< prev index next >

src/hotspot/share/runtime/deoptimization.cpp

Print this page

  33 #include "code/pcDesc.hpp"
  34 #include "code/scopeDesc.hpp"
  35 #include "compiler/compilationPolicy.hpp"
  36 #include "compiler/compilerDefinitions.inline.hpp"
  37 #include "gc/shared/collectedHeap.hpp"
  38 #include "gc/shared/memAllocator.hpp"
  39 #include "interpreter/bytecode.hpp"
  40 #include "interpreter/bytecodeStream.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "interpreter/oopMapCache.hpp"
  43 #include "jvm.h"
  44 #include "logging/log.hpp"
  45 #include "logging/logLevel.hpp"
  46 #include "logging/logMessage.hpp"
  47 #include "logging/logStream.hpp"
  48 #include "memory/allocation.inline.hpp"
  49 #include "memory/oopFactory.hpp"
  50 #include "memory/resourceArea.hpp"
  51 #include "memory/universe.hpp"
  52 #include "oops/constantPool.hpp"


  53 #include "oops/fieldStreams.inline.hpp"
  54 #include "oops/method.hpp"
  55 #include "oops/objArrayKlass.hpp"
  56 #include "oops/objArrayOop.inline.hpp"
  57 #include "oops/oop.inline.hpp"

  58 #include "oops/typeArrayOop.inline.hpp"
  59 #include "oops/verifyOopClosure.hpp"
  60 #include "prims/jvmtiDeferredUpdates.hpp"
  61 #include "prims/jvmtiExport.hpp"
  62 #include "prims/jvmtiThreadState.hpp"
  63 #include "prims/methodHandles.hpp"
  64 #include "prims/vectorSupport.hpp"
  65 #include "runtime/atomic.hpp"
  66 #include "runtime/basicLock.inline.hpp"
  67 #include "runtime/continuation.hpp"
  68 #include "runtime/continuationEntry.inline.hpp"
  69 #include "runtime/deoptimization.hpp"
  70 #include "runtime/escapeBarrier.hpp"
  71 #include "runtime/fieldDescriptor.hpp"
  72 #include "runtime/fieldDescriptor.inline.hpp"
  73 #include "runtime/frame.inline.hpp"
  74 #include "runtime/handles.inline.hpp"
  75 #include "runtime/interfaceSupport.inline.hpp"
  76 #include "runtime/javaThread.hpp"
  77 #include "runtime/jniHandles.inline.hpp"

 329                                   frame& deoptee, RegisterMap& map, GrowableArray<compiledVFrame*>* chunk,
 330                                   bool& deoptimized_objects) {
 331   bool realloc_failures = false;
 332   assert (chunk->at(0)->scope() != nullptr,"expect only compiled java frames");
 333 
 334   JavaThread* deoptee_thread = chunk->at(0)->thread();
 335   assert(exec_mode == Deoptimization::Unpack_none || (deoptee_thread == thread),
 336          "a frame can only be deoptimized by the owner thread");
 337 
 338   GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects_to_rematerialize(deoptee, map);
 339 
 340   // The flag return_oop() indicates call sites which return oop
 341   // in compiled code. Such sites include java method calls,
 342   // runtime calls (for example, used to allocate new objects/arrays
 343   // on slow code path) and any other calls generated in compiled code.
 344   // It is not guaranteed that we can get such information here only
 345   // by analyzing bytecode in deoptimized frames. This is why this flag
 346   // is set during method compilation (see Compile::Process_OopMap_Node()).
 347   // If the previous frame was popped or if we are dispatching an exception,
 348   // we don't have an oop result.
 349   bool save_oop_result = chunk->at(0)->scope()->return_oop() && !thread->popframe_forcing_deopt_reexecution() && (exec_mode == Deoptimization::Unpack_deopt);
 350   Handle return_value;











 351   if (save_oop_result) {
 352     // Reallocation may trigger GC. If deoptimization happened on return from
 353     // call which returns oop we need to save it since it is not in oopmap.
 354     oop result = deoptee.saved_oop_result(&map);
 355     assert(oopDesc::is_oop_or_null(result), "must be oop");
 356     return_value = Handle(thread, result);
 357     assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
 358     if (TraceDeoptimization) {
 359       tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, p2i(result), p2i(thread));
 360       tty->cr();
 361     }
 362   }
 363   if (objects != nullptr) {
 364     if (exec_mode == Deoptimization::Unpack_none) {
 365       assert(thread->thread_state() == _thread_in_vm, "assumption");
 366       JavaThread* THREAD = thread; // For exception macros.
 367       // Clear pending OOM if reallocation fails and return true indicating allocation failure
 368       realloc_failures = Deoptimization::realloc_objects(thread, &deoptee, &map, objects, CHECK_AND_CLEAR_(true));







 369       deoptimized_objects = true;
 370     } else {
 371       JavaThread* current = thread; // For JRT_BLOCK
 372       JRT_BLOCK
 373       realloc_failures = Deoptimization::realloc_objects(thread, &deoptee, &map, objects, THREAD);







 374       JRT_END
 375     }
 376     bool skip_internal = (compiled_method != nullptr) && !compiled_method->is_compiled_by_jvmci();
 377     Deoptimization::reassign_fields(&deoptee, &map, objects, realloc_failures, skip_internal);
 378     if (TraceDeoptimization) {
 379       print_objects(deoptee_thread, objects, realloc_failures);
 380     }
 381   }
 382   if (save_oop_result) {
 383     // Restore result.
 384     deoptee.set_saved_oop_result(&map, return_value());

 385   }
 386   return realloc_failures;
 387 }
 388 
 389 static void restore_eliminated_locks(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures,
 390                                      frame& deoptee, int exec_mode, bool& deoptimized_objects) {
 391   JavaThread* deoptee_thread = chunk->at(0)->thread();
 392   assert(!EscapeBarrier::objs_are_deoptimized(deoptee_thread, deoptee.id()), "must relock just once");
 393   assert(thread == Thread::current(), "should be");
 394   HandleMark hm(thread);
 395 #ifndef PRODUCT
 396   bool first = true;
 397 #endif // !PRODUCT
 398   // Start locking from outermost/oldest frame
 399   for (int i = (chunk->length() - 1); i >= 0; i--) {
 400     compiledVFrame* cvf = chunk->at(i);
 401     assert (cvf->scope() != nullptr,"expect only compiled java frames");
 402     GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
 403     if (monitors->is_nonempty()) {
 404       bool relocked = Deoptimization::relock_objects(thread, monitors, deoptee_thread, deoptee,

 700   // its caller's stack by. If the caller is a compiled frame then
 701   // we pretend that the callee has no parameters so that the
 702   // extension counts for the full amount of locals and not just
 703   // locals-parms. This is because without a c2i adapter the parm
 704   // area as created by the compiled frame will not be usable by
 705   // the interpreter. (Depending on the calling convention there
 706   // may not even be enough space).
 707 
 708   // QQQ I'd rather see this pushed down into last_frame_adjust
 709   // and have it take the sender (aka caller).
 710 
 711   if (!deopt_sender.is_interpreted_frame() || caller_was_method_handle) {
 712     caller_adjustment = last_frame_adjust(0, callee_locals);
 713   } else if (callee_locals > callee_parameters) {
 714     // The caller frame may need extending to accommodate
 715     // non-parameter locals of the first unpacked interpreted frame.
 716     // Compute that adjustment.
 717     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
 718   }
 719 
 720   // If the sender is deoptimized the we must retrieve the address of the handler
 721   // since the frame will "magically" show the original pc before the deopt
 722   // and we'd undo the deopt.
 723 
 724   frame_pcs[0] = Continuation::is_cont_barrier_frame(deoptee) ? StubRoutines::cont_returnBarrier() : deopt_sender.raw_pc();
 725   if (Continuation::is_continuation_enterSpecial(deopt_sender)) {
 726     ContinuationEntry::from_frame(deopt_sender)->set_argsize(0);
 727   }
 728 
 729   assert(CodeCache::find_blob(frame_pcs[0]) != nullptr, "bad pc");
 730 
 731 #if INCLUDE_JVMCI
 732   if (exceptionObject() != nullptr) {
 733     current->set_exception_oop(exceptionObject());
 734     exec_mode = Unpack_exception;
 735   }
 736 #endif
 737 
 738   if (current->frames_to_pop_failed_realloc() > 0 && exec_mode != Unpack_uncommon_trap) {
 739     assert(current->has_pending_exception(), "should have thrown OOME");
 740     current->set_exception_oop(current->pending_exception());

1200        case T_LONG:    return LongBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1201        default:;
1202      }
1203    }
1204    return nullptr;
1205 }
1206 #endif // INCLUDE_JVMCI
1207 
1208 #if COMPILER2_OR_JVMCI
1209 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, TRAPS) {
1210   Handle pending_exception(THREAD, thread->pending_exception());
1211   const char* exception_file = thread->exception_file();
1212   int exception_line = thread->exception_line();
1213   thread->clear_pending_exception();
1214 
1215   bool failures = false;
1216 
1217   for (int i = 0; i < objects->length(); i++) {
1218     assert(objects->at(i)->is_object(), "invalid debug information");
1219     ObjectValue* sv = (ObjectValue*) objects->at(i);
1220 
1221     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1222     oop obj = nullptr;
1223 











1224     bool cache_init_error = false;
1225     if (k->is_instance_klass()) {
1226 #if INCLUDE_JVMCI
1227       nmethod* nm = fr->cb()->as_nmethod_or_null();
1228       if (nm->is_compiled_by_jvmci() && sv->is_auto_box()) {
1229         AutoBoxObjectValue* abv = (AutoBoxObjectValue*) sv;
1230         obj = get_cached_box(abv, fr, reg_map, cache_init_error, THREAD);
1231         if (obj != nullptr) {
1232           // Set the flag to indicate the box came from a cache, so that we can skip the field reassignment for it.
1233           abv->set_cached(true);
1234         } else if (cache_init_error) {
1235           // Results in an OOME which is valid (as opposed to a class initialization error)
1236           // and is fine for the rare case a cache initialization failing.
1237           failures = true;
1238         }
1239       }
1240 #endif // INCLUDE_JVMCI
1241 
1242       InstanceKlass* ik = InstanceKlass::cast(k);
1243       if (obj == nullptr && !cache_init_error) {
1244         InternalOOMEMark iom(THREAD);
1245         if (EnableVectorSupport && VectorSupport::is_vector(ik)) {
1246           obj = VectorSupport::allocate_vector(ik, fr, reg_map, sv, THREAD);
1247         } else {
1248           obj = ik->allocate_instance(THREAD);
1249         }
1250       }




1251     } else if (k->is_typeArray_klass()) {
1252       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
1253       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
1254       int len = sv->field_size() / type2size[ak->element_type()];
1255       InternalOOMEMark iom(THREAD);
1256       obj = ak->allocate(len, THREAD);
1257     } else if (k->is_objArray_klass()) {
1258       ObjArrayKlass* ak = ObjArrayKlass::cast(k);
1259       InternalOOMEMark iom(THREAD);
1260       obj = ak->allocate(sv->field_size(), THREAD);
1261     }
1262 
1263     if (obj == nullptr) {
1264       failures = true;
1265     }
1266 
1267     assert(sv->value().is_null(), "redundant reallocation");
1268     assert(obj != nullptr || HAS_PENDING_EXCEPTION || cache_init_error, "allocation should succeed or we should get an exception");
1269     CLEAR_PENDING_EXCEPTION;
1270     sv->set_value(obj);
1271   }
1272 
1273   if (failures) {
1274     THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), failures);
1275   } else if (pending_exception.not_null()) {
1276     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
1277   }
1278 
1279   return failures;
1280 }
1281 















1282 #if INCLUDE_JVMCI
1283 /**
1284  * For primitive types whose kind gets "erased" at runtime (shorts become stack ints),
1285  * we need to somehow be able to recover the actual kind to be able to write the correct
1286  * amount of bytes.
1287  * For that purpose, this method assumes that, for an entry spanning n bytes at index i,
1288  * the entries at index n + 1 to n + i are 'markers'.
1289  * For example, if we were writing a short at index 4 of a byte array of size 8, the
1290  * expected form of the array would be:
1291  *
1292  * {b0, b1, b2, b3, INT, marker, b6, b7}
1293  *
1294  * Thus, in order to get back the size of the entry, we simply need to count the number
1295  * of marked entries
1296  *
1297  * @param virtualArray the virtualized byte array
1298  * @param i index of the virtual entry we are recovering
1299  * @return The number of bytes the entry spans
1300  */
1301 static int count_number_of_bytes_for_entry(ObjectValue *virtualArray, int i) {

1427       default:
1428         ShouldNotReachHere();
1429     }
1430     index++;
1431   }
1432 }
1433 
1434 // restore fields of an eliminated object array
1435 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
1436   for (int i = 0; i < sv->field_size(); i++) {
1437     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
1438     assert(value->type() == T_OBJECT, "object element expected");
1439     obj->obj_at_put(i, value->get_obj()());
1440   }
1441 }
1442 
1443 class ReassignedField {
1444 public:
1445   int _offset;
1446   BasicType _type;


1447 public:
1448   ReassignedField() {
1449     _offset = 0;
1450     _type = T_ILLEGAL;
1451   }
1452 };
1453 
1454 static int compare(ReassignedField* left, ReassignedField* right) {
1455   return left->_offset - right->_offset;
1456 }
1457 
1458 // Restore fields of an eliminated instance object using the same field order
1459 // returned by HotSpotResolvedObjectTypeImpl.getInstanceFields(true)
1460 static int reassign_fields_by_klass(InstanceKlass* klass, frame* fr, RegisterMap* reg_map, ObjectValue* sv, int svIndex, oop obj, bool skip_internal) {
1461   GrowableArray<ReassignedField>* fields = new GrowableArray<ReassignedField>();
1462   InstanceKlass* ik = klass;
1463   while (ik != nullptr) {
1464     for (AllFieldStream fs(ik); !fs.done(); fs.next()) {
1465       if (!fs.access_flags().is_static() && (!skip_internal || !fs.field_flags().is_injected())) {
1466         ReassignedField field;
1467         field._offset = fs.offset();
1468         field._type = Signature::basic_type(fs.signature());









1469         fields->append(field);
1470       }
1471     }
1472     ik = ik->superklass();
1473   }
1474   fields->sort(compare);
1475   for (int i = 0; i < fields->length(); i++) {











1476     ScopeValue* scope_field = sv->field_at(svIndex);
1477     StackValue* value = StackValue::create_stack_value(fr, reg_map, scope_field);
1478     int offset = fields->at(i)._offset;
1479     BasicType type = fields->at(i)._type;
1480     switch (type) {
1481       case T_OBJECT: case T_ARRAY:

1482         assert(value->type() == T_OBJECT, "Agreement.");
1483         obj->obj_field_put(offset, value->get_obj()());
1484         break;
1485 
1486       case T_INT: case T_FLOAT: { // 4 bytes.
1487         assert(value->type() == T_INT, "Agreement.");
1488         bool big_value = false;
1489         if (i+1 < fields->length() && fields->at(i+1)._type == T_INT) {
1490           if (scope_field->is_location()) {
1491             Location::Type type = ((LocationValue*) scope_field)->location().type();
1492             if (type == Location::dbl || type == Location::lng) {
1493               big_value = true;
1494             }
1495           }
1496           if (scope_field->is_constant_int()) {
1497             ScopeValue* next_scope_field = sv->field_at(svIndex + 1);
1498             if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
1499               big_value = true;
1500             }
1501           }

1535         break;
1536 
1537       case T_BYTE:
1538         assert(value->type() == T_INT, "Agreement.");
1539         obj->byte_field_put(offset, (jbyte)value->get_jint());
1540         break;
1541 
1542       case T_BOOLEAN:
1543         assert(value->type() == T_INT, "Agreement.");
1544         obj->bool_field_put(offset, (jboolean)value->get_jint());
1545         break;
1546 
1547       default:
1548         ShouldNotReachHere();
1549     }
1550     svIndex++;
1551   }
1552   return svIndex;
1553 }
1554 














1555 // restore fields of all eliminated objects and arrays
1556 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, bool realloc_failures, bool skip_internal) {
1557   for (int i = 0; i < objects->length(); i++) {
1558     assert(objects->at(i)->is_object(), "invalid debug information");
1559     ObjectValue* sv = (ObjectValue*) objects->at(i);
1560     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1561     Handle obj = sv->value();
1562     assert(obj.not_null() || realloc_failures, "reallocation was missed");
1563 #ifndef PRODUCT
1564     if (PrintDeoptimizationDetails) {
1565       tty->print_cr("reassign fields for object of type %s!", k->name()->as_C_string());
1566     }
1567 #endif // !PRODUCT
1568 
1569     if (obj.is_null()) {
1570       continue;
1571     }
1572 
1573 #if INCLUDE_JVMCI
1574     // Don't reassign fields of boxes that came from a cache. Caches may be in CDS.
1575     if (sv->is_auto_box() && ((AutoBoxObjectValue*) sv)->is_cached()) {
1576       continue;
1577     }
1578 #endif // INCLUDE_JVMCI
1579     if (EnableVectorSupport && VectorSupport::is_vector(k)) {
1580       assert(sv->field_size() == 1, "%s not a vector", k->name()->as_C_string());
1581       ScopeValue* payload = sv->field_at(0);
1582       if (payload->is_location() &&
1583           payload->as_LocationValue()->location().type() == Location::vector) {
1584 #ifndef PRODUCT
1585         if (PrintDeoptimizationDetails) {
1586           tty->print_cr("skip field reassignment for this vector - it should be assigned already");
1587           if (Verbose) {
1588             Handle obj = sv->value();
1589             k->oop_print_on(obj(), tty);
1590           }
1591         }
1592 #endif // !PRODUCT
1593         continue; // Such vector's value was already restored in VectorSupport::allocate_vector().
1594       }
1595       // Else fall-through to do assignment for scalar-replaced boxed vector representation
1596       // which could be restored after vector object allocation.
1597     }
1598     if (k->is_instance_klass()) {
1599       InstanceKlass* ik = InstanceKlass::cast(k);
1600       reassign_fields_by_klass(ik, fr, reg_map, sv, 0, obj(), skip_internal);



1601     } else if (k->is_typeArray_klass()) {
1602       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
1603       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
1604     } else if (k->is_objArray_klass()) {
1605       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
1606     }
1607   }
1608   // These objects may escape when we return to Interpreter after deoptimization.
1609   // We need barrier so that stores that initialize these objects can't be reordered
1610   // with subsequent stores that make these objects accessible by other threads.
1611   OrderAccess::storestore();
1612 }
1613 
1614 
1615 // relock objects for which synchronization was eliminated
1616 bool Deoptimization::relock_objects(JavaThread* thread, GrowableArray<MonitorInfo*>* monitors,
1617                                     JavaThread* deoptee_thread, frame& fr, int exec_mode, bool realloc_failures) {
1618   bool relocked_objects = false;
1619   for (int i = 0; i < monitors->length(); i++) {
1620     MonitorInfo* mon_info = monitors->at(i);

1770     xtty->begin_head("deoptimized thread='" UINTX_FORMAT "' reason='%s' pc='" INTPTR_FORMAT "'",(uintx)thread->osthread()->thread_id(), trap_reason_name(reason), p2i(fr.pc()));
1771     nm->log_identity(xtty);
1772     xtty->end_head();
1773     for (ScopeDesc* sd = nm->scope_desc_at(fr.pc()); ; sd = sd->sender()) {
1774       xtty->begin_elem("jvms bci='%d'", sd->bci());
1775       xtty->method(sd->method());
1776       xtty->end_elem();
1777       if (sd->is_top())  break;
1778     }
1779     xtty->tail("deoptimized");
1780   }
1781 
1782   Continuation::notify_deopt(thread, fr.sp());
1783 
1784   // Patch the compiled method so that when execution returns to it we will
1785   // deopt the execution state and return to the interpreter.
1786   fr.deoptimize(thread);
1787 }
1788 
1789 void Deoptimization::deoptimize(JavaThread* thread, frame fr, DeoptReason reason) {
1790   // Deoptimize only if the frame comes from compile code.
1791   // Do not deoptimize the frame which is already patched
1792   // during the execution of the loops below.
1793   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
1794     return;
1795   }
1796   ResourceMark rm;
1797   deoptimize_single_frame(thread, fr, reason);
1798 }
1799 
1800 #if INCLUDE_JVMCI
1801 address Deoptimization::deoptimize_for_missing_exception_handler(nmethod* nm) {
1802   // there is no exception handler for this pc => deoptimize
1803   nm->make_not_entrant();
1804 
1805   // Use Deoptimization::deoptimize for all of its side-effects:
1806   // gathering traps statistics, logging...
1807   // it also patches the return pc but we do not care about that
1808   // since we return a continuation to the deopt_blob below.
1809   JavaThread* thread = JavaThread::current();
1810   RegisterMap reg_map(thread,

  33 #include "code/pcDesc.hpp"
  34 #include "code/scopeDesc.hpp"
  35 #include "compiler/compilationPolicy.hpp"
  36 #include "compiler/compilerDefinitions.inline.hpp"
  37 #include "gc/shared/collectedHeap.hpp"
  38 #include "gc/shared/memAllocator.hpp"
  39 #include "interpreter/bytecode.hpp"
  40 #include "interpreter/bytecodeStream.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "interpreter/oopMapCache.hpp"
  43 #include "jvm.h"
  44 #include "logging/log.hpp"
  45 #include "logging/logLevel.hpp"
  46 #include "logging/logMessage.hpp"
  47 #include "logging/logStream.hpp"
  48 #include "memory/allocation.inline.hpp"
  49 #include "memory/oopFactory.hpp"
  50 #include "memory/resourceArea.hpp"
  51 #include "memory/universe.hpp"
  52 #include "oops/constantPool.hpp"
  53 #include "oops/flatArrayKlass.hpp"
  54 #include "oops/flatArrayOop.hpp"
  55 #include "oops/fieldStreams.inline.hpp"
  56 #include "oops/method.hpp"
  57 #include "oops/objArrayKlass.hpp"
  58 #include "oops/objArrayOop.inline.hpp"
  59 #include "oops/oop.inline.hpp"
  60 #include "oops/inlineKlass.inline.hpp"
  61 #include "oops/typeArrayOop.inline.hpp"
  62 #include "oops/verifyOopClosure.hpp"
  63 #include "prims/jvmtiDeferredUpdates.hpp"
  64 #include "prims/jvmtiExport.hpp"
  65 #include "prims/jvmtiThreadState.hpp"
  66 #include "prims/methodHandles.hpp"
  67 #include "prims/vectorSupport.hpp"
  68 #include "runtime/atomic.hpp"
  69 #include "runtime/basicLock.inline.hpp"
  70 #include "runtime/continuation.hpp"
  71 #include "runtime/continuationEntry.inline.hpp"
  72 #include "runtime/deoptimization.hpp"
  73 #include "runtime/escapeBarrier.hpp"
  74 #include "runtime/fieldDescriptor.hpp"
  75 #include "runtime/fieldDescriptor.inline.hpp"
  76 #include "runtime/frame.inline.hpp"
  77 #include "runtime/handles.inline.hpp"
  78 #include "runtime/interfaceSupport.inline.hpp"
  79 #include "runtime/javaThread.hpp"
  80 #include "runtime/jniHandles.inline.hpp"

 332                                   frame& deoptee, RegisterMap& map, GrowableArray<compiledVFrame*>* chunk,
 333                                   bool& deoptimized_objects) {
 334   bool realloc_failures = false;
 335   assert (chunk->at(0)->scope() != nullptr,"expect only compiled java frames");
 336 
 337   JavaThread* deoptee_thread = chunk->at(0)->thread();
 338   assert(exec_mode == Deoptimization::Unpack_none || (deoptee_thread == thread),
 339          "a frame can only be deoptimized by the owner thread");
 340 
 341   GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects_to_rematerialize(deoptee, map);
 342 
 343   // The flag return_oop() indicates call sites which return oop
 344   // in compiled code. Such sites include java method calls,
 345   // runtime calls (for example, used to allocate new objects/arrays
 346   // on slow code path) and any other calls generated in compiled code.
 347   // It is not guaranteed that we can get such information here only
 348   // by analyzing bytecode in deoptimized frames. This is why this flag
 349   // is set during method compilation (see Compile::Process_OopMap_Node()).
 350   // If the previous frame was popped or if we are dispatching an exception,
 351   // we don't have an oop result.
 352   ScopeDesc* scope = chunk->at(0)->scope();
 353   bool save_oop_result = scope->return_oop() && !thread->popframe_forcing_deopt_reexecution() && (exec_mode == Deoptimization::Unpack_deopt);
 354   // In case of the return of multiple values, we must take care
 355   // of all oop return values.
 356   GrowableArray<Handle> return_oops;
 357   InlineKlass* vk = nullptr;
 358   if (save_oop_result && scope->return_scalarized()) {
 359     vk = InlineKlass::returned_inline_klass(map);
 360     if (vk != nullptr) {
 361       vk->save_oop_fields(map, return_oops);
 362       save_oop_result = false;
 363     }
 364   }
 365   if (save_oop_result) {
 366     // Reallocation may trigger GC. If deoptimization happened on return from
 367     // call which returns oop we need to save it since it is not in oopmap.
 368     oop result = deoptee.saved_oop_result(&map);
 369     assert(oopDesc::is_oop_or_null(result), "must be oop");
 370     return_oops.push(Handle(thread, result));
 371     assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
 372     if (TraceDeoptimization) {
 373       tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, p2i(result), p2i(thread));
 374       tty->cr();
 375     }
 376   }
 377   if (objects != nullptr || vk != nullptr) {
 378     if (exec_mode == Deoptimization::Unpack_none) {
 379       assert(thread->thread_state() == _thread_in_vm, "assumption");
 380       JavaThread* THREAD = thread; // For exception macros.
 381       // Clear pending OOM if reallocation fails and return true indicating allocation failure
 382       if (vk != nullptr) {
 383         realloc_failures = Deoptimization::realloc_inline_type_result(vk, map, return_oops, CHECK_AND_CLEAR_(true));
 384       }
 385       if (objects != nullptr) {
 386         realloc_failures = realloc_failures || Deoptimization::realloc_objects(thread, &deoptee, &map, objects, CHECK_AND_CLEAR_(true));
 387         bool skip_internal = (compiled_method != nullptr) && !compiled_method->is_compiled_by_jvmci();
 388         Deoptimization::reassign_fields(&deoptee, &map, objects, realloc_failures, skip_internal, CHECK_AND_CLEAR_(true));
 389       }
 390       deoptimized_objects = true;
 391     } else {
 392       JavaThread* current = thread; // For JRT_BLOCK
 393       JRT_BLOCK
 394       if (vk != nullptr) {
 395         realloc_failures = Deoptimization::realloc_inline_type_result(vk, map, return_oops, THREAD);
 396       }
 397       if (objects != nullptr) {
 398         realloc_failures = realloc_failures || Deoptimization::realloc_objects(thread, &deoptee, &map, objects, THREAD);
 399         bool skip_internal = (compiled_method != nullptr) && !compiled_method->is_compiled_by_jvmci();
 400         Deoptimization::reassign_fields(&deoptee, &map, objects, realloc_failures, skip_internal, THREAD);
 401       }
 402       JRT_END
 403     }
 404     if (TraceDeoptimization && objects != nullptr) {


 405       print_objects(deoptee_thread, objects, realloc_failures);
 406     }
 407   }
 408   if (save_oop_result || vk != nullptr) {
 409     // Restore result.
 410     assert(return_oops.length() == 1, "no inline type");
 411     deoptee.set_saved_oop_result(&map, return_oops.pop()());
 412   }
 413   return realloc_failures;
 414 }
 415 
 416 static void restore_eliminated_locks(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures,
 417                                      frame& deoptee, int exec_mode, bool& deoptimized_objects) {
 418   JavaThread* deoptee_thread = chunk->at(0)->thread();
 419   assert(!EscapeBarrier::objs_are_deoptimized(deoptee_thread, deoptee.id()), "must relock just once");
 420   assert(thread == Thread::current(), "should be");
 421   HandleMark hm(thread);
 422 #ifndef PRODUCT
 423   bool first = true;
 424 #endif // !PRODUCT
 425   // Start locking from outermost/oldest frame
 426   for (int i = (chunk->length() - 1); i >= 0; i--) {
 427     compiledVFrame* cvf = chunk->at(i);
 428     assert (cvf->scope() != nullptr,"expect only compiled java frames");
 429     GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
 430     if (monitors->is_nonempty()) {
 431       bool relocked = Deoptimization::relock_objects(thread, monitors, deoptee_thread, deoptee,

 727   // its caller's stack by. If the caller is a compiled frame then
 728   // we pretend that the callee has no parameters so that the
 729   // extension counts for the full amount of locals and not just
 730   // locals-parms. This is because without a c2i adapter the parm
 731   // area as created by the compiled frame will not be usable by
 732   // the interpreter. (Depending on the calling convention there
 733   // may not even be enough space).
 734 
 735   // QQQ I'd rather see this pushed down into last_frame_adjust
 736   // and have it take the sender (aka caller).
 737 
 738   if (!deopt_sender.is_interpreted_frame() || caller_was_method_handle) {
 739     caller_adjustment = last_frame_adjust(0, callee_locals);
 740   } else if (callee_locals > callee_parameters) {
 741     // The caller frame may need extending to accommodate
 742     // non-parameter locals of the first unpacked interpreted frame.
 743     // Compute that adjustment.
 744     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
 745   }
 746 
 747   // If the sender is deoptimized we must retrieve the address of the handler
 748   // since the frame will "magically" show the original pc before the deopt
 749   // and we'd undo the deopt.
 750 
 751   frame_pcs[0] = Continuation::is_cont_barrier_frame(deoptee) ? StubRoutines::cont_returnBarrier() : deopt_sender.raw_pc();
 752   if (Continuation::is_continuation_enterSpecial(deopt_sender)) {
 753     ContinuationEntry::from_frame(deopt_sender)->set_argsize(0);
 754   }
 755 
 756   assert(CodeCache::find_blob(frame_pcs[0]) != nullptr, "bad pc");
 757 
 758 #if INCLUDE_JVMCI
 759   if (exceptionObject() != nullptr) {
 760     current->set_exception_oop(exceptionObject());
 761     exec_mode = Unpack_exception;
 762   }
 763 #endif
 764 
 765   if (current->frames_to_pop_failed_realloc() > 0 && exec_mode != Unpack_uncommon_trap) {
 766     assert(current->has_pending_exception(), "should have thrown OOME");
 767     current->set_exception_oop(current->pending_exception());

1227        case T_LONG:    return LongBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1228        default:;
1229      }
1230    }
1231    return nullptr;
1232 }
1233 #endif // INCLUDE_JVMCI
1234 
1235 #if COMPILER2_OR_JVMCI
1236 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, TRAPS) {
1237   Handle pending_exception(THREAD, thread->pending_exception());
1238   const char* exception_file = thread->exception_file();
1239   int exception_line = thread->exception_line();
1240   thread->clear_pending_exception();
1241 
1242   bool failures = false;
1243 
1244   for (int i = 0; i < objects->length(); i++) {
1245     assert(objects->at(i)->is_object(), "invalid debug information");
1246     ObjectValue* sv = (ObjectValue*) objects->at(i);

1247     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());

1248 
1249     // Check if the object may be null and has an additional is_init input that needs
1250     // to be checked before using the field values. Skip re-allocation if it is null.
1251     if (sv->maybe_null()) {
1252       assert(k->is_inline_klass(), "must be an inline klass");
1253       jint is_init = StackValue::create_stack_value(fr, reg_map, sv->is_init())->get_jint();
1254       if (is_init == 0) {
1255         continue;
1256       }
1257     }
1258 
1259     oop obj = nullptr;
1260     bool cache_init_error = false;
1261     if (k->is_instance_klass()) {
1262 #if INCLUDE_JVMCI
1263       nmethod* nm = fr->cb()->as_nmethod_or_null();
1264       if (nm->is_compiled_by_jvmci() && sv->is_auto_box()) {
1265         AutoBoxObjectValue* abv = (AutoBoxObjectValue*) sv;
1266         obj = get_cached_box(abv, fr, reg_map, cache_init_error, THREAD);
1267         if (obj != nullptr) {
1268           // Set the flag to indicate the box came from a cache, so that we can skip the field reassignment for it.
1269           abv->set_cached(true);
1270         } else if (cache_init_error) {
1271           // Results in an OOME which is valid (as opposed to a class initialization error)
1272           // and is fine for the rare case a cache initialization failing.
1273           failures = true;
1274         }
1275       }
1276 #endif // INCLUDE_JVMCI
1277 
1278       InstanceKlass* ik = InstanceKlass::cast(k);
1279       if (obj == nullptr && !cache_init_error) {
1280         InternalOOMEMark iom(THREAD);
1281         if (EnableVectorSupport && VectorSupport::is_vector(ik)) {
1282           obj = VectorSupport::allocate_vector(ik, fr, reg_map, sv, THREAD);
1283         } else {
1284           obj = ik->allocate_instance(THREAD);
1285         }
1286       }
1287     } else if (k->is_flatArray_klass()) {
1288       FlatArrayKlass* ak = FlatArrayKlass::cast(k);
1289       // Inline type array must be zeroed because not all memory is reassigned
1290       obj = ak->allocate(sv->field_size(), THREAD);
1291     } else if (k->is_typeArray_klass()) {
1292       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
1293       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
1294       int len = sv->field_size() / type2size[ak->element_type()];
1295       InternalOOMEMark iom(THREAD);
1296       obj = ak->allocate(len, THREAD);
1297     } else if (k->is_objArray_klass()) {
1298       ObjArrayKlass* ak = ObjArrayKlass::cast(k);
1299       InternalOOMEMark iom(THREAD);
1300       obj = ak->allocate(sv->field_size(), THREAD);
1301     }
1302 
1303     if (obj == nullptr) {
1304       failures = true;
1305     }
1306 
1307     assert(sv->value().is_null(), "redundant reallocation");
1308     assert(obj != nullptr || HAS_PENDING_EXCEPTION || cache_init_error, "allocation should succeed or we should get an exception");
1309     CLEAR_PENDING_EXCEPTION;
1310     sv->set_value(obj);
1311   }
1312 
1313   if (failures) {
1314     THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), failures);
1315   } else if (pending_exception.not_null()) {
1316     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
1317   }
1318 
1319   return failures;
1320 }
1321 
1322 // We're deoptimizing at the return of a call, inline type fields are
1323 // in registers. When we go back to the interpreter, it will expect a
1324 // reference to an inline type instance. Allocate and initialize it from
1325 // the register values here.
1326 bool Deoptimization::realloc_inline_type_result(InlineKlass* vk, const RegisterMap& map, GrowableArray<Handle>& return_oops, TRAPS) {
1327   oop new_vt = vk->realloc_result(map, return_oops, THREAD);
1328   if (new_vt == nullptr) {
1329     CLEAR_PENDING_EXCEPTION;
1330     THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), true);
1331   }
1332   return_oops.clear();
1333   return_oops.push(Handle(THREAD, new_vt));
1334   return false;
1335 }
1336 
1337 #if INCLUDE_JVMCI
1338 /**
1339  * For primitive types whose kind gets "erased" at runtime (shorts become stack ints),
1340  * we need to somehow be able to recover the actual kind to be able to write the correct
1341  * amount of bytes.
1342  * For that purpose, this method assumes that, for an entry spanning n bytes at index i,
1343  * the entries at index n + 1 to n + i are 'markers'.
1344  * For example, if we were writing a short at index 4 of a byte array of size 8, the
1345  * expected form of the array would be:
1346  *
1347  * {b0, b1, b2, b3, INT, marker, b6, b7}
1348  *
1349  * Thus, in order to get back the size of the entry, we simply need to count the number
1350  * of marked entries
1351  *
1352  * @param virtualArray the virtualized byte array
1353  * @param i index of the virtual entry we are recovering
1354  * @return The number of bytes the entry spans
1355  */
1356 static int count_number_of_bytes_for_entry(ObjectValue *virtualArray, int i) {

1482       default:
1483         ShouldNotReachHere();
1484     }
1485     index++;
1486   }
1487 }
1488 
1489 // restore fields of an eliminated object array
1490 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
1491   for (int i = 0; i < sv->field_size(); i++) {
1492     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
1493     assert(value->type() == T_OBJECT, "object element expected");
1494     obj->obj_at_put(i, value->get_obj()());
1495   }
1496 }
1497 
1498 class ReassignedField {
1499 public:
1500   int _offset;
1501   BasicType _type;
1502   InstanceKlass* _klass;
1503   bool _is_flat;
1504 public:
1505   ReassignedField() : _offset(0), _type(T_ILLEGAL), _klass(nullptr), _is_flat(false) { }



1506 };
1507 
1508 static int compare(ReassignedField* left, ReassignedField* right) {
1509   return left->_offset - right->_offset;
1510 }
1511 
1512 // Restore fields of an eliminated instance object using the same field order
1513 // returned by HotSpotResolvedObjectTypeImpl.getInstanceFields(true)
1514 static int reassign_fields_by_klass(InstanceKlass* klass, frame* fr, RegisterMap* reg_map, ObjectValue* sv, int svIndex, oop obj, bool skip_internal, int base_offset, TRAPS) {
1515   GrowableArray<ReassignedField>* fields = new GrowableArray<ReassignedField>();
1516   InstanceKlass* ik = klass;
1517   while (ik != nullptr) {
1518     for (AllFieldStream fs(ik); !fs.done(); fs.next()) {
1519       if (!fs.access_flags().is_static() && (!skip_internal || !fs.field_flags().is_injected())) {
1520         ReassignedField field;
1521         field._offset = fs.offset();
1522         field._type = Signature::basic_type(fs.signature());
1523         if (fs.is_null_free_inline_type()) {
1524           if (fs.is_flat()) {
1525             field._is_flat = true;
1526             // Resolve klass of flat inline type field
1527             field._klass = InlineKlass::cast(klass->get_inline_type_field_klass(fs.index()));
1528           } else {
1529             field._type = T_OBJECT;  // Can be removed once Q-descriptors have been removed.
1530           }
1531         }
1532         fields->append(field);
1533       }
1534     }
1535     ik = ik->superklass();
1536   }
1537   fields->sort(compare);
1538   for (int i = 0; i < fields->length(); i++) {
1539     BasicType type = fields->at(i)._type;
1540     int offset = base_offset + fields->at(i)._offset;
1541     // Check for flat inline type field before accessing the ScopeValue because it might not have any fields
1542     if (fields->at(i)._is_flat) {
1543       // Recursively re-assign flat inline type fields
1544       InstanceKlass* vk = fields->at(i)._klass;
1545       assert(vk != nullptr, "must be resolved");
1546       offset -= InlineKlass::cast(vk)->first_field_offset(); // Adjust offset to omit oop header
1547       svIndex = reassign_fields_by_klass(vk, fr, reg_map, sv, svIndex, obj, skip_internal, offset, CHECK_0);
1548       continue; // Continue because we don't need to increment svIndex
1549     }
1550     ScopeValue* scope_field = sv->field_at(svIndex);
1551     StackValue* value = StackValue::create_stack_value(fr, reg_map, scope_field);


1552     switch (type) {
1553       case T_OBJECT:
1554       case T_ARRAY:
1555         assert(value->type() == T_OBJECT, "Agreement.");
1556         obj->obj_field_put(offset, value->get_obj()());
1557         break;
1558 
1559       case T_INT: case T_FLOAT: { // 4 bytes.
1560         assert(value->type() == T_INT, "Agreement.");
1561         bool big_value = false;
1562         if (i+1 < fields->length() && fields->at(i+1)._type == T_INT) {
1563           if (scope_field->is_location()) {
1564             Location::Type type = ((LocationValue*) scope_field)->location().type();
1565             if (type == Location::dbl || type == Location::lng) {
1566               big_value = true;
1567             }
1568           }
1569           if (scope_field->is_constant_int()) {
1570             ScopeValue* next_scope_field = sv->field_at(svIndex + 1);
1571             if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
1572               big_value = true;
1573             }
1574           }

1608         break;
1609 
1610       case T_BYTE:
1611         assert(value->type() == T_INT, "Agreement.");
1612         obj->byte_field_put(offset, (jbyte)value->get_jint());
1613         break;
1614 
1615       case T_BOOLEAN:
1616         assert(value->type() == T_INT, "Agreement.");
1617         obj->bool_field_put(offset, (jboolean)value->get_jint());
1618         break;
1619 
1620       default:
1621         ShouldNotReachHere();
1622     }
1623     svIndex++;
1624   }
1625   return svIndex;
1626 }
1627 
1628 // restore fields of an eliminated inline type array
1629 void Deoptimization::reassign_flat_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, flatArrayOop obj, FlatArrayKlass* vak, bool skip_internal, TRAPS) {
1630   InlineKlass* vk = vak->element_klass();
1631   assert(vk->flat_array(), "should only be used for flat inline type arrays");
1632   // Adjust offset to omit oop header
1633   int base_offset = arrayOopDesc::base_offset_in_bytes(T_PRIMITIVE_OBJECT) - InlineKlass::cast(vk)->first_field_offset();
1634   // Initialize all elements of the flat inline type array
1635   for (int i = 0; i < sv->field_size(); i++) {
1636     ScopeValue* val = sv->field_at(i);
1637     int offset = base_offset + (i << Klass::layout_helper_log2_element_size(vak->layout_helper()));
1638     reassign_fields_by_klass(vk, fr, reg_map, val->as_ObjectValue(), 0, (oop)obj, skip_internal, offset, CHECK);
1639   }
1640 }
1641 
1642 // restore fields of all eliminated objects and arrays
1643 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, bool realloc_failures, bool skip_internal, TRAPS) {
1644   for (int i = 0; i < objects->length(); i++) {
1645     assert(objects->at(i)->is_object(), "invalid debug information");
1646     ObjectValue* sv = (ObjectValue*) objects->at(i);
1647     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1648     Handle obj = sv->value();
1649     assert(obj.not_null() || realloc_failures || sv->maybe_null(), "reallocation was missed");
1650 #ifndef PRODUCT
1651     if (PrintDeoptimizationDetails) {
1652       tty->print_cr("reassign fields for object of type %s!", k->name()->as_C_string());
1653     }
1654 #endif // !PRODUCT
1655 
1656     if (obj.is_null()) {
1657       continue;
1658     }
1659 
1660 #if INCLUDE_JVMCI
1661     // Don't reassign fields of boxes that came from a cache. Caches may be in CDS.
1662     if (sv->is_auto_box() && ((AutoBoxObjectValue*) sv)->is_cached()) {
1663       continue;
1664     }
1665 #endif // INCLUDE_JVMCI
1666     if (EnableVectorSupport && VectorSupport::is_vector(k)) {
1667       assert(sv->field_size() == 1, "%s not a vector", k->name()->as_C_string());
1668       ScopeValue* payload = sv->field_at(0);
1669       if (payload->is_location() &&
1670           payload->as_LocationValue()->location().type() == Location::vector) {
1671 #ifndef PRODUCT
1672         if (PrintDeoptimizationDetails) {
1673           tty->print_cr("skip field reassignment for this vector - it should be assigned already");
1674           if (Verbose) {
1675             Handle obj = sv->value();
1676             k->oop_print_on(obj(), tty);
1677           }
1678         }
1679 #endif // !PRODUCT
1680         continue; // Such vector's value was already restored in VectorSupport::allocate_vector().
1681       }
1682       // Else fall-through to do assignment for scalar-replaced boxed vector representation
1683       // which could be restored after vector object allocation.
1684     }
1685     if (k->is_instance_klass()) {
1686       InstanceKlass* ik = InstanceKlass::cast(k);
1687       reassign_fields_by_klass(ik, fr, reg_map, sv, 0, obj(), skip_internal, 0, CHECK);
1688     } else if (k->is_flatArray_klass()) {
1689       FlatArrayKlass* vak = FlatArrayKlass::cast(k);
1690       reassign_flat_array_elements(fr, reg_map, sv, (flatArrayOop) obj(), vak, skip_internal, CHECK);
1691     } else if (k->is_typeArray_klass()) {
1692       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
1693       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
1694     } else if (k->is_objArray_klass()) {
1695       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
1696     }
1697   }
1698   // These objects may escape when we return to Interpreter after deoptimization.
1699   // We need barrier so that stores that initialize these objects can't be reordered
1700   // with subsequent stores that make these objects accessible by other threads.
1701   OrderAccess::storestore();
1702 }
1703 
1704 
1705 // relock objects for which synchronization was eliminated
1706 bool Deoptimization::relock_objects(JavaThread* thread, GrowableArray<MonitorInfo*>* monitors,
1707                                     JavaThread* deoptee_thread, frame& fr, int exec_mode, bool realloc_failures) {
1708   bool relocked_objects = false;
1709   for (int i = 0; i < monitors->length(); i++) {
1710     MonitorInfo* mon_info = monitors->at(i);

1860     xtty->begin_head("deoptimized thread='" UINTX_FORMAT "' reason='%s' pc='" INTPTR_FORMAT "'",(uintx)thread->osthread()->thread_id(), trap_reason_name(reason), p2i(fr.pc()));
1861     nm->log_identity(xtty);
1862     xtty->end_head();
1863     for (ScopeDesc* sd = nm->scope_desc_at(fr.pc()); ; sd = sd->sender()) {
1864       xtty->begin_elem("jvms bci='%d'", sd->bci());
1865       xtty->method(sd->method());
1866       xtty->end_elem();
1867       if (sd->is_top())  break;
1868     }
1869     xtty->tail("deoptimized");
1870   }
1871 
1872   Continuation::notify_deopt(thread, fr.sp());
1873 
1874   // Patch the compiled method so that when execution returns to it we will
1875   // deopt the execution state and return to the interpreter.
1876   fr.deoptimize(thread);
1877 }
1878 
1879 void Deoptimization::deoptimize(JavaThread* thread, frame fr, DeoptReason reason) {
1880   // Deoptimize only if the frame comes from compiled code.
1881   // Do not deoptimize the frame which is already patched
1882   // during the execution of the loops below.
1883   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
1884     return;
1885   }
1886   ResourceMark rm;
1887   deoptimize_single_frame(thread, fr, reason);
1888 }
1889 
1890 #if INCLUDE_JVMCI
1891 address Deoptimization::deoptimize_for_missing_exception_handler(nmethod* nm) {
1892   // there is no exception handler for this pc => deoptimize
1893   nm->make_not_entrant();
1894 
1895   // Use Deoptimization::deoptimize for all of its side-effects:
1896   // gathering traps statistics, logging...
1897   // it also patches the return pc but we do not care about that
1898   // since we return a continuation to the deopt_blob below.
1899   JavaThread* thread = JavaThread::current();
1900   RegisterMap reg_map(thread,
< prev index next >