
1822 const TypeInterfaces* _interfaces;
1823 const TypeInterfaces* meet_interfaces(const TypeKlassPtr* other) const;
1824 virtual bool must_be_exact() const { ShouldNotReachHere(); return false; }
1825 virtual ciKlass* exact_klass_helper() const;
1826 virtual ciKlass* klass() const { return _klass; }
1827
1828 public:
1829
1830 bool is_java_subtype_of(const TypeKlassPtr* other) const {
1831 return is_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1832 }
1833 bool is_same_java_type_as(const TypePtr* other) const {
1834 return is_same_java_type_as_helper(other->is_klassptr());
1835 }
1836
1837 bool maybe_java_subtype_of(const TypeKlassPtr* other) const {
1838 return maybe_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1839 }
1840 virtual bool is_same_java_type_as_helper(const TypeKlassPtr* other) const { ShouldNotReachHere(); return false; }
1841 virtual bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1842 virtual bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1843
1844 // Exact klass, possibly an interface or an array of interface
1845 ciKlass* exact_klass(bool maybe_null = false) const { assert(klass_is_exact(), ""); ciKlass* k = exact_klass_helper(); assert(k != nullptr || maybe_null, ""); return k; }
1846 virtual bool klass_is_exact() const { return _ptr == Constant; }
1847
1848 static const TypeKlassPtr* make(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces);
1849 static const TypeKlassPtr *make(PTR ptr, ciKlass* klass, int offset, InterfaceHandling interface_handling = ignore_interfaces);
1850
1851 virtual bool is_loaded() const { return _klass->is_loaded(); }
1852
1853 virtual const TypeKlassPtr* cast_to_ptr_type(PTR ptr) const { ShouldNotReachHere(); return nullptr; }
1854
1855 virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const { ShouldNotReachHere(); return nullptr; }
1856
1857 // corresponding pointer to instance, for a given class
1858 virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const { ShouldNotReachHere(); return nullptr; }
1859
1860 virtual const TypePtr *add_offset( intptr_t offset ) const { ShouldNotReachHere(); return nullptr; }
1861 virtual const Type *xmeet( const Type *t ) const { ShouldNotReachHere(); return nullptr; }
1862 virtual const Type *xdual() const { ShouldNotReachHere(); return nullptr; }
1863
1864 virtual intptr_t get_con() const;
1865
1866 virtual const TypeKlassPtr* with_offset(intptr_t offset) const { ShouldNotReachHere(); return nullptr; }
1867
1868 virtual const TypeKlassPtr* try_improve() const { return this; }
1869
1870 private:
1871 virtual bool is_meet_subtype_of(const TypePtr* other) const {
1872 return is_meet_subtype_of_helper(other->is_klassptr(), klass_is_exact(), other->is_klassptr()->klass_is_exact());
1873 }
1874
1875 virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const {
1876 ShouldNotReachHere(); return false;
1877 }
1878
1879 virtual const TypeInterfaces* interfaces() const {
1880 return _interfaces;
1881 };
1882
1883 const TypeKlassPtr* is_reference_type(const Type* other) const {
1884 return other->isa_klassptr();
1885 }
1886
1887 const TypeAryKlassPtr* is_array_type(const TypeKlassPtr* other) const {
1888 return other->isa_aryklassptr();
1889 }
1890
1891 const TypeInstKlassPtr* is_instance_type(const TypeKlassPtr* other) const {
1892 return other->isa_instklassptr();
1893 }
1894 };
1895
1896 // Instance klass pointer, mirrors TypeInstPtr
1897 class TypeInstKlassPtr : public TypeKlassPtr {
1898
1899 TypeInstKlassPtr(PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, int offset)
1900 : TypeKlassPtr(InstKlassPtr, ptr, klass, interfaces, offset) {
1901 assert(klass->is_instance_klass() && (!klass->is_loaded() || !klass->is_interface()), "");
1902 }
1903
1904 virtual bool must_be_exact() const;
1905
1906 public:
1907 // Instance klass ignoring any interface
1908 ciInstanceKlass* instance_klass() const {
1909 assert(!klass()->is_interface(), "");
1910 return klass()->as_instance_klass();
1911 }
1912
1913 bool might_be_an_array() const;
1914
1915 bool is_same_java_type_as_helper(const TypeKlassPtr* other) const;
1916 bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
1917 bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
1918
1919 static const TypeInstKlassPtr *make(ciKlass* k, InterfaceHandling interface_handling) {
1920 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, true, false, interface_handling);
1921 return make(TypePtr::Constant, k, interfaces, 0);
1922 }
1923 static const TypeInstKlassPtr* make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, int offset);
1924
1925 static const TypeInstKlassPtr* make(PTR ptr, ciKlass* k, int offset) {
1926 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1927 return make(ptr, k, interfaces, offset);
1928 }
1929
1930 virtual const TypeInstKlassPtr* cast_to_ptr_type(PTR ptr) const;
1931
1932 virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const;
1933
1934 // corresponding pointer to instance, for a given class
1935 virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const;
1936 virtual uint hash() const;
1937 virtual bool eq(const Type *t) const;
1938
1939 virtual const TypePtr *add_offset( intptr_t offset ) const;
1940 virtual const Type *xmeet( const Type *t ) const;
1941 virtual const Type *xdual() const;
1942 virtual const TypeInstKlassPtr* with_offset(intptr_t offset) const;
1943
1944 virtual const TypeKlassPtr* try_improve() const;
1945
1946 // Convenience common pre-built types.
1947 static const TypeInstKlassPtr* OBJECT; // Not-null object klass or below
1948 static const TypeInstKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
1949
1950 #ifndef PRODUCT
1951 virtual void dump2(Dict& d, uint depth, outputStream* st) const;
1952 #endif // PRODUCT
1953
1954 private:
1955 virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const;
1956 };
1957
1958 // Array klass pointer, mirrors TypeAryPtr
1959 class TypeAryKlassPtr : public TypeKlassPtr {
1960 friend class TypeInstKlassPtr;
1961 friend class Type;
1962 friend class TypePtr;
1963
1964 const Type *_elem;
1965
1966 static const TypeInterfaces* _array_interfaces;
1967 TypeAryKlassPtr(PTR ptr, const Type *elem, ciKlass* klass, int offset)
1968 : TypeKlassPtr(AryKlassPtr, ptr, klass, _array_interfaces, offset), _elem(elem) {
1969 assert(klass == nullptr || klass->is_type_array_klass() || !klass->as_obj_array_klass()->base_element_klass()->is_interface(), "");
1970 }
1971
1972 virtual ciKlass* exact_klass_helper() const;
1973 // Only guaranteed non null for array of basic types
1974 virtual ciKlass* klass() const;
1975
1976 virtual bool must_be_exact() const;
1977
1978 public:
1979
1980 // returns base element type, an instance klass (and not interface) for object arrays
1981 const Type* base_element_type(int& dims) const;
1982
1983 static const TypeAryKlassPtr *make(PTR ptr, ciKlass* k, int offset, InterfaceHandling interface_handling);
1984
1985 bool is_same_java_type_as_helper(const TypeKlassPtr* other) const;
1986 bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
1987 bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
1988
1989 bool is_loaded() const { return (_elem->isa_klassptr() ? _elem->is_klassptr()->is_loaded() : true); }
1990
1991 static const TypeAryKlassPtr *make(PTR ptr, const Type *elem, ciKlass* k, int offset);
1992 static const TypeAryKlassPtr* make(ciKlass* klass, InterfaceHandling interface_handling);
1993
1994 const Type *elem() const { return _elem; }
1995
1996 virtual bool eq(const Type *t) const;
1997 virtual uint hash() const; // Type specific hashing
1998
1999 virtual const TypeAryKlassPtr* cast_to_ptr_type(PTR ptr) const;
2000
2001 virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const;
2002
2003 // corresponding pointer to instance, for a given class
2004 virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const;
2005
2006 virtual const TypePtr *add_offset( intptr_t offset ) const;
2007 virtual const Type *xmeet( const Type *t ) const;
2008 virtual const Type *xdual() const; // Compute dual right now.
2009
2010 virtual const TypeAryKlassPtr* with_offset(intptr_t offset) const;
2011
2012 virtual bool empty(void) const {
2013 return TypeKlassPtr::empty() || _elem->empty();
2014 }
2015
2016 #ifndef PRODUCT
2017 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
2018 #endif
2019 private:
2020 virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const;
2021 };
2022
2023 class TypeNarrowPtr : public Type {
2024 protected:
2025 const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR
2026
2027 TypeNarrowPtr(TYPES t, const TypePtr* ptrtype): Type(t),
2028 _ptrtype(ptrtype) {
2029 assert(ptrtype->offset() == 0 ||
2030 ptrtype->offset() == OffsetBot ||
2031 ptrtype->offset() == OffsetTop, "no real offsets");
2032 }
2033
2034 virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const = 0;
2035 virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const = 0;
2131 }
2132
2133 virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
2134 return (const TypeNarrowPtr*)((new TypeNarrowKlass(t))->hashcons());
2135 }
2136
2137 public:
2138 static const TypeNarrowKlass *make( const TypePtr* type);
2139
2140 // static const TypeNarrowKlass *BOTTOM;
2141 static const TypeNarrowKlass *NULL_PTR;
2142
2143 #ifndef PRODUCT
2144 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
2145 #endif
2146 };
2147
2148 //------------------------------TypeFunc---------------------------------------
2149 // Class of Array Types
2150 class TypeFunc : public Type {
2151 TypeFunc( const TypeTuple *domain, const TypeTuple *range ) : Type(Function), _domain(domain), _range(range) {}
2152 virtual bool eq( const Type *t ) const;
2153 virtual uint hash() const; // Type specific hashing
2154 virtual bool singleton(void) const; // TRUE if type is a singleton
2155 virtual bool empty(void) const; // TRUE if type is vacuous
2156
2157 const TypeTuple* const _domain; // Domain of inputs
2158 const TypeTuple* const _range; // Range of results
2159
2160 public:
2161 // Constants are shared among ADLC and VM
2162 enum { Control = AdlcVMDeps::Control,
2163 I_O = AdlcVMDeps::I_O,
2164 Memory = AdlcVMDeps::Memory,
2165 FramePtr = AdlcVMDeps::FramePtr,
2166 ReturnAdr = AdlcVMDeps::ReturnAdr,
2167 Parms = AdlcVMDeps::Parms
2168 };
2169
2170
2171 // Accessors:
2172 const TypeTuple* domain() const { return _domain; }
2173 const TypeTuple* range() const { return _range; }
2174
2175 static const TypeFunc *make(ciMethod* method);
2176 static const TypeFunc *make(ciSignature signature, const Type* extra);
2177 static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
2178
2179 virtual const Type *xmeet( const Type *t ) const;
2180 virtual const Type *xdual() const; // Compute dual right now.
2181
2182 BasicType return_type() const;
2183
2184 #ifndef PRODUCT
2185 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
2186 #endif
2187 // Convenience common pre-built types.
2188 };
2189
2190 //------------------------------accessors--------------------------------------
2191 inline bool Type::is_ptr_to_narrowoop() const {
2192 #ifdef _LP64
2193 return (isa_oopptr() != nullptr && is_oopptr()->is_ptr_to_narrowoop_nv());
2194 #else
2195 return false;
2196 #endif
2197 }
2198
2199 inline bool Type::is_ptr_to_narrowklass() const {
2200 #ifdef _LP64
2201 return (isa_oopptr() != nullptr && is_oopptr()->is_ptr_to_narrowklass_nv());
2202 #else
2203 return false;
2440 }
2441
2442 inline const TypeNarrowOop* Type::make_narrowoop() const {
2443 return (_base == NarrowOop) ? is_narrowoop() :
2444 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : nullptr);
2445 }
2446
2447 inline const TypeNarrowKlass* Type::make_narrowklass() const {
2448 return (_base == NarrowKlass) ? is_narrowklass() :
2449 (isa_ptr() ? TypeNarrowKlass::make(is_ptr()) : nullptr);
2450 }
2451
2452 inline bool Type::is_floatingpoint() const {
2453 if( (_base == HalfFloatCon) || (_base == HalfFloatBot) ||
2454 (_base == FloatCon) || (_base == FloatBot) ||
2455 (_base == DoubleCon) || (_base == DoubleBot) )
2456 return true;
2457 return false;
2458 }
2459
2460 template <>
2461 inline const TypeInt* Type::cast<TypeInt>() const {
2462 return is_int();
2463 }
2464
2465 template <>
2466 inline const TypeLong* Type::cast<TypeLong>() const {
2467 return is_long();
2468 }
2469
2470 template <>
2471 inline const TypeInt* Type::try_cast<TypeInt>() const {
2472 return isa_int();
2473 }
2474
2475 template <>
2476 inline const TypeLong* Type::try_cast<TypeLong>() const {
2477 return isa_long();
2478 }
2479
2485
2486 // For type queries and asserts
2487 #define is_intptr_t is_long
2488 #define isa_intptr_t isa_long
2489 #define find_intptr_t_type find_long_type
2490 #define find_intptr_t_con find_long_con
2491 #define TypeX TypeLong
2492 #define Type_X Type::Long
2493 #define TypeX_X TypeLong::LONG
2494 #define TypeX_ZERO TypeLong::ZERO
2495 // For 'ideal_reg' machine registers
2496 #define Op_RegX Op_RegL
2497 // For phase->intcon variants
2498 #define MakeConX longcon
2499 #define ConXNode ConLNode
2500 // For array index arithmetic
2501 #define MulXNode MulLNode
2502 #define AndXNode AndLNode
2503 #define OrXNode OrLNode
2504 #define CmpXNode CmpLNode
2505 #define SubXNode SubLNode
2506 #define LShiftXNode LShiftLNode
2507 // For object size computation:
2508 #define AddXNode AddLNode
2509 #define RShiftXNode RShiftLNode
2510 // For card marks and hashcodes
2511 #define URShiftXNode URShiftLNode
2512 // For shenandoahSupport
2513 #define LoadXNode LoadLNode
2514 #define StoreXNode StoreLNode
2515 // Opcodes
2516 #define Op_LShiftX Op_LShiftL
2517 #define Op_AndX Op_AndL
2518 #define Op_AddX Op_AddL
2519 #define Op_SubX Op_SubL
2520 #define Op_XorX Op_XorL
2521 #define Op_URShiftX Op_URShiftL
2522 #define Op_LoadX Op_LoadL
2523 // conversions
2524 #define ConvI2X(x) ConvI2L(x)
2525 #define ConvL2X(x) (x)
2526 #define ConvX2I(x) ConvL2I(x)
2527 #define ConvX2L(x) (x)
2528 #define ConvX2UL(x) (x)
2529
2530 #else
2531
2532 // For type queries and asserts
2533 #define is_intptr_t is_int
2534 #define isa_intptr_t isa_int
2535 #define find_intptr_t_type find_int_type
2536 #define find_intptr_t_con find_int_con
2537 #define TypeX TypeInt
2538 #define Type_X Type::Int
2539 #define TypeX_X TypeInt::INT
2540 #define TypeX_ZERO TypeInt::ZERO
2541 // For 'ideal_reg' machine registers
2542 #define Op_RegX Op_RegI
2543 // For phase->intcon variants
2544 #define MakeConX intcon
2545 #define ConXNode ConINode
2546 // For array index arithmetic
2547 #define MulXNode MulINode
2548 #define AndXNode AndINode
2549 #define OrXNode OrINode
2550 #define CmpXNode CmpINode
2551 #define SubXNode SubINode
2552 #define LShiftXNode LShiftINode
2553 // For object size computation:
2554 #define AddXNode AddINode
2555 #define RShiftXNode RShiftINode
2556 // For card marks and hashcodes
2557 #define URShiftXNode URShiftINode
2558 // For shenandoahSupport
2559 #define LoadXNode LoadINode
2560 #define StoreXNode StoreINode
2561 // Opcodes
2562 #define Op_LShiftX Op_LShiftI
2563 #define Op_AndX Op_AndI
2564 #define Op_AddX Op_AddI
2565 #define Op_SubX Op_SubI
2566 #define Op_XorX Op_XorI
2567 #define Op_URShiftX Op_URShiftI
2568 #define Op_LoadX Op_LoadI
2569 // conversions
2570 #define ConvI2X(x) (x)
2571 #define ConvL2X(x) ConvL2I(x)
2572 #define ConvX2I(x) (x)
2573 #define ConvX2L(x) ConvI2L(x)
2574 #define ConvX2UL(x) ConvI2UL(x)
2575
2576 #endif
2577
2578 #endif // SHARE_OPTO_TYPE_HPP
|
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #ifndef SHARE_OPTO_TYPE_HPP
26 #define SHARE_OPTO_TYPE_HPP
27
28 #include "ci/ciInlineKlass.hpp"
29 #include "opto/adlcVMDeps.hpp"
30 #include "opto/compile.hpp"
31 #include "opto/rangeinference.hpp"
32
33 // Portions of code courtesy of Clifford Click
34
35 // Optimization - Graph Style
36
37
38 // This class defines a Type lattice. The lattice is used in the constant
39 // propagation algorithms, and for some type-checking of the iloc code.
40 // Basic types include RSD's (lower bound, upper bound, stride for integers),
41 // float & double precision constants, sets of data-labels and code-labels.
42 // The complete lattice is described below. Subtypes have no relationship to
43 // up or down in the lattice; that is entirely determined by the behavior of
44 // the MEET/JOIN functions.
45
46 class Dict;
47 class Type;
48 class TypeD;
49 class TypeF;
50 class TypeH;
51 class TypeInteger;
127 Memory, // Abstract store
128 HalfFloatTop, // No float value
129 HalfFloatCon, // Floating point constant
130 HalfFloatBot, // Any float value
131 FloatTop, // No float value
132 FloatCon, // Floating point constant
133 FloatBot, // Any float value
134 DoubleTop, // No double value
135 DoubleCon, // Double precision constant
136 DoubleBot, // Any double value
137 Bottom, // Bottom of lattice
138 lastype // Bogus ending type (not in lattice)
139 };
140
141 // Signal values for offsets from a base pointer
142 enum OFFSET_SIGNALS {
143 OffsetTop = -2000000000, // undefined offset
144 OffsetBot = -2000000001 // any possible offset
145 };
146
147 class Offset {
148 private:
149 int _offset;
150
151 public:
152 explicit Offset(int offset) : _offset(offset) {}
153
154 const Offset meet(const Offset other) const;
155 const Offset dual() const;
156 const Offset add(intptr_t offset) const;
157 bool operator==(const Offset& other) const {
158 return _offset == other._offset;
159 }
160 bool operator!=(const Offset& other) const {
161 return _offset != other._offset;
162 }
163 int get() const { return _offset; }
164
165 void dump2(outputStream *st) const;
166
167 static const Offset top;
168 static const Offset bottom;
169 };
170
171 // Min and max WIDEN values.
172 enum WIDEN {
173 WidenMin = 0,
174 WidenMax = 3
175 };
176
177 private:
178 typedef struct {
179 TYPES dual_type;
180 BasicType basic_type;
181 const char* msg;
182 bool isa_oop;
183 uint ideal_reg;
184 relocInfo::relocType reloc;
185 } TypeInfo;
186
187 // Dictionary of types shared among compilations.
188 static Dict* _shared_type_dict;
189 static const TypeInfo _type_info[];
190
352 const TypeInstPtr *isa_instptr() const; // Returns null if not InstPtr
353 const TypeInstPtr *is_instptr() const; // Instance
354 const TypeAryPtr *isa_aryptr() const; // Returns null if not AryPtr
355 const TypeAryPtr *is_aryptr() const; // Array oop
356
357 template <typename TypeClass>
358 const TypeClass* cast() const;
359
360 const TypeMetadataPtr *isa_metadataptr() const; // Returns null if not oop ptr type
361 const TypeMetadataPtr *is_metadataptr() const; // Java-style GC'd pointer
362 const TypeKlassPtr *isa_klassptr() const; // Returns null if not KlassPtr
363 const TypeKlassPtr *is_klassptr() const; // assert if not KlassPtr
364 const TypeInstKlassPtr *isa_instklassptr() const; // Returns null if not IntKlassPtr
365 const TypeInstKlassPtr *is_instklassptr() const; // assert if not IntKlassPtr
366 const TypeAryKlassPtr *isa_aryklassptr() const; // Returns null if not AryKlassPtr
367 const TypeAryKlassPtr *is_aryklassptr() const; // assert if not AryKlassPtr
368
369 virtual bool is_finite() const; // Has a finite value
370 virtual bool is_nan() const; // Is not a number (NaN)
371
372 bool is_inlinetypeptr() const;
373 virtual ciInlineKlass* inline_klass() const;
374
375 // Returns this ptr type or the equivalent ptr type for this compressed pointer.
376 const TypePtr* make_ptr() const;
377
378 // Returns this oopptr type or the equivalent oopptr type for this compressed pointer.
379 // Asserts if the underlying type is not an oopptr or narrowoop.
380 const TypeOopPtr* make_oopptr() const;
381
382 // Returns this compressed pointer or the equivalent compressed version
383 // of this pointer type.
384 const TypeNarrowOop* make_narrowoop() const;
385
386 // Returns this compressed klass pointer or the equivalent
387 // compressed version of this pointer type.
388 const TypeNarrowKlass* make_narrowklass() const;
389
390 // Special test for register pressure heuristic
391 bool is_floatingpoint() const; // True if Float or Double base type
392
393 // Do you have memory, directly or through a tuple?
394 bool has_memory( ) const;
492 static const Type* get_typeflow_type(ciType* type);
493
494 static const Type* make_from_constant(ciConstant constant,
495 bool require_constant = false,
496 int stable_dimension = 0,
497 bool is_narrow = false,
498 bool is_autobox_cache = false);
499
500 static const Type* make_constant_from_field(ciInstance* holder,
501 int off,
502 bool is_unsigned_load,
503 BasicType loadbt);
504
505 static const Type* make_constant_from_field(ciField* field,
506 ciInstance* holder,
507 BasicType loadbt,
508 bool is_unsigned_load);
509
510 static const Type* make_constant_from_array_element(ciArray* array,
511 int off,
512 int field_offset,
513 int stable_dimension,
514 BasicType loadbt,
515 bool is_unsigned_load);
516
517 // Speculative type helper methods. See TypePtr.
518 virtual const TypePtr* speculative() const { return nullptr; }
519 virtual ciKlass* speculative_type() const { return nullptr; }
520 virtual ciKlass* speculative_type_not_null() const { return nullptr; }
521 virtual bool speculative_maybe_null() const { return true; }
522 virtual bool speculative_always_null() const { return true; }
523 virtual const Type* remove_speculative() const { return this; }
524 virtual const Type* cleanup_speculative() const { return this; }
525 virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const { return exact_kls != nullptr; }
526 virtual bool would_improve_ptr(ProfilePtrKind ptr_kind) const { return ptr_kind == ProfileAlwaysNull || ptr_kind == ProfileNeverNull; }
527 const Type* maybe_remove_speculative(bool include_speculative) const;
528
529 virtual bool maybe_null() const { return true; }
530 virtual bool is_known_instance() const { return false; }
531
532 private:
981 const Type ** const _fields; // Array of field types
982
983 public:
984 virtual bool eq( const Type *t ) const;
985 virtual uint hash() const; // Type specific hashing
986 virtual bool singleton(void) const; // TRUE if type is a singleton
987 virtual bool empty(void) const; // TRUE if type is vacuous
988
989 // Accessors:
990 uint cnt() const { return _cnt; }
991 const Type* field_at(uint i) const {
992 assert(i < _cnt, "oob");
993 return _fields[i];
994 }
995 void set_field_at(uint i, const Type* t) {
996 assert(i < _cnt, "oob");
997 _fields[i] = t;
998 }
999
1000 static const TypeTuple *make( uint cnt, const Type **fields );
1001 static const TypeTuple *make_range(ciSignature* sig, InterfaceHandling interface_handling = ignore_interfaces, bool ret_vt_fields = false);
1002 static const TypeTuple *make_domain(ciMethod* method, InterfaceHandling interface_handling, bool vt_fields_as_args = false);
1003
1004 // Subroutine call type with space allocated for argument types
1005 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
1006 static const Type **fields( uint arg_cnt );
1007
1008 virtual const Type *xmeet( const Type *t ) const;
1009 virtual const Type *xdual() const; // Compute dual right now.
1010 // Convenience common pre-built types.
1011 static const TypeTuple *IFBOTH;
1012 static const TypeTuple *IFFALSE;
1013 static const TypeTuple *IFTRUE;
1014 static const TypeTuple *IFNEITHER;
1015 static const TypeTuple *LOOPBODY;
1016 static const TypeTuple *MEMBAR;
1017 static const TypeTuple *STORECONDITIONAL;
1018 static const TypeTuple *START_I2C;
1019 static const TypeTuple *INT_PAIR;
1020 static const TypeTuple *LONG_PAIR;
1021 static const TypeTuple *INT_CC_PAIR;
1022 static const TypeTuple *LONG_CC_PAIR;
1023 #ifndef PRODUCT
1024 virtual void dump2( Dict &d, uint, outputStream *st ) const; // Specialized per-Type dumping
1025 #endif
1026 };
1027
1028 //------------------------------TypeAry----------------------------------------
1029 // Class of Array Types
1030 class TypeAry : public Type {
1031 TypeAry(const Type* elem, const TypeInt* size, bool stable, bool flat, bool not_flat, bool not_null_free, bool atomic) : Type(Array),
1032 _elem(elem), _size(size), _stable(stable), _flat(flat), _not_flat(not_flat), _not_null_free(not_null_free), _atomic(atomic) {}
1033 public:
1034 virtual bool eq( const Type *t ) const;
1035 virtual uint hash() const; // Type specific hashing
1036 virtual bool singleton(void) const; // TRUE if type is a singleton
1037 virtual bool empty(void) const; // TRUE if type is vacuous
1038
1039 private:
1040 const Type *_elem; // Element type of array
1041 const TypeInt *_size; // Elements in array
1042 const bool _stable; // Are elements @Stable?
1043
1044 // Inline type array properties
1045 const bool _flat; // Array is flat
1046 const bool _not_flat; // Array is never flat
1047 const bool _not_null_free; // Array is never null-free
1048 const bool _atomic; // Array is atomic
1049
1050 friend class TypeAryPtr;
1051
1052 public:
1053 static const TypeAry* make(const Type* elem, const TypeInt* size, bool stable,
1054 bool flat, bool not_flat, bool not_null_free, bool atomic);
1055
1056 virtual const Type *xmeet( const Type *t ) const;
1057 virtual const Type *xdual() const; // Compute dual right now.
1058 bool ary_must_be_exact() const; // true if arrays of such are never generic
1059 virtual const TypeAry* remove_speculative() const;
1060 virtual const Type* cleanup_speculative() const;
1061 #ifndef PRODUCT
1062 virtual void dump2( Dict &d, uint, outputStream *st ) const; // Specialized per-Type dumping
1063 #endif
1064 };
1065
1066 //------------------------------TypeVect---------------------------------------
1067 // Basic class of vector (mask) types.
1068 class TypeVect : public Type {
1069 const BasicType _elem_bt; // Vector's element type
1070 const uint _length; // Elements in vector (power of 2)
1071
1072 protected:
1073 TypeVect(TYPES t, BasicType elem_bt, uint length) : Type(t),
1074 _elem_bt(elem_bt), _length(length) {}
1193
1194 const Type* xmeet(const Type* t) const;
1195
1196 bool singleton(void) const;
1197 bool has_non_array_interface() const;
1198 };
1199
1200 //------------------------------TypePtr----------------------------------------
1201 // Class of machine Pointer Types: raw data, instances or arrays.
1202 // If the _base enum is AnyPtr, then this refers to all of the above.
1203 // Otherwise the _base will indicate which subset of pointers is affected,
1204 // and the class will be inherited from.
1205 class TypePtr : public Type {
1206 friend class TypeNarrowPtr;
1207 friend class Type;
1208 protected:
1209 static const TypeInterfaces* interfaces(ciKlass*& k, bool klass, bool interface, bool array, InterfaceHandling interface_handling);
1210
1211 public:
1212 enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
1213
1214 // Only applies to TypeInstPtr and TypeInstKlassPtr. Since the common super class is TypePtr, it is defined here.
1215 //
1216 // FlatInArray defines the following Boolean Lattice structure
1217 //
1218 // TopFlat
1219 // / \
1220 // Flat NotFlat
1221 // \ /
1222 // MaybeFlat
1223 //
1224 // with meet (see TypePtr::meet_flat_in_array()) and join (implemented over dual, see TypePtr::flat_in_array_dual)
1225 enum FlatInArray {
1226 TopFlat, // Dedicated top element and dual of MaybeFlat. Result when joining Flat and NotFlat.
1227 Flat, // An instance is always flat in an array.
1228 NotFlat, // An instance is never flat in an array.
1229 MaybeFlat, // We don't know whether an instance is flat in an array.
1230 Uninitialized // Used when the flat in array property was not computed, yet - should never actually end up in a type.
1231 };
1232 protected:
1233 TypePtr(TYPES t, PTR ptr, Offset offset,
1234 const TypePtr* speculative = nullptr,
1235 int inline_depth = InlineDepthBottom) :
1236 Type(t), _speculative(speculative), _inline_depth(inline_depth), _offset(offset),
1237 _ptr(ptr) {}
1238 static const PTR ptr_meet[lastPTR][lastPTR];
1239 static const PTR ptr_dual[lastPTR];
1240 static const char * const ptr_msg[lastPTR];
1241
1242 static const FlatInArray flat_in_array_dual[Uninitialized];
1243 static const char* const flat_in_array_msg[Uninitialized];
1244
1245 enum {
1246 InlineDepthBottom = INT_MAX,
1247 InlineDepthTop = -InlineDepthBottom
1248 };
1249
1250 // Extra type information profiling gave us. We propagate it the
1251 // same way the rest of the type info is propagated. If we want to
1252 // use it, then we have to emit a guard: this part of the type is
1253 // not something we know but something we speculate about the type.
1254 const TypePtr* _speculative;
1255 // For speculative types, we record at what inlining depth the
1256 // profiling point that provided the data is. We want to favor
1257 // profile data coming from outer scopes which are likely better for
1258 // the current compilation.
1259 int _inline_depth;
1260
1261 // utility methods to work on the speculative part of the type
1262 const TypePtr* dual_speculative() const;
1263 const TypePtr* xmeet_speculative(const TypePtr* other) const;
1264 bool eq_speculative(const TypePtr* other) const;
1273 #ifndef PRODUCT
1274 void dump_speculative(outputStream* st) const;
1275 void dump_inline_depth(outputStream* st) const;
1276 void dump_offset(outputStream* st) const;
1277 #endif
1278
1279 // TypeInstPtr (TypeAryPtr resp.) and TypeInstKlassPtr (TypeAryKlassPtr resp.) implement very similar meet logic.
1280 // The logic for meeting 2 instances (2 arrays resp.) is shared in the 2 utility methods below. However the logic for
1281 // the oop and klass versions can be slightly different and extra logic may have to be executed depending on what
1282 // exact case the meet falls into. The MeetResult struct is used by the utility methods to communicate what case was
1283 // encountered so the right logic specific to klasses or oops can be executed.,
1284 enum MeetResult {
1285 QUICK,
1286 UNLOADED,
1287 SUBTYPE,
1288 NOT_SUBTYPE,
1289 LCA
1290 };
1291 template<class T> static TypePtr::MeetResult meet_instptr(PTR& ptr, const TypeInterfaces*& interfaces, const T* this_type,
1292 const T* other_type, ciKlass*& res_klass, bool& res_xk);
1293 protected:
1294 static FlatInArray meet_flat_in_array(FlatInArray left, FlatInArray other);
1295
1296 template<class T> static MeetResult meet_aryptr(PTR& ptr, const Type*& elem, const T* this_ary, const T* other_ary,
1297 ciKlass*& res_klass, bool& res_xk, bool &res_flat, bool &res_not_flat, bool &res_not_null_free, bool &res_atomic);
1298
1299 template <class T1, class T2> static bool is_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1300 template <class T1, class T2> static bool is_same_java_type_as_helper_for_instance(const T1* this_one, const T2* other);
1301 template <class T1, class T2> static bool maybe_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1302 template <class T1, class T2> static bool is_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1303 template <class T1, class T2> static bool is_same_java_type_as_helper_for_array(const T1* this_one, const T2* other);
1304 template <class T1, class T2> static bool maybe_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1305 template <class T1, class T2> static bool is_meet_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_xk, bool other_xk);
1306 template <class T1, class T2> static bool is_meet_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_xk, bool other_xk);
1307 public:
1308 const Offset _offset; // Offset into oop, with TOP & BOT
1309 const PTR _ptr; // Pointer equivalence class
1310
1311 int offset() const { return _offset.get(); }
1312 PTR ptr() const { return _ptr; }
1313
1314 static const TypePtr* make(TYPES t, PTR ptr, Offset offset,
1315 const TypePtr* speculative = nullptr,
1316 int inline_depth = InlineDepthBottom);
1317
1318 // Return a 'ptr' version of this type
1319 virtual const TypePtr* cast_to_ptr_type(PTR ptr) const;
1320
1321 virtual intptr_t get_con() const;
1322
1323 Type::Offset xadd_offset(intptr_t offset) const;
1324 virtual const TypePtr* add_offset(intptr_t offset) const;
1325 virtual const TypePtr* with_offset(intptr_t offset) const;
1326 virtual int flat_offset() const { return offset(); }
1327 virtual bool eq(const Type *t) const;
1328 virtual uint hash() const; // Type specific hashing
1329
1330 virtual bool singleton(void) const; // TRUE if type is a singleton
1331 virtual bool empty(void) const; // TRUE if type is vacuous
1332 virtual const Type *xmeet( const Type *t ) const;
1333 virtual const Type *xmeet_helper( const Type *t ) const;
1334 Offset meet_offset(int offset) const;
1335 Offset dual_offset() const;
1336 virtual const Type *xdual() const; // Compute dual right now.
1337
1338 // meet, dual and join over pointer equivalence sets
1339 PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
1340 PTR dual_ptr() const { return ptr_dual[ptr()]; }
1341
1342 // This is textually confusing unless one recalls that
1343 // join(t) == dual()->meet(t->dual())->dual().
1344 PTR join_ptr( const PTR in_ptr ) const {
1345 return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
1346 }
1347
1348 // Speculative type helper methods.
1349 virtual const TypePtr* speculative() const { return _speculative; }
1350 int inline_depth() const { return _inline_depth; }
1351 virtual ciKlass* speculative_type() const;
1352 virtual ciKlass* speculative_type_not_null() const;
1353 virtual bool speculative_maybe_null() const;
1354 virtual bool speculative_always_null() const;
1355 virtual const TypePtr* remove_speculative() const;
1356 virtual const Type* cleanup_speculative() const;
1357 virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
1358 virtual bool would_improve_ptr(ProfilePtrKind maybe_null) const;
1359 virtual const TypePtr* with_inline_depth(int depth) const;
1360
1361 virtual bool maybe_null() const { return meet_ptr(Null) == ptr(); }
1362
1363 NOT_PRODUCT(static void dump_flat_in_array(FlatInArray flat_in_array, outputStream* st);)
1364
1365 static FlatInArray compute_flat_in_array(ciInstanceKlass* instance_klass, bool is_exact);
1366 FlatInArray compute_flat_in_array_if_unknown(ciInstanceKlass* instance_klass, bool is_exact,
1367 FlatInArray old_flat_in_array) const;
1368
1369 virtual bool can_be_inline_type() const { return false; }
1370 virtual bool is_flat_in_array() const { return flat_in_array() == Flat; }
1371 virtual bool is_not_flat_in_array() const { return flat_in_array() == NotFlat; }
1372 virtual FlatInArray flat_in_array() const { return NotFlat; }
1373 virtual bool is_flat() const { return false; }
1374 virtual bool is_not_flat() const { return false; }
1375 virtual bool is_null_free() const { return false; }
1376 virtual bool is_not_null_free() const { return false; }
1377 virtual bool is_atomic() const { return false; }
1378
1379 // Tests for relation to centerline of type lattice:
1380 static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
1381 static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
1382 // Convenience common pre-built types.
1383 static const TypePtr *NULL_PTR;
1384 static const TypePtr *NOTNULL;
1385 static const TypePtr *BOTTOM;
1386 #ifndef PRODUCT
1387 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1388 #endif
1389 };
1390
1391 //------------------------------TypeRawPtr-------------------------------------
1392 // Class of raw pointers, pointers to things other than Oops. Examples
1393 // include the stack pointer, top of heap, card-marking area, handles, etc.
1394 class TypeRawPtr : public TypePtr {
1395 protected:
1396 TypeRawPtr(PTR ptr, address bits) : TypePtr(RawPtr,ptr,Offset(0)), _bits(bits){}
1397 public:
1398 virtual bool eq( const Type *t ) const;
1399 virtual uint hash() const; // Type specific hashing
1400
1401 const address _bits; // Constant value, if applicable
1402
1403 static const TypeRawPtr *make( PTR ptr );
1404 static const TypeRawPtr *make( address bits );
1405
1406 // Return a 'ptr' version of this type
1407 virtual const TypeRawPtr* cast_to_ptr_type(PTR ptr) const;
1408
1409 virtual intptr_t get_con() const;
1410
1411 virtual const TypePtr* add_offset(intptr_t offset) const;
1412 virtual const TypeRawPtr* with_offset(intptr_t offset) const { ShouldNotReachHere(); return nullptr;}
1413
1414 virtual const Type *xmeet( const Type *t ) const;
1415 virtual const Type *xdual() const; // Compute dual right now.
1416 // Convenience common pre-built types.
1417 static const TypeRawPtr *BOTTOM;
1418 static const TypeRawPtr *NOTNULL;
1419 #ifndef PRODUCT
1420 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1421 #endif
1422 };
1423
1424 //------------------------------TypeOopPtr-------------------------------------
1425 // Some kind of oop (Java pointer), either instance or array.
1426 class TypeOopPtr : public TypePtr {
1427 friend class TypeAry;
1428 friend class TypePtr;
1429 friend class TypeInstPtr;
1430 friend class TypeAryPtr;
1431 protected:
1432 TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset offset, Offset field_offset, int instance_id,
1433 const TypePtr* speculative, int inline_depth);
1434 public:
1435 virtual bool eq( const Type *t ) const;
1436 virtual uint hash() const; // Type specific hashing
1437 virtual bool singleton(void) const; // TRUE if type is a singleton
1438 enum {
1439 InstanceTop = -1, // undefined instance
1440 InstanceBot = 0 // any possible instance
1441 };
1442 protected:
1443
1444 // Oop is null, unless this is a constant oop.
1445 ciObject* _const_oop; // Constant oop
1446 // If _klass is null, then so is _sig. This is an unloaded klass.
1447 ciKlass* _klass; // Klass object
1448
1449 const TypeInterfaces* _interfaces;
1450
1451 // Does the type exclude subclasses of the klass? (Inexact == polymorphic.)
1452 bool _klass_is_exact;
1453 bool _is_ptr_to_narrowoop;
1454 bool _is_ptr_to_narrowklass;
1455 bool _is_ptr_to_boxed_value;
1456 bool _is_ptr_to_strict_final_field;
1457
1458 // If not InstanceTop or InstanceBot, indicates that this is
1459 // a particular instance of this type which is distinct.
1460 // This is the node index of the allocation node creating this instance.
1461 int _instance_id;
1462
1463 static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact, InterfaceHandling interface_handling);
1464
1465 int dual_instance_id() const;
1466 int meet_instance_id(int uid) const;
1467
1468 const TypeInterfaces* meet_interfaces(const TypeOopPtr* other) const;
1469
1470 // Do not allow interface-vs.-noninterface joins to collapse to top.
1471 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1472
1473 virtual ciKlass* exact_klass_helper() const { return nullptr; }
1474 virtual ciKlass* klass() const { return _klass; }
1475
1476 #ifndef PRODUCT
1477 void dump_instance_id(outputStream* st) const;
1478 #endif // PRODUCT
1479
1480 public:
1481
1482 bool is_java_subtype_of(const TypeOopPtr* other) const {
1483 return is_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1484 }
1485
1486 bool is_same_java_type_as(const TypePtr* other) const {
1487 return is_same_java_type_as_helper(other->is_oopptr());
1488 }
1489
1490 virtual bool is_same_java_type_as_helper(const TypeOopPtr* other) const {
1491 ShouldNotReachHere(); return false;
1492 }
1493
1494 bool maybe_java_subtype_of(const TypeOopPtr* other) const {
1505 return make_from_klass_common(klass, true, false, interface_handling);
1506 }
1507 // Same as before, but will produce an exact type, even if
1508 // the klass is not final, as long as it has exactly one implementation.
1509 static const TypeOopPtr* make_from_klass_unique(ciKlass* klass, InterfaceHandling interface_handling= ignore_interfaces) {
1510 return make_from_klass_common(klass, true, true, interface_handling);
1511 }
1512 // Same as before, but does not respects UseUniqueSubclasses.
1513 // Use this only for creating array element types.
1514 static const TypeOopPtr* make_from_klass_raw(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) {
1515 return make_from_klass_common(klass, false, false, interface_handling);
1516 }
1517 // Creates a singleton type given an object.
1518 // If the object cannot be rendered as a constant,
1519 // may return a non-singleton type.
1520 // If require_constant, produce a null if a singleton is not possible.
1521 static const TypeOopPtr* make_from_constant(ciObject* o,
1522 bool require_constant = false);
1523
1524 // Make a generic (unclassed) pointer to an oop.
1525 static const TypeOopPtr* make(PTR ptr, Offset offset, int instance_id,
1526 const TypePtr* speculative = nullptr,
1527 int inline_depth = InlineDepthBottom);
1528
1529 ciObject* const_oop() const { return _const_oop; }
1530 // Exact klass, possibly an interface or an array of interface
1531 ciKlass* exact_klass(bool maybe_null = false) const { assert(klass_is_exact(), ""); ciKlass* k = exact_klass_helper(); assert(k != nullptr || maybe_null, ""); return k; }
1532 ciKlass* unloaded_klass() const { assert(!is_loaded(), "only for unloaded types"); return klass(); }
1533
1534 virtual bool is_loaded() const { return klass()->is_loaded(); }
1535 virtual bool klass_is_exact() const { return _klass_is_exact; }
1536
1537 // Returns true if this pointer points at memory which contains a
1538 // compressed oop references.
1539 bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
1540 bool is_ptr_to_narrowklass_nv() const { return _is_ptr_to_narrowklass; }
1541 bool is_ptr_to_boxed_value() const { return _is_ptr_to_boxed_value; }
1542 bool is_ptr_to_strict_final_field() const { return _is_ptr_to_strict_final_field; }
1543 bool is_known_instance() const { return _instance_id > 0; }
1544 int instance_id() const { return _instance_id; }
1545 bool is_known_instance_field() const { return is_known_instance() && _offset.get() >= 0; }
1546
1547 virtual bool can_be_inline_type() const { return (_klass == nullptr || _klass->can_be_inline_klass(_klass_is_exact)); }
1548 virtual bool can_be_inline_array() const { ShouldNotReachHere(); return false; }
1549
1550 virtual intptr_t get_con() const;
1551
1552 virtual const TypeOopPtr* cast_to_ptr_type(PTR ptr) const;
1553
1554 virtual const TypeOopPtr* cast_to_exactness(bool klass_is_exact) const;
1555
1556 virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1557
1558 // corresponding pointer to klass, for a given instance
1559 virtual const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1560
1561 virtual const TypeOopPtr* with_offset(intptr_t offset) const;
1562 virtual const TypePtr* add_offset(intptr_t offset) const;
1563
1564 // Speculative type helper methods.
1565 virtual const TypeOopPtr* remove_speculative() const;
1566 virtual const Type* cleanup_speculative() const;
1567 virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
1568 virtual const TypePtr* with_inline_depth(int depth) const;
1591 return _interfaces;
1592 };
1593
1594 const TypeOopPtr* is_reference_type(const Type* other) const {
1595 return other->isa_oopptr();
1596 }
1597
1598 const TypeAryPtr* is_array_type(const TypeOopPtr* other) const {
1599 return other->isa_aryptr();
1600 }
1601
1602 const TypeInstPtr* is_instance_type(const TypeOopPtr* other) const {
1603 return other->isa_instptr();
1604 }
1605 };
1606
1607 //------------------------------TypeInstPtr------------------------------------
1608 // Class of Java object pointers, pointing either to non-array Java instances
1609 // or to a Klass* (including array klasses).
1610 class TypeInstPtr : public TypeOopPtr {
1611 // Can this instance be in a flat array?
1612 FlatInArray _flat_in_array;
1613
1614 TypeInstPtr(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset offset,
1615 FlatInArray flat_in_array, int instance_id, const TypePtr* speculative,
1616 int inline_depth);
1617 virtual bool eq( const Type *t ) const;
1618 virtual uint hash() const; // Type specific hashing
1619 ciKlass* exact_klass_helper() const;
1620
1621 public:
1622
1623 // Instance klass, ignoring any interface
1624 ciInstanceKlass* instance_klass() const {
1625 assert(!(klass()->is_loaded() && klass()->is_interface()), "");
1626 return klass()->as_instance_klass();
1627 }
1628
1629 bool is_same_java_type_as_helper(const TypeOopPtr* other) const;
1630 bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1631 bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1632
1633 // Make a pointer to a constant oop.
1634 static const TypeInstPtr *make(ciObject* o) {
1635 ciKlass* k = o->klass();
1636 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1637 return make(TypePtr::Constant, k, interfaces, true, o, Offset(0));
1638 }
1639 // Make a pointer to a constant oop with offset.
1640 static const TypeInstPtr *make(ciObject* o, Offset offset) {
1641 ciKlass* k = o->klass();
1642 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1643 return make(TypePtr::Constant, k, interfaces, true, o, offset);
1644 }
1645
1646 // Make a pointer to some value of type klass.
1647 static const TypeInstPtr *make(PTR ptr, ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) {
1648 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
1649 return make(ptr, klass, interfaces, false, nullptr, Offset(0));
1650 }
1651
1652 // Make a pointer to some non-polymorphic value of exactly type klass.
1653 static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
1654 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, false, false, ignore_interfaces);
1655 return make(ptr, klass, interfaces, true, nullptr, Offset(0));
1656 }
1657
1658 // Make a pointer to some value of type klass with offset.
1659 static const TypeInstPtr *make(PTR ptr, ciKlass* klass, Offset offset) {
1660 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, false, false, ignore_interfaces);
1661 return make(ptr, klass, interfaces, false, nullptr, offset);
1662 }
1663
1664 // Make a pointer to an oop.
1665 static const TypeInstPtr* make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset offset,
1666 FlatInArray flat_in_array = Uninitialized,
1667 int instance_id = InstanceBot,
1668 const TypePtr* speculative = nullptr,
1669 int inline_depth = InlineDepthBottom);
1670
1671 static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, Offset offset, int instance_id = InstanceBot,
1672 FlatInArray flat_in_array = Uninitialized) {
1673 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1674 return make(ptr, k, interfaces, xk, o, offset, flat_in_array, instance_id);
1675 }
1676
1677 /** Create constant type for a constant boxed value */
1678 const Type* get_const_boxed_value() const;
1679
1680 // If this is a java.lang.Class constant, return the type for it or null.
1681 // Pass to Type::get_const_type to turn it to a type, which will usually
1682 // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
1683 ciType* java_mirror_type() const;
1684
1685 virtual const TypeInstPtr* cast_to_ptr_type(PTR ptr) const;
1686
1687 virtual const TypeInstPtr* cast_to_exactness(bool klass_is_exact) const;
1688
1689 virtual const TypeInstPtr* cast_to_instance_id(int instance_id) const;
1690
1691 virtual bool empty() const;
1692 virtual const TypePtr* add_offset(intptr_t offset) const;
1693 virtual const TypeInstPtr* with_offset(intptr_t offset) const;
1694
1695 // Speculative type helper methods.
1696 virtual const TypeInstPtr* remove_speculative() const;
1697 const TypeInstPtr* with_speculative(const TypePtr* speculative) const;
1698 virtual const TypePtr* with_inline_depth(int depth) const;
1699 virtual const TypePtr* with_instance_id(int instance_id) const;
1700
1701 virtual const TypeInstPtr* cast_to_flat_in_array() const;
1702 virtual const TypeInstPtr* cast_to_maybe_flat_in_array() const;
1703 virtual FlatInArray flat_in_array() const { return _flat_in_array; }
1704
1705 FlatInArray dual_flat_in_array() const {
1706 return flat_in_array_dual[_flat_in_array];
1707 }
1708
1709 // the core of the computation of the meet of 2 types
1710 virtual const Type *xmeet_helper(const Type *t) const;
1711 virtual const TypeInstPtr *xmeet_unloaded(const TypeInstPtr *tinst, const TypeInterfaces* interfaces) const;
1712 virtual const Type *xdual() const; // Compute dual right now.
1713
1714 const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1715
1716 virtual bool can_be_inline_array() const;
1717
1718 // Convenience common pre-built types.
1719 static const TypeInstPtr *NOTNULL;
1720 static const TypeInstPtr *BOTTOM;
1721 static const TypeInstPtr *MIRROR;
1722 static const TypeInstPtr *MARK;
1723 static const TypeInstPtr *KLASS;
1724 #ifndef PRODUCT
1725 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1726 #endif
1727
1728 private:
1729 virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const;
1730
1731 virtual bool is_meet_same_type_as(const TypePtr* other) const {
1732 return _klass->equals(other->is_instptr()->_klass) && _interfaces->eq(other->is_instptr()->_interfaces);
1733 }
1734
1735 };
1736
1737 //------------------------------TypeAryPtr-------------------------------------
1738 // Class of Java array pointers
1739 class TypeAryPtr : public TypeOopPtr {
1740 friend class Type;
1741 friend class TypePtr;
1742 friend class TypeInstPtr;
1743 friend class TypeInterfaces;
1744
1745 TypeAryPtr(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk,
1746 Offset offset, Offset field_offset, int instance_id, bool is_autobox_cache,
1747 const TypePtr* speculative, int inline_depth)
1748 : TypeOopPtr(AryPtr, ptr, k, _array_interfaces, xk, o, offset, field_offset, instance_id, speculative, inline_depth),
1749 _ary(ary),
1750 _is_autobox_cache(is_autobox_cache),
1751 _field_offset(field_offset)
1752 {
1753 int dummy;
1754 bool top_or_bottom = (base_element_type(dummy) == Type::TOP || base_element_type(dummy) == Type::BOTTOM);
1755
1756 if (UseCompressedOops && (elem()->make_oopptr() != nullptr && !top_or_bottom) &&
1757 _offset.get() != 0 && _offset.get() != arrayOopDesc::length_offset_in_bytes() &&
1758 _offset.get() != arrayOopDesc::klass_offset_in_bytes()) {
1759 _is_ptr_to_narrowoop = true;
1760 }
1761
1762 }
1763 virtual bool eq( const Type *t ) const;
1764 virtual uint hash() const; // Type specific hashing
1765 const TypeAry *_ary; // Array we point into
1766 const bool _is_autobox_cache;
1767 // For flat inline type arrays, each field of the inline type in
1768 // the array has its own memory slice so we need to keep track of
1769 // which field is accessed
1770 const Offset _field_offset;
1771 Offset meet_field_offset(const Type::Offset offset) const;
1772 Offset dual_field_offset() const;
1773
1774 ciKlass* compute_klass() const;
1775
1776 // A pointer to delay allocation to Type::Initialize_shared()
1777
1778 static const TypeInterfaces* _array_interfaces;
1779 ciKlass* exact_klass_helper() const;
1780 // Only guaranteed non null for array of basic types
1781 ciKlass* klass() const;
1782
1783 public:
1784
1785 bool is_same_java_type_as_helper(const TypeOopPtr* other) const;
1786 bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1787 bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1788
1789 // returns base element type, an instance klass (and not interface) for object arrays
1790 const Type* base_element_type(int& dims) const;
1791
1792 // Accessors
1793 bool is_loaded() const { return (_ary->_elem->make_oopptr() ? _ary->_elem->make_oopptr()->is_loaded() : true); }
1794
1795 const TypeAry* ary() const { return _ary; }
1796 const Type* elem() const { return _ary->_elem; }
1797 const TypeInt* size() const { return _ary->_size; }
1798 bool is_stable() const { return _ary->_stable; }
1799
1800 // Inline type array properties
1801 bool is_flat() const { return _ary->_flat; }
1802 bool is_not_flat() const { return _ary->_not_flat; }
1803 bool is_null_free() const { return _ary->_elem->make_ptr() != nullptr && (_ary->_elem->make_ptr()->ptr() == NotNull || _ary->_elem->make_ptr()->ptr() == AnyNull); }
1804 bool is_not_null_free() const { return _ary->_not_null_free; }
1805 bool is_atomic() const { return _ary->_atomic; }
1806
1807 bool is_autobox_cache() const { return _is_autobox_cache; }
1808
1809 static const TypeAryPtr* make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, Offset offset,
1810 Offset field_offset = Offset::bottom,
1811 int instance_id = InstanceBot,
1812 const TypePtr* speculative = nullptr,
1813 int inline_depth = InlineDepthBottom);
1814 // Constant pointer to array
1815 static const TypeAryPtr* make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, Offset offset,
1816 Offset field_offset = Offset::bottom,
1817 int instance_id = InstanceBot,
1818 const TypePtr* speculative = nullptr,
1819 int inline_depth = InlineDepthBottom,
1820 bool is_autobox_cache = false);
1821
1822 // Return a 'ptr' version of this type
1823 virtual const TypeAryPtr* cast_to_ptr_type(PTR ptr) const;
1824
1825 virtual const TypeAryPtr* cast_to_exactness(bool klass_is_exact) const;
1826
1827 virtual const TypeAryPtr* cast_to_instance_id(int instance_id) const;
1828
1829 virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
1830 virtual const TypeInt* narrow_size_type(const TypeInt* size) const;
1831
1832 virtual bool empty(void) const; // TRUE if type is vacuous
1833 virtual const TypePtr *add_offset( intptr_t offset ) const;
1834 virtual const TypeAryPtr *with_offset( intptr_t offset ) const;
1835 const TypeAryPtr* with_ary(const TypeAry* ary) const;
1836
1837 // Speculative type helper methods.
1838 virtual const TypeAryPtr* remove_speculative() const;
1839 virtual const Type* cleanup_speculative() const;
1840 virtual const TypePtr* with_inline_depth(int depth) const;
1841 virtual const TypePtr* with_instance_id(int instance_id) const;
1842
1843 // the core of the computation of the meet of 2 types
1844 virtual const Type *xmeet_helper(const Type *t) const;
1845 virtual const Type *xdual() const; // Compute dual right now.
1846
1847 // Inline type array properties
1848 const TypeAryPtr* cast_to_flat(bool flat) const;
1849 const TypeAryPtr* cast_to_not_flat(bool not_flat = true) const;
1850 const TypeAryPtr* cast_to_null_free(bool null_free) const;
1851 const TypeAryPtr* cast_to_not_null_free(bool not_null_free = true) const;
1852 const TypeAryPtr* update_properties(const TypeAryPtr* new_type) const;
1853 jint flat_layout_helper() const;
1854 int flat_elem_size() const;
1855 int flat_log_elem_size() const;
1856
1857 const TypeAryPtr* cast_to_stable(bool stable, int stable_dimension = 1) const;
1858 int stable_dimension() const;
1859
1860 const TypeAryPtr* cast_to_autobox_cache() const;
1861
1862 static jint max_array_length(BasicType etype);
1863
1864 int flat_offset() const;
1865 const Offset field_offset() const { return _field_offset; }
1866 const TypeAryPtr* with_field_offset(int offset) const;
1867 const TypePtr* add_field_offset_and_offset(intptr_t offset) const;
1868
1869 virtual bool can_be_inline_type() const { return false; }
1870 virtual const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1871
1872 virtual bool can_be_inline_array() const;
1873
1874 // Convenience common pre-built types.
1875 static const TypeAryPtr* BOTTOM;
1876 static const TypeAryPtr *RANGE;
1877 static const TypeAryPtr *OOPS;
1878 static const TypeAryPtr *NARROWOOPS;
1879 static const TypeAryPtr *BYTES;
1880 static const TypeAryPtr *SHORTS;
1881 static const TypeAryPtr *CHARS;
1882 static const TypeAryPtr *INTS;
1883 static const TypeAryPtr *LONGS;
1884 static const TypeAryPtr *FLOATS;
1885 static const TypeAryPtr *DOUBLES;
1886 static const TypeAryPtr *INLINES;
1887 // selects one of the above:
1888 static const TypeAryPtr *get_array_body_type(BasicType elem) {
1889 assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != nullptr, "bad elem type");
1890 return _array_body_type[elem];
1891 }
1892 static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
1893 // sharpen the type of an int which is used as an array size
1894 #ifndef PRODUCT
1895 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1896 #endif
1897 private:
1898 virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const;
1899 };
1900
1901 //------------------------------TypeMetadataPtr-------------------------------------
1902 // Some kind of metadata, either Method*, MethodData* or CPCacheOop
1903 class TypeMetadataPtr : public TypePtr {
1904 protected:
1905 TypeMetadataPtr(PTR ptr, ciMetadata* metadata, Offset offset);
1906 // Do not allow interface-vs.-noninterface joins to collapse to top.
1907 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1908 public:
1909 virtual bool eq( const Type *t ) const;
1910 virtual uint hash() const; // Type specific hashing
1911 virtual bool singleton(void) const; // TRUE if type is a singleton
1912
1913 private:
1914 ciMetadata* _metadata;
1915
1916 public:
1917 static const TypeMetadataPtr* make(PTR ptr, ciMetadata* m, Offset offset);
1918
1919 static const TypeMetadataPtr* make(ciMethod* m);
1920 static const TypeMetadataPtr* make(ciMethodData* m);
1921
1922 ciMetadata* metadata() const { return _metadata; }
1923
1924 virtual const TypeMetadataPtr* cast_to_ptr_type(PTR ptr) const;
1925
1926 virtual const TypePtr *add_offset( intptr_t offset ) const;
1927
1928 virtual const Type *xmeet( const Type *t ) const;
1929 virtual const Type *xdual() const; // Compute dual right now.
1930
1931 virtual intptr_t get_con() const;
1932
1933 // Convenience common pre-built types.
1934 static const TypeMetadataPtr *BOTTOM;
1935
1936 #ifndef PRODUCT
1937 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1938 #endif
1939 };
1940
1941 //------------------------------TypeKlassPtr-----------------------------------
1942 // Class of Java Klass pointers
1943 class TypeKlassPtr : public TypePtr {
1944 friend class TypeInstKlassPtr;
1945 friend class TypeAryKlassPtr;
1946 friend class TypePtr;
1947 protected:
1948 TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, Offset offset);
1949
1950 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1951
1952 public:
1953 virtual bool eq( const Type *t ) const;
1954 virtual uint hash() const;
1955 virtual bool singleton(void) const; // TRUE if type is a singleton
1956
1957 protected:
1958
1959 ciKlass* _klass;
1960 const TypeInterfaces* _interfaces;
1961 const TypeInterfaces* meet_interfaces(const TypeKlassPtr* other) const;
1962 virtual bool must_be_exact() const { ShouldNotReachHere(); return false; }
1963 virtual ciKlass* exact_klass_helper() const;
1964 virtual ciKlass* klass() const { return _klass; }
1965
1966 public:
1967
1968 bool is_java_subtype_of(const TypeKlassPtr* other) const {
1969 return is_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1970 }
1971 bool is_same_java_type_as(const TypePtr* other) const {
1972 return is_same_java_type_as_helper(other->is_klassptr());
1973 }
1974
1975 bool maybe_java_subtype_of(const TypeKlassPtr* other) const {
1976 return maybe_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1977 }
1978 virtual bool is_same_java_type_as_helper(const TypeKlassPtr* other) const { ShouldNotReachHere(); return false; }
1979 virtual bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1980 virtual bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1981
1982 // Exact klass, possibly an interface or an array of interface
1983 ciKlass* exact_klass(bool maybe_null = false) const { assert(klass_is_exact(), ""); ciKlass* k = exact_klass_helper(); assert(k != nullptr || maybe_null, ""); return k; }
1984 virtual bool klass_is_exact() const { return _ptr == Constant; }
1985
1986 static const TypeKlassPtr* make(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces);
1987
1988 virtual bool is_loaded() const { return _klass->is_loaded(); }
1989
1990 virtual const TypeKlassPtr* cast_to_ptr_type(PTR ptr) const { ShouldNotReachHere(); return nullptr; }
1991
1992 virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const { ShouldNotReachHere(); return nullptr; }
1993
1994 // corresponding pointer to instance, for a given class
1995 virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const { ShouldNotReachHere(); return nullptr; }
1996
1997 virtual const TypePtr *add_offset( intptr_t offset ) const { ShouldNotReachHere(); return nullptr; }
1998 virtual const Type *xmeet( const Type *t ) const { ShouldNotReachHere(); return nullptr; }
1999 virtual const Type *xdual() const { ShouldNotReachHere(); return nullptr; }
2000
2001 virtual intptr_t get_con() const;
2002
2003 virtual const TypeKlassPtr* with_offset(intptr_t offset) const { ShouldNotReachHere(); return nullptr; }
2004
2005 virtual bool can_be_inline_array() const { ShouldNotReachHere(); return false; }
2006
2007 virtual const TypeKlassPtr* try_improve() const { return this; }
2008
2009 private:
2010 virtual bool is_meet_subtype_of(const TypePtr* other) const {
2011 return is_meet_subtype_of_helper(other->is_klassptr(), klass_is_exact(), other->is_klassptr()->klass_is_exact());
2012 }
2013
2014 virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const {
2015 ShouldNotReachHere(); return false;
2016 }
2017
2018 virtual const TypeInterfaces* interfaces() const {
2019 return _interfaces;
2020 };
2021
2022 const TypeKlassPtr* is_reference_type(const Type* other) const {
2023 return other->isa_klassptr();
2024 }
2025
2026 const TypeAryKlassPtr* is_array_type(const TypeKlassPtr* other) const {
2027 return other->isa_aryklassptr();
2028 }
2029
2030 const TypeInstKlassPtr* is_instance_type(const TypeKlassPtr* other) const {
2031 return other->isa_instklassptr();
2032 }
2033 };
2034
2035 // Instance klass pointer, mirrors TypeInstPtr
2036 class TypeInstKlassPtr : public TypeKlassPtr {
2037 // Can an instance of this class be in a flat array?
2038 const FlatInArray _flat_in_array;
2039
2040 TypeInstKlassPtr(PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, Offset offset, FlatInArray flat_in_array)
2041 : TypeKlassPtr(InstKlassPtr, ptr, klass, interfaces, offset), _flat_in_array(flat_in_array) {
2042 assert(flat_in_array != Uninitialized, "must be set now");
2043 assert(klass->is_instance_klass() && (!klass->is_loaded() || !klass->is_interface()), "");
2044 }
2045
2046 virtual bool must_be_exact() const;
2047
2048 public:
2049 // Instance klass ignoring any interface
2050 ciInstanceKlass* instance_klass() const {
2051 assert(!klass()->is_interface(), "");
2052 return klass()->as_instance_klass();
2053 }
2054
2055 bool might_be_an_array() const;
2056
2057 bool is_same_java_type_as_helper(const TypeKlassPtr* other) const;
2058 bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
2059 bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
2060
2061 virtual bool can_be_inline_type() const { return (_klass == nullptr || _klass->can_be_inline_klass(klass_is_exact())); }
2062
2063 static const TypeInstKlassPtr *make(ciKlass* k, InterfaceHandling interface_handling) {
2064 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, true, false, interface_handling);
2065 return make(TypePtr::Constant, k, interfaces, Offset(0));
2066 }
2067
2068 static const TypeInstKlassPtr* make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, Offset offset,
2069 FlatInArray flat_in_array = Uninitialized);
2070
2071 static const TypeInstKlassPtr* make(PTR ptr, ciKlass* k, Offset offset, FlatInArray flat_in_array = Uninitialized) {
2072 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
2073 return make(ptr, k, interfaces, offset, flat_in_array);
2074 }
2075
2076 virtual const TypeInstKlassPtr* cast_to_ptr_type(PTR ptr) const;
2077
2078 virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const;
2079
2080 // corresponding pointer to instance, for a given class
2081 virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const;
2082 virtual uint hash() const;
2083 virtual bool eq(const Type *t) const;
2084
2085
2086 virtual bool empty() const;
2087 virtual const TypePtr *add_offset( intptr_t offset ) const;
2088 virtual const Type *xmeet( const Type *t ) const;
2089 virtual const Type *xdual() const;
2090 virtual const TypeInstKlassPtr* with_offset(intptr_t offset) const;
2091
2092 virtual const TypeKlassPtr* try_improve() const;
2093
2094 virtual FlatInArray flat_in_array() const { return _flat_in_array; }
2095
2096 FlatInArray dual_flat_in_array() const {
2097 return flat_in_array_dual[_flat_in_array];
2098 }
2099
2100 virtual bool can_be_inline_array() const;
2101
2102 // Convenience common pre-built types.
2103 static const TypeInstKlassPtr* OBJECT; // Not-null object klass or below
2104 static const TypeInstKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
2105
2106 #ifndef PRODUCT
2107 virtual void dump2(Dict& d, uint depth, outputStream* st) const;
2108 #endif // PRODUCT
2109
2110 private:
2111 virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const;
2112 };
2113
2114 // Array klass pointer, mirrors TypeAryPtr
2115 class TypeAryKlassPtr : public TypeKlassPtr {
2116 friend class TypeInstKlassPtr;
2117 friend class Type;
2118 friend class TypePtr;
2119
2120 const Type *_elem;
2121 const bool _not_flat; // Array is never flat
2122 const bool _not_null_free; // Array is never null-free
2123 const bool _flat;
2124 const bool _null_free;
2125 const bool _atomic;
2126 const bool _refined_type;
2127
2128 static const TypeInterfaces* _array_interfaces;
2129 TypeAryKlassPtr(PTR ptr, const Type *elem, ciKlass* klass, Offset offset, bool not_flat, int not_null_free, bool flat, bool null_free, bool atomic, bool refined_type)
2130 : TypeKlassPtr(AryKlassPtr, ptr, klass, _array_interfaces, offset), _elem(elem), _not_flat(not_flat), _not_null_free(not_null_free), _flat(flat), _null_free(null_free), _atomic(atomic), _refined_type(refined_type) {
2131 assert(klass == nullptr || klass->is_type_array_klass() || klass->is_flat_array_klass() || !klass->as_obj_array_klass()->base_element_klass()->is_interface(), "");
2132 }
2133
2134 virtual ciKlass* exact_klass_helper() const;
2135 // Only guaranteed non null for array of basic types
2136 virtual ciKlass* klass() const;
2137
2138 virtual bool must_be_exact() const;
2139
2140 bool dual_flat() const {
2141 return _flat;
2142 }
2143
2144 bool meet_flat(bool other) const {
2145 return _flat && other;
2146 }
2147
2148 bool dual_null_free() const {
2149 return _null_free;
2150 }
2151
2152 bool meet_null_free(bool other) const {
2153 return _null_free && other;
2154 }
2155
2156 bool dual_atomic() const {
2157 return _atomic;
2158 }
2159
2160 bool meet_atomic(bool other) const {
2161 return _atomic && other;
2162 }
2163
2164 public:
2165
2166 // returns base element type, an instance klass (and not interface) for object arrays
2167 const Type* base_element_type(int& dims) const;
2168
2169 static const TypeAryKlassPtr* make(PTR ptr, ciKlass* k, Offset offset, InterfaceHandling interface_handling, bool not_flat, bool not_null_free, bool flat, bool null_free, bool atomic, bool refined_type);
2170
2171 bool is_same_java_type_as_helper(const TypeKlassPtr* other) const;
2172 bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
2173 bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
2174
2175 bool is_loaded() const { return (_elem->isa_klassptr() ? _elem->is_klassptr()->is_loaded() : true); }
2176
2177 static const TypeAryKlassPtr* make(PTR ptr, const Type* elem, ciKlass* k, Offset offset, bool not_flat, bool not_null_free, bool flat, bool null_free, bool atomic, bool refined_type);
2178 static const TypeAryKlassPtr* make(ciKlass* klass, InterfaceHandling interface_handling);
2179
2180 const TypeAryKlassPtr* cast_to_non_refined() const;
2181 const TypeAryKlassPtr* cast_to_refined_array_klass_ptr(bool refined = true) const;
2182
2183 const Type *elem() const { return _elem; }
2184
2185 virtual bool eq(const Type *t) const;
2186 virtual uint hash() const; // Type specific hashing
2187
2188 virtual const TypeAryKlassPtr* cast_to_ptr_type(PTR ptr) const;
2189
2190 virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const;
2191
2192 // corresponding pointer to instance, for a given class
2193 virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const;
2194
2195 virtual const TypePtr *add_offset( intptr_t offset ) const;
2196 virtual const Type *xmeet( const Type *t ) const;
2197 virtual const Type *xdual() const; // Compute dual right now.
2198
2199 virtual const TypeAryKlassPtr* with_offset(intptr_t offset) const;
2200
2201 virtual bool empty(void) const {
2202 return TypeKlassPtr::empty() || _elem->empty();
2203 }
2204
2205 bool is_flat() const { return _flat; }
2206 bool is_not_flat() const { return _not_flat; }
2207 bool is_null_free() const { return _null_free; }
2208 bool is_not_null_free() const { return _not_null_free; }
2209 bool is_atomic() const { return _atomic; }
2210 bool is_refined_type() const { return _refined_type; }
2211 virtual bool can_be_inline_array() const;
2212
2213 #ifndef PRODUCT
2214 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
2215 #endif
2216 private:
2217 virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const;
2218 };
2219
2220 class TypeNarrowPtr : public Type {
2221 protected:
2222 const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR
2223
2224 TypeNarrowPtr(TYPES t, const TypePtr* ptrtype): Type(t),
2225 _ptrtype(ptrtype) {
2226 assert(ptrtype->offset() == 0 ||
2227 ptrtype->offset() == OffsetBot ||
2228 ptrtype->offset() == OffsetTop, "no real offsets");
2229 }
2230
2231 virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const = 0;
2232 virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const = 0;
2328 }
2329
2330 virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
2331 return (const TypeNarrowPtr*)((new TypeNarrowKlass(t))->hashcons());
2332 }
2333
2334 public:
2335 static const TypeNarrowKlass *make( const TypePtr* type);
2336
2337 // static const TypeNarrowKlass *BOTTOM;
2338 static const TypeNarrowKlass *NULL_PTR;
2339
2340 #ifndef PRODUCT
2341 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
2342 #endif
2343 };
2344
2345 //------------------------------TypeFunc---------------------------------------
2346 // Class of Array Types
2347 class TypeFunc : public Type {
2348 TypeFunc(const TypeTuple *domain_sig, const TypeTuple *domain_cc, const TypeTuple *range_sig, const TypeTuple *range_cc)
2349 : Type(Function), _domain_sig(domain_sig), _domain_cc(domain_cc), _range_sig(range_sig), _range_cc(range_cc) {}
2350 virtual bool eq( const Type *t ) const;
2351 virtual uint hash() const; // Type specific hashing
2352 virtual bool singleton(void) const; // TRUE if type is a singleton
2353 virtual bool empty(void) const; // TRUE if type is vacuous
2354
2355 // Domains of inputs: inline type arguments are not passed by
2356 // reference, instead each field of the inline type is passed as an
2357 // argument. We maintain 2 views of the argument list here: one
2358 // based on the signature (with an inline type argument as a single
2359 // slot), one based on the actual calling convention (with a value
2360 // type argument as a list of its fields).
2361 const TypeTuple* const _domain_sig;
2362 const TypeTuple* const _domain_cc;
2363 // Range of results. Similar to domains: an inline type result can be
2364 // returned in registers in which case range_cc lists all fields and
2365 // is the actual calling convention.
2366 const TypeTuple* const _range_sig;
2367 const TypeTuple* const _range_cc;
2368
2369 public:
2370 // Constants are shared among ADLC and VM
2371 enum { Control = AdlcVMDeps::Control,
2372 I_O = AdlcVMDeps::I_O,
2373 Memory = AdlcVMDeps::Memory,
2374 FramePtr = AdlcVMDeps::FramePtr,
2375 ReturnAdr = AdlcVMDeps::ReturnAdr,
2376 Parms = AdlcVMDeps::Parms
2377 };
2378
2379
2380 // Accessors:
2381 const TypeTuple* domain_sig() const { return _domain_sig; }
2382 const TypeTuple* domain_cc() const { return _domain_cc; }
2383 const TypeTuple* range_sig() const { return _range_sig; }
2384 const TypeTuple* range_cc() const { return _range_cc; }
2385
2386 static const TypeFunc* make(ciMethod* method, bool is_osr_compilation = false);
2387 static const TypeFunc *make(const TypeTuple* domain_sig, const TypeTuple* domain_cc,
2388 const TypeTuple* range_sig, const TypeTuple* range_cc);
2389 static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
2390
2391 virtual const Type *xmeet( const Type *t ) const;
2392 virtual const Type *xdual() const; // Compute dual right now.
2393
2394 BasicType return_type() const;
2395
2396 bool returns_inline_type_as_fields() const { return range_sig() != range_cc(); }
2397
2398 #ifndef PRODUCT
2399 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
2400 #endif
2401 // Convenience common pre-built types.
2402 };
2403
2404 //------------------------------accessors--------------------------------------
2405 inline bool Type::is_ptr_to_narrowoop() const {
2406 #ifdef _LP64
2407 return (isa_oopptr() != nullptr && is_oopptr()->is_ptr_to_narrowoop_nv());
2408 #else
2409 return false;
2410 #endif
2411 }
2412
2413 inline bool Type::is_ptr_to_narrowklass() const {
2414 #ifdef _LP64
2415 return (isa_oopptr() != nullptr && is_oopptr()->is_ptr_to_narrowklass_nv());
2416 #else
2417 return false;
2654 }
2655
2656 inline const TypeNarrowOop* Type::make_narrowoop() const {
2657 return (_base == NarrowOop) ? is_narrowoop() :
2658 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : nullptr);
2659 }
2660
2661 inline const TypeNarrowKlass* Type::make_narrowklass() const {
2662 return (_base == NarrowKlass) ? is_narrowklass() :
2663 (isa_ptr() ? TypeNarrowKlass::make(is_ptr()) : nullptr);
2664 }
2665
2666 inline bool Type::is_floatingpoint() const {
2667 if( (_base == HalfFloatCon) || (_base == HalfFloatBot) ||
2668 (_base == FloatCon) || (_base == FloatBot) ||
2669 (_base == DoubleCon) || (_base == DoubleBot) )
2670 return true;
2671 return false;
2672 }
2673
2674 inline bool Type::is_inlinetypeptr() const {
2675 return isa_instptr() != nullptr && is_instptr()->instance_klass()->is_inlinetype();
2676 }
2677
2678 inline ciInlineKlass* Type::inline_klass() const {
2679 return make_ptr()->is_instptr()->instance_klass()->as_inline_klass();
2680 }
2681
2682 template <>
2683 inline const TypeInt* Type::cast<TypeInt>() const {
2684 return is_int();
2685 }
2686
2687 template <>
2688 inline const TypeLong* Type::cast<TypeLong>() const {
2689 return is_long();
2690 }
2691
2692 template <>
2693 inline const TypeInt* Type::try_cast<TypeInt>() const {
2694 return isa_int();
2695 }
2696
2697 template <>
2698 inline const TypeLong* Type::try_cast<TypeLong>() const {
2699 return isa_long();
2700 }
2701
2707
2708 // For type queries and asserts
2709 #define is_intptr_t is_long
2710 #define isa_intptr_t isa_long
2711 #define find_intptr_t_type find_long_type
2712 #define find_intptr_t_con find_long_con
2713 #define TypeX TypeLong
2714 #define Type_X Type::Long
2715 #define TypeX_X TypeLong::LONG
2716 #define TypeX_ZERO TypeLong::ZERO
2717 // For 'ideal_reg' machine registers
2718 #define Op_RegX Op_RegL
2719 // For phase->intcon variants
2720 #define MakeConX longcon
2721 #define ConXNode ConLNode
2722 // For array index arithmetic
2723 #define MulXNode MulLNode
2724 #define AndXNode AndLNode
2725 #define OrXNode OrLNode
2726 #define CmpXNode CmpLNode
2727 #define CmpUXNode CmpULNode
2728 #define SubXNode SubLNode
2729 #define LShiftXNode LShiftLNode
2730 // For object size computation:
2731 #define AddXNode AddLNode
2732 #define RShiftXNode RShiftLNode
2733 // For card marks and hashcodes
2734 #define URShiftXNode URShiftLNode
2735 // For shenandoahSupport
2736 #define LoadXNode LoadLNode
2737 #define StoreXNode StoreLNode
2738 // Opcodes
2739 #define Op_LShiftX Op_LShiftL
2740 #define Op_AndX Op_AndL
2741 #define Op_AddX Op_AddL
2742 #define Op_SubX Op_SubL
2743 #define Op_XorX Op_XorL
2744 #define Op_URShiftX Op_URShiftL
2745 #define Op_LoadX Op_LoadL
2746 #define Op_StoreX Op_StoreL
2747 // conversions
2748 #define ConvI2X(x) ConvI2L(x)
2749 #define ConvL2X(x) (x)
2750 #define ConvX2I(x) ConvL2I(x)
2751 #define ConvX2L(x) (x)
2752 #define ConvX2UL(x) (x)
2753
2754 #else
2755
2756 // For type queries and asserts
2757 #define is_intptr_t is_int
2758 #define isa_intptr_t isa_int
2759 #define find_intptr_t_type find_int_type
2760 #define find_intptr_t_con find_int_con
2761 #define TypeX TypeInt
2762 #define Type_X Type::Int
2763 #define TypeX_X TypeInt::INT
2764 #define TypeX_ZERO TypeInt::ZERO
2765 // For 'ideal_reg' machine registers
2766 #define Op_RegX Op_RegI
2767 // For phase->intcon variants
2768 #define MakeConX intcon
2769 #define ConXNode ConINode
2770 // For array index arithmetic
2771 #define MulXNode MulINode
2772 #define AndXNode AndINode
2773 #define OrXNode OrINode
2774 #define CmpXNode CmpINode
2775 #define CmpUXNode CmpUNode
2776 #define SubXNode SubINode
2777 #define LShiftXNode LShiftINode
2778 // For object size computation:
2779 #define AddXNode AddINode
2780 #define RShiftXNode RShiftINode
2781 // For card marks and hashcodes
2782 #define URShiftXNode URShiftINode
2783 // For shenandoahSupport
2784 #define LoadXNode LoadINode
2785 #define StoreXNode StoreINode
2786 // Opcodes
2787 #define Op_LShiftX Op_LShiftI
2788 #define Op_AndX Op_AndI
2789 #define Op_AddX Op_AddI
2790 #define Op_SubX Op_SubI
2791 #define Op_XorX Op_XorI
2792 #define Op_URShiftX Op_URShiftI
2793 #define Op_LoadX Op_LoadI
2794 #define Op_StoreX Op_StoreI
2795 // conversions
2796 #define ConvI2X(x) (x)
2797 #define ConvL2X(x) ConvL2I(x)
2798 #define ConvX2I(x) (x)
2799 #define ConvX2L(x) ConvI2L(x)
2800 #define ConvX2UL(x) ConvI2UL(x)
2801
2802 #endif
2803
2804 #endif // SHARE_OPTO_TYPE_HPP
|